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a b s t r a c t

Study of geologic records of dust composition, sources and deposition rates is important for understand-
ing the role of dust in the overall planetary radiation balance, fertilization of organisms in the world’s
oceans, nutrient additions to the terrestrial biosphere and soils, and for paleoclimatic reconstructions.
Both glacial and non-glacial processes produce fine-grained particles that can be transported by the wind.
Geologic records of dust flux occur in a number of depositional archives for sediments: (1) loess deposits;
(2) lake sediments; (3) soils; (4) deep-ocean basins; and (5) ice sheets and smaller glaciers. These archives
have several characteristics that make them highly suitable for understanding the dynamics of dust
entrainment, transport, and deposition. First, they are often distributed over wide geographic areas,
which permits reconstruction of spatial variation of dust flux. Second, a number of dating methods can
be applied to sediment archives, which allows identification of specific periods of greater or lesser dust
flux. Third, aeolian sediment particle size and composition can be determined so that dust source areas
can be ascertained and dust transport pathways can be reconstructed. Over much of the Earth’s surface,
dust deposition rates were greater during the last glacial period than during the present interglacial per-
iod. A dustier Earth during glacial periods is likely due to increased source areas, greater aridity, less veg-
etation, lower soil moisture, possibly stronger winds, a decreased intensity of the hydrologic cycle, and
greater production of dust-sized particles from expanded ice sheets and glaciers.

Published by Elsevier B.V.

Contents

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2. Dust generation, source areas and sinks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1. Formation of dust particles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2. Dust source areas: the global picture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3. Climatic controls on dust generation and transport from Africa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4. Climatic controls on dust generation and transport from Asia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.5. Climatic controls on dust generation and transport from Australia, South America and North America . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3. Geologic records of dust . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4. Loess deposits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.1. Geography of loess . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.2. Sedimentology of loess . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.3. Loess stratigraphy in mid-continental North America . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.4. Loess stratigraphy in China. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.5. Paleoclimatic and paleoenvironmental interpretation of loess deposits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5. Lacustrine records of dust deposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
6. Records of dust in soils . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

6.1. A general concept for soils as archives for dust . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
6.2. Examples of dust mantles in soils and aeolian ‘‘contamination’’ of soils. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
6.3. The importance of dust for carbonate accumulation in soils . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

7. Marine records of dust deposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
7.1. Marine sediment records of dust in the Atlantic Ocean . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
7.2. Marine sediment records of dust in the Pacific Ocean . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
7.3. Marine sediment records of dust in the Indian Ocean and Tasman Sea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

1875-9637/$ - see front matter Published by Elsevier B.V.
http://dx.doi.org/10.1016/j.aeolia.2012.08.001

E-mail address: dmuhs@usgs.gov

Aeolian Research 9 (2013) 3–48

Contents lists available at SciVerse ScienceDirect

Aeolian Research

journal homepage: www.elsevier .com/locate /aeol ia



8. Dust deposition in glacial ice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
8.1. Dust records in Antarctic ice cores. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
8.2. Dust records in Greenland ice cores. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
8.3. Dust in small, high-altitude glaciers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

9. Discussion and concluding thoughts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

‘‘I wish those dusty Santa Ana winds would come and carry me
out to sea. . .’’

–from ‘‘Santa Ana Winds,’’ written by Steve Goodman, Mary Gaff-
ney and Mike Jordan, published by Big Ears Music, Inc. o/b/o itself &
Red Pajamas Music (ASCAP).

1. Introduction

There has been an increasing awareness of the significance of
mineral dust in the Earth’s physical systems and biosphere. This
new interest in dust is highly interdisciplinary, spanning the fields
of geology, biology, and atmospheric sciences, and even integrating
work from the extraterrestrial scientific community. In recent re-
views, Kohfeld and Harrison (2000, 2001), Harrison et al. (2001),
Tegen (2003), Goudie and Middleton (2006), Kohfeld and Tegen
(2007), Maher et al. (2010) and Shao et al. (2011) summarize a
number of important impacts of mineral dust on the Earth-atmo-
sphere system. Because dust can have high concentrations in the
atmosphere, it can change the overall planetary radiation balance
through direct effects on radiation at both solar (shortwave) and
terrestrial (longwave) portions of the electromagnetic spectrum
(Tegen, 2003). Authors of the 2007 IPCC report specifically identify
dust as an important component in the global radiation balance
(Forster et al., 2007). Fine-grained dust can be a significant carrier
of Fe and phytoplankton blooms can occur in the ocean after dust-
derived Fe fertilization (Falkowski et al., 1998; Jickells et al., 2005;
Mahowald et al., 2009). Such blooms can result in significant car-
bon dioxide drawdown from the atmosphere, thus altering the
planetary carbon balance. An often-overlooked process is that dust
can have important effects on the biogeochemical cycle of terres-
trial ecosystems, adding nutrients to soils and the vegetation they
support. Numerous studies now document evidence for far-trav-
eled dust additions to soils (Rex et al., 1969; Jackson et al., 1971;
Birkeland, 1999; Kurtz et al., 2001; Reynolds et al., 2001; Muhs
et al., 2007a, 2007b, 2010). Finally, dust can have tremendous
importance in paleoclimate studies. Because dust is entrained
and transported by wind, geologic records of dust are some of
the few direct indicators we have of atmospheric circulation in
the past. Thus, dust records of the past are of considerable impor-
tance in testing general circulation models (GCMs) (Mahowald
et al., 1999, 2006).

This review summarizes some of what is known about geologic
records of dust. Dust monitoring and dust trapping programs have
given us valuable records of modern dust flux. Some of the longer
dust monitoring and trapping programs include those on Barbados
and in Florida (Prospero, 1999; Prospero and Nees, 1977, 1986;
Prospero and Lamb, 2003) and those in the southwestern United
States (Gile and Grossman, 1979; Reheis, 2003, 2006; Reheis and
Kihl, 1995). Nevertheless, although these programs constitute
some of the longer direct measurement records we have, the
length of such records is on a timescale of decades. In order to
understand the links between dust flux and major climate changes
of the Quaternary, it is necessary to examine geologic records of
fine-grained particle deposition by the wind.

In this paper, the use of the word dust follows that of Pye (1987),
who defines dust as a suspension of solid particles in a gaseous
medium. A corollary to this is that the term dust also refers to
deposits of such particles. Crucial in this definition is the term sus-
pension, which refers to the mode of transport in the atmosphere.
Dust particles are those that have been entrained by the wind
and are transported horizontally without contact with the ground
surface. Suspension requires a vertical component of wind flow,
such that grains are kept aloft as long as the vertical component
of the wind exceeds the particle settling velocity (Pye, 1987). This
distinguishes dust particles from larger grains, such as sand, that
can also be transported by the wind. Sand-sized particles, when
transported by the wind, do so largely by saltation, a bouncing type
of particle motion with periodic contact with the ground surface,
or by surface creep, where there is constant contact with the
ground surface during horizontal transport. Pye (1987) distin-
guishes between short-term suspension, which is that experienced
by particles that have diameters of �70 lm to �20 lm and long-
term suspension, which is that experienced primarily by particles
with diameters <20 lm. Thus, grains larger than �20 lm tend to
be deposited within �30 km of their source, whereas grains
<20 lm and particularly those <10 lm are capable of long-range
transport (LRT), up to thousands of kilometers away from their
source.

There are important exceptions to these theoretical concepts
about dust particle sizes and distance of transport in long-term
suspension. Betzer et al. (1988) document the presence of mineral
particles >75 lm diameter that have been transported to the Paci-
fic Ocean, more than 10,000 km from their sources in Asia. Off the
west coast of Africa, from studies of dust traps that are �300–
450 km from the closest possible coastal sources, Ratmeyer et al.
(1999) report that mean particle sizes range from �10 to
�20 lm, but particles as large as �55 lm were also found. Stuut
et al. (2005) made shipboard dust collections, also off the coast
of western Africa, and report modal particle sizes of 8–42 lm,
but also find a significant number of particles with diameters
>100 lm.

The term aerosol is sometimes used when referring to dust, par-
ticularly LRT dust, commonly those particles with diameters
<10 lm. In its broadest sense, aerosol refers to a suspension of fine
liquid and/or solid particles dispersed within a gaseous medium
(Prospero et al., 1983). Thus, aerosols can be mineral particles,
but also include volcanic glass particles, sea salt, hydrocarbons,
smoke, mist, fumes and fog. Aerosols that are not mineral particles
are not included in this review.

There is often some confusion about the term ‘‘dust’’ and the
term ‘‘loess.’’ Loess is defined as silt-dominated sediment that
has been entrained, transported, and deposited by the wind (see
reviews by Pye (1987, 1995) and Muhs (2007, in press)). Loess
can be recognized in the field as a distinctive, terrestrial sedimen-
tary body and can be mapped as a geologic unit. Its thickness, how-
ever, is highly variable and can range from a few centimeters to
several hundred meters. Loess occupies an intermediate position
in a continuum of aeolian sediments (from sand to LRT dust), with
a mean particle size that is smaller than windblown sand (2–
0.05 mm), but coarser than LRT dust (typically < 10–20 lm).

4 D.R. Muhs / Aeolian Research 9 (2013) 3–48



Commonly, loess contains 60–90% silt-sized (50–2 lm diameter)
particles, but also usually small percentages of sand (particles
>50 lm) and clay (<2 lm). Thus, using Pye’s (1987) general con-
cepts of modes of aeolian transport and particle size, loess sedi-
ments at a given site might include a suite of particles, some of
which were transported by saltation, some by short-term suspen-
sion, and some by long-term suspension. Because almost all loess
deposits contain significant amounts of particles with diameters

<20 lm, loess deposits can be considered to at least contain dust
particles, and some distal loess deposits are composed dominantly
of dust particles.

In this review, no restrictions are put on the mode of origin of
mineral dust particles, their source areas, their distance of trans-
port, or their ultimate ‘‘sinks’’ or final loci of deposition. Indeed,
the focus of the review is on the variety of naturally occurring sed-
iment sinks that constitute the geologic record of dust deposition.
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Fig. 1. Simplified model of fine (silt-sized) particle production to generate dust in glacial environments. Modified from Muhs and Bettis (2003).
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Fig. 2. True-color satellite image of glaciogenic dust being deflated from the Skeidararsandur (glacial outwash plain) of Iceland on 28 January 2002. Glaciogenic dust to this
outwash plain was likely derived dominantly from outlet glaciers of the Vatnajökull ice cap. Green colors offshore are partially due to phytoplankton blooms, possibly aided
by dust fertilization. MODIS image from the Terra satellite, provided courtesy of Jacques Descloitres, MODIS Land Rapid Response Team, NASA/GSFC.
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Major themes explored here are the advantages and disadvantages
of various dust sinks as geologic records for paleoclimatic
reconstruction.

2. Dust generation, source areas and sinks

2.1. Formation of dust particles

Dust particles can be generated naturally by a wide variety of
processes on the Earth. In a simplified fashion, these processes
can be classified into four groups: (1) volcanogenic, (2) physical
processes of larger particle reduction, (3) chemical processes of lar-
ger particle reduction, and (4) inheritance from fine-grained rocks.
Fine-grained particles can be produced directly by volcanic pro-
cesses as tephra or ash. Although many particles in volcanic ash
are too coarse-grained to be considered dust, some are of fine-silt
size and even clay size. Because these particles are ejected from a
volcanic source vent directly into the atmosphere, they do consti-
tute a form of ‘‘dust’’ although the initial emplacement into the
atmosphere is not by the transporting force of the wind. Neverthe-
less, once volcanic ash has entered the atmosphere, which is al-
most immediately, wind becomes a very important determinant
of how ash is transported and to where it is deposited. Ash trans-

port over more than a thousand kilometers has been documented
(Carey and Sigurdsson, 1980), although this is largely from parti-
cles that have been ejected into the stratosphere. Most ash within
the troposphere is deposited within a few hundreds to a kilometer
of its source (Grainger and Highwood, 2003). Large eruptions in
historic time have had significant effects on the Earth’s overall
temperature through albedo increases that have reduced the
amount of incoming short-wave solar radiation, similar to effects
modeled for non-volcanic dust. There is clear evidence of overall
cooling due to radiative forcing from the 1982 El Chichón eruption
and even more dramatically from the 1991 Mount Pinatubo erup-
tion (Minnis et al., 1993; Grainger and Highwood, 2003). Finally,
both primary and reworked tephra particles can be an important
component of loess, as documented in South America (Zárate,
2003, 2007), New Zealand (Eden and Hammond, 2003), Alaska
(Muhs et al., 2004), Iceland (Jackson et al., 2005), and Japan (Mat-
su’ura et al., 2011).

Most mineral dust is produced by coarse particle reduction by
either physical or chemical processes. For more than a century,
loess has been considered to be produced primarily by physical
reduction of coarse particles through glacial grinding (Fig. 1). As
an ice sheet or valley glacier moves over rock of any kind-igneous,
sedimentary or metamorphic-silt-sized particles are produced effi-
ciently by grinding. In regions that have valleys with glaciers and

Fig. 3. Glaciogenic loess section, with intercalated tephras, spanning the past 8,000–9,000 years, along the Holmsá River, Iceland. Stratigraphy, ages and particle size data (for
loess only; tephras not included) from Jackson et al. (2005); photograph by D.R. Muhs. Ranges of mean particle diameters for Chinese dune sand (Wang et al., 2002) and
Chinese loess (Lu et al., 2001) are shown for comparison.
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draining the Atlas Mountains 
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Fig. 5. Environments of dust production in the Sahara Desert of Tunisia: (a) dry wash with fine-grained sediments derived from the Atlas Mountains, Oued el Khanga, near the
border with Algeria; (b) yardangs near Dbebcha, showing effectiveness of aeolian abrasion to release fine particles; (c) nebkas, or coppice dunes, the source of saltating sand
grains that can entrain finer particles (silts and clays) on the surface of a playa, Chott el Jerid; and (d) active dune sand of the Grand Erg Oriental, where fine particles can be
produced by aeolian abrasion and ballistic impacts of sand grains. All photographs by D.R. Muhs.
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adjacent valleys with no glaciers, fine-grained sediment yields are
much higher in glaciated valleys (Hallet et al., 1996; Wada et al.,
2011). Although much silt-sized material is produced in this fash-
ion, further particle size reduction can occur by fluvial comminu-
tion as particles are carried away from glaciers by valley trains
(streams carrying glacial outwash). Good examples of glaciogenic
silt production can be found today where glaciers still exist, such
as in Svalbard, Iceland, Alaska, and Canada. In Iceland, modern
ice caps (such as the Vatnajökull) are analogs for the larger ice
sheets that once covered North America and Eurasia; outwash
plains such as the Skeidararsandur are analogs for the outwash-
filled valley trains and plains that drained those ice sheets
(Fig. 2). As aeolian entrainment from glacial river valleys com-
mences, more particle size reduction can take place by aeolian
abrasion and ballistic impacts (Fig. 1). Thus, fine-grained particles
in a glacial setting can be produced by physical reduction of coar-
ser particles through glacial, fluvial and aeolian processes. As a
consequence, loess derived from glacial settings will have a range
of particle sizes, but with many falling within the range of coarse
and medium silt, and including some fine silt that can be consid-
ered dust-sized particles (Fig. 3).

It has been observed that there is little loess that accumulates in
non-glacial settings, such as desert regions (Tsoar and Pye, 1987).
Thus, some investigators have proposed that glacial grinding is
the only efficient means by which silt-sized particles can be pro-
duced (Smalley, 1966, 1995; Smalley and Vita-Finzi, 1968). Exper-
imental work has shown, however, that although glacial grinding is
indeed a significant method of silt particle production, other pro-
cesses, including fluvial and aeolian abrasion, are surprisingly effi-
cient mechanisms of silt particle production (Smith et al., 2002;
Wright and Smith, 1993; Wright et al., 1998; Wright, 2001a,b). In
non-glacial settings, such as many of the world’s desert regions,
fluvial comminution in stream valleys, aeolian abrasion and ballis-
tic impacts in dune fields, and salt weathering in playas and on
alluvial fans have all been shown to produce silt-sized particles
(Fig. 4). For example, in the northern part of the Saharan Desert

in southern Tunisia, fluvial comminution can take place in large
wadis or dry washes that drain major mountain ranges such as
the Atlas Mountains (Fig. 5a). Aeolian abrasion of landforms can
yield fine-grained particles and the evidence of this process can
take the form of residual yardangs (Fig. 5b). Fine-grained sedi-
ments, derived from fluvial erosion of desert mountain ranges,
accumulate in topographic depressions where playas (or ‘‘chotts’’)
occur. Although these fine-grained particles are often flocculated
or cemented by salts, they can be broken apart and entrained by
saltating sand-sized grains if dunes occur on or near the playas
(Fig. 5c). Fine-grained particles can also be produced within dune
fields themselves, by aeolian abrasion of coarse particles and bal-
listic impacts (Fig. 5d). Indeed, dune-field generation of fine-
grained particles has recently been proposed as a major source
for at least the coarsest fraction of desert loess (Crouvi et al.,
2008, 2010). In addition, however, at high altitudes or high lati-
tudes in desert regions, coarse particles can be reduced to silt size
through frost shattering, with the volumetric expansion of water
upon freezing. Collectively, these processes can generate signifi-
cant amounts of silt-sized particles, some of them dust-sized, in
non-glacial settings.

Despite the importance of physical processes of silt production,
much LRT dust consists of clay-sized particles with diameters less
than 2 lm, or clay-sized material. For example, Stuut et al. (2005)
show that modern dust collected off the African coast consists
dominantly of particles less than 20 lm diameter (Fig. 6). LRT
dust derived from Africa, carried across the Atlantic and collected
on Barbados, consists almost entirely of particles less than 20 lm
and about half of this is comprised of particles with diameters less
than 2 lm (Prospero et al., 1970; Glaccum and Prospero, 1980).
Physical processes of coarse particle reduction are not likely to
produce mineral grains with diameters of 2 lm or less. Further-
more, many (though not all) clay-sized particles have a very dif-
ferent mineralogy compared to that of coarse particles. Coarse
particles, greater than �2 lm, consist largely of primary, rock-
forming minerals produced by igneous rock formation. Primary
rock-forming minerals include quartz, plagioclase, K-feldspars,
amphiboles, biotite, muscovite and a host of accessory minerals
(in igneous rocks), as well as calcite and dolomite (in carbonate
rocks). In contrast, many clay-sized particles are phyllosilicates,
or layered aluminosilicate minerals, such as micas, kaolinite,
smectite, vermiculite, and chlorite. Although micas (biotite and
muscovite) are phyllosilicate minerals, they generally crystallize
in rock-forming environments, through either igneous or meta-
morphic petrogenesis. In addition, some micas, such as illite, can
form at low temperatures in the marine environment, through
the alteration of volcanic ash that has been deposited in the
ocean. However, kaolinite, smectite, vermiculite and many chlo-
rites form at low temperatures at or near the Earth’s surface, pri-
marily in soils (Birkeland, 1999; Schaetzl and Anderson, 2005).
The process is typically alteration of primary rock-forming miner-
als such as feldspars to phyllosilicate clay minerals by hydrolysis.
Phyllosilicate clay minerals form a very important component of
LRT dust (Glaccum and Prospero, 1980; Biscaye et al., 1997; Stuut
et al., 2005) and identifying dust source areas requires a good
understanding of how clay minerals form in soils and how clay
mineralogy changes with soil geography.

Finally, a process that is often overlooked in studies of dust ori-
gins is particle inheritance from sedimentary rocks, such as silt-
stones or shales. In Australia, for example, siltstones may be the
primary source of much of the silt-sized dust derived from arid ba-
sins (McTainsh, 1989). In the Great Plains of North America, Alei-
nikoff et al. (1999, 2008) show that sedimentary rock
(volcaniclastic siltstone) is the most important source of silt-sized
particles in loess of last-glacial age. Silt is abundant in the sedi-
mentary rock record. Indeed, Blatt (1987) estimates that fully half
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of the detrital quartz in the world’s sedimentary rocks is comprised
of silt-sized particles.

2.2. Dust source areas: the global picture

The past couple of decades have added greatly to our identifica-
tion of dust source areas, primarily through the use of Earth-orbit-
ing satellites and a wide variety of sensors onboard these
platforms. For example, as recently as a decade ago, there was little
agreement about sources of dust in Africa, beyond the broad recog-
nition of the importance of the Sahara and Sahel regions (Herr-
mann et al., 1999; Middleton and Goudie, 2001). In the past
decade, analyses of satellite imagery, aerosol sampling networks,
and back-trajectory calculations have allowed the sources of dust
from Africa to be much better understood (Chiapello et al., 1997;
Goudie and Middleton, 2001, 2006; Middleton and Goudie, 2001;
Caquineau et al., 2002; Prospero et al., 2002; Washington et al.,
2003). Direct observation of dust storms and dust source areas
on a synoptic scale, within the visible spectrum, is now possible
on a routine basis throughMODIS and MISR imagery acquired from
NASA’s Terra and Aqua satellites. For example, a common occur-
rence is dust from the Sahara and Sahel regions of Africa trans-
ported to the eastern Atlantic Ocean off northwestern and
western Africa (Fig. 7a). The scale of this imagery is such that it
is possible to identify dust source areas, dominant pathways of
dust transport (and their seasonal variability) and the areas over
which dust is deposited. Following this, one can match these obser-
vations with short-term (Fig. 7b) and long-term (Fig. 7c) records of
dust deposition on the ground.

A powerful tool for global dust source identification and trans-
port pathways is also now available on a routine basis from other
forms of satellite imagery. Aerosol indexes (AI) derived from the
orbiting TOMS (total ozone mapping spectrometer) instrument
have demonstrated that broad source areas for dust can be identi-
fied (Goudie and Middleton, 2001, 2006; Middleton and Goudie,
2001; Prospero et al., 2002; Washington et al., 2003). These studies
have shown that the two most important dust source areas in the
world at present are in the Sahara: the Bodélé depression in Chad
and an area in the southwestern Sahara Desert region of Mali, Mau-
ritania, and Algeria. The Bodélé Depression is estimated to be the
largest single source of dust on the Earth at present based on TOMS
data (Goudie and Middleton, 2001, 2006; Prospero et al., 2002;
Washington et al., 2003). Recent field studies in the basin itself
confirm the rapid rate of sediment removal by wind (Bristow
et al., 2009).

Prospero et al. (2002) used TOMS imagery derived from several
years to generate a global map of dust source areas. This map, com-
bined with observations made from MODIS and MISR imagery, can
give a global picture of dust sources and their dominant transport
pathways (Fig. 8). Major dust source areas include the Sahara and
Sahel regions of Africa, as noted above, but also the Arabian Penin-
sula, Central Asia, desert basins in China, central and southeastern
Australia, the Mojave, Sonoran, and Chihuahuan deserts and Great
Plains region of western North America, and the Pampas and Pata-
gonian regions of southern South America. Prospero et al. (2002)
point out that most dust source areas identified by interpretation
of TOMS imagery are dominantly in topographic depressions and
are usually remote from areas of human settlement. Thus, they
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conclude thatmost dust generation at present is due to natural pro-
cesses, rather than anthropogenic causes, such as agriculture or ur-
ban development.

2.3. Climatic controls on dust generation and transport from Africa

With the wide variety of tools now available, it is possible to in-
fer many of the details of specific dust sources areas using a com-
bination of satellite imagery interpretation, back-trajectory
analyses, geochemistry, and mineralogy. Dust generation in Africa
and seasonal transport pathways from the continent are given here
as an example (Fig. 9). It is important to note that this discussion
refers to present-day pathways of dust transport and their climatic
controls. In the geologic past, particularly during glacial periods,
dust source areas changed in Africa and some dust transport path-
ways became more important than others. These climate changes
give the geologic records of dust emissions from Africa a rich var-

iability that is explored in detail in the individual sections on dust
records.

One important contemporary dust pathway from Africa to the
eastern Atlantic Ocean is powered by the northeasterly trade
winds. These winds occur at relatively low altitudes (0.5–1.5 km)
and can be dominant during any time of the year, although Stein
and Sarnthein (1984) suggest that they transport dust only during
winter and spring. According to Pye (1987), Sarnthein et al. (1981),
Stein and Sarnthein (1984) and Stuut et al. (2005), the trade winds
in this region entrain dust from the Atlas Mountains, the coastal re-
gion of Morocco, and parts of the northern Sahara. This dust is
deposited along the African coast, onshore and offshore, in a zone
extending from the Canary Islands to the Cape Verde Islands. Stein
and Sarnthein (1984) suggest that the trade winds can also entrain
‘‘fallout’’ dust from the Saharan Air Layer, a second mode of trans-
port discussed below. A number of investigators (Coudé-Gaussen
et al., 1987; Bergametti et al., 1989; Grousset et al., 1992; Rognon

JAPAN

INDIA
20°

30°

40°

70° 90° 110° 130°

Tibetan
Plateau

Pacific

Ocean

CHINA

JAPAN

RUSSIA
KAZAKHSTAN

INDIA
20°

30°

40°

70° 90° 110° 130°

Tibetan
Plateau

Pacific

Ocean

CHINA

MONGOLIA

Southern limit of polar front

H

Landward

of
m

on
so

on
fro

nt
lim

it

H

L

East Asian
 Monsoon

  Indian
Monsoon

  Mongolian
       High

Taklimakan
   Desert Qaidam

 Basin

Mu Us
Desert

Loess

Loess
Plateau
particle

size
transects

(A) WINTER

(B) SUMMER
0 800

KILOMETERS

0 800

KILOMETERS

JAPAN

JAPAN

RUSSIA
KAZAKHSTAN

Baoji

Jingchuan

 Plateau

Fig. 10. Distribution of loess (brown shaded areas), sandy deserts (black and white stippled areas) locations of Jingchuan (Fig. 21) and Baoji (Fig. 22), loess transects shown in
Fig. 17, and synoptic climatology of China during winter (a) and summer (b) showing pressure systems and dominant surface winds (arrows). Climatic data from Porter and
An (1995); loess distribution from Liu (1985).

D.R. Muhs / Aeolian Research 9 (2013) 3–48 11



et al., 1996) have emphasized the importance of relatively small,
proximal areas in southern Morocco as sources for dust in the Can-
ary Islands and adjacent parts of the eastern Atlantic Ocean via the
trade winds.

A second pattern of wind transport is the dust-bearing Saharan
Air Layer, or SAL, which occurs predominantly in boreal summer
(Prospero et al., 1970; Carlson and Prospero, 1972; Prospero and
Carlson, 1972; Prospero and Lamb, 2003). In boreal summer, the
intertropical convergence zone (ITCZ) migrates north, and moist,
tropical air from the south converges with dry, hot Saharan air
from the north. With the convergence of these two contrasting
air masses, the SAL is generated as dust is lifted by strong winds
between about 15�N and 22�N, associated with squall lines that oc-
cur at the ITCZ between �10�N and 15�N (see Fig. 4 in Tetzlaff and
Peters, 1986). Near its sources in Africa, the SAL can reach altitudes
as high as 5–7 km, in the mid-troposphere and above the trade
wind zone. At these higher altitudes, the winds are easterly and
therefore dust is transported toward the Atlantic Ocean. By the
time the SAL has reached the western Atlantic region, dust concen-
trations are greatest at altitudes of 1.5–3.7 km, within the lower
troposphere. Dust from the SAL can reach the island of Barbados
in the Caribbean within about a week or less after departure from
the western African coast (Prospero et al., 1970). In summer, dust
from Africa is transported at least as far west and north as Florida
(Prospero and Nees, 1987; Prospero, 1999) and very likely into the
central and eastern United States (Perry et al., 1997; Kallos et al.,
2006). Sarnthein et al. (1981), Stein and Sarnthein (1984), Tetzlaff
and Peters (1986), and Pye (1987) point out that although the main
direction of dust transport in the SAL is to the west at latitudes be-
tween �15�N and �21�N, a south-to-north component of flow can
occur in the lee of an easterly wave, and a ‘‘hook-like’’ trajectory of
movement is observed (Fig. 9). This pattern of movement is shown
on satellite imagery in Muhs et al. (2010) and was used to explain
the origin of Sahel-derived dust to localities as far north as the Can-
ary Islands.

A third pattern of dust transport from Africa to the Atlantic
Ocean comes from the Harmattan winds. In contrast to the SAL,
Harmattan winds occur during boreal winter, usually October to
May (McTainsh, 1985), when the ITCZ migrates southward over
southern Nigeria (Pye, 1987). Thus, these winds are essentially part
of the boreal wintertime trade wind belt over Africa. Harmattan
winds in winter are largely surface winds, with dust loads found
at altitudes below �2 km (Dubief, 1979). Dust in Harmattan winds
is carried southwestward over Niger and Burkina Faso, as well as
over a broad zone of western Africa from Nigeria to Ghana
(Fig. 9). Soils over a significant part of northern Nigeria are derived
from Harmattan dust (McTainsh, 1984). When Harmattan winds
reach the ITCZ in southern Nigeria, warm, moist, tropical air can
undercut them, resulting in uplift of the dust-transporting air par-
cels (Kalu, 1979; Pye, 1987). As a consequence, LRT dust movement
can take place westward within tropical latitudes. This phenome-
non may explain wintertime dust deposition as far west and south
as eastern South America (Prospero et al., 1981).

2.4. Climatic controls on dust generation and transport from Asia

Dust transport in Asia occurs mostly during the springtime
transition between the seasonally alternating dominance of two
principal air masses that reside over the eastern part of the conti-
nent (Porter and An, 1995). During the winter, the region is domi-
nated by the Mongolian high-pressure system, which delivers cold,
dry air to China with northerly winds (Fig. 10). Northerly winds are
the driving force behind dust entrainment and transport to the Chi-
nese Loess Plateau, but dust storms at present are most frequent at
the end of the winter, in April (Sun et al., 2001). In summer, low
pressure develops over the Asian continental interior and higher

pressure over the western Pacific Ocean generates the East Asian
Monsoon, with a landward flow of warm, humid air to China under
gentle winds (Fig. 10). Little or no dust entrainment occurs under
these conditions of humid air, weak winds and abundant precipita-
tion. As will be shown later, it is thought that during glacial peri-
ods, the residence time of the present wintertime regime was
longer and the residence time of the summertime regime shorter
than is the case today. As a result, the flux of dust was greater dur-
ing glacial periods and is reflected in the geologic records of loess
deposits and lake sediments in Asia and marine sediments of the
Pacific Ocean.

2.5. Climatic controls on dust generation and transport from Australia,
South America and North America

Dust generation in Australia has been reviewed extensively by
Hesse and McTainsh (2003) and is summarized here. As is apparent
from TOMS imagery (Fig. 8), there are two major dust pathways,
both originating in basins in the east-central part of the continent.
These dust source areas are primarily the Lake Eyre basin and the
western part of the Murray-Darling Basin. Both transport pathways
are associated with frontal systems, the southeast dust plume with
those in the zonal westerly system and the northwest dust plume
with those in the trade wind zone. Of the two dust paths, the
southeast one is the most important, but both were intensified
during the last glacial period. Hesse and McTainsh (2003) infer that
the more dramatic dust flux along the southeastern path during
the last glacial period was likely due not to stronger winds but to
a weaker hydrological cycle. Geologic records of dust from the
northwest plume are found in marine cores of the Indian Ocean,
whereas records of dust from the southeast plume are found in
cores taken from the Tasman Sea and the southwest Pacific Ocean,
as well as on New Zealand.

The main dust source areas in South America at the present
time are Patagonia, central-western Argentina, and the Puna-Alti-
plano plateau, based on interpretation of TOMS imagery (Fig. 8)
by Prospero et al. (2002). Of these three areas, Patagonia is thought
to be the most important source. Pacific-derived air masses lose
moisture on the western side of the Andes so upon arrival in Pata-
gonia, on the eastern side of the mountains, they are relatively dry.
Gaiero et al. (2003) point out that the dry, westerly winds in this
region sweep over broad glacial outwash plains to the east of the
Andes. During the maximum extent of glacial ice from the Andes
during the last glacial period, there was a greater delivery of source
sediments to these outwash plains (Sugden et al., 2009).

In North America, TOMS imagery indicates that themain sources
of dust at present are in the desert basins of the southwestern US
and northwestern Mexico, with some additional sources in other
parts of the Basin and Range province and the southern Great Plains
(Fig. 8). In the Mojave and Amargosa Deserts of the southwestern
U.S., two of themajor dust-producing regions, Reheis (2006), Reheis
and Kihl (1995) and Reheis et al. (2002, 2009) identify four main
dust-generating sources in these basins: (1) alluvial sediments;
(2) playas; (3) the human-induced dry playa of Owens Lake; and
(4) local anthropogenic and/or volcanic emissions. Thus, this region
is an exception to the general global observation of Prospero et al.
(2002) that the majority of dust source areas at present are not
due to anthropogenic disturbances. Winds that entrain dust in the
southwestern US and northwestern Mexico at present are domi-
nantly from the west, but under Santa Ana conditions that develop
in fall, winter and spring, dust-generating winds are easterly (Muhs
et al., 2007b, 2008c). In the southern Great Plains region, Gillette
and Hanson (1989) show that the time of maximum dust produc-
tion is in the spring, with summer being the time of minimum dust
production. During the last glacial period, the main locus of dust
generation was in the central part of North America, in the Great
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Plains and greater Mississippi River basin, to the southwest and
south of the Laurentide ice sheet (see reconstructions byMahowald
et al., 2006). Both glacial and non-glacial sources generated dust
and winds were dominantly from the west, as they are today (Muhs
and Bettis, 2000; Muhs et al., 2008a).

3. Geologic records of dust

In this review, five types of geologic records of dust are summa-
rized. By ‘‘geologic records,’’ the implication is that these are re-
cords of dust deposition that are of longer duration than those
possible via monitoring within the historic period of human obser-
vation. Emphasis is placed on the role that such records play in
inferring paleoclimate. Each type of dust record, like all geologic re-
cords, has its own particular advantages and disadvantages with
regard to inference about paleoclimate. Dust can be deposited as
marine sediment of the deep-ocean floor, in lakes, as loess depos-
its, in polar ice sheets, and in soils on the continents. Viewed in this
context, the array of geologic archives shows that dust in some
form can reach and be retained in almost all parts of the Earth’s
surface, whether on land or in the ocean. In reviewing these vari-
ous records, I start with where dust is generated, on the continents,
and examine the dust records in loess, lakes, and soils. Following
that, I review dust records where the particles have traveled far-
ther from the continents, to the oceans and polar ice sheets.

4. Loess deposits

Loess is aeolian sediment dominated by silt-sized particles. As
such, it can be considered to be a geologic record of dust, although,

as emphasized earlier, much loess has been transported relatively
short distances (less than �100 km) as opposed to LRT dust. It is
one of the most extensive deposits on the land surface of the Earth
and soils developed in it form some of the most productive agricul-
tural land in the world. Loess is also one of the most important ar-
chives of Quaternary climate change. Combined with intercalated
paleosols (buried soils), loess provides one of the most complete
terrestrial records of interglacial–glacial cycles. Thus, given favor-
able circumstances, loess can be used to reconstruct synoptic-scale
paleoclimatology over millennial timescales. In addition, fossil
organisms or their remnants (gastropod shells, mammal remains,
pollen and organic matter) also provide valuable paleoclimatic
information. One distinct advantage of loess compared to other
Quaternary sediments (such as till, alluvium or colluvium) is that
it can be dated directly, using luminescence methods. Roberts
(2008), Singhvi and Porat (2008) and Wintle (2008) review some
of the most recent advances in luminescence dating as they apply
to loess deposits. Loess deposits are also commonly the host sedi-
ments for the shells of minute gastropods (land snails), and have
been used extensively for paleoclimatic interpretations in North
America, Europe and China. Radiocarbon dating of mollusks has
had a controversial history, but new studies by Pigati et al.
(2010) have shown that certain genera of land snails do not incor-
porate significant amounts of ‘‘dead’’ carbon from calcareous sub-
strates. These same genera are common in loess and yield
radiocarbon ages that are in good agreement with radiocarbon
ages of stratigraphically equivalent plant macrofossils.

Loess can be recognized in the field as a distinctive sedimentary
body (Fig. 11). Its thickness is highly variable and can range from a
few centimeters to several hundred meters. Variability of loess
thickness is, in fact, one of its advantages as a paleoclimate

(a) Upper Matanuska Valley, Alaska

(b) Crowleys Ridge, Arkansas

(c) Bignell Hill, Nebraska

(d) Vicksburg, Mississippi
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(last-glacial)
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Fig. 11. Loess deposits from a variety of localities in the USA (see Fig. 16 for localities of [b]–[d]): (a) road cut exposure in the upper Matanuska River valley, Alaska; (b)
Crowleys Ridge, Arkansas; (c) Bignell Hill, Nebraska; (d) Vicksburg, Mississippi. Photographs by D.R. Muhs (a,b, and c) and John Aleinikoff (d).
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indicator, as spatial trends in loess thickness provide information
about paleowind directions. Loess deposits are commonly draped
over pre-existing landforms as a mantle, with thickest accumula-
tions in protected, low-lying areas or broad, flat, stable upland
divides, close to source areas. Thinnest accumulations occur on
narrow, rounded hillcrests and/or locations distant from source
areas. Unlike aeolian sands, fluvial sediments, or marine sediments,
primary structures in loess are subtle or, more frequently, absent
altogether. Faint, horizontal laminations and, less commonly,
cross-bedding are sometimes apparent in loess deposits, but are
the exception rather than the rule. Nevertheless, interparticle bind-
ing by phyllosilicate clay minerals or secondary calcite accumula-
tion often results in a significant amount of material strength in
loess. This sediment strength explains the ability of loess deposits
to form vertical faces along river or stream banks and road cuts
(Fig. 11). While primary structures in loess are generally lacking,
secondary structures are common, and consist of fractures, bur-
rows, rhizoliths (root casts composed of Fe-oxides or carbonate),
carbonate nodules or concretions, oxidation or reduction streaks
or bands, and paleosols. Loess typically has a mineralogy that in-
cludes quartz, plagioclase, K-feldspar, mica, calcite (sometimes
with dolomite), and phyllosilicate clay minerals (smectite, chlorite,
mica, and kaolinite). Heavy minerals are usually present, but in
small amounts.

4.1. Geography of loess

Some of the most extensive tracts of loess in the world are
found in Asia. The largest contiguous area, and that which has re-
ceived the most study, is the Loess Plateau in the central part of the
China (Fig. 10). In the northwestern part of the Loess Plateau, near
Lanzhou, loess deposition has been ongoing for more than a million
years and, in fact, the accumulation of loess in this area may be the

thickest occurrence on Earth. Smaller but still significant areas of
loess are found to the northeast of the Loess Plateau between Mon-
golia and North Korea. Loess is also found around the rim of the
Tarim Basin (Taklimakan Desert) in western China and in extreme
northwestern China, to the north of the Tarim Basin, betweenMon-
golia and Kazakhstan. Loess in Central Asia is found primarily in
Tajikistan, Kyrgyzstan, Turkmenistan, Uzbekistan and Kazakhstan
(Fig. 12). Loess occurs in a number of regions within Siberia,
although the spatial extent of some loess bodies is better known
than others and there is still debate about whether some silt-rich
deposits in parts of Siberia are truly aeolian or not (Péwé and
Journaux, 1983; Schirrmeister et al., 2011). Loess in northern
Kazakhstan extends into a larger area of loess in the southern part
of western Siberia.

In Europe, loess is found over a broad area from France to Russia
(Fig. 13). It has not been found in significant amounts north of the
southern extent of the Fennoscandian ice sheet, nor has it been re-
ported in thick accumulations in southern Europe. Thus, except for
Iceland, discussed earlier, loess is absent from the Scandinavian
countries and in most countries bordering the Mediterranean.
Much loess in western and central Europe is found bordering major
river systems, such as the Danube and the Rhine, which carried
silt-sized particles derived from the Alps or Carpathian Mountains.
Farther north, and particularly farther northeast in Russia, many
large loess bodies are also situated adjacent to major river systems
(Dnepr, Don and Volga rivers) and this sediment ultimately may
have been derived from glacial deposits of the Fennoscandian ice
sheet (Smalley et al., 2009). Frechen et al. (2003), Rousseau et al.
(2007) and Haase et al. (2007) review the origins, distribution
and and ages of loess in Europe.

In contrast to Eurasia, loess is not extensive in either Africa or
adjacent parts of the Middle East. Given the identification of Africa
as the most important source of dust at present (Fig. 8), this comes
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as something of a surprise, although Tsoar and Pye (1987) point
out that arid regions rarely have the necessary conditions for trap-
ping loess. Nevertheless, small and widely separated occurrences
of loess or loess-like deposits are documented in parts of North
Africa, the Middle East and the Arabian Peninsula, based on a re-
cent compilation by Crouvi et al. (2010). Loess-like deposits have
also been described on the Canary Islands, off the northwestern
coast of Africa (Von Suchodoletz et al., 2009; Muhs et al., 2010)
and the Cape Verde Islands (Rognon et al., 1996). Loess in Israel
has received the most attention of any in this region, beginning
with pioneering studies by Dan and Yaalon (1971). Dust is trans-
ported to Israel in part from desert areas to the west in Sinai and
possibly the Sahara (Dan and Yaalon, 1971) and in part from dune
fields nearby (Crouvi et al., 2008). A long-term record of loess can
be found in parts of western Israel (Fig. 14). Optically stimulated
luminescence ages indicate that the Israeli loess record here goes
back at least to the penultimate glacial period and perhaps older
(Wieder et al., 2008; Crouvi et al., 2008).

Loess is extensive in North America, south of the area that was
occupied by the Laurentide and Cordilleran ice sheets (Fig. 15a).
Significant areas of loess are found in the Palouse area of eastern
Washington and adjacent Oregon and the Snake River Plain and
adjacent uplands of Idaho. Loess is also found discontinuously in
Alaska (USA) and the adjacent western part of Yukon Territory
(Canada). Most of Canada has little loess, however, because the re-
gion was covered by the Laurentide and Cordilleran ice sheets dur-
ing the last and previous glaciations (Fig. 15a). Even after
deglaciation, little loess accumulated in Canada, because silt-sized

particles carried by outwash were deposited in large proglacial
lakes (Flint, 1971). Vegetation colonized most of the former lake
surfaces shortly after lake drainage and thus there was little oppor-
tunity for aeolian entrainment of silt. However, south of the Lau-
rentide ice sheet, there was extensive loess deposition during the
last and previous glaciations. By far the greatest extent of loess
(and that with the greatest thickness) in North America is in the
Great Plains region east of the Rocky Mountains and extending into
the greater Mississippi River drainage basin, from Colorado to
Ohio. As in Europe, loess bodies of the North American mid-conti-
nent appear to be continuous when viewed broadly. On a finer
scale, however, it is apparent that individual loess bodies have very
different thickness trends that are not part of a larger regional
trend (Fig. 16).

Although less extensive than in the Northern Hemisphere, loess
is also found in the Southern Hemisphere. In South America, loess
is found in the southern part of the continent, especially in Argen-
tina (Fig. 15b). In this country, there are two major loess belts,
informally referred to as the Pampas loess in central Argentina
and the Chaco loess in northern Argentina (Zárate, 2003, 2007).
Smaller areas of loess may be present in southern Bolivia and loess
is tentatively mapped in the western and southern parts of Uru-
guay, although more detailed study is necessary to confirm this.

Loess, as it is described on other continents, is largely absent in
Australia, although there are deposits of ‘‘parna,’’ a clay-rich sedi-
ment that may have been transported as silt-sized aggregates of
clay (Butler, 1956, 1974). Butler (1956) considered parna to be dis-
tinct fromwhat has classically been considered to be loess on other
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continents. Cattle et al. (2009) point out, however, that modern
definitions of clayey loess could certainly include Butler’s original
definition of parna. Cattle et al. (2009) and Greene et al. (2009)
show that in the classic parna region of Australia, there are signif-
icant areas of loessic soils, where an aeolian mantle comprises the
upper part of the profile. There is also considerable evidence of
exotic quartz in Australian soils (Hesse and McTainsh, 2003). To
the southeast of Australia, loess is found over much of New Zea-
land, where its stratigraphy (e.g., Berryman, 1993; Graham et al.,
2001) and distribution have been studied in considerable detail.
Eden and Hammond (2003) show that the largest areas of loess,
dominated by quartz and feldspar, are found on the South Island
of New Zealand, whereas smaller areas of ‘‘volcanic’’ loess are
found on the North Island.

4.2. Sedimentology of loess

Loess has a distinctive particle size distribution, with mean par-
ticle sizes finer than aeolian sand, but coarser than aerosolic, LRT
dust. Whereas dune sand is characterized by mean particle sizes
in the medium-to-fine sand range and aerosolic dust is fine silt
and clay, loess is dominated by coarse-to-fine silts. Mean particle
sizes of loess range from coarse (63–31 lm) to fine (16–8 lm) silt.
The wide range of mean particle size and relatively poor sorting
can be the result of (a) multiple sources, (b) clay-sized particles

being transported as silt-sized aggregates, (c) loess bodies extend-
ing considerable distances from their sources, and/or (d) varying
wind strengths over time.

A number of studies have shown that mean particle size of loess
is at least partly a function of distance from the source, where there
is a systematic winnowing of coarse particles in the downwind
direction. In China, for example, loess in the northern part of the
Loess Plateau has a median particle size of about 80 lm (Porter
et al., 2001). At the southern portion of this loess body, �300 km
to the southeast, loess has a median particle size of about 20 lm.
As will be shown later, this is considerably coarser than LRT dust
(also derived from desert basins in China) that is deposited in Lake
Biwa, Japan and the western Pacific Ocean. Distance plots by Ding
et al. (2005) show that the sand fraction (>63 lm) in the Chinese
Loess Plateau drops off dramatically as one moves downwind from
desert source regions, such as the Mu Us Desert, both for L-1-1
loess that dates to the last glacial maximum (LGM, or marine iso-
tope stage [MIS] 2) and loess L-1-5 that dates to the early last gla-
cial period (MIS 4), as shown in Fig. 17. In the state of Nebraska
USA, loess is extensive and is for the most part unrelated to glacial
sources (Fig. 18). Studies by Aleinikoff et al. (2008) and Muhs et al.
(2008a) show that the most likely source of loess is Tertiary silt-
stone of the White River Group that crops out in northwestern Ne-
braska and adjacent states (such as Badlands National Park shown
in Fig. 18). Mason (2001) suggests that from this source area, fine-
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grained particles were probably transported by suspension over
(and kept in suspension by) an active dune field, the Nebraska Sand
Hills (Mason et al., 2011). Although this dune field played a crucial
role in transporting fine-grained particles southeastward over long
distances, it apparently contributed very little to the loess that was
eventually deposited. By the time one has reached a distance a few
tens of km southeast of the dune field, the loess is more than 90%
silt (53–2 lm) and clay particles (<2 lm).

4.3. Loess stratigraphy in mid-continental North America

In those parts of North America where loess is derived domi-
nantly from glacial sources (Fig. 1), loess stratigraphy provides, at
a first approximation, a straightforward record of glacial–intergla-
cial cycles. In this simplified view, glacial periods are mostly peri-
ods of loess deposition whereas interglacial periods are mostly
periods of soil formation (see Bettis et al., 2003; Busacca et al.,
2004; Muhs, 2007; and Roberts et al., 2007 for reviews). In the
mid-continent region of North America, for example, loess sections
adjacent to the Mississippi River valley illustrate this relation. The

three youngest loess units are the Loveland Loess of penultimate
glacial age, the Roxana Silt (loess) of early-last-glacial age and Peo-
ria Loess of late-last-glacial age (Fig. 19). Loveland Loess is typically
no more than a few meters thick and is sometimes absent. A prom-
inent paleosol developed in the upper part of the Loveland Loess is
referred to as the Sangamon Geosol or simply the Sangamon soil
(informal term), which formed during the last interglacial period.
The Sangamon Geosol is usually very well expressed morphologi-
cally, with a thick, reddish-brown, clay-rich profile. Roxana Silt
(loess) was deposited after the last interglacial period, probably
during the early part of the last glacial period. It is usually quite
thin, commonly only a meter or less thick, except in the lower Mis-
sissippi River valley, where it can be several meters thick. A dark,
organic-rich paleosol called the Farmdale Geosol (informally called
the Farmdale soil) developed in the upper part of the Roxana Silt.
The Farmdale Geosol is overlain by Peoria Loess, which dates to
the last glacial period, about 25,000–12,000 radiocarbon years
ago (�30,000 to �14,000 calendar years ago), based on dating con-
ducted at many sections (Bettis et al., 2003). Loveland Loess can be
correlated with the penultimate glacial period (MIS 6), the Sang-
amon soil probably developed during all of MIS 5 and perhaps part
of MIS 4, Roxana Silt was probably deposited during MIS 4 or 3, the
Farmdale soil formed during MIS 3, Peoria Loess was deposited
during the last glacial period (MIS 2), and the modern soil has been
developing since the current interglacial (MIS 1, or the Holocene)
began. Where sedimentation rates are moderate, it is common to
see the reddish-brown Sangamon Geosol, the grayish-brown Rox-
ana Silt, the dark-brown Farmdale Geosol and the light yellow-
ish-brown Peoria Loess in a complete vertical sequence in one
exposure (Fig. 11d).

The nature of the loess/paleosol sequences in mid-continental
North America and correlation to the deep-sea oxygen isotope re-
cord are illustrated by an example from near the Mississippi River,
at a locality called Greenbay Hollow (Fig. 19). Loess in this region is
originally rich in carbonates, both calcite and dolomite, derived
from Paleozoic limestones and dolostones that were traversed by
the Laurentide ice sheet during both the penultimate glacial period
and the last glacial period. During periods of non-deposition of
loess, soils form. During pedogenesis, carbonates are leached, as
seen in the CaO/TiO2 and MgO/TiO2 profiles at Greenbay Hollow,
where low values are found in the Sangamon soil, Farmdale soil,
and modern soil. During these periods, clay enrichment in soil B
horizons also takes place, as reflected in the Al2O3 content profile
at Greenbay Hollow.

West of the Missouri River in the Great Plains region of Nebras-
ka, Kansas, and Colorado (Fig. 16), loess is not glaciogenic, but, as
discussed above, is derived from volcaniclastic siltstone of Tertiary
age. Thus, with a non-glacial source of loess in this region, one
should not necessarily expect that loess deposition is a ‘‘turn-on/
turn-off’’ phenomenon that is tightly linked to glacial periods. Both
radiocarbon and OSL ages of the uppermost loess unit in the Great
Plains, called the Bignell Loess, have confirmed that Holocene loess
is widespread in the region (Mason et al., 2003; Miao et al., 2005,
2007; Muhs et al., 2008a). In fact, Holocene loess deposition in
the region was episodic, as shown by the presence of paleosols
(Fig. 20). Miao et al. (2005, 2007) have shown that the timing of
Holocene loess deposition is similar to the timing of eolian sand
deposition in the Nebraska Sand Hills (Fig. 18), in support of the
model presented by Mason (2001). This indicates that the Nebras-
ka Sand Hills played an important role in fine-particle transport as
well as coarse-particle transport while it was active. In addition,
these findings suggest similar climatic controls on sand dune activ-
ity and loess transport. Miao et al. (2005, 2007) conclude that re-
gional drought is the most likely climatic control on both dune
activity and loess transport in the central Great Plains during the
Holocene. Thicker glacial-age loess is also present.
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4.4. Loess stratigraphy in China

In China, the alternation of loess and paleosols also has been
correlated with the deep-sea oxygen isotope record of glacial–
interglacial cycles, but the situation is more complicated than in
mid-continental North America. Although the general model of
loess deposits correlating with glacial periods and paleosols corre-
lating with interglacial periods has general validity, in reality Chi-
nese loess stratigraphy is rarely simple. Dust deposition occurs,
albeit at a lower rate, during interglacial periods, such as the pres-
ent, and adds fine particles to modern surface soils. Some loess
alteration takes place, even during glacial periods, when loess sed-
imentation is most active. A useful concept for Chinese loess ori-
gins is to visualize loess sedimentation and soil formation as
essentially competing processes (Verosub et al., 1993). When loess
sedimentation rates are high, pedogenic processes cannot keep up
and relatively unaltered sediment accumulates. When loess sedi-
mentation rates are low, soil-forming processes extend deeper into
previously deposited loess, but soils may also continue to accumu-
late small amounts of aeolian sediment during pedogenesis. Thus,
whereas in deep-sea or lacustrine sediments, a case can be made
for more-or-less continuous sedimentation (although at varying
rates), loess–paleosol sequences should not be viewed in the same
way.

China probably contains the longest and most continuous re-
cords of loess deposition in the world. In fact, loess deposition be-
gan long before the Quaternary Period. The Quaternary loess–
paleosol successions on the Chinese Loess Plateau are underlain
by what has been called the ‘‘red clays.’’ Sun et al. (1998), using
paleomagnetic methods, show that the red clays are as old as
�7.2 Ma. Ding et al. (1998), using particle size and geochemical
data, report that the red clays are likely of aeolian origin, thus

So
ut

h

44°

43°

40°

41°

0 100 200

KILOMETERS

42°

SOUTH
 DAKOTA

COLORADO

WYOMING

Loess sample locality

Anomalous locality

Platte

River

Platte

River

North

Missouri

River

90  Silt + clay content (%)

Eolian sand

Loess

Badlands
National Park

(part of source)

NEBRASKA

Platte
Rive

r

Ice sheet

102° 100° 98° 96°104°

N

80

90

90

95

95
99

P

M
issouri

R
iver

IOWA

99

DES
MOINES 

LOBE

JAMES 
LOBE

Nebraska Sand Hills

4060
60

70
70

80

Fig. 18. Map showing the distribution of aeolian sand (black and white stippled areas) and loess (brown) in Nebraska and adjacent states, along with contours of percentage
of fine grains (silt and clay) as a function of distance southeast of the Nebraska Sand Hills. Anomalous localities (localities with values less than the contoured values) are
shown with crosses and are mostly near the Platte River. Also shown are nearest lobes of the Laurentide ice sheet during the last glacial period (Fullerton et al., 2003, 2004).
and Badlands National Park, South Dakota, where the source of loess, the volcaniclastic siltstone White River Group, is well exposed. Redrawn from data in Muhs et al.
(2008a).

Fig. 19. Loess stratigraphy at Greenbay Hollow, Illinois (see Fig. 16 for location),
which is typical for midcontinental North American loess sequences along the
Mississippi River, showing changes in chemical properties in loess units and
paleosols (data from Muhs et al., 2001). Also shown is proposed correlation of loess
units with the SPECMAP deep-sea oxygen isotope record of Martinson et al. (1987).
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inferring that atmospheric deposition of silts and clays in China is
not strictly a Quaternary phenomenon. This observation is consis-
tent with the deep-sea record of aeolian dust deposition in the Pa-
cific Ocean, discussed later. The contact between the Tertiary red
clays and the Quaternary loess is visually striking and sedimenta-
tion rates increased tremendously at the start of the Quaternary,
�2.6 Ma. Sun and Zhu (2010) report that Pb-isotopic compositions
of Tertiary red clay (as well as certain trace element concentra-
tions) differ significantly from that of the overlying Quaternary
loess–paleosol succession, with less radiogenic Pb-isotopic values
in the younger part of the section (Fig. 21). They interpret these
data to mean that aeolian source materials changed at the start
of the Quaternary, with mountain glaciation exposing less radio-
genic (presumably older) rocks that became the source sediments
for Quaternary loess.

With the beginning of the Quaternary at �2.6 Ma, loess deposi-
tion alternating with periods of reduced sedimentation and soil
formation began in China. Thirty-three loess–paleosol packages
(with a couple additional, less well-developed paleosols) can be
found above the Tertiary–Quaternary boundary at �2.6 Ma at
some sections, such as that at Jingchuan (Fig. 21). Loess deposits
are typically light brown and silt-rich, whereas paleosols are red-
der, clay-rich and show considerable evidence of pedogenic
structure.

In the Chinese stratigraphic nomenclature, loess deposits are
preceded by an ‘‘L’’ and begin with the oldest unit, L33. Loess
deposited during the last glacial period is L1, also called the Malan
Loess. Paleosols are designated with an ‘‘S’’ prefix beginning with
the oldest, which is S32, developed in L33. The paleosol that devel-
oped during the last interglacial period is called S1, and a Holocene
paleosol is called S0. A good example of the stratigraphic sequence
through the past four interglacial–glacial cycles is the relatively
high-sedimentation-rate section at Baoji, China (Fig. 22). This sec-
tion has loess and paleosol units that can be readily correlated with
the deep-sea oxygen isotope record of the past four interglacial–
glacial cycles.

China is the region most often cited as the best example of a
long-term and spatially extensive non-glacial (or ‘‘desert’’) loess
record (e.g., Pye, 1987). A desert origin for Chinese loess is inferred
from loess thickness and sand content trends that show decreases
downwind from sandy desert basins (Fig. 17). However, loess in
China may have, as its ultimate source, glacially derived silt. The
mountains surrounding the largest desert basins in China have gla-
ciers at present and were more extensively glaciated in the past

(Zhou et al., 2004). Thus, it is possible that much of the primary silt
production took place in the mountains, by glacial grinding and
frost shattering, followed by fluvial transport as outwash into the
desert basins (Smalley, 1995), and finally entrainment from the ba-
sins by wind. Sun (2002a) reports that the loess on the mountains
surrounding the desert basins, such as the Taklimakan Desert in
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the Tarim Basin may have been deflated from the desert floor, but
the silt-sized particles are derived originally from the very moun-
tains on which they were re-deposited. Thus, his interpretation is
that the arid basins of central China may simply act as reservoirs
for fine particle storage and have little to do with silt production
itself (Sun, 2002a,b).

Numerous researchers interpret the Chinese loess–paleosol suc-
cessions as recording the alternating dominance of the two princi-
pal air masses that reside over eastern Asia described earlier
(Fig. 10). These contrasting air masses at present control the deliv-
ery of modern dust to the region. In winter, the region is domi-
nated by the Mongolian high-pressure system, which delivers
cold, dry air to China with strong, northwesterly winds. In modern
summers, low pressure develops over the Asian continental inte-
rior and higher pressure over the western Pacific Ocean generates
the East Asian Monsoon, with a landward flow of warm, humid air
to China under gentle winds. As described earlier, little or no dust
entrainment occurs under summer conditions of humid air, weak
winds and abundant precipitation. However, under the summer
East Asian monsoon, the hot, humid conditions are optimal for
weathering and soil formation. During the Quaternary, glacial
times probably saw a greater residence time of what is now a win-
ter synoptic pattern (Porter, 2001). Under such conditions, dust
entrainment would have been enhanced, loess deposition rates
would have been greater and soil formation would be minimal.
The opposite pattern would have prevailed during interglacial peri-
ods, with a relatively greater residence time of a summer-type of
pattern and enhanced monsoonal airflow (Porter, 2001). Thus, in
Chinese loess deposits, the grain size is dominated by silt-sized
particles, the result of winter winds dominating for a longer period
in the year and aeolian deposition keeping ahead of pedogenesis. In

paleosols, although loess deposition continues, it does so at a lower
rate, and the summer East Asian monsoon, with greater humidity,
dominates for a longer period of time, favoring pedogenesis and
accumulation of clay. Thus, in Chinese loess–paleosol sequences,
loess deposits are dominated by silt-sized particles, whereas paleo-
sols are dominated by clay-sized particles (Fig. 22). It is important
to note, however, that the clay enrichments seen in the paleosols
can be due to both primary, clay-sized particle deposition and/or
clay accumulation by in situ weathering during periods of rela-
tively slow sedimentation, such as warm, moist interglacials.

4.5. Paleoclimatic and paleoenvironmental interpretation of loess
deposits

A number of aspects of loess–paleosol sequences make these
deposits powerful tools for paleoenvironmental intepretations.
The presence of loess itself implies that conditions in the source
areas are optimal for fine particle entrainment and transport. This
in turn implies that source areas are probably dry, minimally vege-
tated and have winds of sufficient strength to entrain particles. As
discussed earlier, the spatial distributions of loess properties are
useful for paleowind determinations. Loess thickness and particle
size decrease downwind from a source. Using these trends, a source
can be identified and one can infer paleowind directions, a powerful
tool for reconstructing atmospheric circulation patterns of the past.
Thus, loess thickness and particle size trends indicate last-glacial
paleowinds from the west or northwest in mid-continental North
America (Figs. 16 and 18) and particle size trends indicate northerly
or northwesterly last-glacial paleowinds in China (Fig. 17). In re-
gions where a loess source, such as amajor river valley carrying gla-
cial outwash, is not apparent, isotopicmethods can be very useful in
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‘‘fingerprinting’’ the loess source area (see Aleinikoff et al., 1999,
2008, for examples fromNorth America; see Fig. 21 for China). Loess
deposits are commonly the host sediments for the shells of minute
gastropods (land snails), and have been used extensively for paleo-
climatic interpretations in North America, Europe and China (Leon-
ard, 1952; Leonard and Frye, 1954, 1960; Liu, 1985; Wells and
Stewart, 1987; Rousseau and Kukla, 1994; Rousseau et al., 2000;
Rossignol et al., 2004). These studies show that loess bodies of
last-glacial age in North America, Europe and China all hosted
extralimital northern species of snails, indicating cooler-than-mod-
ern conditions at the time of loess deposition. Whereas sedimento-
logic and paleontologic data in loess give information about glacial
periods, paleosols within loess deposits yield information about
interglacial or interstadial periods. The most common method ap-
plied to loess-derived paleosols, for paleoclimate studies, has been
measurement of magnetic susceptibility and other mineral mag-
netic properties (Kukla and An, 1989; Verosub et al., 1993; Maher
et al., 1994; Porter, 2001; Singer and Verosub, 2007). Nevertheless,
there are some assumptions in this approach that require that
paleoclimatic interpretations from magnetic data be interpreted
with caution (Porter et al., 2001). Furthermore, in some regions,
such as Siberia and Alaska, magnetic properties show the opposite
relation to what they show in other regions, such as China (Begét
et al., 1990). Soil morphology and chemical properties of paleosols
also yield valuable information about paleoclimate, particularly hu-
mid vs. arid conditions, during times of pedogenesis (Ruhe, 1969;
Grimley et al., 2003; Muhs et al., 2008b).

5. Lacustrine records of dust deposition

Lakes are perhaps one of the most underutilized archives of
dust deposition. In principle, lakes should potentially contain some
of the best records of dust deposition because of a number of rea-
sons: (1) they are widely distributed over much of the Earth’s land

surface; (2) they commonly contain materials suitable for radiocar-
bon dating; and (3) they contain abundant complementary paleo-
climatic proxy data, such as pollen, ostracodes, phytoliths, diatoms,
and other biologic materials. One of the problems, however, is that
lakes also receive terrestrial sediment by other means, such as flu-
vial and colluvial processes. Thus, the investigator must ascertain
which terrestrial components in a lacustrine sediment core are
truly aeolian and which are derived from other transporting pro-
cesses. This becomes particularly challenging when other geomor-
phic processes deliver particles that are within the size range of
dust particles.

One approach to overcoming the problem of sediments of
mixed origin in lakes is to choose study areas that are situated en-
tirely in a bedrock terrain that has a composition differing from
typical dust particles. Dust and loess usually have compositions
that are close to that of average upper continental crust (Taylor
and McLennan, 1985). Thus, lakes found in mafic volcanic terrains
(basalt or andesite) should not contain fine-grained particles that
have average upper continental crustal compositions except those
contributed from the atmosphere. Mineralogy and geochemistry
can therefore identify these components. For example, St. Michael
Island, Alaska consists largely of basaltic terrain and contains sev-
eral maar lakes, such as Zagoskin Lake, studied by Muhs et al.
(2003b). Because these are lakes with relatively limited drainage
inputs in a dominantly basaltic terrain, particles that have non-
basaltic compositions must have been derived from the atmo-
sphere. Particles are fine-grained in Zagoskin Lake, with mean
diameters ranging from �5 lm to �15 lm (Fig. 23). In the absence
of glacial grinding, it is not common for basalt particles to weather
(chemically or mechanically) to this particle size. Ratios of major-
to-trace elements (Ti/Zr, K/Rb, and Ca/Sr) show that Zagoskin Lake
silts have compositions significantly different from the local basalt,
but fall within the range of loess deposits on the nearby Seward
Peninsula (Fig. 23). Identification of the lake’s particles as aeolian
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leads to the observation that linear aeolian sedimentation rates
were higher during the last glacial period than during the Holo-
cene. Furthermore, aeolian particle accretion in the lake is a pro-
cess that has been ongoing for perhaps as long as �40 ka. The
findings are interesting in that much of interior Alaska does not
preserve many records of significant loess accretion during the last
glacial period (Muhs et al., 2003a). Holocene loess and pre-last-gla-
cial loess records are abundant, but loess dating to the last glacial
period has been elusive. Muhs et al. (2003a) speculate that during
the LGM, abundant loess might have been generated by expanded
glaciers in Alaska’s mountain ranges. Nevertheless, a cold, dry,
windy, and sparsely vegetated LGM landscape might not have pro-
vided a favorable environment for loess preservation. Thus, lake re-
cords such as that at Zagoskin Lake might provide a key archive for
documenting significant dust generation during a period when the
loess record would indicate otherwise.

Aeolian records in maar lakes have been studied elsewhere, par-
ticularly in parts of western Europe where such features are com-
mon. Maar lakes and dry maars are abundant in westernmost
Germany, between Bitburg and Bonn, to the southwest of the Rhine
River. Dietrich and Seelos (2010) report results of aeolian sediment
studies from the Dehner dry Maar situated in the Eifel area in wes-
tern Germany. The sediment record here extends from �40 ka to
�13 ka. Devonian carbonate terrains are situated to the east of
the study area and therefore clastic carbonate particles found in
the maar imply aeolian transport from the east. The sedimentation
rate is high enough that Dietrich and Seelos (2010) were able to re-
port the frequency of easterly carbonate-dust bearing winds per
century over the last glacial period and extending back to �40 ka.

One of the best lacustrine records of dust accretion over a longer
timescale comes from Asian dust inputs to Japan. Xiao et al. (1997)
studied sediments in Lake Biwa, the largest lake in Japan, situated
on Honshu Island. Based on examination of modern satellite imag-
ery, Lake Biwa receives dust from the same sources in Asia that
ultimately supply LRT dust to the Pacific Ocean (Fig. 24). Xiao
et al. (1997) provide data on a 50-m-long core from Lake Biwa that
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Fig. 25. Aeolian quartz content in Lake Biwa, Japan (see Fig. 24 for location) and
correlation of fluctuations of aeolian dust content with the SPECMAP deep-sea
oxygen isotope record of Martinson et al. (1987). Lake Biwa data from Xiao et al.
(1997).
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has excellent age control based on the presence of several wide-
spread tephras. These workers isolated quartz from the sediments
and determined oxygen isotope compositions, with comparisons to
Chinese loess, confirming that the quartz is of Asian origin. The
majority of particles are 1–10 lm, which supports an interpreta-
tion that these sediments are LRT dust. In a record that spans the
past �145 ka, Xiao et al. (1997) report that aeolian quartz abun-
dances show maxima during MIS 2, early MIS 3/MIS 4, and MIS
5.2, 5.4, and 6 (Fig. 25). In a following study, Xiao et al. (1999) cor-
relate these periods of maximum dust flux with the major periods
of loess deposition on the Chinese Loess Plateau. The Lake Biwa re-
cord is so detailed that it is one of the few aeolian dust records,
found on land, that resolves brief periods of increased dust flux
during short, cold episodes (MIS 5.2 and 5.4) of the last interglacial
complex.

Lakes can also provide valuable archives of dust flux on more
recent timescales. A good example of this is a recent study by Neff
et al. (2008) of alpine lakes in the San Juan Mountains of Colorado.
Aeolian dust was identified by its particle size and compositional
differences, using Nd and Sr isotopes, from the local bedrock in
the lake catchment areas. With sediments dated by 210Pb and
radiocarbon methods, these workers present a �5,000-yr-long re-
cord of aeolian particle flux into high-altitude lakes of the San Juan
Mountains. Neff et al. (2008) report that dust fluxes increased by
�500% over the late Holocene average following the settlement
of the western USA in the 19th century. Although the Holocene re-
cord demonstrates that dust flux is a natural part of sedimentation
in this region, Neff et al. (2008) suggest that the higher historic rate
is due to livestock grazing and associated rangeland degradation.

6. Records of dust in soils

6.1. A general concept for soils as archives for dust

Because soils affected by dust inputs may cover significant parts
of the Earth’s land surface, archives of dust in soils are some of the
most important records we have. Nevertheless, identification of
dust inputs to soils is also one of the most challenging problems
to solve. The major issues result from the fact that the degree of
aeolian particle influence on soil development varies widely and
the identification of exotic dust particles often requires detailed
mineralogical, geochemical and isotopic analyses.

It is useful conceptually to place soils in a continuum that dis-
plays varying degrees of aeolian influence, an idea articulated by
Yaalon and Ganor (1973). Although these workers did not present
this concept visually, I have attempted to illustrate their ideas in
Fig. 26. At one end of the continuum, soils developed entirely in
thick deposits of aeolian sediments can be identified in the field
(Fig. 26a). Loess deposits with modern soils and paleosols (in older
loess deposits) fall into this category. A decreasing aeolian influence
would be soils that occur on non-eolian substrates, such as the lava
shown in Fig. 26b, but with an identifiable aeolian mantle that the
upper part of the soil is developed in. The soil that is visible in the
field has developed in part from weathered lava fragments, but
fine-grained, bedrock-free aeolian sediment occurs at the top, and
the upper part of the soil is developed solely in thismaterial. A com-
mon situation where this occurs is in areas that are downwind from
thick loess deposits, where thin loess occurs over till or bedrock.
With a further decrease in aeolian influence, a distinct aeolianman-
tle is lacking, but aeolian particles can be identified in the field,
forming part of the matrix of the soil profile (Fig. 26c). This type
of occurrence can be identified in the field where a soil may have
fragments of bedrock or other non-aeolian parent materials found
throughout the profile, but the matrix of the soil has fine-grained
materials that did not come from the underlying substrate. A good

example of this might be soils with well-developed carbonate-rich
horizons found on a geologic substrate that could not have supplied
the carbonate. Finally, themost complicated situation is where soils
have experiencedwhat Yaalon and Ganor (1973) refer to as ‘‘aeolian
contamination’’ (Fig. 26d). Here, identification of an aeolian compo-
nent is not apparent in the field, but an aeolian influence can be de-
tected by analytical methods (mineralogical, geochemical, isotopic)
that show materials exotic to the geologic substrate that occur
within the soil profile.

Yaalon and Ganor (1973) give a number of examples of soils
with varying degrees of aeolian influence in Israel. As alluded to
earlier, dust reaches Israel from deserts in North Africa with regu-
larity and has influenced soils there in a variable manner over very
short distances (Fig. 14). In the western part of the country, in the
northern Negev Desert, dust accretion occurs at a fairly high rate
and soils have developed entirely within loess deposits. Loess is
apparent as fine-grained aeolian sediment, and paleosols are dis-
tinguished by well-developed calcic horizons. On the other hand,
only �100 km to the northeast, near Jerusalem, even thin loess
deposits are absent. Nevertheless, Yaalon and Ganor (1973)
hypothesize that much of the silicate component of red, clay-rich
‘‘terra rossa’’ soils on limestone bedrock is probably derived from
LRT dust, as the bedrock contains little material that could accu-
mulate as clay during pedogenesis. Thus, the two examples from
Israel, only �100 km apart, serve to illustrate the two extreme
end-members of the soils/aeolian influence continuum shown in
Fig. 26.
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Fig. 26. Diagram showing a hypothetical field continuum of varying degrees of
aeolian influence on soils, using concepts in Yaalon and Ganor (1973). (a) The
modern soil and paleosol are developed entirely in aeolian sediment parent
material, such as loess, with unaltered loess and bedrock (shown as lava) well
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6.2. Examples of dust mantles in soils and aeolian ‘‘contamination’’ of
soils

Despite its importance as a dust source (Fig. 8), Australia has lit-
tle in the way of what most field geologists would identify as true
unaltered loess deposits, as discussed earlier. Nevertheless, exam-
ples of aeolian mantles (Cattle et al., 2009; Greene et al., 2009) and

aeolian ‘‘contamination’’ of soils are abundant in Australia, and oc-
cur over a widespread area in the southern part of the continent
(Fig. 27). Hesse and McTainsh (2003) report that many methods
have been used to identify fine-grained mantles that are likely of
aeolian origin and exotic, aeolian components in soils where a dust
influence is not apparent in the field. Examples of these methods
include: (1) fine-grained (aeolian particle sizes) soils of similar
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morphology that occur over very diverse bedrock types (particu-
larly with sharp lower boundaries); (2) presence of quartz in soils
that have developed on quartz-free basalt; (3) soil quartz with oxy-
gen isotope ratios that differ from oxygen isotope ratios in quartz
from the underlying substrate; (4) downwind decreases in particle
size; (5) illite (mica) enrichment in the soils compared to the
amount of mica in the geologic substrate; and (6) Ti/Zr values in
soils that differ from those in the underlying substrate. Note that
some of these approaches above (1, 2) may be successful in the
field, but others (3, 4, 5, 6) require laboratory analyses.

As discussed earlier, the Saharan and Sahel regions of Africa are,
at present, the most important sources of dust in the world (Figs. 7
and 8). It follows, therefore, that coastal regions of western Africa
and the offshore islands (Canary Islands, Cape Verde Islands) are
areas where soils could be expected to be influenced strongly by
dust inputs. Recent field and laboratory studies by Von Suchodo-
letz et al. (2009) and Muhs et al. (2010) have confirmed that Lan-
zarote island, in the eastern Canary Islands (Fig. 7 and 9) has soils
and paleosols that contain mineralogic and geochemical evidence
of African dust inputs. Soils on volcanic flows have yellowish-
brown colors, silt loam textures, lack pedogenic structure and
resemble loess, examples of Yaalon and Ganor’s (1973) concept
of soils with a distinct aeolian mantle. Mineralogical studies con-
firm the presence of quartz and mica, neither of which occur in
the island’s basalt bedrock, but which are common components
of African dust.

At other localities on the Canary Islands, there are carbonate-
rich aeolian sands, similar to the carbonate aeolianites of Quater-
nary age found on many tropical and subtropical landscapes. Meco
et al. (2011) report on a thick sequence of these carbonate dune
sands on Lanzarote island. Deposition of carbonate dunes on the
Canary Islands was episodic, as shown by the presence of paleosols
(Fig. 28). The aeolian sands are all dominated (�85% or more) by
carbonate minerals, calcite and aragonite, with the remainder
being small amounts of basaltic sand. The aeolian sands were de-
rived mostly from bioclastic marine sands that accumulated on
the insular shelves and then were entrained by the wind during
low stands of sea. Paleosols developed when aeolian sand sources
were cut off during rising sea levels as interglacial periods began.
However, the paleosols have much lower carbonate contents, but
this is not due to carbonate leaching during pedogenesis. The soils
contain silts and clays, and the presence of quartz in the paleosols
indicates that they developed primarily by accumulation of LRT
dust derived from Africa. Thus, the soils ‘‘grew upward,’’ as dust
accretion increased during interglacial periods (Fig. 28). The Lanza-
rote example is interesting in that it shows how fine-grained aeo-
lian ‘‘contamination’’ (i.e., accumulation of LRT dust from Africa)
can be hosted in coarse-grained sediments that are also aeolian.

African dust can be transported across the Atlantic Ocean to
northern South America, the Caribbean region and the southeast-
ern United States (Prospero, 1999; Prospero and Nees, 1977,
1986; Prospero and Lamb, 2003; Prospero et al., 1970, 1981). This
LRT dust is extremely fine-grained, with virtually all particles less
than 20 lm in diameter, and most less than 10 lm (Prospero et al.,
1970). Of the <10 lm fraction, approximately half the particles
have diameters <2 lm. This fine-grained dust input likely has
important effects on soils in the Western Hemisphere, particularly
where very pure limestone terrains, common around the Carib-
bean basin, inhibit soil genesis. South of the Caribbean basin, Koren
et al. (2006) have suggested that much of the Amazon forest is sus-
tained by a single LRT dust source, the Bodélé depression. That
hypothesis requires testing, but recent studies have shown that
African dust is in fact an important component in soils around
the Caribbean basin (Muhs et al., 2007a). For example, soils and
paleosols on many of the islands in the Bahamas and Florida Keys
are red, fine-grained materials (Fig. 29) that contain clay minerals

such as hydroxy-interlayered clay (a chlorite and/or vermiculite
mixed-layer clay) and boehmite, an aluminum-rich clay mineral.
Neither silica nor aluminum is present in the very pure carbonate
coral reef and oolite substrates of Quaternary age found on the
Florida Keys and the Bahamas. Trace element data reported by
Muhs et al. (2007a) show that the red soils and paleosols on these
islands are likely derived almost entirely from African dust.

Elsewhere in the Western Hemisphere, soils on islands provide
a record of dust deposition from North America to the eastern Pa-
cific Ocean. Although southwestern North America is a major dust
source based on TOMS imagery (Fig. 8), Rea (1994, 2007) points out
that North America actually provides very little dust to most of the
Pacific Ocean. Nevertheless, under ‘‘Santa Ana’’ conditions in
southern California and adjacent parts of Mexico, dust transport
from the deserts of southwestern North America is directed west-
ward, towards the eastern Pacific Ocean. In late fall, winter, and
early spring, Santa Ana conditions develop after a high pressure
cell settles into the Great Basin after the passage of a cold front,
with resultant winds directed to the west along the coast of Cali-
fornia and Baja California. Abundant dust can be entrained by what
are sometimes extremely strong winds, and much of this dust ends
up in the eastern Pacific Ocean, as seen on SeaWiFS imagery
(Fig. 30). Thus far, little attention has been paid to possible dust in-
puts to the deep-sea sediment record in this part of the Pacific
Ocean, but islands off the coast of California (San Clemente Island,
and those in Channel Islands National Park) have soils with silt-
rich mantles. Several of these islands are wholly or mostly com-
posed of volcanic rocks (andesite and basalt) whose mineralogy
and geochemistry are significantly different from typical LRT dust.
Muhs et al. (2007b, 2008c) used mineralogy (presence of quartz

Fig. 28. Photographs and stratigraphy of the Mala quarry, Lanzarote (see Fig. 7a for
location), Canary Islands, showing aeolian sands, paleosols and abundance of non-
carbonate minerals (dominantly African dust), mostly in paleosols. Non-carbonate
mineral data are from Meco et al. (2011); photographs by D.R. Muhs.
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and mica) and trace element geochemistry (Sc-Th-La plots) to
show that these silt mantles are not derived from the local bedrock,
but are likely derived fromMojave Desert dust, or other upper con-
tinental crustal sources found onmainland North America (Fig. 31).

As will be discussed later, dust from Asia constitutes a signifi-
cant portion of the fine-grained, non-carbonate fraction of deep-
sea cores in the North Pacific Ocean. Pacific Ocean island soils also
have a record of Asian dust input. Rex et al. (1969) and Jackson
et al. (1971) studied soils on the Hawaiian islands and found signif-
icant amounts of quartz, absent in the local basalt bedrock, in soils
on Kauai, Oahu, Molokai, Maui and Hawaii. Quartz contents range
up to 20–45% on Oahu, although contents are lower on the other
islands. Oxygen isotope ratios in quartz from Hawaiian soils are
similar to those in fine-grained quartz in Pacific Ocean marine sed-
iments, indicating a common, Asian region of origin.

6.3. The importance of dust for carbonate accumulation in soils

One of the major findings of the past few decades is that calcar-
eous dust plays a major role in the genesis of calcic and petrocalcic
horizons (also called ‘‘caliche,’’ ‘‘calcrete’’, ‘‘Bk horizons,’’ and ‘‘K
horizons’’) in soils. Landmark studies on the development se-
quence of carbonate accumulations in soils were from the US Soil
Conservation Service Desert Project on soil geomorphology in
southern New Mexico, during the 1960s, 1970s and 1980s. Gile
et al. (1966), studying soils on progressively older geomorphic sur-
faces, found a systematic sequence of increasing pedogenic carbon-
ate accumulation (Fig. 32). This sequence of development has now
been recognized in many desert regions of the world, where the
moisture balance is such that pedogenic carbonates are not lea-
ched through soil profiles. Ruhe (1967), who was a part of the same

project in NewMexico, pointed out that in many cases, particularly
where soils were developed in rhyolitic alluvium, there is simply
too little calcium available for the genesis of calcic or petrocalcic
horizons. Furthermore, there is little or no evidence that rhyolitic
alluvium has experienced chemical weathering in this arid envi-
ronment. The hypothesis was generated that dust additions could
be the source of calcium carbonate in these soils. Dust traps were
set up and monitored for a decade and the results indicate that cal-
careous dust accretion is significant in the region. Results of the
long-term monitoring in this project are given by Gile and Gross-
man (1979) and indicate without question that calcareous dust fall
rates are high enough to contribute significantly to calcic and pet-
rocalcic soil horizon formation. Gile et al. (1981) report that cal-
cium in precipitation is also an important contributor to
carbonate accumulation in soils in the region, perhaps even more
so than dust.

Other researchers have investigated the role of calcareous dust
in the genesis of calcic and petrocalcic horizons in desert regions
elsewhere. Reheis et al. (1995) conducted dust trap monitoring
and examined soil chronosequences in arid regions of southern Ne-
vada and southeastern California. They also found that calcareous
dust plays an important role in the genesis of carbonate horizons
of soils in this region. In addition, they report that non-carbonate
components of dust, such as aluminosilicate clays, are also impor-
tant in the development of these soils. Not surprisingly, upper hori-
zons of soils are the most influenced by dust additions, with lower
soil horizons being less influenced and more closely resembling
compositions of the host sediment. Reheis et al. (1995) also report
that last-glacial climates were more favorable in terms of moisture
balance, compared to the Holocene, for translocation of both dust-
derived carbonates and aluminosilicate clays through soil profiles.

~200 ka aeolianite

~120 ka aeolianite

African-dust
derived paleosol

~120 ka coral reef

African-dust 
derived

soil patch

~200 ka coral reef

African-dust 
derived

soil patch
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coral reef

African dust-
derived

soil pockets

Ground 
surface

(a) Lyford Cay, New Providence
Island, Bahamas

(b) West of Nassau, Bahamas

(c) Long Key, Florida (d) Key Largo, Florida

Fig. 29. Photographs showing reddish-brown, clay-rich soil patches derived from African dust on pure carbonate substrates of Quaternary age in the Florida Keys and
Bahamas. Data supporting an African dust origin for these soils are in Muhs et al. (2007a); all photographs by D.R. Muhs.
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7. Marine records of dust deposition

Marine sediment cores have been one of the most important
sources of information about LRT dust and studies of aeolian parti-
cle input have been conducted in many parts of the world’s oceans.
Rea (1994, 2007) provides good reviews of the nature of the marine
sediment record of dust deposition. Kohfeld and Harrison (2001)
and Kohfeld and Tegen (2007) review the global record of last-gla-
cial and Holocene LRT dust inputs to the world’s oceans.

Marine sediments have a number of distinct advantages over
other geologic records of dust input. First, they are widely distrib-
uted globally; thus, anywhere marine cores can be raised, the po-
tential exists for obtaining an aeolian sediment record. Second,
because of their setting on the ocean floor, marine sediment re-
cords generally lack unconformities, unlike terrestrial records. A
potential problem they do have, as with terrestrial records, is sed-
iment mixing from bioturbation, which tends to blur (but not nec-
essarily delete) whatever sediment property is being sought. Third,
because marine sediment cores usually contain foraminifera, it is
possible to obtain an oxygen isotope record of glacial–interglacial
cycles that provides a first-order chronology. Under favorable cir-
cumstances, an independent numerical chronology can be ob-
tained, using radiocarbon, 230Th/232Th, or tephrachronological
methods. Finally, because marine sediment cores often contain
other materials that can be studied (foraminifera, ostracodes, dia-
toms, pollen, alkenones, etc.), it is possible to develop highly com-
plementary data sets from the same sample depths.

One major challenge in interpreting aeolian records in deep-sea
cores is determining what proportion of the sediment population is

truly aeolian. Ice-rafted particles, fluvial sediments and volcanic
ash can all contribute to the sediment load that ultimately reaches
the ocean floor. Fluvial inputs are a particularly important problem
for cores taken along continental margins. Prins and Weltje (1999)
and Weltje and Prins (2003) provide numerical–statistical algo-
rithms that can be used to model end-member grain size distribu-
tions of the potential particle sources to continental margin
sediments. Detailed particle size analyses, combined with these
modeling techniques, allow investigators to separate the relative
contributions of dust, turbidites, ice-rafted debris, etc. The method
has been used with success in studies of aeolian sediments in mar-
ine cores off southwestern Africa (Stuut and Lamy, 2004; Stuut
et al., 2002), off northwestern Africa (Holz et al., 2004, 2007; Filips-
son et al., 2011; Meyer et al., 2011), off the coast of South America
(Stuut and Lamy, 2004; Stuut et al., 2007), in the South China Sea
(Wan et al., 2007), and in the eastern Mediterranean Sea (Hamann
et al., 2008).

7.1. Marine sediment records of dust in the Atlantic Ocean

Many studies of LRT dust input to the Atlantic Ocean have been
conducted. As early as the 19th century, Charles Darwin observed
an 1833 dust fall aboard the Beagle in the Cape Verde Islands off
the coast of West Africa. He recognized from this experience that
wind-blown dust from Africa might be a significant contributor
to Atlantic Ocean deep-sea sediments (Darwin, 1846). A pioneering
modern study by Kolla et al. (1979) examined the abundance of
quartz in Holocene and LGM marine sediments in the Atlantic
Ocean. These workers report higher LGM quartz contents com-
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pared to the Holocene in the Norwegian Sea, the central and east-
ern North Atlantic Ocean, and the eastern equatorial Atlantic
Ocean. The higher quartz contents in LGM sediments of the Norwe-
gian Sea and the North Atlantic Ocean are explained by ice rafting,
but this process does not explain the abundance of LGM quartz
compared to the Holocene in equatorial regions. The maximum dif-
ferences in quartz content in the equatorial Atlantic Ocean occur
off the coast of West Africa and decrease westward. From this
observation, Kolla et al. (1979) infer a greater input of LRT dust
from Africa to the Atlantic Ocean during the LGM compared to
the Holocene. Subsequent studies, most recently compiled by Koh-
feld and Tegen (2007), show that mass accumulation rates (MARs)
of LRT dust to the Atlantic Ocean off West Africa were 2–5 times
higher during the LGM compared to the Holocene.

Support for higher dust flux due, at least in part, to increased
strength of the trade winds during cold glacial periods comes from
both aeolian and biological records in cores off Africa. Romero et al.
(2008) and Filipsson et al. (2011) studied a core (GeoB 7926-2; see

Fig. 9) taken off the coast of Mauritania that includes sediment
deposited during last glacial period, the Bølling-Allerød warm per-
iod, the Younger Dryas cold period and the Holocene. Using the end
member modeling approach of Prins and Weltje (1999), they inter-
pret coarser particles to be aeolian, with finer-grained particles to
be of fluvial origin. The coarser-grained aeolian inputs were high-
est during the last glacial period and the Younger Dryas cold period
(Fig. 33). During the Bølling-Allerød warm period and the Holo-
cene, median particle sizes were reduced and are interpreted to
represent a much greater fluvial input. Stronger trade winds are in-
ferred to be the main cause of the higher aeolian inputs during the
last glacial period and the Younger Dryas. Romero et al. (2008) and
Filipsson et al. (2011) reason that if that interpretation is correct,
enhanced upwelling should accompany an increased strength of
the trade winds. A response to intensified upwelling is an increase
in primary marine biological productivity, which should be re-
flected in a higher concentration of diatoms during such periods.
The diatom abundance record from core GeoB 7926-2 matches
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the grain size record in the core very closely (Fig. 33) and demon-
strates how climate change in this region elicits both aeolian and
biological responses in the marine sediment record.

Detailed analyses of individual marine sediment cores also
show a fairly consistent relation of higher dust deposition to the
oceans during earlier glacial periods. A good example of this is
from the Canary Basin off northwestern Africa, where dust inputs
from both the northeast trade winds and the Saharan Air Layer
are important (Fig. 9). Moreno et al. (2001, 2002) studied a marine

sediment core from the Canary Basin that has a detailed record of
glacial–interglacial cycles over the past �250 ka. The basic chrono-
logical framework is derived from oxygen isotope analyses of the
biogenic carbonate fraction, which constitutes a majority of the
bulk sediment, correlated to the SPECMAP oxygen isotope stratig-
raphy of Martinson et al. (1987). The most recent 8 marine isotope
stages (MIS) can be easily recognized in this core (Fig. 34). Because
the core is located well off the African coast and biogenic opal pro-
duction is low, non-carbonate components in the sediment are
interpreted to be dominantly aeolian. Aeolian particles are found
throughout the record, with median particle size diameters rang-
ing from �4 lm to � 11 lm (Fig. 34). Median particle size is high-
er, however, during glacial periods (MIS 2, 4 and 6) and lowest
during interglacial periods (MIS 1, 3, 5, 7), suggesting increased
wind strength during glacial periods. Moreno et al. (2002) interpret
Si abundance to represent mostly coarse-grained aeolian quartz,
derived dominantly (though not solely) from northeast trade
wind-transported aeolian particles from Africa. The flux of rela-
tively coarse-grained quartz dust is highest during glacial periods
MIS 2, 4, and 6. Greater flux of fine-grained aluminosilicates, likely
clay minerals, as well as Fe-oxides, are also higher during glacial
periods, as shown by higher abundances of both Al and Fe. Moreno
et al. (2002) interpret the greater abundances of Fe to represent
dust derivation from highly weathered soils in the Sahel region,
an interpretation also made by Muhs et al. (2010) on the basis of
soils on the Canary Islands.

DeMenocal et al. (1993) present an even longer record of dust
deposition from Africa to the eastern equatorial Atlantic Ocean.
These workers studied sediments in a core from Ocean Drilling
Program Site 663 (S1�11.90; W11�52.70; see Fig. 9). Oxygen isotope
stratigraphy in the core from this site indicates a record that goes
back to almost 900 ka, the most recent 500 ka of which are shown
in Fig. 35. Biogenic carbonate is the dominant component in the
core, as is the case with many marine sediment cores, but the sed-
iments at Site 663 also contain opal, phytoliths, freshwater dia-
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toms (Melosira), and terrigenous particles that are interpreted to be
aeolian. Because it is situated south of the West African coast, aeo-
lian input to Site 663 comes largely from Saharan and Sahel
sources during the winter, from the southward migration of the
trade winds and the associated Harmattan winds (Fig. 9). The sed-
iment core record at Site 663 shows that aeolian input to the east-
ern equatorial Atlantic Ocean occurs during both glacial and
interglacial periods (Fig. 35). Nevertheless, the times when the aeo-
lian component is greatest correspond to glacial periods, MIS 2, 4,
6, 8, 10, and 12. The freshwater diatom record follows the same
general pattern, with maxima during glacial periods. The sources
of the diatoms are interpreted to be dry lakebeds in the Sahara
and Sahel regions of Africa. A likely candidate for at least some of
these diatoms could be the Bodélé depression in Chad, where aeo-
lian erosion of diatom-rich lakebeds has been well documented
(Bristow et al., 2009). DeMenocal et al. (1993) infer that the aeolian
record at Site 663 reflects both low-latitude precessional forcing,
that modulates the African monsoon, and high-latitude insolation.
High-latitude insolation forcing affects North Atlantic sea surface
temperatures. Thus, during glacial times, sea surface temperatures
are lower and this is inferred to enhance African aridity and wind
speed. The interpretation is that during glacial times, source areas
are expanded and wind speeds are increased, both of which con-
tribute to the higher terrigenous and diatom contents in the core
record. Ruddiman (1997), however, has suggested that three fac-
tors related to wind are probably the best explanations for the en-
hanced flux of dust to the eastern equatorial Atlantic Ocean during
glacial periods: (1) movement southward, by several degrees of
latitude, of the main dust-transporting winds; (2) an increase in
the velocities of southward-moving dust-transporting winds; and
(3) an increase in the vertical, lifting power of the storm-related
winds that are lifting dust in the source areas. Ruddiman (1997)
concludes that glacial-age aridity was of secondary importance to
the increased fluxes of dust out of Africa to the eastern equatorial
Pacific Ocean.

Very high-resolution studies of marine cores off Africa show
that there is variation superimposed on the overall trend of high
aeolian flux during glacial periods and low aeolian flux during

interglacial periods. DeMenocal et al. (2000) studied a core off
the coast of Mauritania (Fig. 9) that spans most of the past
�25 ka. They report that dust flux is high during the last glacial
period, �25–17 ka, but diminishes abruptly at �15 ka and does
not increase again until �5 ka, with a short period of increased
dust flux during the Younger Dryas episode (Fig. 36). They inter-
pret the decreased dust flux from �15 to 5 ka to reflect what has
been called the African Humid Period. Although the Sahara is
now hyperarid, and apparently was so during the LGM, it was con-
siderably wetter during the latest glacial and early Holocene, based
on pollen evidence (COHMAP Members, 1988). The period of high-
er precipitation during the African Humid Period was due to great-
er summer insolation in the Northern Hemisphere as the last
glacial period was ending. Higher summer insolation, which
brought about the close of the last glacial period, also brought
about an enhanced African monsoon. The higher precipitation
and increased vegetation cover in parts of the Sahara and Sahel re-
gions of Africa would have diminished dust supplies, resulting in a
lower flux of dust offshore. Similar results showing effects of the
African Humid Period on diminished dust flux to the eastern Atlan-
tic Ocean have been seen in cores off Senegal (Mulitza et al., 2008)
and Mauritania (Tjallingii et al., 2008).

The African Humid Period also brought about a shift in the
mode of particle delivery to the eastern Mediterranean Sea,
based on study of a marine core off the coast of Israel
(Fig. 14a; Hamann et al., 2008, 2009). During the last glacial per-
iod, the main sediment input to the eastern Mediterranean Sea
was dust from the Sahara, based on both particle size and clay
mineralogical data (Fig. 37). Saharan dust that reaches the east-
ern Mediterranean Sea is rich in illite and contains much less
smectite. The core shows abundant illite during the LGM and
particle size modes of �40 lm, interpreted to be dominantly aeo-
lian. With the advent of the African Humid Period at �15 ka, the
most important sediment input to the eastern Mediterranean Sea
became the Nile River, with greatly reduced aeolian inputs. This
is reflected in the finer grain size (interpreted to be fluvial) and
abundance of smectite, which is found in the Nile River drainage
basin.
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7.2. Marine sediment records of dust in the Pacific Ocean

Much of our knowledge about the marine sediment records of
dust deposition in the Pacific Ocean is due to years of careful study
by D.K. Rea and his students and colleagues (see reviews by Rea,
1994, 2007). Rea and co-workers have used many of the same ap-
proaches to studying aeolian particles in the Pacific Ocean that
have been applied to those in the Atlantic Ocean. Pacific Ocean re-
cords of sediment deposition, like those of the Atlantic Ocean, can
be complicated with regard to provenance. One factor that is
important to consider in Pacific Ocean marine sediment studies
is that this basin receives regular inputs of ash from the many ac-
tive volcanic centers than rim the Pacific. Thus, investigators of
marine sediment records in the Pacific Ocean must interpret the
non-carbonate components of cores with care, as volcanic ash
can be a significant component. Olivarez et al. (1991) show how
use of key trace elements (Sc–Th–La) can be effective in distin-
guishing between continentally derived aeolian particles and vol-
canic ash. Another factor that applies to the Pacific Ocean is that

aeolian sources, largely in Asia (Fig. 8) are much farther from the
ocean and occupy a more limited area and latitudinal extent than
the African sources that supply dust to the Atlantic Ocean and
Mediterranean Sea. Thus, rates of aeolian particle flux are some-
what lower, although of the same order of magnitude. Neverthe-
less, as pointed out by Rea (2007), Asia is the most important
source of dust to the North Pacific Ocean basin, from the mid-lati-
tudes to the tropics. North America supplies very little dust to the
North Pacific Ocean, except along the California and Baja California
margins (Muhs et al., 2007b, 2008c) and along the southern coast
of Alaska (Crusius et al., 2011). Dust input to the Pacific Ocean from
Asia is, as discussed earlier, a highly seasonal phenomenon that is a
function of the change in the strength of the East Asian monsoon
(Fig. 10). The transport of dust from Asia is easily seen at present
on MODIS imagery, with dust transported thousands of kilometers
to the east, to Korea, Japan and the Pacific Ocean (Fig. 24).

The formation of dust source areas in Asia took place over mil-
lions of years. Rea et al. (1998) studied a core in the north-central
Pacific Ocean that contains a record of aeolian dust flux that goes
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back �12 Ma. They show that changes in the flux of dust to the Pa-
cific Ocean are due to a complex series of climatic and tectonic
events that span much of the late Cenozoic. A crucial part of the
story for the Quaternary is that many of the presently arid basins
of Asia were much more humid in the Miocene and Pliocene. Tec-
tonic uplift of the northern Tibetan Plateau in the Pliocene, around
3.6 Ma, blocked the monsoonal flow of moisture from the Indian
Ocean and created greatly expanded source areas that increased
the flux of dust to the Pacific Ocean. Dust fluxes to the north-cen-
tral Pacific Ocean rose by an order of magnitude after �3.6 Ma (Rea
et al., 1998). This change is also seen in the record of loess deposi-
tion on the Chinese Loess Plateau, as discussed earlier (Fig. 21).

During the Quaternary, there has been variation in the flux of
dust to the North Pacific Ocean on glacial–interglacial timescales,
just as is the case in the Atlantic Ocean. One of the best-studied
cores is V21-146 (N37�410; E163�020), raised from a locality east
of Japan and �3500 km east of dust sources in China. Hovan
et al. (1991) present an aeolian dust record that spans the past
�500 ka (Fig. 38). Median particle size is, as expected at such a dis-
tal location, very fine and ranges mostly between �4 lm and
�8 lm. Dust input is greater during glacial periods, as is the case
in marine cores in the Atlantic Ocean. Hovan et al. (1991) consider
that dust flux is primarily a measure of aridity in the dust source
areas in Asia. They correlate the periods of maximum dust flux in

the Pacific Ocean with the major periods of loess deposition in Chi-
na. Interestingly, dust flux is generally higher in younger glacial
periods than older glacial periods. Hovan et al. (1991) speculate
that ongoing uplift of the Tibetan Plateau through the Quaternary
may have continued to expand dust source areas in Asia through
increasingly greater blockage of moisture sources from the Indian
Ocean. Median grain size is considered by Hovan et al. (1991) to
be primarily a measure of wind strength. It is interesting, therefore,
that the coarsest grain sizes are found primarily during interglacial
periods rather than glacial periods. Two explanations are offered
for this observation, including weaker winds during glacial times,
or a volcanic component that is coarser grained and that dominates
the signal during interglacials. The latter explanation seems more
likely, as Hovan et al. (1991) point out that if one assumes a
more-or-less constant rain of volcanic particles over a Quaternary
timescale, then during interglacial periods, when dust flux is lower,
the coarser volcanic grains will have a greater imprint on the grain
size record.

In equatorial regions of the Pacific Ocean, there is no question
that marine sediment has an aeolian component, but the record
has been much more difficult to interpret than at higher latitudes
in the North Pacific Ocean. Chuey et al. (1987) and Rea (1990) pres-
ent data from a core raised near the equator at site RC11–210
(N1�490; W140�030). This core contains a record extending to

Fig. 36. Oxygen isotope compositions of benthic foraminifera, carbonate contents and terrigenous (aeolian) particle content in marine sediment core 658 (see Fig. 9 for
location), off the coast of Mauritania. All data from DeMenocal et al. (2000). Also shown are the time period defined as the African Humid Period and July insolation at 15�N for
the past �28 ka (data from Berger and Loutre (1991)).
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�950 ka. Compared to cores from the North Pacific Ocean, the pro-
portion of an aeolian component in this core is much lower, aeolian
particles are finer grained, and overall aeolian flux is much lower.
Part of the problem in interpreting the marine aeolian record of the
central equatorial Pacific Ocean is that it is much more difficult to
link the dust particles to a specific source. Chuey et al. (1987) spec-
ulate that dust in this part of the Pacific Ocean could be derived
from Asian, Australian or South American sources. It is also possi-
ble that some combination of these sources has contributed dust to
the region.

A puzzling issue that arose in early studies is that unlike the re-
cord of the North Pacific Ocean, peaks in aeolian flux in the equa-
torial Pacific Ocean did not seem to show a clear link to glacial
periods. Chuey et al. (1987) and Rea (1990) developed a chronol-
ogy that was based on correlation to the SPECMAP oxygen isotope
stratigraphy of Imbrie et al. (1984). They report maximum dust
fluxes during glacial periods at some times and during interglacial
periods at other times. Anderson et al. (2006) re-dated the sedi-
ments in several equatorial Pacific Ocean cores using a 230Th ‘‘nor-
malization’’ technique to correct for sediment focusing. They also
used 232Th accumulation rates as a proxy for aeolian dust accumu-
lation. Unlike 230Th, which is generated primarily by in situ radio-
active decay of 234U in the overlying water column, 232Th is a
primordial isotope that is found in detrital particles. Thus, 232Th
is a reasonable proxy for aeolian particles in a location such as
the equatorial Pacific Ocean. Anderson et al. (2006) conclude from

these analyses that dust flux rates in the equatorial Pacific Ocean
were highest during glacial periods (MIS 2, 4, and 6), consistent
with the higher glacial-period dust flux rates in the North Pacific
Ocean. A similar approach was taken by Winckler et al. (2008),
who extend the equatorial Pacific Ocean record back to �500 ka.
They demonstrate that the 232Th-dust-proxy shows highest dust
fluxes during all glacial periods of the past �500 ka, including
MIS 2, 4, 6, 8, 10, and 12 (Fig. 39).

7.3. Marine sediment records of dust in the Indian Ocean and Tasman
Sea

The northern Indian Ocean, specifically the Arabian Sea, has
been studied in detail for aeolian additions to the deep sea. Particle
inputs to this region have diverse origins and it is this complexity
of sediment provenance that led Prins andWeltje (1999) andWelt-
je and Prins (2003) to develop models of end-member grain-size
distributions. Prins and Weltje (1999) recognize three end-mem-
ber sources of sediment to the deep sea here, including proximal
dust, distal dust, and fluvial mud. Aeolian sediments are supplied
by dust transported from the Arabian Peninsula and the Paki-
stan–Indian deserts, whereas fluvial sediments are supplied, to a
great extent, from the Indus River to the northeast. From studies
of a number of cores, they conclude that sediments from the wes-
tern Arabian Sea are mixtures of proximal and distal dust. In con-
trast, sediments from the northern Arabian Sea are mixtures of

Fig. 37. Particle size data, expressed as fractions of 1 for aeolian (EM1, or end member 1) and fluvial (EM3) sediment and clay mineralogy in eastern Mediterranean Sea core
SL112 (see Fig. 14 for location) and inferred dominant sediment sources. Data from Hamann et al. (2008, 2009). Shown for comparison is July insolation at the top of the
atmosphere at 15�N (data from Berger and Loutre (1991)).
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dust and fluvial mud. In the northern Arabian Sea, the ratio of
coarse-grained dust to fine-grained dust is interpreted as a wind-
speed indicator, with stronger winter monsoons observed during
glacial periods. In the same area, the ratio of both aeolian fractions
to the fluvial fraction is interpreted as a measure of the degree of
continental aridity, which is greater during glacial periods.

Marine sediment cores collected from farther south in the In-
dian Ocean and in the Tasman Sea show that Australia was an
important source of dust during glacial periods of the past
�400 ka. As discussed earlier, there is widespread evidence for
dust deposition in the southern part of Australia and satellite imag-
ery shows that dust travels off the continent to both the west, into
the Indian Ocean, and to the east, into the Tasman Sea (Figs. 8 and
27). Cores collected in both oceans by Hesse (1994) and Hesse and
McTainsh (1999, 2003) show that although dust flux is relatively
low in both oceans, there are distinct glacial–interglacial differ-
ences in dust flux (Fig. 40). Dust fluxes are at a maximum during
MIS 2, 4, 6, and 8, similar to what has been found in Northern
Hemisphere ocean cores.

8. Dust deposition in glacial ice

Dust deposition in the large ice sheets of Greenland and Antarc-
tica provide one of the most dramatic records of LRT aeolian parti-
cle deposition. These records are intriguing because the polar
locations of these ice sheets, thousands of kilometers away from
potential dust source areas, challenge researchers to track dust
back to the source. The records are also impressive because they
show some of the most pronounced glacial-to-interglacial changes
in dust flux that are found in any of the geologic archives discussed
herein. Ice cores can be dated by annual layer counting, by cosmo-

genic isotopes such as 36Cl and by correlation using the gas record
in ice bubbles.

8.1. Dust records in Antarctic ice cores

Because of the relatively slow accumulation of ice in Antarctica,
some very long records of ice accumulation, oxygen isotopes, deu-
terium isotopes, carbon dioxide, methane and dust have been ac-
quired from a number of Antarctic ice cores (Fig. 41). Petit et al.
(1999) obtained an ice core at Vostok and acquired an �3300-m-
long record going back to just over �400 ka, with detailed records
of the past five glacial–interglacial cycles. These investigators re-
port that while dust is found in almost all time periods, dust con-
centrations are many times higher during what deuterium isotopes
indicate are glacial periods. The highest dust flux is recorded in the
last glacial period, MIS 2.

An even longer record was obtained from the EPICA Dome C
core (referred to as EDC; Fig. 41) (EPICA Community Members,
2004). EDC contains one of the most remarkable Quaternary cli-
matic records, with oxygen isotope, deuterium isotope and dust re-
cords spanning the past eight glacial–interglacial cycles (Fig. 42).
Dust maxima again occur during glacial periods, with glacial dust
abundances sometimes two orders of magnitude higher than inter-
glacial dust abundances. The EPICA group also obtained a core from
Dronning Maud Land (Fig. 41), on the other side of the continent
(EPICA Community Members, 2006). The shorter record of this core
goes back to �150 ka, but shows a similar dust record as EDC, over
the period of record common to both cores.

Considerable effort has been made in the past decade to ascer-
tain the source of dust in Antarctic ice cores. This is crucial to any
paleoclimatic interpretation of Antarctic dust records, because the

Fig. 38. Oxygen isotope composition of carbonates, dust flux, and median particle size in North Pacific Ocean core V21-146 (data from Hovan et al. (1991)). Bold numbers in
first column are marine oxygen isotope stages; blue shades denote glacial periods.
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higher amounts of dust during glacial periods imply greater aridity
in the source area or areas, wherever they might be. In a summary
of the information at the time, Kohfeld and Harrison (2001) review
hypothesized source areas for Antarctic dust in the Southern Hemi-

sphere, which include southern South America, Australia, New Zea-
land and southern Africa (Fig. 41). A series of studies in the past
few years, utilizing Sr, Nd, and Pb isotopes in dust particles, has
narrowed down the possibilities considerably, with some interest-
ing results. Analyses of samples from both EDC and Vostok by Del-
monte et al. (2004), using Sr and Nd isotopes, show that during
glacial periods (MIS 2, 4, 6, 8 and 10), dust in both Antarctic cores
are similar to each other, indicating a common source. Australia
and southern Africa are shown to be unlikely sources, but southern
South America, New Zealand and the Dry Valleys of Antarctica it-
self are all probable sources of dust. Delmonte et al. (2008) did a
later study on EDC, with samples from earlier glacial stages (MIS
8, 10, 12, 16 and 20), again using Sr and Nd isotopes, concluding
that southern South America, probably Patagonia, is the most
important source, but with perhaps a smaller South American con-
tribution during earlier glacial periods. Using Pb isotopes, Vallelon-
ga et al. (2010) confirmed that southern South America is the most
important source of dust and also verified that there are likely local
Antarctic contributions.

An interesting aspect of the detailed Sr and Nd isotopic analyses
that have been conducted on possible source sediments for dust in
Antarctic ice is that there are several possible sources of dust with-

Fig. 39. Record of dust flux, using abundance of 232Th as a proxy, into the central equatorial Pacific Ocean over the past 500 ka, as recorded in core PC72 (data and chronology
from Winckler et al. (2008)). Shown for comparison is the oxygen isotope composition of benthic foraminifera over the same time period in this core (data from Murray et al.
(2000)). Bold numbers on oxygen isotope graph are marine isotope stages (red, interglacials; blue, glacials); glacial periods are also shown on both graphs with blue shades.
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in southern South America (Fig. 15b), including glaciogenic sources
in Patagonia, dust from the high plateaus of Puna and the Altiplano,
and loess from the Pampas region of Argentina (Gaiero, 2007). An-
other possibility permitted by the data is that Pampas loess, deep-
sea sediments of the Southern Ocean, and Antarctic dust are all de-
rived from the same sources, namely a mixture of Patagonian glac-
iogenic dust and Puna/Altiplano dust, from farther north (Fig. 15b).
Isotopic data from a new Antarctic core from Talos Dome (Fig. 41)
support the idea that Antarctic dust could represent a mixture of
Patagonian and Puna/Altiplano sources (Delmonte et al., 2010).

Sugden et al. (2009) favor a dominantly Patagonian source for
Antarctic dust and provide not only new Sr and Nd data, but also
an elegant geomorphic model to explain the timing of Antarctic
dust maxima. These investigators show that dust maxima in Ant-
arctica, at least those of the past �100 ka, coincide with times of
eastward advance of outlet glaciers from the Andean ice cap
(Fig. 15b). In their model, dust was generated at times of maximum
glacial advance, when broad outwash plains developed to the east
of the ice cap, in Patagonia. As outlet glaciers from the ice cap be-
gan to retreat, proglacial lakes developed and fine particles became
trapped in proglacial lakes. Sugden et al. (2009) show that fine par-

ticles from proglacial lake deposits that date to the last glacial per-
iod in Patagonia have Sr and Nd isotopic compositions very similar
to dust particles in Antarctic ice.

Finally, although all investigations have shown that dust max-
ima in Antarctic ice occurred during glacial periods, there is mea-
surable dust in the parts of these cores that date to interglacial
periods. Revel-Rolland et al. (2006) show that glacial-age dust in
Antarctica is compositionally distinct from interglacial-age dust
in Antarctica. Isotopic studies using Sr and Nd by Revel-Rolland
et al. (2006) and Pb isotope studies by DeDeckker et al., (2010) sug-
gest that possibility that during interglacial periods, Australia
could have been an important dust contributor to Antarctica.

8.2. Dust records in Greenland ice cores

A number of ice cores have been taken in Greenland (Fig. 15a)
and these records show that dust has been transported to the
northern polar region as well as to Antarctica. Unlike Antarctica,
however, Greenland’s ice dates back only to the latter part of the
peak of the last interglacial period (MIS 5.5) at �120 ka, so the
record is much shorter. Nearly continuous records have been
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obtained over much of this interval from two cores, the GISP2 core,
studied by Mayewski et al. (1994, 1997) and the NGRIP core,
studied by NGRIP Members (2004), Ruth et al. (2007), and Wolff
et al. (2010).

Total dust concentrations, as well as chemical data, are reported
in the upper part of the GISP2 core, back to �40 ka by Mayewski
et al. (1994). Concentrations of certain elements measured by
these investigators, such as Ca, are considered to be primarily of
continental origin (as opposed to a sea salt origin, which is the
source of most Na). Concentrations of dust and Ca in GISP2 are
highly correlated back to �40 ka. Unfortunately, in the longer
(back to �110 ka) GISP2 record reported by Mayewski et al.
(1997), concentrations of dust are not reported, but Ca data are gi-
ven for the entire length of the record. Given the close relation of
Ca concentrations to dust concentrations in the upper part of the
core, Ca is shown as a proxy for dust in the longer record (Fig. 43).

The NGRIP core, studied by NGRIP Members (2004), Ruth et al.
(2007), and Wolff et al. (2010), has a dust record that includes
much of the same time period as GISP2. Unfortunately, although
this record goes from �123 ka to the present, no dust measure-
ments are apparently available for either the peak of the last inter-
glacial period during the latter part of MIS 5.5 at �120 ka, nor are
data available for the Holocene (Fig. 43). Nevertheless, the rest of
the core has a very detailed record of dust abundances in Green-
land ice that can be compared to GISP2.

Both cores show similar dust abundances over the time periods
in common (Fig. 43). The highest dust concentrations are found
during the early last glacial period (MIS 4), from �70 ka to
�60 ka, and during the last glacial maximum (MIS 2), from
�25 ka to �15 ka. During relatively warm phases of the last inter-
glacial period (MIS 5), such as MIS 5.3 (�100–90 ka) and MIS 5.1
(�80–75 ka), and during the Holocene (�12–0 ka), dust flux is very
low. Thus, similar to Antarctic ice cores, Greenland cores show dust
maxima during glacials and dust minima during interglacials.

One of the most significant findings of the high-resolution re-
cords from Greenland, however, is that these cores also show a de-
tailed record of the nature of dust flux during interstadial periods
of the last glacial–interglacial cycle. Both the GISP2 and NGRIP
cores have oxygen isotope records that show that climate warmed
numerous times in the polar regions of the Northern Hemisphere
(Fig. 43). Indeed, the magnitude of these excursions in many cases
suggests an amount of warming that is up to one-half that of a full
interglacial period, such as the Holocene. Warm interstadial peri-
ods were followed by temperature drops to almost full-glacial con-
ditions, indicating rapid excursions between relatively warm and
cold episodes over very short timescales. These cycles are now re-
ferred to as Dansgaard-Oeschger cycles (or simply D–O cycles),
partly after the first investigators who identified them (Dansgaard
et al., 1982) in the Dye-3 core in southern Greenland (Fig. 15a).
Altogether, 25 such cycles have been identified in the NGRIP core
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(NGRIP Members, 2004; Wolff et al., 2010). What is interesting
about the Greenland cores is that the rapid excursions in paleocli-
mate evidenced in the oxygen isotope records of D–O cycles are
tracked closely by the dust records (Fig. 43). Relatively warm inter-
stadials, with less-negative oxygen isotope values, record times of
relatively low dust flux, whereas cold periods have relatively high
dust flux. Even the Younger Dryas, a brief (�13–12 ka) return to
very cold conditions after the last glacial maximum, shows a small
increase in dust flux in both the GISP2 and NGRIP cores. These
observations indicate that the Greenland ice cores contain dust re-
cords with a high sensitivity to global climate changes that are
linked to the dust source areas.

Compared to Antarctica, much less work has been done on iden-
tifying the source of dust in Greenland. Mayewski et al. (1993)
hypothesized that areas to the south of the Laurentide ice sheet

in North America could be the source of dust in the GISP2 record
that they studied. In a later study, they rejected a North American
source and, based on climate modeling, suggested the possibility of
increased LGM dust transport to Greenland from North Africa, Asia,
and areas to the south of the ice sheet in Eurasia (Mayewski et al.,
1997).

Biscaye et al. (1997) provided the first empirical study of possi-
ble sources of dust for Greenland. They report mineralogy, and Pb,
Sr, and Nd-isotopic data for several possible source areas: (1) Gobi
Desert sand (3 samples); (2) Chinese loess (3 samples); (3) Ukraine
loess (1 sample); (4) Alaskan loess (4 samples, all from near Fair-
banks); (5) Illinois loess (1 sample); (6) Washington (Palouse) loess
(1 sample); and (7) Canadian lake silt (1 sample). They also evalu-
ated Saharan dust as a possible source, from Pb-isotopic composi-
tions of 10 previously analyzed samples. On the basis of
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compositional similarities between Greenland dust and the Gobi
Desert and Chinese loess samples, they conclude that eastern Asia
was the main source of Greenland dust during the last glacial per-
iod. This study has been cited widely and there seems to have been
general acceptance in the ice core dust community that Asia is the
primary (and possibly the only) source of dust in Greenland ice.
However, it is important to point out that the samples of potential
source areas studied by Biscaye et al. (1997) are extremely limited.
The entire mid-continental loess belt of North America (Figs. 15a,
16) is represented by one sample, as is the entire Eurasian loess
belt south of the Fennoscandian ice sheet (Fig. 13). It has been
known for some time that loess sources in the Mississippi River
valley changed over time during the last glacial period, depending
on which lobes of the Laurentide ice sheet were supplying the
drainage system (Frye et al., 1968; McKay, 1979; Grimley et al.,

1998; Grimley, 2000). Because Biscaye et al. (1997) did not specify
the depth of their single sample, it is not clear which of these
sources it represents and it certainly does not represent all the pos-
sibilities in the Mississippi River valley. Second, loess data in the
Great Plains region were not reported at all by Biscaye et al.
(1997), yet this region has some of the highest loess mass accumu-
lation rates in the world for the last glacial period (Roberts et al.,
2003). As shown by Aleinikoff et al. (2008), GISP2 dust samples,
studied by Biscaye et al. (1997) have Pb-isotope compositions that
are indistinguishable from Pb-isotopic compositions of K-feldpsars
in both Great Plains loess and its source sediment, Tertiary volca-
niclastic siltstone. Biscaye et al. (1997) did their analyses on
polymineralogic samples, so it is not clear if the data are directly
comparable, but this needs to be tested. Third, new, higher-resolu-
tion OSL ages of the classic Luochuan section on the Chinese Loess
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Plateau by Lu et al. (2007) show that although loess accumulation
rates were low during the Holocene, the highest rates occurred not
during the LGM, but in the period from �60 ka to �25 ka, when the
D–O cycles were being recorded in Greenland ice. During the LGM,
from �25 ka to �10 ka, loess accumulation rates at Luochuan were
the lowest of the past �80 ka, other than during the Holocene. If
Greenland ice and Chinese loess were being fed by the same Asian
dust sources, it is expected that accumulation rates should show
the same relative differences between different time periods over
the past �80 ka at the two localities. Finally, in a LGMmodeling ef-
fort, Mahowald et al. (2006) show that the most likely transport
pathways of dust to Greenland would be from the continental
US, Alaska, or Siberia (Fig. 44). It certainly seems possible that
sources other than Asia could have provided dust to Greenland
or at least that multiple sources are involved.

8.3. Dust in small, high-altitude glaciers

Small ice caps and valley glaciers exist at high altitudes in many
of the world’s mountain ranges, even within tropical latitudes. L.G.
Thompson and E. Mosely-Thompson of Ohio State University and
their co-workers are responsible for generating valuable records
of dust flux to high-altitude localities under extremely challenging
field conditions, both in South America and Asia. Some of the high-
est-resolution paleoclimate records of the Americas are ice cores
from glaciers in the high Andes of South America. Cores from two
glaciers both contain dust records and have very different timing
of dust fluxmaxima. An ice core record fromHuascarán, Peru shows
a dust flux during the LGM that is about 200 times greater than
most Holocene values (Thompson et al., 1995). The timing of this
high dust flux is very similar to that found in both the Greenland
and Antarctic ice cores. Thompson et al. (1995) interpret the high
dust flux in Peru during the LGM to reflect a decrease in humidity,
precipitation, and vegetation cover in South America at this time, as
well as stronger winds. In contrast, an ice core taken from the sum-
mit of Sajama Mountain, Bolivia shows much higher values in the
Holocene than during the LGM, which is inconsistent with both
the Peruvian record and that of polar ice cores (Thompson et al.,
1998). Thompson et al. (1998) interpret the enhanced Holocene
dust flux in Bolivia to represent increased volcanic activity, elevated
snowlines, and decreased net accumulation since the LGM.

Thompson et al. (1989) also report records of dust flux from
higher-latitude ice caps on the Qinghai–Tibetan Plateau in Asia.
These records are of particular interest in that they can be com-
pared with the nearby Chinese loess records and the dust flux into
Lake Biwa in Japan. From the Dunde ice cap in this region, there is a
record that goes back to �40 ka. Thompson et al. (1989) show that,
similar to the Chinese Loess Plateau and Lake Biwa, maximum dust
flux took place during the last glacial maximum (LGM). Dusty con-
ditions apparently prevailed during the latter part of the last glacial
period and then diminished abruptly at �10 ka.

9. Discussion and concluding thoughts

In reviewing the geologic records of dust, several observations
can be made. One is that dust can be found in a wide variety of ar-
chives, including loess, lake sediments, soils, marine sediments,
and glacial ice. With the advent of TOMS and MODIS imagery from
satellites, it is now possible to ascertain what regions are the most
important sources of dust and their general transport directions, at
least at present. From these source areas, those sources that ex-
isted in the past, and the widely distributed archives of dust depo-
sition, it is clear that dust can reach almost any part of the globe.
Particles become finer and less abundant farther away from
sources, but clear records of dust flux are found from the equator
to the poles, on every continent and in every ocean basin.

What is apparent in the loess, lake sediment, marine sediment,
and ice core data (and even can be inferred from soils data, in
places) is that the last glacial period saw a much greater flux of
dust than the Holocene. This is a simplified view, of course, as dust
flux in some source areas became diminished during or even before
the close of the last glacial period (e.g., the African Humid Period,
discussed earlier). Nevertheless, the last glacial period at its peak
was a dustier period and, where longer records exist, in loess, mar-
ine sediment, and Antarctic ice cores, it is apparent that earlier gla-
cials had dustier atmospheres than earlier interglacial periods, too.
Thus, it seems to be a general condition of at least the late and mid-
Quaternary that the Earth was a dustier planet during glacial
periods.

What could cause this remarkable change in state, where the
Earth becomes so dusty during glacial periods? A number of field
investigators and climate modelers (Kolla et al., 1979; Petit et al.,
1981; COHMAP Members, 1988; Joussaume, 1990, 1993; Yung
et al., 1996; Biscaye et al., 1997; Mahowald et al., 1999; Kohfeld
and Harrison, 2001) have proposed various mechanisms that may
have contributed to ice-age increases in global dustiness: (1) in-
creased wind speeds, so that more dust is entrained and can be
transported farther; (2) a decreased intensity of the hydrological
cycle, such that dust can remain in suspension longer, with fewer
periods of washout, and can therefore be transported farther; (3)
decreased soil moisture, such that dust is more easily entrained;
(4) decreased precipitation and vegetation cover, which diminishes
protection for dust sources and increases dust source areas; and (5)
exposed continental shelves, resulting in an expansion of dust
source areas. All of these factors likely played important roles in
increasing global dust concentrations, although it is often difficult
to ascertain which specific factors were most important in each
particular area.

One factor that has been overlooked or downplayed in many
dust modeling studies for the LGM, at least until recently, is that
there was a tremendous increase in the production of glaciogenic
fine-grained particles with the growth of the Laurentide, Cordille-
ran, and Fennoscandian ice sheets, as well as expansion of many
small ice caps and valley glaciers at high altitudes and high lati-
tudes in both the Northern and Southern Hemispheres. There is
no question that much of the youngest loess that is so extensive
over parts of North America, South America, Europe and Asia is
the direct result of glaciogenic silt production from expanded con-
tinental ice sheets, mountain ice caps, and valley glaciers during
the LGM. Early efforts to model the high dust flux during the
LGM were unable to capture the high dust concentrations in polar
ice caps (Joussaume, 1990, 1993; Genthon, 1992). A later model by
Andersen et al. (1998) captured more of the observed LGM dust re-
cord by adding decreased soil moisture as a factor, but still did not
produce as much dust as observed in the geologic record. Modeling
by Mahowald et al. (1999) explained additional LGM dustiness by
adding in decreased vegetation cover as a factor. However, none of
these modeling efforts incorporated the effect of increased fine-
grained particle availability from expanded ice sheets or valley gla-
ciers. Mahowald et al. (2006) generated a new series of global dust
models, where an atmospheric general circulation model (CCSM3)
was linked to a biogeography model (BIOME3). Consistent with
previous results, LGM dust fluxes are much greater than modern
fluxes, based on previous considerations of expanded source areas
due to decreased vegetation cover, decreased soil moisture, in-
creased aridity, and a decreased intensity of the hydrologic cycle
(see Fig. 8a of Mahowald et al., 2006). In addition however, dust
sources were added in from glaciogenic sources, taken from loess
localities where sufficient geologic data (thickness, chronology,
particle size) existed to compute mass accumulation rates. In mak-
ing the flux calculations, care was taken to include only the very
fine-grained component of the loess (<10 lm), i.e., those particles
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that could contribute to LRT dust flux, rather than using bulk loess.
The result of this modeling effort shows an LGM world with signif-
icantly higher fluxes of dust globally, with many sources derived
from glacial ice that do not appear on either the modern dust flux

map (Fig. 44), or on the LGM map that does not consider glacial
sources (see Mahowald et al., 2006, their Fig. 8a). When LGM gla-
cial sources are included, expanded source areas of dust appear
in central North America, Alaska, Europe, and Siberia (Fig. 44).
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Furthermore, dust flux from glacial sources in southern South
America are expanded, both in terms of spatial extent and modeled
distance of offshore transport. This latter finding is consistent with
the model of the Patagonian LGM ‘‘dust machine’’ presented by
Sugden et al. (2009). Thus, it seems likely that the dustier LGM
world was due to a combination of both climatic and geologic fac-
tors, with the latter being dominated by greatly increased glacio-
genic dust production.

The picture of an LGM world that is characterized as colder,
drier, less vegetated and far dustier has interesting implications
for a variety of climatic and paleoclimatic considerations. Greater
dust flux in the atmosphere would have had significant effects on
the planetary radiation balance. Over oceans and other dark sur-
faces, albedo would have increased, with a decrease (compared
to an interglacial period) in the amount of incoming solar radia-
tion. Over land, and particularly over highly reflective surfaces
such as desert regions, snow-covered landscapes, or ice sheets,
reflection of incoming solar radiation would actually have de-
creased, with a potential warming effect, a concept that has been
modeled by Overpeck et al. (1996) and proposed for some regional
warming (Roberts et al., 2003). Because of the greater surface area
of the oceans compared to land, it is likely that the increased LGM
dust flux had a net cooling effect, although warming could have
been important regionally.

Another important effect of greater LGM dust flux would have
been fertilization of marine organisms, particularly primary pro-
ducers such as marine phytoplankton (Martin, 1990). Because such
organisms are often Fe-limited, delivery of Fe-rich dust to the
world’s oceans would have enhanced phytoplankton growth, with
perhaps a greater frequency of phytoplankton ‘‘blooms’’ such as
those that can be observed at present when dust is carried to the
ocean (Figs. 2 and 30). The importance of increased phytoplankton
growth is that because these organisms photosynthesize, increased
growth would also result in carbon dioxide drawdown in the atmo-
sphere. Indeed, Falkowski et al. (1998) estimate that increased
phytoplankton production during glacial periods due to dust could
have lowered atmospheric CO2 concentrations from �275 ppm to
�245 ppm, approximately 30% of the full, pre-industrial intergla-
cial–glacial difference in atmospheric CO2 content.

Dust delivery to some regions on land could have also enhanced
soil fertility. This effect would be most significant in those areas
where pre-existing soils had minimal fertility. Lack of soil fertility
could result from either of two climatic extremes and their effects
on pedogenesis. One extreme is that of thick, well-developed, but
extremely low-nutrient-status soils (Ultisols and Oxisols), such as
those found in the humid tropics. For example, Swap et al.
(1992) suggest that the productivity of the Amazon rain forest is
dependent on nutrients delivered to the region from African dust.
Koren et al. (2006) even ventured the idea that fully half of the dust
reaching the Amazon rain forest comes from a single source in Afri-
ca, the Bodélé depression. As alluded to earlier, this hypothesis
needs far more testing, but studies by Muhs et al. (2007a) have
shown that on islands near South America, such as Barbados, soil
development has been influenced strongly by African dust inputs
for much of the Quaternary. The contrasting environment where
dust inputs could be important for soil fertility is in high-latitude
or high-altitude environments, where cold temperatures and
sometimes little moisture availability inhibit rock or sediment
weathering, clay production, and nutrient release. Fine-grained in-
puts to otherwise minimally developed soils in cold climates can
thus give soils a nutrient-holding capacity as well as a favorable
nutrient status that they otherwise might not have.

Our current understanding of the difference in planetary dusti-
ness on the Earth during interglacial and glacial periods has appli-
cations to other planets as well. Dust is common on Mars, with
particle size diameters estimated to be �2 lm to �5 lm, similar

to LRT dust found on Earth (Kahn et al. 1992; Lemmon et al.
2004). Most dust on Mars is thought to have been produced by an-
cient volcanic, impact and fluvial processes, with perhaps some
smaller contributions from glacial grinding (Bridges and Muhs,
2012). Most Martian dust particles generated by these processes
likely were produced before �3.5 to �1.8 Ga (Tanaka et al.,
1992). Although there may be little dust particle production now,
dust storms do occur on Mars and can be spectacular. Dust storms
that encircle the entire planet have been observed to occur on
average about one out of every three Martian years (Zurek and
Martin, 1993). A good example is the dust storm observed through
the Hubble telescope during the summer of 2001 (Strausberg et al.,
2005). Although it began as a series of smaller dust storms, through
time this developed into a significant mass of dust that enveloped
much of the planet (Fig. 45a and b).

There is increasing evidence that there are abundant geologic
records of dust on Mars (Bridges et al., 2010). Bridges and Muhs
(2012) point out that loess is becoming an appropriate analog for
Martian ‘‘duststone’’ deposits (Fig. 45c). Such deposits can be quite
thick and Bridges and Muhs (2012) speculate that duststone accu-
mulation may actually be one of the major rock-forming processes
today. Unlike terrestrial loess, however, which is stabilized primar-
ily by increasing precipitation (which washes dust out of the atmo-
sphere), vegetation colonization (which stabilizes deposited
sediment) and removal of supply, Martian dust accumulation re-
quires aggregation, cementation and burial, processes that do not
necessarily require liquid water. Nevertheless, as pointed out by
Bridges and Muhs (2012), during glacial times, when winds may
have been stronger, many regions were more arid, vegetation cover
was reduced, the hydrologic cycle was less intense, and dust sup-
plies were greater, the Earth was more like Mars and was a dustier
planet overall.
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