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Abstract
Purpose: Speech motor control relies on neural processes for generating sensory ex-

pectations using an efference copy mechanism to maintain accurate productions. 
The N100 auditory event-related potential (ERP) has been identified as a possi-
ble neural marker of the efference copy with a reduced amplitude during active 
listening while speaking when compared to passive listening. This study inves-
tigates N100 suppression while controlling a motor imagery speech synthesizer 
brain–computer interface (BCI) with instantaneous auditory feedback to deter-
mine whether similar mechanisms are used for monitoring BCI-based speech out-
put that may both support BCI learning through existing speech motor networks 
and be used as a clinical marker for the speech network integrity in individuals 
without severe speech and physical impairments. 
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Method: The motor-induced N100 suppression is examined based on data from 10 
participants who controlled a BCI speech synthesizer using limb motor imagery. 
We considered listening to auditory target stimuli (without motor imagery) in the 
BCI study as passive listening and listening to BCI-controlled speech output (with 
motor imagery) as active listening since audio output depends on imagined move-
ments. The resulting ERP was assessed for statistical significance using a mixed-
effects general linear model. 

Results: Statistically significant N100 ERP amplitude differences were observed be-
tween active and passive listening during the BCI task. Post hoc analyses confirm 
the N100 amplitude was suppressed during active listening. 

Conclusion: Observation of the N100 suppression suggests motor planning brain net-
works are active as participants control the BCI synthesizer, which may aid speech 
BCI mastery. 

Speech motor control relies on neural processes to monitor self-gener-
ated speech (Curio, Neuloh, Numminen, Jousmäki, & Hari, 2000; Flinker 
et al., 2010; Houde, Nagarajan, Sekihara, & Merzenich, 2002; Numminen 
& Curio, 1999) in order to focus on and maintain one’s own speech. The 
motor efference copy is often discussed as a mechanism the brain uses to 
compare incoming sensory information to expectations or goals (includ-
ing auditory) based on motor system consequences (Eliades & Wang, 
2003; Golfinopoulos, Tourville, & Guenther, 2010; Guenther, Ghosh, & 
Tourville, 2006; Houde & Nagarajan, 2011; Niziolek, Nagarajan, & Houde, 
2013; von Holst & Mittelstaedt, 1950). In two computational accounts 
of speech motor control, errors in sensory feedback compared to senso-
rimotor expectations are used to provide corrective motor commands 
to improve and maintain online speech productions (Golfinopoulos 
et al., 2010; Guenther et al., 2006; Houde & Nagarajan, 2011). Behav-
ioral evidence for the efference copy has been well demonstrated using 
speech auditory feedback perturbation paradigms (Bauer, Mittal, Lar-
son, & Hain, 2006; Niziolek & Guenther, 2013; Tourville, Reilly, & Guen-
ther, 2008; Villacorta, Perkell, & Guenther, 2007) in which auditory in-
formation, such as fundamental frequency, is shifted either up or down 
during speech production and induces a compensation in the opposite 
direction. In these cases, the speech motor efference copy is hypothe-
sized to provide the brain with information about expected auditory in-
formation (e.g., anticipated pitch and formants) so that deviations (e.g., 
perturbations) can be detected and used to form corrective motor com-
mands to compensate. 
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Feedback perturbation paradigms have also been used to uncover 
neurological evidence for the speech motor efference copy mechanism, 
with findings converging on the N100 event-related potential (ERP)/
M100 event-related field as a potential marker. The N100 is an auditory 
ERP with a negative polarity near 100 ms after presentation of an audi-
tory stimulus (e.g., tone, speech), and the M100 is the equivalent mag-
netoencephalography response. During active listening while speaking, 
the N100 amplitude is suppressed relative to passive listening (Curio 
et al., 2000; Houde et al., 2002; Numminen & Curio, 1999) and in re-
sponse to altered speech feedback (voice transformation: Heinks-Maldo-
nado, Mathalon, Gray, & Ford, 2005; noise masking: Houde et al., 2002; 
and pitch shifting: Behroozmand & Larson, 2011; Heinks-Maldonado 
et al., 2005). In speech perturbation paradigms, there is minimal N100 
suppression when individuals passively listen to non–speech sounds, 
maximally suppressed (i.e., minimal negativity, or closer to zero) when 
producing and hearing one’s own speech, and in the middle for other 
manipulations (e.g., passively listening to one’s own speech, listening to 
shifted auditory feedback; Behroozmand, Karvelis, Liu, & Larson, 2009; 
Behroozmand & Larson, 2011; Heinks-Maldonado et al., 2005; Houde 
et al., 2002; Martikainen, Kaneko, & Hari, 2004). In these paradigms, 
graded N100 suppression represents the extent to which perception of 
self-produced speech reflects speech motor expectations. The N100 am-
plitude can even be elicited when pressing a button to generate speech 
sounds (Martikainen et al., 2004), suggesting suppression occurs when 
individuals believe they are in control of the sound production and have 
associated a sensory outcome with a volitional motor action (Behrooz-
mand et al., 2009). 

Recently, we investigated the performance of a brain– computer in-
terface (BCI) for controlling a formant frequency speech synthesizer 
with continuous, real-time audio feedback (Brumberg, Pitt, & Burnison, 
2018). BCIs are devices that provide a direct link between an individual 
and a computer device through brain activity alone, without requiring 
any overt movement or behavior (Brumberg, Pitt, Mantie-Kozlowski, & 
Burnison, 2018). Most often, BCIs are designed as a technique accessing 
augmentative and alternative communication systems for individuals 
with severe speech and physical impairments due to paralysis and other 
neurological disorders (e.g., amyotrophic lateral sclerosis and brain-
stem stroke) and focus on letter or symbol spelling using discrete item 
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selection or continuous cursor control (see Brumberg, Pitt, Mantie-Ko-
zlowski, et al., 2018, for a review). Alternative BCI designs propose to di-
rectly decode speech from neurological recordings either invasively from 
the brain itself (e.g., Brumberg, Wright, Andreasen, Guenther, & Kennedy, 
2011; Conant, Bouchard, Leonard, & Chang, 2018; Herff et al., 2015; Kel-
lis et al., 2010; Mugler et al., 2014; Ramsey et al., 2018; see Chakrab-
arti, Sandberg, Brumberg, & Krusienski, 2015, for a review) or nonin-
vasively from the scalp using electroencephalography (EEG; Brigham 
& Kumar, 2010; Brumberg, Pitt, & Burnison, 2018; DaSalla, Kambara, 
Sato, & Koike, 2009; Suppes, Lu, & Han, 1997). In this study, we wanted 
to explore whether individuals who learned to control the formant fre-
quency speech synthesizer BCI (Brumberg, Pitt, & Burnison, 2018) dem-
onstrated N100 suppression patterns similar to those observed for overt 
speech production, since speech sound output was the consequence of 
a volitional but imagined motor action. 

In our prior work (Brumberg, Pitt, & Burnison, 2018), 16 partici-
pants (14 female, Mage = 27.5 years) learned to control the synthesizer 
BCI over three sessions (approximately 2 hr/session). During an offline 
training phase, participants listened (3-s duration) to synthesized vowel 
stimuli (/u/, /a/, or /i/) while imagining a specific movement of the 
hands (left: /u/, right: /a/) and feet (/i/). The resulting data were used 
to train a neural decoding algorithm that associated motor imagery–
related changes in the EEG sensorimotor rhythm to the first two for-
mants of the three vowels. Then, in an online testing phase (four blocks 
of 30 trials per vowel, per session), participants were presented with 
the audio and/or visual stimulus of the target vowel and instructed to 
first passively listen (listen without any motor imagery, 1.5-s duration) 
then to actively listen by using motor imagery to modulate the senso-
rimotor rhythm from which the BCI algorithm decoded instantaneous 
(< 50-ms delay) predictions of the first two formants. All decoded for-
mants were provided as audio (synthesized) and/or visual (two-dimen-
sional formant plane) feedback, and participants were separated into 
groups receiving unimodal (visual or auditory) or multimodal (audio-
visual) feedback. A key difference in the two types of listening, passive 
versus active, in the online test phase is that, during passive listening, 
auditory and/or visual feedback is experimentally controlled and there 
is no associated motor imagery. In active listening, however, auditory 
and/or visual feedback is controlled directly by the participants’ motor 
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imagery. Overall, participants who received both auditory and visual 
feedback performed the best in the four-alternative task of producing 
the vowels /u/, /a/, and /i/ while avoiding the vowel /ae/ (68.3% aver-
age accuracy), followed by those who received unimodal auditory feed-
back (50.1% average accuracy) and unimodal visual feedback (47.2% 
average accuracy). Only differences between audiovisual feedback and 
each of the two unimodal feedback conditions were statistically signifi-
cant with no differences between the unimodal groups (Brumberg, Pitt, 
& Burnison, 2018). There were also no statistically significant effects 
of session number, indicating participants did not change their perfor-
mance over time. Based on past reports from other studies, we conclude 
this effect may change with additional training sessions (Brumberg, Pitt, 
& Burnison, 2018). In order to be successful in the BCI task, participants 
needed to coordinate their imagined movements with the real-time au-
ditory feedback of vowel sounds. This process of BCI-based audio–motor 
coordination shares many similarities with conventional speech motor 
control, particularly motor execution with perceptual feedback moni-
toring and corrective motor commands (Guenther et al., 2006), though 
in a limb motor/acoustic domain. As a result, it is possible that motor 
imagery involved in BCI synthesizer control may activate motor effer-
ence copy mechanisms that provide auditory cortical areas with infor-
mation on expected auditory feedback and result in motor-induced sup-
pression of the N100 response. 

To test whether motor efference copy mechanisms, defined as ob-
servation of a motor imagery–induced suppression of the N100, were 
present in our prior study, we conducted a second analysis of our BCI 
data. Specifically, we examined participants’ EEG recordings for evi-
dence of suppressed N100 responses during speech synthesizer BCI 
control focusing on time intervals during passive listening to target 
vowel stimuli (e.g., no motor imagery with experimentally generated 
feedback) versus intervals of active listening (e.g., feedback that de-
pends on active motor imagery control). We hypothesize if the N100 
is suppressed during active listening relative to passive listening, then 
BCI control likely uses a motor efference copy, or similar neural mech-
anisms, to aid motor imagery control of the BCI formant synthesizer, 
which may facilitate BCI learning. 
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Method 

Participant Data 

Data from 10 participants (nine female, Mage = 27.5 years, range: 21–
36 years) who took part in the Brumberg, Pitt, and Burnison (2018) 
BCI speech synthesizer study and who received continuous auditory 
feedback (i.e., not including the unimodal visual feedback group) were 
used to analyze the auditory N100 response. One group of five partici-
pants received multimodal audiovisual feedback, and the other group 
received unimodal audio feedback in the BCI paradigm. All participants 
completed four blocks of 30 trials per vowel, on each of three sessions 
within a 2-week time period. During the BCI experiment, no trials were 
rejected due to electrical artifacts. Instead, BCI processing was halted 
upon detection of electrical artifacts with a voltage of ±150 μV. All par-
ticipants had normal hearing, normal/corrected vision, and no known 
neurological disorders. 

Data Acquisition and Processing 

EEG was obtained using a g.HIamp (g.tec) acquisition system from 62 
active electrodes at 256 Hz according to the 10-10 standard placement, 
with a forehead ground and left earlobe reference. Since there were no 
effects of session on BCI performance in our previous study (Brumberg, 
Pitt, & Burnison, 2018), we grouped all sessions together for the present 
analysis. Instead, our major comparison was between N100 ERPs dur-
ing passive listening (feedback without motor imagery) and active lis-
tening (motor imagery– controlled BCI speech synthesis). 

To examine the N100, raw EEG signals from the BCI experiment were 
reprocessed in MATLAB (Mathworks, Inc.) by first high-pass filtering at 
1 Hz and removing eyeblink artifacts using independent components 
analysis. Any trials following artifact removal with EEG amplitudes over 
±150 μV were rejected from the analysis (0.97%), but no BCI trials with 
incorrect productions were initially rejected. In a separate analysis, we 
compare N100 responses for the full data set against those for correct 
BCI trials only. The resultant signals were then low-pass filtered at 30 Hz, 
windowed from −100 ms to 500 ms relative to the audio onset of either 
the target vowel stimulus (passive) or the motor imagery–controlled 
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speech auditory feedback (active), and baseline corrected from −100 ms 
to 0 ms. Next, we identified the N100 as the first negativity near 100 ms 
by visually inspecting grand-average ERPs (over condition and group) 
for each electrode. We confirmed visual inspections using a one-sam-
ple, left-tailed t test of per-participant ERP averages (over condition and 
group) to verify putative N100 negativities were statistically less than 
zero (t tests used Bonferroni correction for multiple comparisons of the 
number of time points in the ERP window). 

Statistical Analysis 

We further examined the N100 amplitude by first choosing peak nega-
tivities in a 60-ms window centered at 100 ms for each participant av-
erage ERP for each electrode in the two conditions, passive and active 
listening. We then used a mixed-effects general linear model in R with 
the lme4 package (Bates, Maechler, Bolker, & Walker, 2015) to examine 
the between-subjects factor Group (audiovisual or audio-only feedback) 
and within-subjects factors Condition (passive or active listening) and 
Electrode (29 locations; see Results section and Figure 1); participant 
was used as a random factor. Finally, we repeated our statistical analy-
ses (linear mixed-effects model of N100 amplitude for the within-sub-
jects factors Condition, Electrode, and Accuracy; random factor of par-
ticipant) using only correct BCI trials to determine if there were any 
relationships between N100 suppression and BCI success. 

Results 

N100 Interval and Spatial Properties 

The average peak N100 amplitude was centered at 111 ms (98–121 ms 
over all electrodes) and was found for each electrode through a combina-
tion of visual inspection and one-sample, left-tailed t tests (with Bonfer-
roni correction for all time points in the ERP window). Electrodes either 
without a participant average negativity around 100 ms or negativities 
that were not statistically significantly less than zero (one-sample, left-
tailed, Bonferroni-corrected t test) were not included in subsequent 
analyses, leaving 29 of 62 electrodes for additional study (anterior sites: 
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FP1,2, AFz,3,4,7, F1,3,5,7; temporal sites: FT7, T7; and central sites: FCz,1,2,3,5, 
Cz,1,2,3,4,5,, CPz,1,2,3,4). Figure 1 also clearly shows a P200 for both active and 
passive listening as well as a P300 for passive listening; however, our 
analysis was not intended to explore effects of ERPs other than the N100 
and its motor-induced suppression. Therefore, the P200 and P300 com-
ponents are not analyzed and will be the subject of future work. 

N100 Suppression 

The linear mixed-effects model analysis of N100 peak amplitude differ-
ences at each electrode with an N100 response (N = 29) for all BCI tri-
als revealed statistically significant main effects of Condition (passive vs. 
active listening, Wald test: χ2(1) = 575.1, p < .001) and Electrode (Wald 
test: χ2(28) = 1155.8, p < .001) with no main effect of Group, as well as 

Figure 1. Grand-average event-related potentials (ERPs) at each scalp location labeled 
according to the 10-10 standard for passive listening (black) and active listening (gray) 
conditions. The vertical line indicates time 0 ms and ERP windows span −100 ms to 
500 ms and its height spans −5 μV to 7.5 μV from bottom to top. Example ERPs from 
electrodes CZ and CPZ (outlined in black) are shown in greater detail to the right with 
95% confidence intervals (shaded).  



B r u m b e r g  &  P i t t  i n  J .  S p e e c h ,  L a n g .  &  H e a r i n g  R e s .  6 2  ( 2 0 1 9 )         9

statistically significant interaction effects of Condition × Electrode (Wald 
test: χ2(28) = 137.4, p < .001) and Group × Electrode (Wald test: χ2(28) 
= 85.7, p < .001). A simple effects analysis of the Condition × Electrode 
interaction (linear mixed-effects model of amplitude for each level of 
Electrode) revealed 22 electrodes (of the 29 with a verified N100 com-
ponent) with statistically significantly different N100 amplitudes (Bon-
ferroni correction applied for the number of electrodes, p < .05) in cen-
tral (CZ,1,2,3,4,5, CPZ,1,2,3,4, FCZ,1,2,3,4,5), temporal (FT7, T7), and anterior (F1,3, 
AFz) scalp locations. For each electrode, a Tukey’s post hoc test found 
N100 amplitudes had greater negativity during passive listening than 
during active listening (all comparisons, pTukey < .05). A simple effects 
analysis of the Group × Electrode interaction revealed no statistically 
significant differences in feedback type (unimodal audio or multimodal 
audiovisual), which suggests all effects were for cross terms and are not 
the focus of this study. The normalized N100 suppression index (Beh-
roozmand & Larson, 2011): 

|N100passive  − N100active|  × 100                               (1) 
                                                    |N100passive|
was computed for all electrodes with a statistically significant N100 
suppression and ranged from 7% to 57%, with the highest amount of 
suppression over central electrodes CPz,1–4 (41%–57%) and Cz,1–5 (25%–
32%), followed by temporal site electrodes FT7/T7 (24%–26%), fronto-
central FCz,1–5 (16%–22%), and anterior/frontal sites AFz, F1,3 (7%–14%). 
The spatial topography of the normalized N100 suppression index for 
electrodes with a statistically significant N100 suppression is repre-
sented in Figure 2; electrodes without suppression were set to zero. 

Relationship Between N100 Suppression and BCI Accuracy 

Our second analysis focused on the relationship between BCI accuracy 
and observed suppression of the N100 ERP component for electrodes 
with a verified grand-average N100 response. The mixed-effects analy-
sis of N100 peak amplitude differences at each electrode with an N100 
(N = 29) for only correct BCI trials revealed statistically significant main 
effects of Condition (passive vs. active listening, Wald test: χ2(1) = 316.4, 
p < .001) and Electrode (Wald test: χ2(28) = 457.6, p < .001) and their 
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interaction (Wald test: χ2(28) = 62.8, p < .001). A simple effects analy-
sis of the Condition × Electrode interaction (linear mixed-effects model 
of amplitude for each level of Electrode) revealed 18 electrodes (of the 
29 with a verified N100 component) with statistically significantly dif-
ferent N100 amplitudes (Bonferroni correction for the total number of 
electrodes, p < .05) in central (CZ,1,2,3,4,5; CPZ,1,2,3,4; FCZ1,2,3,4,5) and tempo-
ral (T7) locations. For each electrode, a Tukey’s post hoc test revealed 
greater N100 negativities during passive listening than during active lis-
tening (all comparisons, pTukey < .05), similar to the analysis of all BCI tri-
als, though over a smaller number of electrode sites. 

Figure 2. A two-dimensional topographical scalp representation of the normalized 
N100 suppression index when considering all brain–computer interface trials. The top 
of the circle is anterior, and the bottom is posterior. Blue colors are close to or equal 
to 0% suppression (note: scalp locations without a verified N100 response were en-
tered with a 0% suppression), and warm colors indicate greater suppression. The N100 
scalp topography is shown for both passive listening (bottom left) and active listen-
ing (bottom right), with blue colors indicating greater negativity and red colors indi-
cating positivity.   
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Discussion 

N100 Suppression and Motor Efference Copy 

In this research note, we provide evidence that an auditory N100 re-
sponse to BCI-controlled synthesized speech feedback was smaller in 
amplitude compared to the N100 generated while passively listening to 
synthesized speech. Past work has suggested that motor-induced sup-
pression of auditory cortical responses is largely due to neurological 
mechanisms that mediate the motor efference copy (Curio et al., 2000; 
Flinker et al., 2010). Furthermore, the efference copy mechanism is hy-
pothesized to provide the sensory system an estimate of expected con-
sequences of motor behavior in order to verify successful action com-
pletion and to generate corrective motor commands in the presence of 
motor error (Eliades & Wang, 2003; Niziolek et al., 2013). In speech, the 
motor efference copy is hypothesized to provide auditory cortex with 
the information needed to determine if incoming perception of self-pro-
duced utterances are correct and if any orofacial corrective motor com-
mands are needed (Guenther et al., 2006; Houde & Nagarajan, 2011; 
Niziolek et al., 2013). 

In this study, we apply a definition of the motor-induced N100 sup-
pression during active perception of self-produced speech sounds as a 
representation or consequence of speech motor efference copy mech-
anisms. Therefore, the motor (imagery) induced N100 suppression ob-
served while participants actively controlled the speech synthesizer BCI 
and listened to the online feedback provides evidence that a motor ef-
ference copy mechanism was involved and possibly used by the audi-
tory cortex to monitor BCI-produced speech sounds. More specifically, 
the presence of a suppressed N100 response during active listening sug-
gests that participants may utilize motor planning and feedback neural 
pathways similar to those used during speech motor learning (e.g., for-
ward models, feedback learning; Guenther et al., 2006; Houde & Nag-
arajan, 2011) for speech synthesizer BCI learning. From one perspec-
tive, our BCI study is a form of voice perturbation or transformation; 
participants learn to control a device that sounds human like, but is not 
their own. In this way, the results of our N100 study analysis confirm 
past work on N100 suppression in response to feedback modifications 
such as voice transformation (e.g., alien voice; Heinks- Maldonado et al., 
2005). Similarly, our BCI used limb motor imagery, rather than speech 
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motor imagery, making our N100 suppression results, and the neuro-
motor control mechanism, more similar to past N100 studies in which 
manual button pressing led to the production of speech sounds (Marti-
kainen et al., 2004). In addition, the BCI control strategy involved mo-
tor imagery, or covert movement, and supports past studies on covert 
movement-induced N100 suppression (Numminen & Curio, 1999). How-
ever, this study goes further than these past findings by combining co-
vert limb motor actions (imagery) and transformed voice output into 
a single experiment (i.e., producing speech output using a non–speech 
motor strategy that results in synthesized audio feedback). 

N100 Suppression Relationship to BCI Accuracy 

In our second analysis, we examined the interaction of BCI control and 
N100 response for accurate BCI trials only, as opposed to aggregating 
both accurate and failure trials. In both analyses, we found subsets of 
electrodes containing ERP responses that differed between active and 
passive listening (22 in the full analysis, 18 in the BCI accurate-only anal-
ysis). Despite the difference in the number of electrodes, the same over-
all pattern emerged from both analyses, namely, that the N100 response 
was reduced during active listening relative to passive listening. It is in-
teresting that the spatial topography of N100 suppression was greatest 
over sensorimotor regions (FC, C, and CP electrodes) with a slight left 
lateralization (more so for the BCI accurate-only analysis), though these 
effects were not studied in detail and future study will be needed to fully 
account for differences in the N100 response over electrode locations. 
Finally, though there were similar response patterns between the anal-
ysis of BCI accurate-only and all BCI trials, it remains that more pro-
nounced differences in N100 suppression may emerge as BCI accuracy 
improves over longer training periods than initially used in the BCI par-
adigm (more than three sessions; Nijboer, Birbaumer, & Kubler, 2010). 

P200 and P300 Responses 

In addition to the N100, we also found a large P200 response in our par-
adigm for both active and passive listening and a P300 response during 
passive listening only. These ERP components are not hypothesized to be 
involved in processing the motor efference copy and were not subject to 
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statistical analysis in this study. However, their presence requires some 
discussion. There is some evidence that the P200 is involved in active 
monitoring of vocalizations (Behroozmand & Larson, 2011) and for pro-
cessing auditory stimulus properties such as intensity and pitch (see 
Crowley & Colrain, 2004, for a review). Certainly, the BCI study required 
participants to maintain active attention on the continuously changing 
formant frequencies of the BCI synthesizer, and future BCI studies should 
be designed to specifically investigate the effects of BCI synthesizer con-
trol on the P200. Similarly, we observed a P300 response during passive 
listening, but not during active listening, which may be due to an “odd-
ball” response in which the passive listening period is a “surprise” after 
the random silence interval between trials. In contrast, the active listen-
ing/ motor imagery period can be reasonably anticipated as it always 
follows passive listening, possibly reducing any P300 response. The role 
of both the P200 and P300, since observed in this study, must be stud-
ied further for their relevance either to screening participants for po-
tential use of the BCI synthesizer or as neurological markers for objec-
tive assessment of BCI learning. 

Limitations 

Notably, the data used for the present analysis were derived from a limb 
motor task that resulted in speech-related feedback; therefore, it is not 
possible to conclude that a speech-specific motor efference copy mech-
anism was used to control the synthesizer BCI. A confirmatory study is 
needed in which speech motor imagery is used to control the BCI syn-
thesizer. However, our results do lend some evidence toward a general, 
multimodal motor efference copy mechanism that can be shared be-
tween motor modalities. It is also possible that, as participants become 
more proficient, their mental strategies for BCI synthesizer control (i.e., 
limb motor imagery) and the desired BCI output (i.e., vowel production) 
may merge into a single goal-directed behavior. If so, subsequent analy-
ses would need to determine whether the motor efference copy becomes 
speech specific or retains general motor relationships (e.g., test speech 
vs. limb output using the limb-based sensorimotor rhythm BCI). Since 
the main experiment by Brumberg, Pitt, and Burnison (2018) did not 
find any effects of session on BCI performance, it is not possible to deter-
mine whether there are level effects of progressive BCI mastery on N100 
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suppression. Further study of the BCI synthesizer over longer training 
periods is needed to determine whether training-related improvements 
in BCI performance are associated with changes in N100 suppression. 

Future Work 

Technical Innovation 

The method for eliciting the auditory evoked N100 suppression response 
using a continuous speech synthesizer BCI is a novel approach. The N100 
suppression effect shown in this study was obtained in a speech produc-
tion task using a BCI that relied only on motor imagery without actual 
muscular contractions associated with natural vocalizations. In addition, 
all audio feedback was provided from a speech synthesizer, and partic-
ipants did not experience any bone-conducted audio feedback. There-
fore, our method does not suffer from any artifacts common to N100-
style experiments, including those due to auditory feedback intensity 
(needed to mask bone-conducted responses) or orofacial electromyog-
raphy (possible motor contamination during speech). Furthermore, our 
study reaffirms motor-induced suppression as a result of covert or imag-
ined movement (Numminen & Curio, 1999), which supports future study 
of the motor efference copy using imagined or inner speech (Schultz et 
al., 2017). Confirmation of the suppressed N100 also opens the door for 
future experiments using BCI-based speech synthesis to further exam-
ine the role of the speech motor efference copy using established meth-
ods, including pitch and formant perturbation, in the absence of electro-
myographic artifacts and competing, unaltered audio feedback. 

BCI and Clinical Implications 

We hypothesize that engagement of the speech motor network will be 
beneficial for learning to control BCIs with continuously synthesized 
speech output (Brumberg, Nieto-Castanon, Kennedy, & Guenther, 2010; 
Brumberg, Pitt, & Burnison, 2018), which are modeled after the bio-
logical vocal mechanism, and other direct speech decoding approaches 
(e.g., Brumberg et al., 2011; Herff et al., 2015; Mugler et al., 2014). In one 
sense, BCIs bridge damaged or disordered biological functions, and for 
speech, BCIs are intended to replace impaired vocal output as a result 
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of neurological disease or injury. Since successful speech production 
relies on a complex network of brain regions, it is likely important for 
speech BCIs to similarly engage the full speech motor brain network. 
That is, BCI learning may be enhanced when motor signals that are used 
for decoding intended speech articulations generate audio output that 
is processed by brain regions involved in monitoring one’s productions 
and generating/sending corrective feedback commands back to the mo-
tor cortex for tuning BCI control. N100 suppression has properties that 
may be useful for an objective, neural marker of speech motor process-
ing that may also be used to confirm the presence of functional neural 
mechanisms needed for BCI synthesizer control. Confirmation of N100 
suppression during active listening suggests the BCI synthesizer mo-
tor network (planning, production, and feedback), perhaps similar to 
the speech motor network, is involved in our BCI task and implies that 
individuals with neuromotor impairments (e.g., severe dysarthria due 
to amyotrophic lateral sclerosis, cerebral palsy; anarthria due to brain-
stem stroke) who use speech synthesizer BCIs may benefit from exist-
ing neural pathways for speech motor learning (e.g., forward models, 
feedback learning; Guenther et al., 2006; Houde & Nagarajan, 2011) to 
achieve BCI control. In particular, N100 suppression could be used ei-
ther as a potential screening tool to identify whether speech motor net-
works are still active in individuals with progressive neurological im-
pairments (e.g., amyotrophic lateral sclerosis) or as a marker for skill 
learning and neural rehabilitation through emergence and strengthen-
ing of the N100 suppression as a function of speech motor recovery or 
BCI control. Future studies are needed to focus on the clinical implica-
tions of N100 suppression, especially with respect to continuous speech 
synthesizer BCI control. 

Conclusions 

We explored whether motor imagery control of a BCI with continuously 
synthesized speech output elicited electrophysiological markers hypoth-
esized to represent speech motor efference copy processing. Presence of 
the N100 suppression in this study suggests a motor efference copy re-
lated to expected synthesized speech is generated in our speech output 
BCI task, which may be beneficial for learning BCI control. In addition, it 
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is possible the N100 may be helpful for identifying whether speech mo-
tor brain networks are intact in individuals with acquired neurological 
impairments who may use BCI for communication. Future study of the 
N100 and other observed ERP components will help clarify the role of 
the motor efference copy for speech output BCIs as a function of train-
ing and mastery and as a potential clinical marker for speech motor net-
work health.    
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