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Kurzfassung
Frustration führt zu einer Fülle komplexer Phänomene, von denen die herausragendsten Spin-
flüssigkeiten sind, sowohl klassische – wie beispielsweise die Spin-Eis-Phase, die experimentell
in den Oxiden seltener Erden auf dem Pyrochlor-Gitter realisiert wurde – und ihre schwerer
fassbaren quantenmechanischen Gegenstücke. Bei niedrigen Temperaturen können klassische
frustrierte Spinsysteme obgleich der extensiven Entartung des Grundzustandes aufgrund des
Phänomens der „Ordnung durch Unordnung” dennoch Ordnungen ausbilden. Diese sind oft
multipolarer Natur und entziehen sich herkömmlichen Messgrößen. Die Identifikation und
Charakterisierung solcher „verborgener” Ordnungen ist daher eine herausfordernde Aufgabe.

In dieser Arbeit wird ein Verfahren für das unvoreingenommene und automatisierte ma-
schinelle Lernen der Phasendiagramme klassischer frustrierter Spinmodelle eingeführt. Die
Interpretierbarkeit der resultierenden Klassifikatoren war für das Design der Methode aus-
schlaggebend. Sie erlaubt den Rückschluss sowohl auf die Ordnungsparametertensoren der
symmetriebrechenden Phasen als auch auf die Nebenbedingungen, die für klassische Spinflüs-
sigkeiten charakteristisch sind und auf deren emergente Eichstruktur hindeuten. Darüber hin-
aus wird eine hierarchische Beziehung zwischen den verschiedenen Phasen gemäß dem Grade
ihrer jeweiligen Unordnung hergestellt.

Das Verfahren wird auf drei verschiedene Modelle angewendet und Spin-Konfigurationen
werden jeweils aus klassischen Monte-Carlo-Simulationen dieser gewonnen. Ein Eichmodell
dient dazu, die Wechselwirkungen zwischen den Mesogenen verallgemeinerter nematischer
Flüssigkristalle nachzuahmen. Diese können beliebige Punktgruppensymmetrien besitzen, was
zu Benchmark-Modellen mit einer Niedertemperaturphase führt, die die O(3)-Spinsymmetrie
entsprechend herunterbricht. Darüber hinaus werden zwei frustrierte Spinmodelle betrachtet.
Der historisch wichtige Fall des Heisenberg-Modells auf dem Kagome-Gitter führt zu einer ver-
borgenen trigonalen Ordnung, die eine Beschreibung in Form von zwei Tensoren unterschied-
lichen Ranges erforderlichmacht; dieMaschine ist in der Lage, beide zu finden.Währenddessen
rekonstruiert die Maschine für das XXZ-Modell auf dem Pyrochlor-Gitter das komplexe Pha-
sendiagramm, das erst vor Kurzem ausgearbeitet wurde, und identifiziert die spin-nematische
Phase sowie drei verschiedene Arten klassischer Spinflüssigkeiten, einschließlich ihrer Über-
gänge, korrekt.

Die Methode hat das Potenzial, die Charakterisierung von Spinmodellen frustrierter Ma-
gnete zu beschleunigen. Sie kann den gesamten Parameterraum auf einmal untersuchen und
somit dazu beitragen, interessante Bereiche zu identifizieren. Dies bereitet den Weg für die
Suche nach neuen Ordnungen und Spinflüssigkeiten.
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Abstract
Frustration gives rise to a plethora of intricate phenomena, the most salient of which are spin
liquids, both classical ones—such as the spin-ice phase which has been realized experimentally
in rare-earth oxide pyrochlorematerials—and their more elusive quantum counterparts. At low
temperatures, classical frustrated spin systems may still order, despite their extensive ground-
state degeneracy, due to the order-by-disorder phenomenon. The resulting orders are often
of a multipolar type which defies conventional probes. Identifying and characterizing such
“hidden” orders is thus a challenging endeavor.

This thesis introduces a machine-learning framework for studying the phase diagram of
classical frustrated spin models in an unbiased and automated way. The interpretability of the
resulting classification was of paramount importance in the design of the method. It allows for
the inference of both the order parameter tensors of the phases with broken symmetries as well
as the constraints which are characteristic of classical spin liquids and signal their emergent
gauge structure. On top of that, it establishes a hierarchical relationship among the various
phases according to their degree of disorder.

The framework is applied to three different models and spin configurations are harvested
from classical Monte Carlo simulations of those. A gauge model is used to mimic the interac-
tions between the mesogens of generalized nematics. These may possess arbitrary point group
symmetry, resulting in benchmark models with a low-temperature phase that breaks the O(3)
spin symmetry accordingly. In addition, two frustrated spin models are considered. The histor-
ically important case of the Heisenberg model on the kagome lattice gives rise to hidden triatic
order which requires a description in terms of two tensors of different ranks; the machine is
capable of finding both. Meanwhile, for the XXZ model on the pyrochlore lattice, the machine
reconstructs the complex phase diagram which was only recently obtained and correctly iden-
tifies the spin nematic phase as well as three distinct types of classical spin liquids, including
their crossovers.

The method has the potential to accelerate the characterization of model Hamiltonians of
frustrated magnets. It can scrutinize the whole parameter space at once and may thus help to
identify interesting regimes, paving the way for the search of new orders and spin liquids.
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with polyhedral symmetries
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Phys. Rev. E 97, 012706 (2018) [1]

Polyhedral nematics are examples of exotic orientational phases that possess a com-
plex internal symmetry, representing highly nontrivial ways of rotational symmetry break-
ing, and are subject to current experimental pursuits in colloidal and molecular systems.
The classification of these phases has been known for a long time; however, their transi-
tions to the disordered isotropic liquid phase remain largely unexplored, except for a few
symmetries. In this work, we utilize a recently introduced non-Abelian gauge theory to
explore the nature of the underlying nematic-isotropic transition for all three-dimensional
polyhedral nematics. The gauge theory can readily be applied to nematic phases with an
arbitrary point-group symmetry, including those where traditional Landau methods and
the associated latticemodelsmay become too involved to implement owing to a prohibitive
order-parameter tensor of high rank or (the absence of) mirror symmetries. By means
of exhaustive Monte Carlo simulations, we find that the nematic-isotropic transition is
generically first-order for all polyhedral symmetries. Moreover, we show that this univer-
sal result is fully consistent with our expectation from a renormalization group approach,
as well as with other lattice models for symmetries already studied in the literature. We
argue that extreme fine tuning is required to promote those transitions to second-order
ones. We also comment on the nature of phase transitions breaking the O(3) symmetry in
general cases.

Probing hidden spin order with interpretable machine learning
Jonas Greitemann, Ke Liu, and Lode Pollet

Phys. Rev. B 99, 060404(R) (2019) [2]

The search of unconventional magnetic and nonmagnetic states is a major topic in
the study of frustrated magnetism. Canonical examples of those states include various
spin liquids and spin nematics. However, discerning their existence and the correct char-
acterization is usually challenging. Here we introduce a machine-learning protocol that
can identify general nematic order and their order parameter from seemingly featureless
spin configurations, thus providing comprehensive insight on the presence or absence of
hidden orders. We demonstrate the capabilities of our method by extracting the analytical
form of nematic order parameter tensors up to rank 6. This may prove useful in the search
for novel spin states and for ruling out spurious spin liquid candidates.
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Machine-learning techniques are evolving into a subsidiary tool for studying phase
transitions in many-body systems. However, most studies are tied to situations involving
only one phase transition and one order parameter. Systems that accommodate multi-
ple phases of coexisting and competing orders, which are common in condensed matter
physics, remain largely unexplored from a machine-learning perspective. In this paper,
we investigate multiclassification of phases using support vector machines (SVMs) and
apply a recently introduced kernel method for detecting hidden spin and orbital orders
to learn multiple phases and their analytical order parameters. Our focus is on multi-
polar orders and their tensorial order parameters whose identification is difficult with
traditional methods. The importance of interpretability is emphasized for physical appli-
cations of multiclassification. Furthermore, we discuss an intrinsic parameter of SVM, the
bias, which allows for a special interpretation in the classification of phases, and its utility
in diagnosing the existence of phase transitions. We show that it can be exploited as an
efficient way to explore the topology of unknown phase diagrams where the supervision
is entirely delegated to the machine.

Identification of emergent constraints and hidden order in frustrated magnets
using tensorial kernel methods of machine learning

Jonas Greitemann, Ke Liu, Ludovic D. C. Jaubert, Han Yan, Nic Shannon, and Lode Pollet
Preprint (2019), arXiV:1907.12322 [4]

Machine-learning techniques have proved successful in identifying ordered phases of
matter. However, it remains an open question how far they can contribute to the under-
standing of phases without broken symmetry, such as spin liquids. Here we demonstrate
how a machine learning approach can automatically learn the intricate phase diagram of
a classical frustrated spin model. The method we employ is a support vector machine
equipped with a tensorial kernel and a spectral graph analysis which admits its applicabil-
ity in an effectively unsupervised context. Thanks to the interpretability of the machine
we are able to infer, in closed form, both order parameter tensors of phases with bro-
ken symmetry, and the local constraints which signal an emergent gauge structure, and
so characterize classical spin liquids. The method is applied to the classical XXZ model
on the pyrochlore lattice where it distinguishes—among others—between a hidden biax-
ial spin nematic phase and several different classical spin liquids. The results are in full
agreement with a previous analysis by Taillefumier et al., but go further by providing a
systematic hierarchy between disordered regimes, and establishing the physical relevance
of the susceptibilities associated with the local constraints. Our work paves the way for
the search of new orders and spin liquids in generic frustrated magnets.
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1Introduction
A brief history of machine learning

In March 2016, Google’s subsidiary DeepMind made worldwide headline news [5] when its
AlphaGo [6] became the first computer program to defeat a professional (9-dan) human player
without handicaps in a series of five games of the board game Go, beating Lee Sedol four to one.
Since then, its successorAlphaZero [7] has established itself firmly as the world’s top Go player,
both compared to humans and the original AlphaGo which it declassed in a flawless 100–0
victory. UnlikeAlphaGo,AlphaZerowas not taught by observing human gameplay andwithout
access to opening books or endgame tables. Rather, it is self-taught, learning exclusively from
simulated gameplay against itself. Further, it was not specifically designed for the purpose
of playing Go, but also mastered shogi and chess. The super-human performance of AlphaGo
and AlphaZero marks one of the most prominent successes of “deep learning”, which heralded
the latest resurgence of machine learning and brought artificial intelligence (AI) yet again into
public consciousness.

It is worth noting, however, that the idea behind artificial neural networks (ANNs) was
pioneered as early as the 1940s [8] and the development of the perceptron in 1957 [9] drew
significant media coverage and sparked people’s imagination [10]. When it became apparent
that the field could not live up to its grandiose early promises, funding was cut and the field
entered the first “AI winter” in the early 70s.

At the same time, backpropagation, the algorithm to train today’s deep ANNs by updating
the connections between neurons via the chain rule, was developed and implemented [11]
but failed to gain traction in a contracting field until it was rediscovered and popularized in
the 80s [12]. Finally, with the addition of the convolutional neural network (CNN) architecture
which incorporated translation invariance in the late 80s [13], all the crucial techniques to build
a modern machine learning algorithmwere in place by 1990. Despite these early developments
on themethods front, ANNs still failed to deliver on their promises and could only tackle simple
tasks whereas training consumed considerable computational resources and was limited to
rather shallow networks.

On the other hand, by the late 80s, artificial intelligence saw widespread adoption in com-
mercial applications in the form of expert systems. This kind of knowledge-based intelligence
makes decisions using simple if-then-else rules and would not be considered machine learning
by today’s standards as it lacks the ability to learn by itself. As the complexity of applications
grew, in part fueled by the emerging world wide web, expert systems failed to scale accordingly
and AI fell out of favor again, ushering in a second AI winter in the early 90s.

Toward the end of the millennium, kernel methods brought about a paradigm shift from
knowledge-based to data-driven intelligence. Support vector machines (SVMs) [14] and kernel
principal component analysis (kPCA) [15] allow for the capture of nonlinear features through
the use of appropriate kernel functions and could be trained from existing data. Both of these
methods are discussed in Sec. 4.1. What set kernel methods apart from ANNs was their imme-
diate successful applicability. Notably, the MNIST database of handwritten digits [16] which
was harvested from forms filled by employees of the U.S. Census Bureau, as well as high-school
students, commonly serves as a benchmark of machine learning. Using an SVM, LeCun et al.

1



2 CHAPTER 1. INTRODUCTION

achieved test error rates below one percent [17]. At the same time, randomdecision forests [18],
another data-driven learning scheme, were developed. The practical applicability of these
methods spurred their almost instantaneous adoption and the field once again emerged from
its winter.

Another influential dataset for image classification is ImageNet which was first released
in 2009. It consists of an ever-growing number (upwards of 14 million) of captioned images
depicting everyday objects from tens of thousands of categories, a subset of which is used in
a yearly competition. The winning entry of the 2012 edition of the competition, AlexNet [19],
employed a deep CNN architecture and fared significantly better than the runner up that year.
Strikingly, the network was very similar to those proposed in the late 80s. Its success was not
necessarily brought on by algorithmic innovation, but by an efficient implementation thatmade
use of the hardware innovation that sustained the exponential speedup of computer hardware
in the preceding decades. It also exploited the extreme level of parallelism that graphical pro-
cessing units (GPUs) offer which has since become the norm in the field. Indeed, AlphaGo and
AlphaZero run on tailor-made tensor processing units (TPUs), and cores specifically designed
for “AI applications” are featured (and marketed) on today’s phones.

It has to be concluded that the “deep learning revolution” whichwe have seen in this decade
was rendered possible by the almost million-fold speedup of computers since the original de-
velopment of the methods in the late 80s. As a consequence, more complex networks with a
larger number of neurons became feasible, surpassing the complexity that is required for the
emergence of “intelligence”. In particular, the previously unseen success of ANNs is commonly
attributed to the added depth, i.e. the use of multilayered ANN architectures, trained by back-
propagation. Some research into the relevance of depth has been conducted, relating individual
layers to successive levels of coarse graining in image recognition [20] or, more abstractly, to
stages of compositional or hierarchical generative physical processes from which the training
data originate [21]. In other areas, particularly in the application to the many-body problem,
the evidence for a superior performance of deep networks has been more conflicted [22–25].

In summary, the field of machine learning underwent a series of “hype cycles”, fostering
grossly inflated expectations inspired by singular breakthroughs and flowery language, fol-
lowed by a failure to live up to them, general disillusionment, and loss of funding. Whereas
this pattern is familiar to many areas of human innovation, machine learning has ironically
proven itself particularly resistant to learning, repeating the cycle many times. On the other
hand, ever since machine learning began delivering workable solutions to real-world problems,
it has become indispensable, and it is unlikely that we will see another AI winter with near-
complete withdrawal of funding. Furthermore, deep learning is finally reaping the benefits of
decades of early research into ANNs. These early years were marked by the struggle between
connectionism as embodied by ANNs and the primitive, computational AI that drove the initial
popularity of expert systems. In light of the fact that connectionism has prevailed by surpass-
ing more traditional algorithms in most areas, it can be expected that deep neural networks
are here to stay in the long term. To a lesser extent, however, the enthusiasm that marked the
early years of this decade is already wavering as it becomes increasingly obvious that solutions
to challenging problems such as self-driving cars or general AI are still many years away.
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Machine learning in condensed matter physics

Compared to the long pursuit of machine learning in computer science, one might be inclined
to believe that the adoption of these tools within physics is a relatively recent phenomenon in
spite of their having been available for some time. For example, the schemes developed in this
thesis are based on kernel methods which reached algorithmic maturity some fifteen years ago,
yet their application to phase classification in physics was pioneered only in 2017 [26]. In gen-
eral, 2017 can be considered the year where machine learning saw wide adoption by physicists.
This can be traced back to the successes of deep learning since 2012 which was visible cross-
disciplinarily and exposed researchers to these ideas for the first time. In particular, the seminal
paper by Carleo and Troyer [24] spurred interest in the applicability of neural networks to the
many-body problem. The ensuing “ML hype” prompted physicists to also look into the utility
of further established algorithms to physical problems. An overview of the progress made so
far in this context is given in the beginning of Ch. 4.

In spite of this, the observation that machine learning is relatively new to physics is ar-
guably inaccurate. In fact, many-body physics especially has always employed numerical
methods to scrutinize emergent behavior. Some of the alleged breakthroughs may rather be
seen as conforming to the framework of established methods such as variational Monte Carlo,
both in spirit and in terms of the algorithms used for the optimization [24, supplementary
materials; 27; 28]. Likewise, it has been shown that certain (shallow) neural network architec-
tures are related to tensor network states [29, 30] which predate the rise of machine learning
in physics. Indeed, matrix product states (MPS) and the algorithms in their sphere of influence
can easily be considered machine learning, but historically developed separately. Ideas from
these fields (e.g. an understanding of the ability to capture the physics of a system based on the
area law of its entanglement entropy [31]) and statistical physics more generally (e.g. renor-
malization groups and coarse graining) therefore also make their way back into ML research.

A major obstacle towards establishing ML techniques as a tool in the study of condensed
matter systems, which may ultimately be used to gain knowledge, is posed by their common
lack of interpretability. Unlike in many of the industry-proven applications of ML, it is in-
sufficient to merely recognize or classify a certain physical state, but inevitably the follow-up
question arises how this state differs from another one. In this context, most ML methods can
be placed on a spectrum based on a tradeoff between expressibility and interpretability. For
example, ANNs are popular specifically because they are extremely versatile and efficiently
express highly-dimensional nonlinear functions, a property that is amplified by an increase
in depth. However, understanding the physical principle which they exploit along the way is
very difficult. This aspect, too, is exacerbated by depth (cf. the discussion in Sec. 4.2).

In contrast, kernel methods are less flexible and their successful applicability relies on the
choice of a suitably engineered kernel function. On the upside, they can be fully interpretable
(although that too depends on the choice of the kernel). Hence, it is essential to choose one’s
battles wisely by taking to an arena which both poses a wide array of challenging problems
but also fits into the framework dictated by the kernel. As part of the premise of this thesis,
one such arena is identified in the classification of phases in frustrated magnets.
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Spin liquids in frustrated magnets

Frustration is ubiquitous in nature. So much so that the properties of water, including its
unusually high melting and boiling points, its large heat capacity, latent heat, and anomalous
density curve—all crucial for the development of life as we know it—are all consequences of
frustration.

It is well known that the hydrogen atoms in H2O span an angle of about 104◦, slightly less
than the 109◦ corresponding to the unperturbed tetrahedral coordination of hybridized sp3

orbitals of the central oxygen atom. This leads to a nonvanishing dipolar moment due to the
partial charges induced by the larger electronegativity of oxygen as compared to hydrogen. In
water ice (specifically the ice Ih phase formed under terrestrial conditions), the molecules are
arranged in a lattice with close to tetrahedral bond angles as well. Due to the partial charges,
it is energetically favorable for exactly one hydrogen to sit between any neighboring oxygen
atoms, being covalently bound to one of them and forming a weak “hydrogen” bond with the
other. The orientation of the water molecules in the lattice is then determined by the Bernal-
Fowler “ice rules” [32] which state that each molecule should be faced by the hydrogen atoms
of two of its neighbors and the oxygen sides of the other two. An example of a configuration
respecting these ice rules is shown in Fig. 1.1(a).

The ice rules do not uniquely determine the ground-state configuration of water ice. Rather,
the number of compatible configurations, i.e. the degeneracy of the ground state, grows ex-
ponentially with system size. This then gives rise to an extensive contribution to the residual
entropy which was famously estimated by Pauling as S0/n = ln(3/2)R ≈ 3.4 J/(mol K) [35].
The extensive residual entropy consequently affects the thermodynamics of bulk properties
and leads to the above anomalies associated with water. An exponential ground-state degen-
eracy is one of the hallmarks of frustrated systems. Somewhat sloppily, it is more commonly
referred to as an extensive ground state degeneracy (exGSD) because it gives rise to an exten-
sive residual entropy.

An analogous situation is realized in a class of magnetic systems which—for this reason—
are known as spin ices. Experimental realizations of spin ices have been discovered in the
rare-earth oxide materials Ho2Ti2O7 [33] and Dy2Ti2O7 [34, 36]. In these compounds, only
the rare-earth ions (Ho3+ and Dy3+) are magnetic. These form a pyrochlore lattice, a network
of corner-sharing tetrahedra; its geometry is depicted in Fig. 1.1(b). Due to a strong crystal-
field anisotropy along the 〈111〉 axis (see Sec. 2.1.2), the magnetic moments behave as Ising
spins. The energy of such a configuration is then minimized (cf. Sec. 2.1) if within each of
the tedrahedra, two of the spins point inwards, while the other two point outwards. This
“two-in-two-out” rule is the spin-ice analogue of the ice rules in water. Indeed, Fig. 1.1(b)
depicts a configuration obeying the two-in-two-out rule which is equivalent to the water ice
configuration in Fig. 1.1(a) by having the spins in the former point towards the location of each
of the hydrogen atoms in the latter. The residual entropy of Dy2Ti2O7 has been found from its
heat capacity to be consistent with that of water ice Ih and Pauling’s estimate [37].

The fluctuations permitted by the spin-ice rule may also be understood by analogy to mag-
netostatics. By identifying the spins Si at positions ri in the lattice with the local strength of an
artificial magnetic field B(ri ) = Si , the spin-ice rule can be summarized in a generalize Gauss’
law, ∇ · B = 0 [38]. Hence, two magnetic “field lines” enter into each lattice tetrahedron and
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(a) Water ice: each oxygen is covalently bound to two
hydrogens and exactly one hydrogen sits between
any two neighboring oxygens.

(b) Spin ice: for each tetrahedral cluster, two spins are
pointing inwards and two are pointing outwards.

Figure 1.1: Two physical systems obeying the “ice rules”: water ice and spin ice. The spin ice is
realized in rare-earth oxide pyrochlore materials Ho2Ti2O7 [33] and Dy2Ti2O7 [34]
with Ising spins along the 〈111〉 direction connecting the centers of corner-sharing
tetrahedra. In water ice (Ih ), the molecules are, too, positioned in an almost tetra-
hedral coordination. The same pyrochlore lattice is superimposed in panel (a) to
reflect that, with the oxygen atoms inscribed into the tetrahedra, even though ice
Ih crystallizes in a slightly different lattice geometry. Both panels depict equivalent
configurations, i.e. the hydrogen atoms in panel (a) are displaced from the sites of
the pyrochlore lattice in the direction indicated by the spins on those sites in panel
(b).

likewise two also exit it. After coarse graining, this immediately implies that the correlations
between magnetic fields a distance r apart take on a dipolar form [39–41],

〈B(0) ⊗ B(r)〉 ∼ r⊗2 − ‖r‖21/3
‖r‖5 , (1.1)

and thus decays as 1/‖r‖3 at large distances. Power-law correlations like this are unusual
away from critical regimes. They manifest themselves as sharp features called “pinch points”
in the spin structure factor and have been observed in neutron scattering experiments on
Ho2Ti2O7 [42].

Violations of the spin-ice rule lead to defects for which ∇ ·B takes on a nonvanishing value
which may be interpreted as a magnetic “charge” density. Excitations above the ground state
manifold thus correspond to the creation of a pair of magnetic monopoles of opposite charge at
which a magnetic field line—in this context referred to as a Dirac string—originates and termi-
nates, respectively [38, 43, 44]. Once created, the monopoles can move away from each other at
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no additional energy cost. They thus constitute fractionalized excitations and the energy asso-
ciated with eachmonopole is half that of a single spin flip [45]. Since the spins carry a magnetic
moment, these monopoles exert a magnetostatic Coulomb interaction onto each other. This is
weak compared to the electrostatic force but its signature was nonetheless first measured in
diffuse neutron scattering experiments on Dy2Ti2O7 in 2009 [46]. The ensuing onslaught of
experiments has focussed primarily on the dynamics of monopoles both in classical [47] and
quantum [48] spin ices. Monopoles have also been observed in artificial spin ice realized in
lithographically fabricated magnetic nanodevices [49].

Spin ices are the posterchild of a class of correlated spin states, nowadays collectively
known as classical spin liquids (CSLs). More traditionally, these have also been called corre-
lated or cooperative paramagnets as they crucially do not exhibit long-range order, but rather
strong algebraically decaying correlations. As in the case of spin ice, these originate from fluc-
tuations within an extensive ground-state manifold which is characterized by local constraints
such as the spin-ice rule. The constraints in turn signal the emergence of a gauge theoretical
structure, complete with monopole-like fractionalized excitations.

At low enough temperatures, even fluctuations within the ground-state manifold eventu-
ally slow down and the CSL may freeze out of equilibrium. For example, in spin ice, at the
very least hexagonal rings of six spins can cooperatively flip at once while remaining in the
ground state. The ever-smaller tunneling probabilities for such zero modes hence cause the
spins to freeze into an amorphous glassy state; in Dy2Ti2O7 this reportedly happens below
Tf = 0.5 K [50]. Other types of CSLs may instead enter into an ordered phase below a tran-
sition temperature Tc (see “Hidden order” below for a possible mechanism). Either way, the
relevant temperatures are expected to lie significantly below the scale set by the Curie-Weiss
temperature |ΘCW | which provides a rough estimate for the ordering temperature in unfrus-
trated systems. ΘCW can be determined from the asymptotic high-temperature behavior of the
magnetic susceptibility, χ−1 ∼ (T − ΘCW). The frustration-induced CSL behavior thus takes
hold in the regime Tc < T < |ΘCW | and its extent is commonly quantified by the frustration
parameter f = |ΘCW |/Tc (or f = |ΘCW |/Tf in case of freezing). While f ∼ 5 may otherwise
still occur, frustration can easily result in f � 100 [51].

Materials with small atomic spins might, however, display an entirely different behavior
at the lowest temperatures: quantum fluctuations due to a nonvanishing zero-point energy
may allow for the formation of a quantum spin liquid (QSL) which persists down to T = 0,
corresponding to f = ∞.

The energy between any two antiferromagnetically coupled spins is locally minimized by
a singlet. One may naively assume that the ground state thus consists of a product of such
valence bond singlets, periodically tiled over the bonds of the lattice. Such a valence bond solid
(VBS) has a vanishing total spin and is hence nonmagnetic, yet by choosing a specific dimer
covering, it breaks lattice symmetries. Anderson proposed that a system might rather form a
superposition of all possible dimer coverings of spins into valence bonds on the lattice [52–54],
thereby retaining the lattice symmetry. In the language of quantum chemistry, such a state
would exhibit valence bonds which constantly fluctuate amongst each other, but do so in a
phase-coherent (highly entangled) way, thus coining the name resonating valence bond (RVB)
state.



7

The RVB state is the archetype of QSLs, but a superposition of dimer coverings is not the
only possible microscopic realization of a QSL state and a consensus on the defining charac-
teristics of a QSL was not reached until recently (and even that is debateable). Quite generally,
however, a “true” QSL would be expected to host fractionalized excitations [51, 55]. This makes
them attractive for quantum computation as it allows for the development of topological error
correction codes, as exemplified by Kitaev’s toric code [56, 57]. Unfortunately, as of yet, not
a single QSL has been experimentally identified in an unambiguous way, despite tremendous
effort over the past decade. Extensive reviews of the state of the art of experiments into both
CSLs and QSL candidates are provided in Refs. 55 and 58.

Hidden order

The experimental identification of spin liquids, both classical and quantum, typically has to
resort to a negative definition, i.e. ruling out the presence of any symmetry-breaking order,
in lieu of experimentally accessible genuine spin-liquid characteristics. This is further com-
plicated by the fact that such orders in frustrated lattice geometries may too elude common
experimental probes as they do not give rise to a macroscopically observable magnetization.
For this reason, they are referred to as “hidden” orders [59–64].

Indeed, even in Monte Carlo simulations of classical spin models where one has access
to the full microscopic spin configuration, identifying the presence of hidden orders remains a
highly nontrivial task. This is due to theirmultipolar nature: in contrast to dipolar orderswhose
symmetry-breaking is characterized by a nonvanishing vector-like (rank-1) order parameter
such as the (staggered) magnetization in the case of (anti)ferromagnetism, frustrated lattice
geometries may favor orders which only break part of the full spin-rotational symmetry while
staying disordered with respect to the remaining symmetry, giving rise to order parameter
tensors of higher rank such as matrices (quadrupolar order) or third-rank tensors (octupolar
order). Examples can be found in spin nematic orders [65–76]. Conventional numeric probes
then often suffer the same fate as their experimental counterparts and one has to resort to
(weak) signatures in thermodynamic properties such as the heat capacity to pin down the
presence of a phase transition. Even then, this does not yield any insight into the nature of the
tentative phase.

It may seem paradoxical at first that a spin system whose ground state manifold is defined
by constraints, which in and of themselves do not break any symmetries, would develop an
ordered phase at low temperatures. One mechanism to facilitate symmetry-breaking in classi-
cal systems was first described by Villain et al. [77]. While by definition all ground states have
the same energy, some of them may be entropically selected for their lower free energy. This
is the case when a certain subset of ground state configurations admits thermal fluctuations
into a vast region of phase space surrounding these ground states at small energy expenditure
by means of soft modes¹. The phenomenon was coined order-by-disorder [39] and famously
accounts–among other cases [78]—for the selection of coplanar spin order in the Heisenberg
antiferromagnet on the kagome lattice which was postulated by Chalker et al. in 1992 [79].

¹The term “soft mode” usually refers to any kind of gapless mode, including those with linearly vanishing
dispersions; here, modes need to be even “softer”, with at-most quadratic dispersion, to fluctuate appreciably down
to the low temperatures required for order to emerge.
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However, his initial description in terms of a quadrupolar order parameter was later recog-
nized as incomplete and rather called for an additional octupolar order parameter [80–82].
Details are provided in Sec. 2.1.1.

Generalized nematics

Quadrupolar moments also describe the well-known nematic order in liquid crystals. Liquid
crystals are (typically) composed of rod-like molecules, or mesogens which, below a certain
critical temperature, undergo a phase transition where they attain long-ranged orientational
order, all the while maintaining fluidity, i.e. positional disorder.

In the language of symmetry-breaking, they spontaneously break the orientational O(3)
symmetry down to a nontrivial subgroup. Most commonly, uniaxial nematics where the meso-
gens align along a common axis given by a director D of unit length while retaining rotational
invariance in the plane normal to D, corresponding to the infinite dihedral symmetry group
D∞h . However, D is not the order parameter of the transition as both D and −D would refer to
the same kind of order. In order to capture this additional invariance, one has to promote the
vector (rank-1 tensor) D to a matrix (rank-2 tensor),

Q = D ⊗ D − 1
3
1, Qab = DaDb −

1
3
δab , (1.2)

where a,b = x,y, z are the spatial component indices. The additional term −1/3 is conven-
tionally included to render Q traceless. One can then construct a Landau theory from this
quadrupolar order parameter Q and derive a scalar order parameter q =

√
TrQ2.

O(3) can in fact spontaneously break down to arbitrary 3D point groups [83, 84], giving rise
to order parameters given by tensors of different ranks. For instance, the D∞h symmetry in the
above example can further break to smaller subgroups by developing order in the perpendicular
plane. For example, a D2h nematic (with the point group symmetry of an irregular orthogonal
parallelepiped) is described by a different quadrupolar order parameter matrix (see Sec. 6.2.1)
while a D3h nematic (with the point group symmetry of a uniform triangular prism) requires
a description in terms of a rank-3 octupolar order parameter tensor (see Sec. 6.2.2).

These generalized nematics thus give rise to a variety of multipolar orders. The smallest
symmetry which O(3) can thus be broken down to is naturally given by the point group sym-
metry of the mesogen. Depending on the details of the system, this may either happen in a
single transition from isotropic disorder, or in a succession of two or more phase transitions
at successively lower temperatures, each breaking the symmetry to an ever-smaller subgroup.
In Sec. 2.2, a gauge model is introduced which allows for the systematic study of various mul-
tipolar orders by restricting the gauge field mediating the interaction to representations of
arbitrary point groups, thereby mimicing the interaction between mesogens of corresponding
point group symmetry.

Unfortunately, only very few experimental realizations of the more exotic nematics exist.
One of them is found in liquid crystals formed by viruses in aqueous solution. Aside from
filamentous plant viruses which have been shown to exhibit uniaxial order in X-ray diffrac-
tion experiments [85], many animal viruses, such as adenoviruses or the polio virus, possess a
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nonchiral icosahedral (Ih ) symmetry² and readily form colloidal liquid crystals [86]. This has
reached the point where genetic modification of viruses is considered as a way to engineer
nanoscopic mesogens for liquid crystals with superior optical properties.

Though, while possibly interesting in their own right, unconventional generalized nemat-
ics—and the gauge model simulating their dynamics—primarily serve as a vehicle to explore
a wide array of different multipolar orders in a controlled way, whereas here the physical
motivation for doing so is primarily derived from the (potential) emergent realization of the
same kinds of multipolar orders in frustrated spin systems.

Premise of this thesis

The study of frustrated magnets, particularly the quest for spin liquids—both classical and
quantum—remains an active field of research in both theory and experiment. While QSLs
have proved more elusive, the occurrence and stability of CSLs, especially as compared to spin
nematic phases, is far from understood. Advances in experimental techniques over the past
decade have accelerated the pace of the synthesis and charaterization of new materials to the
point where it has become a matter of months, not years. Meanwhile the process of piecing
together the phase diagram of each new model remains a laborious and manual process which
heavily depends on the ingenuity and intuition of individual researchers, rendering it a serious
bottleneck.

Devising a machine learning scheme to aid this process, inspired by the recent sprawl of ac-
tivity, thus seemed like a worthwhile endeavor. However, merely recognizing different phases
in frustrated models—while useful—would not have sufficed; rather, a highly interpretable ma-
chine is in demand which allows for the reconstruction of the physical order parameter. For
this reason, we turned to kernel methods. In Ch. 5, the tensorial kernel (TK) is proposed. As
the name suggests, its functional form was chosen to be capable of expressing tensorial order
parameters like those characteristic of multipolar order, while not imposing any further restric-
tions other than locality. Its design thus does not require the problem to be already “solved”,
but covers the realm of multipolar tensor order parameters exhaustively. For the majority of
the thesis, it is combined with a support vector machine, jointly referred to as TK-SVM.

In the final part III, the TK is applied to the infamous case of the aforementionedHeisenberg
model on the kagome lattice as well as the XXZ model on the pyrochlore lattice which features
a diverse phase diagram, including a spin nematic phase and three types of CSLs [87, 88]. Both
of these are introduced more closely in Ch. 2. Indeed, the order parameter tensors of both the
spin nematic phase in the case of the XXZ pyrochlore model and the complete characterization
of the hidden order in the kagome model have been identified by TK-SVM.

Serendipitously, while the original design of the TK was aimed at expressing multipolar
order, it turned out to be also capable of expressing the emergent constraints which characterize
the ground-state manifold of CSLs and underpin their gauge-theoretical description. In that
regard, the method went above and beyond expectations and reconstructed the phase diagram
of the XXZ pyrochloremodel, including the location of the crossover regimes between different
types of CSLs, with little human guidance.

²The corresponding nematic order is parametrized by a tensor of no less than sixth rank [83], see Eq. (6.15).
The icosahedral point group Ih is not to be confused with the ice phase designation Ih (“one hexagonal”).
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In the part II leading up to these applications, the toolbox necessary to interpret the clas-
sifiers learned by TK-SVM is assembled. A gauge model of generalized nematics (introduced
in Sec. 2.2) serves as a testbed to probe a variety of different multipolar orders of high ten-
sor ranks. The tools to extract and infer these order parameter tensors are developed, tried,
and tested in a various challenging setups, ranging from the simultaneous occurrence of sepa-
rate order parameters to the inference of the rank-6 order parameter tensor of an icosahedral
nematic. It will also become apparent how TK-SVM, which is technically a supervised classifi-
cation scheme, can be used in an semantically unsupervised context which is the basis for the
unbiased construction of phase diagrams.



2Models
Thepurpose of this chapter is to introduce themicroscopicalmodelswhichwill be used through-
out this thesis and to review some aspects of their physics.

During the development of the machinery for learning order parameter tensors, it is ben-
eficial to scrutinize a system that is known to exhibit a certain multipolar order reliably, is
accessible to numerical methods, specifically Monte Carlo, and offers a large variety of distinct
nontrivial multipolar orders with tensor descriptions of different ranks. In Sec. 2.2, a gauge
model is introduced which can mimic the interaction of nematic mesogens of arbitrary point
group symmetries. By choosing a particular point group, the system develops a phase transi-
tion into an ordered phase which breaks the O(3) symmetry accordingly. Though somewhat
artificial, the gaugemodel fulfills all of the above requirements whichmakes it the ideal “guinea
pig” model.

In the final part of this thesis, the machinery is subsequently employed to investigate hid-
denmultipolar orders—and nontrivial constraints—which emerge from geometrical frustration.
The relevant Hamiltonians and lattice geometries are introduced here first in the ensuing sec-
tion.

2.1 Frustrated spin models

From the Hubbard model to the Heisenberg model

Much of the attention in the field of condensed matter has been drawn to the analysis of the
Hubbard model in the decades that passed since its inception [89]. Derived as an approximate
model for itinerant d- and f -electrons in transition metals, its Hamiltonian is comprised of a
kinetic term and an on-site Coulomb repulsion,

HHubbard = −
∑
i j ,s

ti jc
†
isc js +U

∑
i

ni↑ni↓, (2.1)

where c(†)is are annihilation (creation) operators for Wannier states of electrons with spin s =

↑, ↓ which are localized at lattice site i , obeying fermionic statistics,
{
cis , c

†
js ′

}
= δi jδss ′ , and

nis = c
†
iscis . The tunneling amplitudes ti j = t∗ji for “hopping” processes between sites i and j are

obtained through a tight-binding approximation and oftentimes restricted to nearest neighbors.
The Coulomb interaction between electrons on different sites is screened and becomes thus
short-ranged. It is renormalized into an energy U that penalizes double occupations of the
same lattice site only.

In the limit of large on-site interaction,U � |ti j |, and below half filling, double occupations
are suppressed and the kinetic term can be considered as a perturbation. The Hamiltonian may
then be projected into the subspace of at most singly-occupied sites (ni = ni↑ + ni↓ ≤ 1) by
means of the projector Ps =

∏
i
(
1 − 1

2ni (ni − 1)
)
resulting in the t-J model [90],

Ht -J = Ps

[
−

∑
i j ,s

ti jc
†
isc js +

1
2

∑
i j

Ji j
(
Si · Sj −

ninj

4

)]
Ps , (2.2)
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where the spin operators (with ‖Si ‖2 = S(S + 1) and S = 1/2) are related to the electronic ones
by

Si =
1
2

∑
ss ′

c†isσ ss ′cis ′, (2.3)

and Ji j = 4|ti j |2/U is the exchange coupling, corresponding to second-order processes where
electrons of opposite spins are exchanged between lattice sites. An additional second-order
hopping process between two sites via a third is omitted here. Its effect is usually considered
to be small, but can become significant on bipartite lattices away from half filling where it facil-
itates electronic transport within the same sublattice without disturbing the antiferromagnetic
order [90].

At half filling, i.e. when every lattice site is occupied by exactly one electron, ni = 1,
any single hopping process would result in a double occupation. The kinetic term is, hence,
annihilated by the projectors Ps . The term ninj = 1 is a trivial constant. Thus at half filling, the
t-J model reduces to the Heisenberg model:

HHeisenberg =
1
2

∑
i , j

Ji j Si · Sj . (2.4)

This is often further simplified by assuming equal exchange couplings between nearest neigh-
bors only,

HHeisenberg = J
∑
〈i , j 〉

Si · Sj , (2.5)

where 〈i, j〉 denotes summation over bonds between neighboring sites i and j.
The half-filled Hubbard model indeed undergoes a transition from a metallic phase at low

U to an insulator. Materials realizing such a Mott insulator are attractive targets in the search
for QSLs, however as of yet, none has shown experimental signatures revealing it as an unam-
biguous QSL [51].

Classical magnetic models

The Heisenberg Hamiltonian (2.5) formally also describes many compounds where the atomic
spin of the magnetic ions has a quantum number S > 1/2. The limit S → ∞ corresponds to
the classical case. The spin operators Si may then be replaced by classical moments Si ∈ R3 of
unit length, ‖Si ‖ = 1.

The physics exhibited by theHeisenbergHamiltonian (2.5) with antiferromagnetic coupling
J > 0 crucially depends on the geometry of the lattice. On bipartite lattices, such as the square
or honeycomb lattice, spins on either sublattice align themselves in opposite directions, the
so-called Néel state. This order is parametrized by the staggered magnetization, the sum over
all spins with a sign alternating between sublattices, which is itself a vector order parameter.
The Néel state—just like the ferromagnetic state for J < 0—thus breaks the O(3) symmetry
of the Hamiltonian down to O(2) and its ground state degeneracy thus reflects the remaining
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Figure 2.1: The triangular lattice in its
√
3 ×
√
3 ground state. Its name is derived from the fact

that the lattice decomposes into three triangular sublattices with a lattice constant
that is a factor

√
3 larger than that of the original lattice. Within each triangular

plaquette of the original lattice, the spins sum to zero.

global O(3)/O(2) = S2 symmetry; it is however not extensive. The Néel state is thus trivially
unfrustrated as the energy of each bond can be minimized individually.

In frustrated lattice geometries, this is no longer possible. In some, the ground state man-
ifold is more easily found by rewriting the Hamiltonian (2.5) as a sum over plaquettes. As an
example, consider the triangular lattice depicted in Fig. 2.1 which can be written as a sum over
all triangles,

Htrig =
J

2

∑
4

∑
〈i , j 〉∈4

Si · Sj =
J

4

∑
4

(



∑
i ∈4

Si





2 − 3), (2.6)

where the outer sum runs over both up and down triangles (incurring a factor 1/2 to compen-
sate for the fact that each bond is shared between two triangles), 〈i, j〉 ∈ 4 denotes summation
over the three bonds between sites i and j in each triangle, and i ∈ 4 runs over the three sites
in each triangle.

Thus, a spin configuration for which the total sum on each triangle vanishes,∑
i ∈4

Si = 0, (2.7)

is a ground state, should such a configuration exist. Indeed, this is the case for the “
√
3 ×
√
3”

state which is also shown in Fig. 2.1. To find its degeneracy, it is instructive to approach the
problem constructively. On an empty lattice, one is free to choose the first spin isotropically.
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Because of the constraint (2.7), the three spins in any plaquette must be at angles of 120◦ with
one another and lie in the same plane. Once this plane has been chosen (which coincides with
the plane of the lattice in Fig. 2.1 for illustrative purposes, but this is arbitrary), the directions of
the other two spins on the triangle are determined and one can only fix the chirality of the state
by choosing which of the two directions is assigned to which site. Since two spins are shared
between adjacent triangles and two spins uniquely determine the third, once the first triangle
is fixed, so are all of its neighbors, and so are theirs…. One can thus expand from the central
triangle outwards in concentric circles without ever encountering a contradiction. Hence, up
to the initial choice of the chirality (and the common plane), the

√
3 ×
√
3-state is unique and,

in particular, does not exhibit an extensive ground-state degeneracy (exGSD).
As illustrated in the introduction for the example of water and spin ice, an exGSD gives

rise to interesting phenomena such as exotic excitations in CSLs which are generally associ-
ated with frustration [91, 92]. However, even though the triangular lattice is often the go-to
model of a frustrated system to illustrate that not all bonds can be minimized individually, the
Heisenberg model on a triangular lattice is itself not frustrated in the more narrow sense that
it does not exhibit an exGSD and hence fluctuations are suppressed at low temperature. In
contrast, the Ising model is genuinely frustrated on a triangular lattice as it does exhibit an
exGSD [93].

Counting constraints

Moessner and Chalker revived a counting argument first put forth by Maxwell [94] and ap-
plied it in the context of magnetism to find the number of independent ground-state degrees
of freedomG [69, 95]. In a system with N three-component classical spins, a general spin con-
figuration is fully determined by F = 2N degrees of freedom (two angles per spin). If these
are subject to K independent constraints in the ground state, G = F − K degrees of freedom
are left. An estimate for K can be obtained by assuming that each plaquette imposes a vector
constraint akin to Eq. (2.7). In that case, K = 3Nplq. where the ratio between the number of
plaquettes, Nplq., and the total number of spins is given by Nplq./N = m/r with r , the number
of spins in each plaquette, andm, the number of plaquettes each spin takes part in. One thus
obtains an estimate for the ground-state degrees of freedom given by

Gplq. = 2N − 3Nplq. =
(
2 − 3m

r

)
N . (2.8)

In practice, Gplq. is a lower bound for the true G since not all of the constraints are inde-
pendent and K is thus overestimated. Indeed, in the above explicit construction of the

√
3×
√
3

ground state on the triangular lattice (m = 6, r = 3), occasionally one would encounter trian-
gles whose spins were already fully determined by two neighboring triangles, thus rendering
their constraint redundant. Accordingly, Gplq. = −4N < 0 underestimates the true G/N → 0+

as N →∞.
Despite its limitations, Eq. (2.8) gives an indication that lattices with corner-sharing ge-

ometries (m = 2) are particularly susceptible to exGSD. For the pyrochlore lattice, a network
of corner-sharing tetrahedra (r = 4, see Fig. 1.1), Gplq./N = 1/2 > 0 indicates a continuous
exGSD. Indeed, a more careful analysis shows that corrections to this estimate are at most
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subextensive, G/Gplq. → 1 as N → ∞ [69]. Consequently, the pyrochlore Heisenberg model
exhibits CSL behavior down to the lowest temperatures accessible by Monte Carlo, as will be
seen in Ch. 8. An interestingmarginal case is obtained for the Heisenbergmodel on the kagome
lattice of corner-sharing triangles (m = 2, r = 3, see Fig. 2.2) for which Gplq. = 0. However, in
a subset of ground-state configurations, some of the constraints on the plaquettes are in fact
linearly dependent which results inG/N → 1/9 upon careful analysis [39]. Hence, this subset
contributes extensively to the residual entropy.

In the following subsection, the kagome Heisenberg model is examined more closely, in-
cluding the characterization of the resulting order. Afterwards, anisotropic generalizations of
the Heisenberg model on the pyrochlore lattice are introduced, in particular the XXZ model.
Both of these models are subject to an elaborate discussion using TK-SVM in part III of this
thesis.

2.1.1 Heisenberg model on the kagome lattice

The Heisenberg Hamiltonian on the kagome lattice can be rewritten as a sum over triangular
plaquettes in much the same way as on the triangular lattice in Eq. (2.6). Unlike thereon, each
bond is however part of exactly one triangle, so the resulting Hamiltonian formally differs
from Htrig by a factor of two. Consequently, the same local constraint, Eq. (2.7), applies to its
ground-state manifold. This again implies that, within each triangular plaquette, the spins lie
in a common plane, spanning angles of 120◦ with each other.

This is however where the similarity with the triangular lattice ends. Because adjacent
triangles on the kagome lattice only share a single spin, their local planes do not need to co-
incide; rather, they may intersect on a line determined by the shared spin. Following a similar
constructive approach for building up a ground state as for the triangular case, starting from a
single triangle, each consecutive adjacent triangle that is added allows for the choice of one an-
gle. However, as triangles start to close loops around the hexagonal plaquettes, their planes are
not necessarily compatible. Hence, not all of the aforementioned angles can in fact be chosen
freely, but are subject to intricate constraints themselves. The exact degeneracy of the ground
state is not known. Still, nonplanar solutions do exist for which the local plane of the triangles
is different and becomes independent for triangles at large distances. This is to be contrasted
with the triangular lattice, where the constraint implies a coplanar order where all triangles
share the same plane, even at (quasi-)long range, thus breaking the O(3) spin-rotational sym-
metry.

Nonetheless, Chalker et al. suggested in 1992 that the kagome-Heisenberg model may
still order at low temperatures in a coplanar fashion [79], governed by the order-by-disorder
mechanism [77], the rationale being that coplanar configurations give rise to an entire branch of
softmodeswhich they subjected to a harmonic analysis. Meanwhile, nonplanar configurations,
which can be generated from coplanar ones by introducing line defects at no energy cost (zero
modes), are more irregular and thus cannot host similar long-wave-length excitations. For this
reason, coplanar states were conjectured to be entropically selected at low temperatures.

Chalker et al. likened the selection of a common plane to the formation of a spin nematic
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(a) q = 0 (b)
√
3 ×
√
3

Figure 2.2: Periodic coplanar ground states of the kagome-Heisenberg model.

phase. To verify its existence numerically, they introduced a director

κ 4 =
2

3
√
3

(
S1 × S2 + S2 × S3 + S3 × S1

)
, (2.9)

which is normal to the local plane span by the three spins on any given triangular plaquette,
S1, S2, S3. They preceded to construct a quadrupolar order parameter,

Q (κ)ab =
1
N4

∑
4

(
κ4a κ

4
b −

1
3



κ 4

2 δab ) , (2.10)

and monitored the behavior of the corresponding quadrupolar correlations between neigh-
boring and next-nearest-neighboring triangles in a Monte Carlo simulation. The temperatures
they could reach were however insufficient to observe the transition; still, the correlations were
seen to become stronger with lower temperature, consistent with quasi-long-range¹ order at
either T → 0 or at small but finite temperature.

Subsequent Monte Carlo studies indeed suggested the presence of a finite-temperature
transition into an ordered coplanar state. In Ref. 97, temperatures of T = 0.005J were reached
and the onset of quadrupolar nematic order was observed. In hindsight, this was quite close to
the actual transition temperature ofTK = 0.004J [82] which is also observed in Ch. 9. Some dis-
agreement arose as to whether an even smaller subset of coplanar states would be selected. Out
of the extensively many coplanar states, two chiral states stand out as they are the only ones
to be described by a single wave vector: the q = 0 state where each upwards or downwards

¹Because of the Mermin-Wagner theorem [96], true long-range order is not supported by the two-dimensional
kagome-Heisenbergmodel. Rather, the alledged transition is akin to the Berezinskii-Kosterlitz-Thouless-type [81, 82],
giving rise to algebraically decaying correlations (“quasi-long-range” order).
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pointing triangle features the same spin pattern [Fig. 2.2(a)] and the
√
3×
√
3 state, correspond-

ing to q = ( 4π3 , 0), for which the three spin sublattices themselves form kagome lattices with
a lattice constant enlarged by a factor of

√
3 as compared to the original lattice [Fig. 2.2(b)].

The
√
3 ×
√
3 state was conjectured to be selected in the ordered phase. However, this was

consequently falsified by mapping the coplanar states to a three-state Potts model which can
be simulated to much lower temperatures thanks to a loop update scheme and the model was
found to relax back into a nonchiral state from either q = 0 or

√
3 ×
√
3 [98].

The selected ordered state thus still fluctuates among all coplanar states at T < TK . Its
description in terms of a quadrupolar order parameter, Eq. (2.10), or its equivalent single-spin
form which breaks the same symmetry,

Qab =
1
N

∑
i

(
Si ,aSi ,b −

1
3
δab

)
(2.11)

is—however—incomplete as it would admit spins to rotate freely within the plane, correspond-
ing to the D∞h symmetry captured by Q. This is not what Chalker et al. had in mind, stating
that the coplanar state “is highly constrained, in the sense that only three distinct spin orien-
tations occur, but the subset as a whole retains a large degeneracy” [79]. The correct triatic
symmetry of the coplanar state is thus given by D3h which was first realized by the authors
of Ref. 80 who also proposed a rank-3 description to supplement the quadrupolar one. The
correct order parameter set was eventually obtained in 2008 by Zhitomirsky [82], consisting
of the octupolar triatic tensor,

Tabc =
1
N

∑
i

(
Si ,aSi ,bSi ,c −

1
5
Si ,aδbc −

1
5
Si ,bδca −

1
5
Si ,cδab

)
, (2.12)

as the primary order parameter and the quadrupolar tensor, Eq. (2.11), as the secondary or-
der parameter. He also demonstrated how these may be used to construct the corresponding
Landau theory.

Early on, experimental efforts into kagome systems focused almost exclusively on the com-
pound SrCr8−xGa4+xO19 (SCGO) in which the magnetic Cr3+ ions (S = 3/2) form layers of
kagome lattices. SCGO was found to exhibit strong frustration as it did not order down to
helium temperatures (T = 4.2 K), despite its Curie-Weiss temperature of ΘCW = 515 K [99].
It was however found to freeze into a spin glass below Tf = 3.3 K [100] rather than order
into a coplanar state and it has been argued that the order-by-disorder effect may break down
due to defects which destabilize soft modes [101–103]. In present-day alternatives however,
such as Y0.5Ca0.5BaCo4O7 (S = 3/2) [104] and deuteronium jarosite (D3O)Fe3(SO4)2(OD)6
(S = 5/2) [105], properties of the coplanar phase have been observed in agreement with Monte
Carlo simulations. These materials thus seem to realize the classical nearest-neighbor Heisen-
berg model on the kagome lattice quite well.

2.1.2 Anisotropy on the pyrochlore lattice

As has been previously argued on the basis of the Maxwellian counting argument, Eq. (2.8), the
ground state of the Heisenberg Hamiltonian (2.5), on the pyrochlore lattice is extensively un-
derconstrained and the model continues to exhibit CSL behavior down to the lowest accessible
temperatures.
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A more varied phase diagram is obtained when the extensive ground-state degeneracy is
partially lifted by a modification of the exchange interaction. In particular, due to spin-orbit
coupling, the geometry of the pyrochlore lattice may induce a uniaxial anisotropy in the ex-
change interaction along the local 〈111〉 axis connecting the centers of the adjacent tetrahedra.
By choosing a local coordinate system² attached to each sublattice, such that the local z direc-
tion aligns with the 〈111〉 axis, the resulting Hamiltonian takes the form of the XXZ model,

HXXZ =
∑
〈i , j 〉

[
JzzSi ,zS j ,z − J±

(
S+i S

−
j + S

−
i S
+
j
) ]
, (2.13)

where S±j B S j ,x ± iS j ,y has been introduced³. This model has recently been investigated and
a rich phase diagram was reported [87, 106], including a spin nematic phase and a wide array
of CSLs, characterized by different local constraints. These findings are reproduced in Ch. 8
within the machine learning framework developed in this thesis.

Likewise, the exchange interaction may attain an antisymmetric component in the form of
the Dzyaloshinsky-Moriya interaction [107, 108] as a result of spin-orbit coupling,

HDM =
∑
〈i , j 〉

Di j ·
(
Si × Sj

)
. (2.14)

This term favors spin canting and gives rise to complex magnetic structures, called skyrmions
which are of particular interest in spintronics applications.

Both of these modifications are encompassed by a generalized exchange Hamiltonian,

Haniso. = HXXZ + HDM =
∑
〈i , j 〉

Si · JSj , J =


−2J± D 0
−D −2J± 0
0 0 Jzz

 (2.15)

where the exchange coupling J in Eq. (2.5) is replaced by an exchange tensor J. The above form
of J assumes that Di j = (0, 0,D). In the next chapter, Monte Carlo update schemes based on
this general form (2.15) will be presented. The remainder of this thesis will not further study
the effects of HDM.

²In a global coordinate frame where the four sublattice spins occupy the positions ri , i = 0, 1, 2, 3, the axes
{xi , yi , zi } in the local frame are given by:

r0 =
a

8
(+1,+1,+1) , x0 =

1
√
6
(−2,+1,+1), y0 =

1
√
2
(0,−1,+1), z0 =

1
√
3
(+1,+1,+1),

r1 =
a

8
(+1,−1,−1) , x1 =

1
√
6
(−2,−1,−1), y1 =

1
√
2
(0,+1,−1), z1 =

1
√
3
(+1,−1,−1),

r2 =
a

8
(−1,+1,−1) , x2 =

1
√
6
(+2,+1,−1), y2 =

1
√
2
(0,−1,−1), z2 =

1
√
3
(−1,+1,−1),

r3 =
a

8
(−1,−1,+1) , x3 =

1
√
6
(+2,−1,+1), y3 =

1
√
2
(0,+1,+1), z3 =

1
√
3
(−1,−1,+1).

where a is the length of the traditional cubic unit cell made of 16 sites.
³This notation has been chosen in alignment to the one used in Ref. 87. S±j alludes to the ladder operators in

the quantum version of Eq. (2.13), yet the model simulated and scrutinized in Ch. 8 is entirely classical. In less
suggestive terms, Jxx = Jyy = −2J±.
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In real materials, the pyrochlore lattice is commonly realized by magnetic ions within an
otherwise nonmagnetic crystal. Examples include the spin-ice materials Ho2Ti2O7 (S = 8) and
Dy2Ti2O7 (S = 15/2) discussed in the introduction where the rare-earth ions Ho3+ (S = 8) and
Dy3+ (S = 15/2) form the pyrochlore lattice. Crystal-field effects may then induce a single-ion
anisotropy

Hcf. = −A
∑
i

(
Si · ni

)2
, (2.16)

where ni is the local easy (A > 0) or hard (A < 0) axis. In the case of Ho2Ti2O7, the easy-axis
anisotropy is on the order of A ∼ 50 K along the 〈111〉 (local z) axis whereas the exchange
interaction is on the order of 1 K [33]. Thus, the low-temperature physics is predominantly
governed by the |mS = ±8〉 doublet, hence resulting in an effective Ising-like model.

2.2 Gauge model of generalized nematics

As motivated in the introduction, generalized nematics with polyhedral mesogens can serve
as a testbed for the detection and realization of multipolar orders. To this end, a lattice gauge
model is employed [83]. On each site of a cubic lattice, a triad of three orthogonal “spins”,
{Sl, Sm, Sn} with Sα × Sβ = ±εα βγ Sγ , fully determines the orientation (and chirality) of a meso-
gen. α, β,γ = l,m, n are referred to as “color indices”. The classical Hamiltonian is then given
by

H =
∑
〈i , j 〉

∑
α ,β ,γ

∑
a,b

J
α β
ab S

α
i ,aU

βγ
i j S

γ
j ,b , (2.17)

where the interaction between mesogens on nearest-neighboring sites is mediated through
additional fields Ui j ∈ G ⊂ O(3) which live on the bonds. G is the intended point group of
the mesogens. These fields are in fact gauge fields, as the Hamiltonian (2.17) possesses a local
point-group symmetry (Einstein summation implied),

Sαi ,a 7→ Λαα ′
i Sα

′
i ,a, (2.18)

U
α β
i j 7→ Λαα ′

i U
α ′β ′

i j Λ
β ′β
j ,

∀ Λi ,Λj ∈ G,
(2.19)

in addition to a global O(3) symmetry,

Sαi ,a 7→ Sαi ,a′Ωa′a, ∀ Ω ∈ O(3). (2.20)

Since it is impossible to spontaneously break a gauge symmetry [109], theHamiltonian (2.17)
eventually orders into a state which breaksO(3) down toG, possibly through one ormore inter-
mediate phases with symmetry G ′ such that G ⊂ G ′ ⊂ O(3) [110]. The ground-state manifold
is hence given by O(3)/G. The phase transitions between these phases have been found to be
generically of first order, except in special cases where fine-tuning of the interaction coupling
can give second order transitions [1].
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For example, when G = O(2), the gauge theory recovers the Heisenberg model with gen-
eral exchange interaction, Eq. (2.15), while for G = D∞h it reduces to the Lebwohl-Lasher
model [111, 112],

HLL =
∑
〈i , j 〉

J ′ab
(
Sni ,aS

n
j ,b

)2
. (2.21)

A mathematical derivation of these limits is provided in Ref. 84.
In the course of this thesis, the gauge model (2.17) will be used to produce spin configura-

tions for a number of different choices of G. In Sec. 6.1 and Sec. 6.2.1, a uniaxial (G = D∞h )
and biaxial (G = D2h ) nematic are simulated, respectively, both of which give rise to different
quadrupolar orders. In Sec. 6.2.2, a different biaxial nematic with G = D3h presents a case
where two order parameters, a quadrupolar uniaxial one and an octupolar (rank 3) biaxial one,
appear in unison. In Sec. 6.3, several even larger point groups are considered which give rise
to multipolar order with high-rank order parameters; specificallyG = Td (rank 3),G = Oh and
G = Th (rank 4), andG = Ih (rank 6). A systematic abstract classification of these has only been
achieved recently [84, 113, 114].

For the purpose of machine-learning these order parameters, raw configurations are sam-
pled from the Monte Carlo simulation of Eq. (2.17) and fed to the tensorial kernel (see Ch. 5).
The three “spins” defining the local triad are thus treated as separate spins in a spin cluster.
Their Greek color index takes the place of the sublattice index.
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3Classical Monte Carlo
In this chapter, the Monte Carlo method is introduced. Particular attention will be paid to
the update schemes suitable for simulating frustrated classical spin systems, and specifically
the (generalized) Heisenberg Hamiltonian, Eq. (2.15). Snapshots of the spin configuration as
obtained from the Monte Carlo simulation are used to train the machine-learning algorithm in
the subsequent chapters.

Henceforth, we shall denote by X = {xi | i ∈ I } the space of classical microscopic con-
figuration of the system under investigation. In lattice systems, it is given by the Cartesian
product of the local states on each lattice site, X = XN

site, N being the number of lattice sites.
For example,Xsite = Zq for the q-states Potts model,Xsite = S1 for theXY model, andXsite = S2

for the Heisenberg model.
X is a finite set only for systems with discrete degrees of freedom, in which case we denote

by NC the total number of configurations¹. In the Potts model, NC = qN exemplifies the
exponential growth of the configuration space. This “curse of dimensionality” prohibits the use
of direct summation over all states to calculate the partition function or thermal expectation
values.

Monte Carlo methods overcome this “curse” by sampling a sparse and finite subset of NMC
configurations, enumerated by index set J ⊂ I ,

〈A〉 =
∑
i ∈I

P(xi )A(xi ) ≈
1

NMC

∑
j ∈J

A(xj ) = 〈A〉MC , (3.1)

where configurations xj are drawn according to their canonical distribution function,

P(x) = e−βE(x)/Z , Z =
∑
i ∈I

e−βE(xi ), (3.2)

where β = 1/(kBT ) is the inverse temperature at which the system is simulated. Doing so
allows for an efficient approximation of the true thermal expectation value, as configurations
are more likely to be included the more likely they are to be visited by the physical system
in the course of its time evolution, a fact that is known as importance sampling. The error of
this approximation systematically vanishes as 1/

√
NMC, independent of the dimension of the

configurations. The efficiency of Monte Carlo methods then relies on the algorithmic gener-
ation of random P-distributed configurations which will concern us for the remainder of this
chapter.

Monte Carlo techniques are also widely applied to study quantum systems where the state
space is even larger owing to the growth of dimensionality of the local Hilbert space with the
number of basis states. In many quantum Monte Carlo (QMC) schemes, this is resolved by
mapping the D-dimensional quantum system to a (D + 1)-dimensional classical system where
the configurations are again restricted to a set of basis states that is closed under the update

¹The discrete case will be assumed here for simplicity, but the discussion carries over to the continuous case
where X is uncountably infinite and summation over i has to be replaced by integration over continuous variables.

23
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scheme. Other quantum Monte Carlo schemes such as variational Monte Carlo or diagram-
matic Monte Carlo take a more abstract view but ultimately arrive at a multidimensional inte-
gration problem that is again tackled by importance sampling. Unlike in the classical case, the
configuration probabilities are no longer given by the (positive) Boltzmann weights, Eq. (3.2),
and may no longer be positive, resulting in the infamous sign problem. The naive remedy in
such a scenario of sampling 〈sgn(P)A〉 /〈sgn(P)〉 according to |P(xi )| results in exponentially
large errors due to the vanishing expectation value of the sign, rendering QMC infeasible for
some systems.

The presence of a sign problem depends on the employed QMC scheme but frustrated lat-
tice geometries are notorious for introducing sign problems. This is one reason for limiting the
scope of the discussion of machine learning techniques for phase classification in this thesis
to classical models. Another lies in the fact that QMC configurations in many schemes in-
corporate the quantumness by adding an imaginary time-like dimension to capture dynamic
correlations within the quantum state. It is not readily apparent how to properly isolate the
relevant features from such QMC configurations and remains subject to further investigation.

3.1 Markov chain Monte Carlo

Generating independent random configurations from scratch according to the thermal distri-
bution P(x) is in general not possible efficiently. Instead, a stochastic process is employed
which, starting from some initial configuration xi(0), takes the system through a series of NMC
updates,

xi(0) → xi(1) → · · · → xi(NMC). (3.3)

At each update step, the current configuration xi(n) transitions to the next one with probabil-
ities P({xi(k )}nk=0 → xi(n+1)) which are engineered to achieve the desired target distribution.
Whereas these transition probabilities could in principle depend on the entire history of the
system, the most simple choice employs a Markov process in which the transition probabilities
in each update step depend only on the current configuration, P(xi(n) → xi(n+1)). In such a
situation, the stochastic process is referred to as a Markov chain and its application to traverse
the configuration space of a Monte Carlo simulation is known as Markov chain Monte Carlo
(MCMC).

Given an ensemble of configurations which at one point in time are distributed according
to some P(x), the resultant distribution, P ′(x), after carrying out one Markovian update step is
given by the master equation,

P ′(x) = P(x) +
∑
j

[
P(xj )P(xj → x) − P(x)P(x→ xj )

]
, (3.4)

where the two terms in the sum track the influx to and the efflux from the current configu-
ration, respectively. In the MCMC setting, one seeks to sample configurations according to a
stationary thermal distribution, meaning that the transition probabilities must satisfy the fixed
point condition of the master equation, given that the system is already thermalized. Thus, the
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total influx and efflux must cancel for each configuration. A sufficient (albeit not necessary)
condition to ensure this is given by detailed balance,

P(xi )P(xi → xj ) = P(xj )P(xj → xi ) ∀ i , j, (3.5)

where each possible update step is individually balanced with its reverse.
To ensure detailed balance algorithmically, the transition probabilities factorize into the

probability distribution for proposing an update to configuration xj , given the current config-
uration xi , and a subsequent acceptance probability which decides if the update to xj is indeed
carried out, or if the system remains in xi ,

P(xi → xj ) = Pproposal(xi → xj ) × Paccept(xi → xj ). (3.6)

While the former is determined by the algorithmic generation of tentative updates, the latter is
then chosen to satisfy detailed balance. In general, it is desirable to absorb as much of the total
transition probability in the proposal step to keep the acceptance probability close to unity.

In addition to observing detailed balance, the update scheme must also ensure that the en-
tire configuration space is reachable through a finite number of updates, a requirement which,
alluding to the eponymous concept from statistical mechanics, is known as ergodicity. The
master equation (3.4) may also be cast in matrix form, P ′ = TP , with the transition matrix
Ti j = P(xj → xi ) ≥ 0. T is obviously a row-stochastic matrix²; additionally, for an ergodic
Markov process,T is seen to be primitive³. The Perron-Frobenius theorem then states thatT has
a nondegenerate eigenvalue 1 whose corresponding eigenvector P is positive (P(xi ) > 0 ∀ i),
representing the desired fixed-point (thermal) distribution, P = TP . All other eigenvalues
are strictly less than one in modulus, meaning that the system will converge to the thermal
distribution from any initial configuration [115]. The characteristic time scale of this thermal-
ization is given by the eigenvalue with the second largest absolute value. In practice, this is not
accessible analytically and one resorts to heuristic arguments to allow for a sufficiently long
thermalization phase before commencing the measurement phase.

During the measurement phase, after each (MC) update step, the relevant observables are
calculated with respect to the current configuration and accumulated in some way. Since
Markovian updates will typically alter the configuration only locally or on a finite-size cluster,
such that the update can be proposed and the energy difference evaluated in constant com-
plexity, the updated configuration is not entirely decorrelated from its predecessors. These au-
tocorrelations decay exponentially with a characteristic “time” scale (measured in MC update
steps), dubbed autocorrelation time. Thus, a naive estimate of the error on the mean value,
σnaive, is bound to underestimate the true statistical error. By averaging the measurements
within a hierarchy of successively larger bins and considering the sample variance of these bin
averages, autocorrelations among bins vanish as the bin size exceeds the autocorrelation time.
Given enough statistics, the error obtained at sufficiently high binning levels will eventually
saturate to the “true” error, σtrue. An estimate for the (integrated) autocorrelation time may be
obtained as τ = σ 2

true/(2σ 2
naive) [116]. More sophisticated error estimates, especially for estimat-

ing the error bars on derived quantities, may be obtained through the jackknife and bootstrap
resampling methods, but these require access to the full time series.

²T is row-stochastic, iff 0 ≤ Ti j ≤ 1 ∀ i, j, ∑j Ti j = 1 ∀ i .
³T is primitive, iff ∀ i, j ∃m ∈ N, such that (Tm )i j > 0 (Frobenius test).
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3.2 Single spin updates

In single spin updates, one randomly picks a lattice site k and proposes an update of spin Sk
to S′k . The random choice of the lattice site incurs a factor of 1/N in the proposal probability
which however cancels in the detailed balance equation. A couple of different options are
feasible for the specific choice and subsequent acceptance of Sk which are presented below.
Conventionally, N such single spin updates are executed in sequence and together constitute
one MC step, to account for the extensiveness of the configuration, i.e. to give every spin the
chance of being updated on average once per MC step.

Generally speaking, single spin updates change the spin configuration only locally which
both makes them very versatile and leads to slow thermalization and long autocorrelation
times, especially near phase transitions (“critical slowing-down”) or in frustrated or disordered
systems with a nontrivial ground state degeneracy at low temperature. Alternatives to single
spin updates have been developed in the course of the past decades. Cluster updates such as
the Swendsen-Wang algorithm [117] and the Wolff algorithm [118] combat critical slowing-
down but accommodate only a limited range of models and fail to produce efficient dynam-
ics in frustrated antiferromagnets. More recently, worm algorithms on the dual lattice have
been developed [119] and applied to frustrated Ising antiferromagnets [120, 121]. However, no
such cluster update exists to date that can tackle continuous degrees of freedom (XY, O(2); or
Heisenberg, O(3), spins) on frustrated lattices. In its absence, single spin updates remain the
only recourse to achieve an ergodic update scheme.

A number of remedies exist to facilitate single spin updates: microcanonical updates which
propose updates between configurations with the same energy and will, hence, be always ac-
cepted, allowing for the traversal of frustrated ground state manifolds; and parallel tempering
which alleviates the above issues by performing a random walk through parameter space, al-
lowing individual simulations to fight their way out of challenging parameter regimes, only
to reenter them again later. Both of these are discussed in the forthcoming sections, whereas
neither is ergodic on its own but meant to supplement the single spin update, nor can it fully
overcome the shortcomings of the latter.

3.2.1 Metropolis-Hastings algorithm

Once a random lattice site k has been picked, one may replace the old spin Sk by a new spin
S′k , sampled isotropically from the unit sphere. Thus, the reverse update will be proposed with
an equal probability and the proposal probabilities in the detailed balance equation cancel,
resulting in a ratio of the acceptance probabilities which is determined purely by the energy
difference due to the spin update,

Paccept(xi → xj )
Paccept(xj → xi )

=
P(xj )
P(xi )

= e−β [E(xj )−E(xi )] C Ri j > 0. (3.7)

The Metropolis solution [122] satisfies the above equation by choosing Paccept(xi → xj ) =
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min
{
1,Ri j

}
, i.e. by accepting the update always (if Ri j > 1), or with probability Ri j < 1,

Paccept(xi → xj )
Paccept(xj → xi )

=
min

{
1,Ri j

}
min

{
1,R ji

} = min
{
1,Ri j

}
min

{
1,R−1i j

} = Ri j , (3.8)

as either Ri j ≤ 1 or R−1i j ≤ 1.
In the case of the (anisotropic) nearest-neighborHeisenbergmodel, theHamiltonian, Eq. (2.15),

can be rewritten to single out the spin at site k ,

H =
∑
〈i , j 〉
i , j,k

Si · J Sj +
∑
j

n.n. of k

Sk · J Sj = H rest
k + Sk ·Mk , Mk = J

∑
j

n.n. of k

Sj , (3.9)

such that the energy difference is merely given by the scalar product between the change of
the spin at the selected site and the intrinsic magnetic field Mk it feels,

E({S1, . . . , S′k , . . . , SN }) − E({S1, . . . , Sk , . . . , SN }) = (S
′
k − Sk ) ·Mk . (3.10)

The resulting transition probabilities hence read:

P({. . . Sk . . . } → {. . . S′k . . . }) =
1
N

dΩk

4π
×min

{
1, e−β (S

′
k−Sk )·Mk

}
. (3.11)

At low temperatures, the energy difference may be too large to allow for sufficiently high
acceptance rates. To a certain point, this can be avoided by restricting the proposal of the
updated spin S′k to a cone around the original spin Sk of aperture 2θ0. As long as the aperture
angle is keep constant, detailed balance is preserved. Since ‖S′k−Sk ‖ = 2 sin(θ/2), a sufficiently
narrow cone will boost acceptance rates. This may be particularly beneficial to capture low
temperature classical spin wave excitations but will generally not help with frustrated ground
states.
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Algorithm 1: Cone-restricted Metropolis update for the (anisotropic) Heisenberg
model
1 repeat N times
2 k ←− UniformInteger[1,N ]
3 M←− J

∑
j Sj // j runs over nearest neighbors of k

4 ϕ ←− Uniform[0, 2π ]
5 cosθ ←− Uniform[cosθ0, 1]

6 S′k ←−

√
1 − cos2 θ cosϕ√
1 − cos2 θ sinϕ

cosθ


7 S′k ←− RSk where R =


Sk ,xSk ,z/

√
1 − S2k ,z −Sk ,y/

√
1 − S2k ,z Sk ,x

Sk ,ySk ,z/
√
1 − S2k ,z Sk ,x/

√
1 − S2k ,z Sk ,y

−Sk ,y/
√
1 − S2k ,z 0 Sk ,z


8 ∆E ←− (S′k − Sk ) ·M
9 if ∆E < 0 or Uniform[0, 1] < e−β∆E then
10 Sk ←− S′k/‖S

′
k ‖ // renormalize to avoid error aggregation

3.2.2 Heat-bath algorithm

The heat-bath algorithm constitutes yet another solution to the detailed balance equation.
Whereas theMetropolis transition probability only depended on the energy difference between
the current and updated configurations, the heat-bath transition probability is independent of
the former and accepts transitions to the updated configuration xj with a probability propor-
tional to P(xj ),

Paccept(xi → xj ) =
P(xj )∑
l P(xl )

, (3.12)

where l sums over the set of all resultant configurations xl that is closed under the proposed
update in order to ensure the normalization of the acceptance probabilities,∑

l

P(xi → xl ) = 1 ∀ i . (3.13)

In general, the heat-bath algorithm can only be applied to systems with discrete degrees of
freedom, such as the q-state Potts model (and its q = 2 special case, the Ising model) where the
sum in the denominator runs over the q possible states and updates to each of the q states are
proposed with equal probability.

For systems with continuous degrees of freedom, a heat-bath algorithm can be devised only
in special cases. Fortunately, for the (anisotropic) Heisenberg model this is indeed possible. In
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order to preserve the normalization of the transition probabilities, one considers the integral,∫
dΩk e

−βE = e−βE
rest
k

∫
dΩk e

−βSk ·Mk = e−βE
rest
k 2π

∫ 1

−1
d cosθ e−β ‖Mk ‖ cos θ (3.14)

= e−βE
rest
k

4π
β ‖Mk ‖

sinh(β ‖Mk ‖). (3.15)

Hence, the following heat-bath expression for the transition probabilities formally satisfies
detailed balance:

P({. . . Sk . . . } → {. . . S′k . . . }) =
1
N

e−βE({...S
′
k ... }) dΩ′k∫

dΩ′′k e
−βE({...S′′k ... })

(3.16)

=
dΩ′k
4πN

× β ‖Mk ‖ e−βS
′
k ·Mk

sinh(β ‖Mk ‖)
. (3.17)

One may be tempted to view this as the product of the proposal probability for choosing a ran-
dom site and proposing an updated spin isotropically, multiplied by a subsequent acceptance
probability. However, the latter is not guaranteed to be smaller than one for all temperatures,
owing to its origin in a probability density. This is why the heat-bath algorithm is not readily
generalized to continuous degrees of freedom.

Rather than drawing S′k isotropically, one can instead view the whole of Eq. (3.17) as the
proposal probability (density) according to which S′k is generated. To that end, one writes

P({. . . Sk . . . } → {. . . S′k . . . }) =
1
N

dϕ

2π
fβ ‖Mk ‖(cosθ ) d cosθ, fα (z) =

α e−αz

eα − e−α , (3.18)

finds the cumulative density, Fα (z) = (eα − e−αz )/(eα − e−α ), and generates values of cosθ
accordingly. Since θ is the angle between the updated spin S′k and its local magnetic field Mk ,
one needs to ensure the resulting spin is properly rotated. This can be done in a similar way
as in the cone-restricted Metropolis update, however this time relative to Mk , rather than Sk .

The heat-bath algorithm is widely adopted in the field of lattice gauge theories where it
was originally developed [123]. It performs generally better than the Metropolis algorithm⁴,
especially at low temperatures [124]. The version outlined above for the Heisenberg model
eliminates the need for a subsequent acceptance step. Further, it does away with the cone
aperture tuning parameter since the polar angle θ is already sampled from the optimal dis-
tribution. Its superior performance has been verified numerically and it was thus adopted in
place of the Metropolis update for the numerical work in part III of this thesis.

⁴A known exception to this rule is, in fact, the Isingmodel for which theMetropolis algorithm performs slightly
better at criticality.
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Algorithm 2: Heat-bath update for the (anisotropic) Heisenberg model
1 repeat N times
2 k ←− UniformInteger[1,N ]
3 M←− J

∑
j Sj // j runs over nearest neighbors of k

4 ϕ ←− Uniform[0, 2π ]
5 u ←− Uniform[−1, 1]
6 cosθ ←− −1 − 1

β ‖M‖ ln
[
1 − u

(
1 − e−2β ‖M‖

) ]
7 Sk ←−


√
1 − cos2 θ cosϕ√
1 − cos2 θ sinϕ

cosθ


8 Sk ←− RSk where R =


MxMz/‖M‖M⊥ −My/M⊥ Mx/‖M‖
MyMz/‖M‖M⊥ Mx/M⊥ My/‖M‖
−My/M⊥ 0 Mz/‖M‖

 ,
M⊥ =

√
‖M‖2 −M2

z

3.3 Microcanonical updates

3.3.1 Global O(3) symmetry

In cases where the Hamiltonian possesses a global symmetry Ω, it can be beneficial to include
an update that transforms the system’s state accordingly by someω ∈ Ω. Hence, the proposed
update is microcanonical and can always be accepted so long asω andω−1 are proposed with
equal probability. In the case of the isotropic Heisenberg model, Ω = O(3) admits for global
rotoreflections in spin space. Uniform proper rotations matrices [SO(3)] are readily generated
by choosing the Euler angles (α, β,γ ) uniformly. Reflections may be incorporated by flipping
the sign of one column conditional on a coin toss. Since the random rotoreflection matrix only
needs to be set up once per update, this update is fairly cheap and trivially vectorizable.
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Algorithm 3: Global O(3) rotoreflection update
1 α ←− Uniform[0, 2π ]
2 β ←− Uniform[0, 2π ]
3 γ ←− Uniform[0, 2π ]

4 ω ←−

cosα cosγ − sinα sin β sinγ − sinα cos β − cosα sinγ − sinα sin β cosγ
cosα sin β sinγ + sinα cosγ cosα cos β cosα sin β cosγ − sinα sinγ

cos β sinγ − sin β cos β cosγ


5 if UniformBool then // coin toss

6 ω ←−

−1 0 0
0 1 0
0 0 1

 ω
7 foreach lattice site k = 1, . . . ,N do
8 Sk ←− ωSk

The same symmetry is also present in the gauge model, cf. Eq. (2.20). In cases where this
symmetry is explicitly broken by the Hamiltonian, one may resort to a subgroup; e.g. the XXZ
Heisenberg model retains a global D∞h = O(2) × Z2 symmetry.

Whether or not this update can provide an reduction in autocorrelation times ultimately
depends on the observable. Neither does it provide any utility in navigating the intricate low-
energy landscape of frustrated systems, nor is there any benefit to combating critical slowing-
down. Physically relevant observables will also often explicitly obey the same symmetry, such
that their measurements are not affected by the update and, hence, their autocorrelation times
will not change. For these reasons, global rotations are often not included in the update scheme.

In particular, this is the case for the scalar order parameter, whereas the underlying ten-
sorial order parameter transforms according to the rotoreflection ω, i.e. each of its indices is
contracted with one instance of ω. For the sake of machine learning of order parameters, the
symmetry Ω may or may not be respected by the machine’s design. For the TK-SVM method
that will be introduced in Ch. 5, this is not the case and, hence, the machine will have to learn
the symmetry from the training data. Thus, the global O(3) update is indeed essential to obtain
independent training data.

3.3.2 Overrelaxation

Like the heat-bath algorithm, the overrelaxation update was originally developed in the context
of lattice gauge theories [125, 126], building on ideas stemming from the numerical solution of
systems of linear equations. The underlying idea is to propose an updated configuration that is
located on (approximately) the same isoline in the energy landscape around a local minimum.
That is, rather than relaxing the configuration into the local energy minimum (a move that is
always accepted in the Metropolis scheme, but difficult to reverse), the system is overrelaxed
to a configuration opposite the local minimum. As long as the energy remains comparable, the
update would still have a high acceptance probability while not maneuvering the system into
a configuration that is difficult to escape from. Hence, overrelaxation is particularly useful in
reducing autocorrelation times in frustrated systems whose ground state is highly degenerate.
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In the case of continuous spin systems such as the (anisotropic) Heisenberg model, it is
possible to formulate a microcanonical overrelaxation update exactly, voiding the need for a
subsequent acceptance step. To this end, once again a single spin Sk is considered and updated
such that the scalar product with its local magnetic field, Sk ·Mk , and by extension the energy,
is left invariant. Any such choice would be valid, but best results are achieved when mirroring
Sk on Mk .

Since this update is deterministic, one can avoid the use of random numbers entirely by
executing it sequentially for all spins, though it has to be noted that each updated spin affects
the local magnetic field felt by its neighbors. For this reason, the overrelaxation update is tricky
to vectorize on frustrated lattices; on bipartite lattices, both sublattices may again be updated
sequentially but within each sublattice, the update can be vectorized. Regardless, when used
in conjunction with the other update schemes, the overrelaxation update is not performance-
critical.

Algorithm 4: Overrelaxation update for the (anisotropic) Heisenberg model
1 foreach lattice site k = 1, . . . ,N do
2 M←− J

∑
j Sj /* j runs over nearest neighbors of k */

3 Sk ←−
2 Sk ·M
‖M‖2 M − Sk

3.4 Parallel tempering

The parallel tempering (PT) update [127] works in an extended configuration space as it oper-
ates on an ensemble of (spin) configurations at a number of different temperatures. For each
temperature, an otherwise independent Monte Carlo configuration is simulated using, for ex-
ample, the updates presented in the previous sections. These replicas typically run as parallel
processes or threads, possibly also on separate nodes of a distributed compute cluster.

As part of the regular update sequence, the parallel tempering update proposes a swap of
the configurations of two replicas at different temperatures. Thus, this update constitutes a
point of synchronization and communication between otherwise (“embarrassingly”) parallel
simulations. To be concrete, consider that a pair of replicas at temperaturesT1 andT2 is picked
at random. Prior to the update, let the configuration of the first one be xi and that of the
second one xj . The swap of the configurations xi and xj can then be accepted according to the
Metropolis probability. Since the PT update is its own reverse, the proposal probabilities for
the update cancel in the detailed balance equation, yielding

Paccept((xi , xj ) → (xj , xi )) = max

{
1,
P((xj , xi ))
P((xi , xj ))

}
, (3.19)

where the Metropolis ratio is given by

P((xj , xi ))
P((xi , xj ))

=
e−β1E(xj )e−β2E(xi )

e−β1E(xi )e−β2E(xj )
= exp

[
−(β2 − β1)(E(xi ) − E(xj ))

]
. (3.20)
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In order to maximize the acceptance, only swaps between adjacent temperatures are proposed.
Rather than swapping configurations, the replicas may simply swap temperatures and keep

their configuration. The PT update thus only requires minimal communication between repli-
cas: each only has to evaluate (β ′ − β)E(x) where β ′ is the inverse temperature of its update
partner. The replicas are thus seen to perform a random walk in temperature. Hence, the
benefit of PT toward curing excessively long autocorrelation times at low temperatures comes
about by allowing a MC configuration that is “stuck” in a local energy minimum to escape it
after heating up to a higher temperature and subsequently anneal back to lower temperatures,
reaching a different local minimum. In this way, PT serves a similar role as simulated anneal-
ing (which may additionally be used during the thermalization phase), but does so in a way
that dynamically adjusts the temperature over the course of the entire simulation, all the while
preserving detailed balance such that one does not need to allow for any additional thermal-
ization phases after each swap. It is therefore particularly useful in frustrated systems which
have a highly degenerate ground state.

The choice of the (fixed) temperatures at which the replicas run is crucial to the utility of
PT. On the one hand, the temperatures should span a range that includes both the physically
interesting low temperatures and high enough temperatures to escape local minima. On the
other hand, if the temperatures are spaced too far apart from each other, the acceptance rate of
swaps will decay exponentially. Counterintuitively, using too many temperatures in total will
not only be expensive but also detrimental to the overall performance: the benefit arising from
high acceptance rates will be offset by the larger extent of the configuration space. The relevant
quantity to gauge the performance of the PT update is thus not given by the acceptance rate,
but rather by the turnaround time, i.e. the time it takes a single replica to diffuse from the lowest
temperature to the highest and back to the lowest. An automatic scheme has been proposed to
optimize the distribution of the temperatures with respect to the turnaround time [128]. Doing
so can be especially helpful around phase transitions where it results in a higher concentration
of temperature in the vicinity of the critical point where the sudden change in energy might
otherwise inhibit acceptance rates. In the case of the frustrated systems investigated in this
thesis, particularly for the kagome antiferromagnet studied in Ch. 9, it was found that near-
ideal results were obtained when adopting a logarithmic temperature grid, negating the need
to implement the elaborate automatic scheme.

PT can also be applied more generally. Rather than swapping configurations between repli-
cas of different temperatures, other parameters of the system may be varied, e.g. coupling
constants. In those cases, the energy function itself depends on the parameter that is being
swapped. This also applies to quantum Monte Carlo simulations where more generally, the
ratio between the weights of the current configuration given the two different values of the
PT parameter needs to be evaluated. This flexibility renders PT a versatile update scheme. Its
implementation comes at the cost of additional overhead both at runtime (due to the neces-
sity of interprocess communication and synchronization) and in terms of implementation (as
it defies the otherwise “embarrassingly parallel” nature of Monte Carlo codes), but can be ap-
plied subsequently to arbitrary Monte Carlo schemes. A generic implementation of PT for the
ALPSCore library has been developed as part of the source codes supporting this thesis.





4Machine learning states of matter
Machine learning methods, generally speaking, aim to infer a predictive statistical model from
a set of representative training data

{
x(k ) ∈ X | k = 1, . . . ,Ns

}
. X is the space from which

the data are sampled. For the sake of this thesis and in other works which study classical
spin systems [23, 26, 129, 130], it is identical to the classical spin configuration space of the
Monte Carlo simulation, as introduced in the previous chapter. These raw configurations are
the natural choice as they are accessible from the simulation, specify the underlying state fully,
and any derived quantities (“features”) may be calculated from them.

In quantum systems, the choice of the input data becomes more ambiguous. Dependent
upon the goals of the respective project, machine learning schemes based on auxiliary field con-
figurations [131], entanglement spectra [132, 133], Green functions [134], feature extraction
through quantum loop topography (QLT) [135, 136], eigenfunctions [137], and momentum-
space representations of Hamiltonians [138, 139] have all been devised. More recently, ex-
perimental data obtained through quantum state tomography (QST) [140, 141] and single-shot
momentum-space density images in cold atom systems [142] were successfully used to train
neural networks.

As of yet, no single “killer application” of machine learning within the realm of condensed
matter physics has emerged where new results were obtained which had a profound impact
on the field. This is certainly not for a lack of effort, though. The activities in this area broadly
fall into three loosely connected categories. The first tries to represent the quantum many-
body wave function through neural networks such that an efficient representation capturing
the relevant correlations is learned, which may then be used to find the ground state. This
approach is in spirit similar to the idea behind matrix and tensor network states and some
explicit connections have been pointed out [29, 30]. These neural quantum states (NQS) were
pioneered in the context of variational Monte Carlo [24] and the possibilities and limitations
have since been studied on a variety of systems and for various related architectures [22, 25,
140, 141, 143].

Inspired by the successful application of machine learning to image recognition, the recog-
nition and classification of phases established itself as the second pillar of machine learn-
ing in physics. In this context, both kernel methods [26, 144–146] and artificial neural net-
works [133, 147], in particular convolutional ones [23, 131, 138, 139, 148], have been success-
fully applied.

Third, machine learning has also been used to devise optimized cluster updates for Monte
Carlo simulations using generative sampling [149, 150]. The “self-learning”Monte Carlo scheme,
in contrast, tries to achieve the same goal by learning an effective model Hamiltonian which
can be updated more efficiently and applying the resulting update to the original model [151–
156]. Lastly, artificial neural networks have also been used to solve the ill-posed problem that
is inherent to the analytic continuation of imaginary-time correlators to the real-time domain
in many quantum Monte Carlo schemes [157].

Sometimes, the training data are supplemented with discrete labels,
{
(x(k ),y(k ))

}
, corre-

sponding to the particular quantity that one wishes to predict later on for unlabeled testing
data. Examples from the domain of physics include labels corresponding to distinct phases or
winding numbers [138, 139]. Such supervised learning schemes tend to be easier to train, allow

35
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for an optimization with respect to a physically well-defined quantity, and typically make do
with less training data compared to unsupervised schemes where the former remain unlabeled.

In contrast, in unsupervised learning, the machine has to infer the labeling by itself which
can, in principle, greatly advance the physical understanding, for example in the case of phase
classification when confronted with an unknown phase diagram. Unsupervised learning can
also be beneficial in situations where the labeling of the data is in principle possible but pro-
hibitively expensive to perform on a large data set, e.g. because it requires input by (paid)
humans. In those cases, semi-supervised learning, a combination of supervised learning on a
small set of labeled data and unsupervised learning on the whole set, can serve to nudge the
machine towards the desired labeling while still taking advantage of the large repository of
data.

In addition to supervised and unsupervised learning, a third paradigm, reinforcement learn-
ing, works fundamentally differently, in that no fixed training data are present a priori, but the
machine rather learns a policy according to which an agent can take certain actions. The effect
of an action on its environment is subsequently evaluated against some supplied cumulative
reward (or regret) function. Crucially, suboptimal actions are not immediately corrected but
force the machine to learn to counter them. This game-oriented approach is more alien to the
physicist’s mindset and saw adoption in physics only recently where, among other applica-
tions [143, 158, 159], it was used to learn topological error correction codes [160–162].

In the forthcoming section, a technical introduction to two kernel methods is given, one of
which, support vector machines (SVMs), falls under the umbrella of supervised learning, while
the other, (kernel) principal component analysis (kPCA), is unsupervised. This discussion is
framed in the context of a generic machine learning problem. In the next chapter, the intro-
duction of the tensorial kernel will make the connection back to physics and explain how these
kernel methods can be used to learn multipolar order in classical spin systems. The remain-
der of this thesis chiefly applies the tensorial kernel to SVM (TK-SVM), the exception being
Sec. 8.4 where its capability in conjunction with kPCA is demonstrated. Nonetheless, while
SVM itself is technically a supervised scheme, it will become apparent that it can be used in an
unsupervised context by labeling the training data trivially by the parameters they have been
sampled at. Ch. 7 discusses how a physically meaningful phase diagram, i.e. labeling, can be
automatically inferred using a spectral graph analysis.

The final section of this chapter dives deeper into the applications of artificial neural net-
works specifically. A rudimentary definition of the most important network architectures will
be given, but the focus of that section is on their application in condensedmatter physics. Since
neural networks are more difficult to interpret as compared to kernel methods, an interesting
question in this context arises in regard to what physical quantities can actually be learned.

4.1 Kernel methods

4.1.1 Support vector machines

Support vector machines (SVM) provide a means to construct a classifier from Ns training data
samples, (x(k ),y(k )), where x(k ) ∈ X ⊆ Rd and y(k ) labels the class of the training sample. The
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(a) Perfectly separable data with an
optimal hard margin;

C = 106

(b) regularized SVM with a rela-
tively hard margin;

C = 1

(c) same as (b) but with a softer
margin.

Figure 4.1: Illustration of SVM on two-dimensional training data from two classes, green
(squares) and red (circles). The decision boundary is indicated by the black line,
the margin by the shaded area.

case of binary classification, y(k ) ∈ {−1,+1}, is considered here first and extensions to the case
of more than two classes will be made afterwards.

Definition of the optimization problem

The aim of SVM is to find a hyperplane, dubbed decision boundary,

w · x − ρ = 0, (4.1)

defined by parameters w ∈ Rd , the normal vector, and bias ρ ∈ R, that separates the data into
the two classes, such that

y(k )
(
w · x(k ) − ρ

)
> 0 ∀ k = 1, . . . ,Ns . (4.2)

In general, this may not be possible, but if it is, typically infinitely many solutions exist. In
order to select the solution that separates the data most clearly, a finite margin is imposed
which must not contain any of the training data samples, and the width of the margin is sought
to be maximal, as shown in Fig. 4.1(a). Formally, the right-hand-side of inequality (4.2) can be
replaced by unity, such that the width of the margin is given by 2/‖w ‖. The optimization
problem may then be written as{

minimize 1
2 ‖w‖2 with respect to w, ρ,

subject to y(k )
(
w · x(k ) − ρ

)
≥ 1 ∀ k .

(4.3)

Most of the time, the data may not be perfectly separable and the constraint (4.3) must be
relaxed, allowing for incursions into the margin at a cost proportional to C > 0 which serves



38 CHAPTER 4. MACHINE LEARNING STATES OF MATTER

as a regularization parameter:{
minimize 1

2 ‖w‖2 +C
∑

k ξk w. r. t. w, ρ, {ξk },
subject to y(k )

(
w · x(k ) − ρ

)
≥ 1 − ξk , ξk ≥ 0 ∀ k

(4.4)

where ξk ,k = 1, . . . ,Ns are slack variables. ξk > 1 corresponds to a misclassified sample.
The optimization problem (4.4) constitutes a quadratic programming (QP) problem. The slack
variables increase the dimensionality of the parameter space byNs . However, the optimal value
of each slack variable is determined by the d +1 original parameters and the coordinates of the
corresponding training sample, ξk = h(x(k ),y(k )), through the so-called hinge loss,

h(x,y) = max{0, 1 − y(w · x − ρ)}, (4.5)

and, thus, the constraints could be eliminated. Perhaps counterintuitively, it is often benefi-
cial to the solution of convex optimization problems not to eliminate auxiliary variables, but
to solve the higher-dimensional optimization problem with additional constraints in favor of
a simpler optimization objective [163]. Thus, one solves the constrained optimization prob-
lem (4.4) numerically, yet its solution is fully determined by w and ρ.

Since the training data enter the optimization problem only as inner products in the con-
straint, the optimal w will lie in the span of the training data,

w =
∑
k

λky
(k )x(k ), (4.6)

as any additional orthogonal component would be detrimental to the optimization objective.
Indeed, only those samples which violate (or touch) the margin incur a nonzero hinge loss and
contribute to w with a nonzero λk . These are the support vectors.

Larger values of the regularization parameter C “harden” the margin, making it more nar-
row and reducing the number of support vectors. This comes at the risk of overfitting noise.
In the limit C →∞, the solution to Eq. (4.3) is reproduced. For example, in Fig. 4.1(a) only the
two points touching the margin are support vectors. Smaller values ofC regularize the problem
more strongly, allowing for a wider margin and consequently a higher number of support vec-
tors, but potentially discard faithful information in the training data set. Panels (b) and (c) of
Fig. 4.1 illustrate two different regularization for the same noisy data. The optimal choice of C
is ultimately problem-specific. In principle, one has to validate the learned model with respect
to independent test data for different values of C which can span many orders of magnitude.

There exists however an alternative reparametrization of Eq. (4.4) in terms of a regulariza-
tion parameter ν ∈ [0, 1) which has been shown to impose an upper bound on the fraction of
training samples that violate the margin and a lower bound on the fraction of training samples
that serve as support vectors [164]. ν-SVM thus admits a more universal interpretation and it
was found to simplify the selection of an appropriate regularization. The exact relation between
C and ν is rather complicated while it does not further the understanding of the principles of
the method and is therefore omitted here. It is important to note, however, that C-SVM and
ν-SVM are equivalent regarding their ability to perform data classification. The optimization
problem may not have a feasible solution for all values of ν if the training data are unbalanced.
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In fact, the maximum feasible value is given by νmax = 2min(N +s ,N −s )/Ns where N ±s are the
number of training samples in either class [165].

Equation (4.4) constitutes a quadratic programming (QP) problem having a quadratic op-
timization objective and linear inequality constraints [163]. QP problems are a subclass of
convex optimization problems, a fact that conveys a number of reassuring mathematical prop-
erties. In particular, the convergence to the global minimum is guaranteed [163] and QP prob-
lems are numerically tractable by standard methods such as sequential minimal optimization
(SMO) [166, 167]. The complexity of SMO is somewhat dependent on the nature of the training
data. Reference [166] gives an empirical estimate of better than O(N 2.2

s ) which is roughly in
line with the observations made in this work. Note that for the purposes of this thesis, the
computational effort was dominated by the generation of independent training data, rather
than by the SVM optimization.

Decision function

The decision function

d(x) = w · x − ρ (4.7)

determines the orientated distance of a test sample x from the hyperplane and its sign can
be used to predict the class label. Plugging Eq. (4.6) into the above allows for the practical
calculation of the decision function as a sum over inner products with the support vectors:

d(x) =
∑
k

λky
(k )x(k ) · x − ρ . (4.8)

The solution to the optimization problem is thus entirely given by the optimal parameters
{λk } and the bias ρ.

The kernel trick

Often, the data in the original d-dimensional space X is not expected to be separable by a hy-
perplane. The solution is to invoke a mapping ϕ : X → F , x 7→ ϕ(x) to a higher-dimensional
auxiliary feature space F where the mapped training data become linearly separable. Fur-
thermore, since the decision function and the optimization problem (4.4) involve only inner
products in the auxiliary space, the details of the mapping ϕ (and even the dimensionality of
the auxiliary space) need not be known as long as one can compute a kernel function K of the
original data in the raw feature space, such that

K(x, y) = ϕ(x) · ϕ(y). (4.9)

Indeed, Mercer’s theorem implies the existence of such a mapping ϕ : X → F to a (possi-
bly infinite-dimensional) auxiliary feature space F for any kernel function K : X × X → R
satisfying Mercer’s condition, i.e., for any square-integrable function д on X, the inequality∬

X×X
dx dyд(x)K(x, y)д(y) ≥ 0, (4.10)
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(a) radial basis functions kernel (b) quadratic kernel

Figure 4.2: Data which are not linearly separable can be classified using a SVM with an appro-
priate kernel. The attainable shape of the decision boundary depends on the choice
of the kernel; for the quadratic kernel in panel (b) this yields an ellipse.

holds [168].
The decision function is consequently obtained by replacing the inner product in Eq. (4.8)

with an evaluation of the kernel function,

d(x) =
∑
k

λky
(k )K(x(k ), x) − ρ. (4.11)

This is also done in the definition of the optimization problem (4.4), wherew is first replaced by
its expansion in terms of support vectors, Eq. (4.6). For example, in the optimization objective,
one replaces

‖w‖2 = w ·w =
∑
k ,k ′

λkλk ′y
(k )y(k

′)x(k ) · x(k ′) →
∑
k ,k ′

λkλk ′y
(k )y(k

′)K(x(k ), x(k ′)). (4.12)

The kernel trick does not acquit one of choosing the kernel suitably for it to result in an ad-
equate classification. However, coming up with a kernel function is generally more accessible
to domain knowledge or physical insight than engineering the feature mapping ϕ explicitly.

An example of this can be seen in the popular choice of a kernel function based on ra-
dial basis functions (RBF), such that, K(x, y) = f (‖x − y‖). Commonly, Gaussian radial basis
functions are used,

KRBF(x, y) = exp
(
−ε ‖x − y‖2

)
, (4.13)

resulting in a decision function that is given by a superposition of Gaussians centered on each
of the support vectors. The RBF kernel derives its versatility from the assumption that the
notion of locality induced by the metric on X is meaningful in the problem at hand. Hence,
it can accomodate smooth clusters of otherwise arbitrary shape in X. Fig. 4.2(a) illustrates
the use of the RBF kernel in two dimensions. The characteristic length scale determining the
radius affected by a single data point is given by 1/ε . Choosing ε too large leads to overfitting by
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proposing a decision boundary that wiggles around individual data points, while an excessively
small value of ε might brush off legit features. Thus, the choice of the kernel parameter ε in
principle has to be crossvalidated in a similar way to the regularization parameter.

Chapter 5 introduces the particular choice of the kernel function that was adopted for the
identification of multipolar spin order and it is based on the quadratic kernel,

Kquad(x, y) = (x · y)2. (4.14)

In d = 2 dimensions, one can see that the quadratic kernel can explicitly be rewritten as an
inner product of at least three-dimensional feature vectors,

Kquad(x, y) = (x1y1 + x2y2)2 = x21y
2
1 + 2x1x2y1y2 + x

2
2y

2
2

=
[
x21
√
2x1x2 x22

] 
y21√
2y1y2
y22

 = ϕquad(x) · ϕquad(y). (4.15)

In general, theminimum feature spacemimicked by the quadratic kernel isd(d+1)/2-dimensional
and would quickly grow prohibitively large if the mapping ϕquad was applied explicitly.

Another useful property of the quadratic kernel becomes apparent when reshuffling the
order of summations in the kernelized decision function, Eq. (4.11),

d(x) =
∑
k

λky
(k )

(
x(k ) · x

)2
− ρ =

∑
k

λky
(k )

∑
i , j

x (k )i xix
(k )
j x j − ρ

=
∑
i , j

(∑
k

αky
(k )x (k )i x (k )j

)
xix j − ρ =

∑
i , j

Ci jxix j − ρ, (4.16)

i.e. the summation over the support vectors can be carried out to yield a coefficient matrix
C ∈ Rd×d which represents an alternative parametrization of the solution to the optimiza-
tion problem. It reveals that the decision function using the quadratic kernel is, in fact, a
quadratic form with respect to the test sample coordinates. Hence, in two dimensions, its iso-
surfaces are conic sections as illustrated in Fig. 4.2(b). The matrixC can be diagonalized to find
their principal axes. In this way, the coefficient matrix admits the extraction of an analytical
functional form of the optimal decision boundary. This mechanism is the groundwork for the
interpretability of the TK-SVM method exposed in Sec. 6.

The d(d + 1)/2 independent elements of the symmetric coefficient matrix can also be seen
to be identical to the entries of the normal vector w if the Mercer mapping ϕ was carried out
explicitly and a linear SVM was trained on the resulting feature vectors. In practice, often
only a small fraction (≈ ν ) of training samples is required as support vectors whereas the di-
mension of the input data, d , may be quite large. In this scenario, the parametrization of the
decision function through the support vector weights {λk } is generally more efficient than that
through the coefficient matrix, both in terms of space (Ns numbers vs. d(d + 1)/2 numbers)
and evaluation complexity (O(νNsd) vs. O(d2)).
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Multiclassification

The extension of SVM to the case whereM > 2 distinct labels are assigned to the training sam-
ples is most effectively accomplished by considering allM(M − 1)/2 pairs of labels one by one
[169], considering only the training samples belonging to either label and solving the binary
classification problems individually. This produces M(M − 1)/2 distinct decision functions.
Any training sample that contributes to any decision function by a nonzero λk is considered
a support vector of the multiclassification problem. Note that depending on the nature of the
problem, the share of support vectors contributing to multiple decision functions may be sig-
nificant, allowing for a space-efficient representation.

When it comes to predicting the label for a test sample, each decision function establishes
a precedence of one label over the other. Ideally, these relations are collectively compatible
with transitivity and one can unambiguously assign a label. When this is not the case, the
approach to reconcile the relations followed by most SVM software packages is to “poll” by
giving one vote to each decision function and picking the label that accumulates the majority
of votes [170]. This approach is not well suited to situations where the labeling of the training
data does not necessarily correspond to the “physical” reality and multiple labels in fact rep-
resent the same class, resulting in the vote being split among them. It also fails to recognize
situations where the decision function is incapable of distinguishing between two labels but
rather overfits noise.

For the purpose of this thesis, the blanket polling scheme is therefore not followed but in-
stead the decision functions are considered individually andmay be discarded based on physical
insight.

4.1.2 Principal component analysis

Principal component analysis (PCA) is an unsupervised method to identify the most relevant
orthogonal “directions” (components) among the set of Ns training samples, {x(k )}. This is
reminiscent to the principal axis transformation in mechanics where one identifies the orthog-
onal principal axis of rotation of a rigid body by diagonalizing its inertia tensor. Likewise, in
PCA, the sample covariance matrix of the training data is diagonalized.

In this subsection, we will first introduce this basic linear PCA to illustrate the general
idea and establish notation. Subsequently, its nonlinear extension will be discussed which
once again makes use of the kernel trick which has been introduced previously in the context
of SVM (cf. Sec. 4.1.1). The particular choice of the quadratic kernel will be revisited and a
concept akin to the coefficient matrix in SVM (cf. Eq. (4.16)) will be seen to arise.

While (linear) PCA dates back to the early 20th century, the development of its kernelized
extension (kPCA) coincided with the heyday of other kernel methods in the late 1990s [15]. The
tensorial kernel, which will be introduced in the next chapter, can also be applied to kPCA. A
demonstration of this is given in Sec. 8.4.

Linear PCA

The goal of PCA is to identify for each principal component, indexed j = 1, . . . ,Nc , a set of
weightsw(j) ∈ Rd which linearly combine the input data x ∈ Rd to find the contribution of that
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principal component to the makeup of x, dubbed the score, t (j)(x) = x · w(j). When collecting
all training samples x(k ) ∈ Rd , k = 1, . . . ,Ns , into a single matrix of row vectors, X ∈ RNs×d ,
such that Xk ,i = x (k )i , and likewise the weights of all principal components into a matrix of
column vectors, W ∈ Rd×Nc , such thatWi , j = w

(j)
i , then

T = XW (4.17)

is the score matrix T ∈ RNs×Nc , such that Tk , j is the score of sample k with respect to the
j-th principal component, t (j)(x(k )). Analogously, once the principal components have been
identified based on the training data X, given another set of Nt test samples, X̃ ∈ RNt×d ,
one may define their corresponding score matrix T̃ = X̃W with respect to the same principal
components. Since the principal components ought to be orthogonal, W is an orthogonal
matrix, W> =W.

Assuming that the training data are shifted in such a way that their sample average, i.e.
the columnwise mean of X, vanishes, then the product X>X is proportional to the sample
covariance matrix,

cov(xi , x j ) =
1

Ns − 1

Ns∑
k=1

(
x (k )i − x̄i

) (
x (k )j − x̄ j

)
=

1
Ns − 1

Ns∑
k=1

Xk ,iXk , j =
(X>X)i , j
Ns − 1

, (4.18)

where x̄i = 0 is the (vanishing) sample mean of the i-th component. In order to find the
principal components, the covariance matrix is diagonalized,

X>X =WΛW>, (4.19)

whereW is indeed orthogonal and Λ is the diagonal matrix holding the nonnegative eigenval-
ues λj , j = 1, . . . ,Nc , since X>X is symmetric. Without loss of generality, λk are assumed in
descending order and any trailing eigenvalues zero are truncated. Thus, the maximum num-
ber of principal components, Nc , is given by the rank of X. In practice, the purpose of PCA
is to identify the most relevant components and discard the remaining ones, thus performing
a dimensional reduction that retains the most relevant correlations. Intuitively, the relevance
of the k-th component is given by the eigenvalue λk which is seen to be proportional to the
average square of its corresponding score over the training data,

λk =
(
W>X>XW

)
k ,k =

(
T>T

)
k ,k =

Ns∑
i=1

[
t (k )(x(k ))

]2
. (4.20)

Rather than diagonalizing X>X, one can also calculate the singular value decomposition of
the data matrix X itself, rewriting it as

X = UΣW>, (4.21)

where Σ is the diagonal matrix holding the Nc singular values σj and U ∈ RNs×Nc ,W ∈ Rd×Nc

are orthogonal. The latter can be seen to be identical to the weight matrix, which was obtained
through the eigendecomposition above, by substituting

X>X =WΣU>UΣW> =WΣ2W> (4.22)
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and identifying Λ = Σ2. Again, the absolutes of the singular values can be used to gauge
each component’s average score, arrange them by relevance, and reduce the dimension of the
problem.

Using SVDs to compress (matrix product) wave functions while keeping the most relevant
correlations between sites is also the idea behind DMRG. Indeed, variations of this method
have numerous applications in science and engineering.

Kernel PCA

In order to extend PCA in a way that allows it to form the principal components from non-
linear functions of the training data, one again resorts to the kernel trick, i.e. by performing
linear PCA in a high-dimensional feature space. Crucially, the Mercer mapping, ϕ, to that
feature space F is again only implicitly defined through the kernel function K , calculating
the inner product in F , cf. Eq. (4.9). Likewise, the number of features, Nf = dimF , remains
undetermined.

To this end, one introduces the feature matrix F ∈ RNs×Nf which is—in principle—obtained
by mapping the rows of X through ϕ. This is despite the fact that F cannot actually be cal-
culated. Following the recipe of linear PCA, a fictional SVD, F = UΣW>, would serve to
diagonalize the feature correlation matrix F>F =WΣ2W>.

While F and consequently its covariancematrix F>F remain inaccessible, however, one does
have access to the reverse product, dubbed kernel matrix, K = FF>, as its elements correspond
to all Ns × Ns evaluations of the kernel function among the training data,

Kk ,l =
(
FF>

)
k ,l = ϕ(x(k )) · ϕ(x(l )) = K(x(k ), x(l )). (4.23)

One caveat to be aware of is that in order for F>F to represent the covariance matrix with
respect to the features, the average of the features over all training samples must again indi-
vidually vanish, 1

Ns

∑Ns
k=1 Fk , j = 0 for all j = 1, . . . ,Nf . This property has to be enforced by a

shift F 7→ F′ = (1 − 1Ns )F where 1Ns is the Ns × Ns matrix with all elements equal to 1/Ns .
Since, F is only implicitly defined, this centralization is explicitly carried out on the level of the
corresponding kernel matrix:

K 7→ F′(F′)> = (1 − 1Ns )FF>(1 − 1Ns ) (4.24)
= K − K1Ns − 1NsK + 1NsK1Ns . (4.25)

Substituting the SVD of F into the definition of the kernel matrix,

K = FF> = UΣW>WΣU> = UΣ2U>, (4.26)

the orthogonal matrix U is seen to diagonalize K. Hence, both U and the (absolute value of)
the singular values of F can actually be calculated by performing an eigenvalue decomposition
on the kernel matrix. Meanwhile, the other orthogonal matrix,W, which defined the principal
components in linear PCA, remains inaccessible unless the explicit form of ϕ is specified.



4.1. KERNEL METHODS 45

This poses the question how one is supposed to calculate the score matrix T = FW while
either factor is inaccessible. Fortunately, this turns out to be possible after all by inserting the
identity,

T = FF>
(
F>

)−1W = FF>
(
WΣU>

)−1W = KUΣ−1 = UΣ. (4.27)

In order to calculate the scores with respect to further testing data, T̃ = F̃W, the kernel matrix
between the test samples and the original training samples needs to be provided, K̃ = F̃F>. The
above calculation still holds up to the penultimate equality, T̃ = K̃UΣ−1. Written in compo-
nents, the score of j-th principal component for a single test sample x is given by:

t (j)(x) =
Ns∑
k=1

K(x, x(k ))Uk , j/σj . (4.28)

Numerically, kPCA thus entails the calculation and diagonalization of the (centralized)Ns×
Ns kernel matrix. Since this matrix is dense, it must therefore be stored in memory. For large
training sets, this can quickly become prohibitively expensive. This is to be contrasted with
SVM which, using the SMO algorithm, does not require addition matrix storage [166].

Quadratic kernel

Hearkening back to the specific case of the quadratic kernel, Eq. (4.14), one finds that the scor-
ing function of each principal component assumes a quadratic form,

t (l )(x) =
Ns∑
k=1

Kquad(x, x(k ))Uk ,l/σl =
Ns∑
k=1

d∑
i , j=1

xix
(k )
i x jx

(k )
j Uk ,l/σl =

d∑
i , j=1

C(l )i j xix j , (4.29)

where each principal component l defines a coefficient matrix,

C(l )i j =
Ns∑
k=1

Uk ,l/σl x (k )i x (k )j . (4.30)

Typically, software packages for kPCA do not give the user access to the resulting U but
rather return the scores T̃ corresponding to test data X̃. By defining

X̃(1) ∈ Rd×d , X̃(1)i ,m = δim ⇒ T̃(1)i ,l = C
(l )
ii , (4.31)

X̃(2) ∈ Rd2×d , X̃(2)(i , j),m = δim + δ jm ⇒ T̃(2)(i , j),l = C
(l )
ii + 2C

(l )
i j +C

(l )
j j , (4.32)

one may then extract the coefficient matrix through

C(l )i j =
1
2

(
T̃(2)(i , j),l − T̃

(1)
i ,l − T̃

(1)
j ,l

)
. (4.33)
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h1 h2 h3 · · · hM

σ1 σ2 σ3 · · · σN

Figure 4.3: Graphical representation of a restricted Boltzmann machine (RBM). Each of the
M hidden units (top layer) is exclusively connected to the N visible units (bottom
layer) and vice versa.

4.2 Artificial neural networks

An artificial neural network (ANN) is a computational graph in which a weight is associated
with each edge. By tuning these weights, the network can be trained to approximate arbitrary
functions, given a suitable underlying graph, i.e. the network’s architecture. In analogy with
biological neural networks, the vertices of the graph are referred to as neurons (or units). Un-
like in their biological counterparts, the architecture of an ANN, particularly the number of
neurons, is typically fixed and learning is achieved solely by strengthening or weakening the
connections between neurons, akin to synaptic neuroplasticity.

A simple, yet popular ANN architecture are restricted Boltzmann machines (RBMs). These
feature two layers ofN visible units {σi } andM hidden units {hj }, respectively. The visible layer
acts as the input to evaluate the network for a given configuration of visible units. The output
is then obtained by contracting the network over all possible configurations of the hidden units
and superimposing their exponentials,

∑
{hj } exp[−βE({σi }, {hj })] where −βE is the result of

the respective contractions. This is reminiscent of the calculation of a partition function by
tracing over the Boltzmann weights of all thermodynamic microstates, hence the name. A
Boltzmann machine is restricted if the network is bipartite, i.e. if visible units are exclusively
connected to hidden units and vice versa, implying that no intralayer connections exist. Fig. 4.3
illustrates the RBM architecture.

The pioneering application of a RBM to the many-body problem employs it as an ansatz for
the wave function of a quantum spin- 12 system within the context of variational Monte Carlo
(VMC) [24]. Both the visible and hidden degrees of freedom are then treated as binary variables,
σi ,hj = ±1. The hidden units may then be traced out, yielding a product of hyperbolic cosines:

ΨM ({σi }, {ai ,bj ,Wi j }) =
∑
{hj }

exp

[∑
i

aiσi +
∑
j

bjhj +
∑
i j

Wi jhjσi

]
(4.34)

= exp

[∑
i

aiσi

]
×

∏
j

2 cosh

[∑
i

Wi jσi

]
, (4.35)

where {ai ,bj ,Wi j } are the weights of visible units, hidden unit, and network connections be-
tween them, respectively. To find the ground state, stochastic reconfiguration (SR) [27, 28]
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Figure 4.4: A feed-forward neural network with two hidden layers and two output units

was employed to minimize the energy with respect to the RBM trial wave function; more com-
monly, stochastic gradient descent (SGD) is used.

More so than the optimization algorithm, the architecture plays a crucial role for efficiency
of the representation of an ANN. While RBMs have been shown to be universally capable of
approximating generic probability distributions [171], this is without regard for the number
of hidden units required to do so. Indeed, it has been explicitly shown that a certain class of
ground states of gapped Hamiltonians cannot be efficiently represented by RBMs, meaning that
the number of required hidden units scales faster than polynomially with the inverse energy
gap [25]. The same authors show that a deep Boltzmann machine (DBM) which has at least
two hidden layers however can do so. On the other hand, DBMs are harder to train compared
to RBMs.

While RBMs (and DBMs) parametrize the wave function through a trace over their hidden
layer(s), most ANNs rather rely on a feed-forward architecture where the input is successively
passed through a number of hidden layers, the last of which is then connected to a (relative
small) number of output units (cf. Fig. 4.4). In order to introduce nonlinearities, a nonlinear
activation function is applied at each layer. The choice of these activation functions (sigmoid,
“soft-max”, rectified linear units (ReLU)) factors into the design of the network architecture;
so does the number of hidden layers, the number of neurons in each layer, the connectivity
between layers, and the addition of pooling layers. Within the supervised learning paradigm,
feed-forward neural networks (FFNNs) can be efficiently trained using backpropagation [12],
an algorithm relying on automatic differentiation (AD) to propagate corrections to the network
weights backward through the network using the chain rule.

FFNNs have been successfully applied to parametrize wave functions for VMC using two
output units, one for the complex phase and one for the modulus [22]. They have also come to
fruition in the context of supervised phase classification [23, 133, 142] where one output unit
per phase is used by employing one-hot encoding, i.e. phases are labeled by the unit vectors
with respect to the space spanned by the output neurons. Predictions on unlabeled test data
may then be made by choosing the phase corresponding to the output unit with the strongest
response.
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In unsupervised learning scenarios, FFNNs may still be of use for phase classification. In
(variational) autoencoders, a standard FFNN is mirrored such that the former output layer re-
sides in the middle and is subsequently used as input to the mirrored network that reconstructs
the original input data based on the latent variables in the middle layer. The network may then
be trained to minimize the reconstruction error. Since the latent variables are typically far
fewer than the input variables, autoencoders thus perform a dimensional reduction. One must
not choose too few latent variables for the reconstruction to become impossible. Thus, the
latent variables can typically not be related to different phases directly but may be used as
features for standard unsupervised methods such as kPCA [146] or t-SNE [172]. Autoencoders
may also be viewed as tools for generative modeling by generating random latent variables
and decoding physically realistic states from it.

Sometimes, input data are available not in the form of interchangeable independent sam-
ples, but as sequential time-series data. Prime examples for applications include both speech
and video recognition. Recurrent neural networks (RNNs) are a type of network whose archi-
tecture is specifically adapted to time-series data by passing it into successive identical intra-
connected layers, each passing their output on to the next one. In the physics domain, RNNs
have recently been used to both classify dynamics [173] and to predict the time evolution of a
quantum system [174].

The substantial importance of the network architecture and the plenitude of hyperparame-
ters that govern it raise the question: What can an ANN actually learn? Themotivation for this
question is twofold. On the one hand, in physical applications it is more often than not insuf-
ficient to learn a black-box representation that captures a wave function or classifies phases;
rather one wishes to characterize the underlying state of matter. On the other hand, one would
hope to gain some insight as to why certain architectures succeed where others fail to guide
the design of ANNs.

In a similar vein to the properties of RBMs [171], FFNNs have been shown to be universal
approximators of Lp functions even with a single hidden layer and for arbitrary bounded non-
linear activation functions, given a sufficient number of hidden units in that layer [175, 176].
However, these mathematical theorems do not provide a bound on the number of hidden units
and it is evident in applications that the number of layers, the connectivity among them, and
the choice of the activation function all dramatically influence the required number of neurons
to achieve a certain level of approximation. Indeed, the class of functions that can be efficiently
approximated with a feasible number of neurons in any given architecture is comparably small.
In Ref. 21, the authors argue that the reason why deep learning in particular has been success-
ful in problems like image classification or speech recognition lies in the fact that typical data
in these problems themselves originate from a small subspace of the entire configuration space.
They identify the hierarchical physical process by which these data are generated as the reason
why deep networks are suited to retrace the individual steps of the hierarchy one-by-one.

This hierarchical interpretation is also corroborated by insight gained from the analysis
of fully trained deep neural networks for image classification. By analyzing the outputs of the
intermediate layers of neurons, one observes that different layers are sensitive towards different
levels of detail, becoming more coarse the closer a layer is toward the final output layer [20].
Likewise, the analysis of convolutional filter maps has produced similar insight in the Ising
and XY models [23]. There, it was seen that the network based its classification scheme on
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the local magnetization, as well as the extent of domain walls which gives an estimate of the
energy. While this is the correct approach for the Ising model, in the XY model only finite-
size effects are picked up and the vortex unbinding at the Kosterlitz-Thouless (KT) transition is
missed. This was previously noted based on the finite-size scaling of the networks performance
alone and it was shown that nontrivial feature engineering is required for the network to learn
the KT transition [148, 177].

The example of the XY model illustrates the importance of interpretability when address-
ing physics problems. A variety of other techniques for “rationalizing” deep neural network
predictions have been developed [178]. However, all of these provide a rather qualitative un-
derstanding. Interpreting ANNs thus remains a difficult task and it is impossible to obtain
quantitative results to extract analytical order parameters in quite the same way as kernel
methods permit.





5Kernel functions for tensorial order
The problem of distinguishing an ordered phase from a disordered one may be viewed as a
binary classification problem. The training data consist of microscopic configurations which
are labeled as being from the ordered or disordered phase, respectively.

The decision function, which quantifies the distance of a sample from the decision bound-
ary, i.e., the phase transition, serves a similar role to the magnitude of an order parameter.
Given a suitable choice of the kernel, the decision function will hence reproduce the true or-
der parameter. This relation was first pointed out by Ponte and Melko in Ref. [26]. There, the
authors studied the Ising model and several of its variants using the standard quadratic kernel,
which is highly interpretable but only applies to linear orders such as the Ising or XY magne-
tization. While being useful systems for an early proof-of-concept, such linear orders are not
particularly challenging test cases, both in the sense that their physics is well-understood, but
also in that the diversity of conceivable linear order parameters is limited and, hence, the ma-
chine does not learn anything that is not immediately obvious from symmetry considerations
alone.

This chapter is devoted to the introduction of the tensorial kernel (TK) which is capable
of capturing general O(N )-breaking orientational orders, with N ≤ 3. This opens the door to
a plethora of intricate tensor order parameters while maintaining the interpretability of the
quadratic kernel upon which it is based. Below, the construction of this kernel is reviewed first
and comments on its combinatorial complexity, symmetries, and implementation are made.
In the last section, an argument is given to support the observation that the bias parameter
can be an asset in detecting the presence of phase transitions. The resulting “rule of thumb”,
summarized in Eq. (5.17), paves the way for a systematic inference of the phase diagram as
eludicated in Ch. 7.

5.1 Definition of the tensorial kernel

Without assuming the specific form of a potential multipolar order, there are two basic prop-
erties one can exploit to construct our kernel: (i) local order can be defined by a finite num-
ber of local fields; (ii) a multipolar order can generally be formulated in terms of tensors (or
polynomials) of finite rank (degree) that are invariant under certain point-group transforma-
tions [84, 179].

The first point motivates us to partition the spin system into clusters, each containing a
finite number of spins, r ,

x = {Si } = {SαI } = {SαI ,a}, (5.1)

where x ∈ X is the configuration vector and Si ∈ O(3) is the spin at lattice site i . The index
I = 1, . . . , LD/r enumerates spin clusters and α = 1, . . . , r identifies spins within a cluster¹,

¹For the purpose of describing configurations in the gauge model introduced in Ch. 2, the r = 3 “colored” spins
coinhabiting each site define the clusters. Consequently, the notation introduced here is slightly deviated from, in
that the cluster index I = 1, . . . , LD is synonymous to the site index i .
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such that i = (I ,α). a = x,y, z runs over the components of each spin. Any local order can,
thus, be described by a function f of all the 3r spin components within a sufficiently large
cluster by means of a lattice average over all clusters,〈

f ({Sαa })
〉
cl =

r

LD

∑
I

f ({SαI ,a}). (5.2)

It is useful to incorporate this cluster average into the kernel to reduce the complexity of both
the optimization itself and the subsequent analysis by eliminating the scaling with system size.
Note that the cluster is not assumed to be the optimal choice to accommodate any given order.
The choice of the cluster is guided by information on the lattice geometry or the Hamiltonian.
For example, one may use a number of lattice cells as a tentative cluster. If the cluster is chosen
to be larger than necessary, one will find a reducible form of the physical order parameter and
can likely infer the optimal cluster size.

One can then map the spin components within each cluster to all monomials of degree n,
and consequently perform a lattice average over all clusters,

φ : X →M, x 7→ φ(x) = {φµ } =
{〈
Sα1
a1 . . . S

αn
an

〉
cl
}
, (5.3)

where index tuple has been introduced to collectively refer to the individual monomials, µ =
(α1, . . . ,αn ;a1, . . . ,an). These monomials correspond to the components of the rank-n product
tensor of the sublattice spins Sα . Since the sought-after local order parameter tensor must
itself obey the tensor transformation properties under global SO(3) transformations, it can be
represented as a superposition of such product tensors,

O =
∑
α

cα Sα1 ⊗ Sα2 ⊗ · · · ⊗ Sαn , (5.4)

given that their ranks match. This is a result of the fact that no other vector-like quantities are
available as building blocks.

The tensorial kernel (TK) is then defined as

K (x, x′) =
[
φ(x) · φ(x′)

]2
. (5.5)

Formally, it is a quadratic kernel with respect to the monomial feature vector φ(x) ∈ M. With
this kernel, the decision function can be expressed as a quadratic form with respect to the
monomial features, as seen in Sec. 4.1.1,

d(x) =
∑
k

λky
(k ) [φ(x(k )) · φ(x)]2 − ρ =∑

k

λky
(k )

[∑
µ

φ(k )µ φµ

]2
− ρ =

∑
µν

Cµνφµφν − ρ, (5.6)

Cµν =
∑
k

λky
(k )〈Sα1

a1 . . . S
αn
an

〉(k )
cl

〈
S
α ′1
a′1
. . . S

α ′n
a′n

〉(k )
cl , (5.7)

where Cµν is the coefficient matrix that is calculated from the learned support vectors. Its
meaning may be illustrated for the simple case where a single magnetic order is present. Cµν
then represents a set of contractions between the relevant rank-1 basis tensors, such that the



5.2. COMPLEXITY AND REDUNDANCY OF THE MONOMIAL MAPPING 53

quadratic part of the decision function will realize the squared magnitude of the underlying
magnetization up to a linear rescaling. More generally, as has been seen in Ch. 2, the (square of
the) scalar order parameter corresponding to the tensor O is obtained by taking the trace of its
square, Tr(O · O), i.e. it too is quadratic in monomials of the same degree as the rank of O. As
a consequence, using the tensorial kernel, the decision function can produce the scalar order
parameter which ultimately allows to infer the coordinates cα of the order parameter tensor,
Eq. (5.4). This is demonstrated many times over in the next chapter.

In the general case where a phase may possess multiple coexisting orders, including hidden
nematic orders, and/or emergent local constraints,Cµν will capture all of them simultaneously.
Examples for such a case will be seen in Secs. 6.2.1 and 8.2.

Note that both the rank of the basis tensors and the optimal spin cluster do not need to be
known from the start. As the rank of orientational tensors of physical interest is bounded by
rank nmax = 6 (and even smaller for less symmetric lattices), one can successively apply the
mapping φµ (x) [Eq. (5.3)] for different ranks from n = 1 to nmax. Thereby, tensorial order at
all relevant ranks can be probed. Furthermore, the choice of the spin cluster can be guided by
information on the lattice. A reasonable trial cluster consists of a number of lattice unit cells.
It is hence possible to capture composite orders, such as bond and plaquette order, as well as
orders with multiple finite wave vectors. If the cluster is larger than needed, the TK-SVM will
learn a reducible representation of the underlying order parameters and/or constraints where
a simplification is usually straightforward.

5.2 Complexity and redundancy of the monomial mapping

In Sec. 4.1.1, it was revealed that a major benefit of the kernel trick lies in the ability to avoid
explicitly mapping the input data to the final feature space F , given that its dimension would
typically be very large. The tensorial kernel may be viewed as the composition of the monomial
mapping with the quadratic kernel in both arguments, K = Kquad ◦ (φ,φ), hence, its implied
Mercer mappingϕ : X → F is the compositionϕquad ◦φ whereϕquad :M → F is the Mercer
mapping corresponding to the quadratic kernel acting on the monomial features.

However, while the dimension of the input data is extensive in the size of the lattice,
dimX = 3LD , the dimension of the monomial features is not, due to the cluster average in its
definition, but merely depends on the degree of the monomials, n, and the number of spins in
the cluster, r . In particular, by eliminating redundant elements, i.e. by including the monomial
〈Sα1

a1 S
α2
a2 . . . S

αn
an 〉cl in φ(x) if and only if (α1,a1) ≤ (α2,a2) ≤ · · · ≤ (αn,an) with some arbitrary

ordering imposed on the tuples, the dimension ofM is given by the multiset coefficient

dimM =
((
3r
n

))
=

(
3r + n − 1

n

)
=
(3r + n − 1)!
n!(3r − 1)! . (5.8)

Table 5.1 explicitly demonstrates the growth of the monomial feature dimension with rank.
Thanks to the removal of redundant monomials, dimM is significantly smaller than dimX

for appreciably large system sizes. Thus, φ actually reduces the dimension of the data and it
is therefore prudent to carry it out explicitly in practice, i.e. calculate and store the monomial
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Rank n

1 2 3 4 5 6
(3r )n 9 81 729 6 561 59 049 531 441((3r
n

))
9 45 165 495 1 287 3 003

Table 5.1: Dimensions of the monomial feature spaceM before (top row) and after (bottom
row) eliminating redundant monomials. r = 3 spins per cluster have been assumed
for illustration, as is the case in the gauge model and kagome test cases.

features and to rely on the kernel trick only for the implicit mappingϕquad which in turn would
otherwise inflate the dimension up to dimF = (dimM + 1)(dimM)/2.

For the interpretation of the coefficient tensor, it was found to be more beneficial to reintro-
duce redundant monomials to avoid obfuscating the block structure discussed in the following
chapter. The multiplicity, i.e. the number of equivalent permutations, is given by the multino-
mial coefficients,

m(α1,a1)...(αn ,an ) =

(
n

k1,k2, . . . ,k3r

)
=

n!
k1!k2! . . .k3r !

, (5.9)

where k1 + k2 + · · · + k3r = n count the occurrences of each of the 3r possible index values.
One may include the square roots of the multiplicities in the configuration, e.g. at rank 2,

φ(x) =
{√

m(α1,a1),(α2,a2)
〈
Sα1
a1 S

α2
a2

〉
cl

���� (α1,a1) ≤ (α2,a2)} . (5.10)

That way, when using the above configuration in conjunction with the quadratic kernel, one
learns the same decision function that one would have obtained if all (3r )n monomials had
been considered regardless of their redundancy.

5.3 The bias parameter in phase classification

We will now investigate the role of the bias parameter ρ in the decision function. Serendipi-
tously, the observation was made that the biases learned when applying SVM to phase classifi-
cation were suspiciously close to unity whenever the correct order parameter was learned. This
observation could already be made in the application to the Ising model [26], even though the
authors did not realize this and focused exclusively on the coefficient matrix. Crucially, when-
ever the SVM is trained with samples from the same phase, this criterion is violated which
enables us to draw conclusions as to the topology of the phase diagram. We will allude to this
bias criterion throughout the remainder of this thesis and its usefulness will become apparent
as it is applied in practice. In this section, an argument is given to rationalize the bias criterion.

The basic idea can be intuitively summarized as follows. For a fully disordered spin con-
figuration x̃, the magnitude of the ordering and thereby the first term in the decision function
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Eq. (5.6) vanishes, leading to d(x̃) = −ρ. Consequently, ρ = −d(x̃) = 1, as (ideally) all disor-
dered configurations x̃ will fall onto the lower margin boundary. Therefore, one may use the
behavior of the bias ρ as an indicator to signify the presence or absence of a phase transition:
ρ = 1, if the data of either label correspond to the disordered and ordered phase, respectively;
ρ , 1 (with significant violations) if the samples are in fact collected from the same phase or a
significant portion of samples is mislabeled.

To support the above proposition, we begin by noting that the first term in SVM’s optimiza-
tion objective, Eq. (4.4), after being kernelized [Eq. (4.12)] with the multipolar kernel, Eq. (5.5),
amounts to the Frobenius norm of the coefficient matrix, Eq. (5.7):

‖w‖2 →
∑
k ,k ′

λkλk ′y
(k )y(k

′)
(∑

µ

φ(k )µ φ(k
′)

µ

)2
=

∑
µν

∑
k

λky
(k )φ(k )µ φ(k )ν

∑
k ′

λk ′y
(k ′)φ(k

′)
µ φ(k

′)
ν

=
∑
µν

C2
µν = ‖C ‖2F . (5.11)

As for the second part of the optimization objective, the optimal slack variables will assume
a value given by the hinge loss, Eq. (4.5), i.e., they satisfy their constraint by equality, or they
are unnecessary and will not incur any penalty to the objective.

The data φµ may obey some internal constraints (such as the normalization of spin vectors,
orthogonality among spins, etc.) which allow for freedom in the choice of Cµν and ρ while
keeping the decision function invariant. In particular, given some matrix Dµν which produces
merely a constant when contracted with any valid feature vector φ,∑

µν

Dµνφµφν = D0, (5.12)

one can transform Cµν 7→ Cµν + ϵDµν and absorb the additional constant by ρ 7→ ρ − ϵD0

without affecting the values of the decision function. Since only the decision function enters
the hinge loss and the inequality constraints, SVM will choose the parameter ϵ freely in a way
that minimizes the Frobenius norm ‖C + ϵD‖2. The solution will thus obey

d
dϵ

∑
µν

(Cµν + ϵDµν )2 = 2
∑
µν

(Cµν + ϵDµν )Dµν = 0. (5.13)

The coefficient matrix Cµν extracted from SVM already manifests the optimal choice with re-
spect to Dµν , thus, ‖C + ϵD‖ is minimal for ϵ = 0 which implies∑

µν

CµνDµν = 0. (5.14)

One particular choice is given by D̃µν B
〈
φ̃µφ̃ν

〉
diso

which denotes an ensemble average
over configurations φ̃ from the disordered phase. The requirement of Eq. (5.12) is in fact ful-
filled: ∑

µν

D̃µνφµφν =
〈
(φ̃ · φ)2

〉
diso = const., (5.15)
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as the disorder average amounts to an isotropic integral over the disordered spins S̃ indepen-
dently and thus the fixed, arbitrary feature vector φ can be eliminated from the integrand by a
change of variables.

One can now calculate the value of the decision function as it is measured in the disordered
phase, i.e., one subjects its argument to the same disorder average,

〈d(x̃)〉diso =
〈∑
µν

Cµν φ̃µφ̃ν − ρ
〉
diso
=

∑
µν

Cµν

〈
φ̃µφ̃ν

〉
diso
− ρ =

∑
µν

Cµν D̃µν − ρ = −ρ, (5.16)

by virtue of Eq. (5.14). This implies that the decision function assumes a constant value through-
out the disordered phase. Indeed, local order parameters are typically zero throughout the dis-
ordered phase and pick up finite values as the transition to the ordered phase takes place. One
should therefore shift the decision function by ρ to interpret it as an order parameter.

Since deep in the disordered phase, the individual spins are independent, the lattice av-
erage in the definition of the feature vector φ̃ already averages over many disordered spins.
Thus, given a sufficiently large system, the statement can be refined to d(x̃) = −ρ for spin
configurations x̃ in the disordered phase.

The phase classification problem is distinct from generic classification problems in the sense
that all the data from one class, the disordered phase, (on average) trace out an isosurface
of the decision function. The decision boundary as well as the “upper” and “lower” margin
boundaries are isosurfaces of the decision function too, corresponding to values, of 0, +1, and
−1 (cf. Sec. 4.1.1). Thus, the “lower” margin boundary will fall onto the disordered samples,
i.e., d(x̃) ≈ −1, which implies ρ = 1. Conversely, if the disordered samples fall onto the “upper”
margin boundary, this will result in ρ = −1. In this sense, the bias can also give an indication
as to the “orientation” of the phase transition. Given two phases A and B, one may introduce
the convention that ρ(A | B) = 1 corresponds to a situation in which A (B) is the disordered
(ordered) phase. Consequently, ρ(B |A) = −ρ(A | B).

The argument laid out in this section so far assumed a simple scenario where a single
symmetry-breaking phase transition takes place between A and B. Based on the intuitive pic-
ture above and verified by the empirical study of the gauge model in the next chapter, several
extensions can be made:

First, if one phase possesses two or more orders, while a subset of them vanishes when
entering the disordered phase and the remaining ones only diminish in magnitude, |ρ | will
typically be slightly larger than unity, owing to a contribution from the difference in magnitude
of the persevering orders. Such behavior can occur when dealing with vestigial orders and
partial symmetry breaking.

Second, if the two sets of samples originate from the same ordered phase and, hence, are
characterized in the same way, ρ can dramatically exceed unity, |ρ | � 1. Nevertheless, in
those cases, the sign of ρ retains its physical meaning: A negative ρ(A | B) indicates that A is
relatively deeper in the ordered phase.

Third, ρ can also differ significantly from ±1 but fall into the interval (−1, 1). This may hap-
pen when both sample sets originate from nontrivial phases featuring different characteristics.
In that case, even though Cµν can capture the characteristics of both phases, the sign of ρ will
lose its above interpretation. Namely, the TK-SVM can still identify them as distinct phases,
but one cannot interpret their relation in terms of a simple order-disorder transition.
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Lastly, this bias criterion is also applicable for crossovers between phases of different co-
operative behavior. Rather than learning the order parameter associated with the broken sym-
metry of a particular phase transition, the decision function will encode the constraint that
governs the cooperative behavior of the spins. Note that in this case the “ordered phase” in
the above argument is the one which is more constrained, even though the spins are still dis-
ordered in the sense that no symmetry is broken. Again, a bias in (−1, 1) is indicative of a
situation where no statement on the relative level of disorder can be made, i.e. both phases
exhibit constraints which are mutually incompatible.

Finally, the behavior of the bias can be summarized by the following rules, which have
proved themselves useful in probing phase transitions and crossovers,

ρ(A | B)



� 1
� −1

}
A, B in the same phase,

≈ 1 A in the disordered phase,
≈ −1 B in the disordered phase,
∈ (−1, 1) not directly comparable.

(5.17)

In Sec. 8.2.1, they were used to arrive at a “hierarchy of disorder”, giving a qualitative idea
of the onset of various crossovers and phase transitions, even before those were analyzed in
detail.





Part II

Interpreting machine results
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6Extracting order parameter tensors
Equipped with the tools presented in part I of this thesis, one has gained the ability to simulate
frustrated spin models and apply the tensorial kernel in conjunction with kernel methods of
machine learning to learn a classifier to distinguish multipolar phases from paramagnets. To
this end, the combination of the tensorial kernel with support vector machines (TK-SVM) is
used predominantly for the remainder of this thesis.

This part is devoted to leveraging the interpretability of the tensorial kernel to extract phys-
ical insight from the SVM decision function. This process is twofold: the coefficient matrix can
be used to infer the analytical expression of the underlying order parameter tensor, whereas the
bias parameter can be exploited to diagnose the presence of a phase transition (or a crossover)
in the first place. The focus of this chapter is on the former, but references to the role of the
bias parameter will be made throughout. The next chapter is exclusively concerned with the
bias parameter and will demonstrate that TK-SVM can be used to obtain the phase diagram in
an unbiased way.

The problem that TK-SVM tackles in the process is particularly challengingwhenever either
the rank of the sought-after order parameter tensor is high or multiple orders occur simultane-
ously. This chapter addresses both of these scenarios, however, to start things off simple, the
case of a single uniaxial nematic is considered first. Throughout part II of this thesis, the gauge
model that was introduced in Sec. 2.2 is used for demonstration as it allows for the systematic
study of any and all of these cases.

6.1 Learning a single quadrupolar order

In this section, a simple quadrupolar order is taken as an example to illustrate the basic idea of
the method. The detection of the order and the decoding of the machine result to extract the
order parameter will be discussed.

One can generate spin configurationswith an emerging quadrupolar order byworkingwith
the gauge symmetryG = D∞h and an anisotropic couplingwhere Jα βab = −Jδab forαβ = nn and
J
α β
ab = 0 for other αβ ’s. The resulting model is then equivalent to the Lebwohl-Lasher model
in Eq. (2.21) and the Sl and Sm spins become irrelevant. Thus, to simplify the exposition of our
analysis, only the Sn spins are taken as input data to train the SVM, yielding the configuration
vector x = {Sni }. However, as will be discussed in Sec. 6.2.1, including Sl and Sm spins does not
change the result.

The SVM is trained successively with the multipolar kernel for increasing tensor rank, i.e.
for increasing degrees n of the monomials in the mapping Eq. (5.3). When the rank is not
sufficient to capture the order parameter, the SVM overfits the training data. Here, this is the
case for rank n = 1 which produces an erratic decision function, whereas the order is captured
at rank n = 2, resulting in a curve.

By calculating the coefficient matrix (cf. Sec. 5.1), one can interpret the resulting decision
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Figure 6.1: Coefficient matrixCµν = Cab ,a′b′ for the quadrupolar order with the rank-2 kernel.
The pattern can be decomposed according to Eq. (6.2) and leads to the uniaxial
nematic tensor Qab . 28 000 samples have been used for training.

function to access its analytical structure.

d(x) =
∑
µν

Cµνφµφν − ρ

=
∑
ab

∑
a′b′

Cab ,a′b′
〈
SnaS

n
b

〉 〈
Sna′S

n
b′
〉
− ρ. (6.1)

The coefficientmatrixCab ,a′b′ is shown in Fig. 6.1 and encodes the contribution of the individual
terms in the sum. It can be readily decomposed into three contractions

Cab ,a′b′ = p1 + p2 + p3 (6.2)

= p1δaa′δbb′ + p2δab′δba′ + p3δabδa′b′, (6.3)

where p1 = p2 ≈ 3
4 and p3 ≈ − 1

2 can be read off. The first two contractions are compati-
ble with the form ‖O‖2F =

∑
ab O

2
ab , as they contract indices between two tensors. We shall

call them “proper” contractions. The third contraction on the other hand is not, but it only
produces a constant

∑
ab

〈
SnaS

n
a
〉 〈

SnbS
n
b

〉
= 1 independent of the configuration vector. This

“self-contraction” is an example where an internal constraint of the data (here, the normaliza-
tion of the spins) allows the SVM to choose the weight p3 freely in line with its optimization
objective, without affecting the ability of the decision function to distinguish the phases, as
pointed out in Sec. 5.3.

Substituting Eq. (6.3) back to the decision function, andmaking use of the properties
〈
SnaS

n
b

〉
=〈

SnbS
n
a
〉
and ‖Sn‖ = 1, one canwrite the decision function as the (squared) magnitude of a tensor

order parameter, up to a linear rescaling:

d(x) = 3
2

∑
ab

(〈
SnaS

n
b

〉
− 1
3
δab

)2
− ρ . (6.4)
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Figure 6.2: The phase diagram for the generalized quadrupolar order (cf. Ref. [110]). The
points labeled 0 through 3 are used to generate training samples.

One identifies the (uniaxial) nematic tensor [180] Qab =
〈
SnaS

n
b

〉
− 1

3δab . In Fig. 6.13(b), the
rescaled decision functions are compared to the true order parameter measured from Monte
Carlo simulations.

6.2 Learning multiple orders

If a spin or orbital system of interest develops an order which needs to be characterized by
some axial point group, in general, it may require more than one (multipolar) order parameter.
For example, a generalized quadrupolar order is defined by two rank-2 tensors. In this section,
the ability of our kernel, Eq. (5.5), to detect multiple orders simultaneously is demonstrated.
Situations where the orderings occur at the same rank and at different ranks are considered
and it is assumed here that the topology of the phase diagram is approximately known. In
Sec. 7, a scheme is proposed that yields a phase diagram in lieu of such information.

6.2.1 Multiple tensor order parameters of the same rank

A biaxial order D2h is considered. The training samples are prepared by choosing the gauge
symmetryG = D2h and the exchange coupling J llab = Jmm

ab = −J1δab , J
nn
ab = −J3δab in Eq. (2.17).

The gauge model is then equivalent to the Straley model of generalized quadrupolar orders
[181]. J1 and J3 are used as tuning parameters for convenience and span the parameter space.

The associated phase diagram is shown in Fig. 6.2. It requires at least two order parameters
to characterize the three phases and their transitions. If the two orders are weakly coupled,
they will experience (dis-)ordering separately with one of them being irrelevant in the corre-
sponding phase transition. However, if the coupling between them is strong, they may develop
ordering in a single phase transition and need to be taken into account simultaneously. This is
the case in the transition between the biaxial phase and the isotropic phase.
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ν = 0.1 ν = 0.5

0 / 1 1.0017 1.0007

0 / 2 1.0013 1.0007

0 / 3 1.0010 1.0006

1 / 2 0.972 0.9995

1 / 3 1.27 1.34

2 / 3 8.05 7.50

(a) Labeling samples according to their points
in parameter space yields six classifiers.
For the last one, ρ � 1 indicates that 2
and 3 belong to the same phase.

ν = 0.1 ν = 0.5 Fig.

O(3) / D∞h 1.0017 1.0007 6.3
D∞h / D2h 0.985 1.0004 6.4(a)
O(3) / D2h 1.0011 1.0005 6.4(b)

(b) The data sampled at points 2 and 3 are as-
signed the same label ‘D2h ’; correspondingly 0
is relabeled as ‘O(3)’, and 1 as ‘D∞h ’. In all cases,
the biases are close to one, indicating that the
labeling indeed represents the phases. The last
column refers to the figures showing the (block
structure of the) coefficient matrix corresponding
to that classifier.

Table 6.1: The values of the bias parameter in learning the phases of the generalized quadrupo-
lar order. Training samples are collected from points 0 – 3 in Fig. 6.2. A total of
25k samples have been used, and results for weak (ν = 0.1) and strong (ν = 0.5)
regularization are shown for comparison.

Given the topology of the phase diagram, without knowledge of the exact phase boundary,
one can train the SVMwith configurations sampled at points deep in each phase. Here, samples
at four points, 0 – 3 , corresponding to the corners of the phase diagram shown in Fig. 6.2 are
taken.

Using the tensorial kernel at rank 2, the multiclassification is performed as described in
Sec. 4.1.1 where the samples are assigned M = 4 labels corresponding to the points 0 – 3 .
This yields six classifiers. Their respective biases are tabulated in Table 6.1(a). One can note
straight away that the classifier distinguishing points 2 and 3 does not correspond to a phase
transition as its bias is far away from one. This is consistent with our knowledge that these
points are indeed both in the biaxial phase. The bias of the classifier between 1 and 3 is
also somewhat elevated, so it is not clear that a phase transition takes place. However, after
merging the labels 2 and 3 and repeating the multiclassification with M = 3 distinct labels
(which now correspond to the phases), one finds that the bias of the corresponding classifier is
closer to one [see Tab. 6.1(b)], affirming that a phase transition is present. The larger deviation
from one in this case can be explained by the fact that the uniaxial order is developed in both
phases whereas the magnitude of the ordering is larger in the biaxial phase.

One may now proceed with the analysis of the three coefficient matrices obtained from the
latter classification with respect to three labels. The nematic order which is now responsible
for the isotropic-to-uniaxial transition in the regime of small J1 in Fig. 6.2 is first revisited.
The corresponding Cµν matrix is shown in Fig. 6.3(a). With Sl and Sm degrees of freedom
now included, it contains 81 × 81 elements, defining contractions between φµ =

〈
Sα1
a1 S

α2
a2

〉
and

φν =
〈
S
β1
b1
S
β2
b2

〉
. However, when arranging the index tuples such that color indices are more
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Figure 6.3: The coefficient matrix distinguishing the isotropic (O(3)) and uniaxial (D∞h ) phase
of the generalized quadrupolar order. The left panel displays the full matrix Cµν
where the index tuples µ and ν are sorted lexicographically and where the color in-
dices are more significant. The resulting block structure is shown in the right panel.
The block weights have been obtained by summing all matrix elements within each
block over their component indices and normalizing to the top-right (nn, nn) block.
The interpretation leads to an alternative expression of the nematic Qab tensor,
given in Eq. (6.5). The pattern exhibited within each block is identical to Fig. 6.1.

significant than component indices (i.e. µ = (α1,α2;a1,a2)), it can be divided into a 9-by-9 block
structure in terms of the color indices (α1α2), (β1β2), corresponding to the nine basis tensors
in Eq. (5.4). Each block in fact features the same pattern of Fig. 6.1 up to a weight factor. In
Sec. 6.1, its relation to the order parameter tensor was explained. In the following analysis,
one can ignore the internal pattern of the blocks entirely and instead infer the coordinates
of the order parameter tensor in the nine-dimensional tensor space from the relative weight
factors of those blocks. The weight of a block may be obtained by a sum over all elements
within the block as

∑
abC

α β
ab , or alternatively by the Frobenius norm as

√∑
ab(C

α β
ab )2. Both

definitions have been used and it was verified that they yield the same weights up to a sign.
The first definition preserves the sign of the block weights, so it is adopted henceforth. With
this definition, normalized to the most pronounced (nn, nn) block in the top-right corner in
Fig. 6.3(a), the weights of the (ll, ll) and (mm,mm) blocks turn out to be 1

4 , while those of the
(nn, ll) and (nn,mm) blocks are − 1

2 [see Fig. 6.3(b)]. This gives an order parameter of the form

Ouni = Sn ⊗ Sn − 1
2
Sm ⊗ Sm − 1

2
Sl ⊗ Sl. (6.5)

Using the relation
∑

α=l,m,n S
α ⊗ Sα = 1, one recovers the nematic tensor of Eq. (6.4):

Ouni =
3
2

(
Sn ⊗ Sn − 1

3
1

)
. (6.6)
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Figure 6.4: The block structures of the Cµν matrix of the remaining two decision functions of
the generalized quadrupolar order, (a) the uniaxial (D∞h ) and biaxial (D2h ) phases,
and (b) the isotropic [O(3)] and biaxial (D2h ) phases. The latter is a superposition
of the patterns exhibited by the other two decision functions, shown in Figs. 6.3(b)
and 6.4(a). The block weights are not fixed, but rather the coefficients p1 and p2
vary with the relative strength of the two orderings.

Thus, to extract the order parameter, it is sufficient to rely on the block structure ofCµν , rather
than the full matrix. This simplifies the interpretation significantly, especially for learning
high-rank (cf. Sec. 6.3) and multiple simultaneous orders.

In Fig. 6.4, the block structures of the coefficient matrices for the other two classifications
are shown. The direct sum is used to compute the block weights. Figure 6.4(a) is the weight
matrix trained with data sampled deep inside the uniaxial and biaxial phases. One immediately
realizes a tensor of the form

O
(D2h )
bi = Sl ⊗ Sl − Sm ⊗ Sm, (6.7)

which is indeed the biaxial order parameter describing the uniaxial-to-biaxial phase transition
[180].

Fig. 6.4(b) is the weight matrix trained with samples from the isotropic and the biaxial
phases. It is a superposition of that in Figs. 6.3(b) and 6.4(a), with the weight denoted by p1
and p2¹. Its interpretation then leads to a set of two order parameters, {Ouni,O

(D2h )
bi }, which is

indeed the order parameter set that uniquely defines the D2h biaxial phase.
One finds that the weights of p1 and p2 vary as one changes the points in phase diagram

fromwhich one samples. This does not come unexpected, as the simulataneous occurrence and
the expression of the two orders are protected by symmetry (of their ground-state manifold),

¹Fig. 6.4(b) can also be viewed as a superposition of three order parameters, Sl ⊗Sl−Sm ⊗Sm, Sm ⊗Sm−Sn ⊗Sn,
and Sn ⊗Sn−Sl ⊗Sl, where two of them are independent. This is just an equivalent expression of the same ordering.
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so their relative ratio depends on the microscopic coupling strengths (the value of J1 and J3 in
this case).

This further emphasizes the importance of interpretability. In a physical problem, one typ-
ically treats different order parameters as individual quantities and measures them separately.
However, a machine may combine them into a single numerical classifier. Therefore, a machine
trained by samples with certain relative ratios of those order parameters may not be optimal
or even misleading when being applied to samples where those ratios vary. In order to make
correct predictions, one may need to be able to identify and isolate each order parameter from
the machine result. This is, however, not an issue for our kernel method (or in general for an
interpretable machine). The occurrence of multiple orders only leads to a linear superposition
of the pattern of each single order, even though those orders may be strongly coupled.

6.2.2 Multiple tensor order parameters of different ranks

The quadrupolar and octupolar orders in classical kagome antiferromagnets provide examples
for spin systems which simultaneously develop multipolar orders of different ranks. Indeed,
the quadrupolar order in Eq. (6.6) is compatible with all dihedral symmetries Dn,Dnh,Dnd ,
and axial symmetries S2n,Cnh . That is, if the ground-state manifold of a spin order cannot be
ascertained theoretically, one should not immediately conclude a uniaxial phase after observing
a quadrupolar order. This is also true for dipolar (rank-1) orderswhich are compatiblewith axial
symmetries Cn and Cnv , while the Heisenberg and Néel magnetization are just limiting cases
for n → ∞, O(2) = C∞v . Therefore, to correctly characterize a multipolar phase, in principle
one needs to identify all relevant orders.

The tensorial kernel handles these situations in a straightforward manner. One simply has
to train the SVM with kernels at different ranks n separately. Considering the crystallographic
background, it is sufficient to set an upper bound n ≤ 6. Additional complexity may arise
in distinguishing nontrivial high-rank orders from responses which are already captured by
order parameters of lower rank. For example, if one was to measure the quadrupolar order
parameter Qab = SaSb − 1

3δab in a ferromagnetic phase, it would also show a finite response.
This quadrupolar order is nevertheless trivial since it is completely captured by a dipolar order,
namely, the magnetization. However, this is easily resolved if the machine is interpretable, as
is the case for the tensorial kernel. One can extract the analytical expression of the learned
order parameters at different ranks, and identify those without lower-rank origin.

To be concrete, take a simultaneous occurrence of quadrupolar and octupolar orders as an
example. This can be realized by choosingG = D3h in the gauge theory Eq. (2.17). Analogously
to the previous section, the training samples are collected from deep within the ordered D3h
phase, the uniaxial D∞h phase, and the isotropic O(3) phase.

One then carries out the SVM optimization with kernels of ranks 1 through 6. The biases of
the resulting classifiers are tabulated in Table 6.2. One sees that rank 1 is insufficient to capture
any order. At rank 2, order parameters describing both the isotropic-to-uniaxial and isotropic-
to-biaxial transitions are found, whereas no order parameter describing the uniaxial-to-biaxial
transition could be found. The coefficient matrix Cµν is identical to that of Fig. 6.3, indicat-
ing a quadrupolar order has been captured. At rank 3, matters are reversed and one captures
the uniaxial-to-biaxial transition but not the isotropic-to-uniaxial one. The isotropic-to-biaxial
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Rank O(3)/D∞h D∞h/D3h O(3)/D3h

1 0.134 2.95 2.61

2 1.0019 5.87 1.0018

3 4.10 1.0012 1.0011

4 1.0029 0.617 1.0025

5 0.981 1.0012 1.0011

6 1.0018 1.087 1.0016

Table 6.2: Thebiases of the three SVM classifiers discerning the isotropic [O(3)], uniaxial (D∞h )
and octupolar (D3h ) phases. Decision functions are monitored for ranks 1 through 6
of the kernel. As before, ρ ≈ 1 indicates that an order parameter of that rank could
be learned. This is the case for the uniaxial order at ranks 2, 4, 5, and 6, and for
the biaxial order at ranks 3, 5, and 6. In both cases, the higher-rank ones are trivial
functions of their lowest-rank representation. The transition between the isotropic
and biaxial phase in the last column experiences simultaneous uniaxial and biaxial
ordering and will thus learn an order parameter for any rank n ≥ 2.

transition exhibits a coexistence of both the quadrupolar and the rank-3 order parameter. At
higher ranks, no new nontrivial order parameters can be found but those that one does find are
functions of the lower-rank ones. At rank 4, one essentially learns the square of the quadrupo-
lar order parameter. At ranks 5 and 6, the tensor can be constructed from both of the lower-rank
ones. Rather than relying on the bias criterion to determine if an order parameter was found,
one may also measure the decision functions and discard them if they exhibit erratic behavior,
similarly to how rank 1 was ruled out as an order parameter in Sec. 6.1. This approach leads to
the same conclusions.

The coefficient matrix for the rank-3 order is shown in Fig. 6.5(a). For conciseness, the full
matrix is omitted and only its block structure is depicted. One infers the contraction of two
tensors of the form

O
(D3h )
bi = Sl ⊗ Sl ⊗ Sl − Sl ⊗ Sm ⊗ Sm − Sm ⊗ Sl ⊗ Sm − Sm ⊗ Sm ⊗ Sl, (6.8)

which is the octupolar order parameter that was also found in classical kagome antiferromag-
nets [82]. It is a two-spin form of the D3h octupolar order. However, for a coplanar order,
the Sm spin is arbitrary in the sense that one can always introduce another spin orthogonal
to Sl. Therefore, the octupolar order may also be defined by the Sl spins alone. To obtain the
one-spin representation, one simply needs to examine elements inside the (lll, lll) block of the
Cµν matrix, shown in Fig. 6.5(b).

This is similar to the discussion of the quadrupolar order in Sec. 6.1, but involves more
contractions owing to the higher rank. Still, these contractions and their weight can be readily
inferred,

C lll,lll
abc ,a′b′c ′ = p1

(
δaa′δbb′δcc ′ + permutations of {a′b ′c ′}

)
+ p0

(
δaa′δbcδb′c ′ + other self-contractions

)
, (6.9)
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(a) Block structure of the coefficient matrix. The color
indices are sorted lexicographically and those of the
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ordering tensor in Eq. (6.8).
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sponds to the expression Eq. (6.9).

Figure 6.5: Coefficient matrix, Cµν , learned by the rank-3 tensorial kernel, distinguishing the
biaxial phase (D3h ) from the isotropic [O(3)] and the uniaxial phase (D∞h ).

where p1 and p0 denote the weight of proper and self-contractions, respectively, and a relation
p1 = − 5

2p0 is found up to numeric precision.
As Sl⊗3 is symmetric, the six proper contractions in Eq. (6.9) are equivalent if one substitutes

them to the decision function [as in Eq. (6.4)]. Similarly, the nine self-contractions in this case
can also be grouped into three equivalent classes. Thus, Eq. (6.9) can effectively be expressed
as

C lll,lll
abc ,a′b′c ′ = δaa′δbb′δcc ′ −

1
5
δaa′δbcδb′c ′ −

1
5
δacδbb′δa′c ′ −

1
5
δabδa′b′δcc ′, (6.10)

whose interpretation leads to a tensor given in Eq. (2.12), the one-spin form of the octupolar
order given in Ref. 82. See also Sec. 2.1.1 and Eq. (2.12) therein.

6.3 High-rank tensorial orders

In this section, TK-SVM is applied to probe an emergent tetrahedral (Td ), dodecahedral (Th ),
octahedral (Oh ), and icosahedral (Ih ) order. These represent the most complicated multipo-
lar orders, going beyond the quadrupolar (D∞h ) and the in-plane octupolar (D3h ) order. It is
important to emphasize that no prior knowledge about the existence and type of a potential
multipolar order is required.
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Figure 6.6: The square root of the decision function,
√
d(x), trained at different ranks for the

tetrahedral order. The true order parameter curve is shown for comparison, and
d(x) has been rescaled linearly, such that their endpoints match up. Insufficient
tensor ranks do not result in a meaningful order parameter.

6.3.1 Rank 3: Tetrahedral order (Td )

We start with the tetrahedral (Td ) order, training the SVM successively at the lowest ranks. The
discriminatory temperatureTdisc is taken to be the idealTc for now (cf. Ref. [1]), but situations
Tdisc , Tc will be discussed later.

After training, the decision functions are measured for new testing samples. The results
are shown in Fig. 6.6 by plotting

√
d(x). Clearly, the decision function exhibits only noise for

lower ranks n = 1, 2, but converges at n = 3, indicating that an order is captured at this rank.
One then extracts the order parameter from the corresponding Cµν matrix. At rank 3, the

general expression of the tensor O in Eq. (5.4) involves 27 basis tensors of the form

Tα1α2α3 = Sα1 ⊗ Sα2 ⊗ Sα3 . (6.11)

As shown in Fig. 6.7(a), these divideCµν into 27-by-27 blocks, and each block can be identified
by their color indices as [α1α2α3;α ′1α ′2α ′3]. Only blocks with mutually exclusive color indices
have nonvanishing entries. From this one can recognize the relevant basis tensors entering
the definition of the underlying order parameter. Furthermore, those blocks also exhibit an
identical weight, by which the coefficients in O are also identified. Thus the entire Cµν matrix
then corresponds to contracting two tensors,

O(Td ) =
∑

α1,α2,α3

Tα1α2α3 (6.12)

which is exactly the tetrahedral order parameter [113]. Consistently, the decision function is
related to its norm squared, d(x) ∼ ‖O(Td )‖2F , up to linear rescaling.
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Figure 6.7: The coefficient matrixCµν for the tetrahedral order learned using the rank-3 kernel.
(a) Full Cµν matrix, where the index tuples µ,ν = (α1,α2,α3;a1,a2,a3) are lexico-
graphically ordered. Each block is assigned coordinates [α1α2α3;α ′1α ′2α ′3]. Nontriv-
ial blocks have mutually exclusive color indices. (b) Details of the [lmn; lmn] block,
in comparison with (c) where trivial self-contractions have been removed.
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Figure 6.8: Block structure ofCµν for (a) the octahedral and (b) the dodecahedral order, learned
using the rank-4 kernel. Each pixel corresponds to a block of Cµν , identified by
coordinates [α1α2α3α4;α ′1α ′2α ′3α ′4]. The value of each pixel is given by the squared
Frobenius norm of the corresponding block.

Zooming into the details of a nontrivial block, e.g., the [lmn; lmn] shown in Fig. 6.7(b),
its entries are seen to correspond to all possible contractions of two basis tensors Tα1α2α3 and
Tα
′
1α
′
2α
′
3 . These include proper contractions such as T α1α2α3

a1a2a3 T
α ′1α

′
2α
′
3

a3a2a1 and self-contractions such
as T α1α2α3

a1a1a3 T
α ′1α

′
2α
′
3

a3a2a2 which contract at least one pair of indices on the same tensor. The former
type is consistent with the Frobenius inner product Tr

(
Tα1α2α3 · Tα ′1α ′2α ′3

)
, and has nontrivial

contributions to the decision function. In contrast, the self-contractions only contribute a triv-
ial constant to the decision function and can be systematically identified and removed by a
least-squares fit, as shown in Fig. 6.7(c).

The key insight here is that, if a multipolar order is detected, its order parameter can be
inferred from the “coordinates” of nontrivial blocks and their relative weights, regardless of
the details within each block. Hence, the interpretation of Cµν is rather straightforward.

6.3.2 Rank 4: Octahedral (Oh) and dodecahedral (Th) order

This analysis based on the block structure also holds true for the more complicated orders. In
Fig. 6.8, the block structures of Cµν capturing the octahedral (Oh ) and dodecahedral (Th ) are
shown. For both cases, the order is learned at rank 4, and each block (pixel) is again identified
by the spin color indices [α1α2α3α4;α ′1α ′2α ′3α ′4]. The coordinates of the dominant blocks feature
four identical color indices (Oh ) and twomutually exclusive pairs of identical color indices (Th ),
respectively. Correspondingly, their interpretations give rise to the ordering tensors [84],

O(Oh ) = Tllll + Tmmmm + Tnnnn (6.13)

and

O(Th ) = Tllmm + Tmmnn + Tnnll. (6.14)
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In particular, O(Th ) is a partially symmetric tensor and has six equivalent definitions generated
by permuting its color indices. Interestingly, SVM captures all these variants exhaustively.
Moreover, the subdominant blocks in Fig. 6.8 effectively remove the trace of O(Oh ) and O(Th ),
which does not change the decision function but is desirable in terms of SVM’s optimization
objective. Such blocks do not occur in Fig. 6.7(a) in the Td case as O(Td ) is traceless.

6.3.3 Rank 6: Icosahedral (Ih) order

Arguably themost complicatedmultipolar order breaking theO(3) symmetry is the icosahedral
(Ih ) order. Its minimal ordering tensor was only found recently [84] and has rank 6. Slightly
cryptically, it can be written as

O(Ih ) =
∑
cyc

Sl⊗6 +
∑
{+,−}

(
1
2
Sl ± ϕ

2
Sm ± 1

2ϕ
Sn

) ⊗6 −
1
7

∑
comb

δα1α2δα3α4δα5α6S
α1 ⊗ · · · ⊗ Sα6

=
7ϕ−1
112

(
5

7ϕ−1 S
l⊗6 − Sl⊗4Sm⊗2 + 7ϕ−6

7ϕ−1 S
l⊗4Sn⊗2 + 5

7ϕ−1 S
l⊗2Sm⊗2Sn⊗2 + . . .

)
, (6.15)

where ϕ =
√
5+1
2 is the golden ratio and

∑
cyc sums over cyclic permutations of {Sl, Sm, Sn}. The

second term in the first line of the above equation is introduced to make O(Ih ) traceless, and∑
comb runs over all nonequivalent combinations of the color indices.
The icosahedral (Ih ) order is captured by TK-SVM with a rank-6 tensorial kernel, and one

thus extracts a coefficient matrix whose elements are denoted by Cµν = C
α β
ab = C

α1 ...α6,β1 ...β6
a1 ...a6,b1 ...b6

.
The coefficient matrix is divided into 729-by-729 blocks, identified by their color indices [α , β].
At ranks as high as this, the interpretation of the full coefficient matrix becomes rather tedious.
Fortunately, it is again sufficient to rely on the block structure alone and infer the relevant terms
of the ordering tensor from the appearance of these blocks and their relative weight.

In this way, the “coordinates” of the icosahedral ordering tensor can be found; the first few
terms read:

O
(Ih )
SVM = 0.48657 Sl⊗6 − Sl⊗4Sm⊗2 + 0.51608 Sl⊗4Sn⊗2

+ 0.48450 Sl⊗2Sm⊗2Sn⊗2 + . . . .
(6.16)

The coefficients of these terms are normalized against the Sl⊗4Sm⊗2 term, but this choice is
arbitrary. All in all, 183 nonvanisching terms are seen to contribute. The full coordinates have
been published in the supplemental materials to Ref. [2]. This result forO(Ih )SVM is consistent with
the theoretical expectation, Eq. (6.15). As a proof of principle, the golden ratio can be infered
numerically by fitting all those coordinates in which it is expected to appear analytically to
Eq. (6.16). The resulting value of 1.61784 confirms the quantitative accuracy of the method.

6.4 Quantifying quality of learning

After having demonstrated the analytical accessibility of the classifier learned by TK-SVM,
this section will scrutinize the impact of both the regularization parameter and the setup of the
classification problem.
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Figure 6.9: Deviation δ for the tetrahedral order, computed with different levels of regulariza-
tion ν .

The usual procedure employed in the context of machine learning in this regard would
involve testing the learned classifier on an additional set of labeled data and using the success
rate of the prediction as a metric for its quality. Owing to the strong interpretability of TK-
SVM, a more holistic approach can be taken by comparing the extracted coefficient matrix,
Cµν , to the theoretically expected one, C̃µν , and defining a relative deviation in terms of the
elementwise discrepancy as expressed by the Frobenius norm,

δ B
‖C − C̃‖F
‖C̃‖F

=

√√√(∑
µν

(Cµν − C̃µν )2
) (∑

µν

(C̃µν )2
)−1
. (6.17)

6.4.1 Regularization parameter

In Sec. 4.1.1, the optimization problem that underlies SVMs, Eq. (4.4), has been introduced
and the role of the regularization parameter was motivated. As discussed therein, the ν-SVM
scheme [164] gives rise to an alternative regularization parameter, ν ∈ [0, 1) which is more
convenient to use in practice. ν roughly corresponds to the fraction of training samples that
are invoked as support vectors. A larger value of ν will thus “soften” the SVM margin, cor-
responding to a stronger regularization of the problem, while a small ν will place too much
emphasis on individual samples, giving rise to overfitting.

For the present work, a stronger regularization in terms of ν was found to systematically
improve the quality of the learned order parameter as demonstrated in Fig. 6.9 for the tetrahe-
dral order.
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Figure 6.10: Deviation δ for the tetrahedral order as a function of the number of training sam-
ples used to calculate the SVM model which is doubled from point to point, all
the while keeping the number of Monte Carlo steps between adjacent samples
constant. The insets show excerpts of the coefficient matrix for selected points.

Thus, throughout this thesis, rather large values of ν between 0.4 and 0.6 have been cho-
sen whenever the coefficient matrix was to be extracted. In situations were the presence of a
meaningful distinction between the data, either in the form of a phase transition or a crossover,
remained unclear, a lower regularization of ν = 0.1 was adopted.

Tabs. 6.1 and 6.3 give results for both levels of regularization; it can be seen that a stronger
regularization also results in a bias which is closer to its ideal value of |ρ | = 1 when a phase
transition is indeed captured.

6.4.2 Size of the training dataset

Next, the dependence of the deviation δ on the number of training samples is demonstrated
over several orders of magnitude. Again, the tetrahedral order is taken as a reasonably com-
plicated example, but the general features are also valid for the other aforementioned orders.

Unsurprisingly, the deviation δ is seen in Fig. 6.10 to decline almost monotonously with
the number of training samples, suggesting a systematic improvement. As can be seen from
the insets, the pattern in the coefficient matrix becomes successively more clear. Interestingly,
the expected block structure of Cµν has already emerged at as little as 300 samples, which is
sufficient to infer the underlying order parameter. One should note that δ is a rather sensitive
deviation metric. Empirically, with a deviation δ ≈ 0.5, the measured decision function d(x)
remains in decent agreement with the true order parameter curve (see Fig. 6.6).
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Figure 6.11: Graphical representation of different training schemes. Samples are taken from
temperatures corresponding to the shaded regions and labeled as “ordered” (blue)
or “disordered” (red). The first three schemes use a continuous distribution of tem-
peratures from TA � Tc to TB = ∞ and differ by the discriminatory temperature
Tdisc used to assign the labels, where Tdisc = Tc = 0.52 (a), Tdisc = 0.4 < Tc (b), and
Tdisc = 0.64 > Tc (c) have been chosen, respectively. The concrete temperatures
read as TA = 0.2, TB = ∞, TD = 0.25, TE = 2.

6.4.3 Comparison of training schemes

Several different schemes to generate training data for the SVM are conceivable. These are
illustrated in Fig. 6.11 and labeled (a) through (f). This subsection will elucidate the impact of
this choice on the SVM result. This is not only relevant because it can give an indication as
to the resilience towards unintentionally misclassified training samples, but will be seen to lay
the groundwork for the further exploitation of the bias criterion in the next chapter. For this
purpose, the example of a single quadrupolar order from the beginning of this chapter, Sec. 6.1,
will be revisited.

One can either use samples generated from a uniform distribution of temperatures crossing
the phase transition, (a) through (c), or at two discrete temperatures deep inside each phase, as
shown in Fig. 6.11 (d). When adopting the first approach, one has to set a discriminatory tem-
perature, Tdisc, to label samples taken at temperatures below and above Tdisc. Ideally, it should
coincide with the critical temperature, Tdisc = Tc , which is the case in scheme (a), whereas
Tdisc , Tc is deliberately chosen in schemes (b) and (c) to study the effect of misclassified sam-
ples. If the temperature distribution is discrete, the notion (and choice) of a discriminatory
temperature is not necessary. Schemes (e) and (f) are discussed at the end of this subsection.

Continuous vs. discrete training set

In all cases, the decision function is measured and the Cµν matrix is examined as before. As
anticipated, the coefficient matrix exhibits the same pattern as shown in Fig. 6.1 for continuous
(a) and discrete (d) temperature distributions, meaning the physical order parameter is captured
regardless.
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ν = 0.1 ν = 0.4

Tdisc |ρ | δ |ρ | δ

(a) 0.52 1.012 0.14 1.001 0.063

(b) 0.4 6.83 1.97 1.003 0.042

(c) 0.64 2.32 0.14 1.0012 0.087

(d) n/a 1.0012 0.0014 1.0007 0.0013

(e) n/a 33.9 0.0090 25.2 0.0048

(f) n/a 0.15 1.78 6.1 0.41

Table 6.3: The SVM bias parameter |ρ | and the deviation δ from the true uniaxial nematic order
parameter are given for 28K samples generated according to the training schemes
(a)–(f) and for weak (ν = 0.1) and strong (ν = 0.4) regularization. |ρ | ≈ 1 indicates
a phase transition was captured.

Table 6.3 shows results for the various training schemes and for weak (ν = 0.1) and strong
(ν = 0.4) regularization. Aside from the aforementioned deviation metric δ , also the bias |ρ | is
tabulated which is accessible as part of the optimization result and expected to attain a value
of 1 if the SVM learned a physical order parameter for reasons laid out in Sec. 5.3.

First, observe that the order parameters extracted using strong regularization are always
better than those obtained using weaker regularization. This is consistent with the previous
findings of Sec. 6.4.1. Also observe that training set (d) in fact yields the best results, even
compared to set (a) where the accurate critical temperaturewas used to discriminate the phases.
Thus, SVM seems to work best if the training data exhibit the characteristics of the ordered
phase most pronounced. It does not benefit from training data in the vicinity of the critical
point.

However the continuous training sets (a) through (c) allow for a validation of the tentative
phase diagram. Whereas in (a) the correct order parameter is learned for both degrees of reg-
ularization, the misclassification of the samples with temperatures betweenTdisc andTc in sets
(b) and (c) induces significant deviations from the true order parameter at weak regularization
which is compensated for at stronger regularization. If continuous training is used in this way
to verify the existence of a transition at Tdisc, a relatively weak regularization may be desired.

However, even at the stronger regularization, the quality of the coefficient matrix continues
to depend on the amount of misclassified samples, albeit rather weakly. Figure 6.12 shows δ
against the discrepancy of the assumedTdisc from the realTc . Note the relatively small deviation
even for an estimate of the critical point that is off by as much as |τ | ∼ 40%, where τ = Tdisc−Tc

Tc
.

This robustness of the SVM facilitates applications where the locus of the phase transition is
not known a priori. Moreover, a crude Cµν learned with large |τ | can in turn guide a better
estimate of Tc , as a well behaved d(x) is still obtained, somewhat reminiscent of the learning-
by-confusion scheme [132]. Additionally, as seen from Fig. 6.10, a crude Cµν may already
suffice for an appropriate inference of the potential order parameter bywhich one could further
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Figure 6.12: Deviation δ for the tetrahedral order against different discriminatory tempera-
tures Tdisc used to classify training samples. A relatively strong regularization of
ν = 0.4 was used.

derive more sensitive measurements of a phase transition, such as the susceptibility and Binder
cumulant.

Further, note the correlation between a small deviation δ and a bias |ρ | close to one in
all cases for (a) through (d) in Tab. 6.3. This is consistent with the expectation of |ρ | = 1
for a physical order parameter and enables one to use the bias to gauge the quality of the
learned order parameter without examining its analytical structure. In case (b), samples from
the ordered phase are wrongly labeled as disordered and push the SVMmargin boundary away
from the manifold of truly disordered samples which both induces a bias |ρ | � 1 and deforms
the decision boundary, resulting in a faulty order parameter, δ � 0. Likewise, in the opposite
case (c), which falsely classifies disordered samples as ordered ones, the margin is forcibly kept
very narrow which makes it prone to overfitting.

In the left panel of Fig. 6.13, the “raw” decision functions without any rescaling are shown.
Note that the constant value attained in the disordered phase corresponds to −ρ. The absolute
scale of the decision function is related to the inverse width of the SVM margin. For the con-
tinuous sampling schemes, the margin is more narrow as it is constrained by samples close to
the transition. In the discrete scheme (d), the decision function gives values between −1 and 1,
corresponding to the extreme temperatures it was trained at. Furthermore, the zero crossing
of the raw decision function, which determines the label of a testing sample, approximately
reproduces the discriminatory temperatures used in the continuous training schemes (a) and
(b), whereas the discrete scheme (d) is not trained to classify samples close to the transition.

While these features of the “raw” decision function can provide a deeper understanding
of the workings of the SVM, they are physically irrelevant and the decision functions may
therefore be shifted by ρ to obtain a value of zero in the disordered phase and rescaled to
match the true nematicity. As can be seen from the right panel in Fig. 6.13, the result is very
close in all three cases, even for scheme (b).
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Figure 6.13: The decision function, obtained from the earlier training with regularization ν =
0.1, is measured as an observable in Monte Carlo simulations at temperatures
spanning the phase transition. The left panel shows the numerical values of the
decision functions as obtained from SVM.When training the SVMwith the rank-1
kernel (shown in gray), the quadrupolar order cannot be captured, resulting in an
erratic decision function. The curves (a), (b), and (d) are trained with the rank-2
kernel and correspond to the eponymous training schemes (cf. Fig. 6.11). The
zero crossing of the decision functions marks the decision boundary, whereas the
constant value for T > Tc is given by −ρ (cf. Tab. 6.3). The right panel shows the
same curves, but shifted up by ρ, and are seen to match the square of the uniaxial
nematicity after being rescaled.

Training in the same phase

Finally, two more training schemes where the samples are taken at two discrete temperatures
which are both in the ordered phase (e) or disordered phase (f) are examined. This serves to
assess the capability to distinguish these cases where no phase transition takes place from those
where it does, (a)–(d). This can be physically relevant in situations where the phase boundary
is not known, source data is limited, or when multiple order parameters are involved, while
not all of them experience a phase transition.

Interestingly, when both training temperatures lie within the ordered phase (e), the SVM
still manages to learn the order parameter, as is apparent from the very small deviations δ in
Tab. 6.3. This can be explained by the fact that the magnitude of the true order parameter is not
constant within the ordered phase, but increases in value as one moves deeper inside the phase.
The true order parameter is still the best decision function the SVM can learn in this situation
to distinguish samples from the two temperatures. Note that this enables us to measure the
decision function at a range of temperatures which can even exceed the training temperatures
and read off the factual transition point from the decision function.
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Despite the excellent δ in scenario (e), the corresponding biases ρ are far away from unity.
This is no surprise as the argument put forth in Sec. 5.3 relied on the properties of disordered
samples. Thus, the bias enables us to distinguish this situation from case (d) where a transition
takes place between the training temperatures.

A different picture is obtained when one attempts to train the SVM with samples from two
temperatures in the disordered phase (f). The magnitude of the true tensor order parameter
is constant (zero) throughout the disordered phase which makes it unsuitable to distinguish
samples from the two temperatures. Thus, SVM does not learn the correct order parameter,
as is manifest from the large value of δ in Table 6.3, but instead overfits the training data in
an attempt to construct a better decision function. As a further indication of overfitting, the
decision function is not reproducible. Likewise, also the bias ρ is fluctuating and in general
will not be close to one.



7Mapping the topology of the phase diagram
Chapter 4 introduced support vector machines as an instance of supervised machine learning.
In the preceding chapter, it was used as such in the context of phase classification by labeling
the training data according to the tentative phases. It was also demonstrated that the bias
parameter ρ can in fact be used to ascertain whether or not the labeling of the training samples
is consistent with the presence of a phase transition between different phases. This ability has
previously been rationalized by the argument put forth in Sec. 5.3 and the resulting criterion
was summarized in Eq. (5.17).

Motivated by this, one can embrace this bias criterion as the central element of a learning
scheme that relegates the supervision aspect to its weakest possible sense. Consider a spin
system involving a set of physical parameters like temperature or interactions. One assigns
the same labels to all spin configurations which were sampled at the same points in parameter
space, while any two spin configurations sampled at different points in the parameter space are
given distinct labels. Using the bias criterion, those points exhibiting the same physics—that
is to say, those in the same phase—can be identified. In Sec. 6.2.1, this was the case between
labels 2 und 3 . By considering a multitude of different points simultaneously, one can trace
out the phase boundaries and infer an emergent labeling corresponding to genuine phases. In
this way, TK-SVM becomes functionally unsupervised.

7.1 Graph construction

To attain the topology of the phase diagram more systematically, one can sample spin con-
figurations from, say, M different points covering the parameter space uniformly and assign
them distinct labels. This constitutes M classes of training samples to which TK-SVM multi-
classification is applied. As a result, for each scrutinized rank n and spin cluster, one obtains
M(M − 1)/2 decision functions, each yielding a separate bias parameter, corresponding to the
binary classifiers between any two labels.

One then has to make a decision whether or not each pair of labels is to be considered to
originate from the same phase, based on the bias criterion. Exactly how this is decided will be
expanded on below in Sec. 7.3. Ideally, already O(M) such equivalence decisions are sufficient
to establish equivalence classes among the labels through transitivity. Hence, for reasonably
largeM , theO(M2)-many equivalence relations will exhibit a large amount of redundancy. This
is just as well, since the bias rules [Eq. (5.17)] are not hard-and-fast and some of the derived
equivalence relations are likely to contradict themselves.

In order to efficiently represent the entirety of the equivalence relations and to reconcile
any inconsistencies, it is useful to encode them in a simple, undirected graph. To this end, one
considers theM labels as vertices and introduces edges connecting two vertices whenever their
labels have been deemed equivalent. As an example, let us revisit the phase diagram for the
D2h gauge symmetry of Sec. 6.2.1. The graph resulting from the above procedure on a 10 × 10
(M = 100) grid at rank 2 is shown in Fig. 7.1. Visual inspection of the graph immediately
reveals three regions which are densely intraconnected while being sparsely interconnected,
corresponding to the three phases of the phase diagram (cf. Fig. 6.2).
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Figure 7.1: Graph representation of the relation between points on a 10 × 10 grid as inferred
from the bias ρ of the corresponding SVM classifiers (regularization ν = 0.1). Any
two vertices are connected by an edge if ρ > 2.5. (See Sec. 7.3 for details.) The
phase diagramwhich has been found based on the peak susceptibilities (cf. Fig. 6.2)
is shown in red for reference. The phase boundaries are intersected by only few
graph edges and this happens mostly where grid points are very close to the phase
transition.

7.2 Spectral graph partitioning

This graph can subsequently be partitioned by a spectral clustering analysis to identify the
phases in an objective fashion. To that end, one constructs the graph’s Laplacian matrix L =
D − A ∈ RM×M . Here, A is the adjacency matrix, the M × M matrix having ones on the
off-diagonal elements where vertices are connected by an edge; and D is the degree matrix,
the diagonal matrix where the diagonal elements count the number of edges incident on each
vertex.

As a consequence, the elements of the rows and columns of L sum to zero. By definition,
L is symmetric positive definite. When calculating the eigenvalues and eigenvectors of L, the
smallest eigenvalue is therefore exactly zero and (1)⊗M is a corresponding eigenvector. In case
that the graph consists of multiple disconnected components, the Laplacian is block-diagonal
(up to a permutation) and the eigenvalue zero is thus degenerate with an algebraic multiplicity
corresponding to the number of connected subgraphs. The eigenspace to eigenvalue zero is
then spanned by vectors whose entries (corresponding to graph vertices) are constant on one
of the connected subgraphs each and zero elsewhere.

In case the graph obtained through the bias criterion perfectly reflects the phase diagram,
one could hence identify the phases through the eigenvectors to eigenvalue zero; though, the
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Figure 7.2: A graph with ten vertices which consists of two fully-connected subgraphs (ver-
tices 1–5, 6–10) which are connected by a single edge. The eigenvalue zero of its
Laplacian matrix is thus nondegenrate. The second-largest eigenvalue, the alge-
braic connectivity, equals approximately 0.3. The corresponding Fiedler vector el-
ements are color-coded at the respective vertices.

task at hand is trivial in this case anyway. However, as alluded to in the previous section, the
graph will in practice exhibit a few erroneous edges crossing the alledged phase boundaries.
It is then beneficial to turn to the second-smallest¹ eigenvalue, dubbed Fiedler value or alge-
braic connectivity, and its corresponding eigenvector, the so-called Fiedler vector. The algebraic
connectivity is upper-bounded by the traditional edge connectivity [182], i.e. the minimum
number of edges one has to cut for the graph to become disconnected. For a connected graph,
the elements of the Fiedler vector can be used to partition the graph: vertices with a positive
entry in the corresponding position of the Fiedler vector are assigned to one subgraph, those
with a negative corresponding entry to the other subgraph. This partition approximates the
sparsest cut² [183]. This is illustrated for a small graph in Fig. 7.2. Partitioning the graph based
on the sign of the Fiedler vector elements would cut the edge between vertices 5 and 6 which
is indeed the sparsest cut of the graph.

One may thus use the Fiedler vector to partition the graph in Fig. 7.1. The entries of the
Fiedler vector are shown in Fig. 7.3 for an even larger graph based on M = 23 × 23 = 529
grid points. At that grid resolution, the graph itself becomes hard to visualize and is therefore
omitted. A bipartition based on the sign would correctly split the graph into points originating
from the D2h phase on the one hand and the remaining points from the O(3) and D∞h phases
on the other hand. A subsequent bipartition of the latter would in fact run along the phase
boundary between the O(3) and D∞h phases. The algebraic connectivity of the resulting sub-
graphs may be used as an indicator to decide if any given subgraph admits further partitioning
by a sparse cut or if it is “atomic” in the sense that the subgraph already encompasses a single
phase. Such a recursive bipartition scheme is known as hierarchical clustering.

¹This assumes that a degenerate eigenvalue zero is counted according to its algebraic multiplicity; i.e. the
algebraic connectivity of a disconnected graph is zero. Note, however, that the first few nonzero eigenvalues are
indeed the algebraic connectivities of the connected subgraphs.

²The sparsest cut of a graph of M vertices cuts through Es edges to bipartition the graph into subgraphs of
M1 and M2 vertices, M = M1 +M2, in such a way that minimizes the ratio Es/min{M1,M2}. It thus compromises
between minimizing the number of edges in need of cutting and the balance of the resulting bipartition. Finding
the sparsest cut is an NP-hard problem.
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Figure 7.3: Upper panel: elements of the Fiedler vector corresponding to the graph obtained
for a 23× 23 grid by including edges for which ρ > 12. Each element is rendered as
a pixel at the location of its corresponding grid point in parameter space and color-
coded according to its value. The correct phase diagram (cf. Fig. 6.2) is shown in
white for reference. Lower panel: a histogram of the elements’ values is shown
next to the color scale used to encode them in the upper panel.

An elaborate hierarchical clustering is however not necessary in case of Fig. 7.3. Indeed,
the Fiedler vector entries are seen to firmly fall into one of three bins in the histogram in
the lower panel of Fig. 7.3, i.e. they attain almost-constant values within each of the three
phases. Only those few points in the vicinity of the phase boundaries exhibit intermediate
values. Rendering the Fiedler vector entries as pixels in parameter space at the location, at
which the corresponding data were sampled from, thus reproduces the phase diagram, Fig. 6.2,
perfectly within the resolution dictated by the grid.

The D2h model considered in this chapter as an example only exhibits symmetry-breaking
(first-order) transitions. In the case studies of frustrated magnetism which are investigated in
the next two chapters, additionally crossovers will be seen to play a key role in characterizing
the phase diagram. In light of this, interpreting the depiction of the Fiedler vector directly
as the phase diagram has another advantage aside from avoiding the introduction of another
heuristic to guide hierarchical clustering: any phase boundary drawn by a bipartition based
on the Fiedler vector entries between phases which are separated by a crossover would by
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definition be arbitrary. In those situations, the Fiedler vector entries will be seen to gradually
change between phases as the crossover takes place; this is not a fault of the method, but rather
protrays the physics accurately and can even give an indication as to the nature of a transition
or the scale over which an ostensible crossover takes place. This will be demonstrated in Ch. 8.

One should note that the graph analysis outlined above does not rely on monitoring single
phase transitions or tuning parameters individually. The topology of the phase diagram is in
fact resolved by direct observation of the entire parameter region of interest while simulta-
neously scrutinizing various potential orders. Thus, it can be particularly useful when phase
diagrams are multidimensional and complex in structure.

To conclude this section, it can be remarked that in the above example using theD2h model,
only about 103 samples per grid point were used. This is sufficient to obtain a reasonably in-
dicative value for ρ. Thus, the total number of samples Ns is comparable to what was typi-
cally used in the binary multiclassifications of Ch. 6. The complexity of the SVM optimization,
O((Ns/M)2.2M2), is close to that of an equivalent binary classification problem O(N 2.2

s ) (cf.
Sec. 4.1.1). Once the topology of the phase diagram has been extracted, the same samples may
be relabeled according to their phase to obtain clean order parameters without the need for
resampling.

7.3 Graph edge weighting

In the construction of the graph, Sec. 7.1, each tentative edge is included in the graph based
on the bias of the corresponding classifier. The simplest scheme to do so compares the devi-
ation of the (unoriented) bias |ρ | from unity and imposes a hard threshold ρc : for biases with
| |ρ | − 1| > ρc the corresponding edge is included in the graph, while biases whose distance
from unity is smaller than ρc are considered to capture a phase transition or crossover and
therefore no edge is included. Larger values of ρc will result in graphs with less false-positive
edges at the cost of more false-negative (missing) edges. Since all pairings of points in parame-
ter space are considered, the graph contains a lot of redundant information, so false-negatives
are more easily compensated for.

This leads to the inevitable question how one is to determine the threshold ρc . A useful
approach which was adopted in Figs. 7.1 and 7.3 uses the degeneracy of eigenvalue zero of the
resulting Laplacian to guide the choice of the threshold bias ρc . One calculates the spectrum
of the Laplacian for an assortment of different values for ρc and selects the largest value for
which the eigenvalue zero remains nondegenerate. Thus, one tweaks ρc such that the resulting
graph is just connected with the understanding that the tentative phase boundary will intersect
only few edges. Generically, a higher resolution of the grid will result in more redundant
information and the graph will remain connected up to larger values of ρc . Even larger values
of ρc would produce disconnected graphs with increasing numbers of connected subgraphs. As
alluded to in Sec. 7.2, these could be interpreted as phases directly but the “desired” number of
phases may not be known a priori, so it is preferrable to analyze the Fiedler vector of a (barely)
connected graph.

While this approach works well enough when the phase diagram is composed of a few
symmetry-breaking phases, it does discard information on the strength of the connection and
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different transitions or crossovers may become apparent at different values of ρc . Rather than
using a fixed threshold to construct an unweighted graph, one may instead opt to use the bias
value of each edge to determine its weight, resulting in a weighted graph. The spectral analysis
described in the previous section retains its applicability for weighted graphs³.

Using the biases (or their deviation from unity) directly as weights for the edges does not
yield useful results, as it overrepresents the importance of large biases. Instead, the weight of
each edge is given by w(ρ), for a suitably chosen weighting function w : R → [0, 1]. Thus,
the hard threshold employed previously amounts to choosing the weighting function w(ρ) =
Θ(| |ρ | − 1| − ρc ) instead, resulting in weights zero and one exclusively.

In the case studies in Chs. 8 and 9, a Lorentzian weighting function is employed instead,

w(ρ) = 1 − ρ2c
(|ρ | − 1)2 + ρ2c

, (7.1)

where ρc again gives a characteristic scale up to which edges do not contribute significantly,
replacing the hard threshold by a soft one. Choosing a continuous weighting function retains
more of the information provided by the biases and also simplifies the spectral analysis by en-
suring that the graph never exhibits any truly disconnected components as these would lead to
a degenerate eigenvalue zero of the Laplacian matrix. This is of particular practical relevance
in identifying the crossovers (where vertices have few and weak connections to their neigh-
bors) correctly as such; using a hard threshold, these vertices are at risk of being completely
disconnected from the surrounding phases.

This also allows for a larger latitude regarding the choice of ρc . In Ch. 8, it will be shown
empirically that again a more restrictive criterion, corresponding to a larger value of ρc , gen-
erally leads to a better result, i.e. a less noisy Fiedler vector. However, consistent results are
obtained for values of ρc over several orders of magnitude (cf. Fig. 8.4 for an example). Hence,
the choice of ρc is not of practical concern. In a similar vein, the specific choice of the weighting
function does not matter in practice beyond the fact that it is continuous. Both Eq. (7.1) with
its algebraic falloff and a similarly scaled Gaussian with an exponential falloff yield consistent
results.

In the D2h example of the foregoing sections, all transitions are quadrupolar in nature.
Thus, the phase diagram could entirely be obtained from the SVM biases at rank n = 2. In case
different transitions occur at different ranks (as is the case for the D3h model considered in
Sec. 6.2.2), one has two possibilities to reconcile this situation: (i) by building a “phase diagram”
with respect to each rank and then combining these to arrive at the complete phase diagram
(This approach is taken in Sec. 8.1.), or (ii) by combining the graphs at different ranks in a
way that (the weight of) each edge in the final graph is obtained from (the weights of) the
corresponding edge in each of the graphs; the spectral analysis is then performed only once
on the combined graph. In case of an unweighted graph, the natural operation to combine
edges would be a logical OR; in the case of weighted graphs, the edge weights could possibly
be multiplied. The same caveat applies when orders on different spin clusters are considered.

³To construct the Laplacian L = D−A of a weighted graph, the degree of each vertex, i.e. the diagonal elements
of D, is replaced by the sum over the weights of all edges incident on that vertex. Likewise, the adjacency matrix
A has the edges’ weights on the respective off-diagonal elements. Hence, the rows and columns of L still each sum
to zero.
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8Pyrochlore XXZ antiferromagnet
Having introduced the basic techniques leading up to TK-SVM in part I of this thesis and having
seen how they are used to find order parameter tensors and phase diagrams in the context of the
gauge model in part II, this final part is devoted to their application to frustrated spin systems.

In this first chapter, the focus will be on the classical limit of the XXZ model on a py-
rochlore lattice, which is accessible to large-scale classical Monte Carlo simulation, and known
to support a plethora of different spin liquids, one of which also possesses hidden spin-nematic
order [87, 88]. It is therefore suitable for the purpose of demonstrating the capabilities of TK-
SVM where special emphasis will be placed on the handling of crossovers between—and char-
acterization of—classical spin liquid (CSL) phases.

An unbiased approach will be taken which does not assume prior knowledge of the phase
diagram. In Sec. 8.1, the topology of the phase diagram will be inferred from scratch. The
resulting phases will given anonymous labels thereafter, pending a detailed characterization in
Sec. 8.2. Aside from symmetry-breaking phases which are captured by TK-SVM by learning
their respective order parameter tensor (Sec. 8.2.2), the emergent local constraints will be seen
to play a crucial role to distinguish between different kinds of spin liquids (Sec. 8.2.3). Finally,
the thermodynamics of the learned quantities are further scrutinzied in Sec. 8.3. The discussion
is intended to provide general guidance on the use of TK-SVM and is transferable to other
frustrated spin models. Indeed, the analysis of the Heisenberg antiferromagnet on the kagome
lattice in Ch. 9 will follow much along the same lines and hearken back to this chapter many
times.

The spin configurations used as input to the SVM are obtained from classical Monte Carlo
simulations of the Hamiltonian HXXZ [Eq. (2.13)], courtesy of Ludovic D. C. Jaubert. These
simulations were carried out for a system of N = 16L3 spins, where L3 is the number of cubic
unit cells. The results presented in this chapter used a system of size L = 8. A heat-bath
algorithm for single-spin-flip updates (see Sec. 3.2.2) was combined with overrelaxation (see
Sec. 3.3.2) and parallel tempering (see Sec. 3.4). Preliminary thermalization is carried out in
two steps: first a slow annealing from high temperature to the temperature of measurementT
during te Monte Carlo steps (MCs) followed by te MCs at temperatureT . After thermalization,
measurements are done every 10 MCs during tm = 10te MCs. Typical Monte Carlo times range
from tm = 106 to 3 × 107 Monte Carlo sweeps.

8.1 Topology of the phase diagram

In this section, the tools developed in Ch. 7 will be applied to the XXZmodel on the pyrochlore
lattice. Spin configuration samples were taken on a grid of parameter points (J±,T ), covering
a region of interest in parameter space uniformly. To be concrete, 29 equidistant values of J±
between −1 and 0.4, as well as 17 logarithmically-spaced temperatures between 0.001 and 10
span a rectilinear grid. At each of the resultingM = 29×17 = 493 parameter points, a mere 500
statistically independent spin configurations have been sampled. These constitute the training
data. Assigning distinct labels to the samples from each of these parameter points, results
in a massive multiclassification problem. Solving this using the tensorial kernel for a given
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rank and spin cluster yields 121 278 decision functions, each trying to distinguish between two
parameter points. Here, spin clusters consisting of the four spins on the tetrahedra that form
the pyrochlore lattice (cf. Fig. 1.1) will be used. Ranks 1–4 will be investigated.

8.1.1 Graph analysis

To begin with, the data are subjected to an analysis using the rank-1 tensorial kernel, to scru-
tinize potential dipolar orders. The graph resulting from the corresponding biases is shown
in Fig. 8.1(a). It is apparent that the graph decomposes into two subgraph components. Both
subgraphs appear to be uniformly intraconnected and do not exhibit any further structure.
This means that, in terms of dipolar orders which are defined on tetrahedral spin clusters, the
phase diagram appears split in two. However, as one cannot foresee or exclude the presence
of more complicated orders, it is prudent to analyze both subgraphs further with higher-rank
kernels. In principle, one should also explore the possibility of orders which are defined on
larger clusters which is omitted here.

In fact, the smaller graph does not exhibit any further structure at ranks 2, 3, or 4 either
and is therefore ignored for the remainder of this section.

Hence, the larger subgraph will be analyzed with the rank-2 tensorial kernel next, which
detects quadrupolar orders as well as local constraints that can be expressed by termswhich are
quadratic in the spin components. The resulting graph is displayed in Fig. 8.1(b) and exhibits
several regions which are strongly intraconnected, corresponding to regimes of congruent na-
ture. However these regions appear less well separated compared to Fig. 7.1, rendering the
graph less accessible to direct visual interpretation. On the one hand, one observes instances
of regions which—while being less densely interconnected than—still exhibit a nonnegligible
amount of edges connecting them, more so than what is observed for the symmetry-breaking
transitions considered in Ch. 7. On the other hand, other areas of the graph feature almost
no connections to their surroundings. At ranks 3 and 4, no further subdivisions become ap-
parent, indicating that all the relevant phases can be described in terms of quadrupolar order
parameters or quadratic constraints.

In order to obtain a more readable phase diagram from the graph in Fig. 8.1(b), one pro-
ceeds to apply the spectral clustering analysis which was introduced in Sec. 7.2. The resulting
Fiedler vector can again be interpreted as the phase diagram by color-coding each pixel in pa-
rameter space according to the value of its corresponding Fiedler vector element, as depicted in
Fig. 8.2. One observes that its entries attain distinct values within strongly intraconnected re-
gions which are relatively constant throughout. In order to demonstrate the usage of TK-SVM
in the absence of prior information, these regions are labeled anonymously by the roman nu-
merals given in the figure for now. Their nature will become clear once they are characterized
in the next section.

However, already at this point can one can note the remarkable agreement of this phase
diagram with the phase transitions and crossovers found in Ref. 87 which are superimposed
on Fig. 8.2 for reference. Also note that the boundary between regions III and IV is very sharp,
whereas the distinction between some other regions is more gradual. It will be confirmed in
Sec. 8.3, where the corresponding order parameters are examined, that the former represents
a phase transition, while the latter mark the regions influenced by crossovers. Therefore, in
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Figure 8.1: The graphs constructed from the biases between each pair of vertices using the
tensorial kernel at rank 1 (a) and 2 (b). The opacity of each edge indicates its weight
which is in both cases determined using a Lorentzian, Eq. (7.1), with characteristic
scale ρc . Here, only edges between (at most) sixth-nearest neighboring grid points
are considered, i.e. long-range edges have been excluded, merely to reduce the
visual density of the figure; the subsequent analysis includes long-range edges as
well.



92 CHAPTER 8. PYROCHLORE XXZ ANTIFERROMAGNET

0.001

0.01

0.1

1

10

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4

T
/J

zz

J±/Jzz

0.001

0.01

0.1

1

10

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4
−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

I

II

III

IV

V

VI

Figure 8.2: The phase diagram is obtained by color-coding the location of each vertices in pa-
rameter space according to the corresponding Fiedler vector entry. The underly-
ing weighted graph has been constructed from the rank-2 TK-SVM biases using a
Lorentzian weighting function with characteristic bias of ρc = 50 (cf. Sec. 8.1.2).
The gray area labeled I dropped out from the rank-1 analysis and is excluded from
the graph here. For comparison, the phase boundaries found in Ref. 87 are included.
Solid (dashed) lines indicate phase transitions (crossovers).

addition to learning the topology of the phase diagram, the graph analysis can also distinguish
crossovers from phase transitions.

8.1.2 Choice of the weighting function

The construction of the graphs in Fig. 8.1 employed the weighted scheme proposed in Sec. 7.3.
It was already hinted therein that the choice of the weighting function—both in terms of its
functional dependence and its characteristic scale, ρc—does not significantly impact the re-
sulting Fiedler vector. Before proceeding with the analysis, this section will demonstrate this
point explicitly for the case of the rank-2 subgraph, Fig. 8.1(b), and its resulting Fiedler vector,
Fig. 8.2.

The biases of all the potential edges span many orders of magnitude as can be seen from
their histogram in Fig. 8.3(a). Besides the pronounced peak at |ρ | = 1 corresponding to
the edges spanning across phases, the remaining biases are following a fat-tailed distribution
which becomes apparent from the log-log version of the same histogram in the inset Fig. 8.3(b).
Panel 8.3(c) meanwhile shows the resulting distribution after mapping the biases through the
Lorentzian weighting function, Eq. (7.1) with ρc = 50, which was used to obtain the Fiedler
vector in Fig. 8.2.

Fig. 8.4 shows the Fiedler vector along with the distribution of the biases and their cor-
responding weights for different values of ρc spanning six orders of magnitude. Even in the
most inclusive approach in panel (a), the topology of the phase diagram can be recognized, even
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Figure 8.3: Histogram of the (unoriented) biases obtained from TK-SVM among the 493 points
in parameter space. The bin width is proportional to the bias values. The red curve
in panel (b) is the Lorentzian weighting function, Eq. (7.1) with characteristic scale
ρc = 50, used to map biases to graph edge weights.

though the result is generally more noisy and the phase boundary of the spin nematic phase
appears blurred. As successively more edges are discarded, these shortcomings are gradually
rectified. The resulting Fiedler vectors for ρc = 102 [panel (d)], 103, 104, and 105 [panel (e)] are
virtually indistinguishable, even though in the latter case, only the largest of biases contribute
to the graph appreciably. Beyond ρc = 106, the analysis is limited by the numerical accuracy
of the weights. Considering that this last choice exceeds the maximum bias that was found, it
is unnatural.

One may conclude that (at least in the present case) the choice of the weighting function is
not of practical concern. This reaffirmes the previous statement that it is generally beneficial
to be more exclusive when deciding which biases to include in the graph. Using a continuous
weighting function is, however, crucial to ensure that the graph stays (weakly) connected.

8.1.3 Reduced multiclassification problem

The partition of the parameter space obtained by means of the spectral graph analysis is also
reflected by the histogram of the Fiedler vector entries which is presented in Fig. 8.5. The
regions labeled II, III, IV, and V manifest themselves as distinct peaks in the histogram. In
particular, regions III and IV lie closely together, but can be distinguished quite clearly which
justifies our choice of a color scale with a large gradient in the vicinity. On the other hand, the
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Figure 8.4: The Fiedler vector, representing the extracted phase diagram, is shown along with
histograms of the biases and corresponding edge weights for a variety of different
choices of the characteristic scale ρc of the weighting function. The weighting
functions are superimposed on the bias histograms in each case. The color scale
used for the Fiedler vector is identical to that used in Fig. 8.2.
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Figure 8.5: Histogram of the entries of the Fiedler vector shown in Fig. 8.2, alongside the color
scale that was used therein. The four regions II, III, IV, and V can be readily iden-
tified as distinct peaks in the histogram. Region VI is less well-defined, owing to
crossovers into other regions. The shaded areas in the background indicate which
intervals of Fiedler vector entries were used to guide the setup of the reduced mul-
ticlassification problem.

region labeled VI is less well-defined. This may be attributed to the fact that it corresponds to
an intermediate regime, both in coupling J± and temperature T , connected via crossovers to
the surrounding regions with drastically different entries in the Fiedler vector.

In order to proceed with the detailed analysis of the physics governing each of the regions,
a reduced multiclassification problem is set up which relabels the training data according to
the region from which they originate. To that end, the corresponding intervals of the entries
of the Fiedler vector have been identified and are indicate in Fig. 8.5. Their choice was guided
by the by the location of the peaks in the histogram in the case of regions II–V. Since region VI
does not exhibit a pronounced peak, its corresponding interval has been centered on the value
attained in the Heisenberg limit (J± = −Jzz/2, T → 0).

The entries which do not fall into either of these intervals can be attributed to crossovers in
between. The corresponding training data cannot be labeled unambiguously and are therefore
not included in the merged dataset. The final partitioning of the phase diagram is presented in
Fig. 8.6¹. After relabeling, the SVM is trained with 24 000 (I), 49 500 (II), 16 500 (III), 18 000 (IV),
43 500 (V), and 13 500 (VI) spin configurations, respectively, while 81 500 samples have been
excluded.

¹Note that the partion depicted in Fig. 8.6 deviates slightly from the strict interval-based partitioning by manu-
ally excluding a handful of points on the boundary of region V (which are intermediate crossover points, but might
otherwise have been labeled III or IV, purely based on their Fiedler vector entry).
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Figure 8.6: The partitioning of the phase diagram is superimposed on the Fiedler vector (cf.
Fig. 8.2). Regions which can be unambiguously assigned to one of the phases, la-
beled by roman numerals I–VI, are separated by solid lines. For the hatched regions,
this is not possible unambiguously and the corresponding data are excluded from
the ensuing analysis.

In addition, the training data are supplemented with 50 000 fictitious configurations, con-
sisting of random spins which are independently and isotropically sampled from the unit
sphere. These fictitious configurations mimic states at infinite temperature and serve as a con-
trol group which turns out to be useful for interpreting both the coefficient matrices and the
behavior of the bias parameters. They are labeled “T∞” in the following discussion.

This sets up the reduced multiclassification problem. For each kernel of rank n, the solution
leads to qn(qn + 1)/2 binary classifiers, where qn denotes the number of phases identified at
any given rank (here, q1 = 2, q2 = 5). The first qn of the classifiers involve the control group
and encode the characteristics distinguishing each phase from featureless T∞-states. As will
be seen in this section, the interpretation of these qn classifiers will give sufficient information
for understanding the phase diagram. The remaining qn(qn − 1)/2 classifiers emphasize the
distinction between any two phases in the real data, hence providing a straightforward way to
identify quantities that are responsible for phase transitions or crossovers.

8.2 Characterizing the phases

After the topology of the phase diagram has been established and a corresponding reduced
multiclassification problem has been obtained, the next step is to attain an understanding of
the nature of the phases and their phase transitions and crossovers.

In this section, this will be done in several steps. First, the biases of the reduced classifica-
tion will be used to establish a hierarchical relation between phases (Sec. 8.2.1). Following that,
one can go beyond the mere interpretation of the bias parameters and analyze the coefficient



8.2. CHARACTERIZING THE PHASES 97

ρ

I II–VI

T∞ 1.0006 1.4874

I −1.0004

(a) Phase I is compared with the
remainder of the parameter
space and the control group
using the rank-1 kernel.

ρ

II III IV V VI

T∞ 4.586 1.012 1.009 1.004 1.025

II 1.026 1.016 1.012 1.097

III 1.336 0.534 −1.220
IV 0.383 −1.134
V −1.028

(b) Phases II–VI are compared amongst each other and with the
control group using the rank-2 kernel.

Table 8.1: Biases ρ(A | B) of decision functions at different ranks between the data which are
labeled according to the phase diagram partitioning obtained in Sec. 8.1. In both
cases, a fictitious dataset of independently distributed isotropic spin configurations,
referred to as “T∞”, is included as a control group. In the convention adopted in Ch. 5,
A is the row label, while B is the column label. These biases are to be interpreted
according to the rules laid out in Sec. 5.3 and summarized by Eq. (5.17).

matrices of the classifiers distinguishing between select phases. At first, this will follow the
recipe of Ch. 6 to extract the order parameters of the symmetry-breaking phases (Sec. 8.2.2).
At rank 2, this analysis can further be made systematic by decomposing the coefficient ma-
trices into several quadrupolar ordering components. Even in correlated paramagnetic phases
(i.e. classical spin liquids), these ordering components can be used to infer the local constraint
(Sec. 8.2.3).

8.2.1 The hierarchy of disorder

In Ch. 5, it has been pointed out that the bias parameter ρ is oriented. During the construction
of the phase diagram Fig. 8.2, only the magnitude of ρ was used. Here, the orientation of
the biases in the reduced multiclassification will also be taken into account, and the mutual
relations between the phases are analyzed.

Note that the set of all biases correspond to the 2-combination of the phases which does
not rely on the topology of the phase diagram or the microscopics of the model. Therefore, one
can infer a global hierarchy between the phases from them, going beyond the phase transitions
and crossovers reflected in the phase diagram. This introduces the notion of a “hierarchy of
disorder” which addresses order-to-disorder transitions and crossovers on an equal footing. A
trivial paramagnet has the most disorder; symmetry-breaking phases, where spins align along
common directions, are in the opposite limit; phases of constrained dynamics that do not break
any symmetries reside in the middle.

The bias values resulting from the reduced multiclassification problems are tabulated in
Tab. 8.1. According to the rules set out in Eq. (5.17), one can infer that phase I is the most
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ordered as the corresponding bias ρ(I | II–VI) is approximately equal to −1. In contrast, phase II
is entirely disordered and can be identified as the paramagnetic phase. Phase VI is the second
most disordered phase, as only ρ((T∞, II) | VI) ≈ +1. Also note that both phases III and IV do
not directly compare to phase V, as indicated by their biases in (−1, 1).

With a little further analysis, the Table 8.1 can be summarized by the following hierarchy,

III IV(
T∞, II

)
VI I.

V

(8.1)

These relations will confirmed by the analytical characterizations of the phases in forthcom-
ing subsections. It will seen that phase VI is a classical O(3) spin liquid characterized by an
isotropic local constraint. Phases III and V feature constraints in the easy-plane and easy-axis,
respectively, and therefore experience less disorder. In addition, phases I and IV, which are
not adjacent in the phase diagram, are two spontaneously symmetry-breaking phases, while
the former breaks more symmetry and, hence, comes last in the hierarchy.

8.2.2 Identification of broken symmetries

Onemay now extract the analytical characterization of the phases from the coefficientmatrices,
Cµν in Eq. (4.7). The focus of this subsection will be on the local orders in phases I and IV, and
the discussion of the emergent constraints is deferred to the next subsection.

Rank-1 order

Let us first focus on results learned with the rank-1 decision function. At this rank, the graph
in Fig. 8.1(a) contains only two disconnected components. Moreover, the Cµν matrix learned
to distinguish the two subgraphs appears identical toCµν (I |T∞), suggesting one dipolar order
is detected in phase I.

The corresponding 12 × 12 matrix Cµν is shown in Fig. 8.7. Following the definition in
Eq. (5.7), it is expanded by rank-1 basis functions Sαa , where α = 1, 2, 3, 4 and a = x,y, z. The
nonvanishing entries identify which of these contribute to the underlying order parameter.

Furthermore, Fig. 8.7 shows a periodic structure of 3×3 blocks. This indicates thatCµν (I |T∞)
learned with the four-spin tetrahedral cluster is reducible, because the order parameter can be
inferred from a single block. According to their spin indices, one can assign a coordinate [α,α ′]
to each block, and express them by submatrices Bαα ′(I |T∞),

Bαα ′
aa′ (I |T∞) = x

y
z

x y z

= δaa′(1 − δa,z ), (8.2)

where only a,a′ = x,y components are relevant.
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Figure 8.7: The coefficient matrixCµν (I |T∞), characterizing phase I against the control group,
obtained fromTK-SVM at rank 1. The axes are labeled according to sublattice index,
α = 1, 2, 3, 4, and spatial component, a = x,y, z, in lexicographical order. The
repeating 3×3motif, cf. Eq. (8.2), reveals phase I as an easy-plane antiferromagnet.

Substituting Cµν (I |T∞) = {Bαα ′} back into the decision function, Eq. (4.7), one obtains

d(x) ∼ 1
N 2

∑
i

〈
(Si ,x )2 + (Si ,y )2

〉
cl =

〈
‖M⊥‖2

〉
cl . (8.3)

One realizes that the interpretation of coefficient matrix here leads to nothing but easy-plane
magnetization M⊥ = 1

N
∑

i (Sx , Sy, 0)T . In addition, since the spins are defined by sublattice
coordinates, it can be concluded that phase I is an easy-plane antiferromagnetic (AFM) phase.

Rank-2 orders

The coefficient matrices learned with higher-rank kernels are interpreted in the same spirit as
in the rank-1 case. Namely, one identifies important basis functions in φ(x) and their weights
enteringCµν . Again,Cµν can be divided into smaller blocks, and it is often sufficient to examine
a subset of those blocks and their global structure. At rank 2, Cµν is expanded by Sαa S

β
b and

Sα
′

a′ S
β ′

b′ , and the small blocks are again identified by the spin indices [αβ,α ′β ′].
One observes that the coefficient matrixCµν (II |T∞), which is supposed to learn a quantity

to distinguish phase II from the fictitious T∞ data, exhibits only noise. This reflects the result
that phase II is a trivial paramagnet (PM) which is consistent with the result obtained through
the bias criterion. In contrast, the coefficient matrices Cµν (III |T∞) and Cµν (IV |T∞) show a
regular and robust pattern, indicating that nontrivial features have been detected.

The pattern ofCµν (IV |T∞) is given in Fig. 8.8(a). Indeed, one notices a structure of blocks of
9× 9 elements. Furthermore, these blocks can be classified into three types: 16 “on-site” blocks
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Figure 8.8: (a) The 144 × 144 coefficient matrix Cµν (IV |T∞) obtained from TK-SVM at rank 2.
The axes iterate over sublattice indices α, β and spatial components a,b such that
tuples (α, β,a,b) are lexicographically sorted. Panels (b) through (d) zoom in to
various types of 9×9 blocks of fixed sublattice indices: (b) “on-site”, (c) “cross”, and
(d) “bond”. The blocks exhibit similar patterns; (c) and (d) differ only by an overall
factor and relate to theC2h order parameter; the on-site block (b) additionally con-
tains an equivalent contribution due to the spin normalization. Phase IV is thus an
unconventional biaxial spin nematic.
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([αα,α ′α ′]), 96 site-bond “cross” blocks ([αα,α ′ , β ′] or [α , β,α ′α ′]), and 144 “bond” blocks
([α , β,α ′ , β ′]), respectively. Instances of each type are magnified in panels (b) through (d)
of Fig. 8.8.

The structure of these blocks is encompassed by the following submatrix,

Bα β ,α ′β ′ =



A 0 0 0 A 0 0 0 B
0 0 0 0 0 F 0 F 0
0 0 G 0 0 0 G 0 0
0 0 0 0 0 F 0 F 0
D 0 0 0 C 0 0 0 A
0 E 0 E 0 0 0 0 0
0 0 G 0 0 0 G 0 0
0 E 0 E 0 0 0 0 0
C 0 0 0 D 0 0 0 A


(8.4)

where vanishing entries are omitted, and the values of variables A through G can be read off
from the patterns. Moreover, it turns out that it is sufficient to infer local orders in the phase VI
(and also the phase III) by examining a single block, while the relative strength of different
blocks encode an emergent constraint which will be discussed in Sec. 8.2.3.

From the general structure of the blocks B in the coefficient matrix, Eq. (8.4), one identifies
seven constituent patterns:

A[Qx 2+y2+z2] =



1 0 0 0 1 0 0 0 1
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0 1
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0 1


, (8.5)

A[Qz2] =



0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0


, A[Qx 2+y2] =



0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0 0


, (8.6)

A[Qx 2−y2] =



0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
−1 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
1 0 0 0 −1 0 0 0 0


, A[Qxy+yx ] =



0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0


, (8.7)
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A[Qyz+zy ] =



0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 1 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 1 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0


, A[Qzx+xz ] =



0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0


. (8.8)

Each of these patterns contributes a quadrupolar ordering component Q• to the decision
function, which is related to the corresponding pattern A[Q•] through the relation

(
Q
α β
•

)2
=

Tr
[
A[Q•] (Sα ⊗ Sβ )⊗2

]
:

Q
α β
x 2+y2+z2 = Sαx S

β
x + S

α
y S

β
y + S

α
z S

β
z , (8.9)

Q
α β
z2 = Sαz S

β
z , (8.10)

Q
α β
x 2+y2 = Sαx S

β
x + S

α
y S

β
y , (8.11)

Q
α β
x 2−y2 = Sαx S

β
x − Sαy S

β
y , (8.12)

Q
α β
xy+yx = Sαx S

β
y + S

α
y S

β
x , (8.13)

Q
α β
yz+zy = Sαy S

β
z + S

α
z S

β
y , (8.14)

Q
α β
zx+xz = Sαz S

β
x + S

α
x S

β
z , (8.15)

where the first line corresponds to the intrinsic normalization constraint,

Qαα
x 2+y2+z2 B (S

α
x )2 + (Sαy )2 + (Sαz )2 ≡ 1 (8.16)

in case of “on-site” (α = β) blocks. Its appearance is physically irrelevant; examples of such a
“self-contraction” have previously been discussed in Ch. 6.

Theweightsp[Q•] of the ordering components are thus given by decomposingB in terms of
A[Q•], i.e. by solving the linear equationsAp = B, whereA = (A[Qx 2+y2+z2], . . . ,A[Qxy+yx ])
and p = (p[Qx 2+y2+z2], . . . ,p[Qxy+yx ])T . In case the form of Eq. (8.4) was followed exactly, this
would result in seven independent equations. When B is rather obtained through the SVM co-
efficient matrix and, hence, noisy, the linear system is overdetermined and the optimal choice
of the component weights can be found by a least-squares fit, i.e. by minimizing ‖Ap−B‖2. In
fact, since blocks of each type (“on-site”, “cross”, and “bond” type) occur in the full coefficient
matrix Cµν many times over, all of these instances can be included in the least-squares fit to
obtain common weights for each of the three block types.

The results are tabulated in Tab. 8.2 for the various cases discussed in this chapter and will
be referred back to a few times during the subsequent discussions. As expected, the pattern (8.5)
contributes significantly only in on-site blocks² where it corresponds to a constant and is, thus,
physically irrelevant.

²The exception being phase VI where it is the only pattern to occur and does so in cross and bond blocks.
Hence, it does contribute nontrivially to the decision function. Its effect will be studied in Secs. 8.2.3 and 9.2.
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p[Qx 2+y2+z2 ] p[Qz2 ] p[Qx 2+y2 ] p[Qx 2−y2 ] p[Qxy+yx ] p[Qyz+zy ] p[Qzx+xz ]
on-site −0.564 −0.021 1.274 0.278 0.280 0.000 0.000

IV | T∞ cross −0.007 0.006 −0.425 −0.093 −0.093 0.000 0.000
bond 0.003 −0.002 0.142 0.031 0.031 0.000 0.000

on-site 0.717 0.281 −1.681 −0.001 −0.001 0.000 0.000
III | T∞ cross 0.097 −0.081 0.555 0.000 0.000 0.000 0.000

bond −0.028 0.024 −0.184 0.000 0.000 0.000 0.000

on-site −0.088 0.082 0.146 0.933 0.941 0.000 0.000
III | IV cross 0.022 −0.021 −0.052 −0.311 −0.314 0.000 0.000

bond −0.005 0.005 0.019 0.104 0.105 0.000 0.000

on-site −0.086 1.068 −0.073 0.000 0.000 0.000 0.000
V | T∞ cross −0.018 −0.364 0.016 0.000 0.000 0.000 0.000

bond 0.003 0.124 −0.003 0.000 0.000 0.000 0.000

on-site −0.001 0.001 0.000 0.000 0.000 0.000 0.000
VI | T∞ cross −0.997 0.000 0.000 0.000 0.000 0.000 0.000

bond 0.313 0.000 0.000 0.000 0.000 0.000 0.000

Table 8.2: The weights of the tentative quadrupolar ordering components, p[Q•], are tabulated
for five classifiers which are analyzed in this chapter (Figs. 8.8, 8.9, 8.10). These
weights were obtained through a least-squares fit based on all blocks in the full co-
efficient matrix of each of the site-site (“on-site”), site-bond (“cross”), and bond-bond
(“bond”) types, as discussed in Sec. 8.2.3. For each classifier, weights corresponding
to components which contribute significantly (and are of physical relevance) are set
in bold type. The ratios between these weights for the three block types are given
in Tab. 8.3.

For the case ofCµν (IV |T∞), Fig. 8.8, one notices that three ordering components contribute
appreciably (set in bold font in Tab. 8.2) and their physical meaning is transparent. Qx 2+y2

reflects the anisotropic interaction in the XXZ Hamiltonian Eq. (2.13). Additionally, Qxy+yx
and Qx 2−y2 form the hidden order recently discovered in Ref. 87. One observes that these two
occur with equal weight,p[Qxy+yx ] = p[Qx 2−y2]. This is consistent with the fact that—given the
presence of Qx 2+y2—the components Qxy+yx and Qx 2−y2 define the C2h group polynomial [84,
179].

Therefore, in addition to confirming the findings of Ref. 87, the present results also suggest
that phase IV possesses a C2h order. Its characterization consists of two fluctuating fields, a
biaxial one

QB
C2h
=

〈 (
Qxy+yx
Qx 2−y2

) 〉
cl
, (8.17)

where the components are subject to the relation

Qαα
x 2+y2Q

ββ
x 2+y2 = (Q

α β
xy+yx )2 + (Q

α β
x 2−y2)2, (8.18)
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(b) Bαα ,α ′α ′(III | IV)

Figure 8.9: Theon-site 9×9 block of the coefficient matrix discerning phase III from theT∞ con-
trol group (a) and from phase IV (b), respectively, as obtained from the TK-SVM at
rank 2. The axes iterate over component indices a,b in lexicographical order. Both
on-site block exhibit a redundant contribution due to the spin normalization. Apart
from that, (a) corresponds to the Qx 2+y2 ordering component, revealing phase III
as a uniaxial nematic (without spontaneous symmetry breaking); pattern (b) corre-
sponds to theQxy+yx andQx 2−y2 components, consistent with the fact that phase IV
additionally spontaneously breaks the uniaxial symmetry down to a biaxial one.

and a uniaxial one QU
C2h
= 〈Qx 2+y2〉cl. The former defines a spontaneously symmetry-breaking

order in the easy-plane, while the latter distinguishes it from aC2 phase which hosts the same
biaxial order [84, 179].

Following the terminology of liquid crystal physics [180], phase IV may be called a biaxial
spin nematic (BSN) phase. However, in contrast to the well known D2h biaxial phase, which
breaks only rotational symmetries, thisC2h phase also spontaneously breaksmirror symmetries
σxz and σyz of the XXZ Hamiltonian Eq. (2.13), hence it is an unconventional biaxial nematic.

Phase III is another phase that possesses nonvanishing quadrupolar moments. The coef-
ficient matrix Cµν (III |T∞) displays a similar global structure as Cµν (IV |T∞), but a more sim-
ple pattern within the small blocks. A representative block, Bαα ,α ′α ′(III |T∞), is provided in
Fig. 8.9(a). From Tab. 8.2, one finds that Qx 2−y2 and Qxy+yx no longer contribute, while Qx 2+y2

remains relevant. Phase III hence exhibits uniaxial physics. However, note that the appearance
of Qx 2+y2 does not indicate the spontaneous breaking of a symmetry since the XXZ Hamilto-
nian explicitly breaks the spin O(3) symmetry down to the infinite dihedral group D∞h .

Moreover, it is clear that the biaxial order parameter QB
C2h

is responsible for the tran-
sition between phases III and IV. One expects that they will be stressed in the coefficient
matrix Cµν (III | IV). Indeed, as shown in Fig. 8.9(b), these components dominate the block
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Bαα ,α ′α ′(III | IV), in comparison to Bαα ,α ′α ′(IV |T∞) in Fig. 8.8(b). This is also apparent from
the corresponding weights given in Tab. 8.2.

8.2.3 Identification of emergent constraints

The example of spin ice in the introduction demonstrates that an emergent constraint can dra-
matically influence correlations and dynamics in the system. In fact many interesting phases
in frustrated systems feature emergent constraints.

Their identification can be far from trivial in the absence of generic tools as they are not
obvious from theHamiltonian. In special cases, such as the pyrochlore lattice [87, 106, 184, 185],
water ice [186], or the kagome lattice [187], obtaining them relies on systematic calculations
using group theory (decomposition in terms of irreducible representations). These calculations
are specific to corner-sharing geometries.

In this subsection, the procedure for deriving emergent constraints from the coefficient ma-
trices is demonstrated. Both situations in which a phase is defined exclusively by an emergent
constraint, and those in which a constraint coexists with symmetry-breaking orders, will be
encountered.

Ice rule

The analysis begins with phase V, the most idiomatic case of a constraint. The procedure is
similar to that for analyzing local order in the preceding subsection, but here also the relative
weights of different blocks are taken into account.

To emphasize thoseweights, in Fig. 8.10(a) a reduced form of the coefficientmatrixCµν (V |T∞)
is shown. Each pixel of this reduced matrix now corresponds to a 9 × 9 block in the full Cµν
matrix, while the value of the pixel is given by the weight of the Qz2 ordering component.
One notices that there are three different weights, corresponding to the site-site (Bαα ,α ′α ′),
site-bond cross (Bαα ,α ′,β ′ , Bα,β ,α ′α ′) and bond-bond (Bα,β ,α ′,β ′) blocks in the full Cµν , re-
spectively. Details of these blocks are also provided in panels (b)–(d).

The site-site block in Fig. 8.10(b) can be expressed as

Bαα ,α ′α ′ = p[Qx 2+y2+z2]



1 0 0 0 1 0 0 0 1
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0 1
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0 1


+ p[Qz2]



0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0


Bαα ,α ′α ′

ab ,a′b′ = psite[Qx 2+y2+z2]δabδa′b′ + psite[Qz2]δz,aδz,bδz,a′δz,b′ . (8.19)

When substituting Bαα ,α ′α ′ back into the decision function, one finds that the first term in
Eq. (8.19) just leads to the normalization of a spin Sα . The second term, defining the product
(Sαz )2(Sα

′
z )2, nevertheless relates to a nontrivial constraint when compared to the cross and
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(a) p[Qz2 ] for each block in Cµν (V |T∞)

(b) Bαα ,α ′α ′

(c) Bαα ,α ′,β ′

(d) Bα,β ,α ′,β ′ −1

0

1

Figure 8.10: (a) The 16 × 16 reduced coefficient matrix where each 9 × 9 block in Cµν (V |T∞)
is replaced by the weight of the Qz2 ordering component, as obtained from the
TK-SVM coefficient matrix at rank 2, cf. Tab. 8.2. The axes iterate over sublattice
indices α, β in lexicographical order. Panels (b) through (d) zoom in to various
types of 9 × 9 blocks of fixed sublattice indices: (b) “on-site”, (c) “cross”, and (d)
“bond”. From the relative strength of the Qz2 components in each type of block,
one can infer the ice rule.

bond-bond block in Fig. 8.10(c) and (d), which can be expressed as

Bαα ,α ′,β ′

aa′ = pcross[Qz2]δz,aδz,bδz,a′δz,b′, (8.20)

Bα,β ,α ′,β ′

aa′ = pbond[Qz2]δz,aδz,bδz,a′δz,b′ . (8.21)

Note that the p[Qx 2+y2+z2] term does not appear here, because bond and cross terms do not
obey an intrinsic constraint, unlike spin normalization in on-site terms.

One observes that these weights satisfy the relation,

γz2 B
pbond[Qz2]
pcross[Qz2]

=
pcross[Qz2]
psite[Qz2]

=

〈
Sαz S

β
z

〉
〈Sαz Sαz 〉

≈ −1
3
, (8.22)

for α , β up to numerical accuracy (see Table 8.3). Summing over all sublattice indices (α, β),
γz2 is absorbed by the ratio between on-site (α = β ; 4) and bond terms (α , β ; 12). As a
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γx 2+y2+z2 γz2 γx 2+y2 γx 2−y2 γxy+yx

IV | T∞ −0.334 −0.333 −0.333
III | T∞ −0.331
III | IV −0.334 −0.334
V | T∞ −0.341
VI | T∞ −0.314

Table 8.3: Ratios of the relevant bond and on-site quadrupolar moments, γ• B
〈
Q
α β
•

〉
/
〈
Qαα
•

〉
.

These are calculated by taking the ratio between the weights of the relevant com-
ponent with respect to “bond” and “cross” blocks, or “cross” and “on-site” blocks (cf.
Eqs. (8.22), (8.25), and (8.28)). Both ways yield consistent results in all cases (vary-
ing at most in the final digit). The weights of the ordering components themselves
were calculated through a least-squares fit to the coefficient matrix and are given in
Tab. 8.2.

consequence, Eq. (8.22) in turn gives rise to the relation∑
α

〈
Sαz S

α
z
〉
cl +

∑
α,β

〈
Sαz S

β
z

〉
cl
=

〈(∑
α

Sαz

)2〉
cl
= 0, (8.23)

where 〈. . . 〉cl averages over all tetrahedral clusters.
As (. . . )2 is semi-positive definite, the constraint

S (1)z + S
(2)
z + S

(3)
z + S

(4)
z = 0 (8.24)

has to be fulfilled for each tetrahedron individually. Contrary to the spin normalization rela-
tion, which is an intrinsic constraint, this constraint emerges from the cooperative behavior of
spins. It defines the 2-in-2-out rule of spin ice.

Spin ice is known as an example of classical spin liquids. It does not possess any long-
range order, but features topological characteristics such as extensive ground state degeneracy
(exGSD) and an effective U (1) gauge-theoretical description [41]. These topological features
actually are underpinned by the ice rule, Eq. (8.24). Therefore, the TK-SVM is able to identify
spin ice by means of the characteristic ice rule.

Constraint in the easy-plane

We continue the analysis of emergent constraints in other regions of the phase diagram Fig. 8.2.
This involves the phases III, IV, and VI.

In Sec. 8.2.2 the ordering components in the phases III and IV have been discussed already.
It was seen that phase III has a planar quadrupolar component Qx 2+y2 = Sαx S

β
x + S

α
y S

β
y which

can be defined either by a single spin (α = β) or on a bond connecting two spins (α , β).
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One finds that the weights with which the site and bond terms manifest themselves also
fulfill a relation

γx 2+y2 B
pbond[Qx 2+y2]
pcross[Qx 2+y2] =

pcross[Qx 2+y2]
psite[Qx 2+y2] ≈ −

1
3
. (8.25)

(See Tabs. 8.2 and 8.3 for details.) Similar to the case of spin ice, the relation (8.25) in turn leads
to a cooperation of spins 〈(∑

α

Sαx

)2〉
cl
=

〈(∑
α

Sαy

)2〉
cl
= 0, (8.26)

and, consequently, a vectorial constraint on the Sx and Sy components,[
S (1)x + S

(2)
x + S

(3)
x + S

(4)
x

S (1)y + S
(2)
y + S

(3)
y + S

(4)
y

]
=

[
0
0

]
. (8.27)

Therefore, phase III is not just an explicitly symmetry-breaking phase, but also subject to con-
strained dynamics. This constraint is equivalent to that obtained by an irreducible-representation
decomposition, Eq. (5) in Ref. 87, from which one can derive pinch points in the spin structure
factor.

The constraint in Eq. (8.25) is also observed in phase IV (BSN phase), and is reflected by
the weights of the biaxial orders, p[Qx 2−y2] and p[Qxy+yx ] corresponding to the quadrupolar
components defined in Eqs. (8.12) and (8.13). One observes that both components occur with
approximately the same weight for each type of block (see Tab. 8.2), as well as ratios ofγx 2−y2 =

γxy+yx = −1/3 (see Tab. 8.3) among them. Therefore, phase IV is a constrained biaxial phase
where a local order and an emergent constraint coexist. As the latter signals an underlying
gauge symmetry [87], it also represents an instance where symmetry-breaking order coexists
with an emergent gauge theory.

This coexistence also indicates a crucial difference between emergent spin nematic orders
and intrinsic nematic orders in the context of liquid crystals. In the latter case, nematic order
parameters are considered as fundamental degrees of freedom (after coarse graining), whereas
dipolar fields are typically trivial by construction. In an emergent spin nematic phase on the
other hand, even in the absence of a long-range dipolar order, ordinary spins may remain
strongly constrained and exhibit nontrivial correlations.

Isotropic constraint

Lastly, the phase VI too exhibits constrained dynamics. The coefficient matrix Cµν (VI |T∞)
contrasting it to the decorrelated control group is shown in Fig. 8.11. Even though no local
order is detected by the four-spin cluster up to rank 4, one observes the occurrence of isotropic
ordering components Qα β

x 2+y2+z2 , Eq. (8.9), in the bond and cross terms with a ratio

γx 2+y2+z2 B
pbond[Qx 2+y2+z2]
pcross[Qx 2+y2+z2]

= −0.31, (8.28)
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Figure 8.11: The 144 × 144 coefficient matrix Cµν (VI |T∞) obtained from TK-SVM at rank 2.
The axes iterate over sublattice indices α, β and spatial components a,b such that
tuples (α, β,a,b) are lexicographically sorted. The pattern (8.5) corresponding to
the isotropic component, Eq. (8.9), appears in “cross” and “bond” type blocks, but
is absent from the “on-site” blocks where it is canceled by the intrinsic spin nor-
malization constraint. It manifests the isotropic constraint, Eq. (8.29). Cf. also the
similar pattern in Fig. (9.3) and its detailed analysis in Sec. 9.2.
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Figure 8.12: The ratio of the bond and on-site isotropic ordering components is plotted along
the J± = −0.5Jzz line as a function of the temperature of the training samples.
For γx 2+y2+z2 = −1/3, the constraint S(1) + S(2) + S(3) + S(4) = 0 for the four spins
in each tetrahedron is perfectly fulfilled; for γx 2+y2+z2 = 0 the spins are entirely
independent. Indeed, γx 2+y2+z2 is seen to approach −1/3 as T → 0. Hence, the
curve shows the crossover from a trivial paramagnet at high temperature to a
cooperative paramagnet at low temperature.

whereas a similar ratio cannot be inferred from the on-site blocks where it is canceled by
spin normalization. However, contrary to Eq. (8.22) and Eq. (8.25), here γx 2+y2+z2 is noticeably
different from −1/3 and shows a dependence on training samples. Such behavior seems to
imply that the characterization of phase VI is emerging but not yet sharply defined in the
training samples.

To verify this conjecture and quantify the variation of γx 2+y2+z2 , the TK-SVM was trained
separately on each of 17 parameter points along J± = −0.5Jzz , which are apparently most
representative of the phase, which are contrasted against fictitious isotropic configurations.
The ratio γx 2+y2+z2 has been extracted from the resultant coefficient matrices and are plotted in
Fig. 8.12 against the temperature of the respective training data. It becomes apparent that the
ratio approaches −1/3 as T → 0.

As a result, one may interpret the relation (8.28) as a constraint that isotropically affects all
of the three spin components, 

S (1)x + S
(2)
x + S

(3)
x + S

(4)
x

S (1)y + S
(2)
y + S

(3)
y + S

(4)
y

S (1)z + S
(2)
z + S

(3)
z + S

(4)
z

 =

0
0
0

 . (8.29)

However, this constraint is only obeyed in the ground state. At finite temperature, it will be
softened by thermal fluctuations and, consequently, a finite portion of spins will be released
from the ground state configuration.
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This is reminiscent of gapless excitations. Indeed, at J± = −0.5Jzz , the XXZ Hamiltonian
Eq. (2.13) becomes a pyrochlore Heisenberg model in local coordinates. It is analog to the
pyrochlore Heisenberg antiferromagnet (HAF) which is an example for gapless classical spin
liquids (or cooperative paramagnets) [69, 95]. Moreover, the fluctuation-induced deviation of γ
from the ground state value −1/3 is also consistent with the finding that this phase has blurred
pinch points at intermediate temperatures in the spin structure factor in Ref. 87.

Finally, the extracted order parameters and constraints confirm the hierarchy of the phases
in Eq. (8.1) inferred from the bias criterion. Phase VI is O(3) symmetric, not breaking symme-
try. Nevertheless, owing to the constraint Eq. (8.29), it does not explore the entire configuration
space, thus appears less disordered than the trivial paramagnet. Phase III and V feature con-
strained dynamics in easy-plane and easy-axis, respectively; both have the D∞h symmetry.
Phase IV breaks the symmetry of phase III and develops a C2h coplanar order. Furthermore,
the bias criterion respects the distinct constraint in phase IV and V, so does not assign them a
rank, though the latter is more symmetric. The magnetizationM⊥ of phase I has theC1h point-
group symmetry and breaks the in-plane O(2) symmetry entirely. Thereby, one can express
the disorder hierarchy by the nature of the phases,

D∞heasy
plane

→ C2h
biaxial

O(3)
trival

O(3)
constrained

C1h
magnetic

.

D∞heasy
axis

(8.30)

8.3 Thermodynamics of constraints

When learning the phase diagram, Fig. 8.2, it was pointed out that gradual change of Fiedler
vector entries at phase boundaries is indicative of a crossover. Thereby, aside from the topology
of the phase diagram, the graph analysis also provides an intuitive way to recognize crossovers
and the regions where they take place. In this section, this interpretation will be confirmed
by examining the analytical order parameters and constraints extracted from the coefficient
matrices. Moreover, possible advantages of those quantities regarding the identification of
phase transitions and crossovers, as compared to the use of conventional quantities such as
heat capacity or magnetic susceptibility, will be discussed.

8.3.1 Single crossover

Again, the crossover between the spin ice (phase V) and the trivial paramagnet (phase II) will
mark the starting point of the discussion. It is well understood in terms of the Schottky anomaly
in the specific heat which may serve as a reference point for the quantity learned by TK-SVM.
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Figure 8.13: Themeasurement of the spin ice “order parameter” Γz which the TK-SVM decision
function learns and its corresponding susceptibility indicates that it can be used
to locate the crossover.

The analytical quantity extracted from Cµν (V |T∞), Eqs. (8.19)-(8.22), may be expressed as

Γz B
〈
1
4

∑
α

(Sαz )2 −
1
12

∑
α,β

Sαz S
β
z −

1
3

〉
cl

(8.31)

=

〈
1
3

∑
α

(Sαz )2 −
1
12

(∑
α

Sαz

)2
− 1
3

〉
cl
. (8.32)

It measures the fulfillment of the ice-rule Eq. (8.24) and may be regarded as an order param-
eter, where Γz = 1 if the ice-rule is fully satisfied, while Γz = 0 for uncorrelated spins. Γz is
normalized to satisfy these limiting cases.

One may define a susceptibility to quantify the fluctuation of Γz ,

χ [Γz ] B
1
T

(
〈Γ2z 〉 − 〈Γz〉2

)
, (8.33)

expecting that χ [Γz ] is smooth at crossovers, but exhibits discontinuity or divergence when
experiencing phase transitions.

In Fig. 8.13, Γz and χ [Γz ] are measured along the J± = 0 line. One indeed observes that
(Γz + 1/3)2 collapses onto the decision function³, verifying the interpretation of the coefficient

³Note that the constant −1/3 in the definition (8.31) is not included in the TK-SVM decision function, i.e.
d(V |T∞) ∝ (Γz + 1/3)2 + const.
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Figure 8.14: Themeasurement of the “order parameter” encoding the isotropic constraint, Γxyz ,
which the TK-SVM decision function learns and its corresponding susceptibility
indicates that it can be used to locate the crossover.

matrix Cµν (V |T∞). Moreover, χ [Γz ] shows a broad peak at the boundary between the two
phases, indicating a crossover driven by thermal violation of the ice rule. As expected, the
characteristic temperature of this peak agrees with that inferred from the Schottky anomaly
(the dashed line between phases II and V in Fig. 8.2) [87].

The above example confirms our approach which is consequently applied to the crossover
between the cooperative (VI) and the trivial (II) paramagnet, whose characterization is less
clear. The (normalized) order parameter corresponding to the relation (8.28) and the isotropic
constraint, Eq. (8.29), is given by

Γxyz B 3
∑
a

Γa = 1 − 1
4

〈


∑
α

Sα



2〉

cl
, (8.34)

where

Γa B
〈
1
3

∑
α

(Sαa )2 −
1
12

(∑
α

Sαa

)2
− 1
3

〉
cl
, (8.35)

and a = x,y, z. Accordingly, one may define its susceptibility χ [Γxyz ] =
(
〈Γ2xyz〉 − 〈Γxyz〉2

)
/T .
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Γxyz and χ [Γxyz ] are measured along the J± = −0.5Jzz , i.e. in the Heisenberg limit, in
Fig. 8.14. One observes a bump over approximately three orders of magnitude in temperature.
The location of its maximum is in agreement with that inferred on the basis of themagnetic sus-
ceptibility [87], its profile nevertheless marks a much larger area influenced by the crossover.
Note that this region has in fact been hinted at by the slow variance of the Fiedler vector entries
between the two phases.

In addition, the behavior of χ [Γxyz ] is also consistent with that of the ratio γ in Fig. 8.12.
Hence, this spin liquid is only well defined in the regime where γ ≈ −1/3 at T ≲ 0.01. There-
after, the crossover starts to take hold, until very high temperature.

Here, the discussion relied on the susceptibilities of the analytical order parameters which
were previously extracted from the coefficient matrices learned by TK-SVM. This has the ad-
vantage that they are immediately relatable to physical quantities. One may also choose to rely
on the decision function directly and define a susceptibility for it instead. The resulting quan-
tity cannot immediately be converted into the susceptibilities of the order parameter, whereas
the reverse is true (the analytical order parameter can be squared and compared to the decision
function as is the case in the insets of Figs. 8.13 and 8.14). Nonetheless, the susceptibilities of
the decision functions exhibit peaks at approximately the same positions. Thus, this approach
is entirely feasible to get a first impression of the behavior, without the effort of dissecting the
coefficient matrices first.

8.3.2 Sequence of phase transitions and crossovers

The quantities learned by the TK-SVM are optimized to distinguish two given phases. This
specialization can lead to a higher sensitivity of identifying phase transitions and crossovers,
in particular when the system involves multiple fluctuating fields.

This is exemplified by the phase transition and crossovers relating to phases III and IV.
In Sec. 8.2, phase IV was seen to be characterized by the quadrupolar fields QU

C2h
and QB

C2h
,

where the latter represents the symmetry-breaking order, and the constraint (8.27) on the Sx
and Sy components. When entering phase III, the biaxial order parameter QB

C2h
vanishes, but

the constraint remains in place. This constraint can be defined by an order parameter

Γxy B
3
2
(Γx + Γy ), (8.36)

which is distinct from that of the cooperative paramagnet (Γxyz ) at higher temperature.
Therefore, by increasing temperature at J± < −0.5Jzz in the phase diagram Fig. 8.2, the

system undergoes the upper branch of the sequence in Eq. (8.30) (excluding the C1h phase).
The order parameter fields QB

C2h
, Γxy,andΓxyz are expected to respond to the corresponding

phase transition and crossovers separately.
In Fig. 8.15, their corresponding susceptibilities, χ [‖QB

C2h
‖], χ [Γxy ], and χ [Γxyz ], are mea-

sured along the J± = −0.6Jzz line. Indeed, they exhibit individual peaks/bumps at the rele-
vant transitions and crossovers. The pronounced peak in χ [‖QB

C2h
‖] identifies the generalized

biaxial-uniaxial phase transition [110] between the constrainedC2h andD∞h phase. The bumps
in χ [Γxy ] and χ [Γxyz ] are responsible for the two subsequent crossovers.
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Figure 8.15: Various susceptibilities are measured along the Jzz = −0.6Jzz line. The colored bar
below the abscissa shows the corresponding slice of the phase diagram, Fig. 8.2, for
comparison. The sharp peak in susceptibility of the biaxial order parameter QB

C2h
[Eq. (8.17)] pinpoints the phase transition between the generalized biaxial (green)
and uniaxial (yellow) phases; the broad peaks in the susceptibilities of the order
parameters derived from the constraints, Γxy [Eq. (8.36)] and Γxyz [Eq. (8.34)],
locate the crossovers into the cooperative (orange) and trivial (red) paramagnet,
respectively. Note that the latter are exaggerated by a factor of 1000.

This ability to isolate phase transitions and crossovers is to be contrasted with the analysis
of conventional thermodynamic quantities. For instance, the specific heat encodes thermal
fluctuations of all order parameters at the same time; hence, not every phase transition or
crossover may manifest itself noticeably. In particular, signals of crossovers are potentially
drowned out by a phase transition or may not be distinguishable from other nearby crossovers.
On the other hand, themagnetic susceptibility is sensitive to dipolar orders, nonetheless, it may
not respond to the fluctuations of multipolar fields.

8.4 Kernel principal component analysis

This final section of the chapter on the pyrochlore XXZ antiferromagnet attempts to reproduce
a subset of the finding that were obtained before using TK-SVM, by using the tensorial kernel
in the context of kernel PCA (kPCA) as introduced in Sec. 4.1.2, dubbing the combination TK-
PCA. To recap, the fundamental difference between SVM and PCA lies in the fact that the
latter is unsupervised, meaning that no labeling of the training data has to be provided. For
the sake of phase classification, this seems to put kPCA in an ideal position at first glance, as
it eliminates the need for the prior graph analysis.

As discussed in Sec. 5.2, it is beneficial to carry out the mapping to monomial feature, φ,
explicitly and rely on the kernel trick onlywith respect to the quadratic kernel. Asmentioned in
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Figure 8.16: The first six principal components using rank-1
TK-PCA. Each sample is drawn as a point at the
location corresponding to its scores, and with
a color that is taken from the Fiedler vector in
Fig. 8.2. Samples from phase I (which were ex-
cluded from Fig. 8.2) are colored in purple instead.
Each point is rendered with an opacity of 5 %, so
only the superposition of many samples yields a
saturated color, giving the illusion of a density.
Only the first principal component t (1) is seen to
separate the samples belonging to phase I.

None of the principal compo-
nents is able to appreciably dis-
tinguish between the samples
from phases II–VI at rank 1.

Sec. 4.1.2, kPCA requires the diagonalization of the Ns ×Ns kernel matrix. For the Ns = 246 500
training samples which were used from all over the parameter space, the kernel matrix would
require almost 500GB of memory. For this reason, only a subset of 5 % of all samples was used
for training. One can then use the result to calculate the scores for all samples with respect to
these principal components according to Eq. (4.28).

Once again, the natural starting point of the analysis is to apply the tensorial kernel at
rank 1 on a tetrahedral spin cluster. In Fig. 8.16, the scores of the first six principal components
are plotted between each pair. Each sample is color-coded according to the color that was
assigned to the location in the phase diagram, Fig. 8.2, at which it was sampled from, based on
the Fiedler vector obtained through the graph analysis in Sec. 8.1. The exception to the rule
are the samples from phase I which are colored purple instead. Note that the purpose of this
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Figure 8.17: The coefficient matrixC(1)α ,a;β ,b corresponding to the first principal component ob-
tained from the rank-1 TK-PCA treatment using a tetrahedral spin cluster.

color-coding is to compare the capabilities of TK-PCA with those of TK-SVM; in an unbiased
study, this information would not be available a priori.

In agreement with the finds of TK-SVM, no distinction among the samples belonging to
phases II–VI can be drawn at rank 1. Consequently, the scores of corresponding (nonpurple)
samples collapse onto a single point in all panels of Fig. 8.16. Meanwhile, the samples from
phase I are seen to scatter around the other ones with respect to all principal components but
the first. Indeed, the first principal component does serve to distinguish the samples from
phase I which consistently exhibit larger scores t (1). Thus, t (1) may be thought of as an order
parameter with respect to phase I.

Note that the panels in Fig. 8.16 which involve the first three principal components ex-
hibit stripy patterns and concentric circles. This can be attributed to the fact that the samples
originate from a regular grid in the parameter space of the phase diagram. For the purpose
of identifying phases based on the formation of clusters in the principal components, it would
therefore have been advisable to sample the parameter space from a uniform random distribu-
tion to avoid such artifacts.

Since the tensorial kernel is based on a quadratic kernel, the scores admit to interpretation
by rewriting them in a quadratic form with respect to the monomial features, cf. Eq. (4.29). The
coefficient matrix may then be extracted according to Eq. (4.33). Doing so for the first principal
component using rank-1 TK-PCA, yield Fig. 8.17. A striking resemblance to Fig. 8.7 is imme-
diately apparent. Note that the color scale is however shifted, such that white is offset from
the zero position. This discrepancy between Figs. 8.7 and 8.17 can be attributed to the central-
ization of the kernel, cf. Eq. (4.25), (and hence implicitly the features) and does neither bear
any further physical relevance, nor does it impede one’s ability to infer the analytic expression
from the coefficient matrix.
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Figure 8.18: Thefirst six principal components using rank-2 TK-PCA.The same color coding as
in Fig. 8.16 is used. In the upper triangle, panels (a)–(o), all samples are taken into
account and the covariance among those from phase I is seen to dominate. The
latter are excluded from the analysis in the lower triangle, panels (p)–(ß), where
the principal components are seen to capture some of the characteristics of the
other phases. In particular, t (1) is sensitive towards the spin ice phase (V; blue)
and t (2) towards the biaxial nematic phase (IV; green).
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Moving on, one may subject the data to a similar analysis at rank 2. The scatter plots of the
scores with respect to the most important principal components are shown in Figs. 8.18(p)–(ß).
Once again, the samples from phase I (drawn in purple) seem to dominate, which was also the
case in the TK-SVM treatment at rank 2. However, at least the principal components t (1) and
t (4) seem capable of discerning between some of the samples from phases II–VI, while the other
ones again map those samples to the same score.

As was the case in the TK-SVM treatment, the overwhelming presence of the samples from
phase I may be combated by identifying them based on the (relatively unambiguous) rank-1
analysis and explicitly excluding them from the further analysis at rank 2. The resulting PCA
can thus focus on the distinction between the remaining samples which was previously impos-
sible at rank 1. It is shown in Figs. 8.18(a)–(o).

Somewhat strikingly, the samples from the biaxial nematic phase (BSN, a.k.a. phase IV,
rendered in green) are seen to be predominantly (but not exclusively) singled out. Intuitively,
this makes sense as it represents the only symmetry-breaking phase other than the easy-axis
antiferromagnet (phase I). Indeed, in panel 8.18(f), the principal components t (3) and t (4) are
seen to separate the point cloud belonging to the BSN phase from all the other points, including
the uniaxial spin liquid (USL, a.k.a. phase III, yellow points), with a gap in-between, marking
a jump (or sharp rise) in the associated quantity. However, neither t (3), nor t (4) distinguish the
BSN samples on their own; rather, they form a circle. Hence, the quantities that distinguishes
the BSN phase is given by the radius

√
(t (3))2 + (t (4))2. In contrast, in panel 8.18(a), t (2) can

be seen to map the samples from the BSN (and to a lesser extent those from the USL phase)
to larger values than most of the remaining samples. t (1) does the same with respect to the
samples from the spin ice phase (SI, a.k.a. phase V, blue points).

To corroborate these observations, one again turns to the corresponding coefficient matri-
ces. Fig. 8.19 shows part of the coefficient matrices of the two most relevant principal com-
ponents. In C(1)µν , panel (a), the Qz2 component is seen to constitute the dominant contribution
in each block. The coefficient matrix is reminiscent of that obtained for the TK-SVM decision
function distinguishing the spin ice phase from the trivial paramagnet, cf. Fig. 8.10. Likewise,
the coefficient matrix corresponding to the second principal component, Fig. 8.19(b), bears
resemblance to the coefficient matrix Cµν (IV |T∞) depicted in Fig. 8.8. Both of these interpre-
tations are consistent with the observations of the previous paragraph based on the scores.

Also the next couple of principal components admits interpretation: t (3) manifests the or-
dering component Qxy+yx while t (4) yields Qx 2−y2 . In light of this identification, the above
observation that

√
(t (3))2 + (t (4))2 distinguishes the BSN samples from the USL ones is rational-

ized by noting that it equals the biaxial order parameter,


QB

C2h



, cf. Eq. (8.17). The fact that
Qxy+yx andQx 2−y2 occur here as independent components which are, however, not capable to
single out samples from the BSN individually, but only in conjunction via the norm, further
affirms the conclusion based on the TK-SVM analysis that the order parameter is given byQB

C2h
.

To conclude, this section has demonstrated that the tensorial kernel can also be combined
with kPCA, resulting in an unsupervised scheme for the exploratory analysis of multipolar
spin order and classical spin liquids. This allows one to forgo the additional step of the graph
analysis. The principal components were seen to capture roughly the same quantities as their
TK-SVM counterparts and the tensorial kernel admits the same level of interpretability. This
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Figure 8.19: Coefficientmatrices corresponding to the twomost relevant principal components
as obtained from rank-2 TK-PCA using a tetrahedral spin cluster and excluding
samples from phase I. In both cases, only a representative cutout of 16 blocks is
shown, including one on-site block, six “cross”-type blocks, and nine “bond”-type
blocks. Note that the color scale is chosen in such a way that it is centered on
the “background” elements. This shift from the zero position is an artifact of the
centralization of the kernel matrix, cf. Eq. (4.25).

not only allows for the extraction of analytic order parameters, but also carries over to the
identification of emergent constraints, as also the ratios between the different types of blocks
are recovered. That being said, inferring the unknown phase diagram solely based on the
clustering of the principal component scores would be a challenging endeavor. In fact, based
on the results presented in this section, one would only be able to discern the BSN and the
easy-plane antiferromagnet, while the samples from different regions of the phase diagram
which are connected by crossovers unsurprisingly do not separate into recognizable clusters.

Before closing this section, some more results are given in relation to the frequently asked
question whether or not a kernel other than Kquad ◦ (φ,φ), cf. Eq. (5.5), might be better suited.
It is beyond the scope of this thesis to perform an exhaustive analysis; instead, we consider as
an example the composition of the monomial feature map with the RBF Kernel, Eq. (4.13) with
ε = 10, which is the default choice for kernel methods in the machine learning community,
KRBF ◦ (φ,φ).

Fig. 8.20 shows the resulting principal components. In almost all cases, the spin ice and
uniaxial spin liquid phases as well as the cooperative and trivial paramagnet show up as distinct
“tentacles”. Conversely, the samples from the BSN phase collapse onto a narrowly confined
region in all cases; in some, even to a single point. This is in stark contrast with the observations
of Fig. 8.18 and no explanation of this is apparent.

Unlike the quadratic kernel, the RBF kernel does not admit to rewriting as a quadratic
form, or a similarly accessible analytical expression. Indeed, the sum over the training samples
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Figure 8.20: The first six principal components as obtained
from kPCA using an alternative kernel which uses
the rank-2 monomial features as input to a radial
basis functions kernel. The same color coding as in
Fig. 8.16 is used. Samples from phase I are explic-
itly excluded from the analysis. Interestingly, sam-
ples from the BSN phase (green) are mapped to a
single score value in all cases. In contrast, the USL
phase (yellow), the cooperative (orange) and triv-
ial (red) paramagnet, and the spin ice phase (blue)
are separated by most components.

in Eqs. (5.6) and (4.29) cannot be carried out before the argument of the decision function or
component score is specified. Without the particular choice of the quadratic kernel, themethod
thus loses its interpretability; at the same time, the decision function or component score can
no longer be expected to probe the linear space spanned by the basis tensors exhaustively.
The remaining utility of the method would lie in identification of phases based on the kPCA
scores alone. This would be difficult to pull off in a systematic way based on the plots in
Fig. 8.20. Nonetheless, in the view of this author, the resulting plots are aesthetically pleasing
and evocative of Jackson Pollock.





9Kagome Heisenberg antiferromagnet
The second case study on the application of the TK-SVM method concerns itself with the an-
tiferromagnetic Heisenberg model on the kagome lattice. The history of this model is of great
relevance for the study of hidden order and was touched upon in Ch. 2. The reason for this lies
in the simultaneous occurrence of hidden order at different ranks, a feature that is absent from
the XXZ model on the pyrochlore model discussed in the previous chapter where the entirety
of the phase diagram could be characterized by dipolar or quadrupolar order parameters.

The data for training andmeasurement of the TK-SVM decision functions is generated once
more from classical Monte Carlo simulations. In order to reach extremely low temperatures
ofT = 10−5 J , a combination of the heat-bath algorithm, global O(3) rotoreflections, overrelax-
ation, and parallel tempering was used, all of which are described in Ch. 3. To facilitate parallel
tempering acceptance, 64 temperatures, equidistant on a logarithmic scale betweenT /J = 10−5

and 10, were simulated in parallel and 1000 independent spin configuration snapshots taken
at each temperature. Another 21 temperatures between T /J = 10 and 1000 were simulated
without the use of parallel tempering, resulting in a total number of configuration samples of
85 000. A lattice of 3072 spins (32 × 32 unit cells, each containing three spins) was used.

The remainder of this chapter follows the same methodology as the previous one. We will
begin by inferring the phase diagram systematically. Thiswill already expose certain distinctive
features owing to the coexistence of order parameters of different ranks, as well as the presence
of a constraint. Sec. 9.2 is devoted to the detailed analysis of said constraint. It will revisit some
of the contents of Sec. 8.2.3 and give an elaborate derivation of the associated order parameter.
The remaining two sections discuss the quadrupolar and octupolar order at low temperature,
respectively.

9.1 Phase diagram

As before, the distillation of the phase diagram constitutes the first step of the analysis. Unlike
in the previous cases where the parameter space was two dimensional, here only the temper-
ature is tuned.

Both quadrupolar and octupolar orders are anticipated, so the TK-SVM is trained for ranks
2 and 3 separately. Additionally, two different choices of the spin cluster are considered: a
single-spin cluster and a three-spin cluster corresponding to the unit cell of the kagome lat-
tice, encompassing a triangular plaquette. The training data are labeled according to the 85
temperatures, resulting in a multiclassification problem.

Before performing the spectral clustering analysis, the statistics of the distribution of the
biases of each of the 3570 resulting decision functions are inspected; cf. Tab. 9.1. As previ-
ously observed in Fig. 8.3, the distributions are extremely left-skewed and leptokurtic. Hence,
median and interquartile range (IQR) characterize them more truthfully compared to median
and standard deviation (root mean square, RMS). Strikingly, the case of the rank-2 treatment
using the three-spin triangular cluster deviates from the other three cases in that the median is
significantly off from the value one and the interquartile range is larger by a factor of around
five. This anomaly already hints that this case is qualitatively different from the other three;
the reason will become clear in the ensuing discussion.
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Figure 9.1: Theweighted graphs based on the biases resulting from the fourmulticlassifications
considered (two cluster choices; ranks 2 and 3). Since the phase diagram is one-
dimensional, each vertex is assigned a random second coordinate such that the
graph does not collapse onto a single line.
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Cluster single spin triangle

Rank 2 3 2 3

Mean 9.44 17.9 199 10.6
Median 1.010 1.028 1.596 1.002
RMS 107 173 5811 183
IQR 0.611 0.782 3.25 0.548

Table 9.1: Statistics of the distribution of the SVM biases for four different sets of multiclas-
sifications using a single-spin and triangular three-spin cluster, respectively, with
TK-SVM at ranks two and three. The distributions are highly left-skewed and lep-
tokurtic.

For each of the four multiclassification problems, the weighted graph is constructed from
the biases in accordance with the general procedure laid out in Ch. 7. Again, the Lorentzian
weighting function, Eq. (7.1), was used to map SVM biases to graph edge weights. The charac-
teristic scale, ρc , has been chosen as half of the interquartile range of the respective distribution
as given in Tab. 9.1.

The resulting graphs are depicted in Fig. 9.1. One observes that each graph features two
temperature regimes where vertices are densely intraconnected, while the regimes are sparsely
interconnected. However, the rank-2 treatment of the triangular cluster [panel (c)] again de-
viates from the other three cases in the location of the crossover between these regimes.

This becomes more visible from the Fiedler vector of these graphs. In Fig. 9.2, the elements
of the Fiedler vector in all four cases are seen to follow a sigmoid curve, attaining relatively con-
stant values at low and high temperature, respectively. The crossover in between is comparable
in width in all four cases and extends over roughly one order of magnitude in temperature. The
rank-3 treatment in fact produces the same curve for both the single-spin and triangular spin
clusters, indicating that a rank-3 order parameter is present which can in turn be defined for
a single spin and that its representation on the larger cluster is redundant. At rank 2, a qual-
itatively different behavior is observed: the single-spin cluster TK-SVM reveals the presence
of a rank-2 order parameter which exhibits a crossover at roughly the same (or slightly lower)
temperature as the rank-3 order parameter. In contrast, on the triangular cluster a crossover
is observed at a much higher temperature between T /J = 1 and 10.

In the next section, it will become apparent that rank-2 TK-SVM captures a constraint on
the three spins in the triangular cluster which comes into force at relatively high tempera-
tures. This explains why different behavior is observed when using the single-spin cluster
which cannot realize such a constraint. Instead, it captures the quadrupolar order parameter.
As will be seen in Sec. 9.3, that same quadrupolar order parameter is still learned when us-
ing the triangular cluster. Upon closer inspection, the Fiedler vector is in fact not perfectly
constant throughout the temperature range from 10−5 to 10−1, but exhibits a tiny secondary
step in agreement with the quadrupolar transition. Hence, the order parameter capturing the
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Figure 9.2: The entries of the Fiedler vector are plotted against their corresponding tempera-
ture for each of the four multiclassification problems considered. The rank-3 cases
are seen to produce the same qualitative curve, independent of the choice of spin
cluster. At rank 2, a similar curve is also obtained when using a single-spin clus-
ter, manifesting the simultaneous occurrence of quadrupolar and octupolar order
at the transition temperature TK = 0.004J . When using the triangular spin cluster,
a constraint among the spins on the triangle is captured. The associated crossover
into the regime of constraint dynamics roughly takes place between temperatures
0.4 and 10. The dashed lines indicate the boundaries of these regimes which are
labeled by roman numerals.

constraint is apparently overpowering the signature of the quadrupolar order for the purposes
of the spectral graph partitioning.

Regardless, the combined results allow for a suitable partition of the phase diagram. Since
both the quadrupolar and octupolar order are seen to appear at a temperature that is consistent
with the value of TK = 0.004J proclaimed by Zhitomirsky [82], this value will be used to
distinguish the regimes labeled I and II.The subsequentmeasurement of the order parameters in
Secs. 9.3 and 9.4 will confirm the validity of this choice. Regime II extends up until the onset of
the crossover is observed. The samples in the interim of the crossover between temperatures 0.4
and 10 are discarded from the subsequent analysis, similar to the procedure in Sec. 8.1.3. Finally,
the temperatures above 10 are designated regime III. This sets up a reduced multiclassification
problem which relabels the training data according to regimes I (28 000 samples), II (21 000
samples), and III (21 000 samples). Additionally, 25 000 fictitious independent isotropic spin
configurations corresponding to infinite temperature (“T∞”) are included as a control group.

The SVMbiases resulting from the reducedmulticlassification problems are given in Tab. 9.2.
Not at all surprisingly, the high-temperature regime III yields qualitatively the same behavior
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Cluster single spin triangle

Rank 2 3 2 3

I | II −1.0131 −1.0131 −3.286 −1.0145
I | III −1.0121 −1.0041 −1.0035 −1.0026
I | T∞ −1.0129 −1.0044 −0.9928 −1.0028
II | III 10.63 −0.9592 −1.0260 −1.0691
II | T∞ 4.218 −1.0598 −1.0103 −1.0805
III | T∞ 2.158 −1285 −20.54 −1.9802

Table 9.2: TK-SVM biases obtained from the reduced multiclassification problems among the
temperature regimes I (T /J = 10−5 . . . 0.004), II (0.004 . . . 0.4), and III (10 . . . 1000),
as well as the fictitious control group, T∞.

as the control group (T∞) and is not readily distinguishable therefrom. When probing the
regimes I and II, i.e. across the transition temperature TK , only the triangular cluster at rank 2
gives a bias that is significantly different from one, in line with the fact that the bias argument
(cf. Sec. 5.3) is invalidated by the simultaneous presence of a constraint. Conversely, the trian-
gular cluster allows for the distinction of regimes II and III by realizing the constraint which
is not possible when using the single-spin cluster at rank 2. Perhaps surprisingly, at rank 3
the single-spin cluster does seem capable of distinguishing II and III. This can be attributed
to finite-size effects: a residual finite magnetization (in itself a vector quantity) is detectable
at odd ranks while it cancels for even ranks. This becomes apparent from the corresponding
decision function curve which has a small, finite slope throughout the crossover regime, but
lacks any distinct feature therein.

9.2 Emergent constraint

We will now focus on the constraint whose signature is manifest in rank-2 TK-SVM using the
triangular spin cluster. The corresponding coefficient matrix of the decision function distin-
guishing regime II from random spins (T∞) is shown in Fig. 9.3. It is immediately apparent that
this pattern bears resemblance to the one depicted in Fig. 8.11 in the previous chapter which
was found to encode the isotropic constraint in the Heisenberg limit. Hence, one may already
conclude that a crossover into a cooperative paramagnet, defined by the analogous constraint
S(1)+S(2)+S(3) = 0 for the three spins on the corners of each triangular plaquette, takes place. In
contrast to the four spins on the tetrahedra of the pyrochlore lattice, three spins can only sum
to zero if they lie in the same plane. The constraint thereby imposes a 120◦ state (cf. Sec. 2.1.1).

Rather than leaving it at that, the coefficient matrix will be decoded explicitly and it will
be shown that the decision function is indeed related to the order parameter defined for the
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Figure 9.3: Coefficient matrix Cµν (II |T∞) learned from rank-2 TK-SVM on a three-spin tri-
angular cluster. The dotted lines demarcate 9 × 9 blocks corresponding to iden-
tical sublattice indices (α, β), (α ′, β ′); while the contents of each 9 × 9 block are
enumerated in a similar way by component indices (a,b), (a′,b ′). On-site blocks
(α = β,α ′ = β ′) are seen to be empty, while “cross” and “bond” blocks exhibit a
nonvanishing δabδa′b′ pattern with relative weights of −1 and −γ = 0.446, respec-
tively.

isotropic constraint,

Γxyz B 1 − 1
Nb

〈



∑
α

Sα




2〉

cl

, (9.1)

where Nb = 3 designates the number of spins in the crystallographic basis (cf. Eq. 8.34 where
Nb = 4 for the pyrochlore lattice).

The coefficient matrix is composed of 9 × 9 blocks which can be enumerated by sublattice
indices [α, β ;α ′β ′]. It is once again useful to distinguish three types of blocks which appear
in Fig. 9.3: “on-site” blocks for which α = β and α ′ = β ′, “bond” blocks (α , β , α ′ , β ′),
and the mixed “cross” blocks. Each of the nonvanishing blocks exhibits the same pattern of
nine elements in the locations satisfying a = b and a′ = b ′. These are the exact elements which
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p[Qx 2+y2+z2 ] p[Qz2 ] p[Qx 2+y2 ] p[Qx 2−y2 ] p[Qxy+yx ] p[Qyz+zy ] p[Qzx+xz ]
on-site −0.487 1.460 0.731 0.732 0.733 0.727 0.735

I | II cross 0.081 −0.730 −0.366 −0.366 −0.367 −0.363 −0.367
bond 0.038 0.365 0.183 0.183 0.183 0.182 0.184

on-site 0.059 −0.176 −0.088 −0.088 −0.088 −0.088 −0.088
I | T∞ cross 0.910 0.089 0.044 0.044 0.044 0.044 0.044

bond −0.462 −0.044 −0.022 −0.022 −0.022 −0.022 −0.022
on-site 0.000 0.000 0.000 0.000 0.000 0.000 0.000

II | T∞ cross −0.998 −0.001 0.000 0.000 0.000 0.000 0.000
bond 0.445 −0.001 0.000 0.000 0.000 0.000 0.000

Table 9.3: The weights of the tentative quadrupolar ordering components, p[Q•], are tabulated
for the three classifiers distinguishing between regimes I, II, and III (here, the per-
fectly decorrelated control group is used instead). These weights were obtained
through a least-squares fit based on all blocks in the full coefficient matrix of each
of the site-site (“on-site”), site-bond (“cross”), and bond-bond (“bond”) types. The
ratios between these weights for the three block types are given in Tab. 9.4.

produce the intrinsic spin normalization constraint in on-site blocks which leads to them being
exactly canceled by self-contractions there. Meanwhile, theweight of the contributions in bond
blocks differs from that in cross blocks by a factor of γ < 0. Hence, one may express the weight
of block [αβ,α ′β ′] by (γ + γ̄δα β )(γ + γ̄δα ′β ′) − δα βδα ′β ′ where γ̄ B 1 − γ . Plugging this into
the decision function, Eq. (5.6), yields (up to an affine rescaling, denoted by the tilde):

d({Si }) ∼
∑
α ,β
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∑
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[
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where the definition of the isotropic constraint, Eq. (9.1), has been substituted in the last line.
Hence, the decision function is seen to realize a quadratic function of the constraint order
parameter, d ∼ (Γxyz − 1/γ )2.
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γx 2+y2+z2 γz2 γx 2+y2 γx 2−y2 γxy+yx γyz+zy γzx+xz

I | II c ÷ s −0.166 −0.500 −0.500 −0.500 −0.500 −0.500 −0.500
b ÷ c 0.471 −0.500 −0.500 −0.500 −0.500 −0.500 −0.500

I | T∞
c ÷ s −0.504 −0.499 −0.502 −0.502 −0.502 −0.502
b ÷ c −0.508 −0.492 −0.495 −0.493 −0.493 −0.493 −0.493

II | T∞ b ÷ c −0.446

Table 9.4: Ratios of the quadrupolar moments, γ• B
〈
Q
α β
•

〉
/
〈
Qαα
•

〉
. These can be calculated

by taking the ratio between the weights of the relevant component with respect to
“cross” and “on-site” blocks (c ÷ s), or “bond” and “cross” blocks (b ÷ c). The weights
of the ordering components themselves were calculated through a least-squares fit
to the coefficient matrix and given in Tab. 9.3.

To systematically find the value of γ in the kagome system, one follows the same approach
as in Sec. 8.2.2 for the pyrochlore model by least-squares-fitting the isotropic ordering compo-
nent Qx 2+y2+z2 , Eq. (8.9), as represented by the pattern A[Qx 2+y2+z2], Eq. (8.5), to each of the
blocks. The thus found corresponding component weights are tabulated in Tab. 9.3. The ratio
between the isotropic components in cross and bond terms yields a value ofγx 2+y2+z2 = −0.446,
see Tab. 9.4. This value was extracted from Cµν (II |T∞) and does not include data at temper-
atures below TK . When attempting to include the latter, in addition to the pure constraint,
contributions to the other ordering components due to the presence of quadrupolar order ap-
pear which need to be accounted for in the least-squares fit. In this way, one finds a value of
γx 2+y2+z2 = −0.508.

Despite the slight mismatch in the above values, one may comfortably conclude that the
ideal value in case of a fully realized constraint would in fact be γ = −1/2. As previously
argued in Sec. 8.2.3, the constraint requires that Nb site terms, 〈Qαα

x 2+y2+z2〉, and Nb (Nb − 1)
bond terms, 〈Qα , β

x 2+y2+z2〉, cancel. Given that their ratio is γ , one finds γ = −1/(Nb −1), i.e. −1/2
on the kagome lattice and −1/3 on the pyrochlore lattice.

As shall be seen in the forthcoming sections, γ can also be computed from the ratios of the
other ordering components once such an order occurs below TK . As can be read in Tab. 9.4
for the classifier distinguishing regimes I and II, the estimate of γ obtained from any of them
matches the expected value to three significant digits. To explain the superior precision in
this case, recall that the decision function without additional order, Eq. (9.6), involves Γxyz
regardless of the particular value of γ ; thus, a small deviation in γ will not significantly impact
the performance of the decision function. In contrast, when the constraint “piggybacks” on a
symmetry-breaking order, γ will be seen to enter the resulting order parameter tensor, giving
TK-SVM less leeway in determining the relative weight of the blocks.
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Figure 9.4: Coefficient matrix Cµν (I | II) learned from rank-2 TK-SVM on a three-spin trian-
gular cluster. The dotted lines demarcate 9 × 9 blocks corresponding to identical
sublattice indices. The same motif repeats in each block, but multiplied by a factor
of γ = −1/2 on cross-type blocks and γ 2 on bond-type blocks, as compared to on-
site blocks, cf. Tab. 9.4. This modulation encodes the constraint, in addition to the
quadrupolar order parameter that is seen using a single-spin cluster.

9.3 Quadrupolar order

Whereas the Fiedler vector of the rank-2 TK-SVM using the triangular cluster predominantly
signifies the onset of the emergent constraint, the analogous treatment using the single spin
cluster exhibits a quadrupolar transition at the temperature TK , as seen in Sec. 9.1.

It is therefore prudent to start the analysis of the latter by studying the single-spin coef-
ficient matrix Cab ,a′b′(I | II). It is virtually indistinguishable from the one depicted in Fig. 6.1.
Therefore, it is immediately clear that the corresponding quadrupolar order parameter is given
by 〈S ⊗ S〉 (where the angle brackets denote the lattice average over all spins), which is exactly
the single-spin form put forth by Zhitomirsky [82], cf. Eq. (2.11).

Given that the quadrupolar order can be defined on a single-spin cluster, it has to manifest
itself also when considering the larger, three-spin cluster, despite the ostensible absence of a
signature in the graph analysis based on the biases alone. Fig. 9.4 indeed shows a highly struc-
tured coefficient matrix for the classifier distinguishing the low-temperature regimes I and II.
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The same pattern as for the single-spin cluster appears in the on-site blocks. Additionally, the
same motif (sans self-contractions) repeats also in cross and bond blocks, up to a factor. Re-
sorting once again to the decomposition of the coefficient matrix in terms of the contributions
of the individual quadrupolar ordering components, one finds from Tab. 9.3 that all of them
occur simultaneously with coupled weights,

1
2
p[Qz2] = p[Qx 2+y2] = p[Qx 2−y2] = p[Qxy+yx ] = p[Qyz+zy ] = p[Qzx+xz ], (9.7)

= −3
2
p[Qx 2+y2+z2], (9.8)

with the exception that the last equality only holds in on-site blocks where the isotropic com-
ponent produces a constant due to spin normalization, whereas it is absent from cross and bond
blocks¹.

Indeed, the weighted superposition of the ordering components in Eq. (9.7),
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yields a symmetric contraction over the matrix X B
〈
Sα ⊗ Sβ

〉
which reduces to the familiar

quadrupolar order parameter tensor on-site (α = β) where both contractions become equiva-
lent.

As mentioned already in the end of the previous section, all of the above ordering compo-
nents do in fact respect the ratio γ = −1/2 between bond and cross blocks, as well as cross and
on-site blocks, to high accuracy (Tab. 9.4). Adopting the shorthand γ̄ B 1 − γ once again, the
relative weight of the [αβ,α ′β ′] block can be expressed as (γ̄δα β +γ )(γ̄δα ′β ′ +γ ). In total, one

¹As can be seen from Tab. 9.3, p[Qx 2+y2+z2 ] is not quite zero in cross and bond blocks of Cµν (I | II), but sig-
nificantly less than what it would be if Eq. (9.8) were to apply. For the purpose of decoding the quadrupolar order
parameter tensor in this section, it will be treated as zero. The reason for the residual weight lies in the fact that
Cµν (I | II) (Fig. 9.4) is not pristine, but rather mixes in a small contribution due to the constraint, as represented by
Cµν (II |T∞) (Fig. 9.3). Indeed, the same is true for Cµν (I |T∞) (cf. Tab. 9.3) which manifests a mixture of the other
two cases as well.
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can rewrite the decision function,

d({Si }) ∼
1
2

∑
α ,β
α ′,β ′

∑
a,b
a′,b′
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〈
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β
b

〉 〈
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〉
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]
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as the trace over the square of a (symmetric) order parameter matrix,

Oquad =

〈
1
3

∑
α

Sα ⊗ Sα −
(
1
3

∑
α

Sα
) ⊗2〉

cl
. (9.16)

While the first term corresponds to the single-spin quadrupolar order parameter tensor 〈S ⊗ S〉
which is explicitly averaged over the three spins within the triangular cluster, the second term
expresses the constraint as a quadrupolar tensor with respect to the total spin within the tri-
angular plaquette.

9.4 Octupolar order

In this final section, the octupolar order parameter tensor is extracted from the coefficient
matrix of the rank-3 TK-SVM decision function distinguishing between regimes I and II. As in
the case of the quadrupolar order parameter, the natural starting point is once again the single-
spin cluster. The resulting 27 × 27 coefficient matrix is virtually identical to Fig. 6.7(b), a block
in the coefficient matrix representing the rank-3 order parameter of the Td -symmetric gauge
model, Eq. (6.12). One is thus led to conclude that in the present case, the order parameter is
given by the lattice-averaged tensor product 〈S ⊗ S ⊗ S〉. Indeed, this is essentially² the triatic
order parameter given by Zhitomirsky [82], cf. Eq. (2.12).

Again, by choosing a larger spin cluster, one can confirm if this single-spin octupolar or-
der parameter persists or whether a more fundamental order parameter is found. In analogy to
the rank-2 case, the coefficient matrix can be partitioned into blocks which are enumerated by
sublattice indices [αβγ ,α ′β ′γ ′]. As was the case in the previous section, the rank-3 single-spin
coefficient matrix is found to repeat within each block, but modulated with a factor. Unlike in
the quadrupolar case, where the spin-normalization gave rise to the isotropic ordering com-
ponent in on-site blocks only, no such discrepancy is present at rank 3, so one can forgo a
composition into individual octupolar ordering components and infer the relative weights of
the blocks, e.g. by calculating their Frobenius norm.

²The additional terms in Eq. (2.12), involving one spin component each, are merely included to render Tabc
traceless and bear no physical relevance.
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Figure 9.5: The block structure of the coefficient matrix obtained from rank-3 TK-SVM on a
triangular cluster. Each of the blocks of the full coefficient matrix follows the form
depicted in Fig. 6.7(b), multiplied by the block weights indicated here. Basis tensors
Sα ⊗ Sβ ⊗ Sγ with α = β = γ and α , β , γ are seen to contribute equally, whereas
all others are diminished by by a factor of γ = −1/2.

The resulting block structure is shown in Fig. 9.5; the full coefficient matrix is not shown
as it does not add further information. Similar to the ratio γ between on-site (α = β) and bond
terms (α , β) in the quadrupolar order parameter, here one observes a similar situation were
the same weight is observed in on-site terms (α = β = γ ) and those defined on all three spins
in the cluster (α , β , γ ), but a different weight is observed for terms involving only two
distinct spins (e.g. α = β , γ ). The ratio between these types of blocks is again γ = −1/2. As
will become apparent, it is again expressing the isotropic constraint. Indeed, since there are
3 + 6 = 9 terms of the former type, but 18 terms of the latter type, a ratio of γ = −1/2 between
them will ensure that the sums over all of them cancels, and, thus,

0 =
∑
α ,β ,γ

〈
Sα ⊗ Sβ ⊗ Sγ

〉
=

(∑
α

Sα
) ⊗3
. (9.17)

By a similar calculation to the one in Eqs. (9.12)-(9.16), one arrives at the following octupolar
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order parameter tensor:
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It is seen to again include a term which expresses the constraint as an additional octupolar
tensor with respect to the total spin on the triangular plaquette. Meanwhile the first term cor-
responds to the on-site order parameter that was found already using the single-site cluster.
Additionally, the second term corresponds to the order parameter that was previously found
for the gauge model ofTd -symmetric mesogens, Eq. (6.12). Here, it is seen to contribute equally
to the total order parameter. By measuring these three terms individually, it becomes appar-
ent that the first two terms are indeed equivalent. This is in line with the observation made
throughout the preceding chapters that TK-SVM will learn all equivalent manifestations of an
order parameter simultaneously in a way that minimizes the Frobenius norm of the full coef-
ficient matrix. In cases where these are nonoverlapping, such as the present one, this implies
a realization with equal weights.
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In this thesis, a machine-learning framework for phase classification in classical magnetic sys-
tems was introduced which is based on tensorial kernel methods. The center stage is taken by
the tensorial kernel (TK) function [Eq. (5.5)] which involves a mapping [Eq. (5.3)] to monomials
of spin components, corresponding to the elements of product tensors between spin vectors.
Its design allows it to capture the order parameter tensors of multipolar spin orders at any
given rank.

At the same time, the TK is highly interpretable which admitted the development of power-
ful analytical tools in part II of the thesis. Their interpretability may be considered a major ad-
vantage of tensorial kernel methods over neural networks. This led to a usage scenario which is
rather uncharacteristic of machine learningmethods: After training themachine to accomplish
the successful classification of phases, rather than simply classifying further samples accord-
ingly, the classifier is instead deconstructed to infer the physical quantity that distinguishes
between phases: the order parameter.

The focus on multipolar order is motivated primarily by its prevalence in classical frus-
trated magnets. Frustration can give rise to many interesting phenomena, chief among which
is the formation of classical spin liquids (CSLs) which do not break any symmetries but ex-
hibit strong, algebraically decaying correlations nonetheless. However, at low temperatures,
symmetry-breaking orders may still emerge, in some cases driven by the order-by-disorder
phenomenon (cf. Ch. 1). These are then typically spin nematics with a multipolar nature and
are thus invisible to conventional numeric probes: “hidden orders”. Historically, these tend to
be missed in tentative CSL candidates, the prime example of which is the Heisenberg model on
the kagome lattice (see Sec. 2.1.1) which was studied in Ch. 9.

The applicability of the TK is not limited to any particular kernel method but it has been
used in conjunction with support vector machines (TK-SVM) for the majority of this thesis. It
has also been applied to kernel principal component analysis (TK-PCA) in Sec. 8.4 as a proof of
concept but does not lend itself to an unbiased interpretation in quite the same way as TK-SVM
does for the reasons discussed therein.

By example of a gauge model of generalized nematics, several different multipolar orders,
each breaking O(3) down to a different symmetry, have been scrutinized by TK-SVM. For each,
the order parameter tensor was reconstructed, covering cases ranging from vector order pa-
rameters to the sixth-rank order parameter tensor of an icosahedral nematic. Several training
scenarios which deviate from a standard binary classification, distinguishing between an or-
dered phase and a disordered phase, have been considered: (i) several orders may coexist in
which case they can still be isolated individually; (ii) one may attempt to train the machine
on samples which exclusively originate from either the disordered or (iii) the ordered phase.
In the last case, TK-SVM still identifies the correct order parameter (which varies in strength
within the phase).

The examination of these cases upheaved two quintessential virtues of TK-SVM which go
beyond its original conception. First, the bias parameter of the TK-SVM decision function
admits an interpretation in the context of phase classificationwhich is summarized in Eq. (5.17).
It gives an indication as to whether two sets of samples do indeed display different physics
and, hence, originate from different phases. This bias criterion was brought to full fruition in
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obtaining the phase diagram from a spectral analysis of the graph that is constructed based on
the biases (see Ch. 7). Under this scheme, TK-SVM is used in a semantically unsupervised way
by labeling the training data trivially by the parameters of the simulation fromwhich theywere
harvested. This is in spite of the fact that SVM is technically a supervised learning scheme.

Second, the TK proved capable of distinguishing CSL regimes from both trivially paramag-
netic ones and symmetry-breaking phases. This came as a surprise as the TK was constructed
with tensorial order parameters in mind and these are absent in spin liquids. However, the
space of functions which the TK-SVM decision functions (or the TK-PCA score functions) en-
compass is not limited to those. As laid out in Chs. 8 and 9 to varying degrees of detail, the TK
then distinguishes CSLs by their associated local constraints. The resulting decision function
acts as an “order parameter” for CSLs and one can even derive generalized susceptibilities from
them to quantify the location and width of their associated crossover regimes.

In part III of the thesis, TK-SVM has been applied to two frustrated spin models with some
success: In the aforementioned Heisenberg model on the kagome lattice, the hidden ordered
phase was found and the correct tensorial description of its triatic symmetry in terms of both
a quadrupolar and an octupolar order parameter was uncovered, consistent with the one ob-
tained by Zhitomirsky [82]. Additionally, the local constraint describing the CSL regime above
the ordering temperature could be inferred and the crossover to the trivial paramagnet was
observed as a function of temperature. The other system which was considered is the XXZ
model on the pyrochlore lattice. Its intricate phase diagram—featuring two symmetry-breaking
phases (one of them a spin nematic) and three distinct types of spin liquids—could be obtained
in near perfect agreement to the one previously proposed by Taillefumier et al. based on a
careful manual analysis [87].

Given these encouraging results, which limitations do tensorial kernel methods face? First,
by design, the TK is limited to quasi-local phenomena, i.e. those which manifest themselves
within the spin cluster the kernel is defined on. This precludes topological quantities such as the
one governing the vortex-unbinding transition in the XY model. However, this is something
that other machine-learning methods have struggled with anyway without extensive feature
engineering (cf. Sec. 4.2). That being said, evidence of topologically nontrivial phases may still
be picked up by the TK. The constraints characteristic of CSLs are an example of that: They
manifest themselves in local quantities, yet they provide the basis for fractionalized excitations
such as magnetic monopoles which are inherently topologically nontrivial.

Second, in its current form, the TK relies on the full microscopic spin configuration (or
spin cluster average thereof). While the method is not intrinsically restricted to a combination
with Monte Carlo methods to harvest the training data, this information is usually not readily
available from experiments. Conversely, the order parameters or constraints found by TK-
SVM onmodel systemsmay provide valuable input to the experimental identification of hidden
orders and CSLs in materials.

Third, this reliance on vector-valued spin information also accounts for its current lim-
itation to (semi-)classical spin systems. As of now, the generalization to genuine quantum
systems remains an open question. However, simulations of frustrated spin systems by means
of quantum Monte Carlo are notoriously limited by the sign problem anyway, while tensor
network methods are restricted to small system sizes. Fortunately, many frustrated systems
already show nontrivial phenomena at the classical level, which also provide useful insight
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into their quantum counterparts, and many of those are pending a thorough investigation of
their phase diagram.

One class of such systems are the Kitaev materials [188, 189], including spin liquid candi-
dates Li2IrO3,Na2IrO3 [190, 191], Sr2IrO4 [192] and α-RuCl3 [193, 194]. These materials involve
various competing interactions, such as the Heisenberg, Kitaev, and off-diagonal Gamma in-
teractions and also show a strong dependence on external magnetic fields [189, 195, 196]. Even
when varying only a subset of the interaction parameters, their (classical) phase diagrams ex-
hibit multiple exotic orders competing with the desired spin liquids [197, 198], whereas order
parameters of those phases are not yet clear and significant parts of the phase diagram remain
unexplored. Following the framework provided by TK-SVM to compute the phase diagram, one
does not have to scan each physical parameter individually; phase transitions and crossovers in
the entire parameter space of interest can instead be identified in one fell swoop. Independent
of the number of physical parameters, the analysis will result in a univariate histogram (cf.
Figs. 7.3 and 8.5), whose peaks imply distinct phases. One can thereby obtain a comprehensive
phase diagram more efficiently.

The ability to construct a high-dimensional phase diagram in turn allows to systematically
classify which interactions favor hidden order or spin liquids. This may accelerate the pace at
which theoreticians can scrutinize material-inspired model Hamiltonians and might open the
door towards the engineering of unconventional phases in the future.

Source code and data availability

The source codes for the SVM framework, including the Monte Carlo simulation of the gauge
model and the Heisenberg model on the kagome lattice have been made available under a free
software license [199]. The code used to simulate the XXZ model on the pyrochlore lattice
was written by Ludovic D. C. Jaubert and is not openly available. The raw data supporting
the findings of Ch. 6 are available as part of the supplementary materials of Ref. 2. The data
relating to Chs. 8 and 9 will be made available through other means. Links may be found in
the Readme files accompanying the source codes.
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