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Abstract. In this paper we analyze the bump formations in binary attractor neural networks with 
distance dependent connectivity. We show that by introducing a two stage learning procedure an 
increase of the critical storage capacity of the network is observed. The procedure has been tested 
on a network with N = 64K neurons by using a selection of 3700 natural images. Our analysis 
shows that the bumps can be regarded as intrinsic characteristics of the image and the topology 
of the network and they can be used to improve the performance of the network by increasing its 
capacity. 
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INTRODUCTION 

Recently bump formations in recurrent neural networks have been analyzed in several 
investigations concerning linear-threshold units [1, 2], binary units [3, 4] and Small-
World networks of Integrate and Fire neurons [5]. It has been shown that the localized 
retrieval is due to the short-range connectivity of the network, which could explain the 
behavior in structures of biological relevance [6]. 

The investigation of the spontaneous activity bumps in Small-World networks (SW) 
[7, 8] of Integrate-and Fire neurons [5] has recently shown that the network retrieves 
when its connectivity is close to the random and displays localized bumps of activity 
when the connectivity is close to the ordered. The two regimes are mutually exclusive 
in the range of the parameter governing the proportion of the long-range connections on 
the SW topology of the network. 

The result related to the appearance of bump formations have been recently reported 
by us [3] in the case of binary model for associative network. We demonstrated that 
the spatially asymmetric retrieval states (SAS) can be observed when the network is 
constrained to have a different retrieval activity compared to that induced by the patterns. 

The model, we studied in Ref.[3], has a symmetric and distance dependent connectiv
ity for all neurons within an attractor neural network (NN) of Hebbian type formed by N 
binary neurons {£/},£/ G { — 1,1},/= 1,..., N, storing p binary patterns Tj^fi G {1.. .p} 
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with symmetric connectivity between the neurons ctj = Cjt G {0,1}, cu = 0. 
The model is defined by the following Hopfield's Hamiltonian [9]: 

#=^X-w;> CD 

where we have assumed a Hebbian learning rule: 

4 ; = - £ c y ( T j f - a ) ( 7 ) J , - a ) . (2) 
cn=i 

The learned patterns are drawn from the following distribution: 

^ f ) = 1 ^ 5 ( r ] f - l ) + 1 ^ 5 ( r ] f + l), (3) 

where the parameter a is the sparsity of the code [10]. The number of connections per 
neuron is assumed to be constant and equal to C = cN. 

In order to introduce an asymmetry between the retrieval and the learning states, a 
condition on the mean activity of the network has to be imposed: 

Ha=NR(£Si/N-a), 
i 

where the parameter R controls the affinity of the system toward the appearance of bump 
formations. 

In Ref.[3] we have shown that this condition is necessary and sufficient condition for 
the observation of bump formations. Similar observations have been reported in the case 
of linear-threshold network [1], where in order to observe bump formations, one has to 
constrain the activity of the network. The same is true in the case of smoothly saturating 
binary network [2], when the highest activity level, that can achieved by the neurons, is 
above the maximum activity of the units in the stored pattern. 

An interesting phenomenon, discussed in Ref.[3], is related to the dramatic drop of 
the capacity of the network in the regime of the appearance of the bumps, which is due 
to the reduction of the effective size of the networks until the bumps size. 

On the other side, the spatially restricted activity means that the effective coding is 
restricted to very sparse coding. Usually, the capacity of the network, keeping patterns 
with sparsity a, is proportional to \/a\ \oga\ and increases with the sparsity. 

In a recent paper [4] we have used explicitly the sparseness of the code, imposed by 
the bump appearance, in order to increase the capacity of a two-dimensional network 
that stores natural images. By means of simulations, we have shown that the capacity of 
the network can be increased to the limits typical for sparsely connected network, e.g. 
to achieve capacities of order of C. 

Based on the these results, we present here the theoretical bases of the analysis and 
show that the bump formations can be effectively used during the learning process in 
order to enhance the network performance. 
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To give an analytic expression of our results obtained by learning using bump for
mations [4], we investigated the case when the learned patterns are drawn from the 
following distribution, written in terms of the variables ^f = r\^ — a. 

P(l;?) = ̂ 0?8ll;?-(2-(l+a)KRl)] + (l-^d?)8g? + (l+a)KRl}, (4) 

where 0-1 = 0(Ro — \rt•• — r^ |). Here by r^ we denote the center of the bump correspond
ing to the /i-th pattern, while r/ labels the coordinate of the /-th neuron. RQ is the radius 
of the spot, which models the bump shape and we are supposing to train the network by 
the bumps, obtained after preprocessing the patterns (images). 

THEORETICAL ANALYSIS 

The theoretical analysis of the model, based on the pattern's distribution given by Eq. 
(3), has been explained in details in Ref.[3]. Here we briefly present the main points of 
this analysis and the most important results. 

For the theoretical analysis of the spatially asymmetric states (S AS), we consider the 

decomposition of the connectivity matrix ctj by its eigenvalues Xk and eigenvectors a\ : 

k 

with 

k 

\ a 
(k) 

Vhfc (6) 
Following the classical analysis of Amit et al. [11], we study the following binary 

Hopfieldmodel[9]: 

H=-^lSitfciJ$Sj-± h^tfSi+NRSfl. (7) 
C i V ijii v = l i 

The second term in the Hamiltonian introduces a small external field h, which will tend 
later to zero. This term is necessary to take into account the finite numbers of overlaps 
s that condense macroscopically. The third term imposes an asymmetry in the neural 
network's states, which is controlled by the value of the parameter R. This term is 
responsible for the bump formations. In Eq. (7) the over line means a spatial averaging 

By using the "replica formalism" [12], the replicated partition function is represented 
by decoupling the sites using the above expansion of the connectivity matrix c,-y, Eq. (5): 

({Zn))=e-liaNn^c{{TrsPexp ^XE(W)(3W 

H^^SP-PRN^SP/N 
v ip ip 

(8) 
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FIGURE 1. LeftPhase diagram for a = 0.001 (a/c = 0.02). The SAS region, where local 
bumps are observed, is relatively large. The Z region corresponds to trivial solutions for the 
overlap. RightThe critical storage capacity ac as a function of R for a = 0.4, showing a drop on 
the transition to a bump state. 

with a = p/N being the storage capacity and n-th& number of replicas. Following the 
classical analysis [11], we use the variables m^k = ^ X / ^ S f ^ f ? which are the usual 
overlaps between neurons and patterns for each replica p and each eigenvalue k. Then 
we split the sums over the first s "condensed", labeled by v, and the remaining (infinite) 
p — s patterns, over which an average and a later expansion of the expressions in terms 
of their corresponding order parameters (OP) is done. In addition, we also use two other 

order parameters, qp
k'° = (b^)2S^Sf, which is related to the neuron activity, and the 

parameter r £ , a , conjugate to q%'a, that measures the noise in the system. The indexes 
p , a = 1,..., n label the different replicas, while the role of the connectivity matrix is 
taken into account by the parameters b\. 

Finally, by using the replica symmetry ansatz [12] m p,k 
V Pi® qkfovp^G 

and r^° = r^ for p ^ c r , followed by a suitable linearization of the quadratic in S-terms 
and the application of the saddle-point method [11], we obtain the following expression 
for the free energy per neuron: 

c l k k 

+ ^ S [ l n ( l - 2 j 3 ( l + f l ) ^ ( H t - ^ ) ) -
ZP k 

- 2/5(l+a)KRlqk(l-2l5(l+a)KRl(Llk-qk))-
1]-

- g J - - ^ ^ l n 2 c o s h j 3 ( z j 2 a ( l + f l ) ^ § X r / ^ + S l w / & * f + ^ ? )• 
In 

Here /i^ = X^/cN and we have used the fact that the average over a finite number of 
patters ^ v can be self-averaged [3], [11]. 
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FIGURE 2. The contours of Lena and the bump formation with sparsity a = 0.005 and r = 15. 
The bump represents a compact area. 

The equations for the OP m^, qk and r^ are respectively: 

and 

dze~z2/2 

, ^ j ^ t a i i h j 8 ^ 

qk = /^^(Z>f)2 tanh2 /3 ( z ^ ^ 
I I In 

and 

n 
2qk(l- -O)KRQ 

(1-2)8(1 -a)nRl(jJ,k-qk)) 
T (9) 

Note that the the only difference in the above equations, compared to the correspond
ing equations obtained in Ref.[3], is the replacement of the expression 1 — a2 by the 
following one 2(1 + O)KRQ. 

As we know from Ref.[3], in the case of distribution of the patterns given by Eq. (3), 
the numerical analysis of the corresponding OP's equations for T = 0, gives a stable 
region for the solutions corresponding to bump formations for different values of the 
load a, the sparsity a and the retrieval asymmetry parameter R, shown in Fig. l(Left). 
The sparsity of the code a enhances the SAS effect, although it is also observed for 
0 = 0. 

The effect of the asymmetry parameter R is seen for intermediate values, where the 
bumpy region (SAS) is formed. For larger values of R and a, the only phase is the 
paramagnetic phase (Z). 

The behavior of the critical storage capacity ac shows for this case a drastic drop of 
ac at the transition from homogeneous retrieval (symmetric) state to spatially localized 
bump state (Fig. 1, Right). In this case only the fraction of the network in the bump can 
be excited and the storage capacity drops proportionally to the size of the bump. This last 
result has been used by us in Ref.[4] in order to show that although the critical storage 
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capacity decreases by a half at the transition point, the learning using the corresponding 
bump formations can improve the storage capacity and the performance of the network. 

In the following we will analyze this more interesting case, corresponding to the 
distribution, given by Eq. (4). 

NUMERICAL ANALYSIS 

In Ref.[4] we have performed computer experiments to show that the capacity of the 
network can be increased to the limits typical for sparsely connected network. For this 
aim we have used the natural image database of van Hateren [13] of 3700 images with 
decreased resolution restricted down to 256 by 256 points. 

In that work we applied a two stage learning procedure. In the first stage we trained a 
Hebbian network with spatially dependent connectivity and probability of connections 
p(r) oc const + e~r / 2 a with r being the radius of the connectivity. By rising the value 
of the threshold, we observed a bump with determined sparsity, which is stable enough 
in order to reconstruct the complete image. An example of such a bump is given in Fig. 
2. The location of the bump depends exclusively on the topology of the network and 
on the pattern. During the second stage, we used the bump in order to train a Hebbian 
network with exactly the same topology, that contains only bumps from the variety of 
the images. We refer this network as a Cumulative Recurrent Neural Network. 

We have shown that the image can be restored effectively from its bump. This gives us 
an opportunity to save only the bump in a network and to associate another feed-forward 
network in order to restore the image in question. When the bumps are orthogonal 
enough, we have a good recovery of the initial patterns. 

In order to keep the network in the regime C ©c N, the connectivity of the system must 
be large enough. In these simulations we used C = 300, that fits well into the computer 
memory and for which value, the correlation radius r can vary from 10 to the size of the 
image. 

For large values of r, no bump formations has been observed. On the other side, when 
r is very small, the network effectively converts into locally connected network. In this 
case the capacity is small, but not too small because the patterns are spatially correlated 
and the bump is well formed. Finally, for intermediate levels of the correlation radius r, 
one can achieve capacity close to the theoretical capacity for sparse random network. 

The critical capacity versus the load is shown in Fig. 3. One can see that it has a 
maximum near r = 20 and in general is very high. It is of the same order as the critical 
capacity of a very sparse network, up to the correlation radius where the bumps disappear 
and the capacity drops sharply to zero. This behavior of the critical storage capacity is 
very promising in order to improve the performance of the network by using the bumpy 
character of the network activity. 

CONCLUSION 

In this paper we have shown that the storage capacity of a binary attractor neural network 
can be increased by using a learning procedure based on the bump formations obtained 
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FIGURE 3. Non-trivial behavior of the critical storage capacity during the bump formation 
phase for a = 0.001. When r = 31.3, ac drops to zero. 

after preprocessing the original images. Theoretically this is described by the same form 
of the equations, governing the behavior of the system when using the distribution of the 
original patters, with the only difference that now a suitable renormalization by factors 
depending on the characteristics of the spot (bump) is naturally imposed. The results are 
the manifestation of the idea that the bumps can be regarded as intrinsic characteristics 
of the image and the topology of the network. 
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