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CHAPTER  1 

 

 

INTRODUCTION 

 

 

1.1 Background: 

 

Today, and more than ever, with the growing complexity of today’s processes along with 

the increasing demand on optimum product quality and enhanced plant performance, the 

need arises for the development of integrated techniques that satisfy these requirements 

while maintaining a high robustness level against different operating conditions. 

Generally, each process needs to be analyzed by examining its inputs and outputs to 

determine the required actions for its enhancement. The output from a process is that 

which is transferred to somewhere or someone. In order to produce an output which 

meets the requirements, it is necessary to define, monitor and control the inputs to the 

process. Process Enhancement refers to moving a process from its current state to another 

state of higher performance. But in order to enhance a process, several underlying 

elements need to be considered and addressed, such as:   
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� Process Parameters Setting: refers to the initial setting of its parameters which 

includes selecting the optimum values for: process mean (set-point), production run 

length (process running duration before shutdown), and specification limits 

(allowable level of quality deviation). 

� Process Quality: refers to a statistical measure of the conformance to specification 

for the products generated by a process. 

� Process Performance: refers to the degree of effectiveness of a process in satisfying 

the requirements, which is usually determined from a process study conducted over 

an extended period of time under normal operating conditions. 

� Process Robustness: refers to its in-sensitivity to variation in external factors. 

� Process Control: refers to using collected data about a process to control its output 

and it includes the use of control techniques such as SPC and APC.   

 

The first step toward process enhancement is to initialize its setting properly before 

heading it up into operation. This is accomplished by proper selection of process 

parameters which include: optimum process mean, production run length, and 

specification limits. An effective optimization model for this problem should incorporate 

the use of quality loss functions (for maintaining the desired quality level on target) and 

process cost indices (for minimizing the overall cost). But as the process is placed into 

operation and starts its interaction with its surrounding, it may no longer maintain its 

stability. Its control parameters may need to be changed to keep it insensitive to noise 

factors, or it might need to operate with different gain parameters once a certain set-point 
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has been reached. These problems could be resolved by applying the use of Robust 

Design, which aims to make the process less sensitive to noise factors, and Gain 

Scheduling, which provides satisfactory control for different operating points of the 

system by modifying the gain parameters depending on the states of the system. 

 

Once the process is brought to be under control and continue its operation, monitoring 

and evaluation part needs to be considered. The objective behind that is to enable tracking 

and fixing problems before they can cause in producing poor quality products and result 

into financial loses. Monitoring could be achieved by applying the use of control charts, 

while performance needs to be measured against some kind of benchmark from which the 

performance of the system could be evaluated. Although the human side could be useful 

in resolving these issues, real industrial process running at fast production rate result into 

high dimensionality data which makes it difficult for a human operator to monitor them 

processes, analyze their output data, evaluate their performance, find reasons behind 

degradation, select the proper controller to handle the operation … etc. All of this calls 

the need for having a systematic strategy which can translate the human way of decision 

making and its knowledge about the process into machine language. A suggested solution 

is apply the use of Fuzzy Logic (FZL), which is close to the human way of thinking and 

reasoning and provides means for modeling and dealing with the approximate and inexact 

nature of the real world.  
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Process control is no less than an attempt to cancel out the effect of a fundamental 

physical law (the second law of thermodynamics) which implies that if left to itself, the 

entropy or disorganization of any system can never decrease and will usually increase. 

Statistical Process Control and Automatic Process Control are two complementary 

approaches to combat this law. Generally, each one has the reduction of variability and 

maintaining the quality level on target as their objectives. However each seeks to 

accomplish these objectives in different ways. SPC attempts to remove process 

abnormalities using process monitoring, while APC attempts to compensate them through 

process adjustment. 

 

Initially, SPC and APC took their origin from different industries (discrete part 

manufacturing and continuous process industry, respectively), and have been applied by 

different professionals (Statisticians and Control Engineers, respectively). MacGregor 

(1988) noted that a control engineer, who is primarily involved with APC, typically has 

more experience with process fundamentals, process dynamics and control theory. On the 

other hand, a quality engineer or an applied statistician, who is primarily involved with 

SPC, has more experience with statistics, analysis of data, and design of experiments. 

Box and Kramer [11] and Box and Luceño [12] also noted this knowledge gap. 

Traditionally, the results of Deming's funnel experiment [21] have been used to 

demonstrate what will happen when one tampers with a stable process [56], which leads 

to an obvious question: When do we need to adjust the process? And when should we 

leave it alone? Based on the experiment and the remarks made by Deming, some quality 
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consultants took the extreme view that a process should never be adjusted and that SPC 

charts are always sufficient. Lately, MacGregor [51] analyzed the experiment in detail 

and provided further useful information. Based on his analysis, the answer to the previous 

question is that SPC will tell the decision maker when to look for assignable causes and 

make process adjustments, and when to leave the process alone. However, for an unstable 

process (i.e. process with a drifting mean or subjected to disturbances) applying an APC 

action will always outperform the no control situation. 

 

SPC is traditionally applied to processes that vary about a fixed mean, and where 

successive observations are viewed as independent. It seeks to reduce variability by 

detecting and eliminating assignable causes of variation. SPC can be viewed as a top-

down tool which is usually driven by upper management as part of a company wide 

quality improvement policy. The role of SPC is to change the process when assignable 

causes occur. SPC does not control the process, but performs a monitoring function that 

signals when control is needed (identification and removal of root causes). 

 

On the other side, APC is usually applied to processes in which successive observations 

are related over time, and where the mean drifts dynamically. It seeks to reduce 

variability by transferring it from the output variable to a related process input 

(controllable) variable. It actively reverses the effect of process disturbances by making 

regular adjustments to manipulatable process variables. APC is usually discussed  in  the  

framework  of  a  process  with  a  drifting  mean,  and  the  objective  of  the  process 
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adjustment is to keep the output quality characteristic on target. APC is viewed as a 

bottom-up procedure driven by process control or manufacturing engineers. The role of 

APC is to continuously adjust  the  process  to  counteract  ongoing  forces  that  will  

cause  the  process  to  drift  off-target  if compensations are not made. APC does not 

remove the root or assignable causes; it uses continuous adjustments to keep process 

variables on targets. 

 

 

1.2 Thesis Objectives: 

 

In this thesis, we are mainly concerned with integrating statistical and automatic control 

techniques towards forming unified strategies and schemes to handle the previous issues 

related to process enhancement by applying the use of techniques from both areas. We 

envision that the application of integrated SPC/APC techniques to any system will result 

into having better quality for the output product, maintain its performance, and keep it 

insensitive against external factors. The main objectives of the thesis are as follows: 

 

1. Develop a Trine Model the can be used for joint determination of optimum values 

of process parameters including: process mean, production run length, and 

specification limits under mixed quality loss function. 
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2. Apply the use of robust design methodology to determine the optimum value of 

control parameters so that the controller maintains the process on target with low 

variability while keeping the performance robust against the external factors. 

 

3. Apply the use of gain scheduling to modify the control parameters depending of the 

state of the system to maintain its stability. 

 

4. Set a Robust Gain-Scheduled methodology that includes the utilization of previous 

two techniques. 

 

5. Develop an SPC controller which is based on the constrained controller principle 

and incorporated with quadratic quality loss function and apply its use for process 

control as well as a standard benchmark from which performance evaluation could 

be conducted.  

 

6. Construct a unified scheme that combines between the use of SPC and APC 

techniques of process monitoring and performance evaluation from which thorough 

assessment could be resulted. 

   

7. Develop an integrated scheme that combines between the utilization of SPC and 

APC techniques under Fuzzy Logic interaction from which enhanced level of 

process quality, performance, and robustness results. 
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1.3 Organization of the Thesis: 

 

This thesis is organized as follows. In the next chapter, preliminaries on SPC and APC 

techniques are outlined and literature review related to the issues facing their integration, 

along with the strategies followed to overcome the contraventions between them are 

discussed. Different models for optimum determination of process parameters under 

mixed quality loss function are developed in chapter three. Chapter four presents a robust 

gain-scheduled methodology for proper setting of control parameters. Chapter five 

suggests a unified SPC/APC scheme for process monitoring and performance evaluation. 

An integrated SPC/APC scheme under FZL interaction is presented in chapter six. 

Conclusions and recommendation for future work are given in Chapter seven. To make 

the thesis self informative, illustrative examples, case studies, graphs ... etc. are provided 

throughout its body. Furthermore, Matlab codes, Simulink diagrams and calculation 

tables used throughout this thesis are supplied in Appendices.  
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CHAPTER 2 

 

 

BACKGROUND AND LITERATURE SURVEY 

 

 

2.1 Overview: 

 

Statistical Process Control and Automatic Process Control are two complementary 

approaches that have been used widely to improve product quality and process 

productivity. SPC is mainly used for process monitoring, while APC is used for process 

adjustment. SPC reduces process variability by detecting and eliminating special causes 

of process variation, while APC reduces variability by adjusting the process to keep the 

output on target. Both SPC and APC were initially thought to be in conflict with each 

other, but in recent years, many researchers have shown their interest in integrating their 

techniques to reduce total variability of the process. They have found that the techniques 

used in those two methods are complementary rather than contradictory. A considerable 

amount of work has appeared in the literature about methods that combine SPC and APC 

techniques for the same process. In this chapter, we will cover preliminaries on SPC and 
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APC and outline the major techniques applied by both. Literature survey related to the 

issues facing their integration will be outlined. We will also summarize different 

strategies followed in literature to achieve their integration. 

 

 

2.2 Statistical Process Control: 

 

Statistical process control is defined as a collection of tools and techniques that provide a 

system of quality control, which can be used to monitor, control, and improve a process. 

Its purpose is to control the process in an ideal status with respect to product 

specifications and to achieve process stability and to improve its capability by reducing 

variability. SPC uses the process information from samples to identify process shifts and 

initiate timely remedial actions. SPC aims to maintain the process in an ideal status and to 

keep product quality loss minimal during production. Another objective of SPC is to 

monitor the performance of a process over time, in order to detect any unusual events that 

may occur. Improvements in the process and product quality can be achieved by finding 

the assignable causes for these events and eliminating them and by improving the process 

or its operating procedures.  

 

SPC is comprised of three sets of activities: understanding the process, understanding the 

causes of variation, and eliminating the sources of variation. In understanding a process, 

the process is typically mapped out and monitored using control charts, which are used to 
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identify variation. When the process is stable and does not trigger any of the detection 

rules for a control chart, process capability analysis is performed to predict the ability of 

the current process to produce conforming (within specification limits) product in the 

future. When excessive variation is identified by the control chart detection rules, or the 

process capability is found to be lacking, additional effort is exerted to determine causes 

of that variance by using the tools. Once the causes of variation have been quantified, 

effort is spent in eliminating those causes that are both statistically and practically 

significant. Figure 2.1 shows the flow chart for a traditional SPC [5, 54, 55]. 

 

 

Figure 2.1: Flowchart for traditional SPC 
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2.2.1 SPC Tools: 

The SPC strategy in stabilizing a process is to standardize procedures and raw materials 

and to use hypothesis-generating tools to track down and eliminate causes of trouble. 

These tools often called magnificent seven (Figure 2.2) include: [5, 55] 

1. Flow Chart: used to show the steps that a product follows from the beginning till 

the end of the process, which helps to locate the value added parts of these steps 

from the unnecessary ones in which extra cost, material and labor are required. 

2. Pareto Diagram: used to display the relative importance or size of the problem to 

determine its priority, which helps to concentrate effort on the most serious one. 

3. Cause and Effect Diagram: used to develop the relationship between an effect 

and all possible causes influencing it (also known as fishbone diagram). 

4. Scatter Plot: used to study the relationship between two variables (also known as 

X-Y plot) and to give visual assessment of the local tendencies of data points, 

which helps to identify the type of statistical analysis needed for the data. 

5. Control Chart: used to determine if a process is in control or not and can also be 

used to monitor its performance.  

6. Check Sheet: is a pre-printed table layout that facilitates data collection and helps 

in organizing it for subsequent analysis.  

7. Histogram: used to display the distribution of data through collecting the data 

points and organizing them into evenly spaced numerical sub-groupings then 

showing the frequency of values in each subgroup. 
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Figure (2.2): SPC tools 
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2.2.2 Shewhart Control Charts: 

A control chart is a graph of quality measurement plotted against time with control lines 

superimposed to show statistically significant deviations from normal levels of 

performance (Figure 2.3). It was invented in 1924 by Shewhart who stated that SPC with 

control charts is mainly used for three objectives: process monitoring and surveillance, 

process parameter identification, and process variation reduction [32, 55]. 

 

 

Figure 2.3: Typical control chart 

 

Two common types of Shewhart control are the x-bar and s charts. When dealing with a 

variable quality characteristic, it is necessary to monitor its mean value as well as its 

variability. The x-bar chart is an approach for controlling the mean quality level of the 

process, whereas, the s chart is used for monitoring the process variability, by calculating 

the standard deviation of each subgroup. Given a sample of size n, its standard deviation 

is defined as: [32, 55] 

2
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where 
i

x  is the ith observation and x  is the average of n observations. For m preliminary 

samples, the average mean and average standard deviations are respectively: 

1

1 m

i

i

x x
m =

= ∑              
1

1 m

i

i

s s
m =

= ∑  (2.2) 

Accordingly, the control parameters for the x  chart are written as: 

                    UCL x As CL x LCL x As= + = = −  (2.3) 

While the parameters for the s chart are given by: 

                          UCL Cs CL s LCL Bs= = =  (2.4) 

The factors A, B, and C for the x  and s control charts, for different values of n, are listed 

in Table 2.1 [55]. 

Table 2.1: Factors for the X-bar and s control charts 

n A B C 

2 2.659 0 3.267 
5 1.427 0 2.089 

10 0.975 0.284 1.716 
15 0.789 0.428 1.572 

 

 

2.3 Automatic Process Control: 

 

APC is primarily envisioned as a mean for reducing manufacturing costs by reducing 

payroll expenses and increasing production rates. Applying APC not only increases the 

production rate, but also results in a low scrap rate (rejected product). Moreover, the 

improved quality of the end product is frequently achieved, since it can be adjusted to 
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produce products closer to tolerances. APC uses algorithms relating process inputs to 

process outputs to automatically compensate for process perturbations by manipulating 

selected input variables. APC is an effective method for regulating a process about its 

mean (target) value since it continuously implements control action after new 

observations. APC is a useful tool in Continuous Processing Industries, where process 

data is collected at high rates using on-line computers. Applying APC is very successful 

for processes that need to be operated under extreme conditions or have features that 

render them beyond the capability of human operators. Other cases include situations 

where the degree of complexity of control is excessive, or where certain control features 

are too critical to trust the human capabilities [23, 69]. 

 

2.3.1 Feedback Control System: 

Feedback is one of the foundations of Control Engineering [23]. The word "Feedback" 

was introduced in the 1920s by radio engineers to describe parasitic positive feeding back 

of the signal from the output of an amplifier to the input circuit. The first automatic 

feedback controller used for an industrial process was the flyball governor, developed by 

James Watt in 1769, for controlling the speed of a steam engine. Within a feedback 

control system (Figure 2.4), a cause (input) and an effect (output) are compared and their 

difference is used to alter the effect. The feedback loop starts with a sensor, which 

measures the output of the process (i.e., temperature, pressure … etc.) and sends it to the 

transmitter, which takes that output and converts it into a signal (known as feedback 

signal) strong enough to be transmitted to the controller. After comparing the feedback 
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signal with the desired target to be achieved by the process, the difference (known as 

error signal) is sent to the controller (known as the brain of the control system), which 

determines the control signal to be fed to the process [23, 36, 69]. 

 

 

Figure 2.4: Feedback control system 

 

 

For illustration, consider a room air cooling system from which it is desired to maintain 

the room temperature at 22OC. An air-conditioner is used for cooling and its thermostat is 

set to allow fluctuations between 21~23OC to avoid having unit cycle on and off too 

frequently. Figure 2.5 shows the components of this feedback control system.   

 

 

Figure 2.5: Feedback control system for an air conditioning system 
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2.3.2 Proportional Integral Derivative Controller:  

The Proportional Integral Derivative (PID) is the most common controller found in 

industry. Studies have indicated that approximately 95% of control loops are of PID-type. 

This is due to the simplicity of its control law, few count of tuning parameters, and the 

familiarity of engineers and operators to its design and operation. PID control is based on 

the present (P), past (I), and future (D) control errors. Block diagram for a PID controller 

is shown in Figure 2.6.  

p  K e(t)

∫
p

i

K
e(t)

τ

p d

de(t)
K τ

dt

 

Figure 2.6: Block diagram of a PID controller 

 

 The PID controller is used for a wide range of problems, including process control, 

motor drives, magnetic and optic memories, automotive, flight control, instrumentation, 

etc. It can come in different forms such as: standard single-loop controller, software 

component in programmable logic controllers and distributed control systems, built in 

controller in robots and CD players [5, 12, 45]. The controller form in time domain is 

expressed as follows: 

0
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where Kp is the proportional gain constant, u(t) is the control action, τi is the integral time 

constant, τd is the derivative time constant, and e(t) is the error given as the output 

deviation from target of controlled variable. The discrete time equivalent for a PID 

controller is as follows: 

( )
0

( ) ( ) ( ) ( ) ( 1)
t

d

p

ki

T
u t K e t e k e t e t

T

τ

τ =

= + + − −
 
 
 

∑  (2.6) 

where T is the time constant. 

 

 

2.4 SPC Versus APC: 

 

Most professionals initially thought about SPC and APC methods to be effective in their 

respective industries only, which are discrete item manufacturing for SPC and continuous 

processing for APC. The reason behind  this  native  assumption  was  that  both  methods  

were  employed  by  distinctly different professionals; statisticians for SPC and engineers 

for APC. Box and Kramer [11] mentioned that SPC originated from the parts industry, 

while the APC had its origin from the process industry. They gave several reasons for the 

disparities between the two industries, and gave means for controlling critical process 

variables. Vander Weil et al. [78] stated that SPC and APC have for the most part 

developed in isolation from one another. Messina [54] studied SPC and APC control 

schemes and compared their philosophies (Table 2.2) and concluded that quality and 

process engineers have nothing in common.  
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Table 2.2: SPC compared with APC 

  SPC APC 

Philosophy 
Minimize variability by detection 

and removal of process upsets 
Minimize variability by process 

adjustment to counteract its upsets 
Application Expectation of process stationary Expectation of continuous process drift 

Level Strategic Tactical 
Target Quality characteristics Process parameters 

Function Detecting disturbances Monitoring setpoints 
Cost Large Negligible 

D
ep

lo
ym

en
t 

Focus People and methods Equipment 

Correlation None Low to high 
Results Process improvement Process optimization 

 

Moreover, some aspects of controversy used to arise between SPC and APC. The 

practitioners of SPC criticized that APC compensates disturbances rather than removing 

them, and it conceals the information. On the other side, APC practitioners in turn argued 

that SPC charts are inefficient for regulating a process, and in coping well with fast 

system dynamics [5, 11, 52, 59]. Despite these controversies, several papers appeared in 

literature suggesting integration between the two. Generally, it is aimed that integration 

yields a process that effectively regulates the process to target using APC, while 

providing effective process monitoring and removal of assignable causes using SPC 

(Figure 2.7) [45, 38, 43, 44, 58, 77, 78]. 

 

Musheng and Yu [57] stated that SPC and APC play different roles in manufacturing 

process quality control. While APC method can properly control parameter changes 

during the manufacturing process to meet quality requirements, SPC can predict and 

control stability of the manufacturing process and discover its control state as soon as 

possible. Therefore, using an integrated SPC/APC control technology can better ensure 
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the quality of products. Messina [54] referred to Macgregor’s [52] suggestion of using 

stochastic control to bridge between the two fields. Vander Weil et al. [78] advocated 

using integrated tools from both fields to yield quality improvement by: removing 

sources of variability, and compensating for predictable process deviations from target. 
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Figure 2.7: Relating SPC with APC 
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2.5 Integrating SPC with APC: 

 

Integrating SPC with APC is an emerging area that has attracted both academia and 

industry. Montgomery et al. [56] stated that in many chemical and process plants and in 

computer integrated manufacturing environments, combining SPC and APC is an 

important tool ready for use in the quality improvement process. MacGregor [52] was the 

first who suggested to the SPC community that SPC charts could be used to monitor the 

performance of a controlled system. Park [60] mentioned that noises could be 

compensated by APC, while assignable causes could be detected by SPC. However, when 

both noises and special causes occur during operation, an Integrated Process Control 

(IPC) action, in which simultaneous application of SPC and APC procedures is involved 

will be needed for controlling the process. Despite the importance of integration, joint 

implementation of both has received little attention in literature. Main integration 

strategies found in literature are summarized briefly in the following subsections. 

 

2.5.1 Integrating for Reducing Variation Causes: 

Shewhart [67] classified process variation into two categories: special cause and common 

cause variation. He pointed out that special cause variation can be eliminated by 

implementation of SPC methods through identification and elimination of the root cause 

of the process changes. On the other hand, common cause variation is inherent in the 

process and it is generally difficult to be reduced by SPC methods. However, if the 
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common cause variation is modeled as an auto-correlated process, it could be reduced by 

implementation of APC methods through feedback or feedforward control schemes.  

 

Box and Kramer [11] gave an excellent comparison between the complementary roles of 

SPC monitoring schemes and of APC in dealing with the dynamic nature of quality 

variables. They suggested that it is possible to reduce both the special cause and common 

cause variations by applying SPC methods to monitor the output of an APC controlled 

process. In practice, when an APC control scheme is applied to reduce the systematic 

variation, it also compensates unintentionally against (special cause) process shift at the 

same time. This makes it difficult to apply standard SPC methods to detect the process 

shift. However, the authors pointed out that it is important to identify this type of process 

shift so that the engineer can understand and eliminate the root cause and thus improve 

the long-term performance of the process. 

 

Wiklund [81] presented an economic model for the evaluation of different adjustment 

policies based on different process mean estimates for a constant process that experiences 

random-size shifts. He showed that adjusting the process by an amount equal to the 

observed mean deviation at the time of an alarm is the worst strategy. On the other hand, 

adjustments based on the estimated normal distribution perform better in general.  
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Park [60] considered noises and special causes as two major sources of variation that 

make the process level move away from the target. Since noises can not be removed from 

the process, the effective way of minimizing their effect is by compensating the process 

by an APC action. On the other hand, since special causes could be removed from the 

process if they are detected, the effective way of monitoring the process is to detect them 

quickly by an SPC scheme and eliminate them from the process. However, when noises 

are inherent to the process and special causes can occur during its operation, 

simultaneous application of SPC and APC procedures is needed for controlling the 

process, which is called IPC. In his work, he split the process into two parts: in-control 

(IC) process and out-of-control (OC) process. He referred IC to a normal process in 

which no special cause occurred, and OC to an abnormal process in which a special cause 

has occurred. For such a process, usual approach for the IPC procedure is to adjust the 

process by APC first, then control the adjusted process by an effective SPC monitoring 

scheme. He mentioned that the controller, which is optimal for the IC process is not 

optimal for the OC process. For that, he developed statistical models for the process level, 

the process adjustment, and the observed deviation; and expressed them as linear filter 

models. To illustrate how to consider the IPC procedure in manufacturing practice, he 

cited an example for a manufacturing process of Vary Large Scale Integrated (VLSI) 

circuits. The example showed that the implementation of IPC in the VLSI manufacturing 

industry can improve the quality of the wafers by achieving a uniform thickness. 
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2.5.2 Integrating for Disturbance Rejection: 

MacGregor [51,52] reviewed the basic concepts of stochastic control and SPC charts. He 

pointed out their similarities and cited the reasons for lack of interference between them. 

He indicated that there are two types of process disturbances: stochastic and deterministic. 

Stochastic disturbances result from random variations that occur continuously in many 

processes, while the deterministic disturbances occur due to sudden step or ramp changes 

in a load variable at any particular instant of time. For describing a process with a drifting 

mean, he used the following model: 

1t t t ty u n e−= + +  (2.7) 

where yt is the process output at time t, ut-1 is control action taken after the (t – 1)st 

observation, nt is the disturbance at time t, et is an independent random variable for white 

noise with mean zero and variance σe
2. The quantities nt for the disturbance were assumed 

to follow an autoregressive process of order one AR(1) as: 

1 
t t t

n n aφ −= +  (2.8) 

where at is a random variable with mean zero and variance 2

a
σ , and -1< ø <1. The control 

action was based on using the Minimum Mean Square Error (MMSE) controller discussed 

by Box and Jenkins [10] and was suggested to be:  

1 ( )t t tu u yφ φ θ− −= −  (2.9) 

where  0 ≤ θ ≤ 1 is the moving average parameter for auto regressive moving average 

ARMA(1,1) model, resulted when AR(1) model for nt is combined with the white noise 

term et. He concluded that the MMSE controller will always out perform the no control 

situation, except for some extreme cases. 
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Montgomery et al. [56] described and illustrated a simple method of integrating APC and 

SPC, by using MacGregor’s [51] model of the funnel experiment and showed the 

potential effectiveness of this new approach when assignable causes occur in a general 

situation. They supported the claim that SPC can detect assignable causes from the output 

rapidly, while APC can effectively keep the process on target. In their work, they 

investigated how Macgregor’s system operates when additional assignable causes occur. 

They used the average squared deviation from the target as a performance measure. They 

pointed out that the model is robust to the misspecification of the disturbance model. 

They concluded that integrating SPC with APC by applying SPC to the output deviation 

from target results in reducing overall variability if the system experiences certain 

assignable causes. 

 

Tsung and Shi [76] developed an integrated design methodology for a run-to-run PID 

controller and SPC monitoring for the purpose of process disturbance rejection. The 

process disturbance was assumed to be an ARMA(1,1) process. A detailed procedure was 

developed to design a PID controller that minimizes process variability. The performance 

of the PID controller was discussed and the Average Run Length (ARL) performance was 

also studied. A joint monitoring of input and output based on Bonferroni's approach was 

designed for the controlled process. Their proposed framework for the integrated design 

of PID and SPC strategies is shown in Figure 2.8.  
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Figure 2.8: Integrated framework for PID and SPC strategies 

 

This framework works by following the following steps: 

� Given process disturbance model, a set of PID control parameters can be selected 

from the design maps, which minimize the process variability.  

� PID evaluation plots can then be used to provide an assessment of the PID 

controller performance.  

� A Joint SPC monitoring algorithm which is based on Bonferroni's approach can 

be obtained using provided equations. 

� The obtained SPC performance can be evaluated according to its ARL using the 

provided SPC evaluation plots.  

 

They concluded that successful integration of the APC and SPC approaches will provide 

better quality control and process improvements in manufacturing. However, lack of 

research on the integrated design of those tools has proven to be a barrier to the 

implementation of the concept. 
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2.5.3 Applying SPC for Monitoring and APC for Controlling: 

English and Case [27] attempted to integrate SPC and APC, by using SPC as a feedback 

filter, taking control action only when the out of control signal was given. The drawback 

in their work was in not using any control algorithm and only applying feedback 

compensation whenever an alarm was given by the SPC chart. Moreover, whenever an 

out of control signal was given, compensatory action was taken without having any 

attempt made to identify and remove the cause of process upset, which does not serve the 

purpose behind using SPC.  

 

Palm [59] provided a review of APC and SPC and the approaches taken in pursuit of both. 

He used the example of the effect of oven temperature on the golden-brownness of 

cookies to outline how much each method of process control might improve the process. 

In his example, he used APC for process regulation and SPC for process monitoring. He 

concluded that neither approach alone would have done well without the help of the other. 

Vander Weil et al. [78] introduced the term Algorithmic Statistical Process Control 

(ASPC) as an integrated approach for quality improvement and provided a technical 

description of this concept. They attempted to integrate feedforward/feedback control, 

while monitoring the complete system to identify and remove special causes by 

conducting research on a real process. In their work, the process under study was for 

batch polymerization, in which the quality variable of interest was the intrinsic viscosity 

of the polymer. In their application, they followed a four-step procedure which is 

illustrated below: 
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1. Develop a time series transfer-function model for the process output that 

includes the effect of past performance, control actions and other relevant 

process characteristics. 

2. Based on pertinent costs, design a control rule for the estimated model. 

3. Along with installing the control rule, place SPC charts to monitor the closed-

loop process. The SPC charts should signal if the process and controller are no 

longer operating as expected from the identification and estimation stage. 

4. When monitoring signal occurs, conduct search for the assignable cause and 

remove it if feasible.  

 

In their study, changes to the chief quality characteristic (viscosity) were made by 

adjusting a compensatory variable (amount of catalyst). A MMSE control algorithm was 

developed for the process, and the closed loop output was monitored by a Cumulative 

Sum (CUSUM) chart. They reported that ASPC resulted in 35% reduction in viscosity 

variation and virtual elimination of off-specification material. 

 

Janakiram and Keats [38] explained the differences between SPC and APC in simple 

terms and showed the challenges behind their integration for parts/hybrid industries. They 

presented a simple case of an integral controller to show the application of a MMSE 

controller to a stochastic process. The adjustment in terms of MMSE using integral 

control was calculated as: 
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∑  (2.10) 

where g is the gain, λ is the Exponentially Weighted Moving Average (EWMA) 

parameter, and ej is the output deviation from the target. They also presented a case study 

of integrating SPC and APC for process monitoring and control for parts/hybrid 

industries in which they studied a powder loading operation for an automobile air-bag 

initiator. They used X-bar and R charts for monitoring the average powder weight at 

fixed intervals. They recommended monitoring the manipulatible variable, since it will 

provide valuable information on the process output. Their study demonstrated the 

successfulness of integrating SPC and APC for process control. They recommended 

further research on MMSE control and multivariate control. 

 

Nembhard and Mastrangelo [58] used the term IPC to describe a policy that uses both 

APC and SPC. They stated that APC can refer to many forms of feedback and 

feedforward regulation, while SPC can refer to many forms of monitoring tools such as 

Shewhart charts and EWMA charts. For their IPC mechanism, they used Proportional 

Integral (PI) controller to provide the APC component and a Moving Center-line 

Exponentially Weighted Moving Average (MCEWMA) chart to provide the SPC 

component. They implemented their mechanism by developing a simulation model using 

Simulink, which is a program for simulating dynamic systems. They concluded that IPC 

design develops adjustment policies to: reduce the length of the transient period, decrease 

the out-of-control points and lower the variation. 
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Jiang and Tsui [44] developed an economic model for SPC monitoring of APC controlled 

processes. They also developed an economic loss-based criterion, the Average Quality 

Cost (AQC), to evaluate the performance of SPC charting methods. The AQC and the 

traditional average run length of three common SPC charts were investigated and 

compared. They stated that when the feedback control is a MMSE control scheme and the 

underlying process can be perfectly estimated, the outputs of the control system are 

independent, and identically distributed. When a constant (step) mean shift of magnitude 

µ occurs, the control action can compensate the mean shift and result into an independent 

process output with a dynamic mean value. When the MMSE control scheme is applied to 

AR(1) process, the means of the process output before and after the shift occurrence are: 

0               at     t < 0

              at     t = 0

(1- )       at     t > 0

tµ µ

φ µ

=







 (2.11) 

It follows that the total cost of a production cycle (denoted as the total quality cost) 

consists of two parts: the in-control cost and the out-of control cost as: 

in outTL L L= +  (2.12) 

where Lin is the in-control cost, Lout is the out of control cost, and LT is the total quality 

cost. By assuming the adjustment cost to be negligible, and averaging the total quality 

cost over the entire production cycle, the AQC was obtained from: 

1(1/ )

T
A

L
L

p ARL
=

+
 (2.13) 

where ARL1 is the average run length when the process is out-of-control, and LA is the 

average quality cost. They applied the AQC criterion to compare three common SPC 
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charts: the Individual Shewhart Chart (IS chart), the EWMA chart, and the combined 

EWMA–Shewhart charts (CES chart), under AR(1) and ARMA(1,1) processes. They found 

that the AQC criterion was generally consistent with the ARL criterion except when the 

APC control action significantly compensates the process shift. When this happens, the 

performance of the control chart will depend critically on the size of the diagnosis cost. 

They concluded that the AQC criterion is generally consistent with the ARL criterion and 

gives more economic information than the ARL by providing an integrated measure to 

evaluate the performance of an SPC chart. 

 

Jiang and Tsui [43] showed that traditional SPC techniques could be applied to monitor 

APC controlled process for reducing assignable cause process variation. They compared 

the monitoring of the process output with monitoring of the control action of MMSE and 

PI controlled process. In their work, ARMA(1,1) models were used as disturbance 

represented by: 

1 1t t t t
D D a aφ θ− −= + −  (2.14) 

where Dt is the process output, and parameters |φ | < 1 and |θ | < 1 were chosen to 

guarantee that the process is stationary and invertible. They used the MMSE controller 

defined by Box and Luceño [12] as: 

( )1t t t
X X eφ φ θ−= + −  (2.15) 

where et is the process output, Xt is the control action. Accordingly, the output of the 

MMSE controlled ARMA(1,1) process was expressed as: 
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1t t t t
e D X η−= − +  (2.16) 

where η is a shift parameter. They derived the transient (t = 0) and the steady state (t = ∞) 

mean shifts for both the output and the control action. They mentioned that when the 

mean shift magnitude is large (at 4 or 5 standard deviations of the output), it is expected 

that monitoring the output is more efficient than monitoring the control action. However, 

when the shift magnitude is small (less than 3 standard deviations of the output), 

monitoring the control action will be more efficient. For the case of a PI controller, they 

expressed it as follows: 

0

t

t p t i k

k

X k e k e
=

= + ∑  (2.17) 

where kp, ki are the proportional and integral constants. They derived the mean shifts for 

the output and the control action for the cases of a pure-P controller (ki = 0), and a 

general PI controller. They mentioned that when the process is controlled using a pure-P 

controller, there will be no difference in monitoring the output or the control action. 

However, when a general PI controller is used, the mean shift of the output converges to 

zero, due to the integral component, which makes difference between monitoring of the 

output and the control action. In that situation, monitoring the control action is more 

efficient than monitoring the output. For illustration, they used the example of a 

mechanical system consisting of a mass, a dashpot, and a spring. Moreover, they 

illustrated how signal-to-noise ratios summarize partial information about the chart 

performance under mean shift detection and help to select the appropriate control chart 

for monitoring.  
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2.5.4 Integrating by Applying Control Action: 

Box et al. [13] showed that when the feedback control scheme is MMSE and the 

underlying process can be perfectly estimated, the outputs of the control system are 

independent and identically distributed. When a constant (step) mean shift of magnitude l 

occurs, the control action can compensate the mean shift and result into an independent 

process output with a dynamic mean value.  

 

Box and Luceño [12] compared APC and SPC and studied their applicability. They also 

explained the nature and importance of the proportional PI controller and how it may be 

adopted to SPC. They used the following general PI control scheme: 

0 1 2

1

t

t t i

i

gX k k e k e
=

= + + ∑  (2.18) 

where Xt is the setting of the input variable, and et is the deviation at the output, and g is a 

regression coefficient. But, instead of considering the level Xt of the input variable at time 

t, they considered the adjustment xt = Xt – Xt-1 to be made at time t, which was written as: 

( ) ( )[ ]1
/

t t t t
x G g e P e e

−
= − + −  (2.19) 

where G = - k2 and P = k1/k2. They pointed that the choice of the parameters of the 

control scheme are expected to depend on the nature of the disturbance and the dynamics 

of the process. In their work, they used a time-series analysis to predict the value of 

disturbance at t+1 and used this value to find the adjustment needed in the input variable. 

They stated that it makes sense to do nothing unless a deviation from the norm occurs, 
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which is so large with very small probability of being due to chance. By contrast, 

feedback adjustment is appropriate when the normal state of the process is unstable.  

 

2.5.5 Integrating by Minimizing Quality Deviation: 

Capilla et al. [14] described a case study of integrating SPC and APC approaches in a 

polymerization process and showed that the use of both SPC and APC techniques can 

outperform the use of either of them alone. They developed and compared the 

effectiveness of several regulation strategies to reduce polymer viscosity deviations from 

target. They derived controllers using the constrained Minimum Variance (MV) criterion. 

Their case study involved a commercial scale polymerization process that produces large 

volumes of polymer (high density of polyethylene) used in consumer products. The key 

quality characteristic was polymer viscosity measured by Melt Index (MI). The viscosity 

variation at time t was represented by the following model: 

1 1 2 2t t t tMI w T w T a− −∇ = ∇ + ∇ +  (2.20) 

where 
1t

T
−

∇  is the temperature adjustment at time t-1, w1 and w2 are the transfer function 

model parameters, and the set {at} contains independent variables following normal 

distribution N ~ (0 ,
2

a
σ ). Three controllers were derived, namely: Clarke's Constrained 

Controller (CCC), Minimum Mean Square Error Controller (MMSEC), and a Two-Step-

Ahead Forecasting Controller. The CCC was derived by minimization over the 

performance index: 

( ) ( ){ }22

1/ Target:     tt tMin MI r T+ +− ∇  (2.21) 
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where r is a Lagrangian multiplier. The resulted change in control action was: 
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e
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w w B
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−
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 
 

 
(2.22) 

where et is the output error for the adjusted process, and ( )[ ]1 1 2
/B w r w w= − + . For the 

MMSEC, the control algorithm was obtained by considering as a special case of CCC 

when r = 0, which yields: 

( )1 2

t
t

e
T

w w B

−
∇ =

+
 (2.23) 

The Two-Step-Ahead Forecasting Controller was based on the MMSE criterion by 

focusing on 2t
MI +  leading into the following control rule: 

( )1 2 2

t

t

e
T

w w w B

−
∇ =

+ +
 (2.24) 

The performances of the: MMSEC, CCC(0.02), and CCC(0.05) were compared with: the 

situation when actual control was done by process operators (MANUAL), and simulated 

situation in which no APC action was used (NO APC) by setting T fixed. Results are 

compared in Figure 2.9. These results indicated that, although operators were doing a 

good job, the feedback algorithms reduced the variability even more and gave better 

control strategy, independent of the particular rules of each process operator. In their 

work, they proposed different monitoring schemes (SPC component) and analyzed their 

performance and effectiveness. They also studied the performance and adequacy of the 

regulation schemes when assignable causes affect the process by simulation.  
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Figure 2.9: MSE of the output MI under different control strategies 

 

They concluded that a combined SPC and APC procedure can provide important 

reduction in the long term, because it signals and helps to identify disturbances. 

 

Duffuaa et al. [24] proposed a scheme to integrate SPC, APC and Taguchi's Quality 

Engineering (TQE) and presented two models for implementing their proposed scheme. 

Both models employed the concept of Taguchi's quadratic loss function to determine 

whether to take an APC action, by comparing the cost of the control action to the cost of 

quality. In the first model, they found the most economical control limits for the X-bar 

chart to ensure that APC will be done only when it is more economical. In the second 

model, they focused on the variance of the process and found its value for which the cost 

of quality loss will be more than the cost of taking the APC action. They used a case 

study to compare these two models with a model from literature where SPC and APC 

have been integrated. Their results showed 25% saving by using the first model, while 

30% saving by the second model for the case under consideration. 
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2.5.6 Integrating by Optimizing Existing Processes: 

Vander Weil and Tucker [77] used a polymerization process as a basis for a four step 

approach to integrate SPC with APC and suggested that at least every one would be 

interested in detecting the change in the mean square error (MSE) of the controlled 

variable. The presented steps were listed as follows: 

1. Modeling 

2. Model identification and estimation 

3. Control rule design  

4. Process monitoring 

The drawback in their schema was in it being not as general as might be required for 

achieving an integrated SPC/APC system on a different process. Slocomb [68] extended 

these steps and established a six-step procedure to set up an integrated system of SPC and 

APC on a new or existing system. His suggested six-steps were as follows: 

1. Disturbance Identification and Modeling: This involves open loop data collection 

at steady state. Here, the steady state implies that all input variables are at their 

nominal operating values and no changes are made to them over the duration of 

experiment, only disturbances are allowed to enter the process. This allows 

identifying disturbance models affecting the system.  

2. Process Evaluation: At this step, decision is made whether to continue with the 

integration of SPC with APC. This is determined based on the type of 

disturbances that affect the controlled variables to be stationary or non-stationary 

and whether they are in a form that can be monitored using control charts. 
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3. Process Dynamics Identification and Modeling: The reaction curve method is the 

most popular one for identifying dynamic models. The method consists of 

introducing a step change into the process input and fitting the resulting change in 

the output to a First Order Plus Dead Time (FOPDT) model. 

4. Choice of Automatic Process Control: This involves identification of a suitable 

automatic control scheme to regulate the process outputs. 

5. Choice of Charting Variables and Charting Procedures: After having the 

automatic process control determined, the next step deals with introducing SPC, 

which involves determining suitable variables for process monitoring and type of 

control chart to be used.  

6. Continuous Process Improvement: At this step, the goal is to achieve a process 

whose disturbances follow SPC model with small variance. 

 

2.5.7 Integrating by Applying Intelligent Techniques: 

Jiang and Farr [42] used the integrated concepts of SPC and APC to combine Soft 

Computing (SC) technique and statistical analysis technique to modularize the 

relationship between process output and process input for yielding optimality and 

improving process quality. In their study, they intended to construct a Multi Input Multi 

Output (MIMO) process control system with soft computing methods for prediction and 

parameter control and detailed the internal operation for each subsystem and relationship 

among one another. They used Chemical Mechanical Polishing (CMP) as an example to 

evaluate the performance of the MIMO process control system. They showed that beside 
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correct prediction and diagnosis for the noise due to system deviation, it effectively 

controlled process input and output as well as achieved process optimization. From their 

study, the following results were reported: 

� After verification of the CMP simulation process, soft computing proves to be 

effective for MIMO process system. 

� The application of integrated artificial neural network and genetic algorithm in 

soft computing performs better than single artificial neural network system. 

� The soft computing method can be used to prevent complicated mathematical 

operation process and facilitates practical applications in achieving the goal of 

process control. 

 

Musheng and Yu [57] outlined the features of the SPC and APC method during 

manufacturing quality control putting forward a process control system that integrates the 

SPC and APC method. They studied the informational interface technique, the intelligent 

integration technique and the harmonious control technique for the two methods and then 

analyzed the integrated technique and the quality guaranteed technique for the two 

methods through a specific manufacturing process example. They stated that application 

of this technique not only guarantees the need for the individual parameter, but also for 

the distribution regulation for the group with same parameter. Since manufacturing 

process is a complex system, its control capability can be improved by using an 

appropriate control scheme. From their study, following conclusions were reported: 
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� APC can control individual process parameters with a higher precision, but it can 

not control the distribution rule for those parameters, nor predict the control state 

of itself and manufacturing process that it is controlling. Since SPC is opposite to 

APC, they can learn from others strong points to offset their weakness and bring 

more control effect.  

� Combination of SPC and APC system can keep the process under control no 

matter whether it is stimulated by an assignable cause or a random disturbance.  

� Optimization method of controlling manufacturing process is the intelligent 

integration of APC and SPC. Intellectualized methods can be employed based on 

the difference of control object, such as artificial intelligence, fuzzy control, 

artificial neural net and expert system … etc.  

 

 

2.6 Gaps in Recent Work: 

 

Despite all previous work and the efforts spent to integrate SPC with APC, it did not 

cover all the areas, and many gaps were left out. Throughout this thesis, we will consider 

these work gaps which mainly include the following: 

 

a. Dual Monitoring and Control:  

Most of integration strategies found in literature have applied the use of APC techniques 

for process regulation and using SPC techniques for monitoring, while others derived 
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SPC controllers based on the APC loop information and applied their use alone; which 

does not give a real meaning of integration. The need arises for a unified scheme that 

combines dual usage of the techniques followed by both. 

 

b. Application of Robust Design Principles:  

A system is said to be robust when it is insensitive to variation sources that could come 

from outside or inside the system. Its main purpose is to minimize variability of the 

system and to make it less sensitive to noise factors. Applying robust design principles 

can wield improved and more efficient procedure for integrating SPC with APC and 

result in maintaining the performance under critically damped conditions. 

 

c. Account for Performance Deterioration:  

The assumption in most current work was that the APC system would maintain its 

original performance characteristic over time. However, in reality and like most systems, 

controllers are subject to wear and tear and may experience an increasing failure rate 

during their service life. To obtain economic feasibility, it is recommended to include the 

effect of performance deterioration over time. Another extension could be made in 

identifying the appropriate time for maintenance and replacement of the APC system. 
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CHAPTER  3 

 

 

JOINT DETERMINATION OF  

PROCESS PARAMETERS 

 

 

3.1 Introduction: 

 

Most of the recent work found in literature solved the problem of determining the 

optimum values of process parameters by considering one or jointly two parameters using 

separate models under different assumptions. In this chapter, we will develop a Trine 

Model that can be used for joint determination of three process parameters, namely: 

optimum process mean, production run length and specification limits, under mixed 

quality loss function for processes that are subject to deterioration over time. We will 

summarize the recent related literature and outline the technical information required for 

this work. In this work, the problem will be tracked in two ways: by minimizing the total 

loss and by maximizing the net profit. For achieving that, we will develop different 

models that can be used to determine optimum values for process parameters and our 
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analysis will lead to the development of the Trine Model. Numerical examples parallel to 

each model will be presented to illustrate their use in determining the desired optimum 

parameter value. Sensitivity analysis for different process parameters will also be 

presented to study their effects on the net profit in the view of satisfying the 

manufacturing requirements.   

 

 

3.2 Background: 

 

Determination of optimum process parameters, which include: process mean (target), 

production run length and the specification limits, is one of the most important decision 

making problems which encounters in a wide variety of industrial processes. Selecting 

the optimal values for process parameters is critically important since it has a large 

impact on both the manufacturer and customers. Moreover, it affects the process 

defective rate, processing cost, scrap cost, and rework cost [62, 73]. The problem of 

finding optimal values for these parameters can be resolved by: 

� Minimizing: by using the loss as an objective function for the optimization model. 

� Maximizing, by having the profit function as an objective. 

The initial work on this problem began with Springer [70] who considered the problem of 

determining the optimum process mean with specified upper and lower specification 

limits. Many researchers have extended this problem by finding optimum values for 

different parameters under different assumptions. Some of previous work concerned 
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about setting optimum process mean only [8, 15], while other was about joint 

determination of optimum process mean and production run [62, 16], and some about 

determining optimum production run and initial settings of process parameters [61]. Most 

of previous work was based on the assumption of the stability of the process and that the 

process mean remains unchanged over time. However, in most real cases the process may 

deteriorate from its initial state (being in-control) to another state (out-of-control), which 

explains the importance for including the deterioration effect into consideration [17]. 

 

3.2.1 Optimum Process Mean Problem: 

The initial setting of the process mean is an important decision since it does not only 

affect the output rate of conforming units but also affects other manufacturing decisions 

such as finished products and raw material lot sizing policies. Setting the process mean to 

a very low level can reduce manufacturing cost but it will increase rejection cost (due to 

formation of more nonconforming products) and return cost (due to high customer 

dissatisfaction). On the other hand, setting the process mean to a very high level can 

reduce the rejection cost and the return cost, but it will increase the manufacturing cost. 

[73] Research has been continuing from the 1950s to solve this targeting problem under 

various conditions. Main categories for research conducted in this area felt under three 

conditions: 
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1. Use of Specification Limits: The determination of the optimal process mean with 

specified upper and lower specification limits can be determined based on a cost function, 

such as a step loss function where a normal distribution with known standard deviation is 

assumed for the measured quality characteristic and fixed costs are assumed for 

producing items below the lower specification limit and above the upper specification 

limit as done by Springer [70]. On the other hand, as done by Bettes [8] who modeled the 

process mean by setting a fixed lower specification limit and an arbitrary upper 

specification limit. He included a constant reprocessing cost based on step loss function 

for overfilled and under-filled cans. This problem was also solved by Wen and Mergen 

[80] based  on  minimizing  the  costs  of  falling  below the  lower  specification  limit 

and exceeding the upper specification limit.  

 

2. Use of Different Strategies for Disposing Defective Items: Hunter and Kartha [37] 

presented a model to determine optimal process mean under the assumption that the 

products meeting the requirement are sold in a regular market at a fixed price, while the 

underachieved products are sold at a reduced price in a secondary market. They assumed 

that the quality characteristic is normally distributed with a known standard deviation. 

They considered a linear function for the net income of accepted products and a constant 

cost for rejected products and expressed the net income as the sum of the income from 

conforming items, the income from the rejected items, and the giveaway cost. Golhar 

[29] developed a model for the optimal process target with the assumptions that an over 

specification product can be sold in the regular market while an under specified one can 
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be reprocessed (e.g. emptied and refilled) with an additional cost. This model was further 

modified by Golhar and Pollock [30] who treated both upper specification limit and 

process mean as control variables. Ladany [48] solved the problem for determining the 

most economic position of a manufacturing process by considering unequal revenue from 

undersized and oversized items. 

 

3. Use of Quality Loss Functions: Cho and Leonard [20] presented a piecewise linear 

quality loss function for product to be roughly proportional to the deviation of the quality 

characteristic from its specification limit. Chen [18] used a mixed quality loss function 

which was composed of a quadratic loss function to express the loss within the 

specification limits and a piecewise linear loss function to express the loss outside the 

specification limits. Teeravaraprug and Cho [75] extended Taguchi univariate loss 

function to a multivariate quality loss function. 

 

3.2.2 Optimal Production Run Length Problem: 

In many industrial situations, the process mean may shift from an in-control state to an 

out-of-control state as a result of the occurrence of an assignable cause (such as leakage, 

chipping or malfunctioning mounting). Moreover, the processes generally deteriorate as a 

result of ageing. This can be either an increase or a decrease in the product quality 

characteristic (known as a drift) which eventually causes the process to move to an out 

of-control state. Because of this inevitable deterioration, the process could be classified 

into two states:  
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� In-Control State: A process is said to be at in-control state if it is working with its 

natural variability, producing an output within the accepted quality level it was 

designed for.  

� Out-of-Control State: A process is said to be at an out-of-control state if it is 

operating outside its tolerance or producing a nonconforming output.  

In literature, the assumption in almost all current work is that the process will maintain its 

original performance characteristic over time. However, in most real situations, the 

opposite is true. As the process moves to an out-of control state, the proportion of 

defective items will increase to a point where it is economical to terminate the process 

and carry out the restoration action. However, these actions are usually expensive and 

result into loss of production time; therefore they are not recommended to be done until it 

is economically wise to do so [17, 62, 73]. Main categories for research done in this area 

felt under three conditions. 

 

1. Inclusion of a Shift: Arcelus et al. [4] considered non-negative shifts in process mean 

and variance. They assumed that the shift occurred at the beginning of the production 

cycle and treated the defective items (whether oversized or undersized) as worthless 

items. Arcelus and Banerjee [3] extended the previous model to include possible rewards 

for defective items. 

 

2. Inclusion of a Drift: Hall and Eilon [31] assumed that the process exhibited a linear 

trend in the process mean (had a constant variance) and exhibited a positive constant drift 
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with time. Taha [72] presented a procedure for determining the optimal production run of 

a cutting tool considering the tool wore with time which causes the machine to produce 

more defective items. Gibra [28] established decision rules for resetting process mean due 

to a drift or due to the occurrence of an assignable cause. In his work, he considered the 

case of nonlinear positive drift in the process mean. 

 

3. Use of Quality Loss Functions: Jeang and Yang [41] addressed the problem of optimal 

cutting tool replacement models with both symmetrical and asymmetrical quality loss.  

Al-Fawzan and Rahim [1] modified Jeang and Yang’s [41] model to include an age 

dependent salvage value and maintenance cost in the formulation. Rahim and Tuffaha 

[62] applied quadratic quality loss function when the quality characteristic lied between 

the specification limits. 

 

3.2.3 Optimal Specification Limits Problem: 

The general concept of specifications is that items must meet some limits for being 

conforming. Usually, the specification limits are selected according to some technical 

criteria. However, in view of the economic character of a manufacturing process, it 

makes sense to select the specification limits using some economic criteria. Kapur and 

Wang [47] described the use of the normal and log-normal quality characteristic to design 

the optimum specification limits based on Taguchi’s quadratic quality loss function. They 

pointed out that: "suppose we can’t improve the present process, then a short term 

approach to decrease variance of the units shipped to the customer is to put specification 
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limits on the process and truncate the distribution by inspection". Kapur and Cho [46] 

addressed problems related to the application of the quality loss function in the economic 

design of specification limits.  Chen and Chou [19] presented a solution for jointly 

designing the economic manufacturing quantity, type-1 continuous sampling plan and 

specification limits aiming to minimize the incurred cost under imperfect quality.   

 

3.2.4 Quality Loss Functions: 

The quality loss function is a way to quantify the quality cost of a product on a monetary 

scale when a product or its production process deviates from the desired value for one or 

more key characteristics. It relates the quality characteristic of a product to its quality 

performance. Taguchi [71] redefined the product quality to be the total loss to society, 

including the loss to the producers and the loss to customers.  He pointed out that loss 

always incurs when a product's functional quality characteristic deviates from its target 

value, regardless of how small the deviation is. He indicated that quality loss should be 

measured in monetary units and it is incurred at any deviation from its target value. 

Taguchi characterized this loss or cost as a quadratic function and the quality loss in his 

approach was given by: 

( )
2

 -                

     0                           

 for 
( )

otherwise  

k y LSL y USL
L y

τ ≤ ≤
=




       (3.1) 

where y is the measured quality characteristic, τ is the target value, and k is the quality 

loss coefficient which is given by:  
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2
rC

k =
∆

 (3.2) 

where Cr is the rejection cost per unit, and ∆ is the tolerance. 

The advantage of applying quadratic quality loss function is that losses could be 

evaluated in terms of bias (the distance of the target value and the process mean) and 

process standard deviation. Other forms of quality loss functions are listed below: [74] 

 

a. Step Loss Function: It assumes zero cost for the quality falling within the specification 

limits and a fixed cost when it falls outside these limits as shown in Figure 3.1.  

 

Figure 3.1: Step loss function 
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where CS is the nonconformance cost, CRL is the rejection cost for falling below the LSL, 

CRU is the rejection cost for exceeding the USL and y is the measured quality 

characteristic. 

 

b. Piecewise Linear Loss Function: It assigns a zero cost when falling within the 

specification limits and linearly varying costs for deviating outside a shown in Figure 3.2.  
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Figure 3.2: Piecewise linear loss function 
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where CRL is the rejection cost for falling lower than the lower specification limit, and 

CRU is the rejection cost when exceeding the upper specification limit. 

 

c. Mixed Quality Loss Function: It is viewed as a combination between different quality 

loss functions. In our work, it is resulted from combining a step loss function with a 

quadratic loss function as shown in Figure 3.3.  

 

Figure 3.3: Mixed quality loss function 
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where CS is the cost for nonconformance, CRL is the rejection cost for falling lower than 

the lower specification limit, CRU is the rejection cost when exceeding the upper 

specification limit, y is the measured quality characteristic, τ is the target value, and k is 

the quality loss coefficient. 

 

 

3.3 Models for Optimum Process Parameters Determination: 

 

3.3.1 Review of Wen & Mergen’s Model: 

Wen and Mergen [80] presented a model for setting the optimum process mean in which 

they used a balanced step loss function for measuring the cost of nonconforming item. 

The selected optimum process mean was based on minimizing the costs of falling below 

the lower specification limit and exceeding the upper specification limit. The used a 

quality characteristic of nominal-is-best type. This quality characteristic (-∞ < y < +∞) 

was assumed to be normally distributed with an unknown mean µ and a constant variance 

σ
2, and its probability density function was given by: 

21
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The expected total loss per item as per Wen and Mergen's model was given by: 

0
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When the quality characteristic variable is normally distributed, CT can be expressed in 

terms of the cumulative normal distribution function as follows: 

   1
T RU RU

LSL USL
C C C

µ µ

σ σ

− −    
= Φ + − Φ    

    
 (3.7) 

where Φ(z) is the cumulative distribution function for standard normal random variable, 

and -∞ < z < +∞. 

 

3.3.2 Modified Model for Setting Optimum Process Mean: 

Wen and Mergen’s [80] model is based on step loss function which assumes a zero cost 

for items falling between the specification limits and ignores the quality loss for the 

society. In our work, the model was improved by integrating it with the mixed quality 

loss function, which we developed in Section 3.2.4, to include the loss between the 

specification limits. Following is the expected total loss per item as per the modified 

model: 
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This can be written in terms of the cumulative normal distribution function as follows: 
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3.3.3 Proposed Bi Model for Joint Determination of Optimum Process Mean and 

Production Run Length: 

This model takes into consideration the process deterioration over time, and for including 

this effect, we split out the process mean into two periods, based on the process condition 

whether it is being in-control or out-of-control as follows: 
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where µ is the process mean, t is the current time, which is assumed to be exponentially 

distributed with mean 1/£ and probability density function: f (t) = λ e-£t, Td is the total time 

until the process starts to deteriorate, σ is the standard deviation, and δ is the shift 

parameter. Accordingly, the non-conformance cost is divided as: 

0

1

        for *

         for *

S

S

S

C t T
C

C t T

≤
=

>





 (3.11) 

where T* is the optimal production run length, CS0 is the loss when the process is in-

control and CS1 is the loss when the process is out-of-control. 

 

When the process is in-control, the quality characteristic is y ~ N(µ ,σ2) and the expected 

total loss per item CS0 is expressed by Equation 3.8. As the process shifts to an out-of-

control state, the quality characteristic becomes y ~ N(µ+δσ,σ2) and cost of operating the 

out-of-control process COP is added. Accordingly, the expected total loss per item is 

expressed by the following model: 
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  ( ) - ( ) ( )      
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Which is written in terms of cumulative normal distribution function as follows: 
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The overall total cost is found by integrating the costs of the two process conditions as:  

0 1 0 1

0 1 1 0 1 1

0 1 1 1 0

0

Pr( ) Pr( )  Pr( ) [1 Pr( )]

    [ ]Pr( )   [ ]

    [ ][1 ]   [ ] [1 ]   

λ

λ λ λ

λ −

− − −

= ≤ + > = ≤ + − ≤

= − ≤ + = − +∫

= − − + = + −

d

d d d

d d d d

d

T S S S S

S S S S S S

S S S S S

T
t

T T T

t T t T t T t T

t e dt

e e e

C C C C C

TC C C C C C

C C C C C

 (3.14) 

 

By substituting the cost values, the Bi model results: 
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3.3.4 Proposed Trine Model for Joint Determination of Optimum Process Mean, 

Production Run Length and Specification Limits: 

The model resulted by extending the model presented by Equation 3.15, in which the 

quality loss coefficient was written in term of the specification limits as: 

( )
22

 -  

r r
C C

k
USL LSL

= =
∆

 (3.16) 

The specification limits were written in terms of the target and the tolerance as: 
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 (3.17) 

where τ is the target value, USL is the upper specification limit, LSL is the lower 

specification limit and ς  is half the tolerance. Accordingly, the Trine model for the total 

cost is expressed as: 
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3.4 Numerical Examples: 

 

In this section, we will present examples on problems related to: determination of 

optimum process mean, joint determination of process mean and production run, joint 

determination of optimum process mean, production run and specification limits, and 

optimum process mean for satisfying manufacturing requirements. The solution for these 

problems will be based on using the developed models in this work.  

 

3.4.1 Optimum Process Mean Problem: 

Consider a beverage filling process in which the scrap cost (monetary loss for items 

below the lower specification limit) is $65, the rework cost (monetary loss for items 

exceeding the upper specification) is $25, and customer’s loss for quality variation 

between the upper and the lower specification limits is $10. The lower specification limit 

is 10 liters and the upper specification limit is 13 liters. The process standard deviation is 

0.75. It is required to find the optimum process mean that will minimize the total loss.  

 

This problem was solved by applying the use of the model represented by Equation 3.8, 

then formulating it by using Matlab (Appendix B.3.1). Accordingly, the optimum value 

for process mean was found to be 11.64 liters at which the total loss was $6.0195, as 

shown in Figure 3.4. 
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Figure 3.4: Total loss for different values of process mean 

 

3.4.2 Optimum Process Mean and Production Run Length Problem: 

Suppose that the scrap cost for previous process is estimated to be $35, the rework cost is 

reduced to $10, and customer’s loss for quality variation between the upper and the lower 

specification limits at $5. The lower specification limit is 9 liters and the upper 

specification limit is 13 liters. The process standard deviation is 0.76, failure rate is 2 and 

shift parameter is 0.7. Cost of operating out of control is $3. It is required to find the 

optimum process mean and production run length for minimum the total loss per item.  

 

Using the Bi model represented by Equation 3.15, and after coding the problem in Matlab 

(Appendix B.3.2), the optimum process mean was found to be 11.05 liters the optimum 

run length was 18.5 days, and the total loss was estimated to be $2.8559. The resulted 

graph was as shown in Figure 3.5. 
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Figure 3.5: Total loss for different process means and production runs 

 

 

3.4.3 Optimum Process Mean, Production Run Length and Specification Limits 

Problem: 

Consider the case in which the scrap cost for the filling process is $28, the rework cost is 

$13, and the rejection cost is $9. The process standard deviation is 0.75, failure rate is 3 

and shift parameter is 0.8. If the process goes out of control, cost of $5 is added. The 

management is interested in determining the optimum process mean, production run 

length, and specification limits that will minimize the total loss per item given that the 

required filling target value is 10 liters.  
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Using the Trine model represented by Equation 3.18 for joint determination of optimum 

process mean, production run length and specification limits, and programming the 

problem in Matlab (Appendix B.3.3), the resulted graph was as shown in Figure 3.6.  

 

 

Figure 3.6: Total loss for different process means with different tolerances and runs 

 

The optimum value for process mean was found to be 10.15 liters, the production run 

length was 13 days, the upper specification limit was at 11.5 liters, the lower specification 

limit was at 8.5 liters, the tolerance was 3, and the total loss was estimated to be $1.2786.  

 

3.4.4 Optimum Process Mean Problem for Satisfying Manufacturing Requirements: 

A cement packing system is composed of two processes: a filling process and an 

inspection process. Each cement bag processed by the filling machine is moved to the 

loading and dispatching stages on a conveyor belt. Based on previous data, the weight of 
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the cement bag is normally distributed with standard deviation σ_= 0.25. The desired 

target value for the cement bag fill is achieved when the filling machine is set to fill a 

quantity of τ = 40.75 kg. The quality loss coefficient is k = 25. The scrap cost per item is 

$55. The rework cost per item is $10. The inspection cost per item is $4. The 

manufacturing cost per item is $90. The selling price for each item is $200. The lower 

specification limit is 40 kg and the upper specification limit is 41.5 kg. The management 

is interested in determining the optimum process target for minimizing the total cost for 

society that includes both the producer and the customer, and maximizing the expected 

gross profit per item. 

 

If the weight of the processed cement bag falls above the USL, the processing cost will 

increase since the exceeding amount of cement will not be sold with a higher price. In 

such a case it will be recommended to rework the over weighted bags. On the other hand, 

if the weight of the bag falls below the LSL, it will result in facing penalty cost because of 

violating government's law. To avoid such kind of loss, the under weighted bags will be 

scrapped. Optimum process mean will be found by maximizing the expected total profit 

per item using the following relation:  

T M Ir
P SP C C C= − − −  (3.19) 

where SP is the selling price per item, CT is the expected total loss per item, CM is the 

manufacturing cost per item and CI is the inspection cost per item. 
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The problem was formulated using Matlab (Appendix B.3.4), and the optimum process 

mean was found to be 40.7650 kg and the total expected profit was found to be 

$104.4012 per bag. Resulted graph was as shown in Figure 3.7. 

 

Figure 3.7: Total profit for different values of process means 

 

3.4.5 Sensitivity Analysis: 

Numerical Example 4.4 was extended to study the effect of different parameters on the 

overall profit as follows: 

 

1. Effect of Quality Loss Coefficient (k): For different values of quality loss coefficient, 

calculated results were listed in Table 3.1. These results indicated that the total expected 

profit and the process mean decrease as the quality loss coefficient (k) increases. This 

implies that using high quality level material increases the manufacturing cost, but on the 

other side, reduces the process mean since less effort is needed to process a fine material. 
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Table 3.1: Effect of quality loss coefficient 
 

k µ Profit 

0 40.8200 105.9388 
5 40.7900 105.6239 

15 40.7700 105.0104 
25 40.7650 104.4012 
35 40.7600 103.7932 
45 40.7600 103.1856 
55 40.7550 102.5781 
65 40.7550 101.9712 
75 40.7550 101.3643 
85 40.7550 100.7574 
95 40.7550 100.1505 

105 40.7550 99.5436 
 

 

2. Effect of Scrap Cost (
RL

C ): For different values of scrap cost, calculated results were 

listed in Table 3.2, from which it was concluded that the total expected profit decreases 

and the process mean increases as the scrap cost increases. This implies that processing 

on a material of low quality results into increased amount of scrapped items which 

reduces the profit and increases the effort needed for processing it.  

 

 

Table 3.2: Effect of scrap cost 
 

CRL µ Profit 

5 40.7500 104.4630 
15 40.7500 104.4495 
35 40.7600 104.4244 
55 40.7650 104.4012 
70 40.7700 104.3848 
85 40.7700 104.3693 

100 40.7750 104.3546 
120 40.7800 104.3357 
140 40.7850 104.3178 
170 40.7900 104.2926 
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3. Effect of Standard Deviation (σ): By applying different values for the standard 

deviation, calculated results were listed in Table 3.3, from which we noted that the total 

profit decrease and the process mean increase as the process standard deviation increase. 

This implies that processing under abnormal process conditions requires a large control 

action which incorporates large processing cost, and in turn, decreases the profit. 

  

Table 3.3: Effect of standard deviation 

σ µ Profit 

0.000 40.7500 106.0000 
0.100 40.7500 105.7500 
0.15 40.7500 105.4375 
0.25 40.7650 104.4012 
0.35 40.8350 102.7360 
0.45 40.9550 100.9371 
0.55 41.1100 99.4410 
0.65 41.2950 98.3303 
0.75 41.5150 97.5475 
0.85 41.7700 97.0113 
0.95 42.0000 96.6459 
1.00 42.0000 96.4542 

 

4. Effect of Rework Cost (
RU

C ): Under different values of rework costs, obtained results 

were listed in Table 3.4. It was noted that the process mean decreases as the rework cost 

increases, since less effort is needed for re-processing finished product as compared to 

processing from raw material. But since processing will be done twice, the total profit 

will decrease as well. 
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Table 3.4: Effect of rework cost 

Rework µ Profit 

0 42.0000 105.7507 
5 40.7650 104.4094 

10 40.7650 104.4012 
25 40.7600 104.3776 
50 40.7500 104.3415 
75 40.7450 104.3087 

100 40.7400 104.2782 
125 40.7350 104.2499 
150 40.7300 104.2233 
175 40.7250 104.1980 
200 40.7200 104.1739 
250 40.7150 104.1296 

 

 

3.5 Conclusion: 

 

In this chapter, different models for determining optimum values of process parameters 

were developed. The extension of these models ended up with development of a trine 

model that can be used for joint determination of optimum process mean, production run 

length and specification limits. We concluded that for maximizing the profit, it is 

recommended to minimize the process variability by maintaining the system, to conduct 

rework the over-specified items at low cost, try to reduce the amount of scrapped items as 

minimum as possible, and to minimize the total quality loss to the society through 

appropriate selection for process parameters.  
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CHAPTER  4 

 

 

ROBUST TUNING AND GAIN SCHEDULING  

OF CONTROL PARAMETERS 

 

 

4.1 Overview: 

 

Proper selection of control parameters is critically important since it has a large impact on 

the end product and enables keeping the operation run within the specified limits. It also 

helps to maximize profitability, to ensure quality and safety. In this chapter, we will apply 

the use of robust design principle to determine the optimal value of process parameters so 

that the controller maintains the process on target with low variability while keeping the 

performance robust against the external factors, and apply the use of gain scheduling to 

modify the control parameters depending of the state of the system to maintain its 

stability. Our objective is to develop a Robust Gain-Scheduled (RGS) methodology that 

combines between the uses of these two techniques. An example for carbonated beverage 

filling process will also be presented on which we will apply our suggested methodology.  
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4.2 Background: 

 

One common reason that affects the performance of controllers is the incorrect selection 

of gain parameters. In the case of dynamic systems, nominal parameters might change 

depending on what state the system is in. For example, many systems exhibit different 

characteristics during warm-up stages after being running for long time, or they might 

need to operate with different gain parameters once a certain set-point has been reached. 

Gain scheduling is the process of modifying the gain parameters depending on the states 

of the system which are defined by some time duration or by the expected quality level of 

the output. For systems that have predictable changes in dynamics, this method works 

best so that predetermined gains could be calculated and applied.  

 

Despite the use of PID controllers for controlling most processes, their parameters are 

usually not well defined, and in many cases need to be modified or scheduled according 

to the change of the behavior of the process which in many cases depend also on external 

noise factors that affect the process. Robust design is a cost effective methodology to 

achieve robustness, which aims to make the performance less sensitive to these factors. 

Its purpose is to minimize variability of the system by finding the best setting of control 

variables. Most of the work found in literature has used robust design principles during 

the design stage of the product and no attention is made to apply it in the processing stage. 

Changing this philosophy is one of our objectives. 
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4.2.1 Common Methods for Controller Tuning: 

By having the controller parameters tuned properly, it can provide the control action 

designed for specific process requirements. Despite the availability of hundreds of tools, 

methods and theories for finding proper control parameters, effective tuning is still 

remaining a difficult task. One reason is that these methods or tools may give the proper 

setting for reducing the variability within the process, but on the other hand, they ignore 

the effect of external factors that may affect the performance such as noises and 

disturbances. A study made by Bialkowski has shown that 30% of their control loops 

functioned poorly due to the incorrect PID controller setting. Up to date, no enough 

research has been done about the robustness of controllers under noisy conditions. 

Common methods for control loop tuning are as follows: [2, 79] 

 

a. Trial and Error Method: Trial and Error is the easiest way of controller tuning since it 

requires a little or no knowledge about the controlled process. This method is also known 

as Zone-Based tuning because the low and high frequency parts of the controller parts are 

tuned separately. General procedure for this method is as follows: [84] 

1.  Eliminate integral action (τi → ∞) and the derivative action (τd → 0). 

2.  Find the controller gain (Kp) that causes sustained oscillations in the output, this 

value is known as the ultimate gain (KU), set Kp = 0.5 KU. 

3. Decrease τi until sustained oscillations are obtained, set 
i

τ  to three times this value. 

4.  Increase 
d

τ until sustained oscillations are obtained, set τd to one-third this value. 

Figure 4.1 shows a flow chart for this method. [25] 
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Zero the I and D actions. Set Kp low.

Apply square wave reference at about 10% of the desired bandwidth. 

Use large amplitude, but avoid saturation. 

Raise Kp for approximately 10% overshoot.

Raise τD to eliminate most overshoot.

Is the response too noisy?

Lower τI for 15% overshoot.

Tuning done.

Reduce noise at source

Or

Increase Resolution

Or 

Lower τD
Or

Increase Kp

  Yes

No

 

Figure 4.1: Tuning procedure by trial and error method 

 

The disadvantages of this method are that its procedure is time consuming and potentially 

costly since it requires going through large number of iterations before obtaining the final 

result and the resulted sustained oscillations could lead to complete loss of stability. This 

method is not applicable to unstable processes and processes without an ultimate gain, 

such as first order system without a time delay. Moreover, it does not guarantee any 

robustness of the system.  

 

b. Process Reaction Curve Method: The response of the output to a step change in the 

manipulated input is known as process reaction curve. It is based on the fact that many 

processes have a step response approximated by a first order plus dead time model. The 

advantage of this method is that it requires a single experiment test only. Parameters for 
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the PID regulator by this method are obtained based on two parameters namely a and l, 

which are obtained from the reaction curve as the one shown in the Figure 4.2.  

 

Figure 4.2: Process reaction curve 

 

The parameter l is the slope of the tangent line through the inflection point, and a is the 

time at which the tangent intersects the time axis. Table 4.1 lists formulas used to obtain 

controller parameters by this method. [2, 63, 84] 

 

Table 4.1: Parameters setting by reaction curve method 

Controller Kp τi τd 

P 1/a - - 
PI 0.9 a 3.33 l - 

PID 1.2/a 2 l l/2 

 

The drawback in this method is that it gives a poorly damped closed-loop system for 

which tuning is usually needed. Another disadvantage of this method is its sensitivity to 

disturbance since it is based on open loop experiment.  
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c. Ultimate Cycle Method: This method is also known as the Ziegler-Nichols method and 

it is based on the ultimate gain KU and the ultimate period TU. For obtaining these 

parameters, the integral and derivative actions are set to zero, after which the proportional 

gain is increased gradually until an oscillation is obtained. The gain at this point is KU and 

the oscillation period is TU. The controller parameters are obtained using the formulas 

listed in Tables 4.2 and 4.3.  

 

Table 4.2: Parameters setting by ultimate cycle method  

Controller Kp τi τd 

P 0.5 KU - - 
PI 0.4 KU 0.83 TU - 

PID 0.6 KU 0.5 TU 0.125 TU 

 

Table 4.3: Modified parameters setting by ultimate cycle method 

 Kp τi τd 

Original (¼ Decay) 0.6 KU 0.5 TU 0.125 TU 
Some Overshoot 0.33 KU 0.5 TU 0.333 TU 

No Overshoot 0.2 KU 0.5 TU 0.333 TU 

 

The disadvantage of this method is that the procedure requires driving the system towards 

instability, which is dangerous for practical situations. In some cases, the resulted closed 

loop behavior can be different from the characteristics of the process. [2, 84] 

 

d. Other Tuning Methods: Another famous method is Cohen-Coon’s which depends upon 

the identification of a suitable process model. This method is practical if the process 

delay is small. The method is not suitable for systems where there is zero or virtually no 

time delay. Another disadvantage of the method is that PID controller setting may not be 

realized unless an appropriate model form is used to synthesize the control law. Beside 
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the existence of these tuning methods, PID tuning and loop optimization softwares can 

also be used to ensure consistent results. These software packages work by gathering the 

data from which they develop the process models, and afterwards suggest optimal values 

for tuning parameters. Table 4.4 gives comparison between different tuning methods. 

 

Table 4.4: Comparison between different tuning methods 

Method Advantages Disadvantages 

Trial & Error Online method, no calculations required Require experienced personnel 

Ziegler-Nichols Proven online method 
Dangerous for practical situations,  

need some trial & error 

Cohen-Coon Provide good results 
Require calculations, offline method, 
only suitable for 1st order processes 

Software Tools 

Result into consistent tuning,  
may include valve and sensor analysis, 
allow simulation before downloading 

Adds purchase and training cost 

 

 

4.2.2 Gain Scheduling Control:  

As per the control theory, gain scheduling is an approach to control non-linear systems 

that apply the use of linear controllers to provide satisfactory control for different 

operating points of the system. In other words, gain scheduling is the process of 

modifying the gain parameters depending on the states of the system which are defined 

by some time duration or by the expected quality of the output. Gain Scheduling is one of 

the most popular approaches for controlling nonlinear systems that can be successfully 

applied in fields ranging from aerospace to process control. This approach enables well 

established linear design methods to be applied to nonlinear problems by decomposing 

them into a number of linear sub-problems. For systems that have predictable changes in 

dynamics, this method works best so that predetermined gains could be calculated and 
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applied. The method works by dividing up the process into sections that approximate its 

expected characteristics, after which each section could then be tuned to a different set of 

parameters that optimally control the system. Gain scheduled controller has a constant 

control gain that varies with a single scheduling variable, which is the error signal e as 

shown in Figure 4.3 [66]. 

 

Figure 4.3: Gain scheduled controller gain 
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
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 (4.1) 

where K is the controller gain and e is the error. 

 

Programmed adaptation is a strategy that develops relationship between the controller 

setting and the scheduling variables. Liptak applied the use of programmed adaptation to 

a boiler problem where the feed flow rate had significant effect on the steady state and 

dynamic behavior, and its value at 100% flow rate was twice large as compared at 50% 
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flow rate. Liptak’s solution for handling this problem was by having the PID controller 

setting to be varied with the fraction of full-scale flow ( 0 1 )υ≤ ≤  in the following 

manner: [66] 

* *
*                                                                 i d

p p i d
K K

τ τ
υ τ τ

υ υ
= = =  (4.2) 

where * * *,  ,  and p i dK τ τ  are the optimal control settings for 100% flow. 

 

4.2.3 Robust Design Method: 

The performance or response of a process may vary from the targeted value due to 

several reasons that can influence the quality characteristic or response of the product. 

Deming stated that: “The central problem of management in all its aspects, including: 

planning, procurement, manufacturing, research, sales, personnel, accounting and law, is 

to understand better the meaning of variation and to extract the information contained in 

variation”. Generally, there are three basic ways to control variation: [27] 

1. Reduce the magnitude of the variation sources, which can be through using 

higher-grade material or by specifying a tighter tolerance.  

2. Deal with the response by compensating for the variation, such as using a 

feedback control system.  

3. Through robust design, by identifying and adjusting system variables to make the 

system less sensitive to the variation sources. 

Robust design is a cost effective methodology to achieve robustness, which aims to make 

the performance less sensitive to variability factors. The fundamental definition of robust 
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design is described as: a product or a process is said to be robust when it is insensitive to 

the effects of sources of variability, even through the sources themselves have not been 

eliminated. In the early 1980s, Japanese quality engineer Dr. Genichi Taguchi introduced 

the philosophy and some methods closely related to robust design. Taguchi showed the 

general public the importance of robust design and the expected benefits behind applying 

it. His major contributions to the quality society included systematic study of noise 

factors and the introduction of quadratic loss function. Taguchi applied his methods in the 

American telecommunications industry and since then his robust design method has been 

successfully applied to various industrial fields such as electronics, automotive products, 

photography, and telecommunications. As per Taguchi, robust design is mainly 

composed of three stages: system design, parameter design, and tolerance design [79, 85].   

1. System Design: is the conceptual design stage where the system configuration is 

developed. It is based on using the experience and knowledge gained in a specific 

field to develop and select the most appropriate design concept. 

2. Parameter Design: it conducts investigations to identify the setting that minimize 

or at least reduce the performance variation. Its objective is to find the optimum 

setting of control factors such that the system is at least sensitivity to noise factors. 

3. Tolerance Design: it is a balancing process about finding the optimum tolerance 

setting for the control factors so that the total life cycle cost of the system is minimal 

subject to the condition that all process requirements (performance, durability and 

reliability) are satisfied. It specifies the allowable deviations in the parameter 

values by loosening tolerances if possible and tightening tolerances if necessary.  
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4.2.4 Taguchi's Method of Robust Parameter Design:  

Taguchi’s method for Robust Parameter Design is based on the design of experiments 

theory along with using orthogonal arrays (OA) to study large number of decision 

variables with a small number of experiments in order to reach a near optimum parameter 

combination. The method classifies the inputs to the system into two types:  

� Control Factors: factors that can be controlled and manipulated 

� Noise Factors: factors those are difficult or expensive to be controlled 

The basic idea is to exploit the interactions between control and noise variables and then 

identify the appropriate settings of control parameters for which the system’s 

performance is robust against variation in noise factors. The aim is to make the system 

response close to the target with low variation in performance as illustrated in P-diagram 

of Figure 4.4 in which the large circle denote the target and the response distribution is 

indicated by the dots for the associated probability density function. 

 

Figure 4.4: Performance variation with robust design 

 

The objective functions arise from quality measures using quadratic loss functions. 

Taguchi suggested the Signal to Noise Ratio (SNR) as a measure of the Mean Squared 

Deviation (MSD) in the performance. The larger the SNR, the more robust the 
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performance becomes. SNR is different for different types of quality characteristics. SNR 

for the prominent types of quality characteristics are given below: [53, 79, 84, 85]  

 

a. Nominal the Best: Its Quality characteristic has a finite target value and the quality loss 

is symmetric on either side of the target (Figure: 4.5 A). 

 

  

 

 

 

Figure 4.5: Quality loss functions: (A) Nominal the best type (B) Smaller the better type  
(C) Larger the better type. 

 

 

This SNR quantifies the deviation of the response from the target τ, and it is given as: 

( ) ( ) ( )
2 22

10 10 10

1
10 log 10 log 10 log

i

i
n

y ySNR MSD τ σ τ= − = − − = − + −
 

    
∑  (4.3) 
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where y1, y2, ......, yn represent a random sample of n observations with mean y  and 

variance σ2 . If the control parameters are chosen such that y = τ (the population mean is 

the target value), then the MSD is equivalent to the variance. If the standard deviation is 

related to the mean, then the MSD may also be scaled by the mean to give: 

( )
2 2

10 10 102 2
10 log 10 log 10 log

y

y
SNR MSD

σ

σ
= − = − =

   
   
   

 (4.4) 

 

2. Smaller the Better: Its quality characteristic never takes negative values, its ideal value 

is zero, and as it increases, the performance becomes progressively worse (Figure: 4.5 B). 

This SNR considers the deviation from zero and, as the name suggests, it penalizes large 

responses. 

10

1

21
10 log

m

i

i
m

SNR y
=

= −
 
  
∑  (4.5) 

 

3. Larger the Better: Its quality characteristic does not take negative values and zero is its 

worst value, and as its value becomes larger the performance becomes progressively 

smaller. Its ideal value is infinity and at that point the quality loss is zero (Figure: 4.5 C). 

The SNR is given by: 

10

1

2

1 1
10 log

m

i i
m

SNR
y=

= −
 
 
 
∑  (4.6) 
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4.3 Methodology: 

 

In our work, the procedure of RGS methodology will be based on using two approaches. 

First, using Taguchi’s method of robust parameter design to obtain a robust controller 

gain. Next, applying gain scheduling on the results obtained by using the Robust Design 

method to modify the use of control parameters based on the process condition to 

maintain the stability of the process and to compensate against its nonlinearity.  

 

The APC controller tuning will be based on applying the use Taguchi’s method of robust 

parameter design by dividing independent variables into controllable factors and noise 

factors and then conducting fractional factorial experiments on them. The objective is to 

obtain gain parameters those result into having a robust controller that maintains a high 

level of performance with low variation while remaining insensitive to changes in noise 

factors. Our solution procedure up to this point will follow these steps: 

1. Description of the process model and the existing control scheme 

2. Determination of the quality characteristic 

3. Selection of control factors with their alternative levels 

4. Identification of the noise factors with their alternative levels 

5. Design of the experiment 

6. Experimental runs and data analysis 

7. Decision about the optimum setting for controller gain parameters 

Further explanation for the previous steps is given below: 
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1. Description of the process model and the existing control scheme: In this work, we will 

illustrate our scheme by describing the process model with a First Order Plus a Time 

Delay (FOPTD) function. The APC control scheme is of a PID controller type.  

 

2. Determination of the quality characteristic: Since the performance of the system 

increases depending on the decrease in output error, the quality characteristic will be 

selected to be of a smaller the better type (Figure 4.5 B). 

 

3. Control factors selection: The control factors are selected from the PID control rule 

described by Equation 2.5 to be: Kp, τi, and τd. These factors could be changed under the 

objective of minimizing the MSD. For each control factor, three levels will be selected. 

 

4. Noise factors identification: The noise factors are identified from the process model 

accounting the fact for the impossibility of their control. The FOPTD function is 

described by:  

1

  
( )

d

c

s
K e

G s
Ts

−

=
+

 (4.7) 

where Kc is the gain of the process model, d is the time delay, and T is the time constant. 

Accordingly, the noise factors are selected to be: Kc, d, and T. For each factor, two levels 

will be selected.  

 

5. Design of experiment: For the control factors, the degree of freedom (DOF) is 

calculated to be: 3×(3–1)+1=7. Correspondingly, the nearest OA to 7 DOF was selected 
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to be OA(L9) which contains 3 levels with 9 experimental runs (Appendix: C.4.2). For the 

noise factors, DOF is: 3×(2–1)+1=4, therefore, an OA of level 2 with 4 experimental runs 

OA(L4) is selected (Appendix: C.4.1). 

 

6. Experiment Run: Starting from the inner array of noise factors, all combinations of the 

three factors each with two levels will be evaluated against different combinations for the 

three control factors each with three levels at the outer array for control factors. After 

studying the statistics for the mean, variance, MSD, and SNR, optimum values for the 

robust controller gain will be chosen at the maximum value for SNR. 

 

 

4.4 Case Study: Carbonated Beverage Filling Process: 

 

To illustrate the use of our suggested RGS methodology and examine its effectiveness, 

we will present a case study for carbonated beverage filling process in this section. 

 

4.4.1 Problem Description: 

Carbonated beverage is a soft drink into which carbon dioxide gas has been dissolved. 

This beverage was originally intended as a patent medicine when it was invented in the 

late 19th century by John Pemberton, but later led its dominance of the world soft-drink 

market throughout the 20th century. Nowadays, carbonated beverage is internationally 

found in stores, restaurants, and even vending machines, and it is claimed that it is sold in 

more than 200 countries. The production of carbonated beverage integrates water and 

syrup component deaerating, dosing, mixing and subsequent carbonating. The first step in 
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the production process involves two-stage water deaeration using the vacuum spray 

process. The dosing unit is designed for proportional flow metering. Syrup is 

continuously added to the water inline and controlled by mass flow of the media. The 

carbonating process involves dissolving carbon dioxide gas under constant pressure and 

results in the formation of carbonic acid which has the chemical formula H2CO3. The 

filling process should result into the exact fill level target with high level of accuracy 

under appropriate filling speed to neutralize the effects of splashing while keeping the 

production quantity on target [65]. Sudden filling of the beverage through the narrow 

bottle top could produce a dramatic foaming fountain that can reach a height of several 

meters as shown in Figure 4.6 [7]. 

 

 

Figure 4.6: Carbonated beverage splash 

 

The height of this fountain depends upon several parameters, such as: 
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� Temperature: The height of the fountain increases as the temperature increase. 

� Presence of other solutes: Diet sodas generally produce higher fountains than 

sodas sweetened with sugars. 

� Aqueous CO2 concentration: A beverage that has been opened for a period of time 

produce smaller fountain than a freshly opened beverage. 

� Surface tension and partial pressure: mainly increase the height as their 

corresponding values are raised. 

Table 4.5 lists fountain height obtained with containers of different carbonated beverages, 

from which maximum effect is found with Diet Coke at room temperature [7].  

 

Table 4.5: Fountain heights for various carbonated beverages 

Beverage Bottle Size (mL) Temperature (o
C) Fountain Height (m) 

Harp Beer 350 5 < 1.0 
470 5 2.3 

Coca Cola 
470 21 3.7 
470 5 3.9 

Diet Coke 
470 21 > 4.5 
710 5 0.9 

Mountain Dew 
710 21 2.5 
710 5 1.5 

Diet Mountain Dew 
710 21 3.3 
710 5 3.0 

Diet Pepsi 
710 21 3.9 

 

It is shown that fountain height increases with temperature and that diet beverages 

produce higher fountains than the sugar-sweetened ones. Numbers of effects combine to 

give these results, but ultimately a higher fountain is produced when the rate of bubble 

formation increases relative to the rate of bubble collapse. Temperature change during the 

filling could result either from the internal factors of the filling system itself (such as 

overheating), or could be result of outside environmental factors. An effective solution to 
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deal with these problems is by making the system insensitive to these factors by applying 

the techniques of robust design. Other factors that affect the rate of bubble formation are 

surface tension and vapor pressure. The speed of liquid flow is the main variant to those 

two. Setting the filling speed to a low level could avoid splashing, but will reduce the 

overall profit. On the other hand, setting the filling speed to a high level will achieve the 

desired production target, but will result into having more scrapped product. One solution 

is to schedule the gain of the filling process, by starting with a high filling speed then 

begin decreasing it near the point where it is near the fill target [7, 65]. 

 

4.4.2 Illustrative Example: 

An optimization study is conducted on a carbonated beverage filling process, which is 

used to fill soft drink bottles having volume of 1 liter. The beverage level inside the bottle 

is measure by means of a level sensor. This value is sent to a transducer which compares 

its value with the corresponding value of filling level that corresponds to the desired 

amount of filling volume and then calculates the difference as an error signal. The error 

signal is further transmitted to a flow controller, which is of a PID control type, which 

accordingly calculates the output signal to be fed to a flow control valve to adjust the 

amount of beverage flow. The followed control strategy is shown in Figure 4.7. 
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Figure 4.7: Control strategy for beverage filling process 

 

At the beginning of the process, the beverage volume v, inside the bottle varies linearly 

with the input flow rate as per the following differential equation:  

1   
in

dh
A F

dt
=  (4.8) 

where A is the cross sectional area of the bottle, h1 is the beverage level inside the bottle 

at the beginning of the process, Fin is the beverage flow rate. As the beverage level 

approaches its targeted value, the input flow starts to decrease after level h*. The 

corresponding beverage volume after h* varies as per the following differential equation:   

2
2   

in

dh
A F h

dt
ℜ= −  (4.9) 
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where h2 is the beverage level inside the bottle at the end of the filling process, and ℜ  is 

the flow resistance factor. Note that the system is nonlinear, since the flow rate decreases 

depending on the square root of the beverage level. The steady-state operating conditions 

are given in Table 4.6. 

 

Table 4.6: Steady-state operating conditions 

V Fin A h ℜ  

10048 cm3 (~1 lt)  15.0 cm3/sec 314.0 cm2 32.0 cm 2.6 

 

Using values of Table 4.6, equations (4.8) and (4.9) can be written as follows:  

1     
314 

in inF F
h

A
= =�  

( ) ( )2 2 2

1 1
      2.6

314 
in inh F h F h

A
ℜ= − = −�  

(4.10) 

 

(4.11) 

where h�  is rate of change of beverage level inside the bottle. The corresponding transient 

response is plotted in Figure 4.8. To approximate the overall process and model it by a 

FOPTD function, model parameters were identified by applying the Two-Points-Based 

Method [66]. This method is based on the estimation of two time instants from the 

reaction curve. It consists of determining the time instants t1 and t2 when the process 

output attains 35.3% and 85.3% of its final steady-state values respectively. Afterwards, 

the time delay (dead time) and the time constant are calculated by the following formulas: 

2 10.67 ( )    T t t= −  (4.12) 

1 21.3 0.29d t t= −    (4.13) 
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Figure 4.8: Transient response for the filling process 

 

By applying this method on the transient response obtained by the process (Figure 4.8), 

the two time instants were found to be: 

t1 = 0.9988 seconds (corresponds to 35.3% for level h = 11.3 cm)          

t2 = 3.6678 seconds (corresponds to 85.3% for level h = 27.3 cm)     

After performing the calculations using equations (4.12) and (4.13), parameters of the 

FOPTD model were found to be: 

Kc = 1.0000       d  = 0.2347                T  = 1.7882 

The resulted FOPTD process model was written as: 

. 0.2347         
( )    

1 1.7882 1

d s s
cK e e

G s
Ts s

− −

= =
+ +

 (4.14) 
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It is required to find the optimum setting for the PID controller parameters and schedule 

their usage by the controller to reach the desired filling target smoothly while keeping the 

system insensitive to environmental changes. First, we attempted to solve the problem by 

using a standard tuning method, the ultimate cycle method, and afterwards re-solved it by 

applying our suggested RGS methodology. 

 

Solution (1): Ultimate Cycle Method: 

The block diagram was generated using Simulink tool (Appendix A.4.1). From the closed 

loop step response, the ultimate gain and the ultimate period were found to be:  

 13.5000                 0.9000
u u

K T= =  

The corresponding values by the ultimate cycle method (Table: 4.3) for the proportional 

gain, the integral and derivative time constants were found to be: 

i d 2.7000                  0.4500                 0.3000
p

K τ τ= = =  

The integral gain iK  and the derivative gain 
d

K  were calculated using below equations: 

pi

i

T
K K

τ
=  (4.15) 

d
d p

K K
T

τ
=  (4.16) 

From which their corresponding values were found to be: 

 6.0000                 0.8100
diK K= =  

The resulted response was as shown in Figure 4.9. The plot clearly indicated that this 

setting is not applicable to this type of problem, which is for a filling process.  
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Figure 4.9: Output response by ultimate cycle method 

 

Moreover, the output indicated the MSD to be 0.1635, at which the SNR was found to be 

7.8648 and the variance of the output was 0.1502, and all of them were high. 

 

Solution (2): Robust Gain Scheduled Methodology: 

First, we will conduct robust tuning on the controller obtained from Solution 1 by 

following the methodology steps illustrated in Section 4.3. The control factors were 

selected to be: Kp, τi, and τd. Using the control parameter obtained in Solution 1 as a 

reference, three levels for each control factor were selected by taking different deviation 

from them as shown in Table 4.7. These factors were changed under the objective of 

minimizing the MSD and maximizing the SNR during experimental run. 
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Table 4.7: Control factors 

Levels 
Factor Parameter 

1 2 3 

A Kp 2.7000 4.0000 4.5000 
B τi 1.8000 1.0800 0.4500 
C τd 0.3000 0.2222 0.1481 

 

The integral gain 
i

K  and the derivative gain 
d

K  were calculated from (4.15) and (4.16). 

The noise factors were identified from the process model described by Equation 4.12 

accounting the fact for the impossibility of their control. These factors included: KC, d, 

and T, and for each factor, two levels were selected as shown in Table 4.8. 

 

Table 4.8: Noise factors 

Levels 
Factor Parameter 

1 2 

NF1 KC 1.0000 1.2500 
NF2 d 0.2347 0.2934 
NF3 T 1.7882 2.2353 

 

For the control factors, the DOF is 7. Therefore, an outer OA of level 3 with 9 

experimental runs OA(L9) was selected (Appendix C.4.2). For the noise factors, the 

degree of freedom DOF is 3. Therefore, an inner OA of level 2 with 4 experimental runs 

OA(L4) was selected (Appendix C.4.1).  

 

Experimental runs were conducted by evaluating the effect for different combination of 

the three noise factors each with two levels resulted from the inner array against different 

combinations for the three control factors each with three levels using the outer array. 

The MSD error was evaluated for each of the nine trials against four different 
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combinations of noise factors. The process model was built using the Simulink tool and 

the computations were done using the Matlab and Microsoft XL softwares. The results 

were summarized in Table 4.9. 

 

Table 4.9: Experiment results 

Levels 
Noise Factors 

1 2 3 4 

NF1 1.0000 1.0000 1.2500 1.2500 

NF2 0.2347 0.2934 0.2347 0.2934 

NF3 1.7882 2.2353 2.2353 1.7882 

 

Control Factors MSD 
Trial 

Kp τi τd 1 2 3 4 
MSD  

2
σ  SNR 

1 2.7000 1.8000 0.3000 0.1584 0.1666 0.1579 0.1551 0.1595 0.1355 7.9724 

2 2.7000 1.0800 0.2222 0.1376 0.1649 0.1574 0.1537 0.1534 0.1405 8.1417 

3 2.7000 0.4500 0.1481 0.1612 0.1799 0.1647 0.1661 0.1680 0.1556 7.7476 

4 4.0000 1.8000 0.2222 0.1478 0.1549 0.1241 0.1478 0.1437 0.1246 8.4269 

5 4.0000 1.0800 0.3000 0.1483 0.1559 0.1484 0.1485 0.1503 0.1320 8.2311 

6 4.0000 0.4500 0.1481 0.1502 0.1618 0.1515 0.1534 0.1542 0.1409 8.1185 

7 4.5000 1.8000 0.1481 0.1476 0.1550 0.1469 0.1488 0.1496 0.1243 8.2514 

8 4.5000 1.0800 0.2222 0.1461 0.1542 0.1462 0.1491 0.1489 0.1301 8.2711 

9 4.5000 0.4500 0.3000 0.1490 0.1456 0.1499 0.1528 0.1493 0.1391 8.2587 

 

 

Next, Gain Scheduling was applied, in which we splitted the process into two stages: 

� The first stage: This stage represents the process where the filling varies between 

0% → 75% of the total amount, in which we will apply the use of PID controller 

setting resulted from the first approach for maximizing the performance and 

obtaining insensitivity to environmental changes.  

� The second stage: This stage represents the process where filling varies between 

75% → 100% of the total amount, for which we will select the control parameters 

those maintain the stability to avoid beverage splash and over/under filling errors. 

More illustration for the two stages is given in Figure 4.10. 
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Figure 4.10: Splitted stages for the filling process 

 

1. Controller setting for 1
st
 filling stage: Based on previous results, the maximum value 

for the SNR was found to be 8.2997 at parameters of trial 8. Accordingly, the optimum 

values for the PID controller parameters were set to be: 

 4.5000            2.5000             0.4000
p i d

K K K= = =  

 

2. Controller setting for 2
nd

 filling stage: The system was subjected to operate under 

assignable causes by including white noise and shift of 0.2 in the process mean at time t = 

10 sec. After testing the control parameters of trials 4, 7 and 8, the obtained results were 

summarized in Table 4.10. 
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Table 4.10: Output statistics for operating under assignable causes 

Trial Kp τi τd 
2

σ  MSD SNR 

4 4.0000 1.8000 0.2222 0.0347 0.0376 14.2463 
7 4.5000 1.8000 0.1481 0.0336 0.0366 14.3667 
8 4.5000 1.0800 0.2222 0.0340 0.0352 14.5324 

 

The minimum value of variance was found to be at trial 7, and accordingly, the PID 

controller parameters were set as: 

 4.5000           1.5000              0.6000
p i d

K K K= = =  

Using the controller setting obtained by the RGS method, the simulation model was 

generated using Simulink tool for the overall process (Appendix A.4.2). The resulted 

response was plotted as shown in Figure 4.11. The MSD was found to be 0.1241, at 

which the SNR was 9.0617 and the variance of the output was found to be 0.0910. Note 

the time delay near time t = 1 sec which results due to controllers switching. 

 

 

Figure 4.11: Output response by RGS method 
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4.4.3 Results Summary: 

The overall statistics for both control actions were as entered in Table 4.11. 

 

Table 4.11: Overall statistics for both control actions 

 MSD SNR σ
2
 

RGS Control 0.1241 9.0617 0.0910 
PID Control 0.1635 7.8648 0.1502 

 

By comparing with results found using the ultimate cycle method, it was found that by 

applying the RGS Method, the SNR was increased by 15.22%, the variance of the process 

output was reduced by 39.41% and the MSD was reduced by 24.10%. This is due to the 

combined effects of: robust tuning (which raised the performance and took care of 

external factors), and gain scheduling (which reduced the variability of the process). 

 

 

4.5 Conclusion: 

 

In this chapter, we applied the use of robust design as well as gain scheduling for proper 

setting of control parameters. By combining these techniques together, we developed a 

RGS methodology. We also presented a case study on carbonated beverage filling process 

in which we applied the use of this methodology. Results have shown the successfulness 

of our suggested methodology in terms of increasing the performance and the SNR, and 

reducing the MSD as well as the variability of the process. 
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CHAPTER 5 

 

 

PROCESS MONITORING AND  

PERFORMANCE EVALUATION 

 

 

5.1 Overview: 

 

The objective of this chapter is to develop a unified scheme that combines between the 

use of SPC and APC techniques of process monitoring and performance evaluation from 

which thorough assessment could be resulted. Among SPC tools, the Exponentially 

Weighted Moving Average (EWMA) control chart with ARL calculation will be used, 

while Signal to Noise Ratio and efficiency measures will be selected from APC 

techniques. Furthermore, an SPC controller based on the constrained principle and 

incorporated with quadratic quality loss function will be constructed and applied as a 

benchmark for performance evaluation. Indication for out of control signal will also be 

included within the monitoring part. By combining all these statistics together, an 

effective integrated SPC/APC monitoring and evaluation scheme is expected to result out. 
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An illustrative example for concentration control process is also presented on which we 

applied our proposed scheme to illustrate its effectiveness  

 

 

5.2 Background: 

 

Having the knowledge about plant performance, decision could be made about whether 

the facility is performing well and how effective is it in satisfying the required tasks. The 

objective of performance evaluation is to enable tracking and fixing problems before they 

cause production of poor quality products and result into financial loses. Although the 

human side of performance assessment can be accounted for use, real industrial process 

running at fast production rate result into high dimensionality data which makes it 

difficult for a human operator to monitor them, analyze their output data, evaluate the 

performance, and find causes of degradation. All of this calls the need for having a well 

defined systematic monitoring and evaluation strategy which provides concise 

information for effective decision making use. Eriksson and Isaksson envisioned that: "In 

the short term, such a tool probably has to be a stand-alone unit with its own software that 

hooks on to and collects data straight from the input of the process computer; in the long 

term, such a function will be an integral part of any commercial control system". Many 

possible factors can result into having poor performance, such as: incorrect controller 

tuning, incipient faults within the system, and poor operating practices. Generally, 
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process monitoring and assessment of performance should not disturb routine operation 

of the processes or at least should be carried out under closed-loop conditions [6, 34]. 

 

5.2.1 SPC and Process Monitoring: 

Since the time Shewhart illustrated the technique of the control charts, it has played a 

major role in controlling the product quality by applying statistical concepts for 

manufacturing processes. Shewhart’s vision for a control chart was: "The control chart 

may serve: first, to define the goal or standard for a process that management strives to 

attain; second, it may be used as an instrument for attaining that goal and third, it may be 

serve as a means of judging whether the goal has been reached". As per Duncan, the 

control chart was viewed as: "… a statistical device principal used for the study and 

control of repetitive processes". Furthermore, Feigenbaum defined control chart as: "A 

graphical comparison of the actual product-characteristics with limits reflecting the 

ability to produce as shown by past experience on the product characteristics". 

 

The applications of SPC control charts could be classified into four categories: process 

monitoring, planning, evaluating customer satisfaction, and forecasting. Among these 

categories, process monitoring is considered the traditional use of SPC control chart in 

order to stabilize and improve the process capability. Traditional control charts (i.e. 

Shewhart control charts, Section 2.2.2) could be successfully used in the steady-state 

manufacturing processes, but for unstable processes with dynamic behavior, the use of 

SPC methodologies to address the process shifts needs to be addressed [32, 45]. 



99 

 

Exponentially Weighted Moving Average Control Chart: A major disadvantage of the 

Shewhart control chart is that it extracts process information from the last observations 

and ignores other information from the entire process run, which makes it insensitive to 

process shifts and less useful for process monitoring. An effective alternative to the 

Shewhart control chart for detecting process shifts and changes in quality characteristics 

is the EWMA control chart. Box and Luceño [12] suggested the use of the EWMA 

approach to forecast and keep track of the process mean, since it has been proven to be 

successful in estimating various time series. EWMA is viewed as a weighted average of 

all past and current observations, and it is defined as [55]: 

1 (1 )
i i i

z x zλ λ −= + −  (5.1) 

where λ is the weight, 0 < λ ≤ 1, and z0 is the starting value, which is usually set to be:  z0 

= Target. The control limits and the centerline for EWMA control chart are as follows: 

2

0
1 (1 )

(2 )

i
UCL L

λ
µ σ λ

λ
= + − −

−
    

0
CL µ=  

2

0
1 (1 )

(2 )

i
LCL L

λ
µ σ λ

λ
= − − −

−
    

(5.2) 

where L is the width of the control limits. Montgomery suggested that the optimal range 

of λ should lie between 0.05 and 0.25, so the values of λ are always set at 0.05, 0.1, or 

0.2. The rule of thumb in selecting λ is that a small value of λ should be used to detect 

small shifts, and this value is varied as per the size of the shift. For the width of the 

control limit, Montgomery recommended setting L at 3, since it works well in detecting 

shifts in many situations [45, 55]. 
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For illustration, consider the data [55] in Table 5.1. The first 20 observation were drawn 

at random from a normal distribution with mean µ  = 10 and standard deviation σ = 1. To 

represent the process when it is out of control (experienced a shift in the mean of 1σ), the 

last 10 observations were drawn at mean µ  = 11 and standard deviation σ = 1. 

  

Table 5.1: Input data for the control chart 

i xi i xi i xi 

1 9.45 11 9.03 21 10.90 
2 7.99 12 11.47 22 9.33 
3 9.29 13 10.51 23 12.29 
4 11.66 14 9.40 24 11.50 
5 12.16 15 10.08 25 10.60 
6 10.18 16 9.37 26 11.08 
7 8.04 17 10.62 27 10.38 
8 11.46 18 10.31 28 11.62 
9 9.20 19 8.52 29 11.31 

10 10.34 20 10.84 30 10.52 

 

First, we will consider a Shewhart control chart, for which the centre line and the 3σ 

control limits are set as: LCL = 7, CL = 10, and UCL = 13. The plot for Shewhart control 

chart is shown in Figure 5.1.  

 

Figure 5.1: Shewhart control chart 
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The plot indicates a shift in the process level for the last 10 points, because all plots are 

above the centerline, except one. However, there is no strong evidence that the process is 

out of control because none of the points plot outside the control limits. Next, consider an 

EWMA control chart with λ = 0.1 and L = 2.7 for the same data points (Table 5.1) as 

shown in Figure 5.2. 

 

Figure 5.2: EWMA control chart 

 

The EWMA signals at observation 28 to indicate that the process is out of control, which 

indicates its effectiveness over the Shewhart control chart in detecting process shifts.    

 

Performance Evaluation from Control Charts: General practice during process 

monitoring through a control chart is as follows: If the sample point falls within the 

control limits, the process is deemed to be in control, or free from any assignable causes. 

Points beyond the control limits indicate an out-of-control process (i.e. assignable causes 

are likely to present), which calls the need for corrective action, in order to find and 
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remove the assignable causes. The assignable causes (also known as special causes), are 

the portion of the variability in a set of observations that can be traced to specific causes, 

such as operators, materials, or equipment. On the other hand, chance causes (also known 

as common causes), are the portion of the variability in a set of observations resulted 

from random forces that cannot be traced to specific sources. 

 

In order to evaluate the performance from control charts, the probabilities associated with 

Type-I and Type-II errors are used as performance measures. When the process is in 

control, we define the probability of Type-I error by α (also known as the probability of 

false alarm) as: 

  [ ] = [   ]P Type - I Error P point falls outside control limits process is in controlα = I  (5.3) 

For an out of control process, we define the probability of Type-II error by β (also known 

as the probability of not detecting a shift) as: 

  [ ] = [ ]P Type - II Error P point falls inside control limits  process is out of  controlβ = I  (5.4) 

Figure 5.3 shows the probability plots for: Type-I error when the process is in control 

(process mean is µ0), and Type-II error when the process is out of control (process mean 

shifts to µ1).  
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Figure 5.3: Probability plots for type-I and type-II errors 

 

By defining the power of a control chart to be 1- β, it can be said that it is desired to have 

a high power and a low α. However, for a process engineer or an operator, discussing the 

probability of false alarms or α’s and β’s may sound to be esoteric.  Which leads to an 

obvious question: Is α = 0.005 low enough? To avoid such issues, a better way for 

describing the performance is through ARL calculation, which is defined as the average 

number of points that must be plotted before a point indicates an out of control signal. For 

an in control process, it is calculated from: [45] 

0

1
ARL

α
=  (5.5) 

For an out of control process, it is calculated from: 

1

1

1
ARL

β−
=  (5.6) 
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5.2.2 APC and Performance Evaluation:  

Control loop performance is the key for manufacturing high quality product that aims to 

improve product quality by reducing process variation. In the past, statistical techniques, 

such as Shewhart control charts were used, but recently, focus has been placed for the 

development of more effective techniques. Modern research in the field of control 

performance assessment began with Harris [33] who presented the Minimum Variance 

(MV) benchmark which was derived from the theoretical background of MV controller. 

Since then, number of methods for measuring the performance of control loops have been 

developed. There are many different measures of control performances, such as: offset 

from set-point, overshoot, rise-time, and variance.  Most commonly used measure of 

performance is the variance of key process variables in which the performance of the 

control loop might be deemed unacceptable if the variance of the process output exceeds 

some critical value. Generally, the performance of an existing control loop is often 

measured against some kind of benchmark (such as: MV) from which performance of the 

system is assessed by computing it ratio to that of the process output. Unfortunately, 

implementing MV controllers requires high level of accuracy and incorporates high cost 

for control action. For these reasons and due to some other practical issues, controllers in 

process plants are almost never implemented with MV objectives. In stead, they are 

implemented to minimize some integral indices (e.g. integrals of error) or to achieve the 

desired dynamic properties in time domain or frequency domain, such as: rise time, 

overshoot, or settling time [22, 26, 34, 35]. Below are some of the techniques used for 

evaluating control loop performance: 
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a. Step Response Evaluation Criteria: This approach is about perturbing the process in 

steady state with a step change in the input signal then observing the output of the process. 

Some quantitative criteria for evaluating control system performance are as follows: [33] 

� Dead Time: is the time taken from injecting the input until its effect is seen.  

� Rise Time: is the time taken by the output to rise from 10% → 90%. 

� Settling Time: is the time taken by the output to remain within 5% of the set-point. 

� Overshoot: is the maximum amount raised by the output signal above set-point. 

� Steady State Error: is the difference between the output signal and the set-point 

when the time tends to infinity. 

These criteria are illustrated in Figure 5.4. 

 

 

Figure 5.4: Step response evaluation criteria 
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b. Integral Error Evaluation Criteria: This criterion is based on evaluating the 

performance of the controlled system in the event of a step change to the input. It is 

practically done by introducing a step change to process input at t = 0, then computing 

the integral until the error becomes close enough to zero.  Common integral performance 

indices are derived from the control error (difference between the input signal and the 

actual output of the process) as illustrated below: [34] 

 

Integral of Squared Error (ISE): It is very aggressive, since squaring the error term 

provides a greater punishment for large errors, its formula is given as:  

( )( ) ( )( )
2 2

0 0

( )
ISE

I e t dt y t t dtτ
∞ ∞

= = −∫ ∫  (5.7) 

where ( )e t  is the control error, ( )y t  is the measured output, and ( )tτ  is the target. 

 

Integral of Time Weighted Squared Error (ITSE): It is the most conservative between 

other error indexes. The squared error is multiplied with time t, which emphasizes the 

steady state error and gives less weight to the invertible error that occurs immediately 

after the change in the input, and it is formulated as: 

( )( ) ( )( )
2 2

0 0

( )
ITSE

I t e t dt t y t t dtτ
∞ ∞

= = −∫ ∫  (5.8) 
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Integral of Weighted Squared Error (IWSE): Takes into account the monetary cost of the 

control action by distributing weights between the control signal and the error, and it is 

formulated as: 

( )( ) ( )( )( )2 2

0

 
W e c

I w e t w u t dt

∞

= +∫  (5.9) 

where u(t) is the input signal, we is the weight for the error, and wc is the weight for the 

control signal.  

 

All of the above criteria enable monitoring of transient behavior of control loop by 

considering the rise time, overshoot, settling time and steady state error [34]. 

 

c. Minimum Variance Benchmarking Criteria: The unique feature of this technique is that 

it conducts performance monitoring without disturbing the process. It views MV as the 

smallest theoretical achievable variance and applies it as a standard benchmark, from 

which the variance of the process is compared. Harris [33] showed that a lower bound of 

process variance under feedback control could be estimated from routine operating data. 

This lower bound (or MV) can be used as a reference point to assess current control loop 

performance. Harris defined the controller performance index as: [6, 40] 

2

2

MV
MV

y

σ
η

σ
=  (5.10) 

where 2

yσ  is the variance of the process output, 2

MV
σ  is the minimum achievable variance 

by the MV controller, and ηMV is the performance index, 0 ≤ ηMV  ≤ 1.  This technique has 

attracted significant interest and has been further developed by many researchers [6, 40]. 
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Despite that this technique has been proved to be very useful in many applications, it 

requires expertise and experience for appropriate data preprocessing, performance index 

calculation, and interpretation of results. Other factors that limit its application in plant 

environment are: [26] 

� It is only valid for linear minimum phase systems. 

� Only extreme situations are well defined, good if close to 1 and poor if minimum. 

� It does not achieve all desirable attributes. 

� It may result into slow tracking of set-point changes. 

 

 

5.3 Methodology: 

 

In this scheme, both the statistical, as well as the automatic process control techniques 

will be combined within one frame work for effective analysis and decision support. SPC 

techniques will be mainly used for process monitoring, while APC techniques will be 

applied for performance analysis. The overall procedure is illustrated below. 

 

5.3.1 Process Model Development:  

The process is described by a linear transfer function incorporated with an error term. It is 

derived by extracting the information from the closed loop process input and output data, 

then deriving the process model by using linear regression as follows: 
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( ) ( ) ( )0 1= + +y t b b u t e t  (5.11) 

where u(t) is the input (control action), y(t) is the output (measured quality characteristic), 

e(t) is the error (deviation of the process output from the target), and b0, b1 are model 

parameters which are estimated as:  

1 2 2

    

( )

u y n u y
b

u n u

−
=

−

∑
∑

 (5.12) 

0 1
  b y b u= −  (5.13) 

 

5.3.2 Benchmark Controller Design: 

In our work, the benchmark is considered to be a Constrained Input Output Controller 

(CIOC). This controller is derived by applying the constrained principle in which the 

objective is to find the control action that minimizes the constrained index. Our 

constrained index accounts both of: 

� the deviation of the output (measured quality characteristic) from its target value, 

which we express in terms of quadratic quality loss function  

� the deviation of the input (control action) from its steady state value, which is set 

to be zero 

The CIOC optimizes the expected value of resulted index which is expressed as follows: 

( ) ( )[ ] ( ){ } ( ) ( )[ ] ( )
2 2 2 22

:     =     =      Min I E y t t u t y t t u tτ φ τ σ φ− + − + +  (5.14) 

where φ  is an adjustment factor. By substituting the process model presented by 

Equation (5.8) within the index, it is written as follows:  
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( ) ( ) ( )[ ] ( )
2 22

0 1
     I b b u t e t t u tτ σ φ= + + − + +  (5.15) 

After differentiating the resulted index with respect to the control action and equating it 

to zero, the resulted control action is expressed as follows: 

( )
( ) ( )[ ]1 0

2

1  

b t e t b
u t

b

τ

φ

− −
=

+
 (5.16) 

The advantage behind our method is that it combines between disturbance rejection and 

the reduction of quality loss of the product, which in turn optimizes the level of quality as 

well as the performance. 

 

5.3.3 Performance Index Derivation: 

The performance index is based on using the variance of the CIOC controller’s output as 

a reference to the best achievable value that could result from applying the best control 

action. By combining the information of the closed loop process variance, the index is 

calculated as:  

2

2
1

yc

CC

y

σ
η

σ
= −  (5.17) 

where 
CC

η  is bounded between 0 and 1, 2

ycσ  is the variance of the process when it is 

controlled by the constrained controller, and 2

yσ  is its variance when it is controlled by 

the existing control scheme. This benchmark controlled output may or may not be 

achievable in practice due to the incorporated high control cost. However, it provides 

useful information such as how well the current controller is tuned as compared to the 

constrained controller and how much potential is there to improve its performance. 



111 

 

5.3.4 Process Monitoring: 

The main objective behind process monitoring is to detect the variability within the 

process, and for achieving that, the use of an SPC control chart will be implemented. In 

this work, EWMA control chart is used for process monitoring, and it is selected due to its 

effectiveness in detecting process shifts. 

 

5.3.5 Performance Assessment: 

Final decision will be based of combining the statistics from the previous techniques 

which are: the performance index, the MSD, SNR, ARL, and the variance of the process 

output. If these statistics indicate process normality, and if the performance index is 

satisfactory, further tuning or redesigning of the control algorithm will be neither 

necessary nor helpful. On the other hand otherwise, if the process is turned to be out of 

control or the performance index indicates a poor performance measure, further action 

such as: identification of assignable causes, process shutdown and maintenance, 

controller tuning, or at the worse case, controller redesign may be necessary.  

 

 

5.4 Illustrative Example: Concentration Control: 

 

To examine the effectiveness of out proposed scheme, an illustrative example for 

concentration control process is presented in this section.  
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5.4.1 Process Description: 

The reactant conversion in a chemical reactor is a function of the resident time or its 

inverse which is the space velocity. In this example, product concentration within an 

Isothermal Continuous Stirred Tank Reactor (CSTR) is controlled by manipulating the 

feed flow rate. The followed control strategy is shown by the schematic diagram of 

Figure 5.5 which was generated by Yokogawa’s Centum CS3000 and Microsoft 

softwares. 

  

 

Figure 5.5: Control strategy for concentration control process 

 

In this process, the concentration of the output is measured by a concentration sensor and 

sent to concentration transmitter. By comparing the measured concentration with its 

targeted value, the difference is calculated as an error signal and further transmitted to 

concentration controller. This controller is of a PID control type, which accordingly 
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calculates the output signal to be fed to the flow control valve to adjust the feed flow rate 

to the reactor. The overall process is described by the following first order plus a time 

delay function: 

. 0.85   1.26 
( )

1 2 1

d s s

C
K e e

G s
Ts s

− −

= =
+ +

 (5.18) 

where KC is the gain of the process model, d is the time delay, and T is the time constant.  

 

5.4.2 Controller Gain Setting by Ultimate Cycle Method: 

The initial setting for controller gain was set as per the ultimate cycle method (Section 

4.2.1). For deriving the control parameters, the process model was generated using 

Simulink (Appendix A.5.1) and from closed loop step response, the ultimate gain and 

ultimate period were found to be: 

KU = 3.590         TU = 3.000 

The corresponding values by the ultimate cycle method (Table 4.3) for the proportional 

gain, integral and derivative time constants were found to be: 

Kp = 0.718         τi = 1.500       τd = 0.999 

Afterwards, the integral gain and the derivative gain were calculated from equations 

(4.15) and (4.16) and their corresponding values were found to be: 

Ki  = 0.9573          Kd = 0.3586 

The resulting response was as shown in Figure 5.6. The MSD was found to be 0.1733, at 

which the SNR was 7.6120 and the variance of the output was found to be 0.1572. 
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Figure 5.6: Output response by ultimate cycle method 

 

 

5.4.3 Controller Tuning by Robust Design Method: 

The tuning was obtained by following the Robust Design methodology described in 

Section 4.3. The control factors were selected to be: Kp, τi, and τd. The nominal values for 

these parameters were set to the ones resulted using the ultimate cycle method, and for 

each control factor, three levels are selected as shown in Table 5.2. 

 

Table 5.2: Control factors 

Levels 
Factor Parameter 

1 2 3 

A Kp 0.5744 0.7180 0.8616 
B τi  1.0345 1.5000 2.7274 
C τd  0.5995 0.9990 1.3986 
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The integral gain 
i

K  and the derivative gain 
d

K  were calculated from (4.15) and (4.16). 

The noise factors were identified from the process model described by Equation 5.18 to 

be: Kc, d, and T, and for each noise factor, two levels were selected as shown in Table 5.3. 

 
Table 5.3: Noise factors 

Levels 
Factor Parameter 

1 2 

NF1 KC 1.260 1.512 
NF2 d 0.850 1.020 
NF3 T 2.000 2.400 

 
For the control factors, OA(L9) was selected (Appendix C.4.2). While for the noise 

factors, OA(L4) was selected (Appendix C.4.1). After conducting the experiments, their 

results were summarized in Table 5.4. 

 

Table 5.4: Experimental results for robust tuning 
 

Levels 
Noise Factors 

1 2 3 4 

NF1 1.2600 1.2600 1.5120 1.5120 

NF2 0.8500 1.0200 0.8500 1.0200 

NF3 2.0000 2.4000 2.4000 2.0000 

 

Control Factors MSD 
Trial 

Kp τi τd 1 2 3 4 
MSD σ SNR 

1 0.5744 1.0345 0.5995 0.3279 0.5269 0.4234 0.7953 0.5184 0.6995 2.8536 

2 0.5744 1.5000 0.9990 0.2305 0.2837 0.2491 0.2738 0.2593 0.4923 5.8624 

3 0.5744 2.7274 1.3986 0.2119 0.2343 0.2151 0.2176 0.2197 0.4340 6.5812 

4 0.7180 1.0345 1.3986 0.2525 0.3519 0.2840 0.3546 0.3108 0.5448 5.0759 

5 0.7180 1.5000 0.5995 0.2167 0.2774 0.2316 0.2607 0.2466 0.4792 6.0801 

6 0.7180 2.7274 0.9990 0.2003 0.2205 0.2021 0.2056 0.2071 0.4189 6.8377 

7 0.8616 1.0345 0.9990 0.2397 0.3344 0.2679 0.3519 0.2985 0.5310 5.2509 

8 0.8616 1.5000 1.3986 0.2027 0.2360 0.2105 0.2224 0.2179 0.4463 6.6174 

9 0.8616 2.7274 0.5995 0.1919 0.2106 0.1929 0.1983 0.1984 0.4083 7.0240 
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The maximum value for the SNR was found to be 7.0240, at which the average MSD was 

found to be 0.1984. Accordingly, the optimum values for the PID controller parameters 

were found to be: 

i d0.8616           2.7274            0.5995            0.5265            0.2152
p i d

K K Kτ τ= = = = =  

The resulted response was as shown in Figure 5.7. 

 

Figure 5.7: Output response by robust tuned controller 

 

The MSD was found to be 0.1606, at which the SNR was found to be 7.9425 and the 

variance of the output was found to be 0.1370. 

 

5.4.4 Bench-Mark Controller Design: 

The bench-mark controller was selected to be of a constrained controller type. Extracted 

data from closed loop step response was analyzed and the corresponding values for b0 

and b1 were calculated from equations (5.9) and (5.10) and found to be: b0=2.2036 and 
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b1=-1.4872 (Appendix C.5.1). Accordingly, the process model by using Linear 

Regression as per equation (5.11) was as follows: 

( ) ( ) ( )  2.2036 - 1.4872  y t u t e t= +  (5.19) 

Following the constrained controller principle, the resulted control action as per equation 

(5.16) was as follows: 

( )
( ) ( )[ ]1.4872 2.2036

2.2117  

t e t
u t

τ

φ

− − −
=

+
 (5.20) 

 

5.4.5 Monitoring and Assessment of Control Schemes: 

The process was set to operate under assignable causes by introducing white noise and a 

shift of 0.1 units in process mean at time 16 sec which was also included. The block 

diagram for the process was built in Simulink which included both of: the PID controller 

which was set by the ultimate cycle method, and the benchmark CIOC controller; and the 

process was set to operate under assignable causes (Appendix A.5.2). For the 

conventional PID controlled output, the resulted EWMA control chart (Appendix B.5.1) 

using λ = 0.1 was as shown in Figure 5.8, and the calculated statistics for both controllers 

were as shown in Table 5.5. 

 

Table 5.5: Calculated statistics for both controllers 
 

Control Scheme MSD SNR VAR ARL 

Conventional PID Control 0.0856 10.6753 0.0840 4.3102 
Benchmark CIOC Control 0.0601 12.2113 0.0551 9.1591 
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Figure 5.8: EWMA control chart for conventional PID controlled process  

 

The SNR was found to be 12.57% less than its maximum achievable value. The 

performance index with respect to the constrained controller was calculated as follows:  

2

2
1

yc

CC

yu

σ
η

σ
= − = 0.3440 

This implied that the performance was 34.40% less than its maximum achievable amount. 

Moreover, the ARL turned out to be low and the variability in the process output was 

high. After considering these statistics, tuning for control parameters was recommended.  

 

Next, the process was set to operate under robust PID control scheme under same 

assignable causes. The EWMA control chart (Appendix B.5.1) using λ = 0.1 was with out 

of control indication was as shown in Figure 5.9.  
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Figure 5.9: EWMA control chart for robust PID controlled process  

 

The relative efficiency between the conventional PID controller and the robust PID 

controller was found to be 0.1391 which indicated an improvement of 20.49% in the 

performance.   

 

5.4.6 Results Summary: 

Under the presence of same assignable causes and overall statistics for the three 

controllers were summarized in Table 5.6 and the output responses for the three 

controllers were as shown in Figure 5.10. 
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Table 5.6: Calculated statistics for all control schemes 

Control Scheme MSD SNR σ
2
 ARL ηcc 

Convtional PID Control 0.0856 10.6753 0.0840 4.3102 0.3440 
Robust PID Control 0.0687 11.6304 0.0640 7.9802 0.1391 

CIOC Control 0.0601 12.2113 0.0551 9.1591 0.0000 
 

 

 

Figure 5.10: Process output plots under all control schemes 

 

Results have shown that the MSD was reduced by 19.74% while the variance was 

reduced by 23.81%. The SNR was increased by 8.95% with an increase of 85.15% in the 

ARL. The performance indexes have indicated an improvement of 20.49% in the 

controller performance. This reflects the process enhancement gained by conducting 

robust tuning on the existing control scheme which was suggested to be done from our 

unified SPC/APC monitoring and evaluation scheme.   
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5.5 Conclusion: 

 

In this chapter, we developed a unified scheme that combines between the use of SPC 

and APC techniques of process monitoring and performance evaluation. Among SPC 

tools, we applied the use EWMA control chart with ARL. From the other side, we 

considered SNR and efficiency measures among APC techniques. Furthermore, we 

developed an SPC controller which was based on the constrained principle and was 

incorporated with quadratic quality loss function and used it as a benchmark to evaluate 

the performance. We also included indication for out of control signals within the 

monitoring part. By combining all these statistics together, we ended up by developing an 

integrated SPC/APC monitoring and evaluation scheme. An illustrative example for 

concentration control process was presented in which process monitoring and 

performance evaluations were illustrated. Results were satisfactory in terms of reducing 

the process variability, minimizing the MSD, improving the performance and increasing 

the ARL. This indicated the effectiveness of the unified scheme in taking the correct 

decision about operating the process. 
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CHAPTER  6 

 

 

A FUZZY INTEGRATED SPC/APC SCHEME  

 

 

6.1 Overview: 

 

Due to the knowledge gap between the advocates of SPC and APC, they were initially 

thought to be in conflict with each other, and their integration was out of question, until 

their advocates realized the fact about the techniques applied by their methods being 

complementary rather than contradictory. Since then, some work about integrating SPC 

and APC techniques appeared in literature. Most of integration strategies found in 

literature have applied the use of SPC techniques for monitoring and APC techniques for 

process regulation, while others derived SPC controllers and applied their use alone, 

which does not result into real integrated schemes. The objective of this chapter is to 

develop an integrated scheme that combines between the utilization of SPC and APC 

techniques for process monitoring and control under FZL interaction. We envision that 

that driving any system under our proposed strategy will result into obtaining optimum 
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level of quality, performance as well as robustness. A case study for a pH control process 

is also presented on which we applied the use of our proposed strategy.  

 

    

6.2 Background: 

 

In order to reduce the variation in a manufacturing process, traditional SPC techniques 

are the most frequently used tools in monitoring APC-controlled processes for detecting 

assignable cause process variation. Many studies have been conducted about the 

integrated use of SPC and APC, because using them individually cannot optimally control 

the manufacturing process. The majority of these studies have reported that the integrated 

approach results into better performance than using only SPC or APC, details can be seen 

in Lu et al [50]. Although the application of SPC controller is effective in terms of 

minimizing the variability and maintaining the quality, its application incorporates high 

control cost and required large amount of memory use and calculation time which limits 

its practical application. Despite the effectiveness of traditional APC control schemes; 

there is no guarantee about their performance to be maintained under abnormal process 

conditions.  Although the human utilization may be useful in trading off between the 

utilization of SPC and APC techniques, it cannot handle all tasks properly for real 

industrial processes. All of this calls the need for having a systematic strategy which can 

translate the human way of decision making and its knowledge about the process into 

machine language. A suggested solution is apply the use of Fuzzy Logic (FZL), which is 
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close to the human way of thinking and reasoning and provides means for modeling and 

dealing with the approximate and inexact nature of the real world. FZL captures 

experience and intuition in the form of IF-THEN rules from which conclusions are drawn 

using fuzzy inference. This type of logic is convenient for describing systems which are 

too complex or have uncertainty to be successfully described with mathematical models. 

 

6.2.1 Integrated SPC/APC Systems: 

Generally, it is  aimed  that  integration  yields  a  process  that  effectively  regulates  the 

process to its target using APC while providing effective process monitoring and removal 

of assignable causes using SPC.  Palm [59] provided a review on APC and SPC and the 

approaches taken in pursuit of both. He presented an example to outline how much each 

method of process control may improve the process. He concluded that neither approach 

alone can perform well without the help of the other. Vender Weil et al. [78] viewed SPC 

as a collection of techniques useful in improving product quality by helping the analyst to 

locate and remove root causes of quality variation. They thought of APC as a collection 

of algorithms for manipulating the adjustable variables of a process to achieve the desired 

process behavior (output close to a target value). Montgomery et al. [56] described and 

illustrated a simple method of integrating SPC and APC and supported the claim that SPC 

can be applied to detect assignable causes from the output rapidly, while APC can 

effectively keep the process on target. Jiang and Tsui [43] developed an economic model 

for SPC monitoring of APC controlled processes. They also developed an economic loss-

based criterion to evaluate the performance of SPC charting methods. Capilla et al. [14] 
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described a case study of integrating SPC and APC approaches in a polymerization 

process and showed that the use of both SPC and APC techniques can outperform the use 

of either of them alone. 

 

6.2.2 Fuzzy Logic Control:  

Fuzzy logic is a formal methodology for representing, manipulating, and implementing 

human’s heuristic knowledge about how to best control a process. It is defined as a 

mathematical system that analyzes analog input values in terms of logical variables that 

take on continuous values between 0 and 1, in contrast to classical or digital logic, which 

operates on discrete values of either 0 or 1 (true or false). Its basic idea is to mimic the 

fuzzy feature of human thinking for the effective control of uncertain systems through 

fuzzy logic reasoning. FZL was first proposed by Zadeh [83] who further introduced the 

concept of linguistic variables (equates to a variable defined as a fuzzy set). Afterwards, 

the first industrial application based on this concept came on line in 1975 which was a 

cement kiln built in Denmark. FZL has the advantage that the solution to the problem can 

be cast in terms that human operators can understand, so that their experience can be used 

in the design of the controller. This makes it easier to mechanize tasks those are already 

successfully performed by humans. Furthermore, FZL is well suited to low-cost 

implementations based on cheap sensors, low-resolution converters, and microcontroller 

chips. Such systems could be easily upgraded by adding new rules to improve the 

performance or by adding new features [49]. 
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A fuzzy logic control (FZLC) system is a control system based on FZL. Fuzzy controllers 

are being used in various control schemes, and in many cases, they can be used to 

improve existing traditional controller systems by adding an extra layer of intelligence to 

the current control method. The most obvious type of FZLC is direct control, where the 

fuzzy controller is kept in the forward within the feedback control system. Usually the 

process output is compared with a reference, and if there is any deviation, the controller 

takes action as per the designed control strategy. Basic architecture of a FZLC is shown 

in Figure 6.1 which consists of four modules including:  

� Fuzzification: it involves the conversion of the crisp input and output signals into 

a number of fuzzy represented values (fuzzy sets).  

� Rule Base: its basic function is to represent expert's knowledge in form of IF-

THEN rule structure. 

� Fuzzy Inference: it provides the mechanism for referring to the rule base such that 

appropriate rules are fired.   

� Defuzzification: it produces a non fuzzy control action that represents the 

membership function of an inferred fuzzy control action. 

 

 

Figure 6.1: Architecture of a fuzzy logic controller 
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The input variables in a fuzzy control system are generally mapped by sets of 

membership functions known as fuzzy sets. Given mappings of input variables into 

membership functions along with their truth values, the controller can make decisions 

about what action to be taken based on a set of rules, which are usually expressed in the 

form: (IF    variable    IS     property    THEN    action). The AND, OR, and NOT 

operators of Boolean logic can also exist in FZL, which are usually defined as the 

minimum, maximum, and complement. This combination of fuzzy operations and rule-

based inference describes a fuzzy expert system [39, 49, 82]. 

 

 

6.3 Methodology: 

 

Our intention in this chapter is to develop a unified strategy that combines between the 

utilization of SPC and APC techniques for process monitoring as well as control under 

fuzzy logic interaction. For achieving that, we will follow a solution procedure based on 

below eight steps: 

1) Study the Existing System 

2) Tune the existing APC Controller by using robust design method    

3) Develop the SPC controller by applying constrained principle    

4) Construct the FZL controller and set it for control utilization scheme  

5) Set the SPC monitoring scheme including indication for out of control signals  

6) Set the performance evaluation index 
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7) Construct the integrated SPC/APC system 

8) Conduct experimental runs and evaluate the results  

By following the previous steps, we expect to have an integrated SPC/APC system as 

shown in Figure 6.2.  

 

Figure 6.2: Block diagram for the integrated SPC/APC system 

 

6.3.1 Fuzzy Logic Controller Development: 

We will construct the FZLC by setting its four basic modules (Section 6.2.2) as explained 

below: 

Fuzzification: Our FZLC will have two inputs which are the: output error ert and the rate 

of change of the output quality characteristic dyt, and will have one output which is the 

controller utilization factor wt. The first input, which is ert, is divided into five 

membership functions, namely: Negative High (NHI), Negative Low (NLO), Zero 

(ZERO), Positive Low (PLO), and Positive High (PHI); as shown in Figure 6.3.  

0 
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Figure 6.3: Membership functions for the first input (output error) 

 

Five membership functions are developed for the second input which is dyt, namely: 

Negative Maximum (NMAX), Negative Minimum (NMIN), Normal (NORM), Positive 

Minimum (PMIN), and Positive Maximum (PMAX); as shown in Figure 6.4. 

 

 

Figure 6.4: Membership functions for the second input (rate of change of output) 

 

For the FZLC output wt, five membership functions are created, namely: Statistical 

Process Control (SPC), Larger Statistical Control (SAC), Both Control Schemes (BIC), 

Larger Automatic Control (ASC), and Automatic Process Control (APC); as shown in 

Figure 6.5. 
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Figure 6.5: Membership functions for the controller output 

 

Rule Based Inference: In order to relate the inputs to the output, fuzzy inference rules are 

developed. Our philosophy in setting these rules was based on applying the use of the 

APC controller during normal situations, and deviate to SPC as soon as abnormalities 

begin to occur. For example, when the output error is negligible and the change in the 

output quality characteristic is almost zero, the FZLC will provide an utilization factor 

parallel for applying an APC controller. However, when ert is large and dyt is high, the wt 

will utilize the application of SPC controller. In our work, following 25 rules are used: 

1. If (er is NMAX) And (dy is NHI) Then (w is BIC) 

2. If (er is NMAX) And (dy is NLO) Then (w is SAC) 

3. If (er is NMAX) And (dy is ZERO) Then (w is SPC) 

4. If (er is NMAX) And (dy is PLO) Then (w is SPC) 

5. If (er is NMAX) And (dy is PHI) Then (w is SPC) 

6. If (er is NMIN) And (dy is NHI) Then (w is BIC) 

7. If (er is NMIN) And (dy is NLO) Then (w is SAC) 

8. If (er is NMIN) And (dy is ZERO) Then (w is SAC) 

9. If (er is NMIN) And (dy is PLO) Then (w is SAC) 
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10. If (er is NMIN) And (dy is PHI) Then (w is SPC) 

11. If (er is ZERO) And (dy is NHI) Then (w is SPC) 

12. If (er is ZERO) And (dy is NLO) Then (w is SAC) 

13. If (er is ZERO) And (dy is ZERO) Then (w is APC) 

14. If (er is ZERO) And (dy is PLO) Then (w is SAC) 

15. If (er is ZERO) And (dy is PHI) Then (w is SPC) 

16. If (er is PMIN) And (dy is NHI) Then (w is SPC) 

17. If (er is PMIN) And (dy is NLO) Then (w is SAC) 

18. If (er is PMIN) And (dy is ZERO) Then (w is SAC) 

19. If (er is PMIN) And (dy is PLO) Then (w is SAC) 

20. If (er is PMIN) And (dy is PHI) Then (w is BIC) 

21. If (er is PMAX) And (dy is NHI) Then (w is SPC) 

22. If (er is PMAX) And (dy is NLO) Then (w is SPC) 

23. If (er is PMAX) And (dy is ZERO) Then (w is SPC) 

24. If (er is PMAX) And (dy is PLO) Then (w is SAC) 

25. If (er is PMAX) And (dy is PHI) Then (w is BIC) 

Table 6.1 provides a summery for these results. 

 

Table 6.1: Fuzzy inference rules 

Rate of Change of Output Quality Characteristic (dy) 
 

NHI NLO ZERO PLO PHI 

NMAX BIC SAC SPC SPC SPC 

NMIN BIC SAC SAC SAC SPC 

NORM SPC SAC APC SAC SPC 

PMIN SPC SAC SAC SAC BIC 

Output 

Error 

(er) 

PMAX SPC SPC SPC SAC BIC 
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Defuzzification: In our work, the center of area (COA) method is used for defuzzification. 

This method calculates the center of gravity of the distribution for the control action, and 

mathematically it is expressed as: [82] 

1
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(6.1) 

where Z* is the number of quantization levels of the output, zj is the amount of control 

output at the quantization level j and µc(zj) represents its membership value in C.  

 

6.3.2 Performance Index Derivation: 

We will use the Absolute Efficiency (AE) as a performance index. This index measures 

the absolute efficiency of variation reduction, which is expressed as: 

D

e

AE
σ

σ
=  (6.2) 

where σD is the standard deviation of the disturbance, and σe is the standard deviation of 

the controlled output.  

 

6.3.3 Integrated SPC/APC Scheme Settlement: 

The integrated SPC/APC system (Figure 6.2) results by combining all previous contents 

which include: the robust tuned APC controller, the CIOC SPC controller, the FZL 

controller, the monitoring scheme. The FZLC acts as supervisory controller that provides 

an output w to utilize the use of both SPC and APC controllers. The final control action is 

given by: 
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( ) [ ]  ( ) . ( )  1 - ( ) . ( ) 
APC SPC

u t w t u t w t u t= +  (6.3) 

where u(t) is final control action, uSPC(t) is control action from the SPC controller, uAPC(t) 

is the control action from the APC controller, and 0 ≤ w(t) ≤ 1 is the controller utilization 

factor.  

 

 

6.4 Case Study: pH Control Process: 

 

To examine the effectiveness of our proposed scheme and illustrate its use, we conducted 

an optimization study on a pH control process which is presented in this section. 

 

6.4.1 Process Description: 

The control of pH is very important in many processes, such as: wastewater treatment, 

chemical, and biochemical processes. From the process side, pH neutralization is a very 

fast and simple reaction. But on the other hand, and in terms of control, it has been 

recognized as a very difficult control problem. The difficulties arise from strong process 

nonlinearity resulted from the process gain that can change from tens to hundreds of 

times over a small pH range. Moreover, the load changes frequently as the influent 

component varies [14]. The process can also be affected by noises, disturbances and 

environmental changes such as outside temperature change. To overcome the previous 

factors, it is required to have a workable pH control methodology that combines between 
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keeping the product quality on target, maintaining the controller performance, and 

keeping the system robust against external factors.  

 

The pH control system consists of: a continuously stirred tank reactor (CSTR), two inlet 

streams, one outlet stream, two flow control valves, two controllers, a pH sensor, a level 

sensor, and an agitator, as show in Figure 6.6 which was generated using Yokogawa’s 

Centum CS3000 and Microsoft softwares.  

 

 

Figure 6.6: Process flow diagram for a pH control process 

 

The process stream contains Hydrochloric Acid (HCL) with flow rate Fa and 

concentration
a

κ , while the titrating stream contains Nitrogen Hydroxide (NaOH) with 

flow rate Fb and concentration
b

κ . Since the outlet stream overflows from the CSTR, the 
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outlet flow rate is equal to the sum of the inlet flow rates. The reaction equation for the 

neutralization of acid-base reaction is as below: 

2HCL NaOH NaCL H O+ → +  (6.4) 

The differential equations for describing the pH neutralization are expressed as: 

( ) 
1

 κ κ= − −  a a oa a b

dy
F F F

dt V
 (6.5) 

( ) 
1

 κ κ= − +  b b ob a b

dx
F F F

dt V
 (6.6) 

where 
oa

κ  is overall concentration containing the anion of the acid, 
ob

κ  is the overall 

concentration containing the cation of the base, and V is the volume of the reactor. The 

steady-state operating conditions are given in Table 6.2 [49]. 

Table 6.2: Steady-state operating conditions 

V Fa Fb a
κ  

b
κ  

20,000 Lt 500 Lt/min 7.027 Lt/min 0.02 N 2.0 N 

 

The pH value in the CSTR is measured by a pH sensor and further transmitted to a pH 

controller which is of a PID type in which the control output is calculated then sent to a 

flow control valve that adjusts the base flow rate. The control objective is to maintain the 

pH value at the set point (pHset = 1). An agitator is also included to ensure proper mixing, 

and baffles are added to prevent the formation of vortex [14]. The overall process is 

described by the following FOPTD model: [9] 

 0.75
    

( )
1 3.6 1

d s s
cK e e

pH s
Ts s

− −

= =
+ +

 (6.7) 

where KC is the gain of the process model, d is the time delay, and T is the time constant.  
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The reactor tank level is kept constant by an overflow control system. This is achieved by 

applying a level transmitter that sends the feedback signal to a flow controller which 

further calculates the output according to the PID control law then sends it to a flow 

control valve which adjusts the acid flow rate.  

 

6.4.2 Evaluation of the Existing Control Scheme: 

The existing pH controller is of a PID type and its control parameters are as follows: [9] 

i d1.7667 3.9750 0.3396 1.6000 0.1667                                                   
p i d

K K Kτ τ= = = = =  

By combining the information from the FOPTD model and the existing PID controller 

setting, the block diagram for the existing process was built and simulated using Simulink 

(Appendix A.6.1). The resulted response was as shown in the following Figure 6.7. 

 

 

Figure 6.7: Output response by applying the existing PID controller 
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The MSD was found to be 0.1760 at which the SNR was found to be 7.5449 and the 

variance of the output was found to be 0.1604. 

 

6.4.3 APC Controller Tuning: 

The tuning was obtained by following the methodology described in Section 4.3. The 

control factors were selected to be: Kp, τi, and τd. The nominal values for these parameters 

were set to the ones used in the existing system, and for each control factor, three levels 

were selected as shown in Table 6.3. 

 

Table 6.3: Control factors 

Levels 
Factor Parameter 

1 2 3 

NF1 Kp 1.5900 1.7667 1.9434 
NF2 τi 3.5775 3.9750 4.3725 
NF3 τd 0.3056 0.3396 0.3736 

 

The noise factors were identified from the process model described by Equation 6.7 to be: 

KC, d, and T. For each factor, two levels were selected as shown in Table 6.4. 

 

Table 6.4: Noise factors 

Levels 
Factor Parameter 

1 2 

CF1 KC 1.0000 1.2500 
CF2 d 0.7500 0.9375 
CF3 T 3.600 4.5000 

 

After selecting the OAs as per the procedure described in Section 4.3, and conducting the 

experiments, the results were summarized in Table 6.5. 
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Table 6.5: Experimental results 

Trials 
Noise Factors 

1 2 3 4 

NF1 1.0000 1.0000 1.2250 1.2250 
NF2 0.7500 0.8625 0.7500 0.8625 
NF3 3.600 4.3200 4.3200 3.600 

 

Control Factors MSD 
Trials 

CF1 CF2 CF3 1 2 3 4 
MSD  σ  SNR 

1 1.5900 3.5775 0.3056 0.1857 0.2154 0.1953 0.2123 0.2022 0.0141 6.9427 
2 1.5900 3.9750 0.3396 0.1795 0.2029 0.1865 0.1963 0.1913 0.0104 7.1829 
3 1.5900 4.3725 0.3736 0.1755 0.1952 0.1809 0.1870 0.1847 0.0085 7.3365 
4 1.7667 3.5775 0.3736 0.1807 0.2057 0.1879 0.2013 0.1939 0.0116 7.1242 
5 1.7667 3.9750 0.3056 0.1761 0.1967 0.1817 0.1909 0.1864 0.0092 7.2967 
6 1.7667 4.3725 0.3396 0.1761 0.1904 0.1771 0.1833 0.1817 0.0066 7.4059 
7 1.9434 3.5775 0.3396 0.1775 0.1994 0.1833 0.1958 0.1890 0.0103 7.2354 
8 1.9434 3.9750 0.3736 0.1733 0.1915 0.1777 0.1860 0.1821 0.0082 7.3963 
9 1.9434 4.3725 0.3056 0.1707 0.1867 0.1743 0.1807 0.1781 0.0071 7.4934 

 

From Table 6.5, The maximum value for the SNR was found to be 7.4934, at which the 

average MSD was found to be 0.1781. Accordingly, the optimum values for the robust 

PID controller parameters were found to be: 

i d1.9434           4.3725           0.3056            1.4546             0.1500
p i d

K K Kτ τ= = = = =  

 

The output response for the process under this setting was as shown in Figure 6.8. The 

MSD was found to be 0.1707, at which the SNR was found to be 7.6777 and the variance 

of the output was found to be 0.1540. By comparing with results obtained under the 

exiting control scheme, the SNR was increased by 10.02% and the variability was reduced 

by 3.99%. These results will show more improvement when the process subjects to 

operate under assignable causes as we will see in the coming sections, which further 

indicates the effectives of robust tuning methodology.  
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Figure 6.8: Output response by applying the robust PID controller 

 

 

6.4.4 SPC Controller Development: 

The SPC controller was developed by following the methodology described in section 

3.3. The extracted data from closed loop step response was analyzed and the 

corresponding values for b0 and b1 were calculated from Equations 5.13 and 5.12 as 

shown in Appendix C.6.1. Accordingly, the process model described by Equation 5.11 

was expressed as follows: 

( ) ( ) ( )  1.2775 - 0.2467  y t x t e t= +  (6.8) 

The control action described by Equation 5.16 was expressed as follows: 

( )
( ) ( )[ ]0.2467 1.2775

0.07386

t e t
u t

τ− − −
=  (6.9) 
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6.4.5 Fuzzy Logic Controller Setting: 

The FZLC was constructed by following the procedure described in Section 6.3.1. For 

fuzzification, the membership functions for ert, dyt, and wt were set as per the values 

found in Table 6.6. The 25 fuzzy inference rules were applied for fuzzy inference, and the 

COA method was used for defuzzification.  

 

Table 6.6: Fuzzy logic controller setting 

eri er0 er1 er2 er3 er4 er5 

Velue 0.000 0.007 0.010 0.035 0.040 0.500 

dyi dy0 dy1 dy2 dy3 dy4 dy5 

Velue 0.000 0.007 0.010 0.035 0.040 0.500 

wi w0 w1 w2 w3 w4 w5 

Velue 0.000 0.030 0.050 0.300 0.400 0.600 

wi w6 w7 w8 w9 - - 
Velue 0.700 0.950 0.970 1.000 - - 

 

 

6.4.6 Construction of the Integrated SPC/APC System: 

For simulating the process, its block diagram was built using Simulink (Appendix A.6.2).   

 

6.4.7 Experiment Run and Data Analysis: 

The process was simulated to operate by all three control schemes separately, including: 

the existing PID control, the SPC control, and the fuzzy integrated SPC/APC control. The 

output responses for the three control schemes were compared in Figure 6.9 and the 

output statistics were summarized in Table 6.7. 

 

 



141 

 

Table 6.7: Results summary 

Control Scheme MSD SNR AE 

Existing PID Control 0.0798 10.9800 0.7187 
SPC Control 0.0547 12.6201 0.8841 

Fuzzy Integrated SPC/APC Control 0.0552 12.5806 0.9123 

 
 
 

 

Figure 6.9: Output responses under the three control schemes 

 
 
By comparing the output under our fuzzy integrated SPC/APC scheme to the output 

under the existing control scheme, results indicated a decrease of 30.83% in MSD, an 

increase of 14.58% in the SNR, and increase of 12.69% in the AE. These results turned 

out to be better even for the case when the process was derived under SPC control action. 
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Next, the process controlled by all three control schemes was set to operate under 

assignable causes by introducing white noise and including a shift of 0.04 units in the 

process mean at t = 26 sec. EWMA control charts (Appendix B.5.1) for λ = 0.1 and L = 6 

were generated using Matlab, their plots were as shown in Figures: 6.10, 6.11, and 6.12. 

 

 

 

Figure 6.10: EWMA control chart for PID controlled output 
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Figure 6.11: EWMA control chart for SPC controlled output 

 

 

Figure 6.12: EWMA control chart for integrated SPC/APC controlled output 
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The output statistics were summarized in Table 6.8. 

 

Table 6.8: Results summary 

Control Scheme MSD SNR ARL AE 

Existing PID Control 0.0537 12.7003 8.4350 0.7294 
SPC Control 0.0338 14.7108 17.9920 0.9235 

Fuzzy Integrated SPC/APC Scheme 0.0358 14.4612 19.6810 0.9641 

 

Results indicated a decrease of 66.67% in MSD, an increase of 13.86% in the SNR, and 

increase of 32.18% in the AE and twice increase in ARL. This indicates the effectiveness 

of our proposed scheme over the existing scheme in terms of optimizing the level of 

quality, performance and robustness. 

  

6.5 Conclusion: 

 

In this chapter, we developed a fuzzy integrated SPC/APC scheme that combines between 

the utilization of SPC and APC techniques for process monitoring and control under FZL 

interaction. We envision that driving any system under the resulted strategy will result 

into obtaining optimum level of quality, performance, and robustness. We also presented 

a case study for a pH control process to demonstrate the application of this scheme and 

illustrate its effectiveness. Results have shown the successfulness of our proposed scheme 

in terms of maintaining the output quality on target, improving the performance and 

maintaining the robustness. 
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CHAPTER  7 

 

 

SUMMARY AND CONCLUSIONS 

 

 

7.1 Summary: 

 

In this thesis, we considered different SPC and APC techniques for process enhancement 

and utilized their dual usage by proposing different integrated schemes. We started our 

work by presenting a review on SPC and APC techniques, discussing major issues facing 

their integration, and outlining the recent strategies followed to bridge the gap between 

them. We resumed our work by presenting different models for process parameters 

setting from which the Trine model for joint determination of process parameters was 

resulted. It followed the development of a robust gain-scheduled methodology for control 

parameters tuning. An integrated frame that combines between the use of SPC and APC 

techniques for process monitoring and performance evaluation was also presented. We 

also developed an SPC controller which was based on the constrained controller principle 

incorporated with quadratic quality loss function and applied its use for process control as 
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well as a standard benchmark for performance evaluation. Our work ended up by the 

development of a unified scheme that combined between the utilization of SPC and APC 

techniques under FZL interaction. Throughout the thesis, we presented several examples 

and case studies to support our suggestions. We envision that applying these schemes to 

any process will result into enhanced level of product quality, better performance, and 

maintained robustness.  

 

 

7.2 Future Research and Extensions: 

 

Throughout the thesis, we focused to achieve an effective integration between SPC and 

APC techniques and to cover the gaps left in recent related work. Among this gap, we 

successfully covered areas related to: dual SPC/APC monitoring and control, 

application of robust design principles, account for performance deterioration, and 

application of intelligent techniques. Furthermore, there are areas for future research 

and extension in which research is proposed, such as: 

 

a. Search for Assignable Causes for Process Variations: 

The detection capabilities of many of the SPC charts are satisfactory in terms of 

generating alarms for process shifts. However, adaptation of a scientific method for 

identifying the location of assignable causes is still not developed, and currently it is 
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based on judgment. This can be handled by reducing the degrees of freedom associated 

with search by monitoring the important process inputs only while implementing control. 

 

b. Development of Software Tools for Integrated SPC/APC Techniques: 

It is recommended to develop integration software that has the capability to link between 

process control, simulation, statistical analysis tools and optimization tools to mimic an 

integrated SPC/APC system. Although there are some existing simulation software 

packages as well as statistical analysis tools, most of them are designed to be stand alone. 

It is required to have an integrated software tool that applies both SPC as well as APC 

tools and reflects the true power of integrated SPC/APC techniques. 

 

c. Extension to MIMO Systems: 

Most researchers have limited their scope of combining SPC/APC control schemes for 

single-input single-output (SISO) systems. An extension to multiple-input multiple-output 

(MIMO) systems is recommended.  The major challenge behind the development of such 

strategies is the complexity of these problems that arises from the large number of 

parameters needed to be examined, which results in statistical problems such as: 

existence of a large number of highly correlated input variables (multi-co-linearity) and 

information dispersion among many output variables. These problems could be handled 

by employing techniques such as: principal component analysis (PCA) for resolving the 

correlation problem, and partial least squares (PLS), which resolves the dispersion.  
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NOMENCLATURE 

 
 
 

 τ target value 

 y output quality characteristic 

 dy rate of change of the output quality characteristic 

 u control action 

 uSPC control action from the SPC controller 

 uAPC control action from the APC controller 

 w controller utilization factor 

 e deviation of the process output from the target 

 k quality loss coefficient 

 n number of observations 

 t time 

 T time constant 

 Td total time until the process starts to deteriorate 

 T* optimal production run length 

 TU ultimate period 

 τi integral time constant 

 τd derivative time constant 

 d time delay 

 µ process mean 

 µ0 process mean when the process is in control 

 µ1 process mean when the process is out of control 

 σ standard deviation 

 σD standard deviation of the disturbance 
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 σe standard deviation of the controlled output 

 2

ycσ  variance of the process by applying the constrained controller 

 2

yσ  variance of the process by applying the existing controller 

 ∆ tolerance 

 L width of the control limits 

 z EWMA parameter 

 λ weight for EWMA parameter 

 α probability of Type-I error 

 β probability of Type-II error 

 δ shift parameter 

 ς  half value of the tolerance 

 K controller gain 

 KU ultimate gain 

 Kp proportional gain 

 Ki integral gain 

 Kd derivative gain 

 Kc process model gain 

 φ  adjustment factor 

 ℜ  flow resistance factor 

 
CC

η  performance index 

 Cr rejection cost per unit 

 CRL rejection cost for falling below the LSL 

 CRU rejection cost for exceeding the USL 

 CS nonconformance cost 

 CS0 loss when the process is in-control 

 CS1 loss when the process is out-of-control 

 COP cost of operating the out-of-control process 

 b0 regression function parameter 
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 b1 regression function parameter 

 v beverage volume inside the bottle 

 V reactor volume 

 h beverage level 

 h�  rate of change of beverage level  

 h* beverage level near the target 

 A cross sectional area  

 Fa acid flow rate 

 Fb base flow rate 

 Fin beverage input flow rate 

 
a

κ  acid concentration 

 
b

κ  base concentration 

 
oa

κ  overall concentration containing the anion of the acid 

 
ob

κ  overall concentration containing the cation of the base 

 

Note:  Nomenclature provided in this list does not apply for the literature part covered in 

Section 2.5; all terms in this section are kept as written by their authors. Brief 

explanation for each nomenclature within this section is provided parallel to its 

occurrence.     
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Appendix A: SIMULINK Diagrams 

 
 
 
 

A.4.1: Block diagram for the overall system 
 
 

 
 

A.4.2: Block diagram for the RGS system 
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A.5.1: Process Derived by a Conventional PID Controller 

 

 

 

 

A.5.2: Process under Assignable Causes 
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A.6.1: Simulink block diagram for the existing pH control process 
 
 

 
 
 
 
 

A.6.2: Simulink block diagram for the integrated SPC/APC system 
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Appendix B: MATLAB Programs  

 
 
 
 

B.3.1: Matlab Code for Optimum Process Mean Problem 
 
clc 
clear 
tl=10;   % Lower Specification Limit 
tu=13;  % Upper Specification Limit 
cl=65;  % Monetary loss for an item below LSL 
cu=25;  % Monetary loss for an item exceeding USL 
sig=0.75;        % Standard Deviation 
tr=(tl+tu)/2;    % target value 
k=10;            % loss coefficient 
ct0=1000; 
 
for m=9:0.01:14 
    cmu=normcdf((tu-m)/sig); 
    cml=normcdf((tl-m)/sig); 
    pru=normpdf((tu-m)/sig); 
    prl=normpdf((tl-m)/sig); 
    A=cl*cml+cu*(1-cmu); 
    B=k*(((m-tr)^2+sig^2)*(cmu-cml))+k*sig*((m-2*tr+tl)*prl-(m-2*tr+tu)*pru); 
    ct=A+B; 
    if ct<ct0; 
        ct0=ct; 
        Mean=m; 
        Total_Loss=ct0; 
    end 
plot(m,ct); 
hold on; 
end 
xlabel('Mean'); 
ylabel('Loss'); 
grid; 
Mean 
Total_Loss 
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B.3.2: Matlab Code for Optimum Process Mean and Production Run Length Problem 
 
clc 
clear 
tl=9;                                 % Lower Specification Limit 
tu=13;                              % Upper Specification Limit 
cl=35;                              % Monetary loss for an item below LSL 
cu=10;                             % Monetary loss for an item exceeding USL 
sig=0.76;                         % Standard Deviation 
tr=(tl+tu)/2;                     % Target value 
k=5;                                 % Loss coefficient 
shf=0.7;                           % Shift Parameter 
lnd=2;                              % Failure Rate 
CT0=100; 
CC=3;                              % Operating out of Control Cost 
t=3; 
for t=0:0.5:20 
   for m=8:0.05:14 
    cmu0=normcdf((tu-m)/sig);                            % For In-Control Process   
    cml0=normcdf((tl-m)/sig); 
    pru0=normpdf((tu-m)/sig); 
    prl0=normpdf((tl-m)/sig); 
    cmu1=normcdf((tu-m-shf*sig)/sig);              % For Out-of-Control Process    
    cml1=normcdf((tl-m-shf*sig)/sig); 
    pru1=normpdf((tu-m-shf*sig)/sig); 
    prl1=normpdf((tl-m-shf*sig)/sig); 
    % Loss when in-control 
    A0=cl*cml0+cu*(1-cmu0); 
    B0=k*(((m-tr)^2+sig^2)*(cmu0-cml0))+k*sig*((m-2*tr+tl)*prl0-(m-2*tr+tu)*pru0); 
    ct0=A0+B0; 
     % Loss when out-of-control 
    A1=cl*cml1+cu*(1-cmu1)    
    B1=k*(((m-tr-shf*sig)^2+sig^2)*(cmu1-cml1))+k*sig*((m-2*tr-shf*sig+tl)*prl1-(m-2*tr-shf*sig+tu)*pru1); 
    ct1=A1+B1+CC; 
     % Total Loss     
    CT=exp(-lnd*t)*ct1+(1-exp(-lnd*t))*ct0;     
    if CT<CT0; 
        CT0=CT; 
        Opt_Mean=m; 
        Opt_Run_Length=t; 
        Loss=CT0; 
    end 
plot3(m,t,CT); 
hold on; 
end 
end 
xlabel('Mean'); 
ylabel('Run Length'); 
zlabel('Loss'); 
grid; 
Opt_Mean 
Opt_Run_Length 
Loss 
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B.3.3: Matlab Code for Optimum Process Mean, Production Run Length and 
           Specification Limits Problem 
 
clc 
clear 
cl=28;                   %  Scrap Cost 
cu=13;                  % Rework Cost 
cr=9;                     % Rejection cost 
sig=0.75;              % Standard Deviation 
tr=10;                   % Target value 
shf=0.8;                % Shift Parameter 
lnd=3;                   % Failure Rate 
CC=5;                   % Operating out of Control Cost 
CT0=100; 
for t=0:1:20 
for d=0.5:0.5:3 
   tu=tr+d/2;          % Upper specification limit 
   tl=tr-d/2;            % Lower specification limit   
for m=8:0.05:12      
 
% For In-Control Process ~ N(m,sig)  
    cmu0=normcdf((tu-m)/sig);           
    cml0=normcdf((tl-m)/sig); 
    pru0=normpdf((tu-m)/sig); 
    prl0=normpdf((tl-m)/sig); 
    A0=cl*cml0+cu*(1-cmu0); 
    B0=cr/d^2*(((m-tr)^2+sig^2)*(cmu0-cml0))+cr/d^2*sig*((m-2*tr+tl)*prl0-(m-2*tr+tu)*pru0); 
    ct0=A0+B0; 
 
% For Out-of-Control Process ~ N(m+shf*sig,sig)  
    cmu1=normcdf((tu-m-shf*sig)/sig);  
    cml1=normcdf((tl-m-shf*sig)/sig); 
    pru1=normpdf((tu-m-shf*sig)/sig); 
    prl1=normpdf((tl-m-shf*sig)/sig); 
    A1=cl*cml1+cu*(1-cmu1); 
    B1=cr/d^2*(((m-tr-shf*sig)^2+sig^2)*(cmu1-cml1))+cr/d^2*sig*((m-2*tr-shf*sig+tl)*prl1 
            -(m-2*tr-shf* sig +tu)*pru1); 
    ct1=A1+B1+CC; 
 
%Total Loss    
    CT=exp(-lnd*t)*ct1+(1-exp(-lnd*t))*ct0;     
       if CT<CT0; 
          CT0=CT; 
          Opt_Mean=m; 
          Opt_Run_Length=t; 
          Loss=CT0; 
          Tolerance=d; 
      end 
      plot(m,CT,'g*'); 
      hold on; 
end 
end 
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end 
plot(Opt_Mean,Loss,'ro'); 
hold on; 
grid on; 
xlabel('Mean'); 
ylabel('Loss'); 
Opt_Mean 
Opt_Run_Length 
USL=tr+Tolerance/2 
LSL=tr-Tolerance/2 
Loss 
Tolerance 
 
 

B.3.4: Matlab Code for Optimum Process Mean Problem for Satisfying Manufacturing 
           Requirements 
 
clc 
clear 
tl=40;            % Lower Specification Limit 
tu=41.5;        % Upper Specification Limit 
cl=55;           % Scrap Cost 
cu=10;          % Rework Cost 
cm=90;         % Manufacturing cost 
ci=4;             % Inspection cost 
sp=200;        % Selling price 
sig=0.25;      % Standard Deviation 
tr=40.75;       % target value 
k=25;            % loss coefficient 
pr0=30; 
for m=39.5:0.005:42 
    cmu=normcdf((tu-m)/sig); 
    cml=normcdf((tl-m)/sig); 
    pru=normpdf((tu-m)/sig); 
    prl=normpdf((tl-m)/sig); 
    A=cl*cml+cu*(1-cmu); 
    B=k*(((m-tr)^2+sig^2)*(cmu-cml))+k*sig*((m-2*tr+tl)*prl-(m-2*tr+tu)*pru); 
    pr=sp-A-B-cm-ci; 
    if pr>pr0; 
        pr0=pr; 
        Mean=m; 
        Total_Profit=pr0; 
    end 
plot(m,pr); 
hold on; 
end 
plot(Mean,Total_Profit,'r*'); 
xlabel('Process Mean'); 
ylabel('Total Profit'); 
grid; 
Mean 
Total_Profit 
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B.5.1: Matlab code for EWMA control chart 
 
function ewma(d) 
 
d=d'; 
nn=size(d); 
n=nn(1,2); 
t=1; 
l=3; 
sg=std(d); 
z0=t; 
w=0.1; 
a=14; 
 
for i=1:1:n 
     
    z1=w*d(1,i)+(1-w)*z0; 
    ucl=t+l*sg*sqrt((w/(2-w))*(1-(1-w)^(2*i))); 
    lcl=t-l*sg*sqrt((w/(2-w))*(1-(1-w)^(2*i))); 
    cl=t; 
     
 if z1 >= ucl 
    plot(a,z1,'rO'); 
    hold on; 
    plot(a,z1,'rx'); 
    plot(a,ucl,'bV'); 
    plot(a,lcl,'b^'); 
    plot(a,cl,'bh'); 
     
 elseif z1 <= lcl 
    plot(a,z1,'rO'); 
    hold on; 
    plot(a,z1,'rx'); 
    plot(a,ucl,'bV'); 
    plot(a,lcl,'b^'); 
    plot(a,cl,'bh'); 
     
  else     
    plot(a,z1,'k*'); 
    hold on; 
    plot(a,ucl,'bV'); 
    plot(a,lcl,'b^'); 
    plot(a,cl,'bh'); 
     
end                
    z0=z1; 
  %  a=a+0.05; 
  a=a+0.05; 
end 
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Appendix C: Tables and Calculations 

 
 
 
 

C.4.1: Orthogonal Array of level 2 with 4 experimental runs OA(L4) [50]  
 
 

Run A B C 

1 1 1 1 
2 1 2 2 
3 2 1 2 
4 2 2 1 

 
 
 
C.4.2: Orthogonal Array of level 3 with 9 experimental runs OA(L9) [50] 
 
 

Run A B C D 

1 1 1 1 1 
2 1 2 2 2 
3 1 3 3 3 
4 2 1 2 3 
5 2 2 3 1 
6 2 3 1 2 
7 3 1 3 2 
8 3 2 1 3 
9 3 3 2 1 
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C.5.1: Calculations on Output Data 
 
 
 

n u y u y y
2
 

1 1.2367 0.1706 0.2110 1.5294 
2 1.1311 0.4495 0.5084 1.2794 
3 1.0452 0.6942 0.7256 1.0924 
4 0.9950 0.8588 0.8545 0.9900 
5 0.9499 0.9654 0.9170 0.9023 
6 0.9074 1.0334 0.9377 0.8234 
7 0.8708 1.0730 0.9344 0.7583 
8 0.8418 1.0915 0.9188 0.7086 
9 0.8200 1.0953 0.8981 0.6724 

10 0.8044 1.0896 0.8765 0.6471 
11 0.7939 1.0787 0.8564 0.6303 
12 0.7874 1.0653 0.8388 0.6200 
13 0.7840 1.0517 0.8245 0.6147 
14 0.7826 1.0389 0.8130 0.6125 
15 0.7827 1.0279 0.8045 0.6126 
16 0.7837 1.0187 0.7984 0.6142 
17 0.7851 1.0115 0.7941 0.6164 
: : : : : 
: : : : : 
: : : : : 

49 0.7936 1.0000 0.7936 0.6298 
50 0.7936 1.0000 0.7936 0.6298 

Sum - - 39.6727 34.4775 
Average 0.8254 0.9761 - - 
Variance 0.0084 0.0230 - - 

 

b0 2.2036 
b1 -1.4872 
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C.6.1: Calculations on Output Data 
 
 
 

n x y x y x
2
 

1.0000 3.0403 0.1049 0.3189 9.2434 
2.0000 3.0206 0.4150 1.2535 9.1240 
3.0000 2.7728 0.7420 2.0574 7.6884 
4.0000 2.3595 1.0314 2.4336 5.5672 
5.0000 1.8703 1.2527 2.3429 3.4980 
6.0000 1.3821 1.3936 1.9261 1.9102 
7.0000 0.9549 1.4545 1.3889 0.9118 
8.0000 0.6281 1.4456 0.9080 0.3945 
9.0000 0.4199 1.3835 0.5809 0.1763 

10.0000 0.3298 1.2877 0.4247 0.1088 
: : : : : 
: : : : : 
: : : : : 

46.0000 0.9921 1.0026 0.9947 0.9843 
47.0000 0.9928 1.0013 0.9941 0.9857 
48.0000 0.9943 1.0002 0.9945 0.9886 
49.0000 0.9961 0.9992 0.9953 0.9922 
50.0000 0.9963 0.9991 0.9954 0.9926 

Sum - - 51.9603 77.6505 
Average 1.1134 1.0029 - - 
Variance 0.3198 0.0451 - - 

 
 

b0 -0.2467 
b1 1.2775 

 
 
 
 

 

 

 

 

 

 



171 

 

 

Vita' 
 
 
 
 

Full Name: Muneeb Akram Muhammad Akram   

Nationality: Pakistani 

Date of Birth: 21st August, 1984 

B.Sc. Degree:  Control and Instrumentation Systems Engineering  

King Fahd University of Petroleum and Minerals, June, 2007 

M.Sc. Degree: Systems Engineering 

Specialization in Industrial Engineering and Operations Research 

King Fahd University of Petroleum and Minerals, February, 2011 

Present Address: Dhahran, Saudi Arabia 

Permanent Address: Lahore, Pakistan 

E-mail: muneebakram1@hotmail.com 

Telephone: 00966508959059 

 

 


	0 Cover.pdf
	1 Signatures.pdf
	2 Dedication.pdf
	3 Table of Contents.pdf
	4 Abstract_English.pdf
	5 Abstract_Arabic.pdf
	6 Report.pdf

