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Introduction

Star operations such as thelosure, thes-closure and thev-closure are essential tools in
modern multiplicative ideal theory for characterization and investigation of several classes
of integral domains. During the last decades, tmperation (known as the largest star
operation of finite type) has been intensively studied, probably for its ability to classify
many classes of integral domains as generalizations of well-known domains such as Bezout
domains (i.e., every f. g. ideal is principal) to GCD domains (i.e., for every f. g. iddal

is principal), Dedekind domains (i.e., every ideal is invertible) to Krull domains (i.e., every
ideal ist-invertible), and Rifer domains (i.e., every f. g. ideal is invertible) to PVMDs (i.e.,
every f. g. ideal ig-invertible).

Many authors studied the structure of particular overrings of an integral domain, spe-
cially overrings of a Rifer domain. In 1968, Brewer [4] gave a representation theorem for
the Nagata transform(1), whenl is a finitely generated ideal (which coincides in this case
with the Kaplansky transfor(1)) and in 1974, Kaplansky [36] gave a complete descrip-
tion of Q(1) for each ideal in an integral domaim, where these two special overrings are
defined asl (1) = Un-1(R: 1") andQ(l) = {u € K : for eacha € | there is a positive inte-
gern(a) with ua"@ ¢ R}. In [21], Fontana, Huckaba and Papick described some relations
between the above constructions in the case ofgPdomains.

While (1 : 1) is an overring oR which is isomorphic to the endomorphism ring Rid

of I, 171 := (R: 1) is anR-submodule ofL containing(l : 1) which is not, in general, a



ring. Many papers in the literature deal with the fractional idedl The main problem is
to examine settings in which ! is a ring and then when it coincides with: 1). In 1982,
Huckaba and Papick [32] examined settings in whichis a ring wherd is an ideal of a
Prufer domain. Later, in 1983, D. F. Anderson [1], using pullbacks, constructed an example
of a domainR and an ideal of R for which1 1 is a ring but(l : ) - -1, In [27], Heinzer
and Papick gave a necessary and sufficient conditioh fhrwhen it is a ring, to be equal
to (I : 1) for an ideall in a Piifer domain with Noetherian spectrum. In 1993, Fontana,
Huckaba, Papick and Roitman [22] provided various representations of the endomorphism
ring (I : 1) of an ideall in a Piifer domain as intersections of localizations. Finally in 2000,
Houston, Kabbaj, Lucas and Mimouni [29] established several characterizatidns for
be a ring for a nonzero ide&ln an integrally closed domain.

The notion of compactly packed ring (@P-ring for short) was introduced by Reis
and Viswanathan in [41], where Noetheri@f-rings were characterized by the property
that prime ideals are radicals of principal ideals. The notion of coprimely packed ring
was introduced by Erdiu in 1988 [12] and intensively studied in a series of papers, for
instance see [12, 13, 14, 15, 16], [18], [7] and [42]. Erdogdu studied the notion of coprimely
packed rings in many contexts such as Notherian domains, Bezout domains, Nagata rings,
polynomial extensions, anfgR-domains. For instance, he proved thatDedekind domain
R is coprimely packed if and only if R has a torsion class groHie studied the relation
between the compact packedness and the coprime packedness. However the most important
part in his study is the correlation between the coprime packedness and the set theoretic
intersection of ideals in polynomial rings [16].

This thesis contributes to the investigation of the dual and the Nagata and Kaplansky
transforms of an ideal in PVMDs. Also we extend the notions of compact and coprime
packedness to an integral domain with respect to a star operation of finite type and study

some algebraic properties of these notions in various settings. The thesis is divided into two



chapters. The first part of Chapter 1 deals with the question of when the dual of an ideal is
a ring for at-ideal in a PVMD, and then whelm? coincides with the endomorphism ring
of I. Our first main contribution, Theorem1.2.3 and Theorem1.2.6, is a generalization of
two well-known theorems established by Huckaba-Papick [32, Theorem 3.8] and Heinzer-
Papick [27, Theorem 2.5]. The second main contribution, Theorem1.2.14, is a complete
description of the endomorphism ring oftadeal in atQR-domain which generalizes a
well-known result by Fontana et al., [22, Corrollary 4.4 and Theorem 4.11]. The second
part of Chapter 1 is devoted to Kaplansky and Nagata transforms of an ideal in a PVMD,
in an attempt to establish analogues for well-known results on overringsitgrlomains.
Specifically, we prové-analogues for many results collected in Fontana-Huckaba-Papick’s
book [21, Section 3.3] fot-linked overrings of PVMDs. The first main theorem, Theo-
rem 1.3.2, generalizes [21, Theorem 3.3.7] to the casepaime ideals in a PVMD. The
second main theorem, Theorem 1.3.6, is a satisfattanalogue for [21, Theorem 3.3.10].
Chapter 2 extends the compact and the coprime notions to a dérexidowed with
an arbitrary star operationof finite type. In the particular case whete= d is the trivial
operation orR, we obtain the so-called compactly and coprimely packed rings. We study
various aspects of these notions in many different classes of integral domains, including
Nagata rings, Rifer-like rings, polynomial rings, and pullbacks. In Section 2.2, we de-
fine the notions ofk-compact andk-coprime packedness with respect to a star operation
of finite type (Definitions 2.2.1 and 2.2.2) and then examine the possible transfer of these
notions to Nagata rings, Theorem 2.2.10, which standstanalogue of Erdogdu’s result
[15, Theorem 3.1] and polynomial rings, Theorem 2.2.12. Section 2.3 focuses on the
coprime packedness. Our objective is to seek generalizatidrar@iogues of well-known
results in the classical case. The first main theorem of this section deals with the context
of GCD domains, Theorem 2.3.10, and provides a satisfactory analogue for [16, Theo-

rem 2.5]. We also characteritecoprimely packed generalized Krull domains, Theorem



2.3.2, and-coprimely packed-almost Dedekind domains, Theorem 2.3.6, as a satisfactory
analogue of [16, Theorem 2.1]. The last section of Chapter 2 deals with the transfer of
the aforementioned notions to special types of pullback constructions in order to provide
original examples. Precisely, we characterize the compact and coprime packedness in pull-
backs issued from local rings, Theorem 2.4.2. Also, we study-twnpact and-coprime
packedness in pullback constructions, Theorem 2.4.3. Finally, we give an example to illus-
trate the correlation betweéh)-compact andt)-coprime packedness of integral domains,

Example 2.4.4.



Chapter 1

Duals and transforms of ideals in PVMDs

This chaptet studies when the dual oftadeal in a PVMD is a ring and treats the question
of when it coincides with its endomorphism ring. Also this chapter studies the structure of

particular classes of overrings of PVMDs.

1.1 Introduction

Let R be an integral domain and its quotient field. For nonzero fractional idedlsnd
J of R, we define the fractional idedl : J) = {x € K|xJC |}. We denoteR: |) by |1
and we call it the dual of an idedlsince it is isomorphic, as @module, toHomg(I,R).
The Nagata transform (or ideal transform)laf defined ad (1) = Uy_1(R: I1") and the
Kaplansky transform of is defined a€)(l) = {u € K : for eacha € | there is a positive
integem(a) with ua"® ¢ R}. The zero cohomology dfoverRis defined byR' = (J®_, (I":
IM). Itis clear that(l : 1) CR CT(1) CQ(l)and(l: 1) CI L1 CT(l) C Q(l). Also we
notice thatQ(l) is a variant of the Nagata transforfi{l), and useful in the case whén

is not finitely generated, but Ifis a finitely generated ideal &, thenQ(1) =T(l). Itis

*This work is accepted for publication in Communications in Algebra (in collaboration with A. Mimouni).



Chapter 1: Duals and transforms of ideals in PVMDs 6

worthwhile noting thaQ(l), T(l), (I :1) andR' are overrings oR for each ideal in a
domainR, while I 1 is not, in general, a ring. Moreove, : |) is the largest subring df
in which1 is an ideal and it is isomorphic to the endomorphism ring. of

In 1968, Brewer [4] proved a representation theorem for the Nagata tran3fdnm
whenl is a finitely generated ideal (which coincides in this case With)) and in 1974,
Kaplansky [36] gave the complete description of the Kaplansky transfdfin for each
ideall in an integral domaifiR. He proved thatif | is a nonzero ideal of R, the®(l) =
(N Rp, where P varies over the set of prime ideals that do not contathis result was also
obtained independently by Hays [26]). In [24, Exercise 11, page 331] Gilmer described
T(I) for an ideall which is contained in a finite number of minimal prime ideals in a
Prufer domainR, specifically, et R be a Piafer domain, | a nonzero ideal of RP, } the
set of minimal prime ideals of I, anfMg } the set of maximal ideals that do not contain
[. Then T(I) C (NRg,) N (N RMB)’ where Q, is the unique prime ideal determined by
MNhe1!"Rp, = QuRp,. Moreover, if the se{P,} is finite, equality holds(see also [21,
Theorem 3.2.5]). In [21], Fontana, Huckaba and Papick described some relations between
the above overrings in the case ofifar domains. For instance, they showed thilP“is a
nonzero non-invertible prime ideal of a #fer domain R, then there is no proper overring
between P andQ(P)” ([21, Theorem 3.3.7]). In 1986, Houston [28] studied the divisorial
prime ideals in PVMDs, and among others, he proved tii& s a nonzero, non-t-maximal

t-prime ideal of a PVMD R, then P = RN % (1), where%; (1) = N Rw;, and
IZMgeMax (R)
T(P)=Rp,N%(l), where B= (N, P"Rp) "RandMax (R) is the set of alt-maximal ideals

of R’ ([28, Proposition 1.1 and Proposition 1.5]).

Many papers in the literature deal with the fractional ided. The main problem is
to examine settings in whichr® is a ring. In 1982, Huckaba and Papick [32] stated the
following: “let R be a Péfer domain, | a nonzero ideal of RP,} the set of minimal

prime ideals of I, and Mg} the set of maximal ideals that do not contain I. Theh D
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(NRe,) N (N RMﬁ). If 171 is a ring, equality holds([32, Theorem 3.2 and Lemma 3.3]).
They also proved thatf¢r a radical ideal | of a Piifer domain R, le{P,} be the set of
minimal prime ideals of | and assume thaP, is irredundant. Then1! is a subring of

K if and only if for eacha, P, is not invertiblé ([32, Theorem 3.8]). In [27], Heinzer and
Papick gave a necessary and sufficient conditiorl fér when it is a ring, to be equal to
(I:1) for an ideall in a Piifer domain with Noetherian spectrum . Namely, they proved that
“for a Prufer domain R witlfSpe¢R) Noetherian, let | be a nonzero ideal of R and assume
that 171 is a ring. Then 1= (1 : 1) if and only if = /1 (i.e., | is a radical ideal) if and
only if the minimal prime ideals of I il : 1) are all maximal ideal$([27, Theorem 2.5]).

In 1993, Fontana, Huckaba, Papick and Roitman [22] studied the endomorphism ring of an
ideal in a Pafer domain. One of their main results asserted thatd nonzero ideal | of a
Prufer domain R, le{Qq } be the set of maximal prime ideals 8f(R,1) and {Mg } be the

set of maximal ideals that do not contain I. ThénI) 2 (MRg,) N (MRwu;). Moreover, if

R is a QR-domain, equality hold§22, Theorem 4.11 and Corollary 4.4]). Finally in 2000,
Houston, Kabbaj, Lucas and Mimouni [29], gave several characterizations oflwhéna

ring for a nonzero idedlin an integrally closed domain. For instance they generalized [22,
Theorem 4.11] to the PVMD’s case. Namely they proved tifdtis an ideal of a PVYMD
with no embedded primes, then'lis a ring if and only if F* = (1 : 1) = Ry N % (1), where

O the complement in R of the set of zero divisors gH 29, Theorem 4.7]).

The purpose of this chapter is to continue the investigation of when the dual of an ideal
in a PVMD is a ring and when it coincides with its endomorphism ring. We also aim at
giving a full description of the Nagata and Kaplansky transforms of ideals in a PVMD,
seeking generalizations tianalogues of well-known results.

In Section 1.2, we deal with the dual ot-adeal in a PVYMD. We give a generalization
of the above mentioned results of Huckaba-Papick and Heinzer-Papick. Precisely, we prove

that “for a radical t-ideal | of a PVMD R, lef{P,} be the set of minimal prime ideals of
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| and assume thaf)P, is irredundant. Then1! is a subring of K if and only if R is

not t-invertible for eacha” (Theorem 1.2.3). We also prove that R is a PVMD with
Speg(R) Noetherian, and | is a t-ideal of R such thatllis a ring, then 't = (1 : 1) if

and only if |=+/1 if and only if the minimal prime ideals of | ifl : I) are all t-maximal
ideals’ (Theorem 1.2.6). In the particular case wh&#és a Piifer domain we obtain the
aforementioned results of Huckaba-Papick and Heinzer-Papick simply by remarking that a
Prufer domain is just a PVMD in which thieoperation is trivial, that ist = d. We close
this section with a description of the endomorphism ring tideal in atQR-domain, that

is, a PVYMDR such that each-linked overring ofR is a quotient ring oR (recall that an
overringT of Rist-linked overRif for every finitely generated ide&lof R, | 1 = Rimplies
that(T : IT) = T). Particularly we give a generalization of a well-known result by Fontana
etal., [22, Corrollary 4.4 and Theorem 4.11], that ist 1 be a t-ideal of a PVMD R{Qq }

be the set of all maximal prime ideals offZ1) and{Mg } be the set of t-maximal ideals of

R that do not contain I. Thef : 1) 2 (MRg,) N (MNRw;,), and if R is a tQR-domain then
equality holds (Theorem 1.2.14).

Section 1.3 deals with Kaplansky and Nagata transforms of an ideal in a PVMD. Our
aim is to give thet-analogues for many results of Fontana-Huckaba-Papick [21, Section
3.3] for t-linked overrings of PVYMDs. Our first main theorem generalizes [21, Theorem
3.3.7] to the case dfprime ideals in a PVMD. For instance we prove th#&t? is a non-
t-invertible t-prime ideal of a PVMD R, then there is no proper overring betweenad
Q(P)” (Theorem 1.3.2). The second main theorem is a satisfactarjalogue for [21,
Theorem 3.3.10], that isJét R be a PVMD and P a t-prime ideal of R. The(PT & Q(P)
if and only if T(P) = ReNQ(P) andQ(P) ¢ Re. Moreover,(PQ(P));, = Q(P) if and only
if Q(P) ¢ Rp if and only if P= +/I for some t-invertible ideal wherg s the t-operation
with respect td2(P)” (Theorem 1.3.6). Other applications of the obtained results are given.

Throughout this chapteR is an integral domain with quotient field. By a fractional
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ideal, we mean a nonzeR®submoduld of of K such thatl C Rfor some nonzero element

d of Rand by a proper ideal we mean a nonzero ideaich that C R. Recall that for a
fractional ideall of R, thev-closure of an ideal is the fractional ideal, = (I71)~* and
thet-closure of an ideal is the ideall; = |JJy, whereJ ranges over the set of all finitely
generated subideals of A fractional ideall is said to be a~-ideal (or divisorial) (resp.
t-ideal , respt-invertible ) if | = I, (resp.l = I, resp.(1l 71); = R). A t-prime ideak-prime

ideal is at-ideal which is prime and emaximal ideal is d-prime ideal which is maximal

in the set ot-ideals. The set of atlprime ideals is denoted Bypeg¢(R) and the set of all
t-maximal ideal is denoted bylax (R) . A domainR is said to be a PVMD (for Rifer v-
multiplication domain) if every nonzero finitely generated ideatiisvertible (equivalently,

Rwv is a valuation domain for evetymaximal idealM of R). For more basic details about
star operations, we refer the reader to [24, sections 32, 34]. Also it is worth noting that
many of our results are inspired from thaiRar case, and some proofs are dense and use a
lot of techniques of thé-operation. We are grateful to the huge work onttimeove (from

Prufer to PVYMD) done during the last decades.

1.2 Duals of ideals in a PVMD

We start this section by noticing that for a fractional ideaf a domainR, | =% = (I;) =1 =
()7L, I ist-invertible if and only ifl; is t-invertible and ifl; = R, thenl =t = (1 : 1) =R. In

this regard, we will focus on the case whéris a propet-ideal ofR.

Before giving the first main theorem of this section, we begin with the following two results
on necessary and sufficient conditions Ifot to be a ring. The first one is a generalization
of [32, Lemma 2.0] (since invertible ideals drmvertiblet-ideals) and the second one is a

t-analogue of [29, Proposition 2.2].

Lemma 1.2.1.Let R be a domain and | a t-ideal of R. If | is t-invertible, thert is not a
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ring.

Proof. Deny, assume that!is aring. LetM be at-maximal ideal oR containingl. Since

| is t-invertible, thenll 1 is not contained in anrmaximal ideal ofR. Hence(ll ")y =
Rv. SolRy is an invertible ideal oRyy and hence principal. Sindes t-invertible, thenl

is v-finite. Hence there is a finitely generated idAaf R such thatA C | andl = A; = A.
SinceA is a finitely generated ideal &, by [43, Lemma 4](ARu)v, = (AVRwm)y,, Where
vy is thev-operation with respect By. So(IRy) = (A\Rw) 1= (ARy) 1 =A"1Ry =
(A,) "Ry = 171Ry. Sincel ~tis aring,(IRy) ! is also a ring, which contradicts the fact

thatlRy is principal inRy. O

Corollary 1.2.2. Let | be a t-ideal of a domain R. Thendis a ring if and only if | is not

t-invertible and(M : 1) is a ring for each t-maximal ideal M of R containing I.

Proof. If I~1is aring, therl is nott-invertible by Lemma 1.2.1. By [29, Proposition 2.1],
(M : 1) is aring for eacti-maximal ideaM containingl. Conversely, ifl is nott-invertible,
thenll =1 C M for somet-maximal idealM of Rand hencé ' = (M :1). Sol~!is aring.

|

Now, we turn our attention to the duals of ideals in a PVMD. Our approach is similar
to that of Huckaba-Papick done in [32] foriPer domains. LeR be a PVMD. We divide
Speg(R), that is, the set of all nonzeteprime ideals oR, into three disjoint sets:

S, = {P € Speg(R) : Pist -invertible}

S = {P € Spe¢(R) : Pis a non+ -invertiblet -maximal ideal andPRe is principal}

S ={PeSpegR) : P¢Z S US}. Our first main theorem is a generalization of [32, Theo-
rem 3.8] to PVMDs.

Theorem 1.2.3.Let | be a radical t-ideal of a PVYMD R,P,} the set of all minimal prime
ideals of | and assume tha}Py, is irredundant. Then1! is a subring of K if and only if p

is not t-invertible for eaclu:.
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Proof. (=) If I"tis aring, by [29, Proposition 2.1(2)]P,) ! is a ring for each. So, by
Lemma 1.2.1P, is nott-invertible for eachor. Whence{P,} C S U Ss.

(<) By [29, Lemma 4.3], it is enough to prove thiat’ C (NRe,) N (N RMB> where
{Mﬁ} is the set of alt-maximal ideals oR that do not contain. CIearIyI—1 - ﬂRMﬁ
(for if x € 17t anda € I\Mg, thenx =% ¢ Ruv;). Now we show that—* C NRp,. Let
P, be any minimal prime ovelr. SinceP, is nott-invertible,P, € SUSs. If Py € S, set
J=yLa Py Thenl = JN P, and sinceN\ Py is irredundant,) ¢ P,. But sincePy is a
nont-invertiblet-maximal ideal of a PVMIR, (J+P,); = Rand(P,) 1 =R

Lemma 1.2.4.Let R be a PVYMD and A and B nonzero ideals of R such(hatB); = R.
Then(Aﬂ B)t = (AB)t

Proof. By [35] it suffices to check thatfANB);Ry = (AB){Rwu for everyt-maximal ideal
M of R. LetM be at-maximal ideal oR. SinceA andB aret-comaximal, then eithek ¢ M
or B¢ M. Without loss of generality, we may assume that M. Hence, by [33, Lemma
3.3] (ANB){Rw = (ANB)Ry = ARy NBRy = Ry NBRy = BRy = ABRy = (AB);Ry, as

desired. O

Now, by the previous lemma,= JNPy = (JNPy); = (JPy);. Sol 1= (JR,) 1 = (R:
Ped) = (R:Py) :J) = (R:J) =J"1 Butsinced ¢ Py, 11 =31 CRp,. Assume that
Py € S3 and letN be at-maximal ideal oR properly containind?,. Sincel is a radical ideal
of R, IRy = Py Rn. SinceP,Ry is a nonmaximal prime ideal of the valuation domBjy, it
is not invertible. Hencé ™ C (I"1)g\n € (Ru @ IRN) = (Rn : PoRn) = Re, ([32, Corollary

3.6]), as desired. O

The following example shows that the irredundancy condition in Theorem 1.2.3 cannot
be removed. This example is a slight modification of [29, Example 5.1], where the authors
constructed an example of a Bezout dorrRiwith a principal ideal (sol 1 is not a ring)

such thaP~1 is a ring for each minimal prime ide&® of . Our example is just an adjunct
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of an indeterminat® to the domairR to get outside the Rfer situation but keeping us in

the context of PVMDs.

Example 1.2.5.LetQ be the field of rational numbers and setTQ[{X": ne Q*}] and
J=(X—-1)T. By ([29, Example 5.1]), T is a Bezout domain, J is a principal radical ideal
of T (so J1is not aring) and P! is a ring for each minimal P over J in T. Also, by [32,
Theorem 3.8], the intersection of the minimal primes of J is not an irredundant intersection.
Now let R=T[Y], | =J[Y]. Clearly R is a PVMD (which is not Rfer), and | is a radical
principal ideal of R (so t1 = J~1[Y] is not a ring). Since =1 NT CQNT =P, itis easy

to check that every minimal prime ideal Q of R over | is of the form Q[Y], where P

is a minimal prime ideal of T over J. Hence ®= P~1[Y] is a ring for each Q. Finally

I =J[Y] = (NP)[Y] = NP[Y] is not an irredundant intersection.

Let T be an overring of an integral domai According to [8],T is said to be-linked
overR if for each finitely generated idehlof Rwith 171 = R, we have(IT)~1 = T. Also
we say thafl ist-flat overRif Tyy = Rp for eacht-maximal ideaM of T, whereP = RNM
(cf. [38]). Finally, we say thaR has a Noetheriattspectrum & pe¢(R) is Noetherian) iR
satisfies the a.c.c. condition on raditadleals.

Our second main theorem generalizes Heinzer-Papick’s theorem [27, Theorem 2.5].

Theorem 1.2.6.Let R be a PVMD with Spgd) Noetherian, and let | be a t-ideal of R.

Assume that1! is a ring. Then the following conditions are equivalent:
Q1 t=0:1);
2 1=V
(3) The minimal prime ideals of | ifi : |) are all t-maximal ideals.

The proof of this theorem involves several lemmas of independent interest, some of

them ard-analogues of well-known results.
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Lemma l1l.2.7.Let T be at-flat overring of a domain R. The following equivalent conditions

hold:
(1) It C(IT ), for each le F(R), where { is the t-operation with respectto T.
(2) If Jisat-ideal of T and HR+# 0, then NR is a t-ideal of R.
(3) LT &£ (IT)y, for each le f(R), where y is the v-operation with respectto T.
(4) (IT)y, = (IyT)y, for each le f(R).
(5) (IT)y, = (tT)y, for each le F(R).
(6) (IT)y, = (ItT)y, for each le F(R).

Proof. The six conditions are equivalent for an arbitrary overfingf R by [2, Proposition
1.1]. To prove (i), leix € ly. Then there is a finitely generated iddadf R such thatl C |
andx(R:J) € R. Now, letN be at-maximal ideal ofT and seM = NNR. SinceT ist-flat
overR, Ty = Ru. Sinceld s finitely generated(T : JT) Ty = X(Tn : JTn) =X(Rm : JRv) =
X(R:J)Ru C Ry = Tn. Hencex(T :JT) C T and sox € (JT)y, C (IT )y, as desired. O

The next lemma is crucial and it is a generalization of [24, Theorem 26.1]. We will often
use it whenever we want to prove that an overfingf a PVMD R is contained irRqg for

somet-prime idealQ of R.
Lemma 1.2.8.Let R be a PVMD and T at-linked overring of R. Then:
(1) If Mis at-prime ideal of T, thenyf = Rp and M= PR-NT, where P=MNR.

(2) If P is a nonzero t-prime ideal of R, th¢RT);, # T ifand only if R O T, where t

is the t-operation with respectto T.

(3) If Jisat-ideal of T and l=JNR, then J= (IT)y,.
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(4) {(PT)t, }pen is the set of all t-prime ideals of T, whefe= {P € Spe¢(R) : (PT), #
T}

Proof. (i) SinceT is at-linked overring of a PVMDR, T is at-flat overring ofR ([38,
Proposition 2.10]). Henc& = Ty whereP = M NR ([10, Theorem 2.6]). Therefore
M=MTuNT =PR-NT. (ii) If (PT)y, ;Cé T, then there is &maximal idealM of T such
thatM D (PT),. SinceMNR2 (PT);, NR2 PTNR2 P, Rp D Ryrr=Tw 2 T, as desired.
Conversely, iRp 2 T O R, thenTg p = Re. HenceRp ist-linked overT. So, by Lemma 1.2.7,
(PT), € (PRe)t, = PRe ;Cé Rp (heret; is thet-operation with respect tBp and it is trivial
sinceRp is valuation). Sincdlg p = Rp is a valuation overring of a PVMO', J, Tr\p =
JTrp foreachideal of T. If (PT), =T, thenRe =Tr\p = (PT)y Trp = PTrp=PRe,
contradiction. ThereforgPT),, & T.

(iii) Clearly (IT ), C J. It suffices to show thal C (IT );,. Let{M} be the set of all
t-maximal ideals ol . SinceT is at-linked overring ofR, T is a PVMD. Hencel = (J Ty, .
SetP, = Mg NRfor eacha and letx € JRy,, = JRp,. Thenx= 2, wherea c J andt € R\ Py.
SinceJ C T C Ty, =Rp,, thena= %, whereb € Randse R\ P,. Henceb=ase JNR=1.
Sox= S% €IRp, C (IT)Rp, = (IT)Tu,. Thereforel C (IT),, as desired.

(iv) By (iii) , eacht-prime ideal ofT is of the form(PT);, for someP € A. Conversely,
if Pe A, thenRRp = PR is at-prime ideal ofRp ([33, Lemma 3.3] andRp is a valuation
domain) andT C Re (by part(ii)). SoRp = Tg\p and thenRp is t-linked overT. Hence
PR-NT is at-prime ideal ofT ( Lemma 1.2.7) an®PReNT = ((PRRNT)NR)T ), =
(PT), by (iii) . 0

The next lemma is a generalization of [27, Lemma 2.4] and it relates the condition
not being a ring to a kind of “separation property” for a minimal prime ideal oveidaal

of a PVMD.

Lemma 1.2.9.Let R be a PVMD, | at-ideal of R and P a minimal prime ideal of | in R. If
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there is a finitely generated ideal J of R such thatJ C P, then "1 is not a ring.

Proof. By way of contradiction, assume thiat! is a ring. Then by [29, Theorem 4.5]
and [35, Theorem 2.22]),1 C Rp andl 1 is at-linked overring ofR. SoRep is t-linked
overl—1. SinceJ"1 C 171, R= (JJ71); C (JI7Y),, wheret, is thet-operation with respect
to 11 (Lemma 1.2.7). Also by Lemma 1.2.7R1- 1), C (PRs);, = PRe (Wheret; is the
t-operation with respect t&p, so it is trivial). Therefore £ R= (JJ71); C (JI7Y),, C

(PI=1), C PR, which is a contradiction. O

Lemma 1.2.10.([34, Lemma 2.8] et R be a PVMD and | at-ideal of R. Then | is at-ideal
of (I:1).

Lemma 1.2.11.([10, Lemma 3.7)Let R be an integral domain. The following conditions
are equivalent.

(i) Each t-prime ideal is the radical of a v-finite ideal.

(i) Each radical t-ideal is the radical of a v-finite ideal.

(iii) Speg(R) is Noetherian.

Proof of Theorem 1.2.6(ii) = (i) Follows from [1, Proposition 3.3] without any more
conditions.

(i) = (i) Deny, assume thatG /1. Then there is &maximal idealM of R such that
IRy is not a radical ideal. Moreover, there is a prime ideaontained inM and minimal
overl with IRy ; PRy andy/IRy = PRy. Note thatP is at-prime ideal ofR (as a minimal

prime over &-ideal).
Claim 1. IRp = PRe.

Deny. Letb € P such thatlRp ; bRr C PRp. SinceSpeg(R) is Noetherian,P =
V(ai,...,ar)y for someay,...,a € P. Setd:= (ay,...,a,b). Note thatP = ./J, (P =
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V(a,....ar)v € v/(a,...,a, b)y € P). Now, we prove that C J C P, which contradicts
the assumption that L is aring by Lemma 1.2.9. L&l be at-maximal ideal oR. If P Z N,

thenRy = PRy = vOWRy = VRN = vIRN ([33, Lemma 3.3]). HencdRy = Ry 2 IRN.
Assume thaP C N. ThenPRpr = PRy sinceRp is an overring of the valuation domaky.

SincelRp G bRe, b~ C Re and sob~I € PR> = PRy C Ry. HencelRy € bRy C JRy
as desired.

Now sinceRy is a valuation domairZ (R, IRy ) = QRv for somet-prime idealQ C M.
SinceRis a PVMD andP andQ aret-primes contained iM, Q andP are comparable under
inclusion. Moreover, lek € PRy \ IRu. SincePRy = PRs = IRp (Claim 1), there exists
y € R\ Psuch thayx e I. Hencey € Z(Ry,IRm) N"R= Q and therefor® & Q.

Claim 2. (QI 1), =171,

Note thatl =t = (I : I) is a subintersection dR ([29, Theorem 4.5]) and sb! is t-
linked overR ([35, Theorem 2.22]). Sinc&peg(R) is NoetherianQ = /A, for some
finitely generated idea\ of R. SayA = nZmbnR SinceP & Q, P G A,. Indeed, leN be a
t-maximal ideal ofR. If Q Z N, thenPR\, C Ry = QRy = ARy. If Q C N, thenARy and

PRy are comparable as ideals of the valuation donigjnBut if ARy C PRy, thenQRy =

VARN = vVARN = vVARy C PRy and soQ C P, which is absurd. HendeRy ; ARy and
thereforeP G Ay = A,. Now sincel CPC A, A1 C171. So1e R= (AA L) C (A7) C
(A7), € (QI71), (Lemma 1.2.7). HencQl 1), = 171, as desired.
Finally, by Lemma 1.2.8,"1 ¢ Ry. On the other han@ : 1) C (1 : 1)Ry C (IRw : IRy) =
(Rv)or, = Ro by [21, Lemma 3.1.9], which is absurd. It follows tHas a radical ideal of
R.

(iii ) = (ii ) Assume that all minimal prime ideals bin (I : 1) aret-maximal ideals. If
IS V1, as in the proof ofi) = (ii), there exist twd-prime idealsP andQ of R such that

I CPS Qand(l:1) CRg. Then(l @ 1)r g = Ro and soRg is t-linked over(l : I). Hence
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QRN (1:1) andPRyN (I : 1) aret-prime ideals of | : ) with | CPRoN(1:1) & QRoN (I
I') which is absurd.

(i) = (i) Assume that—! = (I : 1) and letP be a prime of(l : I) minimal overl.
By Lemma 1.2.10] is at-ideal of (I : 1) and soP is at-prime ideal of(l : |) (as a prime
minimal over a-ideal). Now by a way of contradiction, assume that there ipame ideal
Qof (I :1) such that S Q. Since(l : 1) is at-linked overring ofR, P = (P'(I : 1)), and
Q= (Q/(I:1)), for somet-prime ideals’ andQ’ of Rwith | C P’ & Q' (Lemma 1.2.8(iv)).
SetQ = /Afor some finitely generated idealof R. As in the proof of Claim 2| C P’ C A.
SoA 1 CI71=(I:1). Hence le R= (AA 1) C (A(I : 1)), € (Q(I: 1)), = Q, which is

absurd. It follows thaP is at-maximal ideal of(l : I), completing the proofl]

The next two results deal with the duals of primaigeals in a PVMD.

Proposition 1.2.12.(cf. [20, Lemma 4.4]) et R be a PVMD and | a primary t-ideal of R.

If I tisaring, then i =(I:1).

Proof. Deny, assume that therexsc 172\(I : I). Sincel is at-ideal ofR, there isa c |
and at-maximal idealM of R containingl such thatxa ¢ IRy. Sincel1is aring,| ! =
(NRe,) N (NRw,) where{Py} and {Mg} are respectively the sets of all prime minimal
ideals ofl andt-maximal ideals do not containing ([29, Theorem 4.5]). LeP, be a
minimal prime ofl with P, C M. Thenx € Rp,. Write x= 2 whereb € Rands € R\Py,.

If t = 2 € Ry, thens=ta € PRy NR= Py, which is a contradiction. I € Ry, sincel

is a primary ideal oR, ax= ag = b% € IRp, "Ry = IRwm, which is a contradiction too. It

follows thatl =2 = (1 :1). O

Corollary 1.2.13. (cf. [21, Proposition 3.1.14])et R be a PVMD with Spg®) Noetherian

and | at-ideal of R. If | is a primary ideal which is not prime, thertlis not a ring .

Proof. Deny, assume that!is aring. Thed 1 = (I : I) by Proposition 1.2.12. Therefore

| is a radical ideal (and so prime) by Theorem 1.2.6, which is absurd. O
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According to [24, Section 27], a Bier domairRis called a QR-domain if each overring
of Ris a quotient ring oR. In [9] the authors definetQR-domains as PVYMDR such that
eacht-linked overring ofR is a quotient ring oR and they characteriza@R-domains as
follows: “Let R be a PVMD. Then R is a tQR-domain if and only if for each finitely gener-
ated ideal A of R, there isr 1 and be R such that AC bRC A, [9, Theorem 1.3].
We close this section with a third main theorem. It generalizes well-known results by
Fontana et al. [22, Corrollary 4.4 and Theorem 4.11] and gives a descriptidn: &f
for at-ideall in a PVMD that is @ QR-domain.

Theorem 1.2.14.Let | be a t-ideal of a PVMD R{Q,} be the set of all maximal prime

ideals of ZR,1) and {Mg} be the set of t-maximal ideals of R that do not contain I. Then:
(1) (H:1) 2 (MR ) N (NRwy);
(2) If Ris atQR-domain, then equality holds.
Before proving this theorem, we need the following lemma.

Lemma 1.2.15.Let | be at-ideal of a PVMD R. ThenR|) = UQ where Q ranges over
the set of all t-prime ideals contained iR |). Q’s are called the primes of(®&,1) and

the primes of ZR |) that are maximal for the inclusion are called the maximal primes of
Z(R1).

Proof. Firstwe claimthaZ(R 1) = U Z(Ru,IRv)NR. Indeed, lek € Z(R,I). Then

MeM(R|I)
there isae R\I such thatxe |. Sincel is at-ideal, there is &maximal ideaM containing

such thae € Ry \IRy. Sinceaxe IRy, x€ Z(Ru, IRm) NR. Conversely, leM € Max (R, 1)
and letze Z(Ry,IRm) NR. Then there ig € Ry \IRy such tha&€ € IRy with c € R\I and
t € R\M. Henceszce | for somese R\M. If cse |, thenc = ls € IRwm. Thus% € IRu, a
contradiction. Hences¢ | and therz € Z(R,I1), as desired. Now, clearl(R 1) D UQ.

Conversely, ifx e Z(R1), thenx € Z(Ru, IRv) N R for somet-maximal ideaM containing
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I. SetQ=Z(Ru,IRu) R ThenQ is at-prime ideal ofR ([35, Corollary 2.47])x € Q
andQ C Z(R)1), as desired. Finally, note th@s are exactly Z(Ru,|Rv) "R)’'s, whereM

ranges over the set of aimaximal ideals oR containingl. O

Proof of Theorem 1.2.14 (i) Let u € (NRg,) N (MRwu,) anda € 1. Itis enough to prove
thatuae I. Sinceu € MRy, it suffices to show thatia € IRy, for eachy, where{N,}
is the set ot-maximal ideals oR containingl. By [24, Corollary 4.6]1Rq, = Rr\uQ,-
Write u = g, wherer € Rands € R\ UQ,. Fix y and sefQ = Z(Ry,,IRn,) "R ThenQ
is a prime ofZ(R,1) by Lemma 1.2.15 antiC Q C Ny. Let Qq, be a maximal prime of
Z(R,1) containingQ. We claim thal"g1 € Ry, For if not, thengsl =teRy,and thus=at €
IRy, MRC QRy, NR=Q C Qq,, a contradiction. Hencg € Ry, and scua=ag =r& € Ry,.
Thus ifua¢g IRy, thensua=ra € | C IRy, and sos € Z(Ry,,IRn,) TR=Q C Qq,, @
contradiction. Thereforea € IR\,, as desired.

(i) SetT := (1 :1). ClearlyT C MRum;. Now we will prove thafl C Rq,. SinceR
is a PVMD andl is at-ideal, T ist-linked overR. HenceT = Rsfor some multiplicative
closed seS of R sinceR is atQR-domain. By Lemma 1.2.8(ii), it suffices to show that
(QaT)t, # T for eacha. By way of contradiction, assume th@T )i, = T whereQ = Qg
for somea. Then there exists a finitely generated idBauch thaB,, = T andB C QT.
SayB = IZ:anT with g € QT and writeg; = S_zm Qistis with gis € Q andtis € T for each
i=1,...,nands=1,....,m. Now letA be the flnltely generated ideal fgenerated by
all gi;s. ThenA C Q andB C AT. HenceT =B,, C (AT)y, C (A/T)y, C T and therefore
(AT)y, = (AT )y, =T. SinceRis atQR-domain andl ist-linked overR, by [8, Proposition
2.17], AT =T. But sinceA, = A C Q (hereQ is at-prime i_deal by Lemma 1.2.15),
QT =T. Hence 1= Iincﬁai whereqg € Qanda € T. Setd = IzqiR. ClearlyJT =T
and by inductionJSlez T for all positive integers. SinceR is:atQR-domain, there is

a positive integeN andd € R such thatiN C dRC J, = % € Q. SinceJNT =T, then



Chapter 1: Duals and transforms of ideals in PVMDs 20

i=s

1= Zl/l.y. where; € N andy; € T, and sincelN C dR there existsyj € R such that
Ai= du. for each Now, sinced € Q C Z(R,I), there exists € R\ | such thatd € 1. Hence

ty ;:T and by Lemma 1.2.8,

r= erl.y. erdyi“i € IT =1, a contradiction. HencgQT)
T C Rg, completing the proof.]

1.3 Ideal transform overrings of a PVMD

We start this section with the following theorem which is a generalization of [21, Theorem
3.2.5]. As the proof is similar to that of [21, Theorem 3.2.5] simply by replacing maximal

ideals byt-maximal ideals, we omit it here.

Theorem 1.3.1.Let R be a PVMD, | at-ideal of RP,} the set of minimal prime ideals of

I, and {Mg } the set of t-maximal ideals of R that do not contain I. Then:

(1) T(1) € (NRq,)N(NRwm,), where Q is the unique prime ideal determined®§_; I"Re, ;

(2) The equality holds, if | has a finitely many minimal primes.

Our next theorem generalizes [21, Theorem 3.3.7] to PVMDs.

Theorem 1.3.2.Let P be a non-t-invertible t-prime ideal of a PVYMD R. Then there is no

proper overring of R between® andQ(P).
The proof of this theorem involves the following lemmas.

Lemma 1.3.3.Let R be a PVMD, | a t-ideal of R and let T be a t-linked overring of R

contained inQ(l). Then there is one-to-one correspondence between the setBc

Spee(R):P21}and S ={Qec Speg(T):Q2IT}.

Proof. DefineW:S — S by W(P) =PR-NT =Q for eachP € §. ThenW is well-
defined. Indeed, leP € S;. SinceT C Q(I), T C Rp. So Trp = Rp and thenRe is a
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t-linked overring ofT. HencePR-NT is at-prime of T. Also, if x e | \ P, thenx € IT \ Q

and the injectivity ol is clear.

Now, letQ € S and setP := RN Q. ThenP 2 |, and sinceRp = T, PRe = QTg. Hence
W(P)=PR-NT =QToNT =Q. O

Lemma 1.3.4.Under the same notation as Lemma 1.3.3|T)y, =T , then T=Q(I).

Proof. Assume tha{lT);, = T. ThenIT is not contained in any-prime ideal ofT.
SinceR is a PVMD andT is at-linked overring ofR, T is a PVYMD. By Lemma 1.3.3,

T= (] To= N Rer D Q(1). HenceT = Q(l). O
QeSpeg(T) PeSpeg(R),P2I

Proof of Theorem 1.3.2 Let T be an overring oR such thatP—! ST CQ(P) and let
{Mg} be the set of alt-maximal ideals ofR that do not contairP. By [21, Theorem
3.2.2],T CQ(P) C(\Rw,. If (PT)y # T, thenT C Rp (Lemma 1.2.8(ii)). S 1S T C
ReN (N RMﬁ) = P~1 ([28, Proposition 1.2]), which is a contradiction. Hen@&T),, = T,
and sol = Q(P) by Lemma 1.3.4]

Corollary 1.3.5. (cf. [21, Corollary 3.3.8])Let P be a non t-invertible t-prime ideal of a
PVMD R. Then:

(1) P1=T(P)orT(P)=Q(P);

(2) If P # (P?), then T(P) = Q(P);

(3) If P = (P?), then P1 =T(P);

(4) If P is unbranched, then P = T(P) = Q(P).

Proof. (i) Follows from Theorem 1.3.2.
(i) If P # (P?), then there is a prime ide&) of R such thai\(P"){Rp = QRr. Note
thatP ¢ Q (otherwise, ifP = Q, thenPRs> = QRs. But QRe C (P?){Rp = P’Rp C PRy, a
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contradiction). Henc& (P) 2 RoN (M Rwv,) 2 Q(P), where{Mg } is the set of alt-maximal
ideals ofR that do not contain. SinceT (P) C Q(P), T(P) = Q(P).

(iii) If P= (P?), thenP = (P"); for eachn > 1. Hence(R: P") = (R: (P");) = (R: P).
SoT(P) = P~1 by the definition ofT (P).

(iv) SinceP is unbranched an@P?); is aP-primary ([28, Proposition 1.3]p = (P?);.
HenceT (P) = P~ by (iii) . Itis clear thatQ(P) O T(P). By [11, Proposition 1.2JP = | Py
where{P,} is the set of primes ideal & properly contained if?, and we may assume that
they are maximal with this property. Then by [24, Corollary 4Rgd,= N Rp,. Hence by
[21, Theorem 3.2.2Q(P) C Rp. SinceQ(P) CN RMB’ QP)NRrCN RMﬁ NRp. It follows
thatQ(P) C P~1 = T(P). ThereforeT (P) = Q(P). O

Our last theorem generalizes [21, Theorem 3.3.10].

Theorem 1.3.6.Let R be a PVMD and P a t-prime ideal of R. Then:
(1) T(P) S Q(P) ifand only if T(P) = ReNQ(P) andQ(P) Z Re.

(2) The following conditions are equivalent:

(i) (PQ(P)), = Q(P);

(i) Q(P) £ Re;

(iiiy P = /1 for some t-invertible ideal |I.

The proof of this theorem involves the following lemmas. First we notice that in [24],
Gilmer mentioned thdfT (1) = T (I) for any invertible ideal of an arbitrary domaifR. Our
first lemma provides &analogue result in the class of PVYMDs. Note that one can replace

the condition “PVMD” onR by assuming that () is at-flat overring ofR.

Lemma 1.3.7.Let | be an ideal of a domain R.

(i) If I is t-invertible and R is a PVMD, the@T (l));, = T(I) where { is the t-operation
with respect to TI).

(i) If 1 and J are two ideals of a domain R such thét = 1/J, thenQ(I) = Q(J).
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Proof. (i) Sincel is t-invertible, then there is a finitely generated idéabf R such that
ACliandA =1lt. ThenT(1)=T(lt) =T(A) =T(A) =Q(A) and hencd (1) is at-linked
overring ofR. Sincel ist-invertible, then11 1); = Rand hencél (R: 1")); = (R: I"~1) for
eachn > 2. Since (R: 1") C (I(R: 1"))T (1) for eachn, then(I (R:1")); C (IT (1)), for each
n(Lemma 1.2.7). Hencg)(I(R: 1)t C (IT(1)),. SOT(1) =UI(R: 1) C(IT (1)), <
T(l) and thereforéIT );, = T(l), as desired. (ii) Straightforward via [21, Theorem 3.2.2].

a

Lemma 1.3.8.(cf. [24, Proposition 25.4]) et R be a PVMD and A....,A,,B and C be
nonzero fractional ideals of R. Then:

(1) If for each i, A is t-finite, then ', A is t-finite.

(2) If B is t-finite, then(C : B) = (CB~1);.

(3) If B and C are t-finite, theriC :r B) is t-finite.

Proof. (1) It suffices to prove it fon = 2. We havg (A1 NA2) (A1 + A2))t = (A1A2)r ([25,
Theorem 5]). Sincd\; andA; aret-invertible, A1 A is t-invertible and thereforé&; N As is
t-invertible and sa-finite.

(2) If xe (R: B)C, thenx = 3 ; bici wherebB C Randc; € C. HencexB= Y ¢ibiB C
RCCC. So(R:B)C C (C:B). Therefore((R: B)C); C (C: B); = (C: B). Conversely, we
haveB(C:B) C C. Then(C:B)= (C:B); = ((C:B)BB™ 1), C (CB™1)..

(3) By definition,(C :r B) = (C:rB); = ((C: B)NR); = ((CB™1); NR);. SinceC andB are
t-finite, (CB~1); is t-finite. So by (1),(C :r B) is t-finite. O

Proof of Theorem 1.3.6(1) Assume that (P) & Q(P). ThenPis a nont-invertiblet-prime
ideal of R (otherwise, ifP is t-invertible, thenP is t-finite, i.e., there is a finitely generated
ideal A of R such thatP = A;.. HenceQ(P) =Q(A) =QA)=T(A)=T(A)=T(P), a
contradiction). IfP = M is a nont-invertible t-maximal ideal ofR, thenM~! = Rand so

(R: M") = Rfor all positive integers. HenceT (M) = R=RyNQ(M). Also if Q(M) C
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Ru, thenQ(M) = R= T(M), a contradiction. Henc®(M) ¢ Ry. Assume thaP is a
nont-maximalt-prime ideal. By Theorem 1.3.2-1 = T(P). HenceT(P) = ReNQ(P)
by [28, Proposition 1.1] and [21, Theorem 3.2.2]. Therefa(®) ¢ Rp.

The converse is trivial.

(2) (i) = (ii) By [21, Theorem 3.2.2] and [5, Proposition @(P) is at-linked overring
of R. Since(PQ(P)), = Q(P), Q(P) ¢ Re by Lemma 1.2.8(ii).

(it) = (iii ) Let {Qq } be the set of alt-prime ideals oR that do not contaif®. Choose
x € Q(P)\Rp. Write x= 2 wherea,b e R If | = (bR:gaR), thenl ¢ Q, for eacho
andl C P. By Lemma 1.3.8] is t-finite andy/l = P. For this ifz¢ /1, thenZ" ¢ A, for
each finitely generated ideAlof R such thatA C |. Hencez'ab! ¢ R for eachn. Since
abteQ(P),z¢P.

(iii ) = (i) SinceP = /1, Q(P) = Q(I) by Lemma 1.3.7(ii). Since is t-invertible, by
Lemma 1.3.7(1T(l)), = T(l). Also sincel is t-invertible, there is a finitely generated
ideal A of Rsuch thatA C | andl; = A;.. HenceT (1) =T(ly) =T(A) =T(A) = Q(A) =
Q(A) = Q(It) = Q(I) by [19, Proposition 3.4]. S@(P) = Q(1) = (1Q(I)), C (PQ(1)), =
(PQ(P)), € Q(P).0

Corollary 1.3.9. (cf. [21, Corollary 3.3.11])Let R be a PVMD and P a non-t-maximal
t-prime ideal of R. Then P) < Q(P) if and only if P= (P?); and P= /I for some t-

invertible ideal | of R

Proof. =) SinceT(P) S Q(P), P = (P?); (Corollary 1.3.5(ii)) andQ(P) ¢ Re (Theo-
rem 1.3.6). Hence there is a t-invertible idealf R with P = v/l (Theorem 1.3.6).

<) P = (P?) implies thatP~! = T(P) by Corollary 1.3.5(iii). Sincé® = +/I for some
t-invertible ideall of R, Q(P) ¢ Re by Theorem 1.3.6. By [29, Theorem 4B} = RpN
(MRwm,), where{Mg} is the set of alt-maximal ideals oR that do not contaif. By [21,
Theorem 3.2.2]T (P) = P! = RpNQ(P). By Theorem 1.3.6T (P) S Q(P). O
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Corollary 1.3.10. (cf. [21, Corollary 3.3.12] et R be a PVYMD and P a non-t-invertible
t-prime ideal of R. Then:
(PT(P)), # T(P) and(PQ(P))i, = Q(P) ifand only if P~ = T(P) S Q(P) where { (resp.

to) is the t-operation with respect to(T) (resp.Q(1)).

Proof. If (PT(P)), # T(P) and(PQ(P));, = Q(P), then clearlyT (P) < Q(P). Hence
P~1=T(P) by Theorem 1.3.2. Conversely,Rf 1 =T (P) S Q(P), then(PT(P)), # T(P)
by Lemma 1.3.4. MoreoveP = /I for somet-invertible ideall of R by Corollary 1.3.9.
Therefore(PQ(P))t, = Q(P) by Theorem 1.3.6. O



Chapter 2

Compact and coprime packedness with respect to

star operations

This chaptef studies the notions of compactly packed ring and coprimely packed ring with

respect to a star operation of finite type.

2.1 Introduction

LetRbe a commutative ring. An idelbf Ris said to be compactly packed (resp. coprimely
packed ) by prime ideals &if wheneverl C |Jyco Px, Where{Py }qcq is a family of prime

ideals ofR, | is actually contained i, (resp.l + P, C R) for somea € Q; andR s said

to be a compactly packed domain (resp. a coprimely packed domain ) if every ideal of
R is compactly (resp. coprimely) packed. The notions of compactly packedRamg

for short) was introduced by Reis and Viswanathan, [41], where Noeth@éRaimgs were
characterized by the property that prime ideals are radicals of principal ideals. The notion

of coprimely packed rings was introduced by Ejda in 1988 [12], and intensively studied

*This work is accepted for publication in Houston Journal of Mathematics (in collaboration with A. Mimouni) .
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in a series of papers, for instance see [12, 13, 14, 15, 16], [18], [7] and [42]. In this chapter
we extend these notions to a domain with an arbitrary star operation of finite type in the
following way: LetR be a domain andg be a star operation of finite type dd A x-

ideall of Ris said to be a-compactly packed ideal (resp-coprimely packed ideal) if
whenever C (Jycq Pa, Where{Py}qcq is a family of x-prime ideals ofR, | is actually
contained inP, (resp. (I +Py). € R) for somea € Q; andR is said to bex-compactly
(resp.x-coprimely) packed if every-ideal ofRis x-compactly (respx-coprimely) packed.

In the particular case where= d is the trivial operation orR, we obtained the so-called
compactly and coprimely packed rings. We also study various aspects of these notions in
many different classes of integral domains such as Nagata rings, polynomial riiifgs; Pr

like rings, pullbacks etc.

In Section 2.2, we define the notions-etoprime and«-compact packedness with re-
spect to a star operation of finite type and we give a diagram summarizing different impli-
cations between these notions. We then concentrate on the transfer of the above notions to
Nagata rings and polynomial rings. Our first main result states that given a star operation
« of finite type, if R is x-coprimely packed, then its Nagata rifNga(R, ) with respect to
x IS coprimely packed (Theorem 2.2.10). The second main result establishes a connection
between thdx|-compact packedness of the polynomial riRgX] and ¥-compact packed-
ness ofR where[x] is the extension t&[X] of a star operation of finite type on R and*
its spectral star operation. Precisely we prove that for an integral ddReaial given a star
operation of finite type: on R, the polynomial ringR[X] is a[x]-compactly packed domain
if and only if Ris ax-compactly packed domain and edehprime ideal ofR[X] is either
an upper to zero or extended, and each upper to zero is a set theoretic complete intersection
(Theorem 2.2.12).

During the last decades, thperation (as the largest star operation of finite type) has

been intensively studied, probably for its ability to classify many classes of integral domains
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as a generalizations of well-known domains. For instance, Bezout domains (i.e., every f. g.
ideal is principal) to GCD domains (i.e., for every f. g. idéal; is principal), Dedekind
domains (i.e., every ideal is invertible) to Krull domains (i.e., every ide&limvertible),

Prufer domains (i.e., every f. g. ideal is invertible) to PVMD (i.e., every f. g. ideal is
t-invertible) etc. In this regard, the third section focuses ortib@prime packedness. Our
objective is to seek for generalizationsteanalogues of well-known results in the classical
case. The first main theorem of this section is a satisfactory analogue of [16, Theorem 2.1].
Precisely we prove that fortaalmost Dedekind domaiR (i.e., Ry is Dedekind for every
t-maximal idealM), Ris t-coprimely packed if and only IR < X > ist-coprimely packed

if and only if R[X] is t-coprimely packed if and only if eadhprime ideal ofR[X] is a set
theoretic complete intersection if and onlyRfis a Krull domain with torsion class group
(Theorem 2.3.6). The second main theorem is a generalization of [16, Theorem 2.5]. Thus,
for a GCD domairR, consider the following statements:

() Everyt-prime ideal ofR[X] is a set theoretic complete intersection.

(i) R[X] ist-compactly packed.

(ii ) RX] is t-coprimely packed.

(iv) Ris t-coprimely packed.

Then (i) = (ii) = (iii) = (iv). Moreover, ift —dimR= 1, then the statements are
equivalent (Theorem 2.3.10).

The last section deals with the transfer of the pre-mentioned notions to special type of
pullback constructions in order to provide original examples.

ThroughoutR is an integral domain with quotient field F (R) is the set of all nonzero
fractional ideals of R, i.e., aR-submodule#\ of L such thad AC Rfor some nonzerd € R,
andf(R) is the set of all nonzero finitely generat@esubmodules of. Thenf(R) C F(R).

A mappingF (R) — F(R), E — E* is called a star operation drif for all nonzerox € L

andE,F € F(R), the following properties are satisfied:
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(1) (XE)* =xE* andR* =R
(x2) E C E*, andE C F implies* C F*
(x3) E** = E*.

A star operationx on R is said to be of finite type (or of finite character)& =
U{F*|F € f(R),F C E} for eachE € F(R). For each star operationon R, we asso-
ciate a star operation of finite typg defined byE*f| = U{F* : F € f(R),F C E} for each
E € F(R). Obviously, a star operaticnis of finite type if and only ifx = x¢. An ideal
| is said to be a-ideal if | = 1*. A x-prime ideal is a prime ideal that issaideal and a
x-maximal ideal is a (primej-ideal which is maximal in the set of allideals. Notice that
if x is of finite type, then every-ideal is contained in a&-maximal ideal and every minimal
prime of ax-ideal isx-prime.

Finally, letSFqR) the set of all star operations of finite type Bnand forx € SFqR),
let Spec(R) be the set of akk-prime ideals of R, MaxR) the set of alk-maximal ideals of
RandX!(R) the set of all height-one prime idealsRif Also for ax-ideall of R, Max,(R,1)
will denote the set of alk-maximal ideals of R containing Max, (R, 1), the set of alk-
maximal ideals do not containirigand if| = aRis a principal ideal, we use the notation

Max, (R, a) for Max. (R, aR). Unreferenced material is standard, typically as in [24] or [36].

2.2 General results

Definition 2.2.1. Let R be an integral domain andbe a star operation of finite type on R.
The following statements are equivalent.

(i) For everyx-ideal | of R and{Py }4cq a family ofx-prime ideals of R, C |JP, implies
that | C P, for somea € Q.

(i) For everyx-ideal | of R,\/I = v/aR for some & |.

(iii ) Everyx-prime ideal of R is the radical of a principal ideal.
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A domain R is said to be a-compactly packed domain if R satisfies one of the above

equivalent conditions.

Proof. Similar to [40, Theorem 1], but for the convenience of the reader we include a brief
proof here.

(i) = (ii). Letl be ax-ideal and{Q}« be the set of alk-prime ideals ofR do not
containingl. By (i), | Z UQq. Letae 1 \UQq. Itis easy to check thatlin(l) = Min(aR)
and therefore/l = v/aR

(i) = (iii ) Trivial.

(iii ) = (i) Assume that C | JP,. LetQ be a minimal prime ideal df such thaQ C [ JP,
(this is always possible sinc@= R\ Py, is a multiplicative set oRwith | NS= 0. Thus
there is a prime ided) containingl such thaQNS= 0. Then shrinkQ to a minimal prime
overl). SinceQ is x-prime, by(iii) Q = v/aR ButQ C |JP, implies thata € P,, for some
P,. Hencel C Q =+/aRC Py, as desired. O

Definition 2.2.2. Let R be an integral domain andbe a star operation of finite type on R.
The following statements are equivalent.

(i) For everyx-ideal | of R and{Py }4cq a family ofx-prime ideals of R, € |JP, implies
that (I + Py )« € R for somex € Q.

(i) For everyx-prime ideal P of R andPy }4cq a family ofx-prime ideals of R, = [ J P,
implies that(P+ Py )« € R for somex € Q.

(ii ) For everyx-ideal | of R and{M}4cq a family ofx-maximal ideals of R, € (UM
implies that IC M, for somex € Q.

(iv) For everys-ideal | of R, 1Z U{M|M € Max. (R I)}.

(v) For everyx-prime P of R and{My }¢cq a family ofx-maximal ideals of R, (UM,
implies that PC M, for someo € Q.

(vi) For everyx-prime ideal P of R, there existsbP such that j-rad.(P) = j —rad.(bR),
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where j—rad, (1) = N{M|M € Max.(R 1)}.
A domain R is said to be a-coprimely packed domain if R satisfies one of the above

equivalent conditions.

Proof. (i) = (ii) is trivial and for(ii) = (i), let| be ax-ideal ofRand{Py } cq a family
of x-prime ideals oR such that C |JP,. SetS= R\ JP,. ThenSis a multiplicative set
of Randl NS= 0. LetP be a minimal prime ideal of such thaPNS=0. ThenP is a
x-prime ideal and® C [JPy. By (ii), (I +Py)« C (P+Py)« € R, as desired. The proof of

the other assertions is similar to [18, Lemma 2]. O

Definition 2.2.3. Let R be an integral domain andbe a star operation of finite type on R.
The following statements are equivalent.

(i) For every ideal | of R and Py }qcq a family ofx-prime ideals of R, IC [JP, implies
that (I + Py )« € R for somex € Q.

(i) For every prime ideal P of R anfPy } ocq a family of x-prime ideals of R, FZ [ J Py,
implies that(P+ Py ). € R for somex € Q.

(iii ) For every ideal | of R andMq }qcq a family of x-maximal ideals of R, £ (Mg
implies that IC M, for somex € Q.

(iv) For every ideal | of R, iZ U{M|M € Max.(RI)}.

(v) For every prime P of R andM }4co a family ofx-maximal ideals of R, E (Mg
implies that PC M, for someo € Q.

A domain R is said to be @l, x)-domain if R satisfies the above statements are equivalent.

Proof. (i) = (ii) Trivial.

(i) = (iii) SetS= R\ U, Mq. ThenSis a multiplicative set oRandSn| = 0. LetP be a
prime ideal ofR such thaPNS=0 andl C P. ThenP C J, Mg and by(ii), (P+Mg). &R
for somef. SinceMg is x-maximal,| € P C Mg.

(iii ) = (iv) Trivial.
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(iv) = (v) Suppose thaP ¢ M,, for eacha. Then{My}qcq € Max.(R,P). SoP C
UM € U{M|M € Max,(R,P)}, which contradictgiv).

(v) = (i) Suppose that C | JP, and for eachx, let My, be ax-maximal ideal such that
Py € My. SetS= R\ U,M¢y. ThenSis a multiplicative ofR andSN 1 = 0. LetP be a
prime ideal ofR such thaPNS= 0 andl C P. ThenP C J, Mg and by(v) I CP C Mg
for somef. SincePg C Mg, | +Pg € Mg and thereforgl +Pg). € Mg C R, O

Remark 2.2.4.(1) Letx1 < x» be two star operations of finite type on R. If Riscompactly
packed, then R ig;-compactly packed. The converse is not true. Indeed, let k be a field and
X and Y indeterminates over k. SetF[X,Y]. Clearly SpegtR) = X*(R) and since R is

a UFD, every t-prime of R is principal. Hence R is t-compactly packed. However R is not
compactly packed since R is two-dimensional Noetherian domain [13, Proposition 1].

(2) If x =d, then(d,d)-domains are exactly the coprimely packed domains.

(3) If x —dimR= 1, thenx-compact and-coprime packedness coincide.

Proposition 2.2.5.Let R be a domain anelbe a star operation of finite type on R. Then R

is a (d, x)-domain if and only if R is coprimely packed alix(R) = Max,(R).

Proof. Assume thaR is a (d,*)-domain and letM be a maximal ideal oR. Then

M C Umem Mm, whereMp, is a x-maximal ideal ofR containingm. Thus,M C My, for
somemy € M and therefore = My,,. Hence MaxR) C Max,(R). On the other hand, if
Q € Max,(R), thenQ C M for some maximal ideall of R. But sinceM is ax-maximal
ideal ofR, M = Q and therefore MapR) = Max..(R). Now the coprime packedness and the

converse are clear. O

The diagram in Figure 1 summarizes the relations between all these classes of integral
domains where the implications are, in general, irreversible. Note that straight arrows for

implications and arcs for irreverences.
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compactly packed domain

(Example 2.4.4)

K[X,Y]
(d,t)-domain not comp

t-comp. not comp.

x-compactly packed

\

\
\
\
\
\
I

K[[X, Y]]

’ H
i (Example 2.4.4)
cop. not(d,t)-domain

ijt-cop. nott-comp.

2 KXY
| t

t-cop. not(d,t)-domain |

k[X,Yl
t-cop. not cop.

coprimely packed do ) _
x-coprimely packed domain

Rlocal Krull domain
with CI(R) =Z
cop. nott-cop

Figure 2.1: Relations betweencompact«-coprime packedness afd, «)-domains.

Now we turn our attention to the ascent and descentRlet a domainSa multiplica-
tive closed set oR andx a star operation of finite type dR In [30], the authors defined a
star operation of finite types on Rs as follows: For every nonzero fractional idéabf R,

if F = ERsfor some fractional idedt of R, F*s = (ERs)*s = E*Rg (notice thats does not

depend on the choice &).

Lemma 2.2.6. Assume RS, x as above. Then:

(1) (ERs)™s = (E*Rg)™s.

(2) If E is ax-ideal of R, then ERIs axgs-ideal of Rs.

(3) If ERsis axg-ideal of R, then ERNR is ax-ideal of R.

(4) Let P be ax-prime ideal of R which is disjoint from S. Then £R a xs-prime ideal of
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Rs.
(5) If M is a x-maximal ideal of R which is disjoint from S, then MR a xs-maximal ideal

of Rs.

Proposition 2.2.7. Assume R5 x as above and assume that SH&) is a tree. If Ris a

x-coprimely packed domain, thery B a xs-coprimely packed domain.

Proof. Straightforward via Lemma 2.2.6. O

Proposition 2.2.8. Assume R: as in Lemma 2.2.6 and assume that S is the complement of
the union of a set of-maximal ideals of R. If R is &coprimely packed domain, they B

a xg-coprimely packed domain.

Proof. SayS= R\ UNg. Let PRs be axs-prime ideal ofRs and {MyRs} € Max.4(Rs)
such thaPRs C [ JMyRs. By Lemma 2.2.6P is ax-prime ideal ofR, {M } C Spe¢(R) and
My NS= ¢ for eacha. Hence for eaclw, Mg C [UNg and soMy, C Ng for somef since
Ris ax-coprimely packed domain. Thi,Rs C NgRs and sinceVlyRs Is a xs-maximal
ideal of Rs (Lemma 2.2.6)MqRs = NgRs. HenceMy, = Ng is a*-maximal ideal ofR for
eacha. Now, PRs C [JMgRs implies thatP C (JMy. SoP C Mg, for someag sinceR is

x-coprimely packed. TherefofeRs C My, Rs, as desired. a

Proposition 2.2.9.Assume R5 x as in Lemma 2.2.6. If R issacompactly packed domain,

then Ry is a xs-compactly packed domain.

Proof. Straightforward. O

Let Rbe a domain and € SF(R). According to [23] the Nagata ring & with respect
to x (or thex-Nagata ring oR) is the ring defined biNa(R ) := R[X]n+ whereN* = {f €
R[X]: f #0andc(f)* = R}. In the particular case whete= d is the trivial star operation,

Na(R,d) coincides with the classical Nagata domRitX) as defined in ([39, Chapterg6,
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p.18] and [24, Section 33]). Our first main theorem deals with the transfer eftprime

packedness fromR to its «-Nagata ring.

Theorem 2.2.10.Let R be a domain and € SF(R). If R is x-coprimely packed, then
Na(R, *) is coprimely packed.

Proof. Let P’ be a prime ideal oNa(R x) and{M/,} € Max(Na(R, «)) such that”’ C
UM,,. Then there is a prime ide& of R[X] such that”’ = Ry and for eachx there is a
x-maximal idealM,, of R such thaM, = M [X]n- ([23, Proposition 3.1]. Now, lef € P.
Then there isop such thatf € Mg, . So there isg € N* such thatfg € Mg,[X]. Since
g & Mg X], f € Mg [X]. ThereforeP C |JMg[X]. We claim that(c(P))* C [UMg. Indeed,
letac (c(P))*. Then there is a finitely generated idéak (a1, ay, ....,a) C ¢(P) such that
ac A". So, foreach Ki <r, g is a linear combination of coefficients of polynomials
fi1, fi2,...., fis Of P of degreegj1,qi2,...,0 s respectively. Sefi = fi 1 + X%, +
XOrtGizt2f g4 4 XUt HhistS71E o and assume thd is of degreep. Thenf; € P
anda; € c(f;) for eachi. Now setf = f; +XPrif, 4 . 4 XPrt+P+=1f Thenf c P
and clearlya € A" C (c(f))". Butsincef € P C [JMy[X], f € Mg[X] for somef and thus
c(f) € Mg. Thereforea € (c(f))* € Mz = Mg, as claimed. Now sincR is x-coprimely
packed c(P))* C M, for somea. ThereforeP C c(P)[X] C My[X] and henc®’ C M/, as

desired. O

Let R be a domainL its quotient field,X andY indeterminates oveR and S a mul-
tiplicative set ofR[X]. In [6, Theorem 2.1], Chang and Fontana defined a stable semi-
star operation of finite type>s on R as follows: E®s := ERX]sNK for eachE € F(R).

If SC N, thenOg is a star operation of finite type dR and if Sis extended, that is,
S=RX]\U{P[X] : P € Spec(D) andP[X]NS= 0}, thenNa(R Os) = RX]s. More
generally, given a (semi)star operatienon R, the authors defined a (semi)star opera-

tion [x] on R[X] as follows: SeD; := R[X],K; := L(X) and take the following subset of



Chapter 2: Compact and coprime packedness with respect to star operations 36

Spe¢Di): Af :={Q1 € Spe¢D1)|QiNR=0orQ; = (Q1NR)[X] and (Q1 NR)*" C R}.
SetS] 1= D1[Y]\ (U{Qu[Y]|Q1 € A}}). Then takgx] =COs; ([6, Theorem 2.3]). Our second

main theorem examines the (decenjompact packedness betweeandR[X].

Corollary 2.2.11. Let R be a domain and S N\; a multiplicative closed set of[R]. If R is

a Os-coprimely packed domain, then NROs) is a coprimely packed domain.

Recall that an ideadl is said to be a set theoretic complete intersection idegll if=
V/(a1,...,an) wheren = htl (htl is the height ofl, i. e., the infinimum of the heights of

prime divisors ofl).

Theorem 2.2.12.Let R be a domain and be a star operation of finite type on R. Then
R[X] is a[*]-compactly packed domain if and only if R is-@ompactly packed domain and
each[«]-prime ideal of RX] is either an upper to zero or extended, and each upper to zero

is a set theoretic complete intersection.

Proof. LetP be ax-prime ideal ofR. ThenP[X] is a[«]-prime ideal ofR[X] ([6, Theorem
2.3(d)]). Hence there i§ € P[X] such thaP[X] = /fR[X]. Let 0+ a € P. Then there is
an integen andg € R[X] such thag" = fg. Thusf = c would be a constant iR and hence
P = v/cR ThereforeR is ¥-compactly packed. Now, & be a[«]-prime ideal ofR[X] such
that 0# P = QNR. Then,Q = /fR[X] for somef € Q, and as above, = c € P and hence
Q= P[X], as desired.

Conversely, leQ be a[«]-prime ideal ofR[X]. If QMR =0, we are done. If & P=QNR,
thenQ = P[X] andP is ax-prime ideal ofR ([6, Theorem 2.3(d)]). SincRis ax- compactly
packed domain, then thereds P such thaP = v/aR ThereforeQ = v/aRX] = \/aRX],

as desired. O
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2.3 Compact and coprime packedness with respect to the
t-operation
We start this section with a characterization of Krull domains that-ammpactly packed.

Proposition 2.3.1.Let R be a Krull domain. Then R is t-compactly packed if and only if the

class group of R is torsion.

Proof. LetRbe a Krullt-compactly packed domain. By [35, Theorem 6.8], it suffices to
prove that each-maximal ideal ofR has a principal-power. LetM be at-maximal ideal of

R. ThenM = /xR for somex € M. HencexRy is anMRy-primary ideal inRy. SinceRy

is a DVR, therxRy = (MRy)" = M"Ry, for some positive integer. ThereforgfM"); = xR
since(M");Rv = M"Ry and (M"); is M-primary in the PVMDR ([28, Proposition 1.3]).
So the class group & s torsion.

Conversely, leP be at-prime ideal ofR. Sincet —dimR= 1, P = M is at-maximal ideal

of R. ThusP =M = /(M"); = VxR as desired. m

We recall that an overring of Ris t-linked overR if for every finitely generated ideal
| of R, (R: 1) =Rimplies that(T : IT) =T. A domainR has Noetheriat-spectrum if it
satisfies theacc on radicalt-ideals. Generalized Krull domains (@&K-domain for short)
as defined in [10] are particular classes of PVMD with Noethetigpectrum. Finally,
according to [9], a PVMIRis atQR-domain if each-linked overring ofRis a quotient ring
of R. Our next result characterizészompactly packed domains in the context of PVMDs

with Noetheriart-spectrum.

Theorem 2.3.2.Let R be a Generalized Krull domain. Then R is t-compactly packed if and

only if R is a tQR-domain.
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Proof. Let| be a finitely generated ideal & If I = R, we are done. Assume that
It € R. ThenMin(ly) is finite sinceR is a GK-domain ([10, Theorem 3.9]), sayin(l;) =
{P1,...,Pn}. We note thaB is at-prime ideal ofRfor eachi. SinceRist-compactly packed,
then there ix; € B such thaB = /xR, for eachi. Setx=x;...x5. ThenMin(xR) = Min(ly).
Indeed, ifP is a minimal prime ideal okR, thenP N ....N P, = /xRN ....N /¥R =
VX1.. X R = VXRC P. HenceP, C P for somei. ThereforeP = P, sinceP is minimal over
xRandx € B. Therefore/I; = v/xRand henc® is atQR-domain.

Conversely, LeP be at-prime ideal ofR. SinceR is aGK-domain, then there is a finitely
generated idedlof Rsuch thaP = +/I; ([10, Theorem 3.5]). SincRis atQR-domain, then
P = /I; = v/xRfor somex € I, as desired ([9, Theorem 1.3]). O

The next corollary is an immediate consequence of Theorem 2.2.12.

Corollary 2.3.3. Let R be an integral domain and X an indeterminate over R. The following
are equivalent:

(i) R[X] is t-compactly packed.

(i) R is t-compactly packed, every t-prime dKRis either an upper to zero or extended

from R and every upper to zero is a set theoretic complete intersection.

Proof. Follows immediately from Theorem 2.2.12 sinemecompact packedness implies

t-compact packedness and- Max(A) =t — Max(A) for any integral domair. O

The next proposition deals with tiheoprime packedness of the 8¢ax (R).

Proposition 2.3.4.(cf. [15, Proposition 2.2]) For a PVMD R, the following are equivalent.
(i) Max (R) is t-coprimely packed.
(i ) Each t-maximal ideal M of R contains a principal ideal | such tktis a t-prime ideal

contained only in M.

Proof. LetM be at-maximal ideal oRand let{Ny}+cqo be the set of ali-maximal ideals

of Rdistinct thanM.
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(i) = (ii) Letme M\ Ugeq Ne @and set = mR ClearlyM is the uniqueé-maximal ideal
of R containingl and every minimal prime ide#& of | is at-prime ideal and contained in
M since it containsn. But sinceR is a PVMD, the prime ideals undertanaximal ideal
form a chain. Hence/l is prime, as desired.

(i) = (i) Let M be at-maximal ideal ofR andl = aRa principal ideal such thatl is
prime andMax (R, 1) = {M}. If M C Jycq Na, thenaR=1 C [J,cq No and thera € Ny
for someo € Q. HenceN,, € Max(R,1) = {M} and thereforé = N, absurd. It follows

thatRis t-coprimely packed. O

Corollary 2.3.5. Let R be a domain. If R is t-coprimely packed, then(Rl8) is both

coprimely and t-coprimely packed.

Proof. Follows from Theorem 2.2.10 since M@a(R,t)) = Max(Na(Rt)). O

Recall that a domaiR is t-almost Dedekind domain-ADD for short) if Ry is aDVR
for eacht-maximal ideaM of R ([35]). Our next theorem is a satisfactory analogue of [16,

Theorem 2.1].
Theorem 2.3.6.Let R be a t-ADD domain. Then the following conditions are equivalent:
(1) Ris at-coprimely packed domain;
(2) R< X > is at-coprimely packed domain;
(3) R[X] is at-coprimely packed domain;
(4) Each t-prime ideal of X] is a set theoretic complete intersection;
(5) R is a Krull domain with torsion class group.

The proof of this theorem requires the following lemma which tsamalogue of [15,

Theorem 2.1].
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Lemma 2.3.7.Let R be at-ADD domain. Then MdR) is t-coprimely packed if and only

if R is a Krull domain with torsion class group.

Proof. (=) Assume thaRis at-ADD domain. By [35, Theorem 2.54Ris a PVMD and
t—dim(R) = 1. LetM € Max(R). SinceMax (R) is t-coprimely packed, there isc M

with x ¢ N for eachN € Max(R) \ {M}. HenceM = v/xRand thusMRy = /xRy. Since
MRy is a maximal ideal oRy, XRy is an MRy -primary ideal and sinc®y is a DVR,
there is a positive integer such thatkRy = M"Ry. Thus(M");{Ry = M"Ry and(M"), is
M-primary ([28, Proposition 1.3]). Heno&R= (M"); and therM is at-invertible ideal of
R. ThereforeR is a Krull domain and has torsion class group by Proposition 2.3.1.

(«=) Follows immediately from Proposition 2.3.1. O

Proof of Theorem 2.3.6 (i < iv) If Ris at-coprimely packed domain, theRis a Krull
domain with torsion class group (Lemma 2.3.7). Pébe at-prime ideal ofR[X]. Since
Ris a Krull domain, then so i®X] and hence® is at-maximal ideal ofR[X]. If 0 #
P =P NR, thenP’ = P[X] ([31, Proposition 1.1]). BuP = v/aRfor somea ¢ P sinceR
is t-coprimely packed. Hende’ = P[X] = vaRRX] = y/aRX]. SincehtP’ = 1, thenP’
is a set theoretic complete intersection Plfis an upper to zero, the® = fK[X]NR[X]
for some polynomiaF € P’ ([31, Corollary 1.5]) and® is t-invertible. By [31, Proposition
2.6, Lemma 2.5]P" = f(c(f)"1)R[X], sinceRis integrally closed. Set = ¢(f)~1. Since
Ris a PVMD, thenJ is at-invertible fractionalt-ideal of R. SinceR has torsion class
group, then there is a positive integesuch thatJ"); = cRfor somec € J. So((P)"), =
((FIRX])Mt, = (F"I"RX]ty)y, = (F"I"RX])y, = (F"eRX] ), = f"cRX]. Therefore
P =/((P)")y = +/cf'RIX], as desired.

Conversely, ifP € Speg(R), thenP is at-maximal ideal ofR of height one. HencP[X] is
at-prime ideal ofR[X] of height one. Sd’[X] = \/fR[X] for some polynomialf € P[X]

with c¢(f) C P and say thah is the leading coefficient of. ThenP = v/aR, as desired.
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(i < ii) Assume thaR < X > is t-coprimely packed. Sinc® is at-ADD domain,
R[X] andR < X > are alsd-ADD domains ([35, Theorem 2.51, Theorem 2.52]) and hence
PVMDs. So for each-idealJ of R[X], J < X > is at-ideal of R < X >, by the fact that
“if Ris av-coherent domainl, is at-ideal of R andSis a multiplicative closed set d§,
thenlsis at-ideal of Rg” and R[X] is av-coherent domain. Note that- dim(R< X >) =
t —dim(R[X]) = 1 since they aré-ADD domains. Now letP be at-maximal ideal ofR.
ThenP[X] is at-maximal ideal ofR[X]. SinceR < X > is at-coprimely packed domain,
there isf € P[X] such thaP < X >= \/fR< X >. Let a be the leading coefficient éfand
letc € P. Thenc € P < X > and hence there is a positive integesuch thatt" = f—hg for
someg € R[X] and a monic polynomidi € R[X]. Soc"h = gf and thus" = ad whered is
the leading coefficient di. Soc € v/aR ThereforeP = v/aR as desired.

Conversely, ifQ is at-prime ideal ofR < X >, thenQ = (P')y for somet-prime ideal of
R[X]. As in the proof of { & iv), thet-coprime packedness &fimplies thatP’ = / fR[X]
for some polynomiaf € P'. ThereforeQ = (P')y = (/fRX])u = vTR< X >, as desired.

(i < v) Follows from Lemma 2.3.7.

(iv = iii) Trivial sincet —dim(R[X]) = 1.

(iii = i) Sincet — dim(R[X]) = 1, R[X] is at-compactly packed domain. By Corol-
lary 2.3.3,Ris t-compactly packed and henteoprimely packed]

Recall that a domaiR is said to be of finité-character if every nonzero nonusie R

is contained in only finitely mang-maximal ideals.

Proposition 2.3.8.Let R be a GCD domain. If R is of finite t-character, then R is t-coprimely

packed.

Proof. Let P be at-prime ideal ofR. ThenMax(R,P) = {M1,M>,....,Mu}, sinceRis
of finite t-character. Pick @ c € P. If Max(R,P) = Max(R,cR), then j —rad(P) =

j —rad(cR). If not, thenMax(R,c) = {My,...,Mn,Mn11,...,Mnis} and we can choose
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an elemeny € P withy ¢ UMpi fori=212,...;,s. Soj—rad(P) = j—rad((c,y)) =

j —rad(bR) for someb € P sinceRis a GCD domain, as desired. O

The converse is not true. For instance,Ret Z[Y] 4+ XQ(Y)[[X]]. ThenRis a GCD
([3, Theorem 3.13]¥-coprimely packed domain (Theorem 2.4.3)tedimension 2 ([37,
Theorem 2.4]), but not of finite.character since each nonzero elemerila$ contained in

all t-maximal ideals of the fornp[Y] + M wherep is a prime positive integer.

Proposition 2.3.9. Let R be a Noetherian domain containing a field of characteristic zero.
Then each t-prime ideal of[R] is a set theoretic complete intersection if and only if R is a

Krull domain with torsion class group.

Proof. Since height-one prime ideals arprimes, by ([17, Theorem 2.2]R is integrally
closed. Henc® is a Krull domain and so iR[X]. Let P be at-prime ideal ofR. ThenP[X]
is at-maximal ideal ofR[X] of height one. By assumption, there is a polynonfia P[X]
such thatP[X] = /fR[X]. HenceP = v/aRwherea is the leading coefficient of. SoR
is t-compactly packed. Hendg has torsion class group (Proposition 2.3.1). The converse

follows from Theorem 2.3.6. O

Our second main result is a satisfactory analogue of [16, Theorem 2.5]. Before stating
the result, we recall that a domain is said to HéMT-domain if every upper to zero is a

t-maximal ideal ([31, Definition in page 1962]).

Theorem 2.3.10.Let R be a GCD domain and consider the following statements:

() Every t-prime ideal of [X] is a set theoretic complete intersection.

(i) R[X] is t-compactly packed.

(ii ) R[X] is t-coprimely packed.

(iv) R is t-coprimely packed.

Then(i) = (ii) = (iii) = (iv). Moreover, if t—dimR= 1, then the statements are

equivalent.
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Proof. (i) = (ii) LetQ be at-prime ideal ofR[X] and sehtQ=r. By (i), there exist poly-
nomialsfy,..., fr suichthaQ = /(f1,..., fr). Since(fy,..., fr) C Q, then(fy,..., fr): CQ
and therefor® = /(fy, ..., f);. But sinceRis a GCD domain, then so R{X] ([24, The-
orem 34.10]). Henc® = /(f1,..., fr)t = 1/(h), as desired.

(i) = (iii) Trivial.

(iii) = (iv). Let P be at-prime ideal ofR. ThenP[X] is at-prime ideal ofR[X]. By
(iii ), there exists a polynomidl € P[X] such thatj —rad;(P[X]) = j —radi(fR[X]). Since
f € P[X], thenc(f) C P. But sinceRis a GCD domain, theh= (c(f)); = aR We claim
that j — rad;(P) = j —rad;(aR). Indeed, letQ be at-maximal ideal ofR containingP.
SinceaRC P C Q, thenj —radi(aR) C Q and thereforg —rad;(aR) C j —rad;(P). On
the other hand, 1e)) be at-maximal ideal ofR containingaR ClearlyQ[X] is at-maximal
ideal of R[X]. SincefR[X] C c(f)[X] C aRX] C Q[X], thenP[X] C j—rad;(P[X]) = j —
radk(fR[X]) € Q[X]. HenceP C Q and therefore® C j —rad(aR). It follows that j —
rad (P) = j —rad;(aR), as desired.

(iv) = (i) Assume that —dimR= 1. LetQ be at-prime ideal ofR[X] and setP =
QNR. If P=(0), thenQ is an upper to zero. Sindeis a GCD domain, theRis aUMT-
domain and s is at-maximal ideal oR[X] ([31, Proposition 3.2]). Also by [31, Corollary
1.5],Q = (f,g)y whereQ = fK[X]NR[X] and(c(g))y = R. But sinceRis a GCD domain,
then so isR[X] ([24, Theorem 34.10]). Hend@ = (f,g)y = (h) and soQ is a set theoretic
complete intersection sind#Q = 1. Assume thaP # (0). Sincet —dimR= 1, thenP is
at-maximal ideal ofR. HenceQ = P[X] ([31, Proposition 1.1]). Sinc® is t-coprimely
packed, then there existsc P such thaP = j —radi(aR). Note thatP = v/aR Indeed, if
M is a minimal prime oveaR, thenM is at-prime ideal. But since—dimR= 1, thenM is a
t-maximal ideal oR. HenceP = j —rad;(aR) C M and thereford/ = P (by t-maximality).
HenceP = v/aR Now it is easy to see th&® = P[X] = \/(aR[X]) and henceQ is a set

theoretic complete intersection sina&) = htP[X] = 1 and this completes the proof. O
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Example 2.3.11.A one-dimensional Noetherian local domain R, so coprimely packed, such
that RX] is not t-coprimely packed.

LetQ be the field of rational numbers and Y an indeterminate @veet R= Q[[Y3,Y]].
Clearly R is a one-dimensional Noetherian local domain with maximal ideal (M3,Y5),
and so R is (t)-coprimely packed. SincR)=M < J(R) = YQI[Y]], by [18, Corol-
lary 13], there is a height-one maximal ideal Q opR such that{Q} = Max(R[X],Q) #
Max(R[X], f) for every polynomial £ Q. Now, suppose that MgR[X],g) = Max (R[X],Q) =
{Q} for some g= Q. Let Ne Max(R[X],g) and let P be a minimal prime of gR] with

P CN. Then P is at-prime ideal of[R] and since t dim(R[X]) = 1, then P is a t-maximal
ideal of RX]. Hence Q=P C N and by maximality of Q, @& N, a contradiction. It fol-
lows that Max(R[X],0) # Max(R[X],Q) = {Q} for all g € Q and therefore K] is not

t-coprimely packed.

2.4 Pullbacks

The purpose of this section is to investigate the transfer of the notions of compactly (
compactly) packed and coprimeli-¢oprimely) packed rings to the pullbacks to generate
new families and examples.

Let us fix the notation for the rest of this section. Debe an integral domait a maximal
ideal of T, K its residue fieldg : T — K the canonical surjectio) a proper subring of

K, andk := gf(D). LetR:= ¢~1(D) be the pullback issued from the following diagram of

canonical homomorphisms:
R — D

l !

T 4 K=T/M

We shall refer to this diagram as a diagram of tyjpg. Also we recall thaM is a prime
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ideal ofRand if T is local, then every ideal d® is comparable tiv.

Lemma 2.4.1. For the diagram of typé[]), if R is compactly (resp. coprimely ) packed,

then so are T and D.

Proof. (1) Compact packedness. Cleallyis compactly packed since Jfis an ideal of
D and{P,} is a family of prime ideals oD such that) C P, then¢—1(J) is an ideal
of Rand{¢~1(P,)} is a family of prime ideals oR such thatp~%(J) C U¢1(P,). So
¢~1(J) C ¢~(P,) for someoy and thereford C P, , as desired.

Let J be an ideal off and{Q} a family of prime ideals off such that) C |JQ,. Set
| =JNRandPy, = QuNRfor eacha. Thenl C (JP, and sol C Py, for somecop. Now,
ifJ+MST,thenJC M, and sad =1 C Py, C Qq. If J+M =T, thenl +M = R. Thus
IM=JNM=1NM=1IM C | C Py C Qg and thereforel C Qq, (sinceM ¢ Q,), as
desired.

(2) Coprimely packedness. Similar to (1) by assuming kthatP is a prime ideal oR and

{Q} is a family of maximal ideals of . O

Theorem 2.4.2.For the diagram of type¢[dJ), assume that T is local. Then
(1) R is compactly packed if and only if D and T are compactly packed.

(2) R is coprimely packed if and only if D is coprimely packed.

Proof. (=) Follows from Lemma 2.4.1.

(«<=) (1) Assume thab andT are compactly packed. Lebe a nonzero ideal & and
{Py }acq a family of prime ideals oR such that C |JPy. LetQ; = {a € Q|P, C M} and
Q; ={a € QM C Py }. SinceT is local, each ideal dR is comparable td1. Three cases
are then possible:

Case 1Q; = 0. ThenM C P, for eacha and hencé, = ¢ ~1(Q,) for some prime ideal

Qg of D. In this case, il C M, thenl C P, forall a. If M C I, thenl = q)*l(\]) for some
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nonzero ideal of D. ThenJ C |JQq and sinceD is compactly packed] C Q, for some
op. Thereford C Py, as desired.

Case 2Q, =0. ThenP, C M and sd”, is a prime ideal off for eacha. Alsol C | JP, C M.
Now, if Py, = M for someoy, thenl € M = P,, and we are done. Assume tligt C M for
eacha. SincelM is an ideal ofT andIM C | C Py, IM C Py, for someap. But since
Poy € M, | C Py, as desired.

Case 3Q1 # 0 andQ, # 0. HenceP, C M C Ps for eacha € Q; andf3 € Q,. Hence
I € Upgeaq,Ps- SetP; = (j)‘l(QB) for some prime ideaQg of D. If | C M, thenl C Pg for
eachB € Q, and we are done. M C |, thenl = ¢—1(J) for some nonzero idedlof D. As
in case 1] C Pg for somefl € Qo. It follows thatRis compactly packed.

(2) Assume thab is coprimely packed. Le® be a prime ideal oR and{M}qcq be a
family of maximal ideals oR such thaP C | JM,. Since eaclM,, is comparable td1, and
by maximality,M C M, for eacha.. Hence, for eaclx, My, = q)—l(Qa) for some maximal
ideal Qq of D. Now, if P C M, thenP C M, for eacha and we are done. ¥ C P, then
P = ¢~1(Q) for some prime ideaD of D. But P C M, implies thatQ C |JQ,, and thus

Q C Qq, for someoyg sinceD is coprimely packed. Hend@C M, as desired. a

Now, we turn our attention to thiecompact and-coprime packedness. Recall that an

overringS of R is said to be-flat overR if Ty = Rynr for eacht-maximal idealN of T

([38]).

Theorem 2.4.3.For the diagram of typ¢[):
(1) If R is t-compactly (resp. t-coprimely) packed, then so is D.
(2) If T ist-flat over R and R is t-coprimely packed, then sois T.

(3) If T is local, then R is t-coprimely packed if and only if so is D.

Proof. (1) ClearlyD ist-compactly (respt-coprimely) packed since P is at-prime ideal

of D and{Q } is a family oft-prime (respt-maximal) ideals oD such thaP C |JQ, then
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Q= ¢1(P) is at-prime ideal ofRand{¢ 1(Qq)} is a family oft-prime (respt-maximal)
ideals ofR such thatQ = ¢ 1(P) C U9 1(Qq). ThusQ C ¢ 1(Qg,) for someop and
thereforeP C Q,, as desired.

(2) LetQ be at-prime ideal ofT and{Q} C Spe¢(T) such thaQ C |JQ. SinceT is
at-flat overring ofR, QN RandQ, N R aret-prime ideals oR (Lemma 1.2.7) and we have
QNRC YUQqyNR. SinceRis t-compactly packed, the@ "R C Q, N R. Hence, by [10,
Proposition 2.4]1Q = ((QNR)T)t C ((Qu NR)T)t = Qg ,as desired.

(3) Similar to Theorem 2.4.2 (2) by substitutibgprime to prime and-maximal to

maximal. O

Example 2.4.4.Let T=Q(v/2)[[X,Y]] = Q(v/2) +M where M= (X,Y)T. Set R=Q + M.
Then T is a t-compactly packed domain since it is a Krull local domain. However, R is not

t-compactly packed since R is Noetherian of t-dimension two.

e This example shows that the assert{@hof Theorem 2.4.2 is not true for t-compact

packedness (evenif T is local).
e Ris at-coprimely packed domain which is not t-compactly packed.
e Ris a(d,t)-domain since it is coprimely packed aktix(R) = Max(R) = {M}.

e Ris not a compactly packed domain, since T is not compactly packed.
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