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domain, GCD domain, pullback.

viii



x                                                                               

 

 ملخص بحث

 في الفلسفة الذكتوراهدرجة 

 

 عبذ انعزٌز عبذ الله طبنح بٍ عبٍذ:  الاســــــــــــــــى

يثبنً فً حهمة شبة بشٔفشٌة ٔ جعبئة يحمبسبة ٔ يحٕلات ٔ  ثٌُٕبت:  عُٕاٌ انشسبنة

 . يحمبسة ببنُسبة نعًهٍبت انُدًة كٕبشًٌهً

 انشٌـــــبضٍـــــــبت:  انحخظـــــــض

 3122ٌُبٌش :  جبسٌخ انحخشج

دساسة عًهٍة انُدًة فً ٔ جعًك  بإسٓبيْزِ انشسبنة لسًث إنى خزئٍٍٍ ٔ رنك  

نـ  ثُٕيانفً اندزء الأٔل دسسُب فٍّ بعض انحبلات انحً ٌكٌٕ فٍٓب  . انًعشفة نهُطبق طحٍح

t-بنً يث(t-ideal) طحٍح شبّ بشٔفشي  همة فٕلٍة نُطبق ح(PVMD)  كزنك عبندُب بعض ٔ

يثبنً -tـ يثبنً يحطببك يع انحهمة الإَذٔيٕسفٍزيٍة ن-t نـ ثُٕيناانحبلات انحً ٌكٌٕ فٍٓب 

 نُطبقاندزء الأٔل بذساسة بعض أطُبف انحهمبت انفٕلٍة  اخححًُبشبّ بشٔفشي ٔ  َطبقفً 

يثبنً فً َطبق شبّ -tنـ  َبخبجب ٔ انحهمة الإَذٔيٕسفٍزيٍةيثم يحٕل  شٔفشيشبّ ب

ببنُسبة   يحمبسةجعبئة يحمبسبة ٔ كٕبشًٌهً زء انثبًَ بحعشٌف انًظطهحبت  اند بذأَب .بشٔفشي

دسسُب  ببنحبنً ٔ بزنك َكٌٕ عًًُب انًظطهحبت الأسبسٍة ٔ. ٍٓة انحٕنٍذحيٍُة َدًة هنعً

انشبّ  حبلات انُطبلبت يثم حبلاتيخحهفة يٍ بعض خظبئض ْزِ انًظطهحبت لإَٔاع 

كزنك أَحدُب أيثهة . انحشكٍببت انخهفٍةانشبّ َٕثٍشٍَة ٔ أخٍشا فً َطبلبت  حبلات بشٔفشٌة ٔ

 .tخبص نعًهٍة انُدًة  اْحًبؤ لذ أٔنٍُب . نحٕضٍح يدبلات ٔ يحذٔدٌة ْزِ انُحبئح



Introduction

Star operations such as thet-closure, thev-closure and thew-closure are essential tools in

modern multiplicative ideal theory for characterization and investigation of several classes

of integral domains. During the last decades, thet-operation (known as the largest star

operation of finite type) has been intensively studied, probably for its ability to classify

many classes of integral domains as generalizations of well-known domains such as Bezout

domains (i.e., every f. g. ideal is principal) to GCD domains (i.e., for every f. g. idealI , It

is principal), Dedekind domains (i.e., every ideal is invertible) to Krull domains (i.e., every

ideal ist-invertible), and Pr̈ufer domains (i.e., every f. g. ideal is invertible) to PVMDs (i.e.,

every f. g. ideal ist-invertible).

Many authors studied the structure of particular overrings of an integral domain, spe-

cially overrings of a Pr̈ufer domain. In 1968, Brewer [4] gave a representation theorem for

the Nagata transformT(I), whenI is a finitely generated ideal (which coincides in this case

with the Kaplansky transformΩ(I)) and in 1974, Kaplansky [36] gave a complete descrip-

tion of Ω(I) for each idealI in an integral domainR, where these two special overrings are

defined asT(I) =
⋃∞

n=1(R : In) andΩ(I) = {u∈ K : for eacha∈ I there is a positive inte-

gern(a) with uan(a) ∈ R}. In [21], Fontana, Huckaba and Papick described some relations

between the above constructions in the case of Prüfer domains.

While (I : I) is an overring ofRwhich is isomorphic to the endomorphism ring EndR(I)

of I , I−1 := (R : I) is anR-submodule ofL containing(I : I) which is not, in general, a
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2

ring. Many papers in the literature deal with the fractional idealI−1. The main problem is

to examine settings in whichI−1 is a ring and then when it coincides with(I : I). In 1982,

Huckaba and Papick [32] examined settings in whichI−1 is a ring whereI is an ideal of a

Prüfer domain. Later, in 1983, D. F. Anderson [1], using pullbacks, constructed an example

of a domainR and an idealI of R for which I−1 is a ring but(I : I) $ I−1. In [27], Heinzer

and Papick gave a necessary and sufficient condition forI−1, when it is a ring, to be equal

to (I : I) for an idealI in a Pr̈ufer domain with Noetherian spectrum. In 1993, Fontana,

Huckaba, Papick and Roitman [22] provided various representations of the endomorphism

ring (I : I) of an idealI in a Pr̈ufer domain as intersections of localizations. Finally in 2000,

Houston, Kabbaj, Lucas and Mimouni [29] established several characterizations forI−1 to

be a ring for a nonzero idealI in an integrally closed domain.

The notion of compactly packed ring (orCP-ring for short) was introduced by Reis

and Viswanathan in [41], where NoetherianCP-rings were characterized by the property

that prime ideals are radicals of principal ideals. The notion of coprimely packed ring

was introduced by Erdŏgdu in 1988 [12] and intensively studied in a series of papers, for

instance see [12, 13, 14, 15, 16], [18], [7] and [42]. Erdogdu studied the notion of coprimely

packed rings in many contexts such as Notherian domains, Bezout domains, Nagata rings,

polynomial extensions, andQR-domains. For instance, he proved that “a Dedekind domain

R is coprimely packed if and only if R has a torsion class group.” He studied the relation

between the compact packedness and the coprime packedness. However the most important

part in his study is the correlation between the coprime packedness and the set theoretic

intersection of ideals in polynomial rings [16].

This thesis contributes to the investigation of the dual and the Nagata and Kaplansky

transforms of an ideal in PVMDs. Also we extend the notions of compact and coprime

packedness to an integral domain with respect to a star operation of finite type and study

some algebraic properties of these notions in various settings. The thesis is divided into two
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chapters. The first part of Chapter 1 deals with the question of when the dual of an ideal is

a ring for at-ideal in a PVMD, and then whenI−1 coincides with the endomorphism ring

of I . Our first main contribution, Theorem1.2.3 and Theorem1.2.6, is a generalization of

two well-known theorems established by Huckaba-Papick [32, Theorem 3.8] and Heinzer-

Papick [27, Theorem 2.5]. The second main contribution, Theorem1.2.14, is a complete

description of the endomorphism ring of at-ideal in atQR-domain which generalizes a

well-known result by Fontana et al., [22, Corrollary 4.4 and Theorem 4.11]. The second

part of Chapter 1 is devoted to Kaplansky and Nagata transforms of an ideal in a PVMD,

in an attempt to establish analogues for well-known results on overrings of Prüfer domains.

Specifically, we provet-analogues for many results collected in Fontana-Huckaba-Papick’s

book [21, Section 3.3] fort-linked overrings of PVMDs. The first main theorem, Theo-

rem 1.3.2, generalizes [21, Theorem 3.3.7] to the case oft-prime ideals in a PVMD. The

second main theorem, Theorem 1.3.6, is a satisfactoryt-analogue for [21, Theorem 3.3.10].

Chapter 2 extends the compact and the coprime notions to a domainR endowed with

an arbitrary star operation∗ of finite type. In the particular case where∗ = d is the trivial

operation onR, we obtain the so-called compactly and coprimely packed rings. We study

various aspects of these notions in many different classes of integral domains, including

Nagata rings, Pr̈ufer-like rings, polynomial rings, and pullbacks. In Section 2.2, we de-

fine the notions of∗-compact and∗-coprime packedness with respect to a star operation

of finite type (Definitions 2.2.1 and 2.2.2) and then examine the possible transfer of these

notions to Nagata rings, Theorem 2.2.10, which stands as at-analogue of Erdogdu’s result

[15, Theorem 3.1] and polynomial rings, Theorem 2.2.12. Section 2.3 focuses on thet-

coprime packedness. Our objective is to seek generalizations ort-analogues of well-known

results in the classical case. The first main theorem of this section deals with the context

of GCD domains, Theorem 2.3.10, and provides a satisfactory analogue for [16, Theo-

rem 2.5]. We also characterizet- coprimely packed generalized Krull domains, Theorem
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2.3.2, andt-coprimely packedt-almost Dedekind domains, Theorem 2.3.6, as a satisfactory

analogue of [16, Theorem 2.1]. The last section of Chapter 2 deals with the transfer of

the aforementioned notions to special types of pullback constructions in order to provide

original examples. Precisely, we characterize the compact and coprime packedness in pull-

backs issued from local rings, Theorem 2.4.2. Also, we study thet-compact andt-coprime

packedness in pullback constructions, Theorem 2.4.3. Finally, we give an example to illus-

trate the correlation between(t)-compact and(t)-coprime packedness of integral domains,

Example 2.4.4.



Chapter 1

Duals and transforms of ideals in PVMDs

This chapter∗ studies when the dual of at-ideal in a PVMD is a ring and treats the question

of when it coincides with its endomorphism ring. Also this chapter studies the structure of

particular classes of overrings of PVMDs.

1.1 Introduction

Let R be an integral domain andK its quotient field. For nonzero fractional idealsI and

J of R, we define the fractional ideal(I : J) = {x ∈ K|xJ⊆ I}. We denote(R : I) by I−1

and we call it the dual of an idealI since it is isomorphic, as anR-module, toHomR(I ,R).

The Nagata transform (or ideal transform) ofI is defined asT(I) =
⋃∞

n=1(R : In) and the

Kaplansky transform ofI is defined asΩ(I) = {u ∈ K : for eacha ∈ I there is a positive

integern(a) with uan(a) ∈R}. The zero cohomology ofI overR is defined byRI =
⋃∞

n=1(I
n :

In). It is clear that(I : I) ⊆ RI ⊆ T(I) ⊆ Ω(I) and(I : I) ⊆ I−1 ⊆ T(I) ⊆ Ω(I). Also we

notice thatΩ(I) is a variant of the Nagata transformT(I), and useful in the case whenI

is not finitely generated, but ifI is a finitely generated ideal ofR, thenΩ(I) = T(I). It is

∗This work is accepted for publication in Communications in Algebra (in collaboration with A. Mimouni).
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Chapter 1: Duals and transforms of ideals in PVMDs 6

worthwhile noting thatΩ(I), T(I), (I : I) andRI are overrings ofR for each idealI in a

domainR, while I−1 is not, in general, a ring. Moreover,(I : I) is the largest subring ofK

in which I is an ideal and it is isomorphic to the endomorphism ring ofI .

In 1968, Brewer [4] proved a representation theorem for the Nagata transformT(I),

when I is a finitely generated ideal (which coincides in this case withΩ(I)) and in 1974,

Kaplansky [36] gave the complete description of the Kaplansky transformΩ(I) for each

ideal I in an integral domainR. He proved that “if I is a nonzero ideal of R, thenΩ(I) =⋂
RP, where P varies over the set of prime ideals that do not contain I” (this result was also

obtained independently by Hays [26]). In [24, Exercise 11, page 331] Gilmer described

T(I) for an idealI which is contained in a finite number of minimal prime ideals in a

Prüfer domainR, specifically, “let R be a Pr̈ufer domain, I a nonzero ideal of R,{Pα} the

set of minimal prime ideals of I, and{Mβ} the set of maximal ideals that do not contain

I. Then T(I) ⊆ (
⋂

RQα
)∩ (

⋂
RMβ

), where Qα is the unique prime ideal determined by⋂∞
n=1 InRPα

= QαRPα
. Moreover, if the set{Pα} is finite, equality holds” (see also [21,

Theorem 3.2.5]). In [21], Fontana, Huckaba and Papick described some relations between

the above overrings in the case of Prüfer domains. For instance, they showed that “if P is a

nonzero non-invertible prime ideal of a Prüfer domain R, then there is no proper overring

between P−1 andΩ(P)” ([21, Theorem 3.3.7]). In 1986, Houston [28] studied the divisorial

prime ideals in PVMDs, and among others, he proved that “if P is a nonzero, non-t-maximal

t-prime ideal of a PVMD R, then P−1 = RP∩Ct(I), whereCt(I) =
⋂

I"Mβ∈Maxt(R)

RMβ
, and

T(P) = RP0∩Ct(I), where P0 = (
⋂

nPnRP)∩RandMaxt(R) is the set of allt-maximal ideals

of R” ([28, Proposition 1.1 and Proposition 1.5]).

Many papers in the literature deal with the fractional idealI−1. The main problem is

to examine settings in whichI−1 is a ring. In 1982, Huckaba and Papick [32] stated the

following: “ let R be a Pr̈ufer domain, I a nonzero ideal of R,{Pα} the set of minimal

prime ideals of I, and{Mβ} the set of maximal ideals that do not contain I. Then I−1 ⊇
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(
⋂

RPα
)∩ (

⋂
RMβ

). If I−1 is a ring, equality holds” ([32, Theorem 3.2 and Lemma 3.3]).

They also proved that “for a radical ideal I of a Pr̈ufer domain R, let{Pα} be the set of

minimal prime ideals of I and assume that
⋂

Pα is irredundant. Then I−1 is a subring of

K if and only if for eachα, Pα is not invertible” ([32, Theorem 3.8]). In [27], Heinzer and

Papick gave a necessary and sufficient condition forI−1, when it is a ring, to be equal to

(I : I) for an idealI in a Pr̈ufer domain with Noetherian spectrum . Namely, they proved that

“ for a Prüfer domain R withSpec(R) Noetherian, let I be a nonzero ideal of R and assume

that I−1 is a ring. Then I−1 = (I : I) if and only if I =
√

I (i.e., I is a radical ideal) if and

only if the minimal prime ideals of I in(I : I) are all maximal ideals” ([27, Theorem 2.5]).

In 1993, Fontana, Huckaba, Papick and Roitman [22] studied the endomorphism ring of an

ideal in a Pr̈ufer domain. One of their main results asserted that “for a nonzero ideal I of a

Prüfer domain R, let{Qα} be the set of maximal prime ideals ofZ (R, I) and{Mβ} be the

set of maximal ideals that do not contain I. Then(I : I)⊇ (
⋂

RQα
)∩ (

⋂
RMβ

). Moreover, if

R is a QR-domain, equality holds” ([22, Theorem 4.11 and Corollary 4.4]). Finally in 2000,

Houston, Kabbaj, Lucas and Mimouni [29], gave several characterizations of whenI−1 is a

ring for a nonzero idealI in an integrally closed domain. For instance they generalized [22,

Theorem 4.11] to the PVMD’s case. Namely they proved that “if I is an ideal of a PVMD

with no embedded primes, then I−1 is a ring if and only if I−1 = (I : I) = RN∩Ct(I), where

N the complement in R of the set of zero divisors on R/I ” ([29, Theorem 4.7]).

The purpose of this chapter is to continue the investigation of when the dual of an ideal

in a PVMD is a ring and when it coincides with its endomorphism ring. We also aim at

giving a full description of the Nagata and Kaplansky transforms of ideals in a PVMD,

seeking generalizations ort-analogues of well-known results.

In Section 1.2, we deal with the dual of at-ideal in a PVMD. We give a generalization

of the above mentioned results of Huckaba-Papick and Heinzer-Papick. Precisely, we prove

that “for a radical t-ideal I of a PVMD R, let{Pα} be the set of minimal prime ideals of
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I and assume that
⋂

Pα is irredundant. Then I−1 is a subring of K if and only if Pα is

not t-invertible for eachα” (Theorem 1.2.3). We also prove that “if R is a PVMD with

Spect(R) Noetherian, and I is a t-ideal of R such that I−1 is a ring, then I−1 = (I : I) if

and only if I=
√

I if and only if the minimal prime ideals of I in(I : I) are all t-maximal

ideals” (Theorem 1.2.6). In the particular case whereR is a Pr̈ufer domain we obtain the

aforementioned results of Huckaba-Papick and Heinzer-Papick simply by remarking that a

Prüfer domain is just a PVMD in which thet-operation is trivial, that is,t = d. We close

this section with a description of the endomorphism ring of at-ideal in atQR-domain, that

is, a PVMDR such that eacht-linked overring ofR is a quotient ring ofR (recall that an

overringT of R is t-linked overR if for every finitely generated idealI of R, I−1 = R implies

that(T : IT ) = T). Particularly we give a generalization of a well-known result by Fontana

et al., [22, Corrollary 4.4 and Theorem 4.11], that is, “let I be a t-ideal of a PVMD R,{Qα}

be the set of all maximal prime ideals of Z(R, I) and{Mβ} be the set of t-maximal ideals of

R that do not contain I. Then(I : I) ⊇ (
⋂

RQα
)∩ (

⋂
RMβ

), and if R is a tQR-domain then

equality holds” (Theorem 1.2.14).

Section 1.3 deals with Kaplansky and Nagata transforms of an ideal in a PVMD. Our

aim is to give thet-analogues for many results of Fontana-Huckaba-Papick [21, Section

3.3] for t-linked overrings of PVMDs. Our first main theorem generalizes [21, Theorem

3.3.7] to the case oft-prime ideals in a PVMD. For instance we prove that “if P is a non-

t-invertible t-prime ideal of a PVMD R, then there is no proper overring between P−1 and

Ω(P)” (Theorem 1.3.2). The second main theorem is a satisfactoryt-analogue for [21,

Theorem 3.3.10], that is, “let R be a PVMD and P a t-prime ideal of R. Then T(P) $ Ω(P)

if and only if T(P) = RP∩Ω(P) andΩ(P) * RP. Moreover,(PΩ(P))t1 = Ω(P) if and only

if Ω(P) * RP if and only if P=
√

I for some t-invertible ideal where t1 is the t-operation

with respect toΩ(P)” (Theorem 1.3.6). Other applications of the obtained results are given.

Throughout this chapterR is an integral domain with quotient fieldK. By a fractional
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ideal, we mean a nonzeroR-submoduleI of of K such thatdI ⊆R for some nonzero element

d of R and by a proper ideal we mean a nonzero idealI such thatI ( R. Recall that for a

fractional idealI of R, thev-closure of an idealI is the fractional idealIv = (I−1)−1 and

the t-closure of an idealI is the idealIt =
⋃

Jv, whereJ ranges over the set of all finitely

generated subideals ofI . A fractional idealI is said to be av-ideal (or divisorial) (resp.

t-ideal , resp.t-invertible ) if I = Iv (resp.I = It , resp.(II−1)t = R). A t-prime idealt-prime

ideal is at-ideal which is prime and at-maximal ideal is at-prime ideal which is maximal

in the set oft-ideals. The set of allt-prime ideals is denoted bySpect(R) and the set of all

t-maximal ideal is denoted byMaxt(R) . A domainR is said to be a PVMD (for Prüfer v-

multiplication domain) if every nonzero finitely generated ideal ist-invertible (equivalently,

RM is a valuation domain for everyt-maximal idealM of R). For more basic details about

star operations, we refer the reader to [24, sections 32, 34]. Also it is worth noting that

many of our results are inspired from the Prüfer case, and some proofs are dense and use a

lot of techniques of thet-operation. We are grateful to the huge work on thet-move (from

Prüfer to PVMD) done during the last decades.

1.2 Duals of ideals in a PVMD

We start this section by noticing that for a fractional idealI of a domainR, I−1 = (It)−1 =

(Iv)−1, I is t-invertible if and only ifIt is t-invertible and ifIt = R, thenI−1 = (I : I) = R. In

this regard, we will focus on the case whereI is a propert-ideal ofR.

Before giving the first main theorem of this section, we begin with the following two results

on necessary and sufficient conditions forI−1 to be a ring. The first one is a generalization

of [32, Lemma 2.0] (since invertible ideals aret-invertiblet-ideals) and the second one is a

t-analogue of [29, Proposition 2.2].

Lemma 1.2.1.Let R be a domain and I a t-ideal of R. If I is t-invertible, then I−1 is not a
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ring.

Proof. Deny, assume thatI−1 is a ring. LetM be at-maximal ideal ofRcontainingI . Since

I is t-invertible, thenII−1 is not contained in anyt-maximal ideal ofR. Hence(II−1)M =

RM. SoIRM is an invertible ideal ofRM and hence principal. SinceI is t-invertible, thenI

is v-finite. Hence there is a finitely generated idealA of R such thatA⊆ I andI = At = Av.

SinceA is a finitely generated ideal ofR, by [43, Lemma 4],(ARM)v1 = (AvRM)v1, where

v1 is thev-operation with respect toRM. So(IRM)−1 = (AvRM)−1 = (ARM)−1 = A−1RM =

(Av)−1RM = I−1RM. SinceI−1 is a ring,(IRM)−1 is also a ring, which contradicts the fact

thatIRM is principal inRM. 2

Corollary 1.2.2. Let I be a t-ideal of a domain R. Then I−1 is a ring if and only if I is not

t-invertible and(M : I) is a ring for each t-maximal ideal M of R containing I.

Proof. If I−1 is a ring, thenI is nott-invertible by Lemma 1.2.1. By [29, Proposition 2.1],

(M : I) is a ring for eacht-maximal idealM containingI . Conversely, ifI is nott-invertible,

thenII−1 ⊆M for somet-maximal idealM of R and henceI−1 = (M : I). SoI−1 is a ring.

2

Now, we turn our attention to the duals of ideals in a PVMD. Our approach is similar

to that of Huckaba-Papick done in [32] for Prüfer domains. LetR be a PVMD. We divide

Spect(R), that is, the set of all nonzerot-prime ideals ofR, into three disjoint sets:

S1 = {P∈ Spect(R) : P is t -invertible}

S2 = {P∈ Spect(R) : P is a non-t -invertiblet -maximal ideal andPRP is principal}

S3 = {P∈ Spect(R) : P 6∈ S1∪S2}. Our first main theorem is a generalization of [32, Theo-

rem 3.8] to PVMDs.

Theorem 1.2.3.Let I be a radical t-ideal of a PVMD R,{Pα} the set of all minimal prime

ideals of I and assume that
⋂

Pα is irredundant. Then I−1 is a subring of K if and only if Pα

is not t-invertible for eachα.
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Proof. (⇒) If I−1 is a ring, by [29, Proposition 2.1(2)],(Pα)−1 is a ring for eachα. So, by

Lemma 1.2.1,Pα is nott-invertible for eachα. Whence{Pα} ⊆ S2∪S3.

(⇐) By [29, Lemma 4.3], it is enough to prove thatI−1 ⊆ (
⋂

RPα
)∩ (

⋂
RMβ

) where

{Mβ} is the set of allt-maximal ideals ofR that do not containI . Clearly I−1 ⊆
⋂

RMβ

(for if x ∈ I−1 anda ∈ I\Mβ , thenx = xa
a ∈ RMβ

). Now we show thatI−1 ⊆
⋂

RPα
. Let

Pα be any minimal prime overI . SincePα is not t-invertible,Pα ∈ S2∪S3. If Pα ∈ S2, set

J :=
⋂

γ 6=α Pγ . ThenI = J∩Pα and since
⋂

Pα is irredundant,J * Pα . But sincePα is a

non-t-invertiblet-maximal ideal of a PVMDR, (J+Pα)t = Rand(Pα)−1 = R.

Lemma 1.2.4.Let R be a PVMD and A and B nonzero ideals of R such that(A+B)t = R.

Then(A∩B)t = (AB)t .

Proof. By [35] it suffices to check that(A∩B)tRM = (AB)tRM for everyt-maximal ideal

M of R. LetM be at-maximal ideal ofR. SinceA andB aret-comaximal, then eitherA* M

or B * M. Without loss of generality, we may assume thatA * M. Hence, by [33, Lemma

3.3] (A∩B)tRM = (A∩B)RM = ARM ∩BRM = RM ∩BRM = BRM = ABRM = (AB)tRM, as

desired. 2

Now, by the previous lemma,I = J∩Pα = (J∩Pα)t = (JPα)t . SoI−1 = (JPα)−1 = (R :

PαJ) = ((R : Pα) : J) = (R : J) = J−1. But sinceJ * Pα , I−1 = J−1 ⊆ RPα
. Assume that

Pα ∈S3 and letN be at-maximal ideal ofRproperly containingPα . SinceI is a radical ideal

of R, IRN = PαRN. SincePαRN is a nonmaximal prime ideal of the valuation domainRN, it

is not invertible. HenceI−1 ⊆ (I−1)R\N ⊆ (RN : IRN) = (RN : PαRN) = RPα
([32, Corollary

3.6]), as desired. 2

The following example shows that the irredundancy condition in Theorem 1.2.3 cannot

be removed. This example is a slight modification of [29, Example 5.1], where the authors

constructed an example of a Bezout domainR with a principal idealI (so I−1 is not a ring)

such thatP−1 is a ring for each minimal prime idealP of I . Our example is just an adjunct
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of an indeterminateY to the domainR to get outside the Prüfer situation but keeping us in

the context of PVMDs.

Example 1.2.5.Let Q be the field of rational numbers and set T= Q[{Xn : n∈ Q+}] and

J = (X−1)T. By ([29, Example 5.1]), T is a Bezout domain, J is a principal radical ideal

of T (so J−1 is not a ring) and P−1 is a ring for each minimal P over J in T . Also, by [32,

Theorem 3.8], the intersection of the minimal primes of J is not an irredundant intersection.

Now let R= T[Y], I = J[Y]. Clearly R is a PVMD (which is not Prüfer), and I is a radical

principal ideal of R (so I−1 = J−1[Y] is not a ring). Since J= I ∩T ⊆Q∩T = P, it is easy

to check that every minimal prime ideal Q of R over I is of the form Q= P[Y], where P

is a minimal prime ideal of T over J. Hence Q−1 = P−1[Y] is a ring for each Q. Finally

I = J[Y] = (
⋂

P)[Y] =
⋂

P[Y] is not an irredundant intersection.

Let T be an overring of an integral domainR. According to [8],T is said to bet-linked

overR if for each finitely generated idealI of R with I−1 = R, we have(IT )−1 = T. Also

we say thatT is t-flat overR if TM = RP for eacht-maximal idealM of T, whereP = R∩M

(cf. [38]). Finally, we say thatR has a Noetheriant-spectrum (Spect(R) is Noetherian) ifR

satisfies the a.c.c. condition on radicalt-ideals.

Our second main theorem generalizes Heinzer-Papick’s theorem [27, Theorem 2.5].

Theorem 1.2.6.Let R be a PVMD with Spect(R) Noetherian, and let I be a t-ideal of R.

Assume that I−1 is a ring. Then the following conditions are equivalent:

(1) I−1 = (I : I);

(2) I =
√

I;

(3) The minimal prime ideals of I in(I : I) are all t-maximal ideals.

The proof of this theorem involves several lemmas of independent interest, some of

them aret-analogues of well-known results.
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Lemma 1.2.7.Let T be a t-flat overring of a domain R. The following equivalent conditions

hold:

(1) It ⊆ (IT )t1 for each I∈ F(R), where t1 is the t-operation with respect to T .

(2) If J is a t-ideal of T and J∩R 6= 0, then J∩R is a t-ideal of R.

(3) IvT j (IT )v1 for each I∈ f (R), where v1 is the v-operation with respect to T .

(4) (IT )v1 = (IvT)v1 for each I∈ f (R).

(5) (IT )t1 = (ItT)t1 for each I∈ F(R).

(6) (IT )v1 = (ItT)v1 for each I∈ F(R).

Proof. The six conditions are equivalent for an arbitrary overringT of Rby [2, Proposition

1.1 ]. To prove (i) , letx∈ It . Then there is a finitely generated idealJ of R such thatJ⊆ I

andx(R : J)⊆ R. Now, letN be at-maximal ideal ofT and setM = N∩R. SinceT is t-flat

overR, TN = RM. SinceJ is finitely generated,x(T : JT)TN = x(TN : JTN) = x(RM : JRM) =

x(R : J)RM ⊆ RM = TN. Hencex(T : JT)⊆ T and sox∈ (JT)v1 ⊆ (IT )t1, as desired. 2

The next lemma is crucial and it is a generalization of [24, Theorem 26.1]. We will often

use it whenever we want to prove that an overringT of a PVMD R is contained inRQ for

somet-prime idealQ of R.

Lemma 1.2.8.Let R be a PVMD and T a t-linked overring of R. Then:

(1) If M is a t-prime ideal of T , then TM = RP and M= PRP∩T, where P= M∩R.

(2) If P is a nonzero t-prime ideal of R, then(PT)t1 6= T if and only if RP ⊇ T, where t1

is the t-operation with respect to T .

(3) If J is a t-ideal of T and I= J∩R, then J= (IT )t1.
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(4) {(PT)t1}P∈∆ is the set of all t-prime ideals of T , where∆ = {P∈ Spect(R) : (PT)t1 6=

T}.

Proof. (i) SinceT is a t-linked overring of a PVMDR, T is a t-flat overring ofR ([38,

Proposition 2.10]). HenceRP = TM whereP = M ∩R ([10, Theorem 2.6]). Therefore

M = MTM ∩T = PRP∩T. (ii) If (PT)t1 $ T, then there is at-maximal idealM of T such

thatM⊇ (PT)t1. SinceM∩R⊇ (PT)t1∩R⊇PT∩R⊇P, RP⊇RM∩R = TM ⊇T, as desired.

Conversely, ifRP⊇T ⊇R, thenTR\P = RP. HenceRP is t-linked overT. So, by Lemma 1.2.7,

(PT)t1 ⊆ (PRP)t2 = PRP $ RP (heret2 is thet-operation with respect toRP and it is trivial

sinceRP is valuation). SinceTR\P = RP is a valuation overring of a PVMDT, Jt1TR\P =

JTR\P for each idealJ of T. If (PT)t1 = T, thenRP = TR\P = (PT)t1TR\P = PTR\P = PRP, a

contradiction. Therefore(PT)t1 $ T.

(iii) Clearly (IT )t1 ⊆ J. It suffices to show thatJ ⊆ (IT )t1. Let {Mα} be the set of all

t-maximal ideals ofT. SinceT is at-linked overring ofR, T is a PVMD. HenceJ =
⋂

JTMα
.

SetPα = Mα∩R for eachα and letx∈ JRMα
= JRPα

. Thenx= a
t , wherea∈ J andt ∈R\Pα .

SinceJ⊆ T ⊆ TMα
= RPα

, thena= b
s, whereb∈Rands∈R\Pα . Henceb= as∈ J∩R= I .

Sox = b
st ∈ IRPα

⊆ (IT )RPα
= (IT )TMα

. ThereforeJ⊆ (IT )t1, as desired.

(iv) By (iii) , each t-prime ideal ofT is of the form(PT)t1 for someP∈ ∆. Conversely,

if P∈ ∆, thenPtRP = PRP is at-prime ideal ofRP ([33, Lemma 3.3] andRP is a valuation

domain) andT ⊆ RP (by part(ii)). SoRP = TR\P and thenRP is t-linked overT. Hence

PRP∩T is a t-prime ideal ofT ( Lemma 1.2.7) andPRP∩T = (((PRP∩T)∩R)T)t1 =

(PT)t1 by (iii) . 2

The next lemma is a generalization of [27, Lemma 2.4] and it relates the conditionI−1

not being a ring to a kind of “separation property” for a minimal prime ideal over at-ideal

of a PVMD.

Lemma 1.2.9.Let R be a PVMD, I a t-ideal of R and P a minimal prime ideal of I in R. If
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there is a finitely generated ideal J of R such that I⊆ J⊆ P, then I−1 is not a ring.

Proof. By way of contradiction, assume thatI−1 is a ring. Then by [29, Theorem 4.5]

and [35, Theorem 2.22],I−1 ⊆ RP and I−1 is a t-linked overring ofR. SoRP is t-linked

over I−1. SinceJ−1 ⊆ I−1, R= (JJ−1)t ⊆ (JI−1)t1 wheret1 is thet-operation with respect

to I−1 (Lemma 1.2.7). Also by Lemma 1.2.7,(PI−1)t1 ⊆ (PRP)t2 = PRP (wheret2 is the

t-operation with respect toRP, so it is trivial). Therefore 1∈ R = (JJ−1)t ⊆ (JI−1)t1 ⊆

(PI−1)t1 ⊆ PRP, which is a contradiction. 2

Lemma 1.2.10.([34, Lemma 2.8])Let R be a PVMD and I a t-ideal of R. Then I is a t-ideal

of (I : I).

Lemma 1.2.11.([10, Lemma 3.7)]Let R be an integral domain. The following conditions

are equivalent.

(i) Each t-prime ideal is the radical of a v-finite ideal.

(ii) Each radical t-ideal is the radical of a v-finite ideal.

(iii) Spect(R) is Noetherian.

Proof of Theorem 1.2.6(ii) ⇒ (i) Follows from [1, Proposition 3.3] without any more

conditions.

(i)⇒ (ii) Deny, assume thatI $
√

I . Then there is at-maximal idealM of R such that

IRM is not a radical ideal. Moreover, there is a prime idealP contained inM and minimal

overI with IRM $ PRM and
√

IRM = PRM. Note thatP is at-prime ideal ofR (as a minimal

prime over at-ideal).

Claim 1. IRP = PRP.

Deny. Let b ∈ P such thatIRP $ bRP ⊆ PRP. SinceSpect(R) is Noetherian,P =√
(a1, ...,ar)v for somea1, ...,ar ∈ P. Set J := (a1, ...,ar ,b). Note thatP =

√
Jv (P =
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√
(a1, ...,ar)v ⊆

√
(a1, ...,ar ,b)v ⊆ P). Now, we prove thatI ⊆ J ⊆ P, which contradicts

the assumption thatI−1 is a ring by Lemma 1.2.9. LetN be at-maximal ideal ofR. If P* N,

thenRN = PRN =
√

JvRN =
√

JtRN =
√

JRN ([33, Lemma 3.3]). HenceJRN = RN ⊇ IRN.

Assume thatP⊆ N. ThenPRP = PRN sinceRP is an overring of the valuation domainRN.

SinceIRP $ bRP, b−1I $ RP and sob−1I ⊆ PRP = PRN ⊆ RN. HenceIRN ⊆ bRN ⊆ JRN

as desired.

Now sinceRM is a valuation domain,Z(RM, IRM) = QRM for somet-prime idealQ⊆M.

SinceR is a PVMD andP andQ aret-primes contained inM, Q andP are comparable under

inclusion. Moreover, letx∈ PRM \ IRM. SincePRM = PRP = IRP (Claim 1), there exists

y∈ R\P such thatyx∈ I . Hencey∈ Z(RM, IRM)∩R= Q and thereforeP $ Q.

Claim 2. (QI−1)t1 = I−1.

Note thatI−1 = (I : I) is a subintersection ofR ([29, Theorem 4.5]) and soI−1 is t-

linked overR ([35, Theorem 2.22]). SinceSpect(R) is Noetherian,Q =
√

Av for some

finitely generated idealA of R. SayA =
n=m

∑
n=1

bnR. SinceP $ Q, P $ Av. Indeed, letN be a

t-maximal ideal ofR. If Q * N, thenPRN ⊆ RN = QRN = ARN. If Q⊆ N, thenARN and

PRN are comparable as ideals of the valuation domainRN. But if ARN ⊆ PRN, thenQRN =
√

AvRN =
√

AtRN =
√

ARN ⊆ PRN and soQ⊆ P, which is absurd. HencePRN $ ARN and

thereforeP $ At = Av. Now sinceI ⊆ P⊆ Av, A−1⊆ I−1. So 1∈R= (AA−1)t ⊆ (AI−1)t ⊆

(AI−1)t1 ⊆ (QI−1)t1 (Lemma 1.2.7). Hence(QI−1)t1 = I−1, as desired.

Finally, by Lemma 1.2.8,I−1 * RQ. On the other hand(I : I)⊆ (I : I)RM ⊆ (IRM : IRM) =

(RM)QRM = RQ by [21, Lemma 3.1.9], which is absurd. It follows thatI is a radical ideal of

R.

(iii )⇒ (ii) Assume that all minimal prime ideals ofI in (I : I) aret-maximal ideals. If

I $
√

I , as in the proof of(i)⇒ (ii), there exist twot-prime idealsP andQ of R such that

I ⊆ P $ Q and(I : I)⊆ RQ. Then(I : I)R\Q = RQ and soRQ is t-linked over(I : I). Hence



Chapter 1: Duals and transforms of ideals in PVMDs 17

QRQ∩(I : I) andPRQ∩(I : I) aret-prime ideals of(I : I) with I ⊆PRQ∩(I : I) $ QRQ∩(I :

I) which is absurd.

(i) ⇒ (iii ) Assume thatI−1 = (I : I) and letP be a prime of(I : I) minimal over I .

By Lemma 1.2.10,I is a t-ideal of (I : I) and soP is a t-prime ideal of(I : I) (as a prime

minimal over at-ideal). Now by a way of contradiction, assume that there is at-prime ideal

Q of (I : I) such thatP $ Q. Since(I : I) is a t-linked overring ofR, P = (P′(I : I))t1 and

Q= (Q′(I : I))t1 for somet-prime idealsP′ andQ′ of Rwith I ⊆P′ $ Q′ (Lemma 1.2.8(iv)).

SetQ′ =
√

A for some finitely generated idealAof R. As in the proof of Claim 2,I ⊆P′⊆At .

SoA−1 ⊆ I−1 = (I : I). Hence 1∈ R= (AA−1)t ⊆ (A(I : I))t1 ⊆ (Q′(I : I))t1 = Q, which is

absurd. It follows thatP is at-maximal ideal of(I : I), completing the proof.�

The next two results deal with the duals of primaryt-ideals in a PVMD.

Proposition 1.2.12.(cf. [20, Lemma 4.4])Let R be a PVMD and I a primary t-ideal of R.

If I−1 is a ring, then I−1 = (I : I).

Proof. Deny, assume that there isx∈ I−1\(I : I). SinceI is a t-ideal ofR, there isa∈ I

and at-maximal idealM of R containingI such thatxa 6∈ IRM. SinceI−1 is a ring,I−1 =

(
⋂

RPα
)∩ (

⋂
RMβ

) where{Pα} and{Mβ} are respectively the sets of all prime minimal

ideals of I and t-maximal ideals do not containingI ([29, Theorem 4.5]). LetPα be a

minimal prime ofI with Pα ⊆ M. Thenx∈ RPα
. Write x = b

s whereb∈ R ands∈ R\Pα .

If t = s
a ∈ RM, thens= ta∈ PαRM ∩R= Pα , which is a contradiction. Ifas ∈ RM, sinceI

is a primary ideal ofR, ax= ab
s = ba

s ∈ IRPα
∩RM = IRM, which is a contradiction too. It

follows thatI−1 = (I : I). 2

Corollary 1.2.13. (cf. [21, Proposition 3.1.14])Let R be a PVMD with Spect(R) Noetherian

and I a t-ideal of R. If I is a primary ideal which is not prime, then I−1 is not a ring .

Proof. Deny, assume thatI−1 is a ring. ThenI−1 = (I : I) by Proposition 1.2.12. Therefore

I is a radical ideal (and so prime) by Theorem 1.2.6, which is absurd. 2
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According to [24, Section 27], a Prüfer domainR is called a QR-domain if each overring

of R is a quotient ring ofR. In [9] the authors definedtQR-domains as PVMDsR such that

eacht-linked overring ofR is a quotient ring ofR and they characterizedtQR-domains as

follows: “Let R be a PVMD. Then R is a tQR-domain if and only if for each finitely gener-

ated ideal A of R, there is n≥ 1 and b∈ R such that An ⊆ bR⊆ Av” [9, Theorem 1.3].

We close this section with a third main theorem. It generalizes well-known results by

Fontana et al. [22, Corrollary 4.4 and Theorem 4.11] and gives a description of(I : I)

for a t-idealI in a PVMD that is atQR-domain.

Theorem 1.2.14.Let I be a t-ideal of a PVMD R,{Qα} be the set of all maximal prime

ideals of Z(R, I) and{Mβ} be the set of t-maximal ideals of R that do not contain I. Then:

(1) (I : I)⊇ (
⋂

RQα
)∩ (

⋂
RMβ

);

(2) If R is a tQR-domain, then equality holds.

Before proving this theorem, we need the following lemma.

Lemma 1.2.15.Let I be a t-ideal of a PVMD R. Then Z(R, I) =
⋃

Q where Q ranges over

the set of all t-prime ideals contained in Z(R, I). Q’s are called the primes of Z(R, I) and

the primes of Z(R, I) that are maximal for the inclusion are called the maximal primes of

Z(R, I).

Proof. First we claim thatZ(R, I) =
⋃

M∈Mt(R,I)

Z(RM, IRM)∩R. Indeed, letx∈ Z(R, I). Then

there isa∈R\I such thatax∈ I . SinceI is at-ideal, there is at-maximal idealM containingI

such thata∈RM\IRM. Sinceax∈ IRM, x∈Z(RM, IRM)∩R. Conversely, letM ∈Maxt(R, I)

and letz∈ Z(RM, IRM)∩R. Then there isct ∈RM\IRM such thatzc
t ∈ IRM with c∈R\I and

t ∈ R\M. Henceszc∈ I for somes∈ R\M. If cs∈ I , thenc = i
s ∈ IRM. Thus c

t ∈ IRM, a

contradiction. Hencecs 6∈ I and thenz∈ Z(R, I), as desired. Now, clearlyZ(R, I) ⊇
⋃

Q.

Conversely, ifx∈ Z(R, I), thenx∈ Z(RM, IRM)∩R for somet-maximal idealM containing
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I . SetQ = Z(RM, IRM)∩R. ThenQ is a t-prime ideal ofR ([35, Corollary 2.47]),x ∈ Q

andQ⊆ Z(R, I), as desired. Finally, note thatQ’s are exactly (Z(RM, IRM)∩R)’s, whereM

ranges over the set of allt-maximal ideals ofRcontainingI . 2

Proof of Theorem 1.2.14. (i) Let u∈ (
⋂

RQα
)∩ (

⋂
RMβ

) anda∈ I . It is enough to prove

that ua∈ I . Sinceu ∈
⋂

RMβ
, it suffices to show thatua∈ IRNγ

for eachγ, where{Nγ}

is the set oft-maximal ideals ofR containingI . By [24, Corollary 4.6],
⋂

RQα
= RR\∪Qα

.

Write u = r
s, wherer ∈ R ands∈ R\∪Qα . Fix γ and setQ = Z(RNγ

, IRNγ
)∩R. ThenQ

is a prime ofZ(R, I) by Lemma 1.2.15 andI ⊆ Q⊆ Nγ . Let Qα0 be a maximal prime of

Z(R, I) containingQ. We claim thatas ∈ RNγ
. For if not, thens

a = t ∈ RNγ
and thuss= at ∈

IRNγ
∩R⊆QRNγ

∩R= Q⊆Qα0, a contradiction. Henceas ∈RNγ
and soua= ar

s = r a
s ∈RNγ

.

Thus if ua 6∈ IRNγ
, thensua= ra ∈ I ⊆ IRNγ

, and sos∈ Z(RNγ
, IRNγ

)∩R = Q⊆ Qα0, a

contradiction. Thereforeua∈ IRNγ
, as desired.

(ii) Set T := (I : I). ClearlyT ⊆
⋂

RMβ
. Now we will prove thatT ⊆

⋂
RQα

. SinceR

is a PVMD andI is a t-ideal,T is t-linked overR . HenceT = RS for some multiplicative

closed setS of R sinceR is a tQR-domain. By Lemma 1.2.8(ii), it suffices to show that

(QαT)t1 6= T for eachα. By way of contradiction, assume that(QT)t1 = T whereQ = Qα

for someα. Then there exists a finitely generated idealB such thatBv1 = T andB⊆ QT.

SayB =
i=r

∑
i=1

anT with ai ∈ QT and writeai =
s=mi

∑
s=1

qistis with qis ∈ Q andtis ∈ T for each

i = 1, . . . ,n ands= 1, . . . ,mi . Now let A be the finitely generated ideal ofR generated by

all q′iss. ThenA⊆ Q andB⊆ AT. HenceT = Bv1 ⊆ (AT)v1 ⊆ (AvT)v1 ⊆ T and therefore

(AT)v1 = (AvT)v1 = T. SinceR is atQR-domain andT is t-linked overR, by [8, Proposition

2.17], AvT = T. But sinceAv = At ⊆ Q (hereQ is a t-prime ideal by Lemma 1.2.15),

QT = T. Hence 1=
i=n

∑
i=1

qiai whereqi ∈ Q andai ∈ T. SetJ =
i=n

∑
i=1

qiR. Clearly JT = T

and by inductionJsT = T for all positive integers. SinceR is a tQR-domain, there is

a positive integerN andd ∈ R such thatJN ⊆ dR⊆ Jv = Jt ⊆ Q. SinceJNT = T, then
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1 =
i=s

∑
i=1

λiyi whereλi ∈ JN andyi ∈ T, and sinceJN ⊆ dR, there existsµi ∈ R such that

λi = dµi for eachi. Now, sinced∈Q⊆ Z(R, I), there existsr ∈R\ I such thatrd ∈ I . Hence

r =
i=s

∑
i=1

rλiyi =
i=s

∑
i=1

rdyiµi ∈ IT = I , a contradiction. Hence(QT)t1 $ T and by Lemma 1.2.8,

T ⊆ RQ, completing the proof.�

1.3 Ideal transform overrings of a PVMD

We start this section with the following theorem which is a generalization of [21, Theorem

3.2.5]. As the proof is similar to that of [21, Theorem 3.2.5] simply by replacing maximal

ideals byt-maximal ideals, we omit it here.

Theorem 1.3.1.Let R be a PVMD, I a t-ideal of R,{Pα} the set of minimal prime ideals of

I, and{Mβ} the set of t-maximal ideals of R that do not contain I. Then:

(1) T(I)⊆ (
⋂

RQα
)∩(

⋂
RMβ

), where Qβ is the unique prime ideal determined by
⋂∞

n=1 InRPα
;

(2) The equality holds, if I has a finitely many minimal primes.

Our next theorem generalizes [21, Theorem 3.3.7] to PVMDs.

Theorem 1.3.2.Let P be a non-t-invertible t-prime ideal of a PVMD R. Then there is no

proper overring of R between P−1 andΩ(P).

The proof of this theorem involves the following lemmas.

Lemma 1.3.3. Let R be a PVMD, I a t-ideal of R and let T be a t-linked overring of R

contained inΩ(I). Then there is one-to-one correspondence between the sets S1 = {P ∈

Spect(R) : P + I} and S2 = {Q∈ Spect(T) : Q + IT}.

Proof. DefineΨ : S1 → S2 by Ψ(P) = PRP∩T = Q for eachP ∈ S1. ThenΨ is well-

defined. Indeed, letP ∈ S1. SinceT ⊆ Ω(I), T ⊆ RP. So TR\P = RP and thenRP is a
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t-linked overring ofT. HencePRP∩T is at-prime ofT. Also, if x∈ I \P, thenx∈ IT \Q

and the injectivity ofΨ is clear.

Now, let Q∈ S2 and setP := R∩Q. ThenP + I , and sinceRP = TQ, PRP = QTQ. Hence

Ψ(P) = PRP∩T = QTQ∩T = Q. 2

Lemma 1.3.4.Under the same notation as Lemma 1.3.3, if(IT )t1 = T , then T= Ω(I).

Proof. Assume that(IT )t1 = T. Then IT is not contained in anyt-prime ideal ofT.

SinceR is a PVMD andT is a t-linked overring ofR, T is a PVMD. By Lemma 1.3.3,

T =
⋂

Q∈Spect(T)

TQ =
⋂

P∈Spect(R),P+I

RP ⊇Ω(I). HenceT = Ω(I). 2

Proof of Theorem 1.3.2. Let T be an overring ofR such thatP−1 $ T ⊆ Ω(P) and let

{Mβ} be the set of allt-maximal ideals ofR that do not containP. By [21, Theorem

3.2.2],T ⊆Ω(P)⊆
⋂

RMβ
. If (PT)t1 6= T, thenT ⊆ RP (Lemma 1.2.8(ii)). SoP−1 $ T ⊆

RP∩ (
⋂

RMβ
) = P−1 ([28, Proposition 1.2]), which is a contradiction. Hence(PT)t1 = T,

and soT = Ω(P) by Lemma 1.3.4.�

Corollary 1.3.5. (cf. [21, Corollary 3.3.8])Let P be a non t-invertible t-prime ideal of a

PVMD R. Then:

(1) P−1 = T(P) or T(P) = Ω(P);

(2) If P 6= (P2)t , then T(P) = Ω(P);

(3) If P = (P2)t , then P−1 = T(P);

(4) If P is unbranched, then P−1 = T(P) = Ω(P).

Proof. (i) Follows from Theorem 1.3.2.

(ii) If P 6= (P2)t , then there is a prime idealQ of R such that
⋂

(Pn)tRP = QRP. Note

thatP * Q (otherwise, ifP = Q, thenPRP = QRP. But QRP ⊆ (P2)tRP = P2RP $ PRP, a
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contradiction). HenceT(P)⊇RQ∩(
⋂

RMβ
)⊇Ω(P), where{Mβ} is the set of allt-maximal

ideals ofR that do not containI . SinceT(P)⊆Ω(P), T(P) = Ω(P).

(iii) If P = (P2)t , thenP = (Pn)t for eachn≥ 1. Hence(R : Pn) = (R : (Pn)t) = (R : P).

SoT(P) = P−1 by the definition ofT(P).

(iv) SinceP is unbranched and(P2)t is aP-primary ([28, Proposition 1.3]),P = (P2)t .

HenceT(P) = P−1 by (iii) . It is clear thatΩ(P)⊇ T(P). By [11, Proposition 1.2],P=
⋃

Pγ

where{Pγ} is the set of primes ideal ofRproperly contained inP, and we may assume that

they are maximal with this property. Then by [24, Corollary 4.6],RP =
⋂

RPγ
. Hence by

[21, Theorem 3.2.2],Ω(P)⊆RP. SinceΩ(P)⊆
⋂

RMβ
, Ω(P)∩RP⊆

⋂
RMβ

∩RP. It follows

thatΩ(P)⊆ P−1 = T(P). ThereforeT(P) = Ω(P). 2

Our last theorem generalizes [21, Theorem 3.3.10].

Theorem 1.3.6.Let R be a PVMD and P a t-prime ideal of R. Then:

(1) T(P) $ Ω(P) if and only if T(P) = RP∩Ω(P) andΩ(P) * RP.

(2) The following conditions are equivalent:

(i) (PΩ(P))t1 = Ω(P);

(ii) Ω(P) * RP;

(iii) P =
√

I for some t-invertible ideal I.

The proof of this theorem involves the following lemmas. First we notice that in [24],

Gilmer mentioned thatIT (I) = T(I) for any invertible idealI of an arbitrary domainR. Our

first lemma provides at-analogue result in the class of PVMDs. Note that one can replace

the condition “PVMD” onRby assuming thatT(I) is at-flat overring ofR.

Lemma 1.3.7.Let I be an ideal of a domain R.

(i) If I is t-invertible and R is a PVMD, then(IT (I))t1 = T(I) where t1 is the t-operation

with respect to T(I).

(ii) If I and J are two ideals of a domain R such that
√

I =
√

J, thenΩ(I) = Ω(J).
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Proof. (i) Since I is t-invertible, then there is a finitely generated idealA of R such that

A⊆ It andAt = It . ThenT(I) = T(It) = T(At) = T(A) = Ω(A) and henceT(I) is at-linked

overring ofR. SinceI is t-invertible, then(II−1)t = Rand hence(I(R : In))t = (R : In−1) for

eachn≥ 2. SinceI(R: In)⊆ (I(R: In))T(I) for eachn, then(I(R: In))t ⊆ (IT (I))t1 for each

n ( Lemma 1.2.7). Hence
⋃

(I(R : In))t ⊆ (IT (I))t1. SoT(I) =
⋃

(I(R : In))t ⊆ (IT (I))t1 ⊆

T(I) and therefore(IT )t1 = T(I), as desired. (ii) Straightforward via [21, Theorem 3.2.2].

2

Lemma 1.3.8. (cf. [24, Proposition 25.4])Let R be a PVMD and A1, ....,An,B and C be

nonzero fractional ideals of R. Then:

(1) If for each i, Ai is t-finite, then
⋂n

i=1Ai is t-finite.

(2) If B is t-finite, then(C : B) = (CB−1)t .

(3) If B and C are t-finite, then(C :R B) is t-finite.

Proof. (1) It suffices to prove it forn = 2. We have((A1∩A2)(A1+A2))t = (A1A2)t ( [25,

Theorem 5]). SinceA1 andA2 aret-invertible,A1A2 is t-invertible and thereforeA1∩A2 is

t-invertible and sot-finite.

(2) If x ∈ (R : B)C, thenx = ∑n
i=1bici wherebiB⊆ R andci ∈C. HencexB= ∑cibiB⊆

RC⊆C. So(R : B)C⊆ (C : B). Therefore((R : B)C)t ⊆ (C : B)t = (C : B). Conversely, we

haveB(C : B)⊆C. Then(C : B) = (C : B)t = ((C : B)BB−1)t ⊆ (CB−1)t .

(3) By definition,(C :R B) = (C :R B)t = ((C : B)∩R)t = ((CB−1)t ∩R)t . SinceC andB are

t-finite, (CB−1)t is t-finite. So by (1),(C :R B) is t-finite. 2

Proof of Theorem 1.3.6(1) Assume thatT(P) $ Ω(P). ThenP is a non-t-invertiblet-prime

ideal ofR (otherwise, ifP is t-invertible, thenP is t-finite, i.e., there is a finitely generated

ideal A of R such thatP = At . HenceΩ(P) = Ω(At) = Ω(A) = T(A) = T(At) = T(P), a

contradiction). IfP = M is a non-t-invertible t-maximal ideal ofR, thenM−1 = R and so

(R : Mn) = R for all positive integersn. HenceT(M) = R= RM ∩Ω(M). Also if Ω(M) ⊆
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RM, thenΩ(M) = R = T(M), a contradiction. HenceΩ(M) * RM. Assume thatP is a

non-t-maximalt-prime ideal. By Theorem 1.3.2,P−1 = T(P). HenceT(P) = RP∩Ω(P)

by [28, Proposition 1.1] and [21, Theorem 3.2.2]. ThereforeΩ(P) * RP.

The converse is trivial.

(2) (i)⇒ (ii) By [21, Theorem 3.2.2] and [5, Proposition 4],Ω(P) is at-linked overring

of R. Since(PΩ(P))t1 = Ω(P), Ω(P) * RP by Lemma 1.2.8(ii).

(ii)⇒ (iii ) Let {Qα} be the set of allt-prime ideals ofR that do not containP. Choose

x ∈ Ω(P) \RP. Write x = a
b wherea,b ∈ R. If I = (bR :R aR), then I * Qα for eachα

andI ⊆ P. By Lemma 1.3.8,I is t-finite and
√

I = P. For this if z 6∈
√

I , thenzn 6∈ Av for

each finitely generated idealA of R such thatA⊆ I . Henceznab−1 6∈ R for eachn. Since

ab−1 ∈Ω(P), z 6∈ P.

(iii )⇒ (i) SinceP =
√

I , Ω(P) = Ω(I) by Lemma 1.3.7(ii). SinceI is t-invertible, by

Lemma 1.3.7(IT (I))t1 = T(I). Also sinceI is t-invertible, there is a finitely generated

idealA of R such thatA⊆ I andIt = At . HenceT(I) = T(It) = T(At) = T(A) = Ω(A) =

Ω(At) = Ω(It) = Ω(I) by [19, Proposition 3.4]. SoΩ(P) = Ω(I) = (IΩ(I))t1 ⊆ (PΩ(I))t1 =

(PΩ(P))t1 ⊆Ω(P).�

Corollary 1.3.9. (cf. [21, Corollary 3.3.11])Let R be a PVMD and P a non-t-maximal

t-prime ideal of R. Then T(P) $ Ω(P) if and only if P= (P2)t and P=
√

I for some t-

invertible ideal I of R

Proof. ⇒) SinceT(P) $ Ω(P), P = (P2)t (Corollary 1.3.5(ii)) andΩ(P) * RP (Theo-

rem 1.3.6). Hence there is a t-invertible idealI of Rwith P =
√

I (Theorem 1.3.6).

⇐) P = (P2)t implies thatP−1 = T(P) by Corollary 1.3.5(iii). SinceP =
√

I for some

t-invertible idealI of R, Ω(P) * RP by Theorem 1.3.6. By [29, Theorem 4.5]P−1 = RP∩

(
⋂

RMβ
), where{Mβ} is the set of allt-maximal ideals ofR that do not containP. By [21,

Theorem 3.2.2],T(P) = P−1 = RP∩Ω(P). By Theorem 1.3.6,T(P) $ Ω(P). 2
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Corollary 1.3.10. (cf. [21, Corollary 3.3.12])Let R be a PVMD and P a non-t-invertible

t-prime ideal of R. Then:

(PT(P))t1 6= T(P) and(PΩ(P))t2 = Ω(P) if and only if P−1 = T(P) $ Ω(P) where t1 (resp.

t2) is the t-operation with respect to T(I) (resp.Ω(I)).

Proof. If (PT(P))t1 6= T(P) and(PΩ(P))t2 = Ω(P), then clearlyT(P) $ Ω(P). Hence

P−1 = T(P) by Theorem 1.3.2. Conversely, ifP−1 = T(P) $ Ω(P), then(PT(P))t1 6= T(P)

by Lemma 1.3.4. MoreoverP =
√

I for somet-invertible idealI of R by Corollary 1.3.9.

Therefore(PΩ(P))t2 = Ω(P) by Theorem 1.3.6. 2



Chapter 2

Compact and coprime packedness with respect to

star operations

This chapter∗ studies the notions of compactly packed ring and coprimely packed ring with

respect to a star operation of finite type.

2.1 Introduction

LetRbe a commutative ring. An idealI of R is said to be compactly packed (resp. coprimely

packed ) by prime ideals ofR if wheneverI ⊆
⋃

α∈Ω Pα , where{Pα}α∈Ω is a family of prime

ideals ofR, I is actually contained inPα (resp. I +Pα ( R) for someα ∈ Ω; andR is said

to be a compactly packed domain (resp. a coprimely packed domain ) if every ideal of

R is compactly (resp. coprimely) packed. The notions of compactly packed (orCP-ring

for short) was introduced by Reis and Viswanathan, [41], where NoetherianCP-rings were

characterized by the property that prime ideals are radicals of principal ideals. The notion

of coprimely packed rings was introduced by Erdoğdu in 1988 [12], and intensively studied

∗This work is accepted for publication in Houston Journal of Mathematics (in collaboration with A. Mimouni) .
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in a series of papers, for instance see [12, 13, 14, 15, 16], [18], [7] and [42]. In this chapter

we extend these notions to a domain with an arbitrary star operation of finite type in the

following way: Let R be a domain and∗ be a star operation of finite type onR. A ∗-

ideal I of R is said to be a∗-compactly packed ideal (resp.∗-coprimely packed ideal) if

wheneverI ⊆
⋃

α∈Ω Pα , where{Pα}α∈Ω is a family of ∗-prime ideals ofR, I is actually

contained inPα (resp. (I + Pα)∗ ( R) for someα ∈ Ω; andR is said to be∗-compactly

(resp.∗-coprimely) packed if every∗-ideal ofR is ∗-compactly (resp.∗-coprimely) packed.

In the particular case where∗ = d is the trivial operation onR, we obtained the so-called

compactly and coprimely packed rings. We also study various aspects of these notions in

many different classes of integral domains such as Nagata rings, polynomial rings, Prüfer-

like rings, pullbacks etc.

In Section 2.2, we define the notions of∗-coprime and∗-compact packedness with re-

spect to a star operation of finite type and we give a diagram summarizing different impli-

cations between these notions. We then concentrate on the transfer of the above notions to

Nagata rings and polynomial rings. Our first main result states that given a star operation

∗ of finite type, if R is ∗-coprimely packed, then its Nagata ringNa(R,∗) with respect to

∗ is coprimely packed (Theorem 2.2.10). The second main result establishes a connection

between the[∗]-compact packedness of the polynomial ringR[X] and ∗̃-compact packed-

ness ofR where[∗] is the extension toR[X] of a star operation of finite type∗ on R and∗̃

its spectral star operation. Precisely we prove that for an integral domainRand given a star

operation of finite type∗ on R, the polynomial ringR[X] is a [∗]-compactly packed domain

if and only if R is a ∗̃-compactly packed domain and each[∗]-prime ideal ofR[X] is either

an upper to zero or extended, and each upper to zero is a set theoretic complete intersection

(Theorem 2.2.12).

During the last decades, thet-operation (as the largest star operation of finite type) has

been intensively studied, probably for its ability to classify many classes of integral domains
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as a generalizations of well-known domains. For instance, Bezout domains (i.e., every f. g.

ideal is principal) to GCD domains (i.e., for every f. g. idealI , It is principal), Dedekind

domains (i.e., every ideal is invertible) to Krull domains (i.e., every ideal ist-invertible),

Prüfer domains (i.e., every f. g. ideal is invertible) to PVMD (i.e., every f. g. ideal is

t-invertible) etc. In this regard, the third section focuses on thet-coprime packedness. Our

objective is to seek for generalizations ort-analogues of well-known results in the classical

case. The first main theorem of this section is a satisfactory analogue of [16, Theorem 2.1].

Precisely we prove that for at-almost Dedekind domainR (i.e., RM is Dedekind for every

t-maximal idealM), R is t-coprimely packed if and only ifR< X > is t-coprimely packed

if and only if R[X] is t-coprimely packed if and only if eacht-prime ideal ofR[X] is a set

theoretic complete intersection if and only ifR is a Krull domain with torsion class group

(Theorem 2.3.6). The second main theorem is a generalization of [16, Theorem 2.5]. Thus,

for a GCD domainR, consider the following statements:

(i) Everyt-prime ideal ofR[X] is a set theoretic complete intersection.

(ii) R[X] is t-compactly packed.

(iii ) R[X] is t-coprimely packed.

(iv) R is t-coprimely packed.

Then (i) =⇒ (ii) =⇒ (iii ) =⇒ (iv). Moreover, if t − dimR= 1, then the statements are

equivalent (Theorem 2.3.10).

The last section deals with the transfer of the pre-mentioned notions to special type of

pullback constructions in order to provide original examples.

ThroughoutR is an integral domain with quotient fieldL, F(R) is the set of all nonzero

fractional ideals of R, i.e., allR-submodulesAof L such thatdA⊆Rfor some nonzerod∈R,

and f (R) is the set of all nonzero finitely generatedR-submodules ofL. Then f (R)⊆ F(R).

A mappingF(R)→ F(R), E 7→ E∗ is called a star operation onR if for all nonzerox∈ L

andE,F ∈ F(R), the following properties are satisfied:



Chapter 2: Compact and coprime packedness with respect to star operations 29

(∗1) (xE)∗ = xE∗ andR∗ = R

(∗2) E ⊆ E∗, andE ⊆ F impliesE∗ ⊆ F∗

(∗3) E∗∗ = E∗.

A star operation∗ on R is said to be of finite type (or of finite character) ifE∗ =

∪{F∗|F ∈ f (R),F ⊆ E} for eachE ∈ F(R). For each star operation∗ on R, we asso-

ciate a star operation of finite type∗ f defined byE∗ f |= ∪{F∗ : F ∈ f (R),F ⊆ E} for each

E ∈ F(R). Obviously, a star operation∗ is of finite type if and only if∗ = ∗ f . An ideal

I is said to be a∗-ideal if I = I∗. A ∗-prime ideal is a prime ideal that is a∗-ideal and a

∗-maximal ideal is a (prime)∗-ideal which is maximal in the set of all∗-ideals. Notice that

if ∗ is of finite type, then every∗-ideal is contained in a∗-maximal ideal and every minimal

prime of a∗-ideal is∗-prime.

Finally, letSFc(R) the set of all star operations of finite type onR, and for∗ ∈ SFc(R),

let Spec∗(R) be the set of all∗-prime ideals of R, Max∗(R) the set of all∗-maximal ideals of

RandX1(R) the set of all height-one prime ideals ofR. Also for a∗-idealI of R, Max∗(R, I)

will denote the set of all∗-maximal ideals of R containingI , Max∗(R, I), the set of all∗-

maximal ideals do not containingI and if I = aR is a principal ideal, we use the notation

Max∗(R,a) for Max∗(R,aR). Unreferenced material is standard, typically as in [24] or [36].

2.2 General results

Definition 2.2.1. Let R be an integral domain and∗ be a star operation of finite type on R.

The following statements are equivalent.

(i) For every∗-ideal I of R and{Pα}α∈Ω a family of∗-prime ideals of R, I⊆
⋃

Pα implies

that I⊆ Pα for someα ∈Ω.

(ii) For every∗-ideal I of R,
√

I =
√

aR for some a∈ I.

(iii ) Every∗-prime ideal of R is the radical of a principal ideal.
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A domain R is said to be a∗-compactly packed domain if R satisfies one of the above

equivalent conditions.

Proof. Similar to [40, Theorem 1], but for the convenience of the reader we include a brief

proof here.

(i) =⇒ (ii). Let I be a∗-ideal and{Qα}α be the set of all∗-prime ideals ofR do not

containingI . By (i), I *
⋃

Qα . Let a∈ I \
⋃

Qα . It is easy to check thatMin(I) = Min(aR)

and therefore
√

I =
√

aR.

(ii) =⇒ (iii ) Trivial.

(iii ) =⇒ (i) Assume thatI ⊆
⋃

Pα . Let Q be a minimal prime ideal ofI such thatQ⊆
⋃

Pα

(this is always possible sinceS= R\
⋃

Pα is a multiplicative set ofR with I ∩S= /0. Thus

there is a prime idealQ containingI such thatQ∩S= /0. Then shrinkQ to a minimal prime

over I ). SinceQ is ∗-prime, by(iii ) Q =
√

aR. But Q⊆
⋃

Pα implies thata∈ Pα for some

Pα . HenceI ⊆Q =
√

aR⊆ Pα , as desired. 2

Definition 2.2.2. Let R be an integral domain and∗ be a star operation of finite type on R.

The following statements are equivalent.

(i) For every∗-ideal I of R and{Pα}α∈Ω a family of∗-prime ideals of R, I⊆
⋃

Pα implies

that (I +Pα)∗ ( R for someα ∈Ω.

(ii) For every∗-prime ideal P of R and{Pα}α∈Ω a family of∗-prime ideals of R, P⊆
⋃

Pα

implies that(P+Pα)∗ ( R for someα ∈Ω.

(iii ) For every∗-ideal I of R and{Mα}α∈Ω a family of∗-maximal ideals of R, I⊆
⋃

Mα

implies that I⊆Mα for someα ∈Ω.

(iv) For every∗-ideal I of R, I*
⋃
{M|M ∈Max∗(R, I)}.

(v) For every∗-prime P of R and{Mα}α∈Ω a family of∗-maximal ideals of R, P⊆
⋃

Mα

implies that P⊆Mα for someα ∈Ω.

(vi) For every∗-prime ideal P of R, there exists b∈P such that j− rad∗(P) = j− rad∗(bR),



Chapter 2: Compact and coprime packedness with respect to star operations 31

where j− rad∗(I) =
⋂
{M|M ∈Max∗(R, I)}.

A domain R is said to be a∗-coprimely packed domain if R satisfies one of the above

equivalent conditions.

Proof. (i) =⇒ (ii) is trivial and for(ii) =⇒ (i), let I be a∗-ideal ofRand{Pα}α∈Ω a family

of ∗-prime ideals ofR such thatI ⊆
⋃

Pα . SetS= R\
⋃

Pα . ThenS is a multiplicative set

of R andI ∩S= /0. Let P be a minimal prime ideal ofI such thatP∩S= /0. ThenP is a

∗-prime ideal andP⊆
⋃

Pα . By (ii), (I +Pα)∗ ⊆ (P+Pα)∗ ( R, as desired. The proof of

the other assertions is similar to [18, Lemma 2]. 2

Definition 2.2.3. Let R be an integral domain and∗ be a star operation of finite type on R.

The following statements are equivalent.

(i) For every ideal I of R and{Pα}α∈Ω a family of∗-prime ideals of R, I⊆
⋃

Pα implies

that (I +Pα)∗ ( R for someα ∈Ω.

(ii) For every prime ideal P of R and{Pα}α∈Ω a family of∗-prime ideals of R, P⊆
⋃

Pα

implies that(P+Pα)∗ ( R for someα ∈Ω.

(iii ) For every ideal I of R and{Mα}α∈Ω a family of∗-maximal ideals of R, I⊆
⋃

Mα

implies that I⊆Mα for someα ∈Ω.

(iv) For every ideal I of R, I*
⋃
{M|M ∈Max∗(R, I)}.

(v) For every prime P of R and{Mα}α∈Ω a family of∗-maximal ideals of R, P⊆
⋃

Mα

implies that P⊆Mα for someα ∈Ω.

A domain R is said to be a(d,∗)-domain if R satisfies the above statements are equivalent.

Proof. (i) =⇒ (ii) Trivial.

(ii) =⇒ (iii ) SetS= R\
⋃

α Mα . ThenS is a multiplicative set ofRandS∩ I = /0. LetP be a

prime ideal ofRsuch thatP∩S= /0 andI ⊆P. ThenP⊆
⋃

α Mα and by(ii), (P+Mβ )∗ ( R

for someβ . SinceMβ is ∗-maximal,I ⊆ P⊆Mβ .

(iii ) =⇒ (iv) Trivial.
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(iv) =⇒ (v) Suppose thatP * Mα for eachα. Then{Mα}α∈Ω ⊆ Max∗(R,P). So P⊆⋃
Mα ⊆

⋃
{M|M ∈Max∗(R,P)}, which contradicts(iv).

(v) =⇒ (i) Suppose thatI ⊆
⋃

Pα and for eachα, let Mα be a∗-maximal ideal such that

Pα ⊆ Mα . SetS= R\
⋃

α Mα . ThenS is a multiplicative ofR andS∩ I = /0. Let P be a

prime ideal ofR such thatP∩S= /0 andI ⊆ P. ThenP⊆
⋃

α Mα and by(v) I ⊆ P⊆ Mβ

for someβ . SincePβ ⊆Mβ , I +Pβ ⊆Mβ and therefore(I +Pβ )∗ ⊆Mβ ( R. 2

Remark 2.2.4.(1)Let∗1≤∗2 be two star operations of finite type on R. If R is∗1-compactly

packed, then R is∗2-compactly packed. The converse is not true. Indeed, let k be a field and

X and Y indeterminates over k. Set R= k[X,Y]. Clearly Spectt(R) = X1(R) and since R is

a UFD, every t-prime of R is principal. Hence R is t-compactly packed. However R is not

compactly packed since R is two-dimensional Noetherian domain [13, Proposition 1].

(2) If ∗= d, then(d,d)-domains are exactly the coprimely packed domains.

(3) If ∗−dimR= 1, then∗-compact and∗-coprime packedness coincide.

Proposition 2.2.5.Let R be a domain and∗ be a star operation of finite type on R. Then R

is a (d,∗)-domain if and only if R is coprimely packed andMax(R) = Max∗(R).

Proof. Assume thatR is a (d,∗)-domain and letM be a maximal ideal ofR. Then

M ⊆
⋃

m∈M Mm, whereMm is a ∗-maximal ideal ofR containingm. Thus,M ⊆ Mm0 for

somem0 ∈ M and thereforeM = Mm0. Hence Max(R) ⊆ Max∗(R). On the other hand, if

Q ∈ Max∗(R), thenQ⊆ M for some maximal idealM of R. But sinceM is a∗-maximal

ideal ofR, M = Q and therefore Max(R) = Max∗(R). Now the coprime packedness and the

converse are clear. 2

The diagram in Figure 1 summarizes the relations between all these classes of integral

domains where the implications are, in general, irreversible. Note that straight arrows for

implications and arcs for irreverences.
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(Example 2.4.4)
(d, t)-domain not comp.

(Example 2.4.4)
(d, t)-domain nott-comp.

(Example 2.4.4)
t-cop. nott-comp.

R local Krull domain
with Cl(R) = Z
cop. nott-cop

scompactly packed domain

s(d,∗)-domain s

s

∗-compactly packed

∗-coprimely packed domain

s
coprimely packed domain

Figure 2.1: Relations between∗-compact,∗-coprime packedness and(d,∗)-domains.

Now we turn our attention to the ascent and descent. LetRbe a domain,Sa multiplica-

tive closed set ofR and∗ a star operation of finite type onR. In [30], the authors defined a

star operation of finite type∗S onRS as follows: For every nonzero fractional idealF of RS,

if F = ERS for some fractional idealE of R, F∗S = (ERS)∗S = E∗RS (notice that∗S does not

depend on the choice ofE).

Lemma 2.2.6.Assume R,S,∗ as above. Then:

(1) (ERS)∗S = (E∗RS)∗S.

(2) If E is a∗-ideal of R, then ERS is a∗S-ideal of RS.

(3) If ERS is a∗S-ideal of RS, then ERS∩R is a∗-ideal of R.

(4) Let P be a∗-prime ideal of R which is disjoint from S. Then PRS is a ∗S-prime ideal of
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RS.

(5) If M is a ∗-maximal ideal of R which is disjoint from S, then MRS is a∗S-maximal ideal

of RS.

Proposition 2.2.7. Assume R,S,∗ as above and assume that Spec∗(R) is a tree. If R is a

∗-coprimely packed domain, then RS is a∗S-coprimely packed domain.

Proof. Straightforward via Lemma 2.2.6. 2

Proposition 2.2.8.Assume R,∗ as in Lemma 2.2.6 and assume that S is the complement of

the union of a set of∗-maximal ideals of R. If R is a∗-coprimely packed domain, then RS is

a ∗S-coprimely packed domain.

Proof. SayS= R\
⋃

Nβ . Let PRS be a∗S-prime ideal ofRS and{MαRS} ⊆ Max∗S(RS)

such thatPRS⊆
⋃

MαRS. By Lemma 2.2.6,P is a∗-prime ideal ofR, {Mα}⊆Spec∗(R) and

Mα ∩S= φ for eachα. Hence for eachα, Mα ⊆
⋃

Nβ and soMα ⊆ Nβ for someβ since

R is a∗-coprimely packed domain. ThusMαRS⊆ Nβ RS and sinceMαRS is a∗S-maximal

ideal ofRS (Lemma 2.2.6),MαRS = Nβ RS. HenceMα = Nβ is a∗-maximal ideal ofR for

eachα. Now, PRS⊆
⋃

MαRS implies thatP⊆
⋃

Mα . SoP⊆ Mα0 for someα0 sinceR is

∗-coprimely packed. ThereforePRS⊆Mα0RS, as desired. 2

Proposition 2.2.9.Assume R,S,∗ as in Lemma 2.2.6. If R is a∗-compactly packed domain,

then RS is a∗S-compactly packed domain.

Proof. Straightforward. 2

Let R be a domain and∗ ∈ SF(R). According to [23] the Nagata ring ofR with respect

to ∗ (or the∗-Nagata ring ofR) is the ring defined byNa(R,∗) := R[X]N∗ whereN∗ = { f ∈

R[X] : f 6= 0 andc( f )∗ = R}. In the particular case where∗= d is the trivial star operation,

Na(R,d) coincides with the classical Nagata domainR(X) as defined in ([39, Chapter I,§6,
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p.18] and [24, Section 33]). Our first main theorem deals with the transfer of the∗-coprime

packedness fromR to its∗-Nagata ring.

Theorem 2.2.10.Let R be a domain and∗ ∈ SF(R). If R is ∗-coprimely packed, then

Na(R,∗) is coprimely packed.

Proof. Let P′ be a prime ideal ofNa(R,∗) and{M′
α} ⊆ Max(Na(R,∗)) such thatP′ ⊆⋃

M′
α . Then there is a prime idealP of R[X] such thatP′ = PN∗ and for eachα there is a

∗-maximal idealMα of R such thatM′
α = Mα [X]N∗ ([23, Proposition 3.1]. Now, letf ∈ P.

Then there isα0 such thatf ∈ M′
α0

. So there isg ∈ N∗ such thatf g ∈ Mα0[X]. Since

g 6∈Mα0[X], f ∈Mα0[X]. ThereforeP⊆
⋃

Mα [X]. We claim that(c(P))∗ ⊆
⋃

Mα . Indeed,

let a∈ (c(P))∗. Then there is a finitely generated idealA = (a1,a2, ....,ar)⊆ c(P) such that

a ∈ A∗. So, for each 1≤ i ≤ r, ai is a linear combination of coefficients of polynomials

fi,1, fi,2, ...., fi,si of P of degreeqi,1,qi,2, ...,qi,si respectively. Setfi = fi,1 + Xqi,1+1 fi,2 +

Xqi,1+qi,2+2 fi,3 + ...+Xqi,1+....+qi,si +si−1 fi,si and assume thatfi is of degreepi . Then fi ∈ P

andai ∈ c( fi) for eachi. Now set f = f1 +Xp1+1 f2 + .....+Xp1+...+pr+r−1 fr . Then f ∈ P

and clearlya∈ A∗ ⊆ (c( f ))∗. But sincef ∈ P⊆
⋃

Mα [X], f ∈Mβ [X] for someβ and thus

c( f ) ⊆ Mβ . Thereforea∈ (c( f ))∗ ⊆ M∗
β

= Mβ , as claimed. Now sinceR is ∗-coprimely

packed,(c(P))∗ ⊆Mα for someα. ThereforeP⊆ c(P)[X]⊆Mα [X] and henceP′ ⊆M′
α , as

desired. 2

Let R be a domain,L its quotient field,X andY indeterminates overR andS a mul-

tiplicative set ofR[X]. In [6, Theorem 2.1], Chang and Fontana defined a stable semi-

star operation of finite type	S on R as follows: E	S := ER[X]S∩K for eachE ∈ F(R).

If S⊆ Nt , then	S is a star operation of finite type onR and if S is extended, that is,

S= R[X] \
⋃
{P[X] : P ∈ Spec(D) and P[X]∩S= 0}, thenNa(R,	S) = R[X]S. More

generally, given a (semi)star operation∗ on R, the authors defined a (semi)star opera-

tion [∗] on R[X] as follows: SetD1 := R[X],K1 := L(X) and take the following subset of
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Spec(D1): ∆∗1 := {Q1 ∈ Spec(D1)|Q1∩R= 0 or Q1 = (Q1∩R)[X] and(Q1∩R)∗ f ( R}.

SetS∗1 := D1[Y]\ (
⋃
{Q1[Y]|Q1 ∈ ∆∗1}). Then take[∗] =	S∗1

([6, Theorem 2.3]). Our second

main theorem examines the (decent)∗-compact packedness betweenRandR[X].

Corollary 2.2.11. Let R be a domain and S⊆ Nt a multiplicative closed set of R[X]. If R is

a 	S-coprimely packed domain, then Na(R,	S) is a coprimely packed domain.

Recall that an idealI is said to be a set theoretic complete intersection ideal if
√

I =√
(a1, . . . ,an) wheren = htI (htI is the height ofI , i. e., the infinimum of the heights of

prime divisors ofI ).

Theorem 2.2.12.Let R be a domain and∗ be a star operation of finite type on R. Then

R[X] is a [∗]-compactly packed domain if and only if R is a∗̃-compactly packed domain and

each[∗]-prime ideal of R[X] is either an upper to zero or extended, and each upper to zero

is a set theoretic complete intersection.

Proof. Let P be a∗̃-prime ideal ofR. ThenP[X] is a [∗]-prime ideal ofR[X] ([6, Theorem

2.3(d)]). Hence there isf ∈ P[X] such thatP[X] =
√

f R[X]. Let 0 6= a∈ P. Then there is

an integern andg∈R[X] such thatan = f g. Thus f = c would be a constant inP and hence

P =
√

cR. ThereforeR is ∗̃-compactly packed. Now, letQ be a[∗]-prime ideal ofR[X] such

that 06= P= Q∩R. Then,Q=
√

f R[X] for somef ∈Q, and as above,f = c∈ P and hence

Q = P[X], as desired.

Conversely, letQ be a[∗]-prime ideal ofR[X]. If Q∩R= 0, we are done. If 06= P = Q∩R,

thenQ= P[X] andP is a∗̃-prime ideal ofR([6, Theorem 2.3(d)]). SinceR is a∗̃- compactly

packed domain, then there isa∈ P such thatP =
√

aR. ThereforeQ =
√

aR[X] =
√

aR[X],

as desired. 2
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2.3 Compact and coprime packedness with respect to the

t-operation

We start this section with a characterization of Krull domains that aret-compactly packed.

Proposition 2.3.1.Let R be a Krull domain. Then R is t-compactly packed if and only if the

class group of R is torsion.

Proof. Let R be a Krull t-compactly packed domain. By [35, Theorem 6.8], it suffices to

prove that eacht-maximal ideal ofRhas a principalt-power. LetM be at-maximal ideal of

R. ThenM =
√

xR for somex∈M. HencexRM is anMRM-primary ideal inRM. SinceRM

is a DVR, thenxRM = (MRM)n = MnRM for some positive integern. Therefore(Mn)t = xR

since(Mn)tRM = MnRM and(Mn)t is M-primary in the PVMDR ([28, Proposition 1.3]).

So the class group ofR is torsion.

Conversely, letP be at-prime ideal ofR. Sincet−dimR= 1, P = M is a t-maximal ideal

of R. ThusP = M =
√

(Mn)t =
√

xR, as desired. 2

We recall that an overringT of R is t-linked overR if for every finitely generated ideal

I of R, (R : I) = R implies that(T : IT ) = T. A domainR has Noetheriant-spectrum if it

satisfies theacc on radicalt-ideals. Generalized Krull domains (orGK-domain for short)

as defined in [10] are particular classes of PVMD with Noetheriant-spectrum. Finally,

according to [9], a PVMDR is atQR-domain if eacht-linked overring ofR is a quotient ring

of R. Our next result characterizest-compactly packed domains in the context of PVMDs

with Noetheriant-spectrum.

Theorem 2.3.2.Let R be a Generalized Krull domain. Then R is t-compactly packed if and

only if R is a tQR-domain.
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Proof. Let I be a finitely generated ideal ofR. If It = R, we are done. Assume that

It ( R. ThenMin(It) is finite sinceR is aGK-domain ([10, Theorem 3.9]), sayMin(It) =

{P1, ...,Pn}. We note thatPi is at-prime ideal ofR for eachi. SinceR is t-compactly packed,

then there isxi ∈Pi such thatPi =
√

xiR, for eachi. Setx= x1...xn. ThenMin(xR) = Min(It).

Indeed, ifP is a minimal prime ideal ofxR, thenP1∩ ....∩Pn =
√

x1R∩ ....∩
√

xnR =
√

x1...xnR=
√

xR⊆ P. HencePi ⊆ P for somei. ThereforeP = Pi , sinceP is minimal over

xRandx∈ Pi . Therefore
√

It =
√

xRand henceR is atQR-domain.

Conversely, LetP be at-prime ideal ofR. SinceR is aGK-domain, then there is a finitely

generated idealI of Rsuch thatP=
√

It ([10, Theorem 3.5]). SinceR is atQR-domain, then

P =
√

It =
√

xRfor somex∈ It , as desired ([9, Theorem 1.3]). 2

The next corollary is an immediate consequence of Theorem 2.2.12.

Corollary 2.3.3. Let R be an integral domain and X an indeterminate over R. The following

are equivalent:

(i) R[X] is t-compactly packed.

(ii) R is t-compactly packed, every t-prime of R[X] is either an upper to zero or extended

from R and every upper to zero is a set theoretic complete intersection.

Proof. Follows immediately from Theorem 2.2.12 sincew-compact packedness implies

t-compact packedness andw−Max(A) = t−Max(A) for any integral domainA. 2

The next proposition deals with thet-coprime packedness of the setMaxt(R).

Proposition 2.3.4.(cf. [15, Proposition 2.2]) For a PVMD R, the following are equivalent.

(i) Maxt(R) is t-coprimely packed.

(ii) Each t-maximal ideal M of R contains a principal ideal I such that
√

I is a t-prime ideal

contained only in M.

Proof. Let M be at-maximal ideal ofRand let{Nα}α∈Ω be the set of allt-maximal ideals

of Rdistinct thanM.
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(i) =⇒ (ii) Let m∈M \
⋃

α∈Ω Nα and setI = mR. ClearlyM is the uniquet-maximal ideal

of R containingI and every minimal prime idealP of I is a t-prime ideal and contained in

M since it containsm. But sinceR is a PVMD, the prime ideals under at-maximal ideal

form a chain. Hence
√

I is prime, as desired.

(ii) =⇒ (i) Let M be at-maximal ideal ofR and I = aR a principal ideal such that
√

I is

prime andMaxt(R, I) = {M}. If M ⊆
⋃

α∈Ω Nα , thenaR= I ⊆
⋃

α∈Ω Nα and thena∈ Nα

for someα ∈Ω. HenceNα ∈Maxt(R, I) = {M} and thereforeM = Nα , absurd. It follows

thatR is t-coprimely packed. 2

Corollary 2.3.5. Let R be a domain. If R is t-coprimely packed, then Na(R, t) is both

coprimely and t-coprimely packed.

Proof. Follows from Theorem 2.2.10 since Max(Na(R, t)) = Maxt(Na(R, t)). 2

Recall that a domainR is t-almost Dedekind domain (t-ADD for short) if RM is aDVR

for eacht-maximal idealM of R ([35]). Our next theorem is a satisfactory analogue of [16,

Theorem 2.1].

Theorem 2.3.6.Let R be a t-ADD domain. Then the following conditions are equivalent:

(1) R is a t-coprimely packed domain;

(2) R< X > is a t-coprimely packed domain;

(3) R[X] is a t-coprimely packed domain;

(4) Each t-prime ideal of R[X] is a set theoretic complete intersection;

(5) R is a Krull domain with torsion class group.

The proof of this theorem requires the following lemma which is at-analogue of [15,

Theorem 2.1].
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Lemma 2.3.7.Let R be a t-ADD domain. Then Maxt(R) is t-coprimely packed if and only

if R is a Krull domain with torsion class group.

Proof. (⇒) Assume thatR is at-ADD domain. By [35, Theorem 2.54],R is a PVMD and

t−dim(R) = 1. Let M ∈ Maxt(R). SinceMaxt(R) is t-coprimely packed, there isx ∈ M

with x 6∈ N for eachN ∈Maxt(R)\{M}. HenceM =
√

xRand thusMRM =
√

xRM. Since

MRM is a maximal ideal ofRM, xRM is anMRM-primary ideal and sinceRM is a DVR,

there is a positive integern such thatxRM = MnRM. Thus(Mn)tRM = MnRM and(Mn)t is

M-primary ([28, Proposition 1.3]). HencexR= (Mn)t and thenM is a t-invertible ideal of

R. ThereforeR is a Krull domain and has torsion class group by Proposition 2.3.1.

(⇐) Follows immediately from Proposition 2.3.1. 2

Proof of Theorem 2.3.6. (i ⇔ iv) If R is a t-coprimely packed domain, thenR is a Krull

domain with torsion class group (Lemma 2.3.7). LetP′ be at-prime ideal ofR[X]. Since

R is a Krull domain, then so isR[X] and henceP′ is a t-maximal ideal ofR[X]. If 0 6=

P = P′ ∩R, thenP′ = P[X] ([31, Proposition 1.1]). ButP =
√

aR for somea∈ P sinceR

is t-coprimely packed. HenceP′ = P[X] =
√

aRR[X] =
√

aR[X]. SincehtP′ = 1, thenP′

is a set theoretic complete intersection. IfP′ is an upper to zero, then,P′ = f K[X]∩R[X]

for some polynomialf ∈ P′ ([31, Corollary 1.5]) andP′ is t-invertible. By [31, Proposition

2.6, Lemma 2.5],P′ = f (c( f )−1)R[X], sinceR is integrally closed. SetJ = c( f )−1. Since

R is a PVMD, thenJ is a t-invertible fractionalt-ideal of R. SinceR has torsion class

group, then there is a positive integern such that(Jn)t = cR for somec∈ J. So((P′)n)t1 =

(( f JR[X])n)t1 = ( f n(JnR[X])t1)t1 = ( f n(Jn)tR[X])t1 = ( f ncR[X])t1 = f ncR[X]. Therefore

P′ =
√

((P′)n)t1 =
√

c fnR[X], as desired.

Conversely, ifP∈ Spect(R), thenP is at-maximal ideal ofR of height one. HenceP[X] is

a t-prime ideal ofR[X] of height one. SoP[X] =
√

f R[X] for some polynomialf ∈ P[X]

with c( f )⊆ P and say thata is the leading coefficient off . ThenP =
√

aR, as desired.
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(i ⇔ ii ) Assume thatR < X > is t-coprimely packed. SinceR is a t-ADD domain,

R[X] andR< X > are alsot-ADD domains ([35, Theorem 2.51, Theorem 2.52]) and hence

PVMDs. So for eacht-ideal J of R[X], J < X > is a t-ideal of R< X >, by the fact that

“if R is a v-coherent domain,I is a t-ideal of R andS is a multiplicative closed set ofR,

thenIS is at-ideal ofRS” and R[X] is av-coherent domain. Note thatt−dim(R< X >) =

t −dim(R[X]) = 1 since they aret-ADD domains. Now letP be at-maximal ideal ofR.

ThenP[X] is a t-maximal ideal ofR[X]. SinceR< X > is a t-coprimely packed domain,

there isf ∈ P[X] such thatP< X >=
√

f R< X >. Let a be the leading coefficient off and

let c∈ P. Thenc∈ P < X > and hence there is a positive integern such thatcn = f g
h for

someg∈ R[X] and a monic polynomialh∈ R[X]. Socnh = g f and thuscn = ad whered is

the leading coefficient ofh. Soc∈
√

aR. ThereforeP =
√

aR, as desired.

Conversely, ifQ is a t-prime ideal ofR< X >, thenQ = (P′)U for somet-prime ideal of

R[X]. As in the proof of (i ⇔ iv), thet-coprime packedness ofR implies thatP′ =
√

f R[X]

for some polynomialf ∈P′. ThereforeQ= (P′)U = (
√

f R[X])U =
√

f R< X >, as desired.

(i ⇔ v) Follows from Lemma 2.3.7.

(iv⇒ iii ) Trivial sincet−dim(R[X]) = 1.

(iii ⇒ i) Sincet − dim(R[X]) = 1, R[X] is a t-compactly packed domain. By Corol-

lary 2.3.3,R is t-compactly packed and hencet-coprimely packed.�

Recall that a domainR is said to be of finitet-character if every nonzero nonunitx∈ R

is contained in only finitely manyt-maximal ideals.

Proposition 2.3.8.Let R be a GCD domain. If R is of finite t-character, then R is t-coprimely

packed.

Proof. Let P be at-prime ideal ofR. ThenMaxt(R,P) = {M1,M2, ....,Mn}, sinceR is

of finite t-character. Pick 06= c ∈ P. If Maxt(R,P) = Maxt(R,cR), then j − radt(P) =

j − radt(cR). If not, thenMaxt(R,c) = {M1, ...,Mn,Mn+1, ...,Mn+s} and we can choose
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an elementy ∈ P with y 6∈
⋃

Mn+i for i = 1,2, ...,s. So j − radt(P) = j − radt((c,y)t) =

j− radt(bR) for someb∈ P sinceR is a GCD domain, as desired. 2

The converse is not true. For instance, letR= Z[Y] + XQ(Y)[[X]]. ThenR is a GCD

([3, Theorem 3.13])t-coprimely packed domain (Theorem 2.4.3) oft-dimension 2 ([37,

Theorem 2.4]), but not of finitet-character since each nonzero element ofM is contained in

all t-maximal ideals of the formp[Y]+M wherep is a prime positive integer.

Proposition 2.3.9.Let R be a Noetherian domain containing a field of characteristic zero.

Then each t-prime ideal of R[X] is a set theoretic complete intersection if and only if R is a

Krull domain with torsion class group.

Proof. Since height-one prime ideals aret-primes, by ([17, Theorem 2.2]),R is integrally

closed. HenceR is a Krull domain and so isR[X]. Let P be at-prime ideal ofR. ThenP[X]

is at-maximal ideal ofR[X] of height one. By assumption, there is a polynomialf ∈ P[X]

such thatP[X] =
√

f R[X]. HenceP =
√

aRwherea is the leading coefficient off . SoR

is t-compactly packed. HenceR has torsion class group (Proposition 2.3.1). The converse

follows from Theorem 2.3.6. 2

Our second main result is a satisfactory analogue of [16, Theorem 2.5]. Before stating

the result, we recall that a domain is said to be aUMT-domain if every upper to zero is a

t-maximal ideal ([31, Definition in page 1962]).

Theorem 2.3.10.Let R be a GCD domain and consider the following statements:

(i) Every t-prime ideal of R[X] is a set theoretic complete intersection.

(ii) R[X] is t-compactly packed.

(iii ) R[X] is t-coprimely packed.

(iv) R is t-coprimely packed.

Then(i) =⇒ (ii) =⇒ (iii ) =⇒ (iv). Moreover, if t− dimR= 1, then the statements are

equivalent.
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Proof. (i) =⇒ (ii) Let Q be at-prime ideal ofR[X] and sethtQ= r. By (i), there exist poly-

nomialsf1, . . . , fr such thatQ=
√

( f1, . . . , fr). Since( f1, . . . , fr)⊆Q, then( f1, . . . , fr)t ⊆Q

and thereforeQ =
√

( f1, . . . , fr)t . But sinceR is a GCD domain, then so isR[X] ([24, The-

orem 34.10]). HenceQ =
√

( f1, . . . , fr)t =
√

(h), as desired.

(ii) =⇒ (iii ) Trivial.

(iii ) =⇒ (iv). Let P be at-prime ideal ofR. ThenP[X] is a t-prime ideal ofR[X]. By

(iii ), there exists a polynomialf ∈ P[X] such thatj− radt(P[X]) = j− radt( f R[X]). Since

f ∈ P[X], thenc( f ) ⊆ P. But sinceR is a GCD domain, thenI = (c( f ))t = aR. We claim

that j − radt(P) = j − radt(aR). Indeed, letQ be at-maximal ideal ofR containingP.

SinceaR⊆ P⊆ Q, then j − radt(aR) ⊆ Q and thereforej − radt(aR) ⊆ j − radt(P). On

the other hand, letQ be at-maximal ideal ofR containingaR. ClearlyQ[X] is at-maximal

ideal ofR[X]. Since f R[X] ⊆ c( f )[X] ⊆ aR[X] ⊆ Q[X], thenP[X] ⊆ j − radt(P[X]) = j −

radt( f R[X]) ⊆ Q[X]. HenceP⊆ Q and thereforeP⊆ j − radt(aR). It follows that j −

radt(P) = j− radt(aR), as desired.

(iv) =⇒ (i) Assume thatt−dimR= 1. Let Q be at-prime ideal ofR[X] and setP =

Q∩R. If P = (0), thenQ is an upper to zero. SinceR is a GCD domain, thenR is aUMT-

domain and soQ is at-maximal ideal ofR[X] ([31, Proposition 3.2]). Also by [31, Corollary

1.5], Q = ( f ,g)v whereQ = f K[X]∩R[X] and(c(g))v = R. But sinceR is a GCD domain,

then so isR[X] ([24, Theorem 34.10]). HenceQ = ( f ,g)v = (h) and soQ is a set theoretic

complete intersection sincehtQ= 1. Assume thatP 6= (0). Sincet−dimR= 1, thenP is

a t-maximal ideal ofR. HenceQ = P[X] ([31, Proposition 1.1]). SinceR is t-coprimely

packed, then there existsa∈ P such thatP = j− radt(aR). Note thatP =
√

aR. Indeed, if

M is a minimal prime overaR, thenM is at-prime ideal. But sincet−dimR= 1, thenM is a

t-maximal ideal ofR. HenceP= j− radt(aR)⊆M and thereforeM = P (by t-maximality).

HenceP =
√

aR. Now it is easy to see thatQ = P[X] =
√

(aR[X]) and henceQ is a set

theoretic complete intersection sincehtQ= htP[X] = 1 and this completes the proof. 2
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Example 2.3.11.A one-dimensional Noetherian local domain R, so coprimely packed, such

that R[X] is not t-coprimely packed.

LetQ be the field of rational numbers and Y an indeterminate overQ. Set R= Q[[Y3,Y5]].

Clearly R is a one-dimensional Noetherian local domain with maximal ideal M= (Y3,Y5),

and so R is (t)-coprimely packed. Since J(R) = M ( J(R′) = YQ[[Y]], by [18, Corol-

lary 13], there is a height-one maximal ideal Q of R[X] such that{Q} = Max(R[X],Q) 6=

Max(R[X], f ) for every polynomial f∈Q. Now, suppose that Maxt(R[X],g)= Maxt(R[X],Q)=

{Q} for some g∈ Q. Let N∈ Max(R[X],g) and let P be a minimal prime of gR[X] with

P⊆N. Then P is a t-prime ideal of R[X] and since t−dim(R[X]) = 1, then P is a t-maximal

ideal of R[X]. Hence Q= P⊆ N and by maximality of Q, Q= N, a contradiction. It fol-

lows that Maxt(R[X],g) 6= Maxt(R[X],Q) = {Q} for all g ∈ Q and therefore R[X] is not

t-coprimely packed.

2.4 Pullbacks

The purpose of this section is to investigate the transfer of the notions of compactly (t-

compactly) packed and coprimely (t-coprimely) packed rings to the pullbacks to generate

new families and examples.

Let us fix the notation for the rest of this section. LetT be an integral domain,M a maximal

ideal ofT, K its residue field,φ : T −→ K the canonical surjection,D a proper subring of

K, andk := qf(D). Let R := φ−1(D) be the pullback issued from the following diagram of

canonical homomorphisms:

R −→ D

↓ ↓

T
φ−→ K = T/M

We shall refer to this diagram as a diagram of type(�). Also we recall thatM is a prime
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ideal ofRand ifT is local, then every ideal ofR is comparable toM.

Lemma 2.4.1. For the diagram of type(�), if R is compactly (resp. coprimely ) packed,

then so are T and D.

Proof. (1) Compact packedness. ClearlyD is compactly packed since ifJ is an ideal of

D and{P′α} is a family of prime ideals ofD such thatJ ⊆
⋃

P′α , thenφ−1(J) is an ideal

of R and{φ−1(P′α)} is a family of prime ideals ofR such thatφ−1(J) ⊆
⋃

φ−1(P′α). So

φ−1(J)⊆ φ−1(P′α) for someα0 and thereforeJ⊆ P′α0
, as desired.

Let J be an ideal ofT and{Qα} a family of prime ideals ofT such thatJ ⊆
⋃

Qα . Set

I = J∩R andPα = Qα ∩R for eachα. ThenI ⊆
⋃

Pα and soI ⊆ Pα0 for someα0. Now,

if J+M $ T, thenJ⊆M, and soJ = I ⊆ Pα0 ⊆Qα0. If J+M = T, thenI +M = R. Thus

JM = J∩M = I ∩M = IM ⊆ I ⊆ Pα0 ⊆ Qα0 and thereforeJ ⊆ Qα0 (sinceM * Qα0), as

desired.

(2) Coprimely packedness. Similar to (1) by assuming thatI = P is a prime ideal ofR and

{Qα} is a family of maximal ideals ofT. 2

Theorem 2.4.2.For the diagram of type(�), assume that T is local. Then

(1) R is compactly packed if and only if D and T are compactly packed.

(2) R is coprimely packed if and only if D is coprimely packed.

Proof. (=⇒) Follows from Lemma 2.4.1.

(⇐=) (1) Assume thatD andT are compactly packed. LetI be a nonzero ideal ofRand

{Pα}α∈Ω a family of prime ideals ofR such thatI ⊆
⋃

Pα . Let Ω1 = {α ∈Ω|Pα ⊆M} and

Ω2 = {α ∈ Ω|M ( Pα}. SinceT is local, each ideal ofR is comparable toM. Three cases

are then possible:

Case 1Ω1 = /0. ThenM ( Pα for eachα and hencePα = φ−1(Qα) for some prime ideal

Qα of D. In this case, ifI ⊆M, thenI ⊆ Pα for all α. If M ( I , thenI = φ−1(J) for some
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nonzero idealJ of D. ThenJ⊆
⋃

Qα and sinceD is compactly packed,J⊆ Qα0 for some

α0. ThereforeI ⊆ Pα0, as desired.

Case 2Ω2 = /0. ThenPα ⊆M and soPα is a prime ideal ofT for eachα. Also I ⊆
⋃

Pα ⊆M.

Now, if Pα0 = M for someα0, thenI ⊆M = Pα0 and we are done. Assume thatPα ( M for

eachα. SinceIM is an ideal ofT andIM ⊆ I ⊆
⋃

Pα , IM ⊆ Pα0 for someα0. But since

Pα0 ( M, I ⊆ Pα0, as desired.

Case 3Ω1 6= /0 andΩ2 6= /0. HencePα ⊆ M ⊆ Pβ for eachα ∈ Ω1 andβ ∈ Ω2. Hence

I ⊆
⋃

β∈Ω2
Pβ . SetPβ = φ−1(Qβ ) for some prime idealQβ of D. If I ⊆M, thenI ⊆ Pβ for

eachβ ∈Ω2 and we are done. IfM ( I , thenI = φ−1(J) for some nonzero idealJ of D. As

in case 1,I ⊆ Pβ for someβ ∈Ω2. It follows thatR is compactly packed.

(2) Assume thatD is coprimely packed. LetP be a prime ideal ofR and{Mα}α∈Ω be a

family of maximal ideals ofRsuch thatP⊆
⋃

Mα . Since eachMα is comparable toM, and

by maximality,M ⊆Mα for eachα. Hence, for eachα, Mα = φ−1(Qα) for some maximal

idealQα of D. Now, if P⊆ M, thenP⊆ Mα for eachα and we are done. IfM ( P, then

P = φ−1(Q) for some prime idealQ of D. But P⊆
⋃

Mα implies thatQ⊆
⋃

Qα and thus

Q⊆Qα0 for someα0 sinceD is coprimely packed. HenceP⊆Mα0, as desired. 2

Now, we turn our attention to thet-compact andt-coprime packedness. Recall that an

overringS of R is said to bet-flat overR if TN = RN∩R for eacht-maximal idealN of T

([38]).

Theorem 2.4.3.For the diagram of type(�):

(1) If R is t-compactly (resp. t-coprimely) packed, then so is D.

(2) If T is t-flat over R and R is t-coprimely packed, then so is T .

(3) If T is local, then R is t-coprimely packed if and only if so is D.

Proof. (1) ClearlyD is t-compactly (resp.t-coprimely) packed since ifP is at-prime ideal

of D and{Qα} is a family oft-prime (resp.t-maximal) ideals ofD such thatP⊆
⋃

Qα , then
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Q= φ−1(P) is at-prime ideal ofRand{φ−1(Qα)} is a family oft-prime (resp.t-maximal)

ideals ofR such thatQ = φ−1(P) ⊆
⋃

φ−1(Qα). ThusQ⊆ φ−1(Qα0) for someα0 and

thereforeP⊆Qα0, as desired.

(2) LetQ be at-prime ideal ofT and{Qα} ⊆ Spect(T) such thatQ⊆
⋃

Qα . SinceT is

a t-flat overring ofR, Q∩RandQα ∩Raret-prime ideals ofR (Lemma 1.2.7) and we have

Q∩R⊆
⋃

Qα ∩R. SinceR is t-compactly packed, thenQ∩R⊆ Qα ∩R. Hence, by [10,

Proposition 2.4],Q = ((Q∩R)T)t ⊆ ((Qα ∩R)T)t = Qα ,as desired.

(3) Similar to Theorem 2.4.2 (2) by substitutingt-prime to prime andt-maximal to

maximal. 2

Example 2.4.4.Let T = Q(
√

2)[[X,Y]] = Q(
√

2)+M where M= (X,Y)T. Set R= Q+M.

Then T is a t-compactly packed domain since it is a Krull local domain. However, R is not

t-compactly packed since R is Noetherian of t-dimension two.

• This example shows that the assertion(1) of Theorem 2.4.2 is not true for t-compact

packedness (even if T is local).

• R is a t-coprimely packed domain which is not t-compactly packed.

• R is a(d, t)-domain since it is coprimely packed andMax(R) = Maxt(R) = {M}.

• R is not a compactly packed domain, since T is not compactly packed.
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[14] V. Erdŏgdu, The prime avoidance of maximal ideals in commutative rings, Comm.

Algebra 23 (3) (1995), 863–868.
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