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CHAPTER 1  

INTRODUCTION    

1.1 Motivation and Background 

Wireless personal communication provides convenient and flexible method to access 

information to around 3 billion people worldwide [1]. The tremendous increase in 

demand for wireless services necessitated a search for techniques that improve the 

capacity of digital cellular systems. Wireless communication has become one of the 

major areas of research in the world. Efficient sharing of bandwidth among the users 

becomes of outmost concern as available frequency resources diminish quickly.  

Multiple access schemes have been suggested to share the available bandwidth and 

thereby improve the capacity. These can be put under three main categories: 

 Time Division Multiple Access (TDMA): In this scheme each user in the system 

is assigned dedicated time slots during which they transmit their information 

using the channel bandwidth entirely. 

 Frequency Division Multiple Access (FDMA): The total bandwidth in this 

scheme is divided into channels and each user is assigned a particular frequency 

channel for the duration of communication. 
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 Code Division Multiple Access (CDMA): in this scheme, the total bandwidth is 

available to each user at the same time. Users are separated by means of unique 

signature codes or waveforms assigned to each user. 

Figure  1-1 Multiple Access Schemes 

Figure 1.1 illustrates the sharing of the time - bandwidth space in different multiple 

access schemes. Among the three multiple access methods, CDMA has become the most 

popular and finds its implementation in 3rd generation wireless cellular communications 

systems because it offers higher capacity, higher data rates and better interference 

rejection than FDMA and TDMA [3, 4]. DS–CDMA (Direct Sequence-CDMA) with 

BPSK modulation is also implemented in wireless local area networks (WLANs) 

according to the IEEE 802.11b standard, low-rate wireless personal area networks 

(WPANs) according to the IEEE 802.15.4 standard and future sensor networks [5]. 

DS-CDMA involves assigning users unique signature codes that are orthogonal to each 

other. At the transmitter, user data is spread by a signature code uniquely assigned to the 

user. The simplest receiver is a matched filter that detects the data by despreading the 

received signal with the corresponding signature code of users. However, multiple access 

interference (MAI) and the near-far problem degrade the performance in DS-CDMA 

system and have been researched extensively [2, 3, 4]. The problem of MAI occurs due to 
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the presence of channel induced de-cross-correlation between signature codes. In 

addition, the number of perfectly orthogonal codes that can be generated for a given 

bandwidth is limited. In short some correlation (even if small) does exist. Near-far 

problem [3] occurs due to the presence of strong signals from users located closer to the 

receiver that tends to swamp the desired weaker signals from the distant users. Therefore, 

the matched filter bank receiver in the presence of near-far problem and multiple access 

interference results in significant degradation and capacity reduction.  

Substantial improvement in performance can be achieved by exploiting the structure of 

signature waveforms to lessen MAI in the matched filter receiver. Multiuser Detection 

(MUD) makes joint detection of all users’ signals by not treating MAI as noise. MUD 

also is near far resistant. The optimal multiuser detector proposed by Verdu [2] finds the 

maximum likelihood sequence (MLS) matching the transmitted user’s signal. For a K-

user N-bit communication system, it requires 2NK times exhaustive searches to find the 

MLS thus making it impractical as complexity increases exponentially with number of 

users. Several suboptimal multiuser detection schemes have been proposed in literature to 

reduce the complexity from that of the optimum maximum likelihood detector [6, 7, 8].  

Suboptimal MUDs can be classified as linear and nonlinear. The linear MUDs obtain the 

output decision statistics by linearly transposing the soft outputs of matched filter 

detector. In this class, we find the decorrelator detector [9] and the Minimum Mean 

Square Error (MMSE) detector [10, 11, 12]. Both compute the inverse of the cross 

correlation matrix of the signature codes. On the other hand, the non-linear MUDs, or 

interference cancellation (IC) based MUDs estimate the MAI and then remove it from the 

desired user prior to making decisions. Interference cancellation (IC) schemes can be 
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roughly categorized into three types: serial, parallel and hybrid interference cancellation 

schemes [14, 15, 16, 17]. The former two are predominantly researched for practical 

implementation. The main disadvantage of the serial IC proposed by Viterbi [13] is the 

delay experienced by the users of the system. The parallel interference cancellation (PIC) 

scheme simultaneously removes the interference from each user’s received signal. This 

procedure treats the users in the IC processing in the same way. As compared with the 

serial IC (SIC) scheme [17], the PIC operates in parallel on all users’ signals, and hence 

the delay required in completing the interference cancellation is at most a few bits. 

PIC scheme has been intensively studied since the original work by Varanasi and 

Aazhang [6]. For high system load, the conventional PIC approach that attempts to 

completely cancel the multiuser interference may not be preferred because the erroneous 

hard decisions made in the previous stage may lead to performance worse than without 

cancellation. Hence, when the interference estimate is poor as it happens at the earlier 

stages of PIC, the partial cancellation method proposed by Divsalar et al. [7] performs 

better than the complete interference cancelling PIC. The partial PIC (PPIC) scheme is 

implemented simply by assigning cancellation weight to each interference cancellation 

path. The constant weighted PPIC (W-PPIC) scheme is more suited to perfect power 

control environments. The weakness of PPIC scheme is that a constant weight assigned to 

all users at each stage is selected by trial and error rather than using some optimality 

criterion. In addition, the optimal weight of each interferer depends on reliability of the 

estimated interference signal. Adaptive parallel interference cancellation (APIC) 

detectors are developed to update the interference cancellation weights adaptively to 

reflect the reliability of the estimated interference [11, 14 and 15]. An algorithm e.g. RLS 
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and LMS controls the weight update. These update schemes have been found to be 

unreliable in highly loaded systems because of slow convergence rate of LMS algorithm 

and increased mean square error contributes to degradation in performance. In [15], the 

optimal weight has been related to the noise power and amplitude of interferers. Thus, 

cancellation weights of interferers should be adapted to improve the reliability of 

estimated interference signal which in turn depends on the Keff (amplitude of interferers) 

and SNR (signal to noise plus interference ratio). 

This dissertation focuses on realizing improvement in the performance of the existing 

PIC schemes based on matrix algebraic approach with the use of fuzzy inference system 

(FIS) that updates the weights. Fuzzy inference system developed by Zadeh is based on 

the principle of fuzzy logic that uses the linguistic concepts [16]. The FIS has drawn a 

great deal of attention because of its universal approximation ability in the nonlinear 

problem. The FIS can be used to determine the weight vector of the estimated interferers 

signal. 

We propose a fuzzy-based partial parallel interference cancellation (FPIC) scheme and 

discuss its performance for CDMA systems operating over wireless fading channels in 

the presence of AWGN. 

1.2 Research Objectives 

In the proposed work multiuser DS-CDMA system using weighted PIC are investigated. 

First, the performances of different Parallel Interference Cancellation methods are 

studied. 
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The main objectives are summarized as follows: 

1) To develop a multistage parallel interference cancellation multiuser detector. 

2) To employ the fuzzy inference system for determining the partial weight to 

illustrate fuzzy based PPIC. 

3) To study the BER performance of different PIC schemes. 

4) To study the convergence of the proposed scheme and compare this to different 

MUDs. 

5) Perform computer simulations to show that the proposed scheme delivers 

improved performance. 

1.3 Organization of the Thesis 

This thesis is divided into six chapters including this chapter and mainly deals with the 

problems associated with parallel interference cancellation. 

Chapter 2 introduces synchronous CDMA system and channel model. Several common 

multiuser detectors are also described.  

Chapter 3 describes the parallel interference cancellation detectors. Convergence of the 

PIC detector is also introduced. The Partial PIC scheme is studied and the relation 

between the weights in the Partial PIC with effective number of users and SNR is 

explored. 

Chapter 4 introduces the Fuzzy Logic system, membership functions, and formulation of 

rules and how FIS is implemented to tackle the issue of weight estimation in partial PIC 

scheme.  
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Chapter 5 describes the proposed multistage fuzzy PIC. The estimation of the partial 

cancellation weights of the PIC detection scheme is performed by a FIS system. 

Convergence of the proposed scheme and BER performance is studied. Simulation results 

show that superior performance over the conventional PIC is achieved by the proposed 

detection scheme and it outperforms the original scheme in both AWGN and Rayleigh 

fading channels. 

 Chapter 6 summarizes the objective obtained in this research work. A brief introduction 

to some future research directions is also given. 
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CHAPTER 2  

CDMA AND MULTIUSER DETECTION 

This chapter provides an overview of the wireless CDMA communication system model 

and multiuser detection techniques. A synchronous CDMA system model is described in 

Section 2.1. The detection scheme of the conventional receiver is presented therein. 

Several typical multiuser detectors are summarized in Section 2.2. Optimum and 

suboptimum multiuser detectors are classified and discussed.  

2.1 System Model 

In Direct-Sequence (DS) CDMA systems, the information symbols are phase-reversed 

modulated by the signature sequences (or spreading codes). The spreading codes used to 

spread the spectrum of the information data are either short or long codes. In the former 

case, the period of the signature sequence is equal to the symbol period, whereas in the 

latter case, more than one symbol occur in one period of the signature code. Both of these 

codes have their advantages and drawbacks. The complexity is lower for short codes but 

multiuser interference to each user to each user may be different as some users suffer 

from higher interference than the others. For the long code case, the complexity will be 

higher and the interference on each user is more randomized. 
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2.1.1 Transmitter Operation: 

A K-user discrete model of a synchronous DS-CDMA communication system is shown in 

figure 2.1. Binary phase shift keying (BPSK) is used for modulating the user information 

and pseudo random (PN) codes of length N chips are used as signature waveforms. 

 

Figure  2-1 CDMA System Model 

The received signal r at the base station is expressed in vector form as: 

                                           (2.1) 

where  

, , … … ,   1 , 1 ,
 

, , … … ,   ,  
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, , … … ,   1,1  

, , … … ,    

S is the signature code matrix where  is the signature waveform of user k and  is 

normalized to have unit energy i.e.,   , 1, A is diagonal matrix of received 

amplitudes, d is the vector of binary transmitted symbols and n is vector of 

independently, identically distributed white Gaussian samples with zero mean and 

variance 2⁄ . 

The cross correlation of the signature sequences is defined as: 

 , ∑               (2.2) 

where N is the length of the signature sequence. 

The cross correlation matrix is defined as:   

     

       … …   
       … …   

.          .           .          .

.          .           .          .
       … …   

           (2.3) 

R is symmetric, non-negative definite matrix. 

2.2 Conventional Matched Filter Receiver 

For a single user digital communication system, the matched filter is used to generate the 

sufficient decision statistics. The conventional receiver for a multiuser system is a bank 

of matched filter each matched to the signature waveforms of the individual users. 



11 
 

 
 

 

Figure  2-2 Conventional Matched Filter Receiver 

Figure 2.2 shows the multiuser matched filter receiver used in CDMA systems. Each 

receiver filter is matched to the signature sequences assigned to users. Assuming that 

coherent detection is used in the receiver, the decision statistics at the output of the 

matched filter is given as: 

           (2.4) 

       

∑            (2.5) 

where     
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Equation (2.5) is simplified as: 

       ∑               (2.6) 

The second term in (2.6) is the MAI that is similar to the term characterized as zero mean 

Gaussian noise. The power of the noise at the output of matched filter is estimated as: 

        (2.7) 

=       

=         

=    =  

Similarly the noise covariance can be defined as:       and in a matrix 

form it is written as:          (2.8) 

where R is the correlation matrix given by (2.3) and  , , … … , . 

Equation  (2.6) is written in matrix form as : 

  .
.

 

  

       … …   
       … …   

.          .           .          .

.          .           .          .
       … …   

     

     0  … …  0
0       … …  0
.        .         .      .
.        .         .      .

0     0  … …   

       .
.

 

 .
.

 

   (2.9) 
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The matched filter outputs can be grouped into a K-dimensional vector and express as 

             (2.10)           

where the following notions are used 

 , , … … ,  matched filter output vector 

correlation matrix 

diagonal matrix of the received amplitudes 

, , … … ,   

, , … … ,   

Figure 2.3 shows the average bit error rate (BER) performance of the Matched filter 

receiver for different number of users. The simulations are performed for synchronous 

CDMA system using BPSK modulation in AWGN channel. The BER is evaluated in 

SNR range 0-20 dB where each user is transmitting 1*104 bits and using Gold codes of 

length 31 and having equal received power. It can be observed that the performance 

degrades with increasing number of users. The poor performance of the matched filter is 

due to ignoring the MAI term as noise. 
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Figure  2-3 BER Performance of Matched Filter 

 

Limitations of conventional detector: 

 It can be proven that while decision metric  is not sufficient for detecting , a set of 

decision metrics , , … … ,  is sufficient statistics for joint detection of 

, , … … ,  [2]. The poor performance of matched filter is due to assumption that 

models MAI as background Gaussian noise. Another serious limitation of the matched 

filter is its vulnerability near-far effect [2]. 

 



15 
 

 
 

2.3 Multiuser Detection 

Multiuser detector is a receiver that jointly detects all the user’s signals simultaneously. 

Multiuser detection is also defined as a class of algorithms or methods in a 

communication receiver that exploits the structure of the multiuser interference in order 

to increase utilization of the channel resources [2]. Unlike AWGN, MAI has a structure 

that is quantified by the cross correlation matrix of the signature matrix. MUD is the 

design of signal processing algorithms that operate in the MUD box show in figure 2.4 

 

Figure  2-4 General Concept of Multiuser Detection 

The matched filter detector when employed as the front-end of multiuser detection 

scheme sacrifices no information relevant to demodulation [2]. Most MUD’s therefore 

have matched filter as the front end.  Decoding decision made on processed signals from 

multiuser detector generate significantly lowers bit error rates for individual users. The 

reduction in MAI allows more active users thus boosting the system capacity. 
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based on the Maximum-Likelihood (ML) detection. The baseband received signal at the 

output of stage 1 can be written as in (2.1) 

In each bit interval, optimal detector selects the most likely bit sequences 

, , … … ,   such that the criterion 

 
             (2.11) 

is maximum [2]. 

For this criterion to be maximum, it requires maximization of the function given as: 

Ω 2            (2.12) 

where  

 , , … … ,   data vector. 

 diagonal matrix of the received amplitudes. 

, , … … ,  T matched filter output vector. 

  Unnormalized cross correlation matrix. 

For the maximization of (2.12), the solution can be found by exhaustive search, i.e. 

compute the criterion function for every possible combination of argument and select the 

one as optimal solution that maximizes the function. The optimum multiuser detector 

provides the most reliable decision outputs and totally eliminates the effect of MAI. 

Hence, its performance is superior to all other multiuser detectors. Despite of its great 

performance, the computational complexity of the optimum detector is subject to an 
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exponential growth in the number of users since it performs a full search using the 

Viterbi algorithm. Therefore, when the number of active user K is large, this method with 

the operational complexity of O(2K) turns out to be too complex to implement in practice. 

As a result, sub-optimum multiuser detectors with lower complexity, without sacrificing 

performance are of interest. 

2.3.2 Sub-Optimum Multiuser detection 

Sub-optimum multiuser detectors can be divided into two major categories: linear 

detectors and nonlinear detectors. 

2.3.2. (a) Linear Multiuser Detection 

Linear multiuser detectors apply a linear mapping to the matched filter’s outputs to form 

a more reliable decision metric. Linear multiuser detectors have the advantage of easier 

implementation and relatively good performance when the interference is low. Some 

well-known linear detection schemes are Decorrelating Detector (DD) [9, 18] and 

Minimum Mean Squared Error (MMSE) detector [10, 11, 12]. 

Decorrelating Detector 

The decorrelating detector attempts to completely remove the effect of the multiple 

access interfering term. As shown in figure 2.6, the decorrelating detector operates by 

processing the output of matched filter bank with the   operator where R is the cross 

correlation matrix defined by (2.3). 
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The final decision statistics is made by 

      

           

            

                   (2.13) 

As can be seen by Eqn. (2.13), in a noiseless environment this approach recovers the 

original signals, which the matched filter could not do. 

 

 

Figure  2-6 Decorrelator Detector 
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The magnitude of the noise enhancement is given by   . It can be minimized 

by choosing spreading codes that are mutually orthogonal. If the codes are perfectly 

orthogonal then no noise enhancement takes place. However, this ideal situation is 

difficult to realize. On the other hand, a greater degree of correlation between codes 

results in more noise enhancement that will result in greater degradation in performance. 

Generally, decorrelating detector provides a good performance in many scenarios and 

serves as a benchmark to evaluate other multiuser detection schemes. 

 

Figure  2-7 BER Performance of Decorrelator 

In addition, we see that the decorrelating receiver performs only the linear operation on 

the received statistics y and hence it is indeed a linear detector. The average bit error rate 

performance of decorrelator for different number of users is shown in figure 2.7. The 

simulations are performed for synchronous CDMA system using BPSK modulation in 
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AWGN channel. The BER is evaluated in SNR range 0-20 dB where each user is 

transmitting 1*104 bits and using Gold codes of length 31 and having equal received 

power. From figure 2.7, we observe that as SNR increases, the performance of the 

decorrelating detector becomes better. However, it is observed that at low SNR’s the 

matched filter receiver performs slightly better. 

Minimum Mean-Squared Error Detector 

 

Figure  2-8 MMSE Detector 

The Minimum Mean-Squared Error (MMSE) Detector is an improved linear approach by 

assuming that strength of each user's received signal is known. The MMSE works by 

applying a linear transformation   as shown figure 2.8. MMSE minimizes 

the mean-squared error between the outputs and the data, i.e.  

| |               (2.14) 
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where .  is the function that maps  to , and is chosen as to minimize the expected 

mean-squared error. The final decision metric can be written as 

               (2.15) 

Here  is the noise variance. 

From (2.15) we notice that MMSE is a compromise between the conventional detector 

and the decorrelating detector. That is, if the signal to noise ratio goes to infinity,  0 

 and   , which is the decorrelating detector. Similarly, if signal to 

noise ratio goes to zero, ∞, and   will tend to zero, the MMSE acts as 

a conventional detector. Figure 2.9 shows the average bit error rate performance of the 

MMSE linear detector. The simulations are performed for a 20 user synchronous CDMA 

system using BPSK modulation in AWGN channel. The BER is evaluated in SNR range 

0-20 dB for equal received power users transmitting 1*104 bits and using Gold codes of 

length 31. Comparison of the different MUDs is also given in figure 2.9. We can see that 

the performance of MMSE detector is slightly better than the decorrelating detector. 
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Figure  2-9 BER Performance of MMSE Detector 

2.3.2. (b) Interference Cancellation Detectors 

As we see that both the decorrelating detector and MMSE detector involves matrix 

inversion operation. If the number of users becomes large, size of the matrix to be 

inverted grows, resulting in more computations. In the Interference Cancellation scheme, 

interference estimates are generated and removed from the received signal before 

detection. They are referred as interference cancellation based as these detectors aim to 

cancel the estimated interference from the received signal. The principle involves making 

tentative decisions to generate an estimate of some or all of the multiple access 

interference and then the estimated MAI is subtracted from the received signal to form a 

new output based on which new decision are made. The idea is that if under the 

assumption that MAI were estimated perfectly, the output of the detector is composed 
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only of the desired signal and the unstructured additive channel noise. The MAI is 

removed and the fidelity of the modified received signal is improved, which in turn 

results in improved bit error rates or increased system capacity. 

The interference cancellation detectors can be categorized as Successive/Serial 

Interference Canceller, Parallel Interference Canceller and Hybrid Interference Canceller. 

The process of interference cancellation can be done through a number of stage 

(multistage detectors) or iteratively (iteration detectors). 

Successive Interference Cancellation 

 In successive interference cancellation approach, every users signal is decoded 

successively [9, 18 and 22]. Users are ranked on the basis of their received power to 

allow detection of the strongest user first, since this user gives most reliable decision. A 

new modified received signal is created after removal of the strongest user signal. 

Following this, the second strongest user is detected from the remainder of received 

signal. The procedure is continued until all users are detected. Although SIC is simple in 

implementation compared to other type of multiuser detectors, it has several 

disadvantages. 

 The delay is linear with the number of users which makes this scheme less 

efficient for the heavily loaded systems. 

 The detection of all other users depends strongly on the accuracy of detecting 

strong user as any inaccuracies will propagate through detection of all other users. 

 At every stage, a ranking process is needed to reorder the users according to their 

received powers. 
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 It may become difficult to sort out users having nearly the same power. 

Parallel Interference Cancellation 

To solve the problem of the delay in SIC, the PIC was suggested and was more 

researched as it is more amenable to practical implementation. PIC effectively estimates 

and subtracts out the MAI for each user in parallel. All the users are decoded and 

cancelled from the received signal simultaneously. The tradeoff between delay and 

complexity is well balanced in PIC detector. Moreover, the performance of parallel IC 

can approach successive IC with less number of stages. 

The research work in this thesis focuses on Parallel Interference Cancellation 

detectors. The first PIC detector for CDMA communication system was proposed 

Varanasi and Aazhang in [6, 19] with multistage implementation. The detector was 

demonstrated to have close relations to Verdu's optimum detector and possesses several 

desirable properties including the potential of near optimum performance, low decision 

delay, and lower computational complexity. Parallel Interference Cancellation detector is 

discussed in detail in the next chapter. 

Hybrid Interference Cancellation 

The main idea behind Hybrid interference cancellation (HIC) is that instead of cancelling 

all K users either in series or in parallel, they are cancelled in parallel and partially in 

series. Hence a mix of SIC and PIC will yield optimal result in terms of computational 

time and BER. In HIC, the active users are split into several groups. Within each group, 

parallel interference is performed and serial interference cancellation is carried out 

between the groups.  
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CHAPTER 3  

PARALLEL INTERFERENCE 

CANCELLATION 

 

As observed in the previous chapter, the decorrelating detector and MMSE detector 

perform the code correlation matrix inversion which can become prohibitively complex 

for a large number of users. In the light of these difficulties, suboptimal methods like 

interference cancellation have gained a lot of interest [20]. The interference cancellation 

detectors are constructed around the matched filter receivers. Conceptually, the 

interference cancellers make use of the tentative decisions to estimate all interferences for 

a particular user and subtract them from the received signal. Parallel Interference 

Cancellation (PIC) technique first suggested by Varanasi and Aazhang [6] assumed that 

all amplitude estimates were completely unbiased. The linear version of this has been 

shown by Elders-Boll et al. to be equivalent to the Jacobi iteration for solving a set of 

linear equations [21]. However, direct implementation of PIC results in a biased statistics 

for the desired signal due to accumulation of residual correlation between the desired 

signal and the interference [7]. Significant improvement in mitigating this bias was 

achieved by Divsalar et al [7] by weighting the estimated interference. They studied a 

weighted (or partial) cancellation scheme for both the linear and nonlinear decision 
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functions based on maximum likelihood principle [7, 18, 19 and 23]. Linear interference 

schemes were further exploited by several authors after Guo and Rasmussen proposed 

linear PIC schemes using matrix algebra. Convergence and conditions to ensure 

convergence have also been presented in [24, 25, 26 and 41] 

In section 3.1, multistage approach for parallel interference cancellation is described. The 

weighted parallel interference cancellation technique is discussed in section 3.2 and the 

need for an adaptive weight for each user at different stages is illustrated in section 3.3. 

3.1 Conventional Multistage Parallel Interference Cancellation 

The multistage Parallel interference cancellation detector is one of effective ways to 

cancel the MAI. At each stage, the PIC detector estimates and subtracts in parallel all the 

MAI for each user [2]. At 1st stage of cancellation, the detector uses the tentative decision 

statistics from the output of matched filter to regenerate the MAI, and then subtracts it 

from the received signal to isolate the user of interest. The modified received signal is 

then fed through the matched filter bank and another set of decision statistics is obtained. 

This forms the first stage of PIC. The new set of decision statistics are used to regenerate 

a more accurate version of the user signals which are then cancelled from the received 

signal to decode the user of interest.  
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Figure  3-1 Multistage Parallel Interference Cancellation 

The structure for first two stages of a multistage PIC detector is shown in figure 3.1. The 

chip matched filtered received vector r is given as input to the detector. Here input vector 

r is as denoted by equation 2.1: 

          (3.1) 

In conventional multistage approach, previous tentative decisions are used to estimate the 

interference for full cancellation at each stage [2]. The detector first reconstructs the 

interference for each user from all the other users based on their decision statistics (either 

soft or hard) and then cancels it out from the received signal. 
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The estimated interference for user k at stage i is given as:   ∑   ,  , where ,  

is a tentative decision for user k from the previous stage (i-1) based on decision statistics 

 , , which can be represented as:  

, ,            (3.2) 

T.D. represents tentative decision. 

The procedure to regenerate and subtract interferers from desired user is given below: 

 The modified received signal for user k at stage (i-1) is given as: 

,       ∑   ,        (3.3)  

      ∑   ,    ,   

where r is the received signal  ,  is a tentative decision from the previous stage (i-1) 

and  is the signature code for the user k. The modified received signal is assumed to be 

interference free so that code matched filtering can be performed to yield a current stage 

decision statistic for user k, which is expressed as: 

,  ,    

           ∑   ,    ,      (3.4) 

            ∑   ,  ,   

where  represents the hermitian transpose of the signature code  of user k.  
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Assuming that soft decisions are made as given in equation (3.2), we rewrite the above 

equation as: 

,   ∑   ,  ,       (3.5)  

In vector notation: 

       

               (3.6) 

            

where    , , ,  , , , … , ,    is defined as vector of decision statistics at stage i, 

r is the received signal vector and I is (K x K) identity matrix and S is (N x K) matrix of 

signature codes. 

Considering, , we can express the soft output at the  stage recursively as: 

       

                   (3.7) 

         ∑    

From the above we can see that linear PIC scheme corresponds to linear matrix filtering 

that can be performed directly on the chip matched filtered received vector r as: 

           (3.8) 

where   ∑     
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The matrix filter   is then referred to as the equivalent one shot cancellation filter for 

an m stage conventional linear PIC.  

The final bit decision is made for the desired user by hard limiter applied on the decision 

statistics at the last stage. Using this procedure, an arbitrary number of stages of the PIC 

may be employed to obtain the data bits of each user. When the estimate from the 

previous stage become more accurate, the performance of the multistage PIC will 

improve and , its performance is expected to converge to the ideal decorrelator. 

3.1.1 Convergence of the Parallel Interference Cancellation detector 

In this section, we study the convergence of the conventional PIC i.e. the behavior of the 

PIC as the number of stages increases to infinity.  

Considering (3.8), we have 

 ∑     

Assuming that   , the signature code matrix  can be decomposed as:  

∑           (3.9) 

where UN X N and V K X K are unitary matrices and ∑ is a N x K matrix of the form: 

∑  √           (3.10) 

where  , , … , ,  is a K x K diagonal matrix of eigenvalues of  and 

the 0 is zero matrix is of appropriate dimension. The code correlation matrix  can 

thus be represented as: 
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   ∑ ∑   

             ∑ ∑           (3.11) 

    

The code correlation matrix R = , is hermitian and hence  formed by the eigenvalues 

of  are all non-negative. Equation (3.8) can now be rewritten as: 

 ∑ ∑ ∑  ∑    

       ∑ ∑ ∑  ∑         (3.12)  

       ∑  √    

A sufficient and necessary condition for  to converge is that ∑  √   

converges, i.e, ∑    converges for k=1, 2, …, K. The solution is  0

2, or in other words, all the eigenvalues of  are less than 2. 

Clearly when the above eigenvalue condition is satisfied, 

 ∑       
0 

    
if 0,
if 0.     (3.13) 

Hence ∑  √    0
0 0

  

where  is a diagonal matrix containing all the non-zero eigenvalues of . Therefore  
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                             (3.14) 

In conclusion, the conventional PIC converges if and only if all the eigenvalues of  

are less than 2. When this eigenvalue constraint is satisfied, the PIC detector converges to 

the decorrelating detector i.e. 

              (3.15) 

3.2 Weighted (Partial) Parallel Interference Cancellation (WPIC) 

The eigenvalue constraint in the Conventional PIC is too rigid to be reasonable. For 

example nearly all the code sets have largest eigenvalue greater than 2 for a 15 user 

system with a processing gain of 31. Moreover conventional multistage PIC may not 

guarantee that performance improves with more stages when hard decisions are used at 

intermediate stages, because any inaccurate decision can lead to a performance even 

worse than that without cancellation. The inaccurate decisions can occur in the direct 

implementation of PIC because of the biased statistics for the desired signal component 

caused by accumulation of correlations between the desired signal and interference [7, 

42, 43]. If a wrong decision is subtracted, the increased interference power would be 

four-fold [42]. 

Each iteration stage, PIC detectors try to eliminate the interference caused by all the other 

users. This is not necessarily the best philosophy, rather, when the interference estimate is 

poor (as in the early stages of interference cancellation), it is preferable not to cancel the 

entirely the estimated multiuser interference. Divsalar proposed a partial cancellation of 

the MAI by weighting the amount of cancellation [7]. As the IC operation progresses, the 

estimates of the multiuser interference improve and, thus, in the later stages of the 
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iterative scheme, it becomes desirable to increase the weight of the estimated interference 

being removed. The WPIC scheme adds a weight to the interference cancellation path 

and all weights in a stage are identical and fixed. The partial cancellation weights for the 

weighted PIC are a fraction of one, and their values reflect the reliability of the tentative 

decision of the estimated interference. The block diagram for WPIC is given in figure 

3.2. As it can be seen, the only difference between the PIC and WPIC is the weight 

introduced on each of the regenerated interferers signal.  

In the Weighted PIC, the relationship between the current decision statistics and the 

previous set of decision statistic are obtained as shown: 

The decision statistics for user k at stage i is a weighted sum of the statistics from 

previous stage (i-1) and the statistics based on current cancellation i.e.,  

, 1  ,     ∑  ,      (3.16) 

where , , … … ,  denote the weighting factors and  is a non negative 

parameter defined later in this section. The remaining parameters are as defined in 

previous section.  
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In vector representation, we have the recursive formula of decision statistics as  

1         

         (3.17) 

     

The weighted PIC given in (3.17) resembles the concept of Steepest Descent Method 

(SDM) for updating the adaptive filter weights to minimize the Mean Square Error 

(MSE) [24]. The close relationship helps in finding the optimal weighting factors or 

equivalently the step sizes for SDM with respect to the MSE. Studying the relationship 

that exists between the WPIC and SDM, we see that WPIC is a realization of steepest 

descent method using variable step sizes. The step sizes are analogous to weighting 

factors in the PIC structure. The derivation for optimum step size of the SDM is given in 

Figure  3-2 Weighted Parallel Interference Cancellation 
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appendix A. We can see that SDM is equivalent to equation (3.17) for WPIC where 

 . Therefore the weighted PIC can be considered as realization of SDM for 

implementing MMSE detector with   and decorrelating detector when  0.  

The mean square error of the weighted PIC designed to converge toward the 

decorrelating detector is determined as: 

 ∑    1        (3.18) 

The minimization of the above function gives us the optimal weighting factors for WPIC. 

Equation (3.16) can be rearranged as: 

 

, 1  ,     ,   

 1  ,    ∑   ,     (3.19) 

 1  ,   ,   ,  

where , ∑  ,   is the estimated MAI from the previous stage. 

From the above we can see that the soft output ,  consists of two items: the output of 

the conventional PIC with the weight and the soft output from the previous stage with the 

complementary weight.  is the weight for the ith stage of the cancellation and 0 

1 .The final bit decision is made based on the soft metric as: 

, ,  
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The weakness of the WPIC scheme is that the weights assigned to all users regenerated 

signal in each stage is uniform, which are not optimal. The weight reflects the reliability 

of data estimates. The reliability of data estimates varies from one user to another and 

from bit to bit depends on the MAI levels, it is more reasonable for each user to have its 

own weight per bit interval, rather than constant weight for all users in each stage 

throughout the cancellation. 

3.3 Adaptive Parallel Interference Cancellation: 

Based on this discussion, adaptive parallel interference cancellation techniques are 

developed to update the interference cancellation weights adaptively to improve the bit 

decision. Different criterions have been used in the development of various adaptive PIC 

detectors. The optimal solution for adaptive PIC detectors can be obtained by using the 

least square criterion. In [11] a recursive least square algorithm is employed to obtain the 

solution to the criterion: 

 ∑ |  |       (3.20) 

and the tentative decision is updated through iteration as: 

 ∑         (3.21) 

where p is the weight vector, c(m) denotes the coefficients of the adaptive filter and s(m) 

denotes the signature codes of users. The drawback of RLS based detector is in its 

complexity which is O(NK2) per bit. Since N>K in a CDMA system, the complexity can 

be considered as O(K3) which is same as decorrelating detector. A modification of the 
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weighted PIC was derived by Xue et al. [8], where the weighs are updated based upon the 

Least Mean Square (LMS) algorithm at each stage.  

The error between received signal and its estimate is given as: 

 ∑       (3.22) 

The adaptation scheme is intended to minimize the LMS error . 

This adaptive PIC becomes unreliable however, with the increased system load, due to 

the slow convergence property of LMS algorithm and the increased mean square error 

also degrades the performance. Moreover, the sensitivity of the LMS algorithm to the 

initial state may lower the convergence rate and hence further degrade the performance. 

3.4 Simulation results 

Simulations evaluate BER performance for PIC using different signature codes. The 

simulations are performed for synchronous CDMA system using BPSK modulation in 

AWGN channel. In figure 3.3, BER is evaluated in SNR range 0-20 dB where each user 

is transmitting 1*105 bits and using Gold codes of length 31 and having equal received 

power. Here the maximum eigenvalue of the code correlation matrix is less than 2 as we 

are using gold codes. 
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Figure  3-3 BER Performance of PIC using Gold Codes- 10 equal power users 

As seen in the above plot, the BER performance of the PIC is close to decorrelator when 

10 equal power users are considered in AWGN channel. The convergence behavior for 

this PIC is given in figure 3.4. We can see from the figure that PIC converges to 

decorrelator. 
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Figure  3-4 Convergence of PIC using Gold Codes – 10 equal power users 
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BER Performance of PIC using random PN sequence having maximum eigenvalue of 

code correlation matrix greater than 2 for a 10-user system is shown in figure 3.5. The 

simulations are performed for synchronous CDMA system using BPSK modulation in 

AWGN channel. BER is evaluated in SNR range 0-20 dB where each user is transmitting 

1e4 bits and using PN codes of length 31 and having equal received power. 

 As we can see from the plot, the performance degrades with increased number of stages 

as maximum eigenvalue of the cross correlation matrix of signature sequence is greater 

than 2. 

 

Figure  3-5 BER Performance of PIC using PN Codes – 10 equal power users 
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The convergence of PIC using random PN sequence having maximum eigenvalue of code 

correlation matrix greater than 2 for a 10-user system is shown in figure 3.6. It can be 

seen from the figure that the PIC is diverging instead of converging towards decorrelator 

and the performance is poor even than the matched filter. Here we can observe the 

phenomenon of ping pong effect in the convergence where the BER tends to alternate 

between two state processes as a function of iteration index.  

 

Figure  3-6 Convergence of PIC using PN Codes – 10 equal power users 

Ping-pong behavior is explained by Rasmussen in [41]. The eigenvalues of the iteration 

matrix are closely related to the eigenvalues of the correlation matrix. The decision 

statistics in most cases exhibits an oscillating behavior around some point due to the 

negative eigenvalues of the iteration matrix which in turn originates from the extreme 
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eigenvalues if the correlation matrix. A weight factor is suggested which can overcome 

the oscillating behavior at the expense of convergence rate. 

The BER performance of the of Weighted PIC using random PN sequence having 

maximum eigenvalue of code correlation matrix greater than 2 for a 10 user system is 

shown in figure 3.7. The simulations are performed for synchronous CDMA system using 

BPSK modulation in AWGN channel. BER is evaluated in SNR range 0-20 dB where 

each user is transmitting 1*104 bits, using PN codes of length 31 and having equal 

received power. From this plot, we can see that the BER initially improves stage by stage. 

 

Figure  3-7 BER Performance of Weighted PIC using PN Codes – 10 equal power users 
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Convergence of Weighted PIC using random PN sequence having maximum eigenvalue 

of code correlation matrix greater than 2 for a 10 user system is shown in figure 3.8:  

 

Figure  3-8 Convergence of Weighted PIC using PN Codes – 10 equal power users 

As compared to figure 3.6 where the BER is diverging and exhibiting ping-pong 

behavior, the BER in WPIC scheme in figure 3.8  improves with number of stages and 

converges towards the decorrelator even when the eigenvalue of cross correlation is more 

than 2. We selected incremental weights stage wise in the weighted PIC scheme but these 

weighting factors are not optimal. The performance of the weighted PIC scheme can be 

further improved by selecting the optimal weights by using some adaptive technique like 
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Recursive least square (RLS), least mean square (LMS) algorithms or the proposed fuzzy 

weighted PIC scheme. 

 
The BER performance of the of Weighted PIC using random PN sequence having 

maximum eigenvalue of code correlation matrix greater than 2 for a 10 user system is 

shown in figure 3.9. The simulations are performed for synchronous CDMA system using 

BPSK modulation in AWGN channel. BER is evaluated in SNR range 0-20 dB where 

each user is transmitting 1e4 bits, using PN codes of length 31 and having unequal 

received power. 

 

Figure  3-9 BER Performance of Weighted PIC using PN Codes – 10 unequal power users 
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Convergence of Weighted PIC using random PN sequence having maximum eigenvalue 

of code correlation matrix greater than 2 for a 10 user unequal power system is shown in 

figure 3.10:  

 

Figure  3-10 Convergence of Weighted PIC using PN Codes – 10 unequal power users 

From the above convergence analysis in figure 3.10, we can see that the Weighted PIC is 

not diverging and the performance is slightly less compared to the equal power user case 

in figure 3.8.  
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The BER performance of the of Weighted PIC using Gold sequence having maximum 

eigenvalue of code correlation matrix less than 2 for a 10 user system is shown in figure 

3.11. The simulations are performed for synchronous CDMA system using BPSK 

modulation under Rayleigh flat fading channel. BER is evaluated in SNR range 0-20 dB 

where each user is transmitting 1*105 bits, using PN codes of length 31 and having equal 

received power. 

 

Figure  3-11 BER Performance of Weighted PIC using Gold Codes – 10 equal power 
users under fading channel  
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Convergence of Weighted PIC using random Gold sequence having maximum 

eigenvalue of code correlation matrix greater than 2 for a 10-user unequal power system 

under Rayleigh flat fading channel is shown in figure 3.12:  

 

Figure  3-12 Convergence of Weighted PIC using Gold Codes – 10 equal power users 

under fading channel 

From the above convergence analysis of Weighted PIC under Rayleigh flat fading 

channel, we see that it converges towards the decorrelator around stage 20. 
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From the above results, we can say that when eigenvalues of correlation matrix is greater 

than 2 the performance degrades as the number of stages are increased. To improve the 

convergence and BER performance of the PIC schemes, a fuzzy based Adaptive 

Multistage Parallel Interference Cancellation detector is proposed in this thesis. The 

improved adaptive PIC scheme uses a fuzzy inference system to determine the weighting 

factor in matrix approach. By making the weighting factors fuzzy adaptive we can 

achieve better stabilization and convergence of PIC. As the weights reflect the reliability 

of the decision statistics, we study the relation between the strength of weight on each 

path and the estimated interference statistics to determine the amount of interference to 

be removed. The determination of weight is achieved by employing a fuzzy inference 

system produces unique adaptive weights for each bit at every stage. 
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CHAPTER 4  

FUZZY INFERENCE SYSTEM 

Fuzzy logic has been recently used in many ways to enhance the performance of 

multiuser detection techniques. In [44], a fuzzy detector was proposed to estimate directly 

the bits of users without training process. Fuzzy logic has also been incorporated with 

linear decorrelating detector to combat impulsive noise [45]. Application of fuzzy logic 

in Parallel interference Cancellation was explored in detail first by Huang in [46]. This 

chapter presents an introduction to fuzzy logic and fuzzy inference systems. The main 

concepts in this field are introduced to facilitate understanding in fuzzy systems. Section 

4.1 introduces fuzzy logic, membership functions, fuzzy sets and operations on fuzzy 

sets. Fuzzy inference system and its implementation are described in section 4.2.  

4.1 Introduction to Fuzzy Logic 

Fuzzy Logic was introduced in 1965 by Lotfi A. Zadeh, Professor of Computer Science 

at the University of California in Berkeley [27]. The word fuzzy means dull, misty, 

infinite, and vague. These synonyms match the content of fuzzy theory. Fuzzy Logic (FL)  

is  a multi-valued logic,  that  allows  intermediate values  to  be defined  between  

conventional evaluations  like  true/false, yes/no, high/low, etc. Notions like rather tall or 

very fast can be formulated mathematically and processed by computers, in order to 
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apply a more human-like way of thinking in the programming of computers [28]. The 

fuzzy theory provides a mechanism for representing linguistic variables such as “many,” 

“low,” “medium,” “often,” “few.” In general, the fuzzy logic provides an inference 

structure that enables appropriate human reasoning capabilities. On the contrary, the 

traditional binary set theory describes crisp events, events that either do or do not occur. 

It uses probability theory to explain if an event will occur, measuring the chance with 

which a given event is expected to occur. The theory of fuzzy logic is based upon the 

notion of relative grade of membership [29]. Figure 4.1 depicts the basic working system 

of fuzzy logic. 

 

Figure  4-1: A Basic Fuzzy Logic Working System 

There are many observations which make fuzzy logic an important tool for solving many 

problems: 

 Fuzzy logic is conceptually easy to understand. 

 The basic and mathematical concepts behind fuzzy reasoning are very simple. The 

“naturalness” of its approach makes fuzzy logic an “easy to understand” theory. 

 Fuzzy logic is flexible. 
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 With any given system, it is easy to manage fuzzy logic and layer more 

functionality on top of it, without starting again from scratch. 

 Fuzzy logic is tolerant of imprecise data. Everything is imprecise, if give a careful 

observation, but more than that, most things are imprecise even on careful 

inspection. Fuzzy reasoning builds this understanding into the process rather than 

tacking it onto the end. 

 Fuzzy systems don't necessarily replace conventional methods. In many cases 

fuzzy systems augment them and simplify their implementation.  

Fuzzy  Logic  has  emerged  as  a profitable  tool  for  the  controlling  and steering  of 

systems and  complex  industrial  processes,  as  well  as  for household and 

entertainment electronics, as well as for other expert systems and applications. 

4.1.1 Fuzzy Sets and Crisp Sets  

The very basic notion of fuzzy systems is a fuzzy set.  In classical set theory we are 

familiar with what we call crisp sets. For example a subset A of the universe X is defined 

by its binary (0 or 1) characteristic function  ( ) : 0,1A x x   such that ( )A x  = 1 if 

x A  and ( )A x = 0 if x A . A fuzzy set is thus a set containing elements that have 

varying degrees of membership in the set. This idea is in contrast with classical or crisp 

set, because members of a crisp set would not be members unless their membership was 

full or complete, in that set (i.e., their membership is assigned a value of 1). In contrast, 

elements in a fuzzy set, because their membership need not be complete, can also be 

members of other fuzzy set on the same universe. Unlike conventional sets, the 
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characteristic function of a fuzzy set is allowed to have values between 0 and 1, where A


 

is called a fuzzy set and A


 is called the membership function of A [29].  

If an element of universe, say x, is a member of fuzzy setA


, then the mapping is given by

 A ( ) 0,1x 


. This is the membership mapping and is shown in the figure 4.2. 

 

Figure  4-2 A typical Membership Function of Fuzzy Set 

For example, the set of slow driving cars can be defined as cars that are driving less than 

or equal to 40 kilometers per hour. That can be defined with a characteristic function: 

1: ( ) 40
( )

0 : ( ) 40
slow

speed x
m x

speed x


                                                                      (4.1) 

Let us assume that there exists a car, which is driving at a speed of 41 km per hour. The 

driver might think that he or she is still driving pretty slowly, but the function in (4.1) 
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indicates that he or she is not driving slowly. It is very restricting to define a set of slow 

driving cars like above. In fuzzy set theory, elements belong to fuzzy sets to a certain 

degree. Degree of belonging to the set of slow driving cars can be defined with a 

membership function: 

1 : ( ) 40

1 ( ( 40)
( ) : 40 ( ) 60

20
0 : ( ) 60

slow

speed x

speed x
x speed x

speed x




    


                         (4.2) 

When the set of slow driving cars is defined as above, the car driving 41 km per hour 

would have a degree of 0.95 belonging to the set of slow driving cars. In function (4.2) 

there is a linguistic variable driving speed and three fuzzy sets. For every driving speed, 

degree of belonging to those fuzzy sets can be calculated and one driving speed can 

belong to many fuzzy sets with certain degrees [30]. In this way a fuzzy set is uniquely 

characterized by its membership function. The basic feature about membership functions 

and a brief description of it is explained in the next section. 

4.1.2 Membership Functions (Fuzzy Sets) 

Fuzziness in a fuzzy set is characterized by its membership functions. It classifies the 

element in the set, whether it is discrete or continuous. A membership function (MF) is a 

curve that defines how each point in the input space is mapped to a membership value (or 

degree of membership) between 0 and 1. The input space is sometimes referred to as the 

universe of discourse. The membership functions can also be formed by graphical 

representations. The graphical representations may include different shapes. There are 
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certain restrictions regarding the shapes used. The “shape” of the membership function is 

an important criterion that has to be considered. There are different methods to form 

membership functions. This section discusses some basic features of membership 

functions. 

Features of Membership Function 

The feature of the membership function is defined by three properties. They are: 

(1) Core (2) Support (3) Boundary 

The membership can take value between 0 and 1 (Sivanandam, Sumathi, and Deepa, 

2007). Figure 4.3 briefly depicts the properties of membership function.  

 

Figure  4-3 Features of Membership Function [31] 
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The various features of membership function are briefly described as follows: 

(1) Core: 

If the region of universe is characterized by full membership (1) in the set A  then this 

gives the core of the membership function of fuzzy at A . The elements, which have the 

membership function as 1, are the elements of the core, i.e., here 
A

( ) 1x   

(2) Support: 

If the region of universe is characterized by nonzero membership in the setA , this defines 

the support of a membership function for fuzzy setA . The support has the elements 

whose membership is greater than 0 i.e. ( A
( ) 1x  ). 

(3) Boundary: 

If the region of universe has a nonzero membership but not full membership, this defines 

the boundary of a membership; this defines the boundary of a membership function for 

fuzzy setA .  The boundary has the elements, whose membership is between 0 and 1, (

A
10 ( )x 

 ). 

(4) Cross-over Point: 

The crossover point of a membership function is the elements in universe, whose 

membership value is equal to 0.5, ( ( ) 0.5
A

x  ) 

 



57 
 

 
 

(5) Height: 

The height of the fuzzy set A  is the maximum value of the membership function, 

max . 

The membership functions can be symmetrical or asymmetrical. Membership value is 

between 0 and 1. The membership functions can have different shapes like triangle, 

trapezoidal, Gaussian, etc. Figure 4.6 indicates the different shapes of membership 

functions. 

 

Figure  4-4 Common Shapes for Membership Functions [32] 

4.1.3 Fuzzification 

Fuzzification is an important concept in the fuzzy logic theory. Fuzzification in simple 

terms can be defined as the process where the crisp quantities are converted to fuzzy 

(crisp to fuzzy). 
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In any practical applications, in industries, in the field of construction etc., measurement 

of voltage, current, temperature, selection of a contractor etc., there might be a negligible 

error. This causes imprecision in the data. This imprecision can be represented by the 

membership functions. Hence fuzzification is performed.  

Zadeh [27] says that rather than regarding fuzzy theory as a single theory, we should 

regard the process of “fuzzification” as a methodology to generalize any specific theory 

from a crisp (discrete) to a continuous fuzzy) form. 

4.1.4 Fuzzy Rule-base 

Rules form the basis for fuzzy logic to obtain the fuzzy output. The fuzzy rule-based 

system uses IF–THEN rules.  

A single fuzzy IF-THEN rule assumes the form 

IF x is A THEN y is B , 

where A and B are linguistic values defined by fuzzy sets on the ranges (universe of 

discourse) X and Y, respectively. The IF-part of the rule “x is A” is called the antecedent 

or premise, while the THEN-part of the rule “y is B” is called the consequent or 

conclusion.  

As discussed before, fuzzy logic is a methodology that allows computing with words and 

no other modeling method offers such flexibility. The basic concept upon which 

“computing with words” is based is the “granule” that groups points that have similar 

features; in other words we can say a granule is a fuzzy set. A granule can be atomic 

(e.g., safe) or composite (e.g., very safe) and is represented by a word which is a fuzzy 
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constraint on the variable. For example, for the proposition “The boy is young” the word 

“young” represents a granule that groups certain ranges of ages and act as a fuzzy 

constraint (i.e., fuzzy set) on the linguistic variable “age” [32].  

Types of Statements in Fuzzy Rules 

The fuzzy logic in the development of fuzzy rules uses three types of statements [29]: 

Assignment statements, Conditional statements, Unconditional statements. 

The detailed descriptions of these statements are as follows: 

1. Assignment statements  

Assignment statements are those in which the variable is assigned a value. The variable 

and the value assigned are combined by the assignment operator “=.” The assignment 

statements are necessary in forming fuzzy rules. The value to be assigned may be a 

linguistic term. The assignment statement restricts the value of a variable to a specific 

equality. The examples of this type of statements are: 

y = high, 

Climate = cold 

a = 6 

p = q + r 
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2. Conditional statements 

Conditional Statements are those in which, some specific conditions are mentioned. The 

examples of Conditional Statements are as follows, 

IF x = y THEN both are equal, 

IF Mark > 50 THEN pass, IF Speed > 1, 500 THEN stop. 

3. Unconditional statements 

Unconditional statements are those in which there is no specific condition that has to be 

satisfied. Some of the unconditional statements are: 

Stop 

Push the value 

Aggregation of Fuzzy Rules 

The fuzzy rule-based system may involve more than one rule. The process of obtaining 

the overall conclusion from the individually mentioned consequents contributed by each 

rule in the fuzzy rule is called as aggregation of rule. There are two methods for 

determining the aggregation of rules [33]: 

1. Conjunctive system of rules 

The rules that are connected by “AND” connectives satisfy the connective system of 

rules. In this case, the aggregated output may be found by the fuzzy intersection of all 

individual rule consequents. 
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2. Disjunctive system of rule 

The rules that are connected by “OR” connectives satisfies the disjunctive system of 

rules. In this case, the aggregated output may be found by the fuzzy union of all 

individual rule consequents. To discuss how fuzzy rules are used for a real problem, let 

us reconsider the example of car speed discussed in section 4.1.5. It is a well known fact 

that the consumption of fuel can be reasoned based on the driving speed. For example, 

we can assume that: the rise in the driving speed indicates the rise in the consumption of 

fuel. Based on that knowledge we could build rules describing the relation between 

driving speed and consumption of fuel. An example of such a rule can be the following: 

If Speed(x) ≤ 50 km per hour, then Consumption ≤ 7liters per 100km. 

To make the rule more interpretable linguistic values are used: 

If Speed(x) is slow, then Consumption is small. 

The above rule stands for an example of a Mamdani rule system, which we will discuss 

in the upcoming sections of this thesis. Usage of the linguistic values "slow" and "small" 

makes the rule fuzzy and enables the computation with words [30]. 

4.1.5 Defuzzification 

Defuzzification in simple words means conversion of fuzzy values to crisp values. The 

fuzzy results obtained or generated cannot be used in its original form for applications; 

hence it is necessary to covert the fuzzy quantities into crisp quantities for further 

processing. This can be achieved by using the defuzzification process. The 

defuzzification converts the fuzzy quantity to a crisp single-valued quantity or a set, or to 
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the same form in which fuzzy quantity existed. The defuzzification process is also called 

as “rounding off” method [29]. 

There are many defuzzification methods mentioned in the literature. Sivanandam et.al. 

mentioned seven defuzzification methods [29]. Mizumoto [34] compared about ten 

defuzzification methods. Two of the more common techniques are the Centroid and 

Maximum methods.  In the Centroid method, the crisp value of the output variable is 

computed by finding the variable value of the center of gravity of the membership 

function for the fuzzy value.  In the Maximum method, one of the variable values at 

which the fuzzy subset has its maximum truth value is chosen as the crisp value for the 

output variable.  There are several variations of the Maximum method that differ only in 

what they do when there is more than one variable value at which this maximum truth 

value occurs.  One of these, the Average-of-Maxima method, returns the average of the 

variable values at which the maximum truth value occurs. There are five built in methods 

in the fuzzy logic tool box of MATLAB such as: Centroid, bisector, middle of maximum, 

largest of maximum, and smallest of maximum [35]. 

4.2 Fuzzy Inference Systems (Fuzzy Expert Systems) 

4.2.1 Expert Systems 

The Expert systems are computer programs that emulate the reasoning of a human expert 

or perform in an expert manner in a domain for which no human expert exists. Any 

expert system in general is made up of at least three parts: an inference engine, a 

knowledge base and a global memory. The knowledge contains the expert domain 

language for use in problem solving. The working memory, which acts as a store house, 
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is used as a scratch pad and to store information gained from the user to the system. The 

inference engine uses the domain knowledge for use in problem solving. The inference 

engine uses the domain knowledge together with acquired information about a problem to 

provide an expert solution. There is plethora of expert systems developed in diverse fields 

and many are available commercially. However, practical expert systems typically reason 

with uncertain and imprecise information. There is no limit to sources of imprecision and 

uncertainty. The knowledge that they embody is often not exact in the same way that a 

human’s knowledge is imperfect. The facts and the supplied information are drastically 

uncertain. Fuzzy expert systems developed through fuzzy reasoning can provide the basis 

for representing the imprecision inherent in an expert’s knowledge. The Fuzzy Inference 

System or Fuzzy Expert System uses fuzzy sets and fuzzy logic reasoning process or 

knowledge representation scheme [36]. This section deals with a detailed study of Fuzzy 

Expert System. 

The Fuzzy Inference System is an expert system that uses a collection of fuzzy 

membership functions and rules, instead of Boolean logic, to reason about data [37]. 

Fuzzy inference systems (FIS) are also known as fuzzy rule-based systems, fuzzy model, 

fuzzy expert systems, fuzzy associative memory, fuzzy logic controllers, and simply (and 

ambiguously) fuzzy systems, because of their multidisciplinary nature. This is a major 

unit of a fuzzy logic system. The decision-making is an important part in the entire 

system. The FIS formulates suitable rules and based upon the rules the decision is made. 

This is mainly based on the concepts of the fuzzy set theory, fuzzy IF–THEN rules, and 

fuzzy reasoning. FIS uses “IF. . . THEN. . . ” statements, and the connectors present in 

the rule statement are “OR” or “AND” to make the necessary decision rules. When the 
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FIS is used as a controller, it gives a crisp output by using the defuzzification method. 

The whole FIS is discussed in detail in the following subsections [29] 

4.2.2 Working of Fuzzy Inference System 

Fuzzy inference system consists of a fuzzification interface, a rule base, a database, a 

decision-making unit, and finally a defuzzification interface. A Fuzzy Inference System 

with five functional units is described in the figure 4.7. The function of each unit is as 

follows: 

A rule base containing a number of fuzzy IF–THEN rules; 

A database which defines the membership functions of the fuzzy sets used in the fuzzy 

rules;  

A decision-making unit which performs the inference operations on the rules;  

A fuzzification interface which transforms the crisp inputs into degrees of match with 

linguistic values; and  

A defuzzification interface which transforms the fuzzy results of the inference into a 

crisp output.  
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Figure  4-5 Working of Fuzzy Inference System [29] 

 

From figure, 4.5 the working of fuzzy inference system in brief can be understood as 

follows: 

 The crisp input is converted into fuzzy quantities by using fuzzification method. After 

fuzzification the rule base is formed. The rule base and the database are jointly referred to 

as the knowledge base. Defuzzification is used to convert fuzzy value to the real world 

value, which is the needed output for use in practical system. In this thesis, Fuzzy 

controller of Fuzzy Tool Box of MATLAB is used for the fuzzification and 

defuzzification process.  
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4.2.3 Fuzzy Inference Methods 

The most important two types of fuzzy inference method are Mamdani’s fuzzy inference 

method, which is the most commonly used inference method. This method was 

introduced by Mamdani and Assilian [38]. Another well-known inference method is the 

so-called Sugeno or Takagi–Sugeno–Kang method of fuzzy inference process. This 

method was introduced by Sugeno [39]. This method is also called as TS or TSK method. 

We will use the short-form TSK in this thesis.  

The main difference between the two methods lies in the consequent of fuzzy rules. 

Mamdani fuzzy systems use fuzzy sets as rule consequent whereas TS fuzzy systems 

employ linear functions of input variables as rule consequent.   

The two methods are explained in detail as follows: 

4.2.3. (a) Mamdani’s Fuzzy Inference Method 

Mamdani’s fuzzy inference method is the most commonly used fuzzy methodology. 

Mamdani’s method was among the first control systems built using fuzzy set theory. It 

was proposed by Mamdani [38] as an attempt to control a steam engine and boiler 

combination by synthesizing a set of linguistic control rules obtained from experienced 

human operators. Mamdani’s effort was based on Zadeh’s [27] paper on fuzzy algorithms 

for complex systems and decision processes [31]. 

Mamdani type inference method, expects the output membership functions to be fuzzy 

sets. After the aggregation process, there is a fuzzy set for each output variable that needs 

defuzzification. It is possible, and in many cases much more efficient, to use a single 
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spike as the output memberships function rather than a distributed fuzzy set. This is 

sometimes known as a singleton output membership function, and it can be thought of as 

a pre-defuzzified fuzzy set. 

To compute the output of the Mamdani FIS given the inputs, six steps has to be followed: 

 Determining a set of fuzzy rules  

 Fuzzifying the inputs using the input membership functions  

 Combining the fuzzified inputs according to the fuzzy rules to establish a rule 

strength. 

 Finding the consequence of the rule by combining the rule strength and the output 

membership function. 

 Combining the consequences to get an output distribution.  

 Defuzzifying the output distribution  

In this thesis for developing the “Fuzzy Inference System Model” we have used the 

Mamdani FIS method. The advantages of this method are explained in upcoming 

subsections of this research. 

4.2.3. (b) Takagi-Sugeno’s Fuzzy Inference Method 

Sugeno fuzzy model also known as Sugeno–Takagi (or TSK) model was proposed by 

Takagi, Sugeno and Kang in an effort to formalize a system approach to generate fuzzy 

rules from an input-output data set. A typical fuzzy rule in a Sugeno fuzzy model has the 

format 
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IF  x  is  A  and  y  is  B  THEN  z  = f (x, y), 

Where A, B are fuzzy sets in the antecedent; Z = f (x, y) is a crisp function in the 

consequent. Usually f (x, y) is a polynomial in the input variables x and y, but it can be 

any other functions that can appropriately describe the output of the system within the 

fuzzy region specified by the antecedent of the rule. When f (x, y) is a first-order 

polynomial, we have the first-order Sugeno fuzzy model. When f is a constant, we then 

have the zero-order Sugeno fuzzy model, which can be viewed as a special case of the 

Mamdani FIS [31] 

Advantages of the Mamdani Method 

 The Mamdani FIS is more intuitive than Sugeno FIS.  

 The Mamdani FIS has more widespread acceptance than Sugeno FIS.  

 The Mamdani FIS is well suited to human input and understanding.  

Advantages of the Sugeno Method 

 The Sugeno method works well with linear techniques. 

 The Sugeno method is more suitable with optimization and adaptive techniques.  

 The Sugeno method is well suited to mathematical analysis. 
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Example for Fuzzy Inference system: 

With the knowledge gained from the discussion about fuzzy logic and fuzzy inference 

system, we consider an example to explain the implementation of the fuzzy logic in real 

life. 

Considering a tipping problem to determine the right amount to tip the waiter after 

dinning in a restaurant. We can state the problem as: Giving a rating between 0 and 10 for 

quality of service and quality of food (where 10 is excellent), what should be the tip? 

The fuzzy approach to solve this problem begins with defining the rules. The criteria to 

solve this problem can be listed as: 

1. If service is poor, then tip is cheap 

2. If service is good, then tip is average 

3. If service is excellent, then tip is generous 

4. If food is rancid, then tip is cheap 

5. If food is delicious, then tip is generous 

Combining the above rules we can summarize the rule base for the tipping problem to 

three rules as : 

1. If service is poor or the food is rancid, then tip is cheap. 

2. If service is good, then tip is average. 

3. If service is excellent or food is delicious, then tip is generous. 
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Since there are two factors affecting the amount of tip, we use a two input, one output 

Mamdani FIS as shown in figure 4.6 to determine the tip. There are five steps in the 

fuzzy inference system: fuzzification of input variables, application of the fuzzy operator 

(AND or OR) in the antecedent, implication from the antecedent to the consequent, 

aggregation of the consequents across the rules, and defuzzification. 

 

Figure  4-6 Tipping Example 
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Fuzzify inputs 

The first step is to take the real inputs and determine the degree to which they belong to 

each of the appropriate fuzzy sets via membership functions. We define the membership 

functions of the inputs as follows: 

The first input to FIS, which is the quality of service, is divided into three membership 

functions defined by the linguistic variables poor, good and excellent. The other input 

quality of food is divided into two membership functions using two linguistic variables 

rancid and delicious. From the membership functions we can see how our rating on a 

scale of 10 qualifies to be member of a linguistic variable i.e. how our real world data is 

converted to a fuzzy input. The membership functions of the inputs are represented as 

illustrated in figure 4.6. 

Apply the fuzzy operator 

Once the inputs have been fuzzified, we know the degree to which each part of the 

antecedent has been satisfied for each rule. If the antecedent of a given rule has more than 

one part, the fuzzy operator is applied to obtain one number that represents the result of 

the antecedent for that rule. This number will then be applied to the output function. The 

input to the fuzzy operator is two or more membership values from fuzzified input 

variables. The output is a single truth value. 

Apply Implication Method 

Before applying the implication method, we must take care of the rule’s weight. Every 

rule has a weight (a number between 0 and 1), which is applied to the number given by 
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the antecedent. Generally this weight is 1 (as it is for this example) and so it has no effect 

at all on the implication process. Once proper weighting has been assigned to each rule, 

the implication method is implemented. A consequent is a fuzzy set represented by a 

membership function, which weights appropriately the linguistic characteristics that are 

attributed to it. The consequent is reshaped using a function associated with the 

antecedent (a single number). The input for the implication process is a single number 

given by the antecedent, and the output is a fuzzy set. Implication is implemented for 

each rule. Two built-in methods are supported, and they are the same functions that are 

used by the AND method: min (minimum), which truncates the output fuzzy set, and 

prod (product), which scales the output fuzzy set. 

 

Figure  4-7 Implication Operation 

The steps of applying the fuzzy operator and the Implication operation is illustrated in 

figure 4.7. 
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Aggregate All Outputs 

Since decisions are based on the testing of all of the rules in an FIS, the rules must be 

combined in some manner in order to make a decision. Aggregation is the process by 

which the fuzzy sets that represent the outputs of each rule are combined into a single 

fuzzy set. Aggregation only occurs once for each output variable, just prior to the fifth 

and final step, defuzzification. The input of the aggregation process is the list of truncated 

output functions returned by the implication process for each rule. The output of the 

aggregation process is one fuzzy set for each output variable. In figure 4.6, all three rules 

have been placed together to show how the output of each rule is combined, or 

aggregated, into a single fuzzy set whose membership function assigns a weighting for 

every output (tip) value. 

Defuzzify 

The input for the defuzzification process is a fuzzy set (the aggregate output fuzzy set) 

and the output is a single number. As much as fuzziness helps the rule evaluation during 

the intermediate steps, the final desired output for each variable is generally a single 

number. However, the aggregate of a fuzzy set encompasses a range of output values, and 

so must be defuzzified in order to resolve a single output value from the set. There are 

five built-in methods supported: centroid, bisector, middle of maximum (the average of 

the maximum value of the output set), largest of maximum, and smallest of maximum. 

Perhaps the most popular defuzzification method is the centroid calculation, which 

returns the center of area under the curve as given in figure 4.6. In our example, we can 
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see that the tip is 16.7% of final bill amount if the quality of service is 3 and quality of 

food is 8. 
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CHAPTER 5  

FUZZY BASED WEIGHTED PIC 

In this chapter, we propose a fuzzy inference system for determining the weighs in Fuzzy 

Weighted PIC scheme. In section 5.1, proposed detector is introduced and the fuzzy 

inference system for determining weights is developed. In Section 5.2, performance of 

proposed technique is investigated and compared with decorrelating detector. 

5.1 Fuzzy based Parallel Interference Cancellation 

As seen in the previous chapters, the effectiveness of Interference Cancellation is related 

to the reliability of the tentative decision involved in interference estimates. Since at low 

SNR’s the probability of inaccurate estimation is greater than at higher SNR, we can 

conclude that reliability of the estimates depends on the Signal to Interference plus noise 

ratio (SINR). Thus, the optimal cancellation weights could be related to signal to noise 

ratios and the amplitude of the interferers. An adaptive weighted scheme for PIC is 

presented here which uses these factors to determine the weight of each interference 

cancellation path. According to the estimated interference reliability, the weight of the 

interfering users can be estimated by fuzzy logic system for each user based on the 

effective number of interferers and Signal to noise ratio of that user. The soft decision 

making ability of fuzzy inference system is briefed in Appendix B. 
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A multistage PPIC scheme based on FIS for multiuser detection is presented and the first 

two stages are shown in figure 5.1. 

 

Figure  5-1 Proposed Fuzzy based Weighted PIC detector 

The first stage in a proposed PPIC scheme is the matched filter and for second stage, the 

weight vector is evaluated by FIS. The detection and interference elimination procedure 

is similar to that of weighted PIC. We present the FIS system for the determining the 

weights as follows:  

The effective numbers of users for user k are defined as: 

,  
∑

         (5.1) 
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where ak is the amplitude of the kth user. 

The fuzzy inference system is given effective number of users and the SNR of each user 

as inputs to obtain the optimal weight. The fuzzy relationship between the output optimal 

weighting factors and inputs SNR and effective number of users is established by 

experiment. It requires investigation of BER with different weights for WPIC scheme by 

computer simulation and obtaining the optimal weights that results in least bit error rate. 

In our work, these relationships are obtained from [46].  

In general, the relationship between the optimal weights and the inputs of FIS can be 

stated as- If Keff increases or SNR decreases, the BER is increased and therefore the 

reliability of the desired user becomes poorer. In this case, a smaller cancellation weight 

should be selected for the next stage.  

We use a Mamdani type Fuzzy inference system with SNR and effective number of users 

as two inputs and one output, the partial cancellation weight. Based on the relationships 

from experimentation in [46], the inputs to the FIS are fuzzified by using five Gaussian 

distribution membership functions to cover the entire universe of discourse of two inputs, 

Keff and SNRk and six for output pk respectively, as shown in the figure. In figure 5.1, 

there are five linguistic terms: negative low (NL), zero (ZE), positive low (PL), positive 

medium (PM), and positive high (PH), chosen to cover the entire universe of discourse 

for SNRk. In figure 5.2 there are five linguistic terms, very few (VF), few (F), medium 

(MED), many (M), and great many (GM), chosen to cover the entire universe of 

discourse for Keff,k. In Fig.5.3, there are six linguistic terms, almost zero (AZ), small (S), 

medium (MED), large (L), very large (VL), and almost one (AO), chosen to cover its 
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universe of discourse for pk,i. The fuzzy set in each interval of ,  of Gaussian 

membership functions (MBF) is declared as  and the universe of discourse U can be 

expressed by: 

1
2

 

where    1, 2, … ,5 ,      1, 2, … ,5 , ,   and  is the mean and  

is the variance of Gaussian MBF, respectively.  

 

Figure  5-2 Membership function for SNR 
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Figure  5-3 Membership function for effective number of users 

 

Figure  5-4 Membership function for partial weight   
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We can establish the fuzzy rules by matching input output pairs through an adaptive 

procedure. Hence the fuzzy control rules for a two input fuzzy system can be determined 

as: 

 : IF  is  and Keff,k is  , THEN   

Where j is the index of rule ,    1, 2, … ,5   and , , and   are the linguistic 

terms of the two input variable , Keff,k  and one output variable , respectively , 

   ,   1, 2, … ,5  and   1, 2, … ,6 .  

For example, if input membership function corresponding to the  is positive low 

(PL) and input membership function corresponding to effective number of users (Keff) is 

few (F), then output membership function for weight estimation is high (H) and the crisp 

value for the weight is determined using Centroid method as described in chapter 4. The 

complete rule base with two inputs and one output is given as in table 5.1. 

Keff 
VF F MED M GM 

SNR 

NL MED S AZ AZ AZ 

ZE H MED S S AZ 

PL ONE H MED S AZ 

PM ONE VH H MED AZ 

PH ONE VH H MED S 

 

Table  5-1 Fuzzy Rule Base 
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There are twenty-five fuzzy IF-THEN rules for interference cancellation. As discussed in 

the previous chapter, the next step after rule base is to defuzzified to produce a useful 

output. Here the Centroid calculation for the defuzzification method is adopted as 

following: 

 
∑  

∑  
 

where q is the number of output-quantized levels under the aggregated MBF’s,  is the 

amount of inference output at the ith quantization level, and   is the membership value 

of the output fuzzy set . This defuzzified output is the weighting factor for the 

Weighted PIC. Thus, we can find the vector for the weighting factors about which the 

estimated interference is scaled before it is subtracted. The results are presented here to 

show that the performance of the Parallel interference cancellation scheme improves with 

number of stages and converges to that of decorrelating detector even when the 

eigenvalues are of correlation matrix are greater than 2.  
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5.2 Improved Fuzzy based Weighted PIC by gradually increasing the membership 

functions with stages. (VarMFFPIC) 

Using the fact that the interference variation decreases with number of stages in PIC, an 

improved fuzzy PIC is presented in this section. Improved performance can be achieved 

by gradually increasing membership functions with number of stages. At first, three 

membership functions are used to cover the universe of discourse of the weighting factor 

and with number of stages, membership functions are also increased The membership 

functions along with the rule base at each stage is given below: 

 First stage- Three MF: 

 

Table  5-2  First Stage Rule Base 

Keff 
 

SNR 
VF F MED M GM 

NL MED S S S S 

ZE MED MED MED S S 

PL H MED MED S S 

PM H MED MED MED S 

PH H H MED MED S 
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Second Stage – Four MF: 

 
 

Table  5-3 Second Stage Rule Base 

Keff 
 

SNR 
VF F MED M GM 

NL MED S S S S 

ZE MED MED MED S S 

PL H H MED S S 

PM 1 H H H MED 

PH 1 H H MED S 

 

D
eg

re
e 

of
 m

em
be

rs
hi

p 



84 
 

 
 

Third Stage - Five MF: 

 

 
Table  5-4 Third Stage Rule Base 

Keff 
 

SNR 
VF F MED M GM 

NL MED S S AZ AZ 

ZE H MED MED S AZ 

PL ONE H MED S S 

PM ONE H H MED S 

PH ONE ONE H MED S 
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Fourth Stage - Six MF: 

 

Table  5-5 Fourth Stage Rule Base 

Keff 
 

SNR 
VF F MED M GM 

NL MED S S S AZ 

ZE H MED MED S S 

PL 1 VH MED S S 

PM 1 VH H MED S 

PH 1 VH VH MED S 
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Fifth Stage - Seven MF: 

 

Table  5-6 Fifth Stage Rule Base 

Keff 
 

SNR 
VF F MED M GM 

NL MED S S VS AZ 

ZE H MED MED S AZ 

PL ONE VH MED S VS 

PM ONE VH H MED S 

PH ONE ONE VH MED S 
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5.3 Performance of the Proposed Fuzzy based Weighted PIC 

The Performance of the proposed Fuzzy based PIC detector is studied in AWGN and 

Rayleigh fading channel. The results obtained are as follows: 

The BER performance of the of Fuzzy Weighted PIC using PN sequence having 

maximum eigenvalue of code correlation matrix greater than 2 for a 10 user system is 

shown in figure 5.5. The simulations are performed for synchronous CDMA system using 

BPSK modulation in AWGN channel. BER is evaluated in SNR range 0-20 dB where 

each user is transmitting 1*104 bits, using PN codes of length 31 and having equal 

received power. From this plot, we can see that the performance enhances with increasing 

number of stages and approaches the BER of the decorrelating detector. 

 

Figure  5-5 BER Performance of Fuzzy PIC using PN Codes- 10 equal power users 
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Convergence of above Fuzzy PIC using PN sequence having maximum Eigenvalue of 

code correlation matrix greater than 2 for a 10-user system in AWGN channel is shown 

in figure 5.6. The result indicates that FPIC is not divergent even when the Eigenvalues 

are greater than 2 and it converges towards decorrelating detector. The VarMF FPIC is 

performing better as it converges faster and offers lower BER than FPIC. 

 

Figure  5-6 Convergence of Fuzzy PIC using PN Codes- 10 equal power users 

On comparison of figure 3.6, 3.8 and 5.6, we can clearly see that the performance of our 

fuzzy PIC scheme is better and convergence is achieved in lesser number of stages.  
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Convergence of Fuzzy PIC using PN sequence having maximum Eigen value of code 

correlation matrix greater than 2 for a 25-user system in AWGN channel is shown in 

figure 5.7.  

 

Figure  5-7Convergence of Fuzzy PIC using PN Codes- 25 equal power users 

The result in figure 5.7 indicates that PIC and Weighted PIC are divergent as the 

eigenvalues of the cross correlation matrix are greater than 2 and as the system load 

becomes high. However, the Fuzzy PIC and the VMF Fuzzy PIC converges towards the 

decorrelating detector even for highly loaded system.  
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The BER performance  of the of Fuzzy PIC using signature sequence having maximum 

eigenvalue of code correlation matrix less than 2 for a 10 user system is shown in figure 

5.8. The simulations are performed for synchronous CDMA system using BPSK 

modulation in AWGN channel. BER is evaluated in SNR range 0-20 dB where each user 

is transmitting 1*105 bits, using PN codes of length 31 and having equal received power.  

 

Figure  5-8 BER Performance of Fuzzy PIC using Gold Codes- 10 equal power users 
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Convergence of Fuzzy PIC using signature sequence having maximum eigenvalue of 

code correlation matrix less than 2 for a 10-user system with equal received power in 

AWGN channel is shown in figure 5.9. We can see that the FPIC converges in 12 stages. 

 

Figure  5-9 Convergence of Fuzzy PIC using Gold Codes- 10 equal power users 

 

Comparison of figures 3.4 and 5.9 indicates that the fuzzy PIC scheme converges in 12 

stages as compared to 14 stages for PIC when the eigenvalues of the code correlation 

matrix are less than two. 
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The BER performance of the of Fuzzy Weighted PIC using signature sequence having 

maximum eigenvalue of code correlation matrix less than 2 for a 10 user system is shown 

in figure 5.10. The simulations are performed for synchronous CDMA system using 

BPSK modulation in flat Rayleigh fading channel. BER is evaluated in SNR range 0-20 

dB where each user is transmitting 1*105 bits, using PN codes of length 31 and having 

equal received power. 

 

Figure  5-10 BER Performance of Fuzzy PIC using Gold Codes- 10 equal power users 
under Rayleigh flat fading Channel 
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Convergence of Fuzzy PIC using random GS sequence for a 10-user system with equal 

received power in Rayleigh fading channel is shown in figure 5.11. 

 

Figure  5-11 Convergence of Fuzzy PIC using Gold Codes- 10 equal power users under 

Rayleigh flat fading Channel 

We can see that the Fuzzy PIC under fading channel condition performs better  than 

weighted PIC scheme given in figure 3.12 which converges in 19 stages whereas FPIC 

converges is 16 stages. 
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CHAPTER 6  

CONCLUSIONS AND FUTURE WORK 

6.1 Conclusion 

In this thesis, we studied the matrix algebraic analysis of parallel interference 

cancellation. A fuzzy logic system is introduced in the multistage PIC scheme to estimate 

the interference cancellation weights. The proposed technique is equipped with a set of 

adaptive weights that are selected through a fuzzy inference system to reduce the poor 

mutual user interferences estimates in the initial stages that result in reduced performance 

of the conventional multistage schemes. The need for adaptive weighting factors for each 

user at every stage is described. It is shown that the fuzzy PIC estimation of the 

weighting factors gives improved performance. Condition for the convergence of PIC is 

studied and the convergence of the proposed technique is compared in AWGN and 

Rayleigh fading channel. It is conferred from the simulation results that the performance 

of Fuzzy PIC improves with the number of stages and approaches to that of the 

decorrelating detector.  
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6.2 Future Work 

Previous work shows that non-linear decision functions in the intermediate stages such as 

hyperbolic tangent, clip function or even hard decision may perform much better. This 

could be studied to achieve improved performance. 

In this work, we studied the synchronous model of CDMA system using the matrix 

algebra. As asynchronous model is more realistic for the uplink channel of a cellular 

mobile system, the performance of the proposed scheme could be studied in 

asynchronous system.  

We have considered the shape of membership functions as Gaussian. Other membership 

functions may be used to study the effect of the shapes on membership functions on the 

performance of fuzzy PIC. 

The optimal number of membership functions for a given stage and a formula to 

determine the appropriate width of the membership function will give further significant 

improvement in the performance and is further topic of interest. 
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Appendix 

6.3 A. Relationship between Steepest Descent Method and Weighted PIC [24] 

A linear detector G is an N x K linear matrix filter  , , , … ,   where 

, , , … ,  are column vectors of length N. The filter output is then the following 

estimate of the transmitted data symbols: 

          (3.18) 

The corresponding Mean Square Error (MSE) is given by  

    ∑      (A.1) 

Differentiating with respect to  yields: 

  

    

             (A.2) 

    

The gradient with respect to  is then  

2 2         (A.3) 
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The steepest descent method gives the following recursion for finding the minimum MSE 

 1
1
2

  

    1      (A.4) 

where  is a variable step size of the current stage.  

Treating the K filters as a filter bank, we have: 

               (A.5) 

where 0.   

The equivalent one-shot filter for an i-stage PIC detector in non recursive form is then  

  ∑    ∏         (A.6) 

Note that  . Therefore (3.24)  

               (A.7) 

Post multiplying with r gives 

                  (A.8) 

The above equation matches with (3.17) for Weighted PIC. 
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6.4 B. Decision making and Fuzzy Logic System 

To explore the estimation of weight in weighted Fuzzy PIC, an outline on how soft 

decisions are made using fuzzy logic systems is given. This could be illustrated using a 

typical pattern classification problem [47] where the input to the FLS structure is 

represented by a vector in a feature space. The space is represented by c possible 

classes , ,…. . A possible way to represent pattern classifier is in terms of a set of 

discriminant functions , 1,2, … , , where  is a feature vector. The classifier 

assigns  to class  if  , . The feature space is therefore partitioned 

into c disjoint regions , , …, . These regions can be represented by  characteristic 

functions defined on the feature space as follows: 

 
1,    

 0, otherwise
     1,2, … , .     (B-1) 

Using the above expression, the classification result for x can be expressed as a fuzzy 

singleton  whose membership function is a function of , i.e., 

 
∑

      1,2, … , . (12)   (B-2) 

Note that for each x there is only one value of  for which  is nonzero; therefore, 

this classification is a hard decision. 

In fuzzy classifications scheme, we consider the set of classes  , , … .  as a 

universe of discourse on which fuzzy sets are defined to represent the concept of vague 

classes. 

A fuzzy class is a fuzzy set  with fuzzy membership function , where   . 

For example,  0.8⁄ , 0.4⁄ , 0.1⁄    is a fuzzy set representation of similar to 

class . 
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Now if we generalize the ’s in equation (B.1) into fuzzy membership functions i.e., 

 assumes a value between zero and one and  can be nonzero for multiple 

values of  for the same . This makes the classification output in equation (B.2) a non-

singleton fuzzy set and  now becomes a soft decision. 

Since the classifier is now defined by the functions in equation (B.2), the classification 

problem has been translated into the problem of approximating these functions. FLS’s 

can be used as approximators for these functions. 
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Nomenclature 

MUD: Multiuser Detection 

CDMA: Code Division Multiple Access 

MAI: Multiple Access Interference 

PIC: Parallel Interference Cancellation 

SIC: Successive/Serial Interference Cancellation 

MF: Matched Filter 

MLS: Maximum likelihood sequence 

MMSE: Minimum mean square error 

IC: Interference cancellation 

LMS: Least mean square 

RLS: Recursive least square 

BER: Bit error rate 

SNR: Signal to noise ratio 

AWGN: Additive white Gaussian noise 

  



101 
 

 
 

R: Received signal vector 

S: Matrix of signature codes 

A: Matrix of received amplitudes of users 

D: Vector of data bits 

n: Vector of AWGN samples 

N: Processing gain 

K: Number of users 

: Signature sequence of kth user 

: Received amplitude of kth user 

: Data bit of kth user 

: Decision statistics of kth user 

: Variance of noise 

m: Stage index 
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