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Fingerprints represent the most common biometric trait in use today in various 

applications ranging from person identification to access control. The search for better 

performance in matching and recognition has been the focus of ongoing research efforts 

in this fast evolving field. Advanced matching algorithms using state-of-the-art image 

processing techniques have emerged in the recent literature. This thesis constitutes the 

outcome of similar efforts. Unlike minutia-based techniques, in this thesis, we propose a 

fingerprint matching technique that combines directional features with moment 

invariants. The main attribute of the proposed scheme is its ability to bypass the need for 

translation and rotation alignments usually carried out through computationally-

demanding registration techniques. The performance of the proposed fingerprint matching 

algorithm is evaluated using benchmark fingerprint databases FVC2002. Reported results 

clearly indicate the superiority of the proposed scheme.  
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 ملخص الرسالة

 ٔنيذ بٍ يحًذ بٍ خيشالله انكُاَي انضْشاَي  :الاســـــــــــــــم

 يطابمت بصًاث انيذ باسخخذاو انعضو انشلًي نهصٕس ٔ انزٕابج انعضييت :عنوان الرسالة

 عهٕو انحاسب الآني  :التخصـــــــص

 ْـ1431رٔ انمعذة   :تاريخ التخـرج

 

انخطبيماث، يزم انخعشف عهى ْٕيت  يخخهف في انيٕو انحيٕيت انخعشف اسخخذاياً في أَظًت الأكزش انسًت حعخبش انبصًاث

ٔياصال انبحذ عٍ أداء أفضم في انخحمك ٔانخعشف ْٕ يحم الاْخًاو ٔانًٕجّ . انشخص ٔأَظًت انخحكى في انعبٕس

ٔفي خلال انعمذ انًُصشو ظٓشث خٕاسصيياث يخمذيت باسخخذاو . نجٕٓد انبحذ انجاسيت في ْزا انًجال سشيع انخطٕس

انخمُياث انًعخًذة عهى َماط انخعشف  يًارهت ٔنكٍ بعكس جٕٓد َخائج حشكم انشسانت أحذد حمُياث يعانجت انصٕس، ْٔزِ

(minutia)، انسًت. انسًاث انًخجٓت ٔانزٕابج انعضييت بيٍ حجًع نهبصًاث يطابمت حمُيت انشسانت َمخشح ْزِ ففي 

عذو حاجخٓا نعًهياث انًحاراة نهذٔساٌ ٔانضبظ ٔانخي عادة يا حخطهب حساباث  ْي نهخٕاسصييت انًمخشحت انشئيسيت

ٔحى حمييى أداء خٕاسصييت يطابمت انبصًاث انًمخشحت . عانيت انخعميذ بسبب احخياجٓا إنى حمُياث انخسجيم انخصٕيشيت

ٔأظٓشث انذساست حًييضا يهحٕظا في كفاءة انخعشف يماسَت . FVC2002 باسخخذاو لٕاعذ بياَاث بصًاث الأصابع 

 .بانطشق انخمهيذيت
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CHAPTER 1 

 

 

1.    INTRODUCTION 

 

In an increasingly digital world, personal identity is becoming a significant 

issue in enabling secured access to physical and digital assets and resources. 

Existing security measures can be classified into knowledge-based and 

token-based approaches. While the former rely on passwords, the access 

cards are used in the latter approaches to control access to physical and 

virtual (mainly digital) facilities.  

Both approaches are known to suffer from several limitations. Forgetting the 

passwords and losing access cards is very common. Access cards (smart or 

passive) can be stolen, forged, lost or spoofed. Also, passwords are 

vulnerable to dictionary and brute force attacks. Biometric systems using 

fingerprint, face and voice recognition avoid such limitations and offer 

means for reliable personal authentication that can address these problems.  

Moreover, due to their cost-effectiveness, biometric systems are gaining 

wide acceptance in many day-to-day civilian, government, and military 
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applications. In fact, several countries are resorting to biometric-based 

solutions to control access to their borders. It is worth noting also that using 

biometric-based identification, an individual cannot simply disassociate 

himself/herself, for example, from an online banking transaction by claiming 

that his password or card was stolen. This property is referred to as non- 

repudiation [1].  

Building on their successful use in forensic applications by law enforcement 

agencies to solve crime investigations, fingerprints have found their way to 

the digital world, thanks to efficient storage; compression and transmission 

of their digitized representations.  

Although face, iris and other biometric traits have proven to be effective 

features for biometric identification, fingerprints continue to be an attractive 

means for person identification and verification due to the availability of 

cheap scanning devices based on different technologies, efficient feature 

extraction mechanisms in several domains and spaces (spatial and transform) 

and fast matching procedures. Unlike what is commonly believed and 

despite active research in fingerprint recognition and matching over several 

years, the search for reliable, yet efficient and fast, fingerprint recognition 

schemes is still an open problem. 
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1.1    Biometrics 
 

Biometric recognition, or biometrics, refers to the science of automatic 

identification of a person based on his/her anatomical (e.g., fingerprint, iris, 

…, etc.) or behavioral (e.g., signature) characteristics. This field has been a 

research focus in both academia and industry. Figure 1.1 shows the annual 

biometric industry revenues from 2005 to 2010 [2]. Figure 1.1 clearly 

reflects the trend in adopting biometric-based person identification and 

verification solutions.  

  

 

Figure 1.1: Annual Biometric Industry Revenues (in US $ millions). 

 

Biometrics industry is forecasted to grow rapidly in the upcoming years as 

shown in Figure 1.2 [3]. It is expected that such steady growth will not be 
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significantly impacted by the 2008 global economic meltdown. Also, the 

biometrics industry is expected to remain on track to experience significant 

growth through 2017 and beyond reaching nearly US $ 11 Billion in annual 

revenues by 2017 [4].  

 

Figure 1.2: Expected growth in revenues of biometrics industry (in US $ millions) [4]. 

 

 A number of biometric traits have been developed and are used to 

authenticate a person’s identity. The key idea resides in using special 

characteristics of a person for identification purposes. Such special 

characteristics include face, iris, fingerprint, signature, etc. Figure 1.3 gives 

an illustration of different biometric features currently in use for various 

applications and purposes. 
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Figure 1.3: Examples of biometrics traits: a) ear, b) face, c) facial thermogram, d) hand 

thermogram) hand vein, f) hand geometry, g) fingerprint, h) iris, i) retina, j) signature, and 

k) voice [5]. 
 

Various biometric traits are being used for real-time recognition. The 

most popular traits are being face, iris and fingerprint. In some applications, 

more than one biometric trait is used to attain higher security and to handle 

failure to enroll situations for some users. Such systems are called 

multimodal biometric systems [1]. However, in this thesis, only fingerprint-

based systems are considered. Several reasons are behind such a choice. The 

maturity of fingerprint-based systems represents the major reason behind the 

choice made in this thesis. Additionally, fingerprint-based systems continue 

to be the leading biometric technology in terms of market share as shown in 

Figure 1.4. 
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Figure 1.4: Revenue by biometric technology as estimated by the International Biometric 

Group [3]. 

 

1.1.1    Properties of biometric traits 
 

For a human characteristic to be used for biometrics, it should have 

posses desirable properties [1]: 

 Universality: each person should have the characteristic. 

 Uniqueness: how well the biometric separates an individual from 

another. 

 Permanence: measures how well a biometric resists aging and other 

types of changes over time. 

 Collectability: ease of acquisition for measurement. 

 Performance: accuracy, speed, and robustness of technology used. 

 Acceptability: degree of approval of a technology. 

 Circumvention: ease of use of a substitute. 

 



7 

The biometric identifiers described above are compared in Table 1.1. 

Note that fingerprint has a nice balance among all the desirable properties. 

Also, keep in mind that fingerprints are very distinctive and they are 

permanent; even if they temporarily change slightly due to cuts and bruises 

on the skin, the fingerprint reappears after the finger heals. 
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Face H L M H L H H 

Fingerprint M H H M H M M 

Hand geometry M M M H M M M 

Hand/finger vein M M M M M M L 

Iris H H H M H L L 

Signature L L L H L H H 

Voice M L L M L H H 
 

Table 1.1: Comparison of commonly used biometric traits. High, Medium, and Low are denoted 

by H, M, and L, respectively [5]. 
 

 

1.2    Fingerprint as a Biometric 
 

A fingerprint is believed to be unique to each person (and each finger). 

Fingerprints of even identical twins are different. Fingerprints are one of the 

most mature biometric technologies and are considered legitimate proofs of 

evidence in courts of law all over the world. Fingerprints are, therefore, used 
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in forensic divisions worldwide for criminal investigations. More recently, 

an increasing number of civilian and commercial applications are either 

using or actively considering using fingerprint-based identification because 

of a better understanding of fingerprints as well as demonstrated matching 

performance than any other existing biometric technology. 

 

 

Figure 1.5: Fingerprint Classes 

 

The most popular method for fingerprint representation is based on local 

landmarks called minutiae points. This scheme evolved from an intuitive 

system design tailored by the needs of forensic experts who visually classify 

the fingerprint into one of six categories [5]: arch, tented arch, right loop, left 

loop, whorl, and twin loop. The fingerprints images shown in Figure 1.5 

illustrate those six categories. Minutiae-based systems first locate the 

minutiae points in fingerprint image where the fingerprint ridges 
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terminate/bifurcate or form an enclosure or island (lake) shape, and then 

match minutiae relative placements in a given finger and stored template as 

shown in Figure 1.6.  

It is estimated that one can extract between 25 and 80 minutiae [6] from a 

good quality fingerprint. The number of minutia points extracted depends 

upon two factors: sensor resolution and finger placement on the sensor. It is 

well known that it is difficult to automatically and reliably extract minutiae 

points from a poor quality fingerprint due to very dry fingers or from fingers 

mutilated by scars as a result of accidents, injuries, or profession-related 

work (e.g., electrician, mason, and musician). Also, it was been observed 

that a fraction of the population fingers have a relatively small number of 

minutiae points which makes fingerprint-based identification more 

vulnerable to failures for such individuals. 

 

Figure 1.6: An illustration of minutiae points 
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1.3    Thesis Motivation 

Most of the existing automatic fingerprint verification and classification 

systems use features that are motivated by the representations used by the 

forensic experts. Forensic experts have used the locations of singularities in 

the fingerprints (e.g., core & delta) to visually classify fingerprints for 

indexing purposes. Due to the increasing need for reliable individual 

automatic authorization and authentication systems, various biometric 

identification and verification systems have been developed, gaining a wide 

acceptance in law enforcement and civilian life applications such as access 

control. However, the performance of these systems is still far from the state-

of-the-art theoretical bounds. This makes open room for new fingerprint 

matching algorithms/approaches. Existing fingerprint matching algorithms 

enjoy advantages and suffer from limitations.  

One of these drawbacks is the limited information content of the minutiae 

representation. Therefore, non-minutiae based representations of fingerprints 

should be explored. In this thesis, a novel non-minutiae representation for 

fingerprints is proposed. The proposed representation is based on translation, 

rotation and scaling (TRS) invariants and affine moment invariants (AMIs) 

applied on the directional features of a fingerprint image. The objective of 

this work is to explore and investigate different approaches to advance and 
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improve the study of fingerprint biometrics, and boost the performance of 

existing fingerprint identification and verification systems. 

 
 

1.4    Problem Statement 
 

Fingerprint verification is the process of comparing test and enrolled skin 

ridge impressions from fingers to determine if the impressions are from the 

same finger. The nature of the fingerprint ridge skin proved that no two 

fingerprints are ever exactly alike. Most fingerprint matching algorithms are 

based on finding associations between two fingerprints, by detecting and 

comparing particular fingerprint features called minutia points. Although 

minutia-based algorithms usually provide good performance, they have 

problems matching fingerprints when only few minutiae points are 

successfully extracted. Texture- and transform-based matching methods have 

advantages dealing with such images as they utilize features which are not 

based solely on minutia templates. However, it should be noted that one 

main advantage of minutia-based approaches is that they are faster. 

In this study, we introduce a new fingerprint matching algorithm based on 

TRS invariants and AMIs applied on the directional features of a fingerprint 
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image. The directional features are extracted by utilizing the directional filter 

bank (DFB) transform. 

 

1.5    Outline of the Thesis 

 

The rest of the thesis is organized as follows.  

Chapter 2 provides an overview of various fingerprint representations, 

definitions and notations. Furthermore, it gives a general view of image 

segmentation, enhancement, and feature extraction techniques of fingerprint 

images along with a description of the main functionalities of fingerprint 

recognition systems. A discussion on wavelets, scale invariant feature 

operators, filter banks and directional filter banks will follow. The chapter 

concludes with an explanation of moments and moment invariants along 

with their categories, focusing on moment invariant to translation, rotation 

and scaling (TRS) and affine moment invariants (AMIs)  

Related work in the area of fingerprint matching algorithms is presented 

in Chapter 3. Minutia-, correlation-, ridge-, and transform-based approaches 

are discussed therein in details. Chapter 4 gives a detailed description of the 

proposed fingerprint matching method. The technique of directional filter 

banks (DFBs) for extracting fingerprint directional components is explained. 
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Identifying the reference (core) point and establishing a region of interest 

(ROI) is illustrated. The proposed approach for applying moment invariant 

analysis, feature vector extraction and matching is detailed. 

In Chapter 5, the experimental results are reported and discussed along 

with a detailed performance analysis. A performance comparison with the 

current state-of-the-art methods is carried out. 

Finally, Chapter 6 gives a summary of the thesis work along with the 

contributions made in this thesis. The chapter concludes with an outline of 

some proposed research directions where the work described in this thesis 

can be further investigated. 
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CHAPTER 2 

 

 

2.    OVERVIEW OF FINGERPRINT-

BASED BIOMETRIC SYSTEMS 

 

2.1    Fingerprint Acquisition 
 

There are two main modes of capturing a fingerprint. Traditionally, 

fingerprints were acquired by transferring the inked impression onto the 

paper. This process is termed as off-line acquisition. Existing authentication 

systems are based on live-scan devices that capture the fingerprint image 

using real-time sensors. There are different types of fingerprint readers in the 

market. Figure 2.1 shows examples of fingerprint scanners/readers based on 

different technologies. The basic idea behind each capture approach is to 

measure the physical differences between ridges and valleys. Generally 

speaking, existing scanners use sensors that employ one of the following 

three sensing schemes: optical, ultrasound, and solid-state sensors [5]. 
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Figure 2.1: Fingerprint scanners/readers 

Optical fingerprint imaging involves capturing a digital image of the 

print using a visible light. This type of sensor is, in essence, a specialized 

digital camera. This is the oldest and most widely used technology [1]. The 

top layer of the sensor, where the finger is placed, is known as the touch 

surface. Beneath this layer is a light-emitting device which illuminates the 

surface of the finger. The light reflected from the finger passes through to a 

charged coupled device (CCD) which captures a visual image of the 

fingerprint. These sensors are fairly inexpensive and can provide resolutions 

up to 500 dpi. Most optical sensors are based on FTIR (Frustrated Total 

Internal Reflection) technique to acquire the image [5]. 
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Figure 2.2: FTIR-based fingerprint sensor operation [5] 

Ultrasonic sensors make use of the principles of medical 

ultrasonography in order to create visual images of the fingerprint. Unlike 

optical imaging, ultrasonic sensors use very high frequency sound waves to 

penetrate the epidermal layer of skin. Since the dermal skin layer exhibits the 

same characteristic pattern of the fingerprint, the reflected wave 

measurements can be used to form an image of the fingerprint. This 

eliminates the need for clean, undamaged epidermal skin and a clean sensing 

surface. However, these sensors tend to be very bulky and contain moving 

parts making them suitable only for law enforcement and access control 

applications [1].  

Solid-state sensors also known as silicon sensors. The silicon sensor 

acts as one plate of a capacitor, and the finger itself as another capacitor. The 

http://en.wikipedia.org/wiki/Medical_ultrasonography
http://en.wikipedia.org/wiki/Medical_ultrasonography
http://en.wikipedia.org/wiki/Medical_ultrasonography
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capacitance between the sensing plate and the finger depends inversely as the 

distance between them. Since the ridges are closer, they correspond to 

increased capacitance and the valleys corresponds to smaller capacitance. 

This variation is converted into an 8-bit gray scale digital image. Most of the 

electronic devices featuring fingerprint authentication use this form of solid 

state sensors due to its compactness. 

 

 

2.2    System Functionalities 
 

Figure 2.3 shows the functionalities of a fingerprint-based biometric system: 

1. Enrollment: is the process of registering a new person to the system. 

These steps can be summarized as follows: Scanning, feature 

extraction, and storing template in the database. 

2. Verification: is the process of validating a person identity by 

matching his biometric trait with a template stored in the database. 

The steps are as follows: Scanning, feature extraction, matching, and 

decision making. 

3.  Identification: is the process of searching all templates 

corresponding to users in the database for a match (one-to-many 
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comparisons). The steps have the sequence: Scanning, feature 

extraction, comparing with all templates, and decision making. 
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Figure 2.3: Fingerprint system functionalities. 
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2.3    Fingerprint Representation and Feature 

Extraction 

 

There are two fingerprint representations, namely, local and global. The local 

representations in fingerprints are based on the entire image, finger ridges, 

pores on the ridges, or salient features derived from the ridges [7]. 

Representations are based mainly on ridge endings or bifurcations 

communally known as minutiae as shown in Figure 2.4. 

 

 

Figure 2.4: Ridge ending and ridge bifurcation. 

 

Ridge endings and bifurcation are the most common due to their: 

1. Ability to capture much of the individual information.  

2. Storage efficiency.  

3. Robustness to various sources of fingerprint degradation.  
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Typically, minutiae-based representations rely on locations and the 

directions of ridges at the minutiae location, i.e., described by its position 

(x,y) and its orientation θ [8]. 

Global representations include information about locations of critical points, 

namely, core(s) and delta(s), in a fingerprint to help classify a fingerprint 

into one of six classes arch, tented arch, right loop, left loop, whorl, and twin 

loop. The various fingerprint classes are illustrated in Figure 1.5.  

To define core and delta, let us consider the Loop pattern as in Figure 2.5. A 

Loop is defined by having at least one ridge that enters the print and recurves 

back exiting the print on the same side. The top of the innermost recurving 

ridge is defined as the core. 

 

 

Figure 2.5: Core and delta. 
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The other side of a Loop contains ridges that enter the print and meet the 

recurving ridges. Some of these rise above, and some fall below the loop. 

The point where they diverge that is closest to the recurving ridges is the 

delta, (there is often a small island at this point). 

However, extracting such features is not simply done through finding the 

ridge endings and ridge bifurcations. This process is heavily affected by the 

quality of the fingerprint image. In order to get reliable features, the 

extraction generally consists of the following steps [9]: 

1. Orientation Estimation (which represents the directionality of 

ridges). 

2. Segmentation. 

3. Ridge detection. 

4. Minutiae Detection. 

5. Post-processing. 

 

2.4    Fingerprint Preprocessing 

2.4.1    Fingerprint Segmentation 
 

Before extracting the features of a fingerprint, it is important to separate the 

fingerprint regions (presence of ridges) from the background. This limits the 

region to be processed and therefore reduces the processing time, storage 



22 

space and false (or low discriminate power) feature extraction. A correct 

segmentation may be, in some cases, very difficult, especially in poor quality 

fingerprint or noisy images. The same information used for feature 

extraction, such as contrast, ridge orientation and ridge frequency can be 

used for the segmentation. Also, segmentation can be done directly by 

considering as background the regions with quality below some threshold. 

Figure 2.6 shows the contour of the segmented region superimposed over the 

original image. 

 

  

(a) (b) 

 

Figure 2.6: (a) original image (b) image with segmentation. 
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2.4.2    Fingerprint Enhancement 
 

Enhancement step aims to improve the clarity of ridge structure or increase 

the consistence of the ridge orientation. In noisy regions, it is difficult to 

define a common orientation of the ridges. The enhancement may be useful 

for several cases like connecting broken ridges which is generally produced 

by dry fingerprint or cuts/bruises. Also, it is useful for eliminating noise 

between the ridges and improving the ridge contrast. There are two widely 

used techniques of enhancing fingerprint images [10]:  

 Normalization:  A simple method to improve the image quality by 

eliminating noise and correcting the deformations of the image 

intensity. The idea of normalization consists of changing the intensity 

of each pixel so that mean and variance of the whole image are 

changed to some predefined values.  

 Fast Fourier Transformation (FFT): The Fourier transformation is 

widely used in digital signal and image processing. In particular, for 

detecting high or low frequencies. As the ridges have a structure of 

repeated and parallel lines, it is possible to determine the frequency 

and the ridge orientation using the FFT transform. Considering this 

characteristic, an image is divided into blocks of small sizes (e.g., 

32x32). On each block, the FFT transform is applied and then 
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multiplied by its power spectrum raised to some value k (for instance 

2), then the inverse FFT is applied on the resulting image. Figure 2.7 

shows a fingerprint image and an enhanced image as a result of using 

FFT transform, which demonstrate the improvement in ridges contrast 

and connecting broken ridges.  

  

  

(a) (b) 

 

Figure 2.7: (a) original image (b) enhanced image using FFT. 

 

 

2.4.3    Fingerprint Binarization/Skeletonization 

 

The binarization process requires the fingerprint gray-scale image to be 

converted into a binary image. The simplest approach uses a global 
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threshold, th, and works by setting the pixels whose level is lower than th to 

0 and the remaining pixels to 1. Then, the binary image is submitted to a 

thinning stage which allows for the ridge line thickness to be reduced to one 

pixel, resulting in a skeleton image. This process is illustrated in Figure 2.8. 

 

 

 
 

Figure 2.8: (a) gray-scale image (b) binarized image (c) skeleton image obtained after a thinning 

of the image in (b) [5]. 

 

 

 

2.5    Performance Measures 
 

The performance of biometric systems is quantified by their accuracy. From 

the user’s point of view, an error of accuracy occurs when the system fails to 

authenticate the identity of a registered person or when the system 
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erroneously authenticates an intruder. The following performance metrics are 

used in the evaluation of biometric systems: 

 False Accept Rate or False Match Rate (FAR or FMR): The 

probability that the system incorrectly matches the input pattern to a 

non-matching template in the database. It measures the percent of 

invalid inputs which are incorrectly accepted. 

 False Reject Rate or False Non-Match Rate (FRR or FNMR): The 

probability that the system fails to detect a match between the input 

pattern and a matching template in the database. It measures the 

percent of valid inputs which are incorrectly rejected. 

 Receiver Operating Characteristic (ROC): The ROC curve is a 

visual characterization of the trade-off between the FAR and the FRR 

or the different possible thresholds. In general, the matching algorithm 

performs a decision based on a threshold which determines how close 

to a template the input needs to be for it to be considered a match. If 

the threshold is reduced, there will be less false non-matches but more 

false accepts. Correspondingly, a higher threshold will reduce the 

FAR but increases the FRR. A common variation is the Detection 

Error Trade-off (DET), which is obtained using normal deviate scales 
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on both axes. This more linear graph illuminates the differences for 

higher performances (rarer errors) [11]. 

 

 

Figure 2.9: ROC curve is a plot of the true positive rate against the false positive rate for the 

different possible thresholds. 

 

 

 Equal Error Rate or Crossover Error Rate (EER or CER): The 

rate at which both FAR and FRR errors are equal. The value of the 

EER can be easily obtained from the ROC curve. The EER is a quick 

way to compare the accuracy of systems with different ROC curves. In 

general, the system with the lowest EER is most accurate. The EER 

value is obtained from the ROC plot by taking the point where the 
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FAR and FRR have the same value (FAR=FRR) as Figure 2.10 shows. 

The lower the EER, the more accurate the system is considered to be. 

 

 

Figure 2.10: FAR and FRR for a given threshold (t), displayed over the genuine and impostor 

score distributions. 

 

 Failure to Enroll Rate (FTE or FER): The rate at which attempts to 

create a template from an input are unsuccessful. This is most 

commonly caused by low quality inputs. 

 Failure to Capture Rate (FTC): Within automated systems, the 

probability that the system fails to detect a biometric input when 

presented correctly. 

 Template Capacity: The maximum number of sets of data which can 

be stored in the system. 
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2.6    Benchmark Databases 
 

Due to the huge attention and research interest in the field of 

biometrics in general and fingerprint matching and classification in 

particular, various fingerprint databases have been constructed. It allows 

researchers to evaluate their proposed work against a benchmark, using the 

same conditions. Several databases are available for academic and research 

purposes.  

The US National Institute of Standards and Technology (NIST) 

established a continuously updated fingerprint database to facilitate 

benchmarking for researchers in the law enforcement field. The NIST 

database consists of 2000 8-bit gray scale fingerprint images. 

The International Fingerprint Verification Competition (FVC) uses a 

different set of fingerprint databases.  There are 4 databases consisting of 

fingerprint images having different sizes and qualities. Figure 2.11 shows the 

typical images from the FVC databases. 
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Figure 2.11: FVC2002 fingerprint database example [12]. 

 

Each database has 110 fingers and 8 impressions (samples) per finger (880 in 

total). Database fingers from 101 to 110 (set B) are available to the FVC 

participants before competition to allow parameter tuning before the 

submission of the algorithms. The benchmark is then constituted by fingers 

numbered from 1 to 100 (set A). Table 5.1 shows the basic components of 

the FVC2002 database. 

 

 
Sensor Type Image Size Set A Set B Resolution 

DB1 Optical Sensor 388x374 (142 Kpixels) 100x8 10x8 500 dpi 

DB2 Optical Sensor 296x560 (162 Kpixels) 100x8 10x8 569 dpi 

DB3 Capacitive Sensor 300x300 (88 Kpixels) 100x8 10x8 500 dpi 

DB4 SFinGe v2.51 288x384 (108 Kpixels) 100x8 10x8 about 500 dpi 

 

Table 2.1: FVC2002 Fingerprint Database [12]. 
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In this thesis, the FVC2002 database will be used for benchmarking 

purposes. 
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CHAPTER 3 

 

 

3.    RELATED WORK 

 

3.1    Fingerprint Verification Methods 
 

Fingerprint matching techniques can be cast into four broad classes, namely, 

minutiae, correlation, Ridge features (texture) and Transform based 

techniques. However, considering the types of information used, a method 

can be broadly categorized as minutiae based or texture based. While the 

minutiae based fingerprint verification systems have shown high accuracy 

[8, 11], they ignore the rich information in ridge patterns which can be useful 

to improve the matching accuracy.  

Texture based systems utilize the whole fingerprint image and local features 

along minutiae points [13, 14]. This method is desirable because the global 

features will be more sensitive to non-linear and non-repeatable deformation 

of fingerprint images. When the local texture is collected based on the 

minutiae points, the texture based fingerprint representation will be 



33 

inadequate and matching performance will depend on the reliability of 

extracted minutiae points. Capturing the rich discriminatory texture 

information in the fingerprints is not a straight forward task, especially when 

such textures are not critically dependent on finding minutiae points [13] or 

core points [15]. 

 

3.1.1    Minutiae based Approach 
 

As mentioned previously, minutiae points are defined as the discontinuities 

of the ridges of the fingerprint. Minutiae points are extracted after any image 

preprocessing (enhancement, segmentation etc.) to the fingerprint.  

One of the proposed methods in the literature performs a minutiae 

verification and classification through a feedback path for the feature 

extraction [1]. Feng et al. [16] propose a technique for fingerprint feature 

extraction called complex minutiae vector (CMV). The technique consists of 

a ridge rotation angle associated with a minutia and four ridge counts 

between the minutia and the four corresponding adjacent points. In addition, 

a definition of minutia polygon that describes not only the minutia type and 

orientation but also the minutia shape, which has a higher ability to tolerate 

distortion [17]. 
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3.1.2    Correlation based Approach 
 

In [19], Duda and Hart investigate a technique, which relies on the 

correlation matching, uses correlation scores from the intensities of 

corresponding pixels of template and input fingerprint. Other researchers 

have proposed several improvements to the correlation method [20-22]. 

 

3.1.3    Ridge Features (Texture) based Approach 
 

In [23], Marana and Jain present a texture-based fingerprint matching 

technique using fingerprint ridge features. Ross et al. [24] proposed a method 

to estimate the nonlinear distortion in fingerprint pairs based on ridge curve 

correspondences. 

Filter banks and directional filter banks have attracted the attention of several 

researchers. Jain et al. [15] use a filter-based algorithm using bank of Gabor 

filters. Gabor filters are used to capture local and global derails of a 

fingerprint into a fixed FingerCode. Then, performs the fingerprint matching 

using the Euclidean distance between the two corresponding FingerCodes.  
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Figure 3.1: Texture Based matching Using a Filter-Bank of Gabor filters [15]. 

 

While, in [25], Oh et al. suggest a fingerprint enhancement (minimizing the 

effect of noise) algorithm based on a directional filter bank (DFB) by 

decomposing fingerprint image into directional sub-band images in the 

analysis stage, processes the sub-band images in the processing stage, and 

reconstructs them as the enhanced image in the synthesis stage. Park et al. 
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[26] proposed another approach based on DFB filtering. They decompose 

fingerprint image into eight directional sub-band outputs. Figure 3.2 

illustrate the frequency decomposition of the input and output, along with an 

output example of a filtered image. Then, extract directional energy 

distributions for each block from the decomposed sub-bands. To reduce 

noise effect and improve efficiency, only dominant directional energy 

components are kept as elements of the input feature vector. Additional input 

feature vectors in which various rotations are considered are extracted, and 

these input feature vectors are compared with the enrolled template feature 

vector. 

 

Figure 3.2: DFB illustration, Frequency partition map of (a) the input and (b) the eight 

sub-band outputs. (c) Example of fingerprint image. (d) Decomposed sub-band outputs of 

(c) using eight-band DFB. 
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3.1.4    Transform-Based based Approach 
 

Transform based techniques have been used extensively in the literature. 

Park and Pankanti [6] proposed a fingerprint representation and matching 

scheme using Scale Invariant Feature Transformation (SIFT) (see Section 

4.1 for details). It extract SIFT characteristic feature points in scale space 

and perform matching based on the texture information around the feature 

points using the SIFT operator and Euclidean distance to perform matching. 

In [28] Iannizzotto and La Rosa investigate combining SIFT with neural 

networks. 

Also, a classification algorithm utilizing wavelet transform is investigated by 

Mokji and colleagues [29]. Fingerprint signatures are extracted by using the 

wavelet transform. Then, fingerprints are classified into six categories: 1) left 

loop, 2) right loop, 3) whorl, 4) arch 5) tented arch and 6) twin loop. After 

fingerprint image classification, a directional computation is used to present 

a directional image for the fingerprint image. The directional image is 

constructed using directional details resulting from the application of the 

wavelet transform. From the directional image, a line, named alteration 

track, is extracted in order to classify the fingerprint using few rules. Lee and 

Chung [30] utilized gradient of Gaussian to do the classification after 
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extracting the features using wavelet. Antonini et al. [31] devised and tested 

an image coding technique, based on the wavelet transform.  

Moreover, Mokji and others, used a second stage discrete wavelet transform 

to obtain the fingerprint signature to be used by the fingerprint classification 

algorithm [32]. Patil and others [34], proposed a combined fingerprint 

verification approach based on wavelet transform and the local dominant 

orientation. Daubechies wavelet is utilized to decompose the fingerprint 

image, and local dominant orientation is computed using the coherence.  
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CHAPTER 4 

 

 

4.    MATHEMATICAL BACKGROUND 

 

4.1    Scale Invariant Feature Transform SIFT 
 

Scale Invariant Feature Transformation (SIFT) [14] is an algorithm in 

computer vision to detect and describe local features in images. The 

algorithm was published by David Lowe in 1999. It was originally 

developed for general purpose object recognition. For any object in an 

image, there are many features which are interesting points on the object, 

that can be extracted to provide a feature description of the object. This 

description extracted from a training image can then be used to identify the 

object when attempting to locate the object in a test image containing many 

other objects [35]. It is important that the set of features extracted from the 

training image is robust to changes in image scale, noise, illumination and 

local geometric distortion, for performing reliable recognition. SIFT detects 

stable feature points in an image and performs matching based on the 
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descriptor representing each feature point. SIFT feature descriptor is 

invariant to scale, orientation, affine distortion and partially invariant to 

illumination changes [36]. A brief description of the SIFT operator to 

fingerprints is provided below. 

 

Stage1: Scale Space Construction 

This is the stage where the interest points are detected. A scale space is 

constructed when image is convolved with Gaussian filters at different 

scales, and then the Difference of Gaussian (DOG) in each octave of 

successive Gaussian-blurred images are taken by applying a variable scale 

Gaussian operator on an input image. The set of Gaussian-smoothed images 

and DOG images are called an octave. A set of such octaves is constructed 

by down sampling the original image in succession. A typical number of 

scales and octaves for SIFT operation is 5 and 6, respectively. Figure 5 

shows 4 successive octaves with 5 scales and the corresponding difference 

images. 

Stage2: Local Extrema 

Once DoG images have been obtained, keypoints are identified as local 

minima/maxima of the DoG images across scales. This is done by comparing 

each pixel in the DoG images to its eight neighbors at the same scale and 
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nine corresponding neighboring pixels in each of the neighboring scales. If 

the pixel value is the maximum or minimum among all compared pixels, it is 

selected as a candidate keypoint. 

Stage3: Stable Local Extrema and Orientation assignment 

Keypoints detected using Scale-space extrema detection are too many, some 

of which are unstable. The next step is to perform a detailed fit to the nearby 

data for accurate location, scale, and ratio of principal curvatures. For More 

detailed description of this process can be found in the original paper by 

Lowe [36]. If an extremum is decided as unstable, it is removed because it 

cannot be reliably detected again with small variation of viewpoint or 

lighting changes. After that, each keypoint is assigned one or more 

orientations based on local image gradient directions. 

Stage: Assigning Descriptor 

After extracting keypoint locations at particular scales and assigned 

orientations to them, a 16x16 window [30] is used to generate a histogram of 

gradient orientation around each local extremum and rotate all gradient with 

respect to the major orientation of the local extremum. This ensures 

invariance to image location, scale and rotation. 

- Example Figure 
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Matching is performed by comparing each local extrema based on the 

associated descriptors. Figure 4.1 illustrates the steps of scale space 

construction for SIFT operator.  

 

Figure 4.1: Scale space construction for SIFT operation [6]. 
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4.2    Discrete Wavelets 
 

A wavelet is a waveform of limited duration that has an average value of 

zero. Unlike sinusoids that theoretically extend from minus to plus infinity, 

wavelets have a beginning and an end, as shown in Figure 4. 2. 

 

 

Figure 4.2: Difference between cosine wave and wavelet. 

 

Mathematically speaking, Wavelets are defined by the wavelet function ψ(t) 

(i.e. the mother wavelet) and scaling function φ(t) (also called father 

wavelet) in the time domain. The wavelet function is in effect a band-pass 

filter and scaling it for each level halves its bandwidth. This creates the 

problem that in order to cover the entire spectrum, an infinite number of 

levels would be required. The scaling function filters the lowest level of the 

transform and ensures all the spectrum is covered [37]. 

Wavelets are a useful technique that can be applied to many tasks in signal 

processing. First, we need to Locate core point and crop fingerprint image 
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around core point. Then, a modified version of Daubechies' wavelet can be 

applied to a fingerprint image to get the directional characteristics as shown 

in Figure 4. 3. 

Since directional information obtained from wavelets does not represent all 

directions, we cannot use them directly. To overcome this issue and 

construct a  feature vector that capture more detailed directional information 

a gradient of Gaussian and coherence is applied to the wavelet [27].  

 

Figure 4.3: Wavelet Decomposed Fingerprint. 

 

Gradient Gmn , and corresponding angle θmn at the position (m, n) are defined 

as: 

𝐺𝑚𝑛 = 𝑀 ×   𝐺𝑚𝑛
𝑥  +  𝐺𝑚𝑛

𝑦       (1) 

𝜃𝑚𝑛 =  𝑡𝑎𝑛−1   
𝐺𝑚𝑛

𝑦

𝐺𝑚𝑛
𝑥      (2) 
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After estimating the Gmn and θmn, we estimate local dominant orientation 

using coherence ρmn, which is defined as: 

 

𝜌𝑚𝑛 =  
 𝐺𝑖𝑗 𝑖,𝑗  𝜖  𝑤 cos  𝜃𝑚𝑛 −𝜃𝑖𝑗  

   𝐺𝑖𝑗 𝑖,𝑗   𝜖  𝑤
      (3) 

 

The coherence images with size of window w (5x5) are shown in Figure 4.4. 

After that, the dominant local orientation is calculated from the gradient and 

coherence. The dominant local orientation θ is defined as: 

 

𝜃 =  
1

2
 𝑡𝑎𝑛−1   

  𝜌𝑚𝑛
2  sin (2𝜃𝑚𝑛 )𝑁

𝑛=1
𝑀
𝑚 =1

  𝜌𝑚𝑛
2𝑁

𝑛=1
𝑀
𝑚 =1  cos (2𝜃𝑚𝑛 )

 + 𝜋 2    (4) 

 

where M and N are equal to 8, to represent one directional information per 

8x8 window. Finally, the variance and energy of each block are computed. 

 

 

Figure 4.4: Coherence images: (a) Approximate image, (b, c) Horizontal, Vertical details. 
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4.3    Directional Wavelets and Filters 
 

Wavelet transform to an image results in four domains contain directional 

image that are horizontal, vertical and diagonal. Wavelet transform comes 

with many types [38] (Haar, Shannon, Meyer, Daubechies, and Coifmann 

wavelets) and can be done in multilevel decomposition. The wavelet 

transform is identical to a hierarchical sub band system where the sub- bands 

are logarithmically spaced in frequency and represent octaveband 

decomposition [31]. Wavelets provide rich techniques that can be applied to 

many tasks in signal processing, and therefore have numerous potential 

applications [30].  

There are three steps to construct the directional image [29]. First, we need 

to transform the original image using wavelet transform. Secondly, the 

output from the wavelet transform is used to construct the directional image. 

Finally, the directional image is smoothed to get better directional image. 

So, wavelets are defined by a mathematical expression and are drawn as 

continuous and infinite, which are called “crude wavelets”. However, to use 

them with our digital signal, they must first be converted to wavelet filters 

having a finite number of discrete points. That is, we evaluate wavelet 

equation at the points of time that interest us in order to create filter values at 
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those times [38]. Conversely, some wavelets start as filters with as little as 2 

points and built up by interpolating and extrapolating more points to get an 

estimation of a continuous wavelet. 

 

4.4     Filter Banks 
 

The main concern when we want to obtain a representation for fingerprints is 

to be invariant to scale, translation and rotation. Scale invariance is not a big 

issue since this can be handled by scaling the fingerprint per dpi.  The 

rotation and translation has another story since it does not follow the 

assumption that the fingerprints are vertically oriented, which most of the 

feature extraction implementation do assume [15]. Most fingerprint 

databases may have fingerprints that are oriented by up to ±45º away from 

the assumed vertical orientation. 

The problem with rotation could be handled, to some degree, with cyclic 

rotation of the feature values, while the translation is addressed by 

establishing a one reference point location during the feature extraction and 

using a bank of Gabor filters on the region of interest around the reference 

point, as shown in Figure 4.5. This will show enhancement of the ridge 

structures using both one local ridge direction and local frequency 

information as inputs for filtering. 
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Figure 4.5: Reference point (X), and region of interest divided into 80 sectors imposed 

on the fingerprint. 

 
 

A directional filter bank (DFB) analyzes an input image into directional sub-

band images and synthesizes them to the perfectly reconstructed image. The 

DFB decomposes a fingerprint image into many directional sub-band images 

and reconstruct the enhanced output image by synthesizing the filtered 

outputs, which are blocks with the greatest energy among the sub band 

images. DFB realizes a division of 2-D spectrum into 2
n
 wedge-shaped slices 

as shown in Figure 4.6, using an n-levels iterated tree structured filter banks. 

 

Figure 4.6: Directional filter bank frequency partitioning [39]. 
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The energy for each sub-band image is used to estimate the direction of each 

block in the original image. The directional energy of block (I, J) including 

the pixel (i, j) from the k
th

 sub-band image is defined as: 

 

𝐸𝑘 I , J =     𝑓𝑘 𝐼 , 𝐽 ; 𝑖, 𝑗  
𝑛𝑘
𝑗=0

𝑚𝑘
𝑖=0      (5) 

 

The direction of each block for a directional image is generated based on the 

direction corresponding to the sub-band with maximum energy among all 

bands at each block. The direction of a block in a fingerprint is calculated by 

using gradient-based methods, in which a gradient operator or eight one-

dimensional masks in eight directions are used [39]. 

Because the gradient operator uses a derivative operation, the results are 

sensitive to noise. This is can be avoided by taking the direction 

corresponding to the largest information content in a block so the result will 

be more robust to noise. So, the direction of a block is defined by: 

 

    (6) 
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To insure that an injured ridge does not affect the ridge direction, a process 

of directional averaging [40] could be done and its block direction should be 

defined as 𝑑  𝐼 , 𝐽 . The resulting directional image overlapping with the 

original image is shown in Figure 4.7. 

 

Figure 4.7: Directional image [25]. 

 

5.5    Directional Filter Bank 
 

In order to make this thesis practically self contained, we provide a brief 

description of the DFB architecture employed in this work. The description 

is sufficient to provide insight into how the DFB works but without the 

details of implementation. The original concept of the DFB was introduced 

by Bamberger and Smith [40] and later refined by Park et al. [44]. The 
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interested reader is referred to those two papers for additional detail. The 

DFB divides the two-dimensional (2-D) spectrum of an image into wedge-

like directional sub-bands, as shown in Figure 4.8 (a). Eight directional sub-

band outputs can be obtained using the DFB, as shown in Figure 4.8 (b). 

Figures 3.2(c,d) shows an example of the directional sub-band images 

decomposed by the eight-band DFB, where each directional component is 

captured in its own sub-band image. The DFB basically consists of lowpass 

filters (𝑯𝟎), quincunx down samplers (𝑸), diamond conversion matrices (𝑹), 

modulators (𝑒−𝑗𝜔 1 𝜋 ), and postsampling matrices (𝑩), as shown in Figure 

4.1. The modulator varies the spectrum of the image so that the modulated 

image can be divided into two directional sub-band images by a lowpass 

filter with a diamond-shaped pass-band. Meanwhile, the quincunx down 

sampler simultaneously down samples the image and rotates it by 45 

degrees. 

 

Figure 4.8: First phase of an eight-band DFB. 
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As shown in Figure 4.8, the input is modulated, filtered, and downsampled, 

resulting in two sub-band images. Then the two sub-band images are further 

divided into four sub-band images using a procedure similar to that used in 

the first step, as illustrated in Figure 4.9. At final phase, diamond conversion 

matrices are required to transform the parallelogram-shaped pass-band into 

one with a diamond shape. These diamond conversion matrices enable the 

DFB to be implemented using only a one-dimensional (1-D) filter prototype. 

 

 

Figure 4.9: Second phase of an eight-band DFB. 
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Postsampling matrices are then appended to the end of the filter bank to 

remove the phenomenon of frequency scrambling, resulting from the 

frequency shift due to the modulator and nondiagonality of the overall down 

sampling matrix. Filter bank stages can be implemented in a separable 

polyphase form to achieve highly efficient realizations. Then, an eight 

directional sub-band outputs are generated as in Figure 4.10.  

 

 

Figure 4.10: Third phase of an eight-band DFB. 

 

In this thesis, we propose the use of the DFB structure, defined in [40], 

where the design of the lowpass filters is achieved through a linear phase IIR 

filter. As a result of the downsampling, the eight-band decompositions are 

rectangular. The analysis stage is based on a third-order decomposition of 

NxN images leading to eight sub-bands where the first half of the sub-bands 
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has a size of N/4 x N/2, while the other half has a size of N/2 x N/4, 

respectively. 

 

 

4.6    Curvelets 
 

The curvelet transform is obtained by filtering and then applying windowed 

ridgelet transform on each bandpass image. This is done by Sub-band 

decomposition of the object into a sequences of sub-bands. After that, each 

sub-band is windowed into blocks of appropriate size, depending on its 

center frequency. Finally, ridgelet transform will be applied on windowed 

blocks [41]. Therefore, curvelet, as shown in Figure 4.11, basis functions can 

be viewed as a local grouping of wavelet basis functions into linear 

structures so that they can capture the smooth discontinuity curve more 

efficiently [42]. 

 

Figure 4.11: Wavelet vs. Curvelet [42]. 
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4.7     Invariants 
 

Recognizing patterns in images has three main approaches: brute force, 

image normalization and invariant features. The brute force require the use 

of all possible representation of images which include their rotated, scaled, 

blurred and deformed versions [43]. This method will have a very high time 

complexity which is not applicable. 

The normalization approach transforms the image into a standard position 

which requires the solving of difficult inverse problems that are ill-posed or 

ill-conditioned. 

The invariants approach uses a set of measurable quantities that are 

insensitive to particular deformation. Those invariants features have enough 

discriminating power to distinguish patterns into different classes. 

Mathematically speaking, selected features have the property called 

invariance which can be expressed as: 

𝐼 𝑓 = 𝐼(𝐷 𝑓 )   (7) 

That is invariant I is a function that does not change its value under 

degradation operator D. 
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4.7.1    Categories of Invariants 
 

Invariants have different categories based on different points of view. There 

four ways to categorize invariants: 

 Based on the type of invariance, namely, translation, rotation, scaling, 

affine, projective, and elastic geometric invariants. 

 Radiometric invariants exist with respect to linear contrast stretching, 

nonlinear intensity transformers, and convolution. 

 Categorization based on the mathematical tools used like: 

o  Simple shape descriptor – like compactness, convexity, 

elongation, etc. 

o Transform coefficient features – like Fourier, wavelet, and 

Hadamard  descriptors. 

o Point set invariants – which uses positions of dominant points. 

o Differential invariants – which uses derivatives of the object 

boundary. 

o Moment invariants – which uses special functions of image 

moments. 

 Categorization based on the part of the object needed to calculate the 

invariant: 
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o Global invariants – which is calculated from the whole image. 

o Local invariants – which is calculated from dominant points. 

o Semilocal invariants – which uses properties from both global 

and local invariants. 

 

4.8     Moments 

 

Moments are scalar quantities used to characterize a function and to capture 

its significant features, which is used in statistics for describing the shape of 

a probability density function [43]. Mathematically speaking, moments are 

“projections” of a function onto a polynomial basis.  

Broadly speaking, Moments are categorized according to the polynomial 

basis used into geometric & complex moments, and orthogonal moments. In 

image processing filed, a moment is a certain particular weighted average of 

the image pixels intensities, or a function of such moments, usually chosen 

to have some attractive property or interpretation. Image moments are useful 

to describe objects after segmentation. Simple properties of the image which 

are found via image moments include area, intensity, centroid, and 

information about its orientation. 

The geometric moments of 2-D continuous function f(x,y), with a standard 

power basis kpq (x, y) = x
p
 y

q
 is defined by: 
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𝑀𝑝𝑞 =    𝑥𝑝𝑦𝑞  𝑓(𝑥, 𝑦) 𝑑𝑥 𝑑𝑦
∞

−∞

∞

−∞
    (8) 

   for p, q = 0,1,2,…,n 

 

Adapting the above equation to scalar (grayscale) image with pixel 

intensities I(x,y), raw image moments Mij are calculated by: 

 

𝑀𝑖𝑗 =    𝑥 𝑖𝑦𝑗  𝐼(𝑥, 𝑦)𝑦𝑥     (9) 

 

Complex moments are based on the polynomial basis kpq (x, y) = (x + iy)
p
 (x- 

iy)
q
 is defined by: 

𝑐𝑝𝑞 =     (𝑥 + 𝑖𝑦)𝑝 (𝑥 − 𝑖𝑦)𝑞  𝑓(𝑥, 𝑦) 𝑑𝑥 𝑑𝑦
∞

−∞

∞

−∞
    (10) 

Orthogonal (OG) moments are preferred in the literature because they are 

fast and stable numerical implementation [43]. Another reason why OG 

moments are used is due to better image construction. A 2D polynomial 

orthogonal on a rectangle is constructed as products of 1D OG polynomials 

pk(x). The OG moments will have the form: 

𝑣𝑝𝑞 =  𝑛𝑝𝑛𝑞  𝑝𝑝 𝑥  𝑝𝑞 𝑦  𝑓(𝑥, 𝑦) 𝑑𝑥 𝑑𝑦
 

Ω
    (11) 

Where np, nq are some normalized factors and Ω is the area of orthogonality. 

The image 𝑓(𝑥, 𝑦) should be scaled such that its support is contained in Ω. 
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As an illustration we took an image and rotated 5º, and 10º, respectively as 

shown in Figure 4.12. 

   

Original Image Rotated 5º Rotated 10º 

Figure 4.12: Rotated fingerprint example. 

 

The Hu moments and Rotation invariants are presented in Table 4.1. 

 1
st
 Hu Moments Rotation Invariant 

Original Image 

Φ1 =  0.3561 Φ5 =  0.0000 6.7343 

18.6358 

25.7912 

24.8585 

51.6173 

Φ2 =  0.0007 Φ6 = -0.0000 

Φ3 =  0.0002 Φ7 = -0.0000 

Φ4 =  0.0009  

Rotated 5º 

Φ1 =  0.3563 Φ5 =  0.0000 6.7345 

18.6301 

25.7919 

24.8507 

51.3166 

Φ2 =  0.0007 Φ6 = -0.0000 

Φ3 =  0.0002 Φ7 = -0.0000 

Φ4 =  0.0009  

Rotated 10º 

Φ1 =  0.3561 Φ5 =  0.0000 6.7344 

18.6332 

25.7937 

24.8590 

51.3158 

Φ2 =  0.0007 Φ6 = -0.0000 

Φ3 =  0.0002 Φ7 = -0.0000 

Φ4 =  0.0009  
 

Table 4.1: Hu moments & Rotation Invariants. 
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4.9     Moment Invariants to Translation, Rotation 

and Scaling 

 

Moment features can provide the properties of invariance to scale, position, 

and rotation [43]. This section gives a brief description of the moment 

analysis.  

For a 2-D continuous function 𝑓(𝑥, 𝑦), the moment of order (p + q) is 

defined as: 

𝑚𝑝𝑞 =    𝑥𝑝𝑦𝑞𝑓(𝑥, 𝑦) 𝑑𝑥 𝑑𝑦
∞

−∞

∞

−∞
    (12) 

for p, q = 0, 1, 2,… 

The central moments are defined as: 

𝜇𝑝𝑞 =    (𝑥 −  𝑥𝑐)𝑝(𝑦 −  𝑦𝑐)𝑞𝑓(𝑥, 𝑦) 𝑑𝑥 𝑑𝑦
∞

−∞

∞

−∞
    (13) 

Where, 

𝑥𝑐 =  
𝑚10

𝑚00
  and  𝑦𝑐 =  

𝑚01

𝑚00
    (14) 

 

If 𝑓(𝑥, 𝑦) is a digital image, then (13) becomes: 

𝜇𝑝𝑞 =    (𝑥 −  𝑥𝑐)𝑝(𝑦 −  𝑦𝑐)𝑞𝑓(𝑥, 𝑦)𝑦𝑥    (15) 

Invariance is obtained by proper normalization of each moment. In principle, 

any moment can be used as a normalizing factor provided that it is nonzero 

for all images in the experiment. Since low-order moments are more stable to 
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noise and easier to calculate, we normalize most often by a proper power of 

𝜇00  as follows: 

𝑣𝑝𝑞 =  
𝜇𝑝𝑞

𝜇00
𝑤      (16) 

Where, 

𝑤 =  
𝑝+𝑞

2
+  1    (17) 

The moment 𝑣𝑝𝑞  is called normalized central geometric moment. Note that 

the moment that was used for scaling normalization can no longer be used 

for recognition because the value of the corresponding normalized moment 

is always one. 

 

4.10     Affine Moment Invariants 

 

Affine moment invariants (AMIs) play a very important role in moment-

based pattern recognition applications. They are invariant with respect to 

affine transform of the spatial coordinates. Affine transformation is a general 

linear transform of spatial coordinates of the image, which can approximate 

the projective transform [43]. 

The theory of AMIs is closely connected to the theory of algebraic invariants 

and the Fundamental theorem describes this connection. The algebraic 

invariant is a polynomial of coefficients of a binary form, whose value 
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remains the same after an affine transform of the coordinates. In the theory 

of algebraic invariants, only the transforms without translation are 

considered. 

Let us consider an image 𝑓 and two arbitrary points (𝑥1, 𝑦1), (𝑥2, 𝑦2) from 

its support. Let us denote the “cross-product” of these points as 𝐶12: 

𝐶 12 =  𝑥1𝑦2  −  𝑥2𝑦1    (18) 

After an affine transform, it holds that: 

𝐶12 = 𝐽 ·  𝐶12     (19) 

 

Which means that 𝐶12  is a relative affine invariant. We consider various 

numbers of points and we integrate their cross-products on the support of 𝑓. 

These integrals can be expressed in terms of moments and, after proper 

normalization, they yield affine invariants. 

Mathematically, having 𝑟 points (𝑟 ≥  2) we define functional 𝐼 depending 

on 𝑟 and on non-negative integers 𝑛𝑘𝑗  as: 

𝐼 𝑓 =     𝐶
𝑘𝑗

𝑛𝑘𝑗𝑟
𝑘 ,𝑗=1  .

∞

−∞

∞

−∞
  𝑓(𝑥𝑖 , 𝑦𝑖) 𝑑𝑥𝑖𝑑𝑦𝑖

𝑟
𝑖=1   (20) 

Note that it is meaningful to consider only 𝑗 > 𝑘, because 𝐶𝑘𝑗 = −𝐶𝑗𝑘  and 

𝐶𝑘𝑘 = 0. After an affine transform, 𝐼(𝑓) becomes: 

𝐼(𝑓)′  =  𝐽𝑤   𝐽 𝑟 ·  𝐼(𝑓)       (21) 
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where 𝑤 =  𝑛𝑘𝑗𝑘 ,𝑗  is called the weight of the invariant and 𝑟 is called the 

degree of the invariant. If 𝐼(𝑓) is normalized by µ00
𝑤+𝑟  , we obtain a desirable 

absolute affine invariant: 

 
𝐼(𝑓)

µ00
𝑤+𝑟 

′
=   

𝐼(𝑓)

µ00
𝑤+𝑟     (22) 

 

The maximum order of moments of which the invariant is composed is 

called the order of the invariant. The order is always less than or equal to the 

weight. 

An important note here is that we can generate as many invariants as we 

wish but only a few of them are independent. Since dependent invariants are 

useless in practice, in a sense that it does not increase the discrimination 

power of the recognition system at all while increasing the dimensionality of 

the problem. This leads to growth of the complexity and even to 

misclassifications. 

 

4.10.1  Dependencies Among the AMIs 

 

There might be various kinds of dependency in the set of all AMIs. They can 

be categorized into five groups [43]: 
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1. Zero invariants: Some AMIs may be identically zero regardless of 

the image from which they are calculated. 

2. Products: Some invariants may be products of other invariants. 

3. Linear combinations: Some invariants may be linear combinations of 

other invariants. 

4. Identical invariants 

5. Polynomial dependencies: if there exists a finite sum of products of 

invariants (including their integer powers) that equals zero, the 

invariants involved are polynomially dependent. 

 

The invariants having the dependencies 1 to 4 are called reducible invariants. 

After eliminating all of them, we obtain a set of so-called irreducible 

invariants. However, irreducibility does not mean independence. Since the 

discussion about detect reducible and polynomially dependent invariants is 

beyond the scope of this work, interested reader is referred to more detailed 

discussion in [43]. The authors list all independent AMIs up to the weight 12 

(80 independent invariants out of 1589 irreducible invariants), which we are 

going to use in our work. 
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CHAPTER 5 

 

 

5.    PROPOSED FINGERPRINT 

MATCHING ALGORITHM 

 

 

5.1    Directional Filtering and Feature Extraction 
 

A fingerprint consists of a series of ridges that mainly flow parallel to the 

locally dominant direction and occasionally make local singularities, like a 

core or delta point. Since fingerprint patterns have strong directionality, 

directional information can be exploited as fingerprint features. In this sense, 

a DFB is suitable for extracting the features of fingerprints containing many 

linear and directional components, because it can effectively and accurately 

decompose an image into several directional sub-band outputs.  

For feature extraction, the original fingerprint image is decomposed into 

eight directional sub-band outputs using the DFB, and the moment invariants 

to translation, rotation, and scaling and affine moment invariants 
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(independent and irreducible) of each block can be obtained from the 

decomposed sub-band outputs. Let 𝑓𝜃(𝑥, 𝑦) denote the coefficient at position 

(x, y) of sub-band 𝜃 corresponding to a region of interest (ROI) image block 

𝐵. Where 𝜃 ∈ {0, 1, 2, … , 7} for the sub-bands. 

For an N x N image, the first half of the eight sub-band outputs is N/4 x N/2 

in size, while the other half is N/2 x N/4, as explained in Section 4.5. 

Therefore, the sub-bands corresponding to an m x n block have size m/4 x 

n/2 for directions 0 to 3, and size m/2 x n/4 for directions 4 to 7, as 

illustrated in Figure 5.1. 

 

Figure 5.1: blocks in (a) Original image, (b) Sub-band output. 

 

The proposed scheme of feature extraction first locates a reference point and 

establishes an ROI around the detected reference point. The established ROI 

is then decomposed into eight directional sub-band outputs using a DFB. 
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Finally, the fingerprint feature values based on moment invariants (TRS & 

AMIs) are calculated from each sub-block of the decomposed sub-band 

outputs. 

 

5.2    Image Normalization  

 

The objective is to decrease the dynamic range of the gray between ridges 

and valleys of the image. We normalize the image to constant mean and 

variance. Normalization is done to remove the effects of sensor noise and 

finger pressure difference. Let 𝐼(𝑖, 𝑗) denotes the gray value at pixels (𝑖, 𝑗). 

M and VAR are the estimated mean and variance of the input fingerprint 

image. We used FBI WSQ standard for gray scale images: 

 

𝐼′ 𝑖, 𝑗 =  
𝐼 𝑖 ,𝑗  − 𝑀

𝑉𝐴𝑅′
    (23) 

 

Where 𝑉𝐴𝑅′ = 𝑉𝐴𝑅/128 for 8-bits of precision per pixel. 
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5.3    Reference Point and Region of Interest  

 

4.3.1    Determination of Reference point 

 

The reference (core) (Figure 5.2) point is defined as “the point of the 

maximum curvature on the convex ridge [45],” which is usually located in 

the central area of fingerprint. A summary of reference point location 

algorithm is presented below [15]. 

 

Figure 5.2: The reference point one on the convex ridge. 

 

 

1. Estimate the orientation field 𝑂 using a window size of 𝑤𝑥𝑤. 

2. Smooth the orientation field in a local neighborhood. Let the 

smoothed orientation field be represented as 𝑂′. In order to perform 

smoothing (low-pass) filtering, the orientation image need to be 

converted into a continuous vector field, which is defined as: 
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Φ𝑥 𝑖, 𝑗 =    𝑊 𝑢, 𝑣 . Φ𝑥 𝑖 − 𝑢𝑤, 𝑗 − 𝑣𝑤 𝑤Φ /2
  𝑣=−𝑤Φ /2

𝑤Φ /2
𝑢=−𝑤Φ /2   (24) 

Φ𝑥 𝑖, 𝑗 =    𝑊 𝑢, 𝑣 . Φ𝑦 𝑖 − 𝑢𝑤, 𝑗 − 𝑣𝑤 𝑤Φ /2
  𝑣=−𝑤Φ /2

𝑤Φ /2
𝑢=−𝑤Φ /2   (25) 

 

Where 𝑊 is a two-dimensional low-pass filter with unit integral and 

𝑤Φ  𝑥 𝑤Φ  specifies the size of the filter. 

3. Compute 𝜀, an image containing only the sine component of 𝑂′. 

4. Initialize A, a label image used to indicate the reference point. 

5. For each pixel (i ,j) integrate pixel intensities (sine component of the 

orientation field). 

6. Find the maximum value and assign its coordinate as the reference 

point. 

 

4.3.2    Determination of ROI and Partition 

 

After determining the coordinates of the reference point we crop the 

fingerprint image into an ROI. In order to speed up the overall process, we 

use only a predefined square area (ROI) with size N x N around the 

reference point at the center for feature extraction instead of using the entire 

fingerprint. In our experiment, we set N to 192. The center of the cropped 
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image centers the position of the reference point. Figure 5.3 demonstrates the 

ROI centered on the determined reference point of two input fingerprints, 

respectively.  

  

  

(a) (b) 

 

Figure 5.3: Region of interest (ROI) for feature extraction. A sample fingerprint (a) 

whose ROI is established within the image and (b) whose ROI exceeds the image bound. 

 

 

In case that the detected reference point is located at the corner of the image 

as shown in Figure 5.3 (b), establishing the ROI of a fingerprint exceeds the 

bound of an image. In such a case, the proposed method sets up the ROI by 
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inserting zeros in the outside area of the image. The ROI area with zero 

value is excluded when fingerprint features are calculated and matching is 

performed. 

 

5.4    Invariant Moment Feature Vector Generation 

 

At this stage, we apply the invariant moment analysis introduced in Section 

4.9 and 4.10 on each one of the eight sub-band respectively. The extracted 

ROI as shown in Figure 5.3 is decomposed into eight directional sub-band 

outputs by an eight-band DFB. For each sub-band, divide it into sub-blocks 

and a set of 35 independent AMIs and 21 TRS moment invariants of the 5
th
 

order is computed for each sub-block. As a result 56 set of invariant 

moments for each of the 8 sub-blocks are extracted as features to represent a 

fingerprint. 

The procedure for feature extraction can be summarized as follows: 

1. Normalize the image. 

2. Identify the core point and extract the ROI. 

3. Apply the eight-band DFB to the ROI with dimension 𝑁 𝑥 𝑁. The 

output is a set of eight subbands as illustrated in Figure 3.2 (d). 
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4. Further divide each sub-band output into sub-blocks that will serve as 

the region of support for the feature vector calculations. If we envision 

a sub-block of size n x n (where N is a multiple of n) then the sizes of 

the corresponding sub-blocks with the sub-bands are 𝑛/4 𝑥 𝑛/2 for 

sub-bands 0 to 3 and 𝑛/2 𝑥 𝑛/4 for sub-bands 4 to 7. 

5. Calculate the 56 set of invariant moments from each “smaller block” 

to form the feature vector, as introduced in sections 4.9 and 4.10. 

6. Finally, combine the features calculated from each sub-block 𝐼𝜃𝑘  into 

one vector 𝑉𝑓 =   𝐼01 , 𝐼02 , … , 𝐼𝜃𝑘   , where 𝜃 𝜖  0, 1, 2, 3, 4, 5, 6, 7  and 

𝑘 𝜖  0, 1, 2, … , 56 . 

 

5.5    Fingerprint Matching 

 

Generally speaking, other methods require that before the input print and 

template print are compared with each other, they should be translationally 

and rotationally aligned with each other. Rotational alignment is achieved by 

generating cyclical input feature vectors and matching input feature vectors 

with template feature vectors. In our proposed method, the translational 

alignment is not of concern because by applying invariant analysis to the 

extracted ROI by the reference point detection process. Since the proposed 
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feature extraction process is based on moments that are invariant to 

translation, rotation and scaling, the proposed method is robust to angular 

deviations without rotation and translation compensation. 

Fingerprint matching is performed based on finding the absolute distance 

between the input feature vectors and the template feature vector enrolled in 

the database. Let: 

 

𝑉𝑓1 =   𝑎1 , 𝑎2, … , 𝑎𝑛     and  𝑉𝑓2 =   𝑏1 , 𝑏2 , … , 𝑏𝑛  [26] 

 

Denote the feature vectors of the two fingerprints to be matched, the 

difference vector 𝑉𝑑  of the two fingerprint feature vectors is calculated 

as in (27). 

 

𝑉𝑑 =   
 𝑎1−𝑏1 

max (𝑎1 ,𝑏1)
,

 𝑎2−𝑏2 

max (𝑎2 ,𝑏2)
……  

 𝑎𝑛−𝑏𝑛  

max (𝑎𝑛 ,𝑏𝑛 )
     (27) 

 

We define the absolute distance of the two matching vectors as in (28). 

 

𝑅𝑚 =   
 𝑎𝑖−𝑏𝑖 

max (𝑎𝑖 ,𝑏𝑖)

𝑛
𝑖=1     (28) 
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CHAPTER 6 

 

 

6.    EXPERIMENTAL RESULTS 

 

We used moment analysis to extract invariant features from 

partitioned DFB sub-images in an ROI. 

In order to measure the objective performance, we run the matching 

algorithm on images from FVC2002 fingerprint database set, which contains 

four distinct databases: DB1_A, DB2_A, DB3_A and DB4_A. Each 

database consists of 800 images (100 distinct fingers, 8 impressions each). In 

order to obtain the performance characteristic such as EER (Equal Error 

Rate) we perform a total of 2,800 genuine comparisons (each instance of a 

finger is compared with the rest of the instances resulting in (8x7)/2 tests per 

finger) and 39,600 impostor comparisons (the first instance of each finger is 

compared against the first instance of all other fingers resulting in a total of 

(100x99)/2 tests for each impression). 

 

Number of Genuine Tests Number of Impostor Tests 

2,800 39,600 
 

Table 6.1: Number of Tests. 
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First, the genuine and imposter distributions were obtained for the proposed 

method, then the verification performance was assessed based on the 

characteristics of the distributions. The genuine distribution indicates the 

distribution of the distances between all possible intra-class image pairs in 

the database, while the imposter distribution represents the distribution of the 

distances between all possible inter-class image pairs in the database. The 

more the genuine and imposter distributions are separated and the smaller the 

standard deviation for each distribution, the more advantageous for a 

personal verification method. Figure 6.1 shows the genuine and imposter 

distributions for the proposed method along with their characteristics in 

Table 6.2. 

 

Figure 6.1: Genuine and imposter distributions for the proposed method (DB1_A). 
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Genuine Distribution Imposter Distribution 

Mean Variance Mean Variance 

12.2 2.5 22.8 3.8 
 

Table 6.2: Statistical characteristics of genuine and imposter distributions (DB1_A). 

 

The performance of a verification method is often estimated using the false 

accept rate (FAR) and false reject rate (FRR). Here, FAR is the rate at which 

an imposter print is incorrectly accepted as genuine and FRR is the rate at 

which a genuine print is incorrectly rejected as an imposter. The FRR and 

FAR are defined as follows: 

 

𝐹𝑅𝑅 =  
𝑁𝑢𝑚𝑏𝑒𝑟  𝑜𝑓  𝑟𝑒𝑗𝑒𝑐𝑡𝑒𝑑  𝑔𝑒𝑛𝑢𝑖𝑛𝑒  𝑐𝑙𝑎𝑖𝑚𝑠

𝑇𝑜𝑡𝑎𝑙  𝑛𝑢𝑚𝑏𝑒𝑟  𝑜𝑓  𝑔𝑒𝑛𝑢𝑖𝑛𝑒  𝑎𝑐𝑐𝑒𝑠𝑠𝑒𝑠
 × 100%   (29) 

𝐹𝑅𝑅 =  
𝑁𝑢𝑚𝑏𝑒𝑟  𝑜𝑓  𝑎𝑐𝑐𝑒𝑝𝑡𝑒𝑑  𝑖𝑚𝑝𝑜𝑠𝑡𝑒𝑟  𝑐𝑙𝑎𝑖𝑚𝑠

𝑇𝑜𝑡𝑎𝑙  𝑛𝑢𝑚𝑏𝑒𝑟  𝑜𝑓  𝑖𝑚𝑝𝑜𝑠𝑡𝑒𝑟  𝑎𝑐𝑐𝑒𝑠𝑠𝑒𝑠
 × 100%   (30) 

 

The EER is used as a performance indicator. The EER indicates the point 

where the FRR and FAR are equal. Table 6.2 shows performances of our 

proposed method over the four databases of FVC2002. From the tables, we 

can find that the average EER values of absolute distance matching and that 

of over four databases are 4.91%. The table shows that DB2_A has the 

highest EER of 6.21% and this is due to the poor quality of the fingerprint 

images in that set. 
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Database EER (%) 

DB1_A 3.35 

DB2_A 6.21 

DB3_A 5.78 

DB4_A 4.28 

Average 4.91 
 

Table 6.3: Testing results. 

The performance of a verification system can also be evaluated using a 

receiver operator characteristic (ROC) curve, which graphically 

demonstrates how the correct acceptance rate (CAR = 1 - FRR) changes with 

a variation in FAR. Here, the CAR indicates the rate at which a genuine print 

is correctly accepted as genuine. In order to examine the performance of the 

proposed method, a number of experiments comparing performance to other 

method were carried out on the FVC2002 database. Two matching methods, 

proposed in references [15, 26] were selected for comparison, namely, filter 

bank approach matching using Gabor filters and Directional filter (DFB). 

Figure 6.2 shows the ROC curve for the proposed method outperform the 

others.  
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Figure 6.2: ROC curves comparing the recognition rate performance of the proposed 

method with the other 2 methods on database FVC2002 DB1_A. 

 

 

 

 
Figure 6.3: ROC curves on database FVC2002 DB2_A. 

 

 

 

As shown previously that DB2_A has the highest EER, Figure 6.3 shows 

how the ROC curves gives mixed results due to the poor quality of the 

fingerprint images in that set. Figures  6.4 and 6.5 confirms that the proposed 
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method gives better performance on FVC2002 DB3_A and DB4_A, as the 

results presented from the first database set. It is noted that DFB method 

outperformed the Gabor Filter method only on DB3_A, as illustrated in 

Figure 6.4. 

 

 
Figure 6.4: ROC curves on database FVC2002 DB3_A. 

 

 

 

  
Figure 6.5: ROC curves on database FVC2002 DB4_A. 
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The proposed method has better verification accuracy to the other leading 

techniques as Table 6.3 shows. However, Table 6.4 shows that the other 

methods used as benchmark have the advantage of speed, in terms of 

processing time needed for feature extraction. Another advantage over the 

proposed method was the memory size for the feature vector. Finally, 

comparison time is the same for the proposed method and DFB, with Gabor 

filter method being last due to the sector by sector comparison.  

 

 
Processing 

time 
Comparison 

time 
Memory size 

Proposed Method 0.533  sec  0.03 sec  583  bytes  

DFB 0.358  sec  0.03 sec 225  bytes  

Gabor Filter 0.479  sec  0.1 sec  440  bytes  
 

Table 6.4: Time & memory comparison. 
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CHAPTER 7 

 

 

7.    CONCLUSION 

7.1    Overview 

 

This work presented a fingerprint matching algorithm that combines 

AMIs and TRS invariants based on moments analysis that does not have to 

detect minutiae. First, a preprocessing by normalizing the fingerprint image 

using WSQ standard definition is done.  

The reference point can be reliably and accurately determined with the 

analysis of orientation field. Then uses the area within a certain range around 

the detected reference point as a ROI for feature extraction.  

The method uses a DFB to obtain directional components of the 

image. Using the invariant moment analysis on sub-bands of the filtered 

images, the extracted features have bound the effects of noise and non-linear 

distortions, while utilizing the invariant ability to the translation, rotation, 

scaling and affine transformations of features to handle various input 
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conditions. The new feature vector capture more global information on 

fingerprint ridges pattern. 

Matching the fingerprints is implemented by absolute distance which 

has a faster matching speed than other methods. This is because of the nature 

of the AMIs and TRS invariants used that eliminate the translational and 

rotational alignment to be done.  

Experimental results using FVC2002 fingerprint database demonstrate that 

the proposed method has better verification accuracy to the other leading 

techniques, along with robustness to image rotation and translation. We 

present the comparative results in Table 6.2. The improvement in the ROC 

curves presented in the experimental results section. 

 

7.2    Summary of Contributions 
 

The proposed method has better verification accuracy to the other leading 

techniques, along with robustness to image rotation and translation. However 

the other methods used as benchmark have the advantage of speed, in terms 

of processing time needed for feature extraction. Another advantage over the 

proposed method was the memory size for the feature vector.  
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7.3    Future Work 

 

 A number of opportunities exist to extend this work. First, an 

investigation to other moments family like Zernike, Orthogonal Fourier–

Mellin, Legendre, and Chebyshev moments, examining their potential to be 

used to construct a feature vector and the discriminate power they can 

achieve. Second, exploring the use of other transform like curvelets and 

contourlet. Finally, considering the use of a hybrid-classifier to seek 

improving the accuracy of matching. 
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