

KING FAHD UNIVERSITY OF PETROLEUM & MINERALS

DHAHRAN, SAUDI ARABIA

DEANSHIP OF GRADUATE STUDIES

This thesis, written by SALMAN AHMAD KHWAJA under the direction of his thesis

advisor and approved by his thesis committee, has been presented to and accepted by the

Dean of Graduate Studies, in partial fulfilment of the requirements for the degree of

MASTER OF SCIENCE IN INFORMATION & COMPUTER SCIENCE.

Thesis Committee

Thesis Advisor

Dr. Mohammad Alshayeb

Member

 Dr. Nasir Darwish

Member

 Dr. Sajjad Mehmood

Department Chairman

Dr. Kanaan Abed Faisal

Dean of Graduate Studies

Dr. Salam Zummo

Date

iii

Dedicated to my Loving Mother & Father

iv

ACKNOWLEDGEMENTS

In the name of Allah, the Most Beneficent, the Most Merciful

Praise and gratitude to Allah, the Almighty, with Whose gracious help, I was able to

accomplish this work with patience and endurance. Acknowledgement is due to King

Fahd University of Petroleum and Minerals, Saudi Arabia for providing support to this

work.

I am deeply indebted to my thesis advisor Dr. Mohammad Alshayeb for his constant

support, guidance and encouragement throughout the course of this research and for

many hours, day and night, of attention he devoted to the development of this study. All

along, he guided me to overcome all the problems and difficulties I encountered as a

student and a researcher. It is unimaginable how much time and effort he had to spend to

discuss, proofread and correct all my works. He was extremely patient and never got

upset over my mistakes. Instead, he always had confidence in me and never doubted my

abilities. As a researcher, he is exceptionally intelligent and always full of new ideas. I

will always revere his patience, expert guidance and ability to solve intricate problems.

He made my pursuit of higher education a truly enjoyable and unforgettable experience.

Sincere appreciation and grateful thank to my committee member Dr. Nasir Darwish for

his help and insight in the Literature review part of the thesis. I also would like to thank

my committee member Dr. Sajjad Mahmood for his help and support in the Schema.

Thanks are due to the chairman of the Information & Computer Science Department Dr.

Kanaan A. Faisal for his support and assistance. Selecting me for the KAUST Winter

v

Enrichment Program 2010 showed his confidence in my abilities. Some of the lectures

there provided me with valuable knowledge and broadened my vision.

Special thanks to my dearest mother and father for their emotional support, love,

sacrifices, prayers and understanding throughout my academic career and willingness to

support my efforts. I would not be where I am in life if it weren‘t for their love. I also

owe it to my brothers: Nabeel, Waqas and Zain and to my sister and her husband for their

unwavering belief in me and for their unconditional support and prayers.

There are also friends Aftab, Moaz, Mubeen, Asad & Babar who always provided a very

informative, refreshing & a great company. They made me confident of my abilities and

helped me tackle towering workloads and solve convoluted problems. Their constant and

sincere encouragement gave me determination to work towards my goal and kept me

motivated during hard times. They made all hurdles look like illusions. The presence of

Saad, Jamal, faraz, Asif, Khaja, Zeehasham, Zeeshan, Saqib, Akhlaq, Adeel, Danish,

Munim, Atif, Shahid, Junaid, Usama, Umer, Imran, Umair, Raza and Farhan cannot be

ignored either, who made my stay in Building 903 as one of the most enjoyable and

memorable one.

vi

TABLE OF CONTENTS

TABLE OF CONTENTS ... VI

LIST OF TABLES .. XI

LIST OF FIGURES .. XII

ABSTRACT (ENGLISH) .. XVII

ABSTRACT (ARABIC) ... XVIII

CHAPTER 1: INTRODUCTION .. 1

1.1 PROBLEM ... 4

1.2 OBJECTIVES ... 5

1.3 RESEARCH METHODOLOGY ... 5

CHAPTER 2: BACKGROUND .. 7

2.1 OBJECT ORIENTED PROGRAMMING .. 7

2.1.1 Class Based Model .. 8

2.1.2 Design Pattern in Object Oriented Programming ... 9

2.2 A DEFINITION OF DESIGN PATTERN ... 10

2.3 HISTORY OF DESIGN PATTERNS ... 13

2.4 CLASSIFICATION OF DESIGN PATTERNS: .. 14

2.4.1 Classification based on Purpose/Scope ... 14

2.4.2 Classification based on Intent ... 16

2.4.3 Classification based on Relationship among Design Patterns 16

vii

2.4.4 Classification based on Organization: .. 19

2.4.5 Enterprise Design Patterns .. 25

2.5 EXTENTENSIBLE MARKUP LANGUAGE (XML) .. 28

2.5.1 Background of XML ... 28

2.5.2 Semi-Structured Data .. 29

2.5.3 XML Structure .. 30

2.5.4 DTD & Schema... 31

CHAPTER 3: LITERATURE REVIEW ... 32

3.1 LANGUAGES BASED ON FORMAL MATHEMATICAL LOGIC 33

3.1.1 LePUS ... 34

3.1.2 eLePUS ... 35

3.1.3 LOTOS .. 36

3.1.4 DisCo .. 38

3.1.5 BPSL ... 40

3.2 LANGUAGES BASED ON UML .. 43

3.2.1 RBML ... 43

3.2.2 DPML ... 46

3.3 LANGUAGES BASED ON PROGRAMMING LANGUAGES .. 49

3.3.1 SPINE ... 49

CHAPTER 4: DESIGN PATTERNS .. 52

4.1 INTRODUCTION .. 52

4.1.1 Creational Design Patterns .. 53

4.1.2 Structural Design Patterns... 53

viii

4.1.3 Behavioral Design Patterns ... 53

4.2 ADAPTER METHOD .. 54

4.2.1 Intent ... 54

4.2.2 Motivation ... 54

4.2.3 Applicability ... 56

4.2.4 Structure .. 56

4.2.5 Participants .. 57

4.2.6 Collaborations ... 58

4.2.7 Consequences .. 58

4.3 FACTORY METHOD .. 59

4.3.1 Intent ... 59

4.3.2 Motivation ... 59

4.3.3 Applicability ... 60

4.3.4 Structure .. 61

4.3.5 Participants .. 61

4.3.6 Collaborations ... 62

4.3.7 Consequences .. 62

4.4 MEDIATOR METHOD .. 62

4.4.1 Intent ... 63

4.4.2 Motivation ... 63

4.4.3 Structure .. 64

4.4.4 Applicability ... 65

4.4.5 Participants .. 65

ix

4.4.6 Collaborations ... 66

4.4.7 Consequences .. 66

CHAPTER 5: DESIGN PATTERN DEFINITION LANGUAGE (DPDL) 68

5.1 OBJECTIVES OF DPDL ... 69

5.1.1 Objective ... 69

5.1.2 DPDL Design Objectives .. 69

5.2 DPDL SCHEMA .. 70

5.2.1 Design Pattern Attributes .. 73

5.2.2 Structural Attributes .. 77

5.2.3 Behavioral Attributes .. 99

CHAPTER 6: TOOLS .. 112

6.1 DPDL CLASS TOOL ... 114

6.1.1 DPDL Class Tool Features ... 115

6.1.2 Creating Class Diagram from DPDL Class Tool .. 117

6.1.3 Other Options in DPDL Class Tool .. 119

6.1.4 Current Limitation of DPDL Class Tool .. 121

6.2 DPDL QTOOL ... 122

6.2.1 DPDL QTool Feature .. 123

6.2.2 Creating Sequence Diagram in QTool .. 124

6.2.3 Current Limitation of QTool ... 125

CHAPTER 7: VERIFICATION & VALIDATION .. 127

7.1 DESIGN PATTERN INSTANCES .. 128

x

7.1.1 Adapter Design Pattern ... 128

7.1.2 Mediator Design Pattern: .. 138

7.1.3 Factory Method Design Pattern .. 149

7.2 DESIGN PATTERN TEMPLATES ... 158

7.2.1 Adapter Design Pattern Template ... 159

7.2.2 Mediator Design Pattern Template ... 164

7.2.3 Factory Design Pattern Template.. 170

CHAPTER 8: CONCLUSION & FUTURE WORK ... 176

REFERENCES .. 179

VITAE

xi

LIST OF TABLES

2.1 Classification of Design Pattern on Scope\Purpose basis [1]. 15

 2.2 Classification of Design Pattern on Intent Basis [23] ... 16

 2.3 Mark Grand Design Pattern Categorization .. 26

 2.4 History of XML .. 29

 3.1 Design Pattern Languages feature comparison ... 51

xii

LIST OF FIGURES

 2.1 OO development life-cycle and patterns. [13] .. 10

 2.2 Classification of Design Patterns based on Relationship [1]. 18

 2.3 Design Pattern Elements classification ... 19

 2.4 Wrapper Design Patterns .. 20

2.5 Inheritance Design Patterns .. 21

 2.6 Wrapper with Inheritance Design Pattern ... 21

 2.7 Recursive Composition Design Pattern .. 22

 2.8 Cloud Design Pattern .. 24

 2.9 Miscellaneous Design Pattern ... 25

 3.1 Structure of Factory Method as defined in eLePUS ... 36

 3.2 Collaboration of Factory Method as defined in eLePUS .. 36

 3.3 Behavioral Specification of Composite Pattern in LOTOS .. 38

3.4 Class Diagram of Observer Pattern [39] ... 41

 3.5 BPSL Specification of Observer Pattern [39] ... 42

 3.6 AbstractFactory design pattern in DPML [4] ... 48

 4.1 Adapter Design Pattern [1] ... 57

 4.2 Factory Method Design Pattern [1]... 61

 4.3 Mediator Design Pattern [1] .. 65

5.1 DPDL High Level Schema ... 72

 5.2 DPDL's Structural Attributes .. 77

 5.3 Attributes of Class Element of DPDL .. 80

xiii

 5.4 Attributes of Function Element in DPDL ... 85

5.5 Example of forEach in Function. .. 90

 5.6 Example of inEach for Function ... 91

 5.7 Attributes of Object Element in DPDL ... 92

 5.8 Attributes of Relation Element in DPDDL ... 97

5.9 DPDL's Behavioral Attributes .. 101

 5.10 SetObect Element's Attributes in DPDL ... 102

 5.11 Call Element's Attributes in DPDL ... 103

5.12 Create Element's Attributes in DPDL ... 106

 5.13 Loop Element's Attributes in DPDL ... 108

 5.14 Condition Element's Attributes in DPDL ... 109

 6.1 DPDL Class Tool .. 114

 6.2 DPDL Class Tool View Menu .. 116

 6.3 File Menu Options .. 117

 6.4 DPDL Class Tool Open DialogBox .. 118

 6.5 Class Diagram in DPDL Class Tool ... 119

 6.6 Option for generating Source Code in DPDL Class Tool ... 120

 6.7 QTool, the Sequence Diagram Generator ... 122

 6.8 File Menu options in QTool .. 123

 6.9 Edit Option in QTool .. 124

 6.10 QTool Open DialogBox .. 125

 7.1 DPDL of Adapter Design Pattern ... 129

 7.2 Class in DPDL for Adapter Design Pattern .. 130

xiv

7.3 Operations in DPDL for Adapter Design Pattern ... 131

 7.4 Objects in DPDL for Adapter Design Pattern... 132

 7.5 Relationships in DPDL for Adapter design pattern. ... 133

 7.6 Class Diagram of Adapter Design Pattern through DPDL 134

 7.7 Class Diagram By Altova ... 135

 7.8 Behavioral Structure in DPDL for Adapter Design Pattern 136

7.9 Sequence Diagram by QTool from Adapter DPDL .. 137

 7.10 Sequence Diagram in Altova of Adapter Design Pattern 138

 7.11 Mediator Design Pattern's DPDL ... 139

7.12 Classes Section of DPDL of Mediator Design Pattern ... 140

 7.13 Funtion Section of DPDL of Mediator Design Pattern ... 141

7.14 Function Section of DPDL of Mediator Design Pattern ... 142

7.15 Objects Section of DPDL of Mediator Design Pattern ... 143

 7.16 Relationships Section of DPDL of Mediator Design Pattern 144

 7.17 Class diagram of Mediator Design Pattern by DPDL Class Tool 145

 7.18 Class diagram of Mediator Design Pattern by ALTOVA 146

 7.19 Behavior Structure of Mediator Design Pattern in DPDL 147

 7.20 Sequence Diagram of Mediator's DPDL by QTool .. 148

 7.21 Sequence Diagram for Mediator generated by ALTOVA 149

 7.22 Overview of Factory Method Design Pattern's DPDL ... 150

 7.23 Classes Section of DPDL of Factory Design Pattern .. 151

 7.24 Operations Section of DPDL of Factory Design Pattern .. 152

 7.25 Objects Section of DPDL of Factory Design Pattern ... 153

xv

 7.26 Relationships Section of DPDL of Factory Design Pattern 154

 7.27 Class Diagram of Factory Method using DPDL ... 155

 7.28 Class Diagram of Factory Method Design pattern By ALTOVA 156

 7.29 Behavior Description of Factory Method Design Pattern in DPDL 157

7.30 Sequence Diagram of Factory Method Design Pattern using DPDL 157

 7.31 Sequence Diagram of Factory Method by ALTOVA. .. 158

7.32 Overview of Adapter Design Pattern Template's DPDL .. 159

 7.33 Classes of Adapter Design Pattern Template's DPDL .. 160

 7.34 Operation of Adapter Design Pattern Template's DPDL .. 161

 7.35 Objects of Adapter Design Pattern Template's DPDL .. 162

 7.36 Relationships of Adapter Design Pattern Template's DPDL 163

7.37 Behavioral Descriptio of Adapter Design Pattern Template's DPDL 163

 7.38 Overview of of Mediator Design Pattern Template's DPDL 164

 7.39 Classes of Mediator Design Pattern Template's DPDL .. 165

 7.40 Operation of Mediator Design Pattern Template's DPDL 166

 7.41 Objects of Mediator Design Pattern Template's DPDL .. 167

 7.42 Relationships of Mediator Design Pattern Template's DPDL 168

 7.43 Behavioral Descriptions of Mediator Design Pattern Template's DPDL 169

7.44 Overview of Factory Method Design Pattern Template's DPDL 171

 7.45 Classes of Factory Method Design Pattern Template's DPDL 171

 7.46 Operations of Factory Method Design Pattern Template's DPDL 172

 7.47 Objectof Factory Method Design Pattern Template's DPDL 173

 7.48 Relationships of Factory Method Design Pattern Template's DPDL 173

xvi

 7.49 Behavioral Description of Factory Method Design Pattern Template's DPDL 175

xvii

ABSTRACT

Full Name : Salman Ahmad Khwaja

Thesis Title : Towards Design Pattern Definition Language

Major Field : Information and Computer Science

Date of Degree : June, 2010

Design Patterns are rapidly gaining acceptance in the software industry not only as

reusable constructs for the software development but also as the documentation and

comprehension of the architectural design of a software system. They provide proven

solutions for a set of recurring design problems. Therefore using them improves both

quality and time to market of a software project. Currently, design pattern languages have

mostly described design patterns using a combination of natural language or UML-style

diagrams or complex mathematical or logic based formalisms, which the average

programmer finds difficult to understand. Therefore, in this research we propose a design

pattern definition language (DPDL) which can be used for sharing of design pattern

implementation details among developers. It also has the flexibility of defining the design

pattern in a very generic term to be used as a template for the design pattern, which can

then be used for verification and identification of design patterns. Moreover, a tool as a

proof of concept of DPDL has also been developed to verify and validate the proposed

language.

xviii

ملخص الرسالة

سيَبُ احَذ خ٘ارت :الاسم

َّبط اىتصٌٍَ أة تعشٌف ّح٘ تصٌٍَ ىغ :عنوان الرسالة

عيً٘ اىحبسب الاىً :التخصص

 2010ٌٍّ٘٘ : تاريخ الرسالة

 ،فً ٍزبه اّتبد اىبشٍزٍبث اٗسشٌع ٗاسعب َّبط اىتصٌٍَ تنتسب قب٘لاأخزث أ ،خٍشة ّٗت الأفً الأ

. فًٖ عببسة عِ ق٘اىب تستخذً فً ٗصف حو عبً ىَشنلاث ٍتنشسة اىحذٗث فً ْٕذست اىبشٍزٍبث

ٌضب استخذاٍٖب ٌعَو أٗ ،فًٖ تعتبش ٗحبئق تسبعذ عيى فٌٖ اىتصٌٍَ اىَعَبسي ىْظٌ اىبشٍزٍبث ٗبٖزا

. ٌق اىَشبسٌع اىبشٍزٍتثتسٍٖو عَيٍت ت٘ٗ عيى تحسٍِ ّ٘عٍت اىبشٍزٍبث

 ٍخططبثٗ شنبه ْٕذسٍتأَّبط اىتصٌٍَ ببستخذاً ٍضٌذ ٍِ اىيغبث اىحٍت ٗأٌتٌ ٗصف ،حبىٍب

ىزىل ٗ .اىتعبٍو ٍعٖبٗ عيى اىَبشٍذ اىَبتذئ فً فَٖٖب عبئب تَخو ًٕٗ ،ٍْطقٍت ٗ سٍ٘ص سٌبضٍتٗ

ٌتٌ استخذاٍٖب ىتببده حٍج (DPDL)َّبط اىتصٌٍَ أفً ٕزٓ اىشسبىت ّقتشس تعشٌف ىغت ى٘صف ف

مَب ىذٌٖب اىَشّٗت فً تحذٌذ َّظ . ّظٌ اىَعيٍ٘بث َّبط اىتصٌٍَ بٍِ ٍط٘سيأتفبصٍو ٗحبئق

َّبط أ تحذٌذٗ ببىتبىً ٌَنِ استخذاٍٖب ىيتحققٗ َّ٘رد ىَْظ اىتصٌٍَاىتصٌٍَ بشنو عبً لاستخذأٍ ك

صٍغت اىيغت ٗ ٌضب تصٌٍَ بشٍزٍبث ٍتقذٍت ىيتحقق ٍِ صحتأعلاٗة عيى رىل فقذ تٌ ٗ .اىتصٌٍَ

. اىَقتشحت

 1

CHAPTER 1

INTRODUCTION

Design Patterns are rapidly gaining acceptance in the software industry, not only as

reusable constructs for the software development but also as the documentation and

comprehension of the architectural design of a software system. Although many software

teams and companies maintain their own set of design patterns, automation support for

the utilization of design pattern is still very limited.

The complexity of a software problem can only be managed by breaking down of the

problem into smaller sub-problems. Even the most complex systems are built by using

smaller "parts", influencing the overall design directly or indirectly. A part can be

anything from an entire sub-system to a specific component, native to the language or

otherwise, that requires the need for a specific design. Such parts may in turn be built

using even smaller parts and so forth and need to communicate to function, as a whole.

The key to any viable design is to identify the relevant parts, their functionality and their

interaction, but this is not a trivial matter. This is known as the divide and conquers

 2

technique. Design patterns provide knowledge in an accessible way to provide reusable

solutions to these sub-problems.

Patterns are normally described informally in the literature, generally using natural

language narrative, together with some sort of graphical notation, which makes it difficult

to give any meaningful certification of pattern-based software. Patterns in the Gang of

Four catalogue[1] are described using a consistent format which is based on an extension

of the object modeling technique (OMT) [2]. This form of presentation gives a very good

intuitive picture of the patterns, but it is not sufficiently precise to allow a designer to

conclusively demonstrate that a particular problem matches a specific pattern or that a

proposed solution is consistent with a particular pattern.

Some other benefits of software design patterns are: (1) software design patterns enable

large scale reuse of software [1]; (2) software design patterns captures the expert

knowledge and design trade-offs and make expertise widely available [1]; (3) software

design patterns techniques are used for making code more flexible by making it meet

certain specific criteria [1]; (4) each software design Pattern is designed for achieving a

particular purpose; (5) They can reduce development time as known solutions are used

instead of reinventing the wheel; (6) because software design patterns are extensively

used across different solutions, another benefit is that they are known solutions that are

tried and tested; and (7) design patterns make the communication of development teams

easier.

It is difficult to be certain that patterns themselves are meaningful and contain no

inconsistencies. In some cases, descriptions of patterns are intentionally left loose and

incomplete to ensure that they are applicable in a range as wide as possible. This reduces

 3

understanding and interpretation upon appropriate patterns usage. Describing the pattern

in a more formal description could help alleviate these problems but at the same time

make them harder to understand and implement them during the software development.

Currently, design pattern languages have mostly described design patterns using a

combination of natural language, UML-style diagrams [3, 4], complex mathematical or

logic based formalisms [5-7], which the average programmer finds difficult to

understand. This leads to complications in incorporating design patterns effectively into

the design of new software.

The motivation for using design patterns in the software development is to improve the

quality of software by improving its structure. The motivation for formalizing design

patterns is to improve their quality and make them easier to understand and implement

them in the application. In the case of design pattern language, this means having a

language which reduces the problems that arise due to their too loose description or too

much formal description. In other words, a design pattern language which have the

flexibility of defining the design pattern in a very generic term by the software designers,

which can cover all the different instances of that design pattern. Also at the same time

the design pattern language should provide the capability to define the design pattern in

such a way which can help software developers to create an exact replica of the design

pattern during implementation.

 4

1.1 PROBLEM

As the use of the software design patterns is on the rise, there is more demand to have a

language that provides support for a consistent, unambiguous and a simple way of

sharing design patterns knowledge. When many teams are working independently on

software, ambiguous and unclear communication can cause serious bugs in the system

[8]. The communication should be in simple terms and easily understandable by all levels

of software engineers.

Several design pattern languages exist; however, they have few shortcomings. Languages

like LePUS [5] and eLePUS [6] are based on formal mathematical techniques which

makes it hard for all programmers to understand and use them. These languages

concentrate on structural aspect of the design pattern and do not convey semantics of the

underlying design patterns. RBML [3] and DPML [4] languages are based on UML

notation; UML based modeling techniques are still considered as semi-formal [9]. These

languages also lack the support for pre and post conditions which sometime require

textual support.

Therefore, there is a need for a new design pattern specification language that uses the

distinctive characteristics of Extensible Markup Language (XML), JavaScript Object

Notation (JSON) or other commonly used representation languages. The language should

be simple, extensible and interoperable. These characteristics can satisfy some new

requirements like platform independence, textual and graphical support and easy

integration into Integrated Development Environments for modeling tools and

technologies in the age of the Internet/Web.

 5

1.2 OBJECTIVES

The main objective of this research is to develop a design pattern definition language

(DPDL) which is platform independent, usable and understandable by all levels of

software engineers. The language should exhibit the following characteristics:

i. The language should be unambiguous; pattern definition should have or exhibit a

single clearly defined meaning.

ii. The language should be easily extendible; the language should be able to

handle different variation of same design pattern.

iii. The language should be based on existing technologies, as much as possible, to

have wider and faster acceptance.

iv. The language should be able to produce graphical/UML output.

1.3 RESEARCH METHODOLOGY

In order to achieve our objectives, the following approach will be taken:

i. Analyze the existing design patterns languages and their structural characteristics.

ii. Define properties for the target design pattern language by analyzing the

characteristics of the existing languages and the objective of the proposed design

pattern language. .

iii. Select the appropriate representation language for the new proposed design

patterns language. .

 6

iv. Define a meta-model for the design patterns definition language.

v. Develop a tool to verify and validate the structural and behavioral conformance

and integrity of the design patterns described using DPDL by converting the

design patterns into UML diagrams.

vi. Finalize and publish the results.

 7

CHAPTER 2

BACKGROUND

2.1 OBJECT ORIENTED PROGRAMMING

The general lack of consensus regarding fundamental Object Oriented (OO) concepts is

clearly illustrated by a recent survey of existing literature related to OO development

performed by Armstrong [10]. Two hundred and thirty nine articles, books, and

conference proceedings related to OO development were examined by Armstrong trying

to identify the essential elements of OO development. Thirty nine concepts were

identified, but only eight of these were utilized by the majority of the sources reviewed.

Armstrong states that the lack of consensus may be because we do not yet thoroughly

understand thse fundamental concepts that define the OO approach.

The idea behind object-oriented programming is that a computer program is composed of

a collection of individual units, or objects, as opposed to a traditional view in which a

 8

program is little more than a list of instructions to the computer. Each object is capable of

receiving messages, processing data, and sending messages to other objects. In this way,

messages can be handled, as appropriate, by one chunk of code or by many in a seamless

way.

2.1.1 Class Based Model

Object-oriented design [11] is the construction of software systems as a structured

collection of classes. The emphasis is on structuring a system around the types of objects

it manipulates (not the functions it performs on them) and on reusing whole data

structures together with the associated operations (not isolated routines). Classes are

designed as units which are interesting and useful on their own, independently of the

systems to which they belong; therefore they can be reused by many different systems.

Software construction is thus viewed as the assembly of existing classes, not as a top-

down process starting from scratch [12].

The object oriented approach attempts to manage the system complexity by abstracting

out knowledge and encapsulating it within interacting objects, which are instances of

specific classes [13]. Hence, a part can be viewed as a single object or a collection of

interacting objects delivering a specific functionality. If we view a part as a design

problem to be solved, regardless of the approach chosen, it is likely that others have

already solved a similar problem in a satisfactory manner. If we can utilize this

knowledge, the quality of the system may be improved. One of the approaches is to

 9

identify reoccurring design problems and their well-proven solutions are; to use software

design patterns.

2.1.2 Design Pattern in Object Oriented Programming

A technique often utilized by expert designers is to reuse solutions that have worked for

them in the past. When they find a good solution, they use it again and again. Such

experience is part of what makes them experts. Consequently, one can find recurring

patterns of classes and communicating objects in many object-oriented systems [1].

These patterns solve specific design problems and make object-oriented designs more

flexible, elegant and ultimately reusable.

A design pattern is an abstraction of practical experience and empirical knowledge, but it

is also a description of the problem it addresses and a solution to it [14, 15]. While the

design pattern provides a canonical solution to the described problem, human interaction

and interpretation is required to apply the solution in different contexts.

Patterns are uniquely named and written in a consistent format that allows designers,

developers, and others to communicate using a common vocabulary. Related patterns are

grouped in collections, or ideally languages. Design patterns can facilitate the entire

design and development process because they express ideas and solutions founded in

experience traditional methodologies cannot. They communicate architectural ideas in a

consistent high-level language.

As the design phase is so central to OO development, it is paramount that the design is

sound and durable. While the OO method may guide the design process, it cannot offer

 10

the specific knowledge represented by a pattern. Patterns known by the designer can be

used as a tool in the design process because they offer proven solutions to common

problems, which ideally heighten the quality of the design. Part of the pattern knowledge

is describing the objects and their relationships relevant for the given scenario, thereby

making the job of the designer a little easier. As a benefit, the application of well-known

patterns will probably make the design seem more familiar to other designers as well.

Figure 2.1 illustrates the OO software development life-cycle commonly used and the

relation to patterns. It does not show the deployment and evaluation phases.

Figure 2.1 OO development life-cycle and patterns. [13]

2.2 A DEFINITION OF DESIGN PATTERN

A design pattern is a pattern whose form is described by means of software design

constructs, for example objects, classes, inheritance, aggregation and use-relationship

[16].

 11

In "Understanding and Using Patterns in Software Development" [16], Dirk Riehle and

Heinz Zullighoven gave a nice definition of the term "pattern" which is very broadly

applicable:

A pattern is the abstraction from a concrete form which keeps recurring in specific non-

arbitrary contexts.

So according to Dirk and Zullighoven, the notion of a pattern is "geared toward solving

problems in design." More specifically, the concrete form which recurs is that of a

solution to a recurring problem. But a pattern is more than just a battle-proven solution to

a recurring problem. The problem occurs within a certain context, and in the presence of

numerous competing concerns. The proposed solution involves some kind of structure

which balances these concerns, or "forces", in the manner most appropriate for the given

context. Using the pattern form, the description of the solution tries to capture the

essential insight which it embodies, so that others may learn from it, and make use of it in

similar situations. The pattern is also given a name, which serves as a conceptual handle,

to facilitate discussing the pattern and the jewel of information it represents. So a

definition which more closely reflects its use within the patterns community is given by

Brad [17]:

A pattern is a named nugget of instructive information that captures the essential

structure and insight of a successful family of proven solutions to a recurring problem

that arises within a certain context and system of forces.

A slightly more compact definition which can be extracted from the above definition also

given by Brad is [17]:

 12

A pattern is a named nugget of insight that conveys the essence of a proven solution to a

recurring problem within a certain context amidst competing concerns.

Patterns are usually concerned with some kind of architecture or organization of

constituent parts to produce a greater whole. Richard Gabriel, author of Patterns of

Software: ―Tales From the Software Community‖ [18], provides a clear and concise

definition of the term pattern in the Patterns Definitions section of the Patterns Home

Page:

Each pattern is a three-part rule, which expresses a relation between a certain context, a

certain system of forces which occurs repeatedly in that context, and a certain software

configuration which allows these forces to resolve themselves.

As an element in the world, each pattern is a relationship between a certain context, a

certain system of forces which occurs repeatedly in that context, and a certain spatial

configuration which allows these forces to resolve themselves.

As an element of language, a pattern is an instruction, which shows how this spatial

configuration can be used, over and over again, to resolve the given system of forces,

wherever the context makes it relevant.

The pattern is, in short, at the same time a thing, which happens in the world, and the rule

which tells us how to create that thing, and when we must create it. It is both a process

and a thing; both a description of a thing which is alive, and a description of the process

which will generate that thing, Jim Coplien writes in Software Patterns [19]:

“I like to relate this definition to dress patterns. I could tell you how to make a dress by

specifying the route of a scissors through a piece of cloth in terms of angles and lengths

of cut. Or, I could give you a pattern. Reading the specification, you would have no idea

 13

what was being built or if you had built the right thing when you were finished. The

pattern foreshadows the product: it is the rule for making the thing, but it is also, in many

respects, the thing itself.”

So it shows that a pattern involves a general description of a recurring solution to a

recurring problem replete with various goals and constraints. But a pattern does more

than just identify a solution; it also explains why the solution is needed!

2.3 HISTORY OF DESIGN PATTERNS

In 1987, Ward Cunningham and Kent Beck were working with Smalltalk and designing

user interfaces. They decided to use some of Alexander's [20] ideas to develop a small

five pattern language for guiding novice Smalltalk programmers. They wrote up the

results and presented them at OOPSLA'87 in Orlando in the paper "Using Pattern

Languages for Object-Oriented Programs‖ [21].

Soon afterward, Jim Coplien began compiling a catalog of C++ idioms (which are one

kind of pattern) and later published them as a book in 1991, ―Advanced C++

Programming Styles and Idioms‖ [22].

From 1990 to 1992, various members of the Gang of Four met and compiled a catalog of

patterns. Discussions of patterns abounded at OOPSLA'91 at a workshop given by Bruce

Andersen (which was repeated in 1992). Some pattern advocates participated in these

workshops, including Jim Coplien, Doug Lea, Desmond D'Souza, Norm Kerth, Wolfgang

Pree, and others.

 14

In August 1993, Kent Beck and Grady Booch sponsored a mountain retreat in Colorado,

the first meeting of what is now known as the Hillside Group. Another patterns workshop

was held at OOPSLA'93 and then in April of 1994, the Hillside Group met again (this

time with Richard Gabriel added to the fold) to plan the first Pattern Languages of

Programs (PLoP) conference.

Shortly thereafter, the Gang of Four‘s Design Patterns book [1] was published. Journal of

Object Oriented Programming named it (in their September 1995 issue) both the best

Object Oriented (OO) book of 1995, and the best OO book of all time. In 1998, the Gang

of Four were awarded Dr Dobbs Journal 1998 Excellence in Programming Award.

2.4 CLASSIFICATION OF DESIGN PATTERNS:

Design Patterns are classified in many different ways. The most commonly used

classifications are discussed below:

2.4.1 Classification based on Purpose/Scope

The classification is based on two criteria, purpose and scope. The purpose criterion deals

with the kind of problem the pattern solves. The scope criterion groups the patterns in

class and object patterns. Class patterns are based on relationships between classes,

mainly inheritance structures. Object patterns dynamically let objects reference each

other [1].

 15

Table 2.1 Classification of Design Pattern on Scope\Purpose basis [1].

Scope \ Purpose Creational Structural Behavioral

Class Factory Method Adapter (class) Interpreter

Template method

Object Abstract Factory

Builder

Prototype

Singleton

Adapter (object)

Bridge

Composite

Decorator

Façade

Flyweight

Proxy

Chain of Responsibility

Command

Iterator

Mediator

Memento

Observer

State

Strategy

Visitor

The purpose criterion sorts the patterns in three groups: Creational, Structural and

Behavioral.

Creational patterns deals with object creation. Structural patterns deal with compositions

of objects and classes. Behavioral patterns are used to distribute responsibility between

classes and objects.

 16

2.4.2 Classification based on Intent

Metsker in Design Pattern Java Workbook [23], adopts the notion that the intent of a

design pattern is usually expressed as the need to go beyond the ordinary facilities that

are built into programming Language. For example, Java has plentiful support for

defining the interfaces that a class implements. But if you want to adapt a class's interface

which cannot be changed to meet the needs of a legacy client which also cannot be

changed, you need to apply the ADAPTER pattern. In this way the intent of the

ADAPTER pattern goes beyond the interfacing facilities built into Java.

Categorizing patterns by intent does not mean that each pattern support only one type of

intent. But the Pattern is categorized under the primary intent.

Table 2.2 Classification of Design Pattern on Intent Basis [23]

INTENT PATTERNS

Interfaces Adapter, Facade, Composite, Bridge

Responsibility

Singleton, Observer, Mediator, Proxy, Chain Of Responsibility,

Flyweight

Construction

 Builder, Factory Method, Abstract Factory, Prototype,

Memento

Operations Template Method, State, Strategy, Command, Interpreter

Extensions Decorator, Iterator, Visitor

2.4.3 Classification based on Relationship among Design Patterns

In addition to the above mentioned classification, there is another classification based on

the relationships between the design patterns [17]. Each pattern has a ―related patterns‖

 17

section in their description. Most of these relations between design patterns are

assembled in Figure 2.2 below. Figure 2.2 does not show the relationship between

Adapter, Proxy and Bridge design patterns as no connecting relationship is found

between them and other patterns or even among themselves.

 18

Momento

Adapter

Proxy

Bridge
Iterator

Builder

Command

Composite

Decorator

Flyweight

Chain Of ResponsibilityInterpreter
Strategy

Mediator

Observer
State

Prototype

Abstract Factory

Singleton

Facade

Factory Method

Visitor

Template Method

Single Instance

Single Instance

Configuring Factory

Dynamically

Implement using

Often uses

Defining algorithm

step

Complex

Dependency

management

Adding OperationsSharing

states

Sharing

strategies

Changing skin

Versus guts

Sharing

Terminal

Symbols

Adding

operations
Defining

grammer

Sharing

composites
Defining the chain

Adding responsibilities

To the objects

Enumerating

children

Creating

composites

Composed using

Avoiding hysteresis

Avoiding traversals

Saving state of iteration

Figure 2.2 Classification of Design Patterns based on Relationship [1].

 19

2.4.4 Classification based on Organization:

Vince Huston has formulated a classification of design patterns based on the

organizational structure of the classes. This has resulted in a very unique shape which is

just like periodic table used in chemistry. The Figure 2.3 below shows this:

Figure 2.3: Design Pattern Elements classification

Gang of four design patterns [1] are also categorized according to the structural

similarities. There are 6 categories created by Vince Huston, which are listed below with

examples.

Wrapper Design Patterns

The design patterns belonging to wrapper design patterns can also be represented by left-

right symbols. They can also be distinguished by ―has a‖ relationship. They include

following design patterns

 20

Adapter: Wrap a legacy object that provides an incompatible interface with an object that

supports the desired interface

Facade: Wrap a complicated subsystem with an object that provides a simple interface

Proxy: Wrap an object with a surrogate object that provides additional functionality

Wrapper design patterns can be represented graphically as shown in Figure 2.4:

Figure 2.4: Wrapper Design Patterns

Inheritance Design Patterns:

These design patterns promote interface to a base class and bury implementation

alternatives in derived classes. They can be represented by up-down symbol. Graphical

representation of these design patterns are shown in Figure 2.5.

Strategy: defines algorithm interface in a base class and implementations in derived

classes.

Factory Method: defines "createInstance" placeholder in the base class, each derived

class calls the "new" operator and returns an instance of itself

Visitor: defines "accept" method in first inheritance hierarchy, defines "visit" methods in

second hierarchy can also be called as "double dispatch".

 21

Figure 2.5: Inheritance Design Patterns

Wrapper with Inheritance Design Patterns:

These design patterns wraps an inheritance hierarchy. It can be seen in Figure 2.6 that

two separate structures are linked together:

Figure 2.6: Wrapper with Inheritance Design Pattern

The example of Wrapper with Inheritance design patterns are:

Builder: The "reader" delegates to its configured "builder", each builder corresponds to a

different representation or target

 22

State: The FiniteStateMachine delegates to the "current" state object, and that state object

can set the "next" state object

Bridge: The wrapper models "abstraction" and the wrappee models many possible

"implementations", the wrapper can use inheritance to support abstraction specialization

Observer: The "model" broadcasts to many possible "views", and each "view" can dialog

with the "model"

Recursive Composition Design Patterns

These design patterns have recursive calls through which they handle queries.

Figuratively they can be shown as in Figure 2.7

Figure 2.7: Recursive Composition Design Pattern

The examples of these design patterns are

Composite: Derived Composites contain one or more base Components, each of which

could be a derived Composite

 23

Decorator: A decorator contains a single base Component, which could be a derived

ConcreteComponent or another derived Decorator

Chain of Responsibility: Defines "linked list" functionality in the base class and

implement "domain" functionality in derived classes

Interpreter: Maps a domain to a language, the language to a recursive grammar, and the

grammar to the Composite pattern

Cloud Design Patterns

These design patterns encapsulate methods. The examples for these design patterns are

Command: Encapsulates an object, the method to be invoked, and the parameters to be

passed behind the method signature "execute"

Iterator: Encapsulates the traversal of collection classes behind the interface "first, next,

isDone"

Mediator: Decouples peer objects by encapsulating their "many to many" linkages in an

intermediary object

Memento: Encapsulates the state of an existing object in a new object to implement a

"restore" capability

Prototype: Encapsulates use of the "new" operator behind the method signature "clone" ...

clients will delegate to a Prototype object when new instances are required

The design patterns belonging to cloud category are shown in Figure 2.8.

 24

Figure 2.8: Cloud Design Pattern

Miscellaneous

The final category for the design patterns is miscellaneous. It includes all those design

patterns which does not belong to any other category. These design patterns are:

Abstract Factory: Models "platform" (e.g. windowing system, operating system,

database) with an inheritance hierarchy, and model each "product" (e.g. widgets, services,

data structures) with its own hierarchy. Platform derived classes create and return

instances of product derived classes

Template Method: Defines the "outline" of an algorithm in a base class. Common

implementation is staged in the base class; peculiar implementation is represented by

"place holders" in the base class and then implemented in derived classes

Flyweight: When dozens of instances of a class are desired and performance bogs down,

externalize object state that is peculiar for each instance, and require the client to pass

that state when methods are invoked

 25

Singleton: Engineers a class to encapsulate a single instance of itself, and "lock out"

clients from creating their own instances

All design patterns belonging to miscellaneous category are shown in Figure 2.9:

Figure 2.9: Miscellaneous Design Pattern

2.4.5 Enterprise Design Patterns

Mark Grand in his book Java Enterprise Design Patterns has 41 patterns in 6 categories

[24]. Some of these patterns are related to database. Table 2.3 list all the design patterns

mentioned in the book

 26

Table 2.3 Mark Grand Design Pattern Categorization

Fundamenta

l Design

Patterns

Creationa

l Design

Patterns

Partition

Design

Patterns

Structural

Design

Patterns

Behavioral

Design

Patterns

Concurrenc

y Design

Patterns

Delegation Abstract

Factory

Layered

Initializatio

n

Adapter Little

Language

Interpreter

Single

Threaded

Execution

Interface Builder Filter Iterator Chain Of

Responsibilit

y

Guarded

Suspension

Proxy Factory

Method

Compositio

n

Bridge Command Balking

Immutable Prototype Façade Mediator Scheduler

Marker

Interface

Singleton Flyweight Snapshot Read/Write

Lock

 Object

Pool

 Dynamic

Linkage

Observer Producer-

Consumer

 Virtual

Proxy

State Two-Phase

Termination

 Decorator Null Object

 Cache

Managemen

t

Template

Method

 Strategy

 Visitor

Fundamental Patterns

The fundamental patterns category includes those design patterns which are extensively

used in other design patterns. Therefore fundamental design patterns are considered as

important design patterns by the author.

Creational Patterns

Design patterns included in creational patterns provide guidance on how to create objects

when their creation requires making decisions. These decisions will typically involve

 27

dynamically deciding which class to instantiate or to which object, an object will delegate

responsibility. The creational design patterns tell us how to structure and encapsulate

these decisions.

Partitioning Patterns

Partitioning design patterns are based on divide and conquer strategy. A complex

problem that is difficult to solve is divided into simpler problems that are easier to solve.

Structural Patterns

The structural design patterns describe common ways that different type of objects of

different classes can be organized to work with each other.

Behavioral Patterns

The behavioral design patterns are responsible for the organization, management and

combining the behavior of the objects.

Concurrency Patterns

The problems of concurrent operations are handled by concurrency design patterns. The

concurrency problems arise when shared resources are used in a program or when the

correct sequence of operation is critical for the desired working of the program.

 28

2.5 EXTENTENSIBLE MARKUP LANGUAGE (XML)

2.5.1 Background of XML

XML (Extensible Markup Language) was released (recommended) in 1998 by the World

Wide Web Consortium (W3C) [25]. It is a base definition meant to be extended for

application usage. XML was developed from Standard Generalized Markup Language by

reducing it to the maximum. XML is currently one of the corner stone of many modern

applications. In many articles it is even named the lingua franca of the Web. That is one

of the reasons we have selected it for design pattern definition language (DPDL).

XML is a markup language that is used to store information as Semi Structured Data.

Semi-structured data is often described as "schema-less" or "self-describing". Meaning of

these terms is that no pre-imposed schema or type system is needed for the interpretation

of semi-structured data. So in semi-structured model there is no separation between the

data and schema [26]. Markup language got first mentioned by William W. Tunnicliffe at

a conference in 1967 then called generic coding [27]. The purpose in mind was to have a

generic marking up of text to express the presentation style to be used without using

printer (or more generally: output) specific codes.

Table 2.4 shows the history of XML timeline.

 29

Table 2.4 History of XML

1967 Generic Coding

1968 GML by Goldfarb, Mosher, Lorie (IBM)

1986 SGML gets ISO 8879

1989 HTML by Tim Berners-Lee (CERN)

1998
Extensible Markup Language (XML) Version
1.0

2.5.2 Semi-Structured Data

Semi Structured Data means that data and information about the structure of the data are

stored together. Relational databases on the other hand mostly have a data dictionary

holding the structure information which is separated from the data itself.

Semi Structured Data can be used for data exchange and for long term storage of data.

The advantage of semi-structured data is that the data format does not have to be agreed

on by all parties. The data provider is ordering the data and the receiving parties will be

able to extract the data (or parts of it) as the structure information is sent with the data. As

soon as the interpreter of the structure information is implemented it can be used for all

further implementations.

For long-time storage of data, it is often a problem that a set of exported data needs to be

imported by software that has replaced the one which created the data set. Using semi-

structured data should make it easier for the replacing software to import such data sets.

But XML is not meant to be used directly in applications. It is a meta-language to be

derived for specific application purposes which are then called XML Applications.

 30

2.5.3 XML Structure

XML Documents are trees of elements with exactly one root element. Every element in

the tree has to have exactly one parent but a parent can have multiple children, in this

way XML forms hierarchical trees. Overlapping of elements is not allowed. An element

can contain child element and can also contain attributes and text content [28].

Syntactically elements consist of a start-tag, the element content and an end-tag. Start-

tags begin with < and end with > or /> for empty elements. Besides the square brackets a

start-tag contains the element name and a list of attribute name and value pairs. After the

start-tag, and if it is not an empty element, text content and child element nodes follow in

any order and multiplicity until the end-tag of the element is reached. The end-tag begins

with </, ends with > and only contains the element name. For data modeling and mapping

purposes only elements, attributes and text content is used. XML Documents can also

contain processing instructions, comments and entity references, but these are handled by

lower layers of XML parsing and not used for data representation or mapping.

XML names, which are used for element names and attribute names, can be built of

nearly every letter or number out of every character set available (at least since XML

1.1). The only characters which are not allowed are white space characters and

punctuation characters (e.g. < and &).

XML Documents have to be at least well formed otherwise they must not be considered

to be XML Documents at all and will not be processed. Well formed means that all rules

for structure, names and character-set are followed. In addition a XML Document can be

valid, which means it is well formed and conforms to a schema definition. Schema

 31

definitions can be written in Document Type Definition (which is part of the XML

standard), W3C Schema Definition Language, RelaxNG or any other schema language.

2.5.4 DTD & Schema

The Document Type Definition (DTD) language is defined in the XML 1.0

Recommendation. It allows defining an XML Application.

When XML was released, DTD was the only schema language to define XML

Applications. Three years later (2001) World Wide Web Consortium (W3C) released a

new language to define XML Applications: W3C XML Schema. W3C XML Schema is

itself an XML Application which means that its syntax is pure XML and schema

definitions written in W3C XML Schema can be validated with the same mechanisms

like any other XML Application. It introduces the concept of types which means that

every element is of a certain type. Types are provided by W3C XML Schema (built-in-

types) and can also be defined by the user.

 32

CHAPTER 3

LITERATURE REVIEW

During the literature review, no formal classification of the design pattern languages was

found in the literature. This led us to categorize the design pattern languages. We

identified that most common design pattern languages can be classified on two different

criteria. First classification is based on the objective of the design patterns. Each design

pattern language is created with specific primary objective, e.g. some languages are

created for detecting design patterns in the code, while others are created for verifying

and validating design patterns. So the languages created for detecting design patterns will

need to have different capabilities than the one which is used for verifying and validating

a design pattern.

Second classification is based on the syntax or the framework of the design pattern

language. Some design pattern languages are built on formal methods. Similarly other

languages of design patterns are build on UML. Still others are built on Prolog or other

general purpose programming languages. So the languages which are based on set of

 33

visual abstraction lack formality, whereas formal design pattern languages cannot handle

all behavioral aspects of design pattern [29].

In this thesis we are going to use the classification of design pattern languages on their

underlying component. The pattern languages can be divided into three categories based

on their syntax. Languages that are based on Mathematical Formalism, others are

languages that are based on UML and the last one are the languages that are based on

some other general purpose programming languages like prolog or etc.

3.1 LANGUAGES BASED ON FORMAL MATHEMATICAL LOGIC

One of the first attempts trying to solve the design pattern language problem was through

formal approaches [5, 30]. This category contains languages which use mathematical

formalism for design patterns. Mostly they use the language for verification and

validation for the design pattern. The formal approaches try to solve the problems

through complex mathematical notations to find precision and correctness. The structural

short comings were tried to be removed through using First order logic (FOL) [31]. To

remove the deficiencies of behavioral aspect Temporal logic of actions (TLA) has been

utilized [32].

The formal specification lacks the component specification nature of the design pattern

and is more concerned with the specification of the individual participants and

component of the design pattern [33].

Following section provides the description of this type of design pattern languages.

 34

3.1.1 LePUS

LePUS is a formal approach to solve the design pattern problem. It is very

comprehensive and has been validated in the context of different design patterns; it

describes only the structure of design patterns [5].

The LePUS language is built on higher order monadic logic to express solutions proposed

by design patterns. It uses primitive variables to represent the classes and functions in the

design pattern. The fundamental design elements such as classes, methods and

inheritance hierarchies, are specified as sets and functional relations between them. The

predicates over these variables describe characteristics or relationships between the

elements. LePUS also uses icons (squares, ovals and triangles) for visual notation for

LePUS formulas that represent variables or sets of variables and annotated directed arcs

representing the predicates.

The drawbacks with LePUS are that firstly it is based on mathematics and formal logic,

which makes it difficult for average software developers to work with. This also provides

a weak basis for integrated tool support. The one proposed tool support for LePUS is

based on Prolog and it also lacks support for the visual notation. The current notation

defines many abstractions to make diagrams terse. Thus there are many different

syntactic elements leading to diagrams that, while compact, are difficult to interpret. One

of other drawback of LePUS is that it concentrates solely on defining design pattern

structures, and has no mechanism for integrating instances of design patterns into

program designs or code [4].

 35

Lepus formula address most of static and dynamic properties of design patterns [34].

However the complex mathematical expressions make it difficult to understand.

Moreover it can also be seen that this specification is not sufficient for describing some

restrictions. For example, this approach facilitates the specification of method

invocations, but does not enable the description of restricted method invocation.

Furthermore, mathematical relations used in this specification are not sufficient for

detecting relationships such as Variants and May-Use [35].

3.1.2 eLePUS

The shortcomings of LePUS were tried to be rectified by Eden in eLePUS [34]. He

enhanced the LePUS as a language for specifications concerning object-oriented design

and architecture. He tried to overcome the ambiguities of natural languages and

incompleteness of visual representations. An approach was also suggested for tackling

various management issues related to creating and maintaining a repository of Design

patterns based on its underlying mathematical model.

eLePUS provides the formalization of three additional aspects, augmenting the structural

specification the LePUS supplies [30]. These three additional aspects are Intent,

Applicability and Collaboration of a Design pattern. The enhancements provided in

eLePUS are in: a) Amendments to basic abstractions, b) Addition of new constructs, c)

Modifications to the representation of patterns. Moreover eLePUS allows temporal

relations which indicate a time instant when the relation is realized. It is to be

remembered that eLePUS has the same foundation as LePUS.

 36

Structure and collaboration of Factory Method as defined in eLePUS are shown in Figure

 3.1 and Figure 3.2 below respectively:

Figure 3.1 Structure of Factory Method as defined in eLePUS

Figure 3.2 Collaboration of Factory Method as defined in eLePUS

3.1.3 LOTOS

Another Formal specification of design patterns and their composition is based on the

language of temporal ordering specification (LOTOS). It is proposed by Saeki [7]. The

basis of LOTOS is Calculus of Communicating Systems (CCS) for behavior

specification. For specifying the data the algebra of abstract data type (ADT) is used.

LOTOS was originally devised by the International Organization for Standardization

(ISO) to specify the layers and their interaction for the open system interconnection (OSI)

 37

model. But Saeki has used LOTOS for specifying patterns that appeared in Gamma et al.

[1] and their composition.

The strength of LOTOS is in describing the network layers specification, therefore its

adaptation to patterns did not yield simple and clear specifications, as expected by any

formal specification language. LOTOS was used by Saeki to formally specify the

Command and Composite patterns and their composition. It is a very lengthy

specification in LOTOS and only specify the behavioral aspect of the design patterns

[36].

The template of composite pattern can be seen in Figure 3.3.

process CompositePattern{<Leaf_j>j=1,m : process,

 <operation>i=1,n)[new,<operation>i=1,n]

: noexit :=

 Component{<Leaf_j>j=1 ,m} [new,<operation>i=1 ,n]

where

 process Component{<Leaf_j>j=1,m}[<operation>i=1,n]

 : noexit :=

 Constructor-Composite [new ,<operation>i=i ,n](O, nil)

 | | |

 (| | | Constructor-{Leaf_j}[new,<operation>i=i,n](O))

 j=1 ,m

 where

 for j=1,m

 process Constructor-{Leaf_j}

 [new,<operation>i=1,n](id:Nat) : noexit :=

 new!Leaf!id ;

 ({Leaf-j}[<operation>i=1,n] (id)

 | | |

 Constructor-{Leaf_j)

 [new,<operation>i=1,n] (id+1)

)

where

 process {Lea_j)[<operation>i=1.n] (id:Nat)

 : noexit :=

 (operation?x:Obj [x=pair({Leaf_j),id)] ; exit

 []

 operation?x:Obj [not(x=pair({Leaf_j),id)] ; exit

) >>

 {Leaf_j}[<operation>i=1,n] (id)

 endproc

endproc

for-end

process Constructor-Composite

 [new, <operation-i>i=1 ,n] (id: Nat)

: noexit :=

 38

 new!Composite!id?children:List ;

 (Composite[<operation,i>i=1,n] (id,children)

 | | |

 Constructor-Composite

 [new, coperation-i>i=1 ,n] (id+1)

)

 where

 process Composite[<operation-i>i=1,n]

 (id:Nat,children:List)

 : noexit :=

 (operation?x:Obj [x=pair(Composite,id)] ;

 Composite1 [<operation-i>i=1 ,n] (id, children)

 []

 operation?x:Obj[not(x=pair(Composite,id))] ;

 exit

)

 >> Composite[<operation-i>i=1,n] (id,children)

 where

 process Compositel[<operation_i>i=1.n]

 (id:Nat,children:List)

 : exit :=

 [children=nil] -> exit

 []

 [not (children=nil)]

 -> operation!car(children);

 Composite1 [<operation>i=1 .n]

 (id,cdr(children))

 endproc

 endproc

endproc

endproc

endproc

Figure 3.3: Behavioral Specification of Composite Pattern in LOTOS

3.1.4 DisCo

DisCo is another specification language for the design patterns proposed by Mikkonen

[37]. The behavior of each pattern is formalized as a layer in DisCo. The composition of

Design patterns is defined as a refinement on the layers of specification.

DisCo can also be considered as the combination of an object-oriented view with an

action-oriented view. The language is based on an action system, which is the behavioral

part of the design patter, similar to that provided by UNITY [38], but has the formal basis

 39

in the Temporal Logic of Actions (TLA) [32]. The essential constituents of the formalism

are; (i) classes, (ii) guarded actions, and (iii) relations. A class declaration describes the

data elements provided by objects of a particular type. The declaration does not include

any method information, since objects are treated strictly as data elements — they do not

provide methods. Instead, individual actions receive objects as parameters, and are

responsible for manipulating the data that they contain. A specification may additionally

introduce relations that characterize transient associations among groups of objects.

Objects can be associated and disassociated with one another through these relations as

part of an action‘s execution.

The specification approach succeeds in capturing the temporal properties of interest. It is

insufficient, however, as a technique for characterizing the implementation requirements

that must be satisfied when applying a particular design pattern, as well as the system

properties that are guaranteed by virtue of its application. Most fundamentally, the

approach provides inadequate structural guidance. By separating actions from objects —

violating a principal tenet of object-oriented design — the resulting specifications do not

provide guidance as to how individual classes must be structured. Indeed, a designer

might provide an implementation that satisfies the temporal properties characterized by a

particular specification, but clearly violates the structural properties that make the pattern

a good solution in the eyes of the object-oriented community.

Similar comments apply to the behavioral guidance provided by the formalism. Consider,

for example, the case of the Observer pattern. The specification described in [37] make it

clear that there is a method — or group of methods — corresponding to the Notify()

action. It does not, however, characterize the conditions under which Notify() must be

 40

executed, nor does it specify the relevant call sequence conditions that the action must

satisfy. Indeed, these conditions are not easily specified using DisCo, since actions

cannot invoke other actions directly — action selection is non-deterministic. Moreover,

the approach does not consider methods outside of the pattern‘s implementation. Hence,

there is no mechanism for imposing conditions on the application-level methods that

might interfere with the correct application of a pattern.

Finally, it is worth mentioning that the approach limits the flexibility of design patterns,

since DisCo specifications are not parameterized. In the case of the Observer pattern, for

example, the specification adopts a definition of consistency that requires the state of

every observer to be identical to the state of the subject being observed. This definition of

the pattern is of course more restrictive than the original pattern characterization in [1].

3.1.5 BPSL

Formal specification of design patterns allows well defined specifications and also helps

in building tool support. The main objective for developing Balanced Pattern

Specification Language (BPSL) was to cope with the shortcomings of the existing formal

approaches for pattern specification. BPSL‘s ultimate objective is to complement (not

replace) informal approaches in order to allow users to know exactly when and how to

use patterns. BPSL formally specify the structural as well as behavioral aspects of

patterns at three levels of abstraction: pattern composition, patterns, and pattern instances

[39].

 41

BPSL is a very interesting approach. In BPSL the structural description of the pattern is

described in first order logic, but the behavioral aspect of the design pattern is described

in TLA (temporal Logic of Action). The most interesting point of the BPSL approach is

the introduction of a very high abstraction layer in the description of the behaviors of

Design patterns. David and Taibi introduced temporal relations (predicates) between

instances, and the behavior is specified as temporal actions defined on those predicates

[40].

The specification of the Observer Pattern according to BPSL whose class diagram can be

seen in Figure 3.4 is shown in Figure 3.5.

Figure 3.4: Class Diagram of Observer Pattern [39]

 42

Figure 3.5: BPSL Specification of Observer Pattern [39]

The main idea of BPSL is derived from LePUS and DisCo, therefore it shares many of

the advantages and disadvantages of these two languages. BPSL appears to be a very

good approach for capturing the structural properties of the design pattern. Moreover,

since the approach relies on a subset of First Order Logic, rather than the higher order

logic of LePUS, the resulting specifications are generally less complex. This also means

that as compared to LePUS, the expressivity of the language is reduced. It is unclear,

however, whether the additional expressivity offered by LePUS is required to capture the

 43

structural properties of interest. For the behavioral properties, the abilities and limitations

of BPSL are identical to those of DisCo.

One of the critic of these formally defined design patterns is that they have not been

particularly clear on why the formal descriptions are needed and how the benefits of

formally defined patterns can be utilized to outweigh the obvious costs of describing

patterns using formal notations [41].

3.2 LANGUAGES BASED ON UML

Since its emergence in the middle of nineteen nineties, the Unified Modeling

Language (UML) has become de facto a standard for modeling object-oriented

software systems [42]. UML is widely accepted by software community, and its bases are

known by majority of software designers. UML is supported by almost all CASE tools

for modeling object-oriented systems, such as for example Rational Rose, Enterprise

Architect, Telelogic Tau, NoMagic MagicDraw, etc.

UML based modeling techniques are still considered as semi-formal [9]. These languages

also lack the support of pre and post conditions which sometime require textual support.

Following two are good examples of UML based design pattern languages.

3.2.1 RBML

Role Based Meta-modeling Language (RBML) proposed by Kim and Dae [3]. It is a

meta-modeling technique to specify design patterns which is bases on UML. It is a

 44

language for characterizing families of UML models, and thus enabling specification of

structure, interactions, and state-based behavior of a design pattern. The concept used in

RBML is quite similar to the idea of Role-Elements of Pattern diagrams depicted by

Montes and Vela [43]. The concept of role-elements and bonds are not precisely defined

in Role Element of Pattern diagram. However in RBML visual notations are based on

UML1.4. Also for specifying the pattern properties Object constraint language (OCL) is

employed [44]. Therefore RBML is more elaborative and addresses more aspects of

solution proposed by a pattern [45].

In RBML specification of a design pattern defines a family of UML models in terms of

model roles [3]. Each model role is associated with a UML meta-class as its base, and

specifies properties that model element (which is an instance of the role‘s base meta-

class) must possess to play the role. Design pattern specification is a set of model roles

defining all restrictions required by the pattern.

RBML proposes three mutually complementary perspectives for specification of a

solution offered by a design pattern:

1. Static Pattern Specifications (SPS) – is set of model roles. The base UML meta-

classes for SPS are Classifiers or Relationships. They define structural aspects of

a design pattern.

2. Interaction Pattern Specifications (IPS) – is set of ‗interaction‘ roles. The base

UML meta-class for IPS is Interaction, used to constrain interactions between

pattern participants. An interaction role can consists of ‗lifeline‘ and ‗message‘

roles. The base UML meta-classes are Lifeline and Message respectively. Roles

defined in IPS are associated with roles defined in SPS.

 45

3. State Machine Pattern Specifications (SMPS) – is responsible for specifying state-

based behavior of a design pattern. SMPS consist of set of ‗state‘, ‗transition‘ and

‗trigger‘ roles whose base UML meta-classes are State, Transition, and Trigger

respectively.

The main drawback of Role Based Meta-modeling Language (RBML) is that it requires

extension of UML meta-model with new elements. Meta-modeling is a first-class

extension mechanism of UML2.0 handled through Meta-Object Facility (MOF) [42]. It

gives almost unlimited possibilities of extending UML2.0 meta-model. However up until

today the UML modeling tools do not allow for modifications of the meta-model they

work on.

Moreover, notation for representation of a design pattern instance proposed in Role Base

Meta-modeling Language is not clearly defined. However two approaches are suggested:

1. Notation mixing pattern specification with structure of classes from a design

model – pattern specification and its instance are depicted in the same diagram

and for each design model element taking part in the pattern instance it requires a

dashed line linking it with corresponding role defined in the pattern specification.

This solution clutters the presentation, especially when one design model element

plays few roles in different design pattern instances [45].

2. Approach basing on stereotypes – in this case for each model role defined in

any design pattern a corresponding stereotype is created. Design model

element playing a particular model role owns stereotype specific for this role, e.g.

for model role called ‗Adapter‘ corresponding stereotype <<Adapter>> is created,

class from design model playing model role ‗Adapter‘ owns stereotype

 46

<<Adapter>>. This approach has serious disadvantage, it requires new

stereotype for each defined model role, and thus makes the number of

necessary stereotypes infinite and therefore unmanageable. Moreover, such

notation is ambiguous and confusing when model roles have the same names or

when one design model element takes part in more than one pattern instance [45].

None of above mentioned approaches distinguishes particular instances of a design

pattern.

3.2.2 DPML

Maplesden et al. [4] proposed ―Design Pattern Modeling Language‖ (DPML) as a visual

modeling language offering constructs (e.g. interface, operation) to specification of

design patterns solutions and their instantiation. In this approach design pattern

specification is instantiated producing pattern instances. Design model elements are

linked to corresponding participants of the pattern instances. Proposed mechanisms for

specification of constraints are vague, and behavioral aspects of patterns are not taken

into consideration.

A pattern solution is realized by instantiating the specification, and binding the

instantiated pattern elements to UML model elements. An instantiated diagram consists

of ―proxy‖ elements that are instantiated from the pattern participants, and ―real‖

elements that are application-specific added during realization. A participant is played by

more than one model element. This is specified by a notion called ―dimension‖.

 47

For example, Abstract Factory Design pattern from Gamma et al [1] is used by designers

when they have to create variety of objects which are subclasses of a common root-class.

DPML models Abstract factory design pattern with an interface named AbstractFactory

and an operation named createOps. The createOps operation represents a set of

operations so it has an associated dimension (Products) as there is one operation for

creating each abstract product type. There is also a complete Declared_In relation

running from createOps to AbstractFactory. This relation implies that all methods linked

to the createOps operation in an instantiation of the pattern, must be declared in the object

that is linked to the AbstractFactory interface. The Products interface has the Products

dimension associated with it to imply there is the same number of abstract product

interfaces as there are abstract createOps operations. A regular Return_Type relation runs

from createOps to Products, implying that each of the createOps operations has exactly

one of the Products as its return type.

These set of participants define just the abstract part of the Abstract Factory pattern.

Another set of participants define the concrete part of the pattern which includes the

factory implementations, the method implementations that these factories define, and the

concrete products that the factories produce. The abstract part of the factory design

pattern can be seen in Figure 3.6.

 48

Figure 3.6: AbstractFactory design pattern in DPML [4]

A prototype tool was developed for DPML. The tool can be used to build pattern

specifications and UML class diagrams (what they call object diagrams), instantiate

specifications and to check consistency between specifications and class diagrams. The

pattern realization mechanism is similar to the templates in the UML in that pattern

participants are instantiated and bound to application elements. Such a template paradigm

is limited in instantiation in that they only allow uniform instantiation.

It is important to note that DPML can only be used to modal the generalized solutions

proposed by design patterns, not complete design patterns [4].The DPML described is at

a high level of abstraction and therefore will not contain the detailed information for

accurately identifying design patterns in source code; it will only identify possible design

patterns since the design pattern definition is course grained. Furthermore, it is not clear

 49

why a new notation had to be created instead of using the UML particularly when DPML

is developed for UML models.

3.3 LANGUAGES BASED ON PROGRAMMING LANGUAGES

These are design pattern languages which are based on some general purpose

programming languages. The prime examples for these types of design pattern languages

are discussed below.

3.3.1 SPINE

SPINE is loosely based on Prolog, as the HedgeHOg proof engine uses an internal proof

system similar to Prolog‘s execution [46]. It also makes addition of patterns and variants

easier to those who have programmed in Prolog before, rather than creating an entirely

new syntax. Lastly, as the pattern definitions are declarative by nature, and as Prolog is a

declarative language, the two closely match and thus is a natural choice for pattern

definitions.

Patterns are defined in terms of a number of standard predicates that correspond to the

structural and semantic constraints. For example, structural predicates include

isAbstract(C) and typeOf(M). The arguments to these predicates are literals that identify

the elements of the source code; for the same of simplicity, references to Java classes and

methods adopt the JavaDoc notation com.Example#method(type). Thus,

isAbstract(‗com.Example‘) is true when com.Example is an abstract type.

 50

These can be joined with standard connectives, such as ―and‖, ―or‖, and implies to form

logical statements over a range of classes and methods. As a result, it is possible to be

very specific that a particular class has some combination of methods or field types. It‘s

also possible to specify a constraint that exists over a range of classes as well. The two

quantifiers ―forAll‖ and ―exists‖ can be used to iterate over set operators, such as

methodsOf and subclassesOf (or even literal lists of classes). For example,

and([isAbstract(C),forAll(subclassesOf(C),Cs. isFinal(Cs)]) declares that both C is an

abstract class, and all of its subclasses (Cs) are final. At evaluation time, the forAll() is

expanded into a conjunction([isFinal(Cs), … ,isFinal(Csn)]) [46].

Together, these statements can be used to define certain properties of classes. This

technique work for any statements about class implementation, though in the use so far

this has just been used to reason about patterns.

HEDGEHOG than reads pattern specifications from SPINE, which allows users to

specify inter-class relationships and other path-insensitive semantic analysis (e.g., for

Factory Method pattern, the predicate ―instantiates(M, T)‖ checks whether a method M

creates and returns an instance of type T.), but other more complicated semantic analysis

is hard-wired to its built-in predicates (e.g., ―lazyInstantiates(...)‖). Thus, SPINE is

bounded by the capability of semantic analysis provided by HEDGEHOG [47].

The survey of the existing language has shown that most of the work in the formal design

pattern languages is done in the verification and validation of the design patterns. As

these languages are based on complex mathematical formalism therefore they cannot be

integrated into different development environments. To create graphical output is also not

the objective of these languages. The UML are based on graphical representation but they

 51

do not fully capture the behavioral aspect of design patterns. Furthermore they mostly

require multiple diagrams to explain a design pattern, which makes them harder to

decipher and more error prone. The comparison between features of the existing

languages and our proposed language is shown in the Table 3.1 below:

Table 3.1: Design Pattern Languages feature comparison

 Basis

Integra
table in

IDEs

Platform
Independ

ence

Templat
e

Support
UML

Support
learning curve For

Programmers

Graphic
al

Support Target

LePUS
mathematical
Logic No N/A Yes No

Required Strong
mathematical
Background (High) No

Verification of
Design Pattern on
First Order logic
basis

eLePUS
Mathematical
Logic No N/A Yes No

Required Strong
mathematical
Background (High) No

Design pattern
designing through
mathematical
formalism

DPML
UML based

No
(separa
te IDE) Yes Yes Yes

UML knowledge
required
(Medium) UML

Creating Design
patterns in UML

RBML
UML based No Yes No Yes

UML knowledge
required
(Medium) UML

Adding Support of
Design Pattern in
UML

DisCo
Temporal
Logic of
Action (TLA) No N/A Yes Yes

Based on rigid
Formal Apparatus
(High) No

Capturing
Behavioral Aspect
of Design patterns

SPINE

Prolog No N/A Yes No

Required Prolog
understanding
(Hard) No

Verification of
Design Pattern
Implementation in
Application

Ontolog
y Based
DPL

OWL (Web
Ontology) No Yes No No

Knowledge for
RDF & OWL
Required (Hard) No

Creation of
Knowledge
Artifacts based on
RDF

LOTOS
Temporal
Logic of
Action (TLA) No N/A No No

Based on rigid
Formal Apparatus
(High) No

Verifying the
Behavioral Aspect
of Design Patterns

BPSL
Temporal
Logic of
Action (TLA) No No Yes No

Based on rigid
Formal Apparatus
(High) No

Capturing
Behavioral Aspect
of Design patterns

DPDL
(Our
Approac
h) XML

Yes
(using
XML) Yes Yes Yes

XML knoweldge
required (Low)

Yes
(Optiona

l)

Easy initiation &
implementation in
Software
Development

 52

CHAPTER 4

DESIGN PATTERNS

4.1 INTRODUCTION

Design patterns are class combinations and accompanying algorithms that fulfill common

design purpose. A design pattern expresses an idea rather than a fixed class combination.

Accompanying algorithms express the pattern‘s basic operation [48].

As mentioned in Section 2.4.1, Gamma et al [1] have classified each of the design pattern

in one of the three categories, depending upon the purpose and scope of the design

pattern. These three categories are; (1) creational design patterns, (2) structural design

patterns, (3) behavioral design patterns. A short description for these categories is given

below.

 53

4.1.1 Creational Design Patterns

Creation design patterns help us to design applications involving collections of objects.

They allow the creation of several possible collections from a single block of code, but

with properties such as

 Creating many versions of the collection at runtime.

 Constraining the objects created, e.g. ensuing that there is only one instance of a

specific class [48].

4.1.2 Structural Design Patterns

Structural patterns address ways of combining classes via inheritance or class

composition to form larger structures useful in design. Before application of the pattern,

the functionality of the initial version of the system is typically carried out via a direct but

inflexible combination of objects. The new version introduces more objects and

indirection, but provides a more adaptable and reusable architecture [49].

4.1.3 Behavioral Design Patterns

Behavioral patterns are more complex than Structural patterns, as they concern algorithm

definition and distribution between objects, and the patterns of communication between

objects based on their data types [49].

 54

We have selected three design patterns for detail discussion, from Gamma et al[1] list of

design patterns. One design pattern from each category of; creational, structural and

behavioral is selected. The same three design patterns are also used as examples in

explaining Design Pattern Definition Language (DPDL) in Section 0 and Section 7.2.

4.2 ADAPTER METHOD

Adapter design pattern is one of the most common structural design pattern [50]. Adapter

design pattern adds extensibility in an application. Its common use in applications is also

the reason for its selection for testing our approach of Design Pattern Definition

Language (DPDL).

4.2.1 Intent

To convert the interface of a class into another interface clients expect. Adapter design

pattern lets incompatibly interfaced classes work together which in normal circumstances

cannot work together [1].

4.2.2 Motivation

Suppose a toolkit class that's designed for reuse isn't reusable only because its interface

doesn't match the domain-specific interface an application requires.

 55

Consider for example a drawing editor that lets users draw and arrange graphical

elements (lines, polygons, text, etc.) into pictures and diagrams. The drawing editor's key

abstraction is the graphical object, which has an editable shape and can draw itself. The

interface for graphical objects is defined by an abstract class called Shape. The editor

defines a subclass of Shape for each kind of graphical object: a LineShape class for lines,

a PolygonShape class for polygons, and so forth.

Classes for elementary geometric shapes like LineShape and PolygonShape are rather

easy to implement, because their drawing and editing capabilities are inherently limited.

But a TextShape subclass that can display and edit text is considerably more difficult to

implement, since even basic text editing involves complicated screen update and buffer

management. Meanwhile, an off-the-shelf user interface toolkit might already provide a

sophisticated TextView class for displaying and editing text. Ideally we would like to

reuse TextView to implement TextShape, but the toolkit was not designed with Shape

classes in mind. So we cannot use TextView and Shape objects interchangeably.

How can existing and unrelated classes like TextView work in an application that expects

classes with a different and incompatible interface? We could change the TextView class

so that it conforms to the Shape interface, but that is not an option unless we have the

toolkit's source code. Even if we do, it would not make sense to change TextView; the

toolkit should not have to adopt domain-specific interfaces just to make one application

work.

Instead, we could define TextShape so that it adapts the TextView interface to Shape's.

We can do this in one of two ways: (1) by inheriting Shape's interface and TextView's

implementation or (2) by composing a TextView instance within a TextShape and

 56

implementing TextShape in terms of TextView's interface. These two approaches

correspond to the class and object versions of the Adapter pattern. We call TextShape an

adapter [1].

4.2.3 Applicability

Use the Adapter pattern when

 User want to use an existing class, and its interface does not match the one you

need.

 User want to create a reusable class that cooperates with unrelated or unforeseen

classes, that is, classes that do not necessarily have compatible interfaces.

 User needs to use several existing subclasses, but it is impractical to adapt their

interface by sub classing every one. An object adapter can adapt the interface of

its parent class [1].

4.2.4 Structure

A class adapter uses multiple inheritances to adapt one interface to another

 57

Figure 4.1: Adapter Design Pattern [1]

4.2.5 Participants

Target (Shape)

 Defines the domain-specific interface that Client uses.

Client (DrawingEditor)

 Collaborates with objects conforming to the Target interface.

Adaptee (TextView)

 Defines an existing interface that needs adapting.

Adapter (TextShape)

 Adapts the interface of Adaptee to the Target interface [1].

 58

4.2.6 Collaborations

Clients call operations on an Adapter instance. In turn, the adapter calls Adaptee

operations that carry out the request [1].

4.2.7 Consequences

Class and object adapters have different trade-offs.

 A class adapter adapts Adaptee to Target by committing to a concrete Adapter

class. As a consequence, a class adapter would not work when we want to adapt a

class and all its subclasses.

 Lets Adapter override some of Adaptee's behavior, since Adapter is a subclass of

Adaptee.

 Introduces only one object, and no additional pointer indirection is needed to get

to the adaptee [1].

An object adapter

 Lets a single Adapter work with many Adaptees—that is, the Adaptee itself and

all of its subclasses (if any). The Adapter can also add functionality to all

Adaptees at once.

 Makes it harder to override Adaptee behavior. It will require sub classing Adaptee

and making Adapter refer to the subclass rather than the Adaptee itself [1].

 59

4.3 FACTORY METHOD

Factory method belongs to the creational design patterns category of Gamma et al [1]. It

is one of the heavily used design pattern in web application and especially in ASP.NET

based web applications [51]. Due to its extensive use in web application, this design

pattern is also used for testing our Design Pattern Definition Language approach.

4.3.1 Intent

Define an interface for creating an object, but let subclasses decide which class to

instantiate. Factory Method lets a class defer instantiation to subclasses [1].

4.3.2 Motivation

Frameworks use abstract classes to define and maintain relationships between objects. A

framework is often responsible for creating these objects as well. Consider a framework

for applications that can present multiple documents to the user. Two key abstractions in

this framework are the classes Application and Document. Both classes are abstract, and

clients have to subclass them to realize their application-specific implementations. To

create a drawing application, for example, we define the classes DrawingApplication and

DrawingDocument.

 60

The Application class is responsible for managing Documents and will create them as

required—when the user selects Open or New from a menu, for example. Because the

particular Document subclass to instantiate is application-specific, the Application class

can't predict the subclass of Document to instantiate—the Application class only knows

when a new document should be created, not what kind of Document to create. This

creates a dilemma: The framework must instantiate classes, but it only knows about

abstract classes, which it cannot instantiate. The Factory Method pattern offers a solution.

It encapsulates the knowledge of which Document subclass to create and moves this

knowledge out of the framework [1].

Application subclasses redefine an abstract CreateDocument operation on Application to

return the appropriate Document subclass. Once an Application subclass is instantiated, it

can then instantiate application-specific Documents without knowing their class. We call

CreateDocument a factory method because it's responsible for "manufacturing" an object

[1].

4.3.3 Applicability

Use the Factory Method pattern when

 A class cannot anticipate the class of objects it must create.

 A class wants its subclasses to specify the objects it creates.

 Classes delegate responsibility to one of several helper subclasses, and you want

to localize the knowledge of which helper subclass is the delegate [1].

 61

4.3.4 Structure

Figure 4.2: Factory Method Design Pattern [1]

4.3.5 Participants

Product (Document)

 Defines the interface of objects the factory method creates.

ConcreteProduct (MyDocument)

 Implements the Product interface.

Creator (Application)

 Declares the factory method, which returns an object of type Product.

 Creator may also define a default implementation of the factory method that

returns a default ConcreteProduct object.

 May call the factory method to create a Product object [1].

ConcreteCreator (MyApplication)

 62

 Overrides the factory method to return an instance of a ConcreteProduct.

4.3.6 Collaborations

Creator relies on its subclasses to define the factory method so that it returns an instance

of the appropriate ConcreteProduct.

4.3.7 Consequences

Factory methods eliminate the need to bind application-specific classes into your code.

The code only deals with the Product interface; therefore it can work with any user-

defined ConcreteProduct classes.

A potential disadvantage of factory methods is that clients might have to subclass the

Creator class just to create a particular ConcreteProduct object. Sub classing is fine when

the client has to subclass the Creator class anyway, but otherwise the client now must

deal with another point of evolution.

4.4 MEDIATOR METHOD

Mediator design pattern belongs to the category of behavioral design pattern. Mediator

design pattern is quite often use in simulations. If properly used, the mediator design

pattern can provide an order of magnitude O(n) or more reduction in complexity and run

 63

time [52]. Due to these distinct capabilities of mediator design pattern we included it also

in our testing of Design Pattern Definition Language (DPDL).

4.4.1 Intent

Define an object that encapsulates how a set of objects interact. Mediator promotes loose

coupling by keeping objects from referring to each other explicitly, and it lets you vary

their interaction independently [1].

4.4.2 Motivation

Object-oriented design encourages the distribution of behavior among objects. Such

distribution can result in an object structure with many connections between objects; in

the worst case, every object ends up knowing about every other.

Though partitioning a system into many objects generally enhances reusability,

proliferating interconnections tend to reduce it again. Lots of interconnections make it

less likely that an object can work without the support of others—the system acts as

though it were monolithic. Moreover, it can be difficult to change the system's behavior

in any significant way, since behavior is distributed among many objects. As a result, you

may be forced to define many subclasses to customize the system's behavior.

As an example, consider the implementation of dialog boxes in a graphical user interface.

A dialog box uses a window to present a collection of widgets such as buttons, menus,

and entry fields. Often there are dependencies between the widgets in the dialog. For

 64

example, a button gets disabled when a certain entry field is empty. Selecting an entry in

a list of choices called a list box might change the contents of an entry field [1].

Conversely, typing text into the entry field might automatically select one or more

corresponding entries in the list box. Once text appears in the entry field, other buttons

may become enabled that let the user do something with the text, such as changing or

deleting the thing to which it refers.

Different dialog boxes will have different dependencies between widgets. So even though

dialogs display the same kinds of widgets, they cannot simply reuse stock widget classes;

they have to be customized to reflect dialog-specific dependencies. Customizing them

individually by sub classing will be tedious, since many classes are involved.

You can avoid these problems by encapsulating collective behavior in a separate

mediator object. A mediator is responsible for controlling and coordinating the

interactions of a group of objects. The mediator serves as an intermediary that keeps

objects in the group from referring to each other explicitly. The objects only know the

mediator, thereby reducing the number of interconnections [1].

For example, FontDialogDirector can be the mediator between the widgets in a dialog

box. A FontDialogDirector object knows the widgets in a dialog and coordinates their

interaction. It acts as a hub of communication for widgets:

4.4.3 Structure

A typical Mediator design pattern will look like as in Figure 4.3.

 65

Figure 4.3: Mediator Design Pattern [1]

4.4.4 Applicability

Use the Mediator pattern when

 A set of objects communicate in well-defined but complex ways. The resulting

interdependencies are unstructured and difficult to understand.

 Reusing an object is difficult because it refers to and communicates with many

other objects.

 A behavior that's distributed between several classes should be customizable

without a lot of sub classing [1].

4.4.5 Participants

Mediator (DialogDirector)

 Defines an interface for communicating with Colleague objects.

ConcreteMediator (FontDialogDirector)

 66

 Implements cooperative behavior by coordinating Colleague objects.

 Knows and maintains its colleagues.

Colleague classes (ListBox, EntryField)

 Each Colleague class knows its Mediator object.

 Each colleague communicates with its mediator whenever it would have

otherwise communicated with another colleague [1].

4.4.6 Collaborations

Colleagues send and receive requests from a Mediator object. The mediator implements

the cooperative behavior by routing requests between the appropriate colleague(s) [1].

4.4.7 Consequences

The Mediator pattern has the following benefits and drawbacks:

 It limits sub classing. A mediator localizes behavior that otherwise would be

distributed among several objects. Changing this behavior requires sub classing

Mediator only; Colleague classes can be reused as is.

 It decouples colleagues. A mediator promotes loose coupling between colleagues.

You can vary and reuse Colleague and Mediator classes independently.

 67

 It simplifies object protocols. A mediator replaces many-to-many interactions

with one-to-many interactions between the mediator and its colleagues. One-to-

many relationships are easier to understand, maintain, and extend.

 It abstracts how objects cooperate. Making mediation an independent concept and

encapsulating it in an object lets you focus on how objects interact apart from

their individual behavior. That can help clarify how objects interact in a system.

 It centralizes control. The Mediator pattern trades complexity of interaction for

complexity in the mediator. Because a mediator encapsulates protocols, it can

become more complex than any individual colleague. This can make the mediator

itself a monolith that's hard to maintain [1].

 68

CHAPTER 5

DESIGN PATTERN DEFINITION LANGUAGE (DPDL)

As mentioned in literature review (Section Chapter 3) that most of the work done in the

field of Design pattern definition language is in formal specification and mathematical

area. The significance of this work cannot be denied but these formal specifications have

more significance in the academia than in the industry. In software industry these formal

specifications are not used much as they lack easy usage model, good tool support and

also lack wide spread acceptance in the software industry. They also expects a strong

mathematical background from the user [53]. Therefore we propose a solution for design

pattern language which is based on XML. As this propose solution, Design Pattern

Definition Language (DPDL), is based on XML therefore it can be used with large

number of application, also XML is commonly accepted and used in the industry and can

easily be integrated in tools [25].

 69

5.1 OBJECTIVES OF DPDL

5.1.1 Objective

The main objective is to propose a language which helps the programmer and developers

in the development and implementation of design patterns. Our primary objective is not a

verification language for design patterns or creating new algorithms for design patterns.

5.1.2 DPDL Design Objectives

DPDL has the following design objectives.

The Language should be Easy

One of the most common complaint for the design pattern languages based on

mathematical formalism is that they are not easy to understand by the programmers of the

design patterns [53]. The syntax, rules and mathematical logic in these design pattern

languages are not easy to grasp, that‘s why they are rarely used in the industry. Our target

is to have a language which is easily understandable by the programmers and developers

of the design pattern.

The Language should be Unambiguous

As our target language is meant to be used for implementation, therefore one of the

fundamental requirements is to be unambiguous. Any ambiguity in the language can

result in a bug in the production code which will reduce the quality of the software

 70

produce. Therefore we need a language which is totally unambiguous and can be shared

among development teams without any ambiguity.

The Language should be Extendible

Another important objective for the language is the extendibility. As the technology and

techniques for development are progressing so the design pattern language should be able

to be extended with the future needs and requirement.

The Language should be based on existing technology

Another important consideration put for the language is that it should be based on

existing technology instead of creating something totally new. The benefit of this is that

the existing technology will provide wider and faster acceptance to the language.

The Language should be able to produce graphical output.

Although the language is based on text but it should be able to have graphical output.

Graphical output provides quick overview for the design pattern, but some details are

better express as text.

5.2 DPDL SCHEMA

DPDL is based on XML. XML provides flexibility, simplicity and is quite common in the

computing world [25]. With DPDL we tried to cover maximum possible characteristics

of the design pattern in the simplest of the way, as one of our objectives is also to keep

the language simple for the programmer and the end user. Therefore where textual input

made more sense we used text. Where pre-defined values make more sense we used

 71

predefined values. Use of predefined values is critical as it helps the user to input correct

values and put less stress on verification.

For creating Design Pattern Definition Language, we started with analyzing the existing

design pattern languages and their structural characteristics. We collected all the

keywords and syntax used by textual based design pattern languages. We also analyzed

the structural diagrams and behavioral diagrams of the design pattern created in UML

based design pattern languages. From the sample of these design pattern languages we

identified key concepts. Also elements, attributes and properties were grouped in

appropriate categories. Then each item‘s use, in our proposed DPDL was evaluated.

Also the UML diagrams were evaluated for the design patterns. Only class diagram and

sequence diagram were used as they most appropriately represent the structural and

behavioral characteristics of the design patterns. Then Schema was finally created with

the selected attributes. One design pattern from each behavioral, structural and creational

category of Gamma et al [1] was selected (which were identified in Section Chapter 4),

and written in DPDL. The behavioral and structural conformance of the DPDL of these

design patterns was then verified and validated by creating class diagram and sequence

diagram using our tool (mentioned in Chapter Chapter 6) and comparing them with class

and sequence diagram created by commercial tools. Schema was then finalized by

running multiple iterations of different object oriented design patterns.

Figure 5.1 shows the high level schema for the proposed DPDL language. At the left

most in the diagram is the DesignPattern element. It is important to note that for a

different version of the same design pattern there will be different DesignPattern

element.

 72

Each design pattern element has two main parts, its attributes and sub element. The

attributes of design pattern cover different properties related to the design pattern but they

do not describe the behavioral or structural aspect of the design pattern. Also the

attributes can be mandatory or optional. Sub elements are used for describing the

behavioral and structural aspect of the design pattern.

Figure 5.1: DPDL High Level Schema

The design patterns have two basic aspects, the structural aspect and the behavioral

aspect. In DPDL we covered them separately. Keeping them separate helps in number of

ways.

Firstly not in every case we need to both aspects of the design pattern. Some cases may

only require structural aspect, so for them the design pattern in DPDL will have only the

 73

structural component. This helps keeping the schema clean and usable in all cases. Also

by having both aspects totally separate provides easy way for creating enhancement for

the future DPDL versions. So the extension covering only structural aspect will only be

updating the structural component of the DPDL and similarly the enhancement for the

behavioral aspect will only make changes in the behavioral component without

interfaring with the structural component.

Also, a separate Element for Future enhancement is also left in DPDL. As the technology

advances new ways and functionality will be created. So to cater to the future

requirements we have placed a separate element where the extensions for the DPDL can

be attached.

The main element DesignPattern also have some attributes. Some of the attributes are for

the DPDL like DesignVersion or AuthorName others are for Design Pattern. The details

of the attributes of DesignPattern are discussed in the following section.

5.2.1 Design Pattern Attributes

Design Pattern attributes for the DPDL are as follows

Pattern Name (Mandatory)

Pattern Name is the mandatory element of the DPDL DesignPattern attributes. The

design pattern name is a handle which we use to describe a design problem, its solutions,

and consequences in a word or two. Also naming a design pattern immediately increases

our design pattern vocabulary. It makes it easier to think about designs and to

 74

communicate them and their trade-offs to others. Finding good names is an important

task for design pattern developers.

Owner Name

The owner name identifies the person, who originally introduced this design pattern.

Author Name

The author name attribute indicates the name of the author who is designing this design

pattern. He can be the head of the software team or the architecture designer or any

researcher who is proposing a new design pattern.

Design Pattern Version

With the passage of time many original design patterns have got different version

providing more specialized capabilities. So a simple design pattern name is not enough in

some cases. Therefore with the help of design pattern version we can more accurately

identify the design pattern.

Intent

Intent is a short statement that answers the following questions: What does the design

pattern do? What is its rationale and intent? What particular design issue or problem does

it address? Intent is a textual field.

 75

Motivation

Motivation is a scenario that illustrates a design problem and how the class and object

structures in the pattern solve the problem. The scenario will help one understand more

about the pattern that follows.

Applicability

Applicability answers the question like what are the situations in which the design pattern

can be applied? What are examples of poor designs that the pattern can address? How can

you recognize these situations? It is also a textual field in DPDL.

KnownUses

This field is added to provide some examples of this design pattern found in practical

applications and real systems.

Related Patterns

This field answers the questions like which design patterns are closely related to this one.

Consequences

The consequences are the results and trade-offs of applying the design pattern. The

consequences are critical for evaluating design alternatives and for understanding the

costs and benefits of applying the pattern. The consequences for software often concern

space and time trade-offs. They may address language and implementation issues as well.

Since reuse is often a factor in object-oriented design, the consequences of a pattern

 76

include its impact on a system's flexibility, extensibility, or portability. Listing these

consequences explicitly helps you understand and evaluate them.

Language

If this design pattern is created for some application, then the language of the application

can be mentioned in this attribute. The graphical output tool can also use this attribute to

output correct diagram for the design pattern based on the language of the design pattern.

 77

5.2.2 Structural Attributes

Figure 5.2: DPDL's Structural Attributes

 78

Philosophy of Structural Attributes Model

The structural properties of the design pattern are grouped in structural attributes element

in DPDL, as shown in the Figure 5.2. It is important to mention that the schema was

designed with the objective of handling both the particular instance of a design pattern

and also the template of the design patterns.

For designing the schema we looked into different design patterns mentioned in Gang of

Four book [1]. An important observation is made that the design patterns are restricted to

class level and they don‘t span across packages. As design patterns does not include

package to package relationships. Secondly we also identified that each design patterns

have some classes, functions, objects and relationship between classes. So we tried to

separate them, as we feel that having separate elements for each of these aspects will help

in future expansion and also provide and clean and tidy schema. It also helps to make

very quick design pattern with just classes and relationship, and later on when one need

to add more details they can be easily entered without changing the major structure of the

design pattern.

SubGroup Element

The purpose of subgroup inside each structural element of DPDL is to help in making a

template of a design pattern. For example a single instance of a particular design pattern

may have 2 children of a particular class and another instance of the same design pattern

may contain 5 children of a particular class. Both design patterns are of the same type. So

to verify these two different variations of the same design pattern we should have a single

template for that design pattern, so that, all of the variations of the design pattern are

 79

handled in a clear and concise way. One way is that each possible instance of a design

pattern gets its own schema. This means that almost infinite schemas of the template will

be created handling each instance which is not feasible at all. Also if in future some

changes are made in a design pattern schema then these changes are required to be

repeated in all the templates that were created for that design pattern.

In our case we have introduced a SubGroup element in the four main elements (classes,

operations, objects and relationships) of the structural attributes of DPDL. The attributes

of subgourp elements are used for creating a very generic design pattern template which

can cover many different scenarios.

The detail description of the four elements in the structural attribute element is given in

the following section.

Classes Element

The classes element is a group of class element. All the participant classes of the design

patterns are going to be mentioned in the classes element of the structural attributes. The

subgroup element‘s attributes are mostly used for describing the template of a design

pattern. A template designed in DPDL will able to handle all the possible instances of

that particular design pattern. As the subgroup elements attributes are extending the

group it contains (in the case of Classes Element subgroup is extending class elements),

so for understanding the subgroup attributes we need to know class element’s attributes

first. Therefore the description and explanation of subgroup element‘s attribute is given

after the class element‘s attributes.

 80

Class Element

The class element is used in describing a class in a design pattern. All the details about

the class of a design pattern will be mentioned in the class element. It has its sets of

attributes that will help to describe the class.

Class Element Attributes

The attributes of class are described below. The attributes are shown in Figure 5.3

Figure 5.3: Attributes of Class Element of DPDL

ClassName (Mandatory)

ClassName is the most important attribute for the class element. It uniquely identifies the

class in the design pattern. Each ClassName should be distinct in a particular design

pattern.

 81

ClassModifier (Optional)

The attribute ClassModifier identifies if the class is private, public or protected. It can

only have one of the predefined values, so that the user does not insert a wrong value for

this attribute.

isDerived (Optional)

This attributes is Yes for those classes which are derived from some other class.

Otherwise the value of isDervived is no.

ParentId (Optional)

If a class is a derived class then the class id of the parent class can be written in here. This

attribute is more for the validation, otherwise in creating a graphical output or defining

design pattern, it is not mandatory.

isAbstract (Optional)

This attribute is Yes for abstract classes for other classes the value of isAbstract is no.

isVirtual (Optional)

The attribute isVirtual is Yes for virtual classes for other classes the value of isVirtual is

no.

isStatic (Optional)

The classes which are static will have isStatic value as Yes and for other classes the value

of isStatic is No.

isFinal (Optional)

The classes which cannot be used as a base class for any other class are known as non-

extendable class. Final is the keyword used for them in java and in C# ―sealed‖ keyword

 82

is used for such classes. These classes are in DPDL represented by setting the attribute

isFinal‘s value to Yes. Default value for isFinal is No.

isFriend (Optional)

Friend classes are those classes which can access other classes methods and attributes

without being related directly. These classes in our design pattern language (DPDL) are

represented by having attribute isFriend set as Yes.

friendId (Optional)

If a class is a friend class then the id of the friend class will be declared as this attributes

value.

hasConstructor (Optional)

If a class has one or more than one constructor then this value will be Yes, otherwise

hasConstructor will have a value of No. The details about each constructor will be given

in the Function element of the DPDL.

isParent (Optional)

Those classes which are parent to some other class or base class for other classes will

have this attribute value set to Yes. Other classes which are not parent will have the value

as No

SubGroup Element Attributes

The major use of subgroup element is in the template. Therefore its attributes are optional

as the instance of design pattern can also be created in DPDL without using these

attributes.

 83

GroupId (Optional)

The unique id of any group will be mentioned in this attribute. If one part of design

pattern (a part can be a structural attribute like class, object, relationship and function) is

dependent on another part of the design pattern then the group id of the independent part

will be referenced in the dependent part. For example if there is one function against each

class of a particular group, then the subgroup of the function, will refer the groupId of the

class on which the function group is dependent. Class group will be independent in this

example and its groupId will be used in the function subgroup.

noOfClasses; (Optional)

This attribute defines how many instances of the class in this group have, which are

exactly like the class defined in this subgroup through its attribute. This attribute can

have numeric as well as textual value. So we can have values like 1, 2 or 5 etc, also a

value like ―one-to-many‖ is acceptable, which can be used in defining templates. For

example, suppose there is a class in the group, which is inherited from Shape class, then

if we have value of noOfClasses as 3, then this means that there will be 3 classes in the

design pattern, inherited from the Shape class. So in actual realization of the design

pattern there will be three classes with all attributes of the class (see Section 0 for class

element‘s attribute) identical to the attributes mentioned for the class in that group except

for the className attribute which has to be unique in code. This way by defining the

attributes of only one class in the DPDL and setting noOfClasse to 3, we can represent

and then create three classes with same attributes.

 84

Operations Element

This part of the DPDL schema handles all the operations which are present in the design

pattern. The sub-element of Operations is subGroupOp which is included for the purpose

of handling template for design patterns. In the case of template of a design pattern, a

function with same signature may be repeated in all classes of a particular group. Such

situations can be handled by subGroupOp by describing just one operation in DPDL of

the design pattern. Further detail about the subGroupOp attributes is given after the

Function element, as subGroupOp attributes are extending the Function element‘s

attributes.

In case of defining a particular instance of a design pattern each function may be

described in a separate subGroupOp or all the functions can be described in a single

subGroupOp. All the functions are the child element of SubGroupOp which is the child

element of Operation. Using this hierarchy helps in creating a very simple, extendible and

easily understandable hierarchy for grouping all the operations.

The Operations Element is the big container containing all the functions and operation of

a particular design pattern inside it.

Function Element

The actual function details are contained in this element. Figure 5.4 shows the attributes

of function element graphically

 85

Figure 5.4: Attributes of Function Element in DPDL

Function element attributes

Following sub sections describe all the attributes of Function Element.

functionName (Mandatory)

The name of the function, method, operation, property which this element is defining, is

given in the functionName attribute. This function name can also be used in code. In

remaining attributes of this section, the word function covers operation, method or

property.

 86

functionModifier (Mandatory)

The modifier of the function is described in this attribute. Like classModifier the

functionModifier also have pre-defined values from public, protect and private. This

helps to avoid mistakes on the part of the designer and also helps with consistency.

containingClassId (Mandatory)

The id of the class in which the function is contained is defined in this attribute. As we

are focusing on object oriented design pattern, therefore all functions should belong to

some specific class.

inputVariablesId (Optional)

The variable name of all the variables which are the argument of the function are

mentioned in this attribute in curly brackets ‗{}‘. A comma as a separator is used

between two variable ids. In case there is no input argument to the function, then ‗null‘

without curly brackets is used.

inputVariablesType (Optional)

The attribute inputVariableType stores the data type of the variable which are used as the

argument of the function. They are also inside curly brackets ‗{}‘. A comma as a

separator is used between two variable types. The first inputVariablesType belongs to the

first inputVariablesId and so on. This also means that the number of inputVariablesType

should be equal to the number of inputVariablesId.

In case there is no input argument to the function, then ‗null‘ without curly brackets is

used.

 87

functionType(Optional)

The attribute functionType tells what type of function it is. It is also a variable with pre-

defined values of Method, Constructor, Destructor, Event, GetProperty and SetProperty.

Default value is taken as method.

returnType (Mandatory)

This property tells the return type of the function. The return type can be integer, string or

other data type or it can also be void, if there is no return type.

isVirtual (Optional)

If a function is a virtual function then this attribute is used to describe it. The value is Yes

in the case of virtual function and No otherwise. Default value is No.

isAbstract (Optional)

This attribute is Yes for abstract functions for other functions the value of isAbstract is

no. The default value is No.

isFinal (Optional)

If a function cannot be extended anymore then this property of isFinal is set to Yes. In

other cases the value of isFinal is No. The default value is No.

isStatic (Optional)

For static functions the value of isStatic is Yes. When the function is not static then the

value is No. Default value is No.

 88

isFriend (Optional)

If a function can be accessed by other classes which are not the child class then the

function is made as a friendly function. For such functions isFriend is set to Yes.

Otherwise the value is No. Default value is No.

isOverRide

If the function is an overridden on a base class function then this property of the function

is set to yes, in other cases it is No. Default value is No.

SubGroupOp Element Attributes

The major use of subgroupOp element is also in the template. Therefore its attributes are

optional as the instance of design pattern can also be created in DPDL without using

these attributes.

GroupId (Optional)

The unique id of any group is mentioned in this attribute. With this unique group id this

group can be referenced in any part of the DPDL.

noOfOperations (Optional)

This attribute defines how many instance of similar operations are in the final instance of

the design pattern. This attribute can have numeric as well as textual value. So we can

have values like 1, 3 or 5 etc, also a value like ―one-to-many‖ is acceptable, which can be

used in defining templates.

inGroupId (Optional)

inGroupId is the group Id of another structural part of DPDL, which is referenced by this

subgroup. It is used when number of operation in subgroup is dependent on another

group of DPDL‘s structural part, then this attribute is used to identify the independent

 89

group. The inGroupId always come when forEach or inEach attribute is used. Its use is

explained in Section 0 and Section 0.

forEach (Optional)

The value of this attribute can be class, object, operation, function. To understand the use

of forEach, take an example of a design pattern template in which there is a separate set

function for all the classes of a particular subgroup, child of classes element, in some

class (say classA),. Now as we discussed in Section 0.0.0, that the template should handle

all variation of design pattern, so different variation of the same design pattern can have

different number of classes. So in template we have to say that for each class in

subGroup x(where x is id group of independent subGroup), there should be a function in

classA, with same input and return types for all classes of subGroup x. forEach attribute

identifies for which structural part this function is repeated for. In our case it is class for

which it is repeated for. Now the inGroupId identifies the id of the group (like subGroup

x) whose number of classes it will be based on.

When forEach is used in the subGroupOp then only the operationName is changed. The

numbers of identical function which are created are equal to the number of classes in the

subgroup identified in inGroupId and all these functions have same containing class. It is

also explained through figure in Figure 5.5.

 90

Figure 5.5: Example of forEach in Function.

inEach (Optional)

This variable is also used in conjunction with the groupId attribute. Whenever inEach is

used in any type of subgroup, then there should be an inGroupId attribute present.

inEach attribute is added to handle the situation when user wants to describe that a

particular function is present in all the classes in a subgroup, and the value noOfClasses

of that subgroup is more than 1. There can be two cases, one scenario is that we have

some numeric value (e.g. 2), in noOfClasses of subGroup element. In this case we can

either show two functions, one for each class, in the DPDL, or we can show it in the

DPDL by just showing one function and have the value of inEach attribute as class and

give the id of subGroup to inGroupId. This way it tells the programmer that exact

function which is defined in subGroupOp is present in each class of a particular subgroup

+setChildA(in a : int)

+()

+setChildN(in a : int)

OtherClass

ChildA ChildN

ParentClass

*
*

*

*

Implicitly Defined
Explicitly Defined

<SubGroup groupID="childClasses" noOfClass="one-to-many">

<Class className="ChildA" classModifier="private" isDerivedClass="Yes" parentClassID="ParentClass"/>

</SubGroup>

Child Classes

<SubGroupOp groupID="setOp" forEach="class" inGroupID="childClasses">

<Function returnType="null" containingClassId="OtherClass" functionName="SetChildA" functionModifier="public"/>

</SubGroupOp>

Explicitly Defined Implicitly Defined

 91

whose value is given in inGroupId. The value of the attribute inEach is class as it is

referring to a subgroup which is child of classes element.

Second case is when we are defining a design pattern and the value of noOfClasses of

subGroup element of classes, is ―one-to-many‖. In this case we don‘t know the exact

number of classes. So we require a way to mention that this function is dependent on a

particular subGroup of Classes element, and each class of that subGroup needs to have

this function. The id of that subgroup is refers in inGroupId attribute. It is shown in

Figure 5.6.

Figure 5.6: Example of inEach for Function

+drawShape()

ChildA

+drawShape()

ChildN

ParentClass

Implicitly Defined
Explicitly Defined

<SubGroup groupID="childClasses" noOfClass="one-to-many">

<Class className="ChildA" classModifier="private" isDerivedClass="Yes" parentClassID="ParentClass"/>

</SubGroup>

Child Classes

<SubGroupOp groupID="setOp" inEach="class" inGroupID="childClasses">

<Function returnType="null" containingClassId="ChildA" functionName="DrawShape" functionModifier="public"/>

</SubGroupOp>

Explicitly Defined Implicitly Defined

 92

Objects Element

This element acts as a container for all the objects of the design pattern. The sub element

of Object is SubGroupOb. SubGroupOb has the same purpose of providing support for

the template design patterns by describing multiple objects through defining only one

object of that type in the DPDL. The attributes of the SubGroupOb and their description

is given after the Object Element.

Object Element

A single object is defined by the Object Element. All the attributes of a particular object

are described in the object element.

Figure 5.7: Attributes of Object Element in DPDL

Object Element Attribute

Following are the attribute which an object or a variable can have in DPDL.

 93

objectName (Mandatory)

The objectName is the unique identifier for the object or the variable. An object can have

same name if they are in two different classes

containingClass (Mandatory)

The containingClass attribute tells in which class the object is present.

objectClass (Mandatory)

The objectClass tells from which class the object belongs.

objectModifier (Optional)

The objectModifier like functionModifier tells the previlage level of the object. It also

has predefined values of private, public or protected. Default value is private.

isList (Optional)

If the object is a list or an array then this attribute of the object is set to Yes, otherwise it

is set to No. Default value is No.

ListType (Optional)

If the isList attribute is Yes, then ListType can be set to some array type like array, hash

table or link list.

SubGroupOb Element Attributes

The major use of subgroupOb element is also in the template. Therefore its attributes are

optional as the instance of design pattern can also be created in DPDL without using

these attributes.

GroupId (Optional)

 94

The unique id of any group will be mentioned in this attribute. With this unique group id

this group can be referenced in any part of the DPDL and dependency between one part

of the DPDL to another part can be created.

noOfObjects (Optional)

This attribute defines how many identical objects are there like the ones mentioned in this

group. This attribute can have numeric as well as textual value. So we can have values

like 1, 3 or 5 etc, also a value like ―one-to-many‖ is acceptable, which can be used in

defining templates.

inGroupId (Optional)

inGroupId is the group Id which is referenced by the subgroupOb. It is used when

number of objects or fields in subgroup is dependent on another group of DPDL‘s

structural part. The value of this attribute is id of another subgroup. The inGroupId

always present when forEach or inEach attribute is used. Its use is explained in Section 0

and Section 0.

forEach (Optional)

The value of this attribute can be class, object, operation, function. To understand the use

of forEach, we need to take an example of a design pattern template, in which there is a

class (e.g. class y) which has an object of all the classes of some other subgroup (e.g.

subGroup x). Now as we discussed in Section 0.0.0, that the template should handle all

variation of design pattern, so different variation of the same design pattern can have

different number of objects in the class y depending upon the number of Classes in

subGroup x. So in template we have to say that for each class in subGroup x, there should

be an object of it in class y. The attribute forEach identifies for which structural part this

 95

object is depended on. In our case it is class subgroup on which it is dependent. Now the

inGroupId will identify the id of the group (subGroup x) whose number of classes it will

be based on.

When forEach is used in the subGroupOp then only the objecClass id is changed. The

numbers of objects created are equal to the number of classes in the subgroup identified

in inGroupId and all these objects have same containing class.

inEach (Optional)

This variable is also used in conjunction with the groupId attribute. Whenever inEach is

used in any type of subgroup, then there should be inGroupId attribute present.

inEach attribute is added to handle the situation when user wants to describe that a

particular object or field is present in all the classes in a subgroup (subGroup o), and the

value noOfClasses of that subGroup o is more than 1. subGroup o is the child of the

classes element. There can be two cases, one scenario is that we have some numeric

value (e.g. 2), in noOfClasses of subGroup o. In this case we can either show two

objects, one for each class, in the DPDL, or we can show it in the DPDL by just showing

one object and have the value of inEach attribute as class and give the id of subGroup o

on which it is dependent on, in inGroupId. This way it tells the programmer that exact

object which is defined in subGroupOb is present in each class of a subGroup o. The

value of the attribute inEach will be class as it is based on a subgroup of classes. The

value of inGroupId is subGroup o

Second case is when we are defining a design pattern and the value of noOfClasses of

subGroup o, is ―one-to-many‖. In this case we don‘t know the exact number of classes.

So we require a way to mention that this object is dependent on a particular subGroup

 96

which is subGroup o, and each class of subGroup o has the object described in this sub

group.

Relationship Element

One last piece of important information for any class diagram structure and especially for

the design pattern structure is the relationship between classes. The relationship tells how

the classes are going to interact with each other. Many design patterns differ only on the

basis of relationship between the classes.

Relationship element also contains SubgroupR element whose child is Relation which

contains relationship information between two classes. The SubgroupR element is

extending the capability of Relation element to handle templates therefore the SubgroupR

element and its attributes are described after the Relation Element.

Relation Element

The relation element is the element in the schema in which each individual unique

relationship between two classes is described. The attributes of the relation element are

related to describing each relationship accurately and completely. They are kept simple

and easy to describe. Below in Figure 5.8 the relation element is shown graphically.

 97

Figure 5.8: Attributes of Relation Element in DPDDL

Relation Element Attributes

relationId (Optional)

The attribute relationId is for identifying the relation between two classes uniquely.

Identification of the relation is the sole purpose of it.

RelationName (Mandatory)

The relationName attributes identifies the name of the relationship. This attribute also

have predefined values from Association, Generalization, Aggregation, Composition,

Dependency, Realization and Nesting. In future more relationship types can also be

added.

initiatingClass (Mandatory)

Each relation is between two classes exactly. The initiating class is the class starting the

relationship or is invoking a relation.

endClass (Mandatory)

The class which is invoked is identified in endClass. The id of the class which is on the

receiving end is given in endClass attribute.

 98

SubGroupR Element Attributes

The major use of subgroupR element is also in the template. Therefore its attributes are

optional as the instance of design pattern can also be created in DPDL without using

these attributes.

groupId (Optional)

The unique id of any group is mentioned in this attribute. With this unique group id this

group can be referenced in any part of the DPDL and dependency between one part to

another part can be created.

noOfRelations (Optional)

This attribute define how many identical relations are in the design pattern like the ones

mentioned in this group. This attribute can have numeric as well as textual value. So we

can have values like 1, 3 or 5 etc, also a value like ―one-to-many‖ is acceptable, which

can be used in defining templates.

inGroupId (Optional)

inGroupId is the group Id which is referenced by the subgroupR. It is used when the

number of relationship in subgroup is dependent on another group of DPDL‘s structural

part, then the value (id of another subgroup) in this attribute will be used to identify the

independent group. The inGroupId always come when forEach is used. Its use is

explained in Section 0.

forEach (Optional)

The value of this attribute can be class, object, operation, function, but in subGroupR its

almost always class. To understand the use of forEach, we need to take an example of a

design pattern template, in which there is a parent class which can have many child

 99

classes. The child classes belong to different subgroup (e.g. subgroup R). Now as we

discussed in Section 0.0.0, that the template should handle all variations of design

pattern, so different variations of the same design pattern can have different number of

child classes in subgroup R. So in template we have to show that the relation between

parent and all child classes is a generalization relationship. The inGroupId will identify

the id of the child classes subgroup which is subgroup R in our case. The numbers of

relationships in the realization of the pattern is equal to the number of child classes based

on subgroup R’s noOfClasses value.

changingClass

This attribute should always be used with forEach attribute. It is used when with one

relationship information we want to give information about large number of identical

relationship. So we have a value in inGroupId, identifying which class is changing, but

we also need to identify which end this class belongs in the relationship i.e. is it initiating

class or the end class. So this attribute has the value of either initiating class or the end

class..

5.2.3 Behavioral Attributes

Behavioral Attributes of a design pattern are contained in the behavioralAttribute

element. Behavioral attribute covers how the classes are interacting and how they invoke

each other and achieve the desired objective of the design pattern.

 100

As the first target, the unique behavioral function of design patterns were identified, then

we tried to create a recursive solution in XML which can allow any combination of

behavioral aspect to be described in DPDL.

Another important aspect which we have to remember in the behavioral attributes is that

the sequence is very important. For structural attributes of a design pattern, the sequence

of writing different objects or functions or relationships do not matter as in the end the

result will be the same. But in behavioral elements the sequence is important to inform

the correct behavior.

Overview of BehavioralAttributes Element

BehavioralAttribute element in our schema contains five element. These elements are

SetObject, call, create, loop and condition. Each of the element can call the other

behavioral aspect inside it. This gives the flexibility to have any sort of combination to

describe the design pattern. It is also a good flexibility for specifying future design

patterns as it does not pose any limitation on the design patterns.

BehavioralAttribute is just a big container which is keeping all the behavioral elements in

it. The behavioralAttribute element in itself does not have any attribute, it has other for

other element which are describing the behavioral aspect of the design pattern.

Graphically the structure is represented in Figure 5.9

 101

Figure 5.9: DPDL's Behavioral Attributes

There are three special common attributes in each BehavioralAttribute Elements for

handling the templates. These attributes are forEach, inEach and inGroupId. These

attributes are optional and will not be discussed in each Element of the

BehavioralAttributes separately. These attributes are explained after all the Behavioral

attribute‘s elements at the end in Section 0.0.0.

SetObject Element

SetOject attribute is for assigning a variable or object with some other object. In

developer‘s term it represents typecasting of one object into another object or object type.

Typecasting is quite commonly used in different design patterns.

 102

SetObjectElement’sAttributes

Following are the attributes of SetObject Element. The attributes are shown in schematic

diagram in Figure 5.10

Figure 5.10: SetObect Element's Attributes in DPDL

CallingClass (Mandatory)

The class that contains this behavior of typecasting of object to some other object is

identified in the callingClass attribute.

ObjectClass (Mandatory)

The attribute ObjectClass describe the current class of the object to which it belongs.

ObjectId (Mandatory)

The attribute ObjectId is the unique identifier of the object.

SetTo (Mandatory)

The SetTo attribute identifies the new Type to which the object is set.

 103

SetType (Optional)

The SetType attribute identifies if the object is being changed through an object or

through a class. So its value can either be object or class.

Call Element

Call is the most widely used behavioral element. Whenever a function is invoked in a

design pattern, call element is used to capture it. The attributes of Call elements are as

follow:

Figure 5.11: Call Element's Attributes in DPDL

 104

CallElement’sAttributes

CallFrom (Mandatory)

The CallFrom attribute identifies from which class the call is invoked. So the calling

class id is given as the value of CallFrom

CalledFunction (Optional)

The CalledFunction is the attribute which stores the name of the function which is being

called.

CallerFunction (Optional)

If the call to the function is made from inside another function, then the name of the

function from which the CalledFunction is invoked is stored in CallerFunction attribute

CalledClass (Mandatory)

The CalledClass attribute identifies the class of the CalledFunctions. The value of the

called class is saved in the CalledClass attribute.

CalledThrough (Optional)

Each function can be called through either directly or through some object. If the function

is not called through any object then the value of the CalledThrough is null, otherwise the

name of the object is given, through which the function is called, in this attribute.

CallingClass (Mandatory)

The class from which the function is called is identified in this attribute.

VariablesPassed (Mandatory)

Some functions require some input variables also. The variable name for these functions

is passed through this VariablePassed attribute.

 105

VariabledTypes (Mandatory)

If the invoked function has input variables then the type of those variables is identified in

this attribute.

Returns (Mandatory)

The returns attribute identifies the object type which is returned by the invoked function.

Create Element

The create element is the third behavioral element. This element is used for depicting the

creation of some object in the design pattern. The attribute of create element identifies the

creation properties.

CreateElement’sAttribute

The attribute in the create elements are listed below with the description. The graphical

schematic representation is shown in the Figure 5.12

 106

Figure 5.12: Create Element's Attributes in DPDL

ObjectId (Mandatory)

The attribute objectId identifies the object. Whenever a new object or variable is declared

it is given a unique identifier.

createType (Mandatory)

This attribute identifies if the createType is new.

Collection (Mandatory)

If the object which is being created is some sort of array then the collection attribute will

have the value as Yes otherwise it has the value as No.

 107

CallingClass (Mandatory)

The class in which the object is created is identified in CallingClass attribute of the

Create Element.

ObjectClass (Mandatory)

The class of the object which is being created is identified in the ObjectClass attribute.

Returns (Mandatory)

Sometime the object returned by called class is not the object of the called class but it is

an object of the some other class. In that case the returns will be different then

objectClass

Variables (Optional)

For creating an object, sometime variables are also required to be passed. The name of

these variables will be given in the Variables attribute.

variableTypes (Optional)

The type of the variables which are passed is given in the variableTypes

Loop Element

Loop is another important behavioral element for the DPDL. All the loop which are the

part of the design pattern are described through loop element. The loop element has

following attributes

 108

Figure 5.13: Loop Element's Attributes in DPDL

LoopElement’sAttributes

Class (Mandatory)

This attribute contains the name of the class in which this loop is present.

Function (Mandatory)

If the loop is inside the function then the name of the function is given in the Function.

ExitCondition (Optional)

This attribute contains the condition on which the loop will terminate.

numberOfIterations (Optional)

If the number of iteration is fixed then this attribute can have a numerical value.

 109

Condition Element

Behavior of design pattern is not always sequential. In those cases on the basis of some

condition the sequence of the program is interrupted which is represented by conditional

statement in programming language. For this we have condition element in our DPDL

ConditionElement’sAttributes

The attributes for condition elements are shown in the below Figure 5.14

Figure 5.14: Condition Element's Attributes in DPDL

ConditionType (Mandatory)

The condition structure in most cases has two branches. Sometime they are called as

normal code path and alternate code path. The conditionType tells which of the code path

this condition is representing. The conditionType can be extended to more than 2 options.

It should also be mentioned that the correct representation of ConditionType is in the

hands of the end user. For example if a alternate code path is represented without first

 110

mentioning the normal code path then the language DPDL will consider it correct, where

as in normal environment this will be considered as a bug. The reason for not handling is

that XML does not provide very fine grained control to handle such a condition.

Moreover the benefit is that this allows easy extendibility for handling more than two

code paths. Switch condition can also be supported by ConditionType.

CallingClass (Mandatory)

The name of the class in which this condition is present is mentioned in the callingClass

attribute

FunctionName (Mandatory)

The name of the function in which the condition is used is mentioned in the

functionName attribute

conditionText (Mandatory)

The statement or text of the condition is mentioned in conditionText attribute.

Common Attributes

inGroupId (Optional)

inGroupId is the group Id of another structural part of DPDL, which is referenced by any

behavioral element. It is used when an action (behavioral element like call or created) is

dependent on another structural part, then this attribute is used to identify the independent

group. The inGroupId always come when forEach or inEach attribute is used. Its use with

forEach n inEach is explained in Section 0 and Section 0 respectively.

 111

forEach (Optional)

The value of this attribute can be class, object, operation, function. To understand the use

of forEach, take an example of a design pattern template in which there is a create call for

all the classes in a particular subgroup (e.g. subGroup x). Now as we discussed in Section

 0.0.0, that the template should handle all variation of design pattern, so different variation

of the same design pattern can have different number of classes. So in template we have

to say that for each class in subGroup x(where x is id group of independent subGroup),

there should be a create call in classA. forEach attribute identifies for which structural

part this create call is repeated for. In our case it is class for which it is repeated for. Now

the inGroupId identifies the id of the group (which is subGroup x) whose number of

classes will determine the number of create calls.

inEach (Optional)

This variable is also used in conjunction with the groupId attribute. Whenever inEach is

used in any type of subgroup, then there should be an inGroupId attribute present.

inEach attribute is added to handle the situation when user wants to describe that a

particular behavioral action (e.g. call) is present in all the classes of a subgroup (e.g.

subGroup x). The value noOfClasses of subGroup x should be more than 1. In this case

we can show it in the DPDL by just showing one call element with all the attributes and

have the value of inEach attribute as class and give the id of subgroup x to inGroupId in

the call element. This way we are showing that exact call is present in each class of a

subGroup x. The value of the attribute inEach is class as it is referring to a subgroup

which is child of classes element.

 112

CHAPTER 6

TOOLS

As mentioned earlier also that DPDL is based on XML. The XML itself can be written in

any editor. The schema for the DPDL has been created in Altova XMLSpy 2010 version

[54]. The target for DPDL is to provide complete information for the development and

implementation of a design pattern. Design pattern have structural and behavioral

properties and the Design Pattern Definition Language (DPDL) also covers them

separately. So to verify and validate that the language we have developed (DPDL) is

complete, comprehensive and accurate for implementing a design pattern we developed

tools to generate graphical output from DPDL and compare it to the target output. This

graphical output is UML diagrams. The graphical output gives us two benefits.

The first benefit of the graphical output is that the UML diagrams are generated. UML is

one of the most widely used standards in the software industry. So by creating a graphical

output which is in fact a UML diagram, we are getting conformance for our proposed

Design Pattern Definition Language (DPDL). Secondly, currently there are many tools

 113

available which can generate a source code from the UML class diagram. So if an

accurate class diagram can be generated from a DPDL version of a design pattern then

this means that DPDL can be used for the implementation of the design pattern. This

fulfills our main objective for DPDL.

Two tools have been created for DPDL. The first tool is for the creation of a class

diagram. The class diagram is exactly as the UML class diagram. Only the structural

attributes of the DPDL have been used for the creation of the class diagram. This also

shows that DPDL is simple and comprehensive at the same time. If the requirement is to

have only the structural aspect of the design pattern than one does not need to specify the

behavioral attributes. Similarly even in the structural aspect if only the abstract

information is required then only Classes and Relationships element of the Structural

Attributes can fulfill the requirement, without needing to give the details about the

objects and operation elements.

The second tool which is created is for the validation of the behavioral aspect of the

DPDL schema. UML have a few diagrams for identifying the behavioral aspect of the

design pattern and the most widely used and the most comprehensive is the sequence

diagram. The Behavioral attributes of the design pattern are used to create a sequence

diagram. Here it is also worth mentioning that not all the attributes and properties in the

behavioral element of the DPDL are used for creating a sequence diagram. So there is

more information with which other or more comprehensive diagrams can be created.

Moreover these attributes are used to cover all the aspects of the design pattern

implementation with detail and completeness.

 114

6.1 DPDL CLASS TOOL

The DPDL class tool is built in C#. It is based on an open source NClass tool which is

under the GPL license [55]. The tool is for basic stuff and its primary objective is to see if

the class diagram can be generated from the DPDL of a design pattern. The layout of the

DPDL Class Tool is displayed in Figure 6.1.

Figure 6.1: DPDL Class Tool

The layout of the program is pretty simple. It has a top menu bar, quick action buttons bar

and then on the right side there are two windows. One is text for design pattern name.

 115

More information can be added in this box. The second area is a zoom out graphical

representation.

6.1.1 DPDL Class Tool Features

The drop down menu consists of a File button. Other than file button there are Edit,

View, Plug Ins and Help buttons. Each button has further options. The File button

contains New, Open, Save, Save As and Exit functions. The View Button contains

normal operations like Cut, Copy, Paste, Delete and Select All. The Plug Ins button is for

the other developer to add more functionality into it.

The View Button has options related to the View of the Program. Both Side windows can

be closed for a full screen view of the diagram. If one, side window, is closed then it will

take the whole of the right side window space. Also the view button has zoom options,

auto zoom. It also contains the Options button in which different options can be set.

Finally the Help button contains Check for updates button, which is used for future

updating of the software. Also it has About DPDL Class button.

 116

Figure 6.2: DPDL Class Tool View Menu

Most of the current commercial tools for creating class diagrams have two portions of

xml in their output. One portion of the saved file (save file can be in xml or in any other

proprietary format) is dedicated to the design aspect of the class diagram. So it has all the

data to reproduce the diagram at the exact same location with the exact same information.

This component has attributes like line, square, text and so on. Then these attributes have

starting locations in pixels like (x, y). This information is used for the exact placement of

the class diagram objects when it is reopened. The second component in these class

diagrams is about the class objects in the class diagram.

Our tool is using only the class objects to generate the class diagram. This is the first tool

which is not using any point coordinates for generating the class diagram. This shows

that the class information is comprehensive enough to generate the whole class diagram

of the design pattern based on the information stored in the DPDL.

 117

6.1.2 Creating Class Diagram from DPDL Class Tool

Figure 6.3: File Menu Options

To open a design pattern DPDL, we need to click on File Open, this opens a dialog

box through which a dpl file of the design pattern based on DPDL schema can be opened.

Figure 6.4 shows the file open dialog. When the file is selected and clicked to be opened,

the tool parses the file and if there is no error it opens the class diagram of the design

pattern.

 118

Figure 6.4: DPDL Class Tool Open DialogBox

On the right side window the user can see the design pattern name which is taken from

the design pattern file. The view of the class diagram is shown in Figure 6.5.

 119

Figure 6.5: Class Diagram in DPDL Class Tool

6.1.3 Other Options in DPDL Class Tool

One of the important features added in the tool for the DPDL is the generation of source

code from the class diagram that had been generated from the source code in the first

place. After the diagram has been generated from the file the Diagram menu has an

option to generate source Code. On clicking this option the source code is generated for

the design pattern. But we have to remember here that the source generated is based on

 120

the class diagram, which itself is based on part of the input file. This option can be seen

in the Figure 6.6 displayed below.

Figure 6.6: Option for generating Source Code in DPDL Class Tool

There is another option of making changes in the class diagram inside the tool. The class

diagram provides all sets of options which are used in Class Diagram creation. These

options include adding new classes in the diagram, adding new methods and variables in

the diagram. Also they include the relationship options between two classes which can

exist.

 121

6.1.4 Current Limitation of DPDL Class Tool

There are a few limitations in our current tool. One of the limitations is that we have

created the design pattern keeping in view the C# language, therefore the tool currently

handles design patterns for the C# language. The difference is of certain keywords which

are valid in C# and invalid in Java and vice versa, but this is not a very big limitation and

can easily be rectified in the future version of the tool.

The second limitation is that the tool is generating the source code for the C# currently.

This feature is also more for the proof of concept. As the tool can generate the C# source

code from the class diagram which is in turn created from the design pattern in our

DPDL, therefore it shows that the language itself is robust enough to use for the

implementation of the design pattern. In future better and more feature-rich tools can be

created for it to generate source code in other languages for the design pattern.

Another very important limitation in the current tool is that it can make changes in the

class diagram but these changes cannot be saved in DPDL compliant xml. As mentioned

earlier that all tools currently in market save the class diagram with the diagram

component which is used to build the class diagram. So the default behavior of the tool is

to save the diagram components of the class diagram created in the tool. Whereas the

DPDL does not have any diagram component and it saves information relevant to the

implementation of the design pattern. So in current state the tool is missing the feature of

storing the DPDL compliant xml.

 122

6.2 DPDL QTOOL

As the design pattern has a behavioral aspect which is in some cases as important as the

structural aspect. So to check the behavioral attributes we decided to create a tool for

generating sequence diagrams from the behavioral attributes in DPDL. This tool is also

built from NSequence which is based on a text input and is available online under LGPL

[56]. The tool has been modified to take the DPDL xml as an input and generate a

sequence diagram from it.

Figure 6.7: QTool, the Sequence Diagram Generator

Overall sequence diagram tools are very rare. Secondly all current sequence diagram

tools generate either image file as an output, or they generate the diagram component

only. The diagram components describe the sequence diagram from the perspective of a

diagram making our tool, the first tool to use some sort of XML to generate a sequence

diagram. This makes an interesting case also for how to represent the sequence diagram

through the xml only and also if it is possible to have an xml for the sequence only.

 123

6.2.1 DPDL QTool Feature

The sequence diagram tool is quite simple and it focuses only on the creation of the

sequence diagram from the DPDL xml. There are only three items in the menu options in

DPDL QTool. The first is the File menu option. This option includes Open, Close, Exit

and Export. Export option is the option through which the user can export the sequence

diagram as any graphic image. Currently the user can export it as a PNG file.

Figure 6.8: File Menu options in QTool

The Open option is the option through which the user can open a DPDL xml file. The

application parses through the program and then the sequence diagram is generated. If

there is some error the application quits.

The second menu option is Edit. This menu option has Cut, copy, paste and preference

options. The cut, copy, paste is not currently useful in the sequence diagram but the

Preference option contains the options to change the color and font for the sequence

diagram

 124

Figure 6.9: Edit Option in QTool

The last option on menu bar is Help. This option contains Index, content and About

options. The index and content is used for giving information about using the application

and the About option opens a dialog giving the minimal details about the program.

6.2.2 Creating Sequence Diagram in QTool

Creating a sequence diagram from the DPDL file in QTool is pretty simple. The user

needs to select Open from File menu option and a file open dialog box will appear. The

user needs to select a valid DPDL file which has a behavioral component also. The

application then parse through the DPDL file and display the sequence diagram in the

window.

 125

Figure 6.10: QTool Open DialogBox

The QTool contains only 1 display window. All the information of the sequence diagram

and sequence diagram itself is displayed in that window.

6.2.3 Current Limitation of QTool

The QTool itself is a first attempt of generating a sequence diagram from any xml.

Therefore this effort is opening a new front towards representing the sequence diagram. It

also means that this effort has few limitations. The first limitation is that the tool is not

saving the output in the DPDL compliant xml.

The second limitation is that the tool does not provide any editing options. As this is the

first tool designed for the creation of the sequence diagram, therefore further study is

 126

required to see which type of editing options can be provided in sequence diagrams. Also

how these options can be implemented in the tool.

 127

CHAPTER 7

VERIFICATION & VALIDATION

This section deals with the evaluation of the proposed design pattern definition language.

Verification and validation is the process of checking that a product, service, or system

meets the specifications and that it fulfills its intended purpose. It is sometimes said that

validation can be expressed by the query "Are you building the right thing?" and

verification by "Are you building it right?" "Building the right thing" refers back to the

user's needs, while "building it right" checks that the specifications be correctly

implemented by the system [57].

As the proposed design pattern definition language is not a software or application,

therefore the validation & verification process does not include test activities like unit

testing, integration testing etc. The formal approaches for validation & verifications

require great understanding of the techniques involved and are also quite complex and

extensive, which is beyond the scope of this thesis.

 128

In DPDL verification & Validation, we try to cover the topics of correctness &

completeness. We start by taking examples.

7.1 DESIGN PATTERN INSTANCES

7.1.1 Adapter Design Pattern

The adapter design pattern (often referred to as the wrapper pattern or simply a wrapper)

translates one interface for a class into a compatible interface. An adapter allows classes

to work together that normally could not because of incompatible interfaces, by providing

its interface to clients while using the original interface. The adapter translates calls to its

interface into calls to the original interface, and the amount of code necessary to do this is

typically small.

The adapter is also responsible for transforming data into appropriate forms. For instance,

if multiple Boolean values are stored as a single integer but your consumer requires a

'true'/'false', the adapter would be responsible for extracting the appropriate values from

the integer value.

We will first present DPDL of the adapter design pattern. Here it is important to mention

again that the schema of DPDL is made in Altova XMLSpy and also the design patterns

are created in Altova XMLSpy [54]. But any XML editor can be used.

 129

Figure 7.1 shows the example of Adapter design pattern in DPDL. We can see that the

whole design pattern has three major portions. First is the Structural attributes. Second is

the Behavioral and the last one is for the future.

Figure 7.1: DPDL of Adapter Design Pattern

The first section which is structural attributes contains four parts. We start with the first

part which is the Class part. The adapter design pattern has at least three classes. One is

the target with which the client class or classes interact. The target class then hands over

the request to the adapter class. Adapter class is interacting with a number of Adaptee

classes. So the adapter class selects one of the specific classes based on some criteria for

the specific request. Also the adapter class is derived from the Target class. But the

Target class is not an abstract class; the function in it is a virtual function, which we will

discuss in the Operations section.

 130

Structural Description in DPDL

The Classes part of the Structural attributes is handling all the classes‘ information. In

this example we have added all the classes under a separate sub group, but we can add

them in the same sub group, because all of them have one instance of them in the design

pattern. As this is a specific instance of adapter design pattern.

Figure 7.2: Class in DPDL for Adapter Design Pattern

The Classes part of the DPDL also has a client class in it. This is determined by the user

if there is a need to add the client class or not. It can show how to interact with the design

pattern. There are four classes including the client class in the above used instance of

Adapter design pattern. The client accesses the functionality of the Adaptee class through

the Target. Target class is the parent of the Adapter class which is invoking the

functionality of the Adaptee.

 131

Figure 7.3: Operations in DPDL for Adapter Design Pattern

The second part of the Structural attributes is Operations. All operations which are done

in the design patterns are important for the design pattern, are mentioned in this part of

the DPDL. The instance of adapter design pattern which we have taken for example has

three operations. The first one is the Request operation which is in Target Class and is of

type virtual. The second one is the Request function which is inside the Adapter Class.

This function overrides the Request function of the Target class, as the Adapter class

inherits from Target class. The request function in the Adapter class is responsible for

passing the request to the appropriate class to take necessary action. The third function

mentioned in the DPDL of the Adapter design pattern is the Specific Request. This

function is present in every Adaptee class. In our instance of Adapter design pattern we

have only one Adaptee class, but in other cases of adapter design pattern there can be

more classes for Adaptee and each Adaptee class will have a Specific Request function.

This function actually takes the action on the request.

 132

Figure 7.4: Objects in DPDL for Adapter Design Pattern

The third part of the Structural Attributes is Objects. The objects part covers all the

important objects which are required in any design pattern. The adapter design pattern

has two important objects. First object is the Adaptee class object which is present in the

Adapter class. It is important to mention that if there are more than one Adaptee classes

than each class object will be in the Adapter class. The second object is on the client side.

So it is basically not the part of the design pattern, but it tells how the design pattern will

be accessed. So the client will have the Target class object. But the design pattern can be

used differently, but we have to remember that the only way to use the Adapter design

pattern is that the Target class object is used for accessing the functionality of adapter.

The fourth and final part of the Structural Attributes is Relationships. The relationships

can also be derived from the rest of the information, but it can be cumbersome and can

create ambiguities. So having a relationship part not only provides an easy way to see

how the classes are interacting with each other without needing to decipher the

Operations & Objects portion of the Structural Attributes.

 133

Figure 7.5: Relationships in DPDL for Adapter design pattern.

The Relationships portion of Adapter Design pattern in DPDL has three relations. The

relationship between Adapter and Target class is of Generalization. As the Target class is

the base class and the Adapter class is the child class of the Target class. The relationship

between the Adapter and Adaptee class is of Association. The adaptee class object is

present in the Adapter. So there is an association relationship between them.

This completes the Structural Attributes of our DPDL for Adapter design pattern. Now to

test this we put our Adapter design pattern‘s DPDL into our DPDL class Tool. The output

can be seen this in the following Figure 7.6.

 134

Figure 7.6: Class Diagram of Adapter Design Pattern through DPDL

To check the output of our adapter DPDL, we compare it with an actual output of the

class diagram created from Altova UModel tool [58] which can be seen in the Figure 7.7

below.

 135

Figure 7.7: Class Diagram By Altova

As we see that output is almost identical, so we can safely say that our design pattern

language covers the structural attributes comprehensively for the Adapter design pattern.

Behavioral Description in DPDL

Now we describe the second portion of our DPDL, which is Behavioral Attributes. The

behavioral attributes are described from the client perspective. The use of client

perspective is because the purpose of design pattern is to solve a single problem, so a

design pattern is a black box for one unique situation and the behavior should be

observed from the outside of the black box, not from the inside. But the DPDL is not

treating the behavior of the design pattern as a black box, rather it is covering the

 136

behavior aspect of the design pattern to give the whole picture starting from the client

side.

Figure 7.8: Behavioral Structure in DPDL for Adapter Design Pattern

The Adapter attributes start by creating an object of the Target class but it contains the

instance of Adapter Class. This object is used to call the Request function of the Adapter

class. The adapter class than calls the Adaptee class for completing the task.

The behavioral Attributes portion of the DPDL for Adapter design pattern is passed

through DPDL QTool. The result of which can be seen in the following Figure 7.9

 137

Figure 7.9: Sequence Diagram by QTool from Adapter DPDL

The sequence diagram generated in the figure is solely based on the DPDL of the adapter

design pattern and is only using the behavioral attributes part.

The sequence diagram generated by Altova UModel [58] for the same code of the

Adapter Design pattern can be seen in the Figure 7.10

 138

Figure 7.10: Sequence Diagram in Altova of Adapter Design Pattern

7.1.2 Mediator Design Pattern:

Usually an application or a program is made up of number of classes; sometime this

number is quite large. The logic and computation is distributed among these classes.

However, as more classes are developed in the application, especially during

maintenance and/or refactoring, the problem of communication between these classes

may become more complex. This makes the program harder to read and maintain.

Furthermore, it can become difficult to change the application, since any change may

affect code in several other classes.

 139

With the mediator pattern communication between objects is encapsulated with a

mediator object. Objects no longer communicate directly with each other, but instead

communicate through the mediator. This reduces the dependencies between

communicating objects, thereby lowering the coupling. The mediator pattern provides a

unified interface to a set of interfaces in a subsystem. This pattern is considered to be a

behavioral pattern due to the way it can alter the program's running behavior.

Figure 7.11: Mediator Design Pattern's DPDL

 140

Strucutral Description in DPDL

The instance of Mediator Design Pattern we have chosen for representing in DPDL have

6 classes, including the client class. Here again the Structural description of the Mediator

Design Pattern have 4 parts. The first part includes the classes, second part covers the

Functions, third part describes the Objects in the Mediator design pattern and the final

part tells about the relationships between the classes.

Figure 7.12: Classes Section of DPDL of Mediator Design Pattern

For mediator design pattern also, we have described each class in a separate sub group.

The client class is the first class. It has constructor and is of public type. The second class

is Mediator and it is an abstract class and is the parent class of Concrete Mediator. The

parent class of ConcreteCollegueA and ConcreteCollegueB is Collegue. So class

Collegue is also an abstract class.

The main functions in the Operation part of the Structucal Description of Mediator

Design Pattern are Send and Notify. Send is the function which is used in sending

 141

information and is present in the Mediator class and the ConcreteMediator class over

rides the Send function. The Send function is also present in the Collegue class and this

Send function is over ridden in the ConcreteCollegueA and ConcreteCollegueB classes,

which can be seen in the figure Figure 7.14. The notify function is also present in

Collegue class which is then over ridden again in the ConcreteCollegueA and

ConcreteCollegueB classes. The purpose of the notify function is to inform the action

taken. Therefore this function is present in parent class Collegue and all the children

classes can over ride it, it keeps the design simple and easily manageable.

Figure 7.13: Funtion Section of DPDL of Mediator Design Pattern

Other function describe in the Operations section are of setters for the concrete collegue

classes. Also the constructor function is described in the Operations for the Mediator

design pattern. Other functions can also be described in this section if deemed necessary.

 142

We have covered the most important functions which we found necessary for the correct

working of the design pattern

Figure 7.14: Function Section of DPDL of Mediator Design Pattern

The next section of the Structural attributes is the Objects. The most important objects for

the Mediator design pattern are the ones in the Client classes. As client class is going to

access the functionality provided by the design pattern, therefore the Client class have to

access it through the variables. These variables include ConcreteMediator‘s class object

and concrete collegues‘s class object which we need to access. So in our example of the

Mediator design pattern the Client class creates ConcreteCollegueA‘s and

ConcreteCollegueB‘s objects.

 143

Figure 7.15: Objects Section of DPDL of Mediator Design Pattern

Inside the Mediator design pattern, Collegue class have the Mediator class object. Also

the ConcreteMediator class has all the concrete collegue‘s objects, this way

ConcreteMediator class can access any concrete collegue class and access the

functionality as desired by the client class.

The final section of the Structural description of the Mediator Design Pattern is the

Relationships. This section covers all the relationship present in the Mediator Design

Pattern. The relationship between Mediator and ConcreteMediator is of generalization;

similarly the relationship between the Collegue & ConcreteCollegueA and also between

the Collegue and ConcreteCollegueB is of generalization. The Mediator class have

Collegue object in it so we have an association relationship between them.

 144

Figure 7.16: Relationships Section of DPDL of Mediator Design Pattern

The ConcreteMediator class contains the ConcreteCollegueA and ConcreteCollegueB‘s

object so we have these two associations also, which are between ConcreteMediator and

ConcreteCollegueA and also between ConcreteMediator and ConcreteCollegueB

This completes the structural description of Mediator Design pattern in DPDL. Now to

verify and validate that the DPDL we have created is providing enough information to the

end user we will create the class diagram from this DPDL through our DPDL Class Tool.

 145

Figure 7.17: Class diagram of Mediator Design Pattern by DPDL Class Tool

We compare this class diagram created by DPDL class tool for the Mediator design

pattern with the class diagram generated by the ALTOVA which is show in

 146

Figure 7.18: Class diagram of Mediator Design Pattern by ALTOVA

Both the class diagrams are quite identical and there is no major difference between them

except that ALTOVA tool shows the object name with the relationship also.

Behavioral Description in DPDL

The behavioral descriptions are in the BehavioralAttributes of DPDL. The behavior

descriptions of the Mediator design pattern are shown in the Figure 7.19.

 147

Figure 7.19: Behavior Structure of Mediator Design Pattern in DPDL

The behavior description starts from the client side. The MainApp is the client side class.

The client to access the Mediator design pattern need to create the object of a

ConcreteMediator Class. The client than creates the object for each of the concrete

collegue class which it needs to access. In our case these are the ConcreteCollegueA and

ConcreteCollegueB class. The next step is that the object of the ConcreteCollegueA and

ConcreteCollegueB are set to the ConcreteMediator‘s object. As we know that the

ConcreteMediator class contains the object for each of the concrete collegue class object.

After that the client invokes the send functionality of each of the concrete class. So first

c1 which is the object of the ConcreteCollegueA is used to call the Send function, than

the c2 which is the object of the ConcreteCollegueB is used for calling the Send function.

Again we will verify the Behavioral structure of our DPDL for the Mediator design

pattern by making sequence diagrams. In the Figure 7.20 we created sequence diagram

created from QTool.

 148

Figure 7.20: Sequence Diagram of Mediator's DPDL by QTool

The sequence diagram generated by Altova can be seen in the Figure 7.21. The altova

sequence diagram has more notes. But the main sequence diagram is identical. QTool has

very limited functionality in comparison to the commercial ALTOVA UModel tool.

 149

Figure 7.21: Sequence Diagram for Mediator generated by ALTOVA

7.1.3 Factory Method Design Pattern

The factory method pattern is an object-oriented design pattern to implement the concept

of factories. Factory design pattern is a creational patterns, it deals with the problem of

 150

creating objects (products) without specifying the exact class of object that will be

created. The factory method design pattern handles this problem by defining a separate

method for creating the objects, which subclasses can then override to specify the derived

type of product that will be created. The overview of the Factory design pattern DPDL

can be seen in the Figure 7.22.

Figure 7.22: Overview of Factory Method Design Pattern's DPDL

Structural Description in DPDL

The first section of the structural description of the Factory Method is the classes.

Structure of the Factory design pattern consist of multiple classes which are derived from

one single class and the creation of the object is handled by another class. In the example

of factory method we used, there are seven classes, including the client class, which can

be seen in Figure 7.23.

 151

Figure 7.23: Classes Section of DPDL of Factory Design Pattern

So there is a product class which is an abstract class. This class is the parent class of two

concrete product classes, which are ConcreteProductA and ConcreteProductB. The other

two classes are of Client and Creator. The client class is for the access of the design

pattern by the end user. So it can differ according to the requirement of the end user. The

other class is the Creator class. This class provides a unified creation procedure for all the

products present in the design pattern. In our example of Factory method only two

different Products are there, ConcreteProductA and ConcreteProductB, they can be

created in concreteCreatorA and concreteCreatorB respectively.

The second section of the structural description of the Factory Design pattern is about all

the operations in the design pattern. The factory design pattern is relatively simple with

fewer functions because factory design pattern is a creational design pattern, so its

 152

emphasis is towards creation and only creation. So we are also just showing that aspect in

out example of the factory design pattern.

Figure 7.24: Operations Section of DPDL of Factory Design Pattern

As the purpose of the factory design pattern is to provide a unified creation of all the

objects in the pattern, therefore the functions are only to provide a unified creation

system for all the objects in the design pattern. There are three main functions. The

Creator class has an abstract function FactoryMethod which is responsible for the

creation of the product objects. This method returns the product object which can be seen

in the DPDL in Figure 7.24. It is inherited in the ConcreteCreatorA and

ConcreteCreatorB. Both these classes are derived from the abstract Creator class. The

FactoryMethod of ConcreteCreatorA calls the constructor of ConcreteProductA and

returns the product from the function. Similarly the ConcreteCreatorB calls the

constructor of the ConcreteProductB. The object of the ConcreteProductB is returned to

the caller. So for each ConcreteProduct there should be a corresponding ConcreteCreator

class which should be able to return the product.

 153

The next section of the structural attributes is for all the Objects in the Factory design

pattern. As factory design pattern is of creational type therefore all the object which are

of any significance for the design pattern are at the client side. So in our example of

factory design pattern, we have two significant objects at the client side. One is of the

type creator and it is a of array type.

Figure 7.25: Objects Section of DPDL of Factory Design Pattern

It can be single object or separate objects of creator class each having its own name. But

the purpose of the factory design pattern is to simplify the creation, therefore we are

showing it as an array as seen in Figure 7.25, which shows that many different type of

objects are created by having one array of Creator class object.

Second object used in our factory design pattern example, is Product for each product

which is created using the creator class. Currently only one Product object is used, but we

can have separate product objects also.

The final section of the structural description of the factory design pattern is

Relationships. The relationship for the factory objects are between the base class and the

child class. As each concrete product inherits from the Product class and so does each

concrete creator inherits from the creator class.

 154

Figure 7.26: Relationships Section of DPDL of Factory Design Pattern

So there are total of six relationships between the classes. The description of the

relationship section can be seen in Figure 7.26. The first relation is of type generalization

between the ConcreteCreatorA and Creator and also the relation between ConcreatorB

and Creator is of generalization. Similarly the relation between ConcreteProductA and

Product and also between ConcreteProductB and Product is of generalization. The final

two relations are between ConcreteCreatorA and ConcreteProductA and also between

ConcreteCreatorB and ConcreteProductB, and these relations are of dependency.

This completes our description of Structure section of Factory method design pattern in

DPDL. Now we create a class diagram from it using DPDL Class Tool and compare it

with the Class Diagram generated by ALTOVA.

 155

Figure 7.27: Class Diagram of Factory Method using DPDL

Figure 7.27 shows the class diagram created in DPDL Class Tool, which is quite identical

to the class diagram generated by the ALTOVA, which can be seen in Figure 7.28. The

ALTOVA generated diagram shows more information, but we have this information in

our DPDL, but the tool is still not comprehensive enough to show all the information

present in the DPDL. DPDL class tool is just showing the basic information of class

diagram. This tool is created as a proof of concept and cannot match the functionality

provided by a well developed commercial class diagram tool.

 156

Figure 7.28: Class Diagram of Factory Method Design pattern By ALTOVA

Behavioral Description in DPDL

The behavioral description of creational design pattern is going to be simpler as they will

be focusing on the creation aspect of the design pattern. In our example of factory design

pattern we have used loop to create multiple objects of different types but having same

parent class.

 157

Figure 7.29: Behavior Description of Factory Method Design Pattern in DPDL

First the creator Object is created. This is an array object for creating each concrete

product. As the through the creator class object a user can access all the concrete creators

for each concrete product. Next step is to set each item of the creator object to a separate

concrete creator. Separate creator objects could have been used but then the purpose of

the factory design pattern to simplify the creation of the objects would be lost.

After that each product is created using the concrete creator set earlier. This is done using

the loop. In our DPDL we are using simple loop syntax to cover all the types of loops; in

implementation any type of loop which can fulfill the condition can be used.

The sequence diagram output of our DPDL can be seen in Figure 7.30.

Figure 7.30: Sequence Diagram of Factory Method Design Pattern using DPDL

 158

In Figure 7.31 we can see the sequence diagram generated by ALTOVA. The sequence

diagram generated by ALTOVA has more note information. And it has a better way of

showing loop structure. But as mentioned earlier QTool is more of a proof of concept

than a competitor for a well developed commercial tool like ALTOVA. But the

information is present in the DPDL of the design patterns, just a better and more

comprehensive tools are needed to display it.

Figure 7.31: Sequence Diagram of Factory Method by ALTOVA.

7.2 DESIGN PATTERN TEMPLATES

In previous Section we discussed about the DPDL of different design pattern instances. In

this section we will take the same three examples and describe how they can be

represented in DPDL as a template of design pattern. The templates of a design pattern

 159

can be used to represent the general structure and behavior of design pattern, verify some

instance of design pattern and other academic purposes.

Here we are going to highlight the changes of DPDL for representing design pattern

template, which is one of the reason we are using the same three examples, so the basic

structure and other things are same as mentioned in the previous section.

7.2.1 Adapter Design Pattern Template

The template of adapter design pattern in DPDL can be seen in the Figure 7.32 below.

Figure 7.32: Overview of Adapter Design Pattern Template's DPDL

 160

Structrual Description in DPDL

The Structrual Description again consists in four portions of DPDL. The first portion is

regarding the classes. The major difference here is that SubGroup element becomes

necessary in template of any design pattern, and we will see why we need it.

Figure 7.33: Classes of Adapter Design Pattern Template's DPDL

So in the Classes section, the client class is the first class in it. The subgroup of client

class says its 1ToMany, which means that many clients can be accessing this design

pattern. As client class is not the part of the actual design pattern, so its significance is not

much. The second class is target, so there is always one target class, and all client classes

are going to access the design pattern through that target class. Next is the adapter class.

The next class is the adaptee class. There can be many adaptee like classes in the design

pattern, so we have it as 1ToMany which can be seen in the Figure 7.33. Each group has

been given a unique groudId, so that we can identify it in other parts of the DPDL of the

design pattern.

 161

Figure 7.34: Operation of Adapter Design Pattern Template's DPDL

Next is the Operations section of the DPDL which can be seen in Figure 7.34. Here again

we see the use of the SubGroupOp. Each subgroupOp has groupId. Number of operations

for the first two functions is one, as they are going to be present in the class which is only

on in adapter design pattern. But for each SpecificRequest function we have it inside a

group which has two other attributes inEach and the value for it is class, which means

that in each class there will be a SpecificRequest. The second attribute inGroupId

classify, which classes we are talking about and here we have to give a group id from any

class groups.

This way, with these two attributes, we know that SpecificRequest is one function which

should be present for all the classes which are part of AdapteeCl group. Also it is worth

mentioning that AdapteeCl group has noOfClasses attribute as 1ToMany, so this means

that the number of functions will be equal to the number of classes in AdapteeCl group.

 162

Figure 7.35: Objects of Adapter Design Pattern Template's DPDL

Next section is the Objects section. The object elements in adapter design template have

two object groups as shown in the Figure 7.35. One group id is AdapteeObject. This

group has attribute forEach and the value for it is again class, and the second attribute

inGroupId has the value as AdapteeCl. The attribute forEach means that for each class in

group id AdapteeCl there is an object in the Adapter class. In the case of forEach the

value of objectClass will be changed. So if there is more than one class in the AdapteeCl,

than there is an object for each class in the Adapter class. The second group is

ClientObject group. It also has inEach attribute and its value is also ―class‖ and the

inGroupId attribute specifies ClientClasses group. This means that in each class which

belongs to client class there is an object of type Target in it.

This also explains that the difference between inEach is that containingClass will change

for that object. This means that each class in that group will have exactly same object.

When forEach is used than the target class is going to be changed but the containing class

will remain same. So the number of objects in one class will depend upon the classes that

are present in the classes of the inGroupId.

 163

Figure 7.36: Relationships of Adapter Design Pattern Template's DPDL

The final section in the template DPDL is the Relationship section. There are three

groups in the relationship section. The group AdapterRelation has only one relation as

there will be only one Target and one Adapter class in the design Pattern. The relation

between client classes and the target class is of association, as there can be many client

classes therefore the relation is of 1ToMany.

Behavior Description in DPDL

Figure 7.37: Behavioral Descriptio of Adapter Design Pattern Template's DPDL

The behavior description of the Adapter design pattern template in DPDL is same as in

the previous section. The reason is that there is no change even if the number of Adaptee

 164

is many. Therefore for a single behavioral event the requests will go exactly like in the

previous section. So there is no change in the behavioral description of the adapter design

pattern template.

7.2.2 Mediator Design Pattern Template

The template for the mediator design pattern is created from the same instance of the

design pattern which we used in the previous section. The overview of the Mediator

DPDL can be seen in the Figure 7.38.

Figure 7.38: Overview of of Mediator Design Pattern Template's DPDL

 165

Structural Description in DPDL

The mediator design pattern template also has the same basic structure containing four

sections which are classes, operations, objects and relationships.

Figure 7.39: Classes of Mediator Design Pattern Template's DPDL

The classes part of the Mediator Design Pattern template have four groups and a group of

client class showing 1 or many clients accessing the mediator design pattern. Two of the

group mediatorGroup and collegueGroup can have only one class as they are the parent

classes. The concrete mediator and concrete collegues can be many, therefore the

cncMediatorGroup and cncCollegueGroup have number of classes attribute‘s value as

1ToMany.

 166

Figure 7.40: Operation of Mediator Design Pattern Template's DPDL

The second part of the Structural description in DPDL for the Mediator Design pattern

template is the Operations part. There are total 7 groups in the Operations part of the

DPDL. Three of these groups have functions which are going to be single in all cases.

The remaining 4 of the groups have functions which are dependent on the number of

classes in cncMediatorGroup and cncCollegueGroup.

Three of the groups are for the functions of the concreteCollegue class. These functions

are present in all the classes present in the cncCollegueGroup. Therefore all three groups

have inEach set to class and the inGroupId set to the cncCollegueGroup. The last group

in the Operations is for the Mediator class, its function name is SetConcreteCollegue.

This function set the object of all the classes in the cncCollegueGroup. The value of

 167

inGroupId is cncCollegueGroup. The difference of this group with earlier groups is that it

has forEach instead of inEach, which has the value of class. So this means that for each

class in the group cncCollegueGroup there is a corresponding function in the

concreteMediatorClass. So concreteMediator have five such function if there are five

concreteCollegue classes.

Figure 7.41: Objects of Mediator Design Pattern Template's DPDL

The next part of the structural description for the mediator design pattern template is for

the objects. There are four groups in the Objects part of the DPDL description of

mediator design pattern template. Two of these groups belong to client classes. The other

two are related to the objects in the design pattern. There is always one mediator object in

an instance of the mediator design pattern. So the number of classes for the mediatorOb

group is 1. The concreteMediator class will have an object of each class present in the

cncCollegueGroup, therefore cncMediatorOb group has attribute forEach set to class and

inGroupId have value of cncCollegueGroup. This means that for each class in

cncCollegueGroup, there will be an object in the concreteMediator class.

 168

The cncMediatorOb group shows that a mediator object is present in each class which

belongs to ClGroup, as the value of inEach is class and inGroupId is ClGroup. The

second group concerning class class is cncCollegueOb. There is an object in client class

for each class in cncCollegueGroup. So this group has forEach set to Class and

inGroupId has value set to ClGroup.

Figure 7.42: Relationships of Mediator Design Pattern Template's DPDL

The final section in structure attributes is relationships. There are four groups in the

relationships section of the mediator design pattern template. The first relation is of

Association between Mediator and Collegue. All instances of the mediator have only one

such relation in it. So the number of relation attribute in the group is set to 1. As there is

always going to be only one concreteMediator class in any instance of Mediator design

pattern, therefore there is only going to be one generalization relationship between

mediator and concreteMediator class.

There can be many concreteCollegue classes in the mediator design pattern, each of them

have Collegue class as its parent, therefore each concreteCollegue class has a

 169

generalization relationship with the Collegue Class. This is shown in the third group of

the relationship. It has inGroupId is set to cncCollegueGroup and changingClass to

initiatingClass. This tells that initiating class in the relationship is going to be changing

with the class in cncCollegueGroup. The relationship between each concreteCollegue

class and the concreteMediator class is of Association. This is shown in the fourth group,

which has inGroupId set to cncCollegueGroup and the changingClass is the endClass. So

ending class in the relationship is going to be replaced in the relationship with each class

in the cncCollegueGroup.

Behavioral Description in DPDL

The behavioral descriptions are represented from the perspective of a single client. It is

not going to change for other clients. Moreover showing the behavior with the

perspective of multiple clients is quite complex and make it hard to understand for the

end user. This added complexity is unnecessary and is left out.

Figure 7.43: Behavioral Descriptions of Mediator Design Pattern Template's DPDL

 170

The client can create an object for all the classes present in the concrete collegue group,

cncCollegueGroup. We again use the forEach attribute with value of class and inGroupId

value as cncCollegeGroup. This describes that for each class in cncCollegeGroup an

object is created in the client class. But before that client create a single mediator class

object. The client than set each object of the mediator object to the cncCollegueGroup

classes objects it has created. Again in the Set element we have forEach attribute with

value of class and inGroupId value as cncCollegeGroup. The next step is the call of a

Send function through the concrete collegue class object. This call is made through one

of the object of the cncCollegueGroup class. So this call can be made with each object in

the client class belonging to cncCollegueGroup class. Therefore forEach is set to class

and inGroupId is set to cncCollegueGroup. There is a nested call inside this call element.

But we are not adding forEach or inEach attribute in that call element as the nested call is

firstly automatically going to be routed and secondly for a single call is automatically

going to invoke one call nested in it. If we add forEach than this means that one outer call

is always going to initiate nested calls for each class which is not the correct case.

7.2.3 Factory Design Pattern Template

Last template which we are going to discuss is the factory design pattern template. Again

it has two parts the structural n behavioral. So we begin with structural description first.

 171

Figure 7.44: Overview of Factory Method Design Pattern Template's DPDL

Structural Description in DPDL

Figure 7.45: Classes of Factory Method Design Pattern Template's DPDL

 172

The first section of the structural description is Classes and it has 5 groups in it including

the client group. The client group is 1ToMany again. There is a parent class for all

products and all creators. Both of these classes are single classes i.e. only one of each is

present in any instance of factory design pattern. There can be many concrete product

classes its group cncProduct has number of classes as 1ToMany. Similarly for each

concrete product class there is a creator class so there are many creator classes also, and

its group cncCreator also has number of classes as 1ToMany.

Figure 7.46: Operations of Factory Method Design Pattern Template's DPDL

The second section of the structural description is Operations. There are only two groups

of operations for the factory design pattern template. The first group contains a creator

method which is just in the creator class, which is just one in each instance of a factory

design pattern. The second group in Operations contains description for the over ride

function in child classes of creator classes. This function is present in each

ConcreteCreator class. Therefore the value inEach is class and the inGroupId is

cncCreator. So this describes that in each class in cncCreator group there will be a

factoryMethod function overriding the parent class function.

 173

Figure 7.47: Objectof Factory Method Design Pattern Template's DPDL

The third section of the structural attributes is Objects. Here we have made only one

group for the objects in the client classes. There are two objects in the group. As these

objects are going to be present in each client class trying to access the factory method,

therefore the value of the inEach attribute is class and the inGroupId has a value of

ClientClasses. So in each client class belonging to the clientClasses group the two

objects, an array of creator class objects and an object of product class is going to be

present.

Figure 7.48: Relationships of Factory Method Design Pattern Template's DPDL

 174

The final section of the structural attributes is Relationship. There are three groups in the

relationship section. The first group contains a generalization relationship between

product and concreteProduct classes. As the number of concreteProduct classes can vary

from 1ToManym therefore the value for attribute forEach is class and inGroupId we have

cncProduct and the class that is changing is initiatingClass. The second group also

contains the generalization relationship between the creator and the concreteCreator

classes. In this group the inGroupId attribute has the id cncCreator and changingClass is

again initiating class and forEach has the value of class.

The final group in the relationship is between each concreteCreator with the

corresponding concreteProduct. This is an interesting relationship in which both the

concreteCreator and the concreteProduct are getting changed for every relation belonging

to this group. Also both these classes belong to 1ToMany groups. So we have the value

for forEach attribute as pair instead of class as both classes or a pair is getting changed.

Also in the inGrouId attribute we have two groups mentioned, cncCreator and

cncProduct. Lastly also the changingClass attribute has both initiatingClass and endClass

as the value. Here it is important to remember that the initiatingClass in the relationship

will be changed by the classes in the cncCreator and endClass will be replaced by

cncProduct group classes.

 175

Behavioral Description in DPDL

Figure 7.49: Behavioral Description of Factory Method Design Pattern Template's

DPDL

As we have mentioned in the Mediator design pattern template that the behavior will be

described from the perspective of a single client. There is no major change in the

behavioral description of the factory design pattern template. In each client trying to

access factory method creates one array of creator type. The second step is which get

changed for the factory design pattern template, now each element of the array is set to

some concreteCreator class object. So we have added forEach attribute with value of

class and the value of inGroupId is given as cncCreator group. So for all classes present

in cncCreator group the set command will be repeated.

Remaining portion of the behavior pattern remains same.

 176

CHAPTER 8

CONCLUSION & FUTURE WORK

A design pattern implementation solution has been proposed and successfully developed.

It consists of two components. The first component is for defining the structural attributes

of the design pattern and second part of the schema is specifically tailored for capturing

the design pattern‘s behavioral characteristics. Both components have been designed

purposefully to handle both individual instances of the design pattern and to define

template of a particular design pattern.

The proposed solution is used to build DPDL for three design patterns, one from each

category of design pattern classification of structural, behavioral and creational. The

graphical output from the built DPDL is also generated which showed that the language

covered the structural features of the design pattern adequately. Also the sequence

diagram is successfully constructed from the behavioral description of the DPDL of the

design patterns.

 177

The proposed solution also achieved other desired objectives set for it. By proposing the

solution in XML, no special programming or language skills are required. Not even any

special tools are required as XML can be written in any text editor. The second most

important feature for it is that it can generate graphical output, for which prototype

application has also been implemented. One tool is built to give the class diagram in

compliance with the UML standards and second tool is developed to provide a Sequence

diagram from the behavioral description of the design pattern.

Afterward the templates for these design patterns are also created. The basic schema for

the template of the design pattern and an instance of a design pattern is identical. This is

one of the benefits of our technique which can be used for objectives other than

implementation of a design pattern. Firstly it can be used for verification of design

pattern, as the instance of the design pattern should comply with the template of the

design pattern. Secondly it can be used for the identification of the design pattern also,

any design pattern in the code which falls in a particular template can be identified as the

instance of that particular design pattern. Although further work is required to be done to

see if a design pattern can fall in more than one template.

The other benefit is that it will make it easy for the developers to make a design pattern

from particular templates. As tools can be created, this can take input and some

parameters and generate an instance of a design pattern from the template. So this will

further help in reducing the coding and providing better support for the implementation

of the design pattern.

 178

For future work, the most imminent requirement is for the better tool support which can

fully exploit the available description in the current DPDL. Current tools do not provided

support for the template graphical output which is also an important area to work on.

Secondly we have worked on the object oriented design patterns only, there are also

design pattern for the transaction and security, support for these other type of design

patterns can also be added to enhance the capabilities of DPDL. Currently some function

level algorithmic support is not included in the design pattern, research for adding this

support can also be conducted.

 179

REFERENCES

[1] R. H. Erich Gamma, Ralph Johnson, John Vlissides, Design Patterns: Elements of

Reusable Object-Oriented Software: Addison Wesley, 1994.

[2] M. E. S. Loomis, et al., "An object modelling technique for conceptual design,"

presented at the European conference on object-oriented programming on

ECOOP '87, Paris, France, 1987.

[3] D.-K. Kim, "Role-Based Metamodeling Language for Specifying Design Patterns,"

in Design Pattern Formalization Techniques, ed: IGI Global, 2007, pp. 183-205.

[4] D. Mapelsden, et al., "Design pattern modelling and instantiation using DPML," in

CRPIT '02: Proceedings of the Fortieth International Conference on Tools

Pacific, ed. Sydney, Australia: Australian Computer Society, Inc., 2002, pp. 3-11.

[5] E. Gasparis, "LePUS: A Formal Language for Modeling Design Patterns," in

Design Pattern Formalization Techniques, ed: IGI Global, 2007, pp. 357-372.

[6] R. R. Raje, et al., "The Applications and Enhancement of LePUS for Specifying

Design Patterns," in Design Pattern Formalization Techniques, ed: IGI Global,

2007, pp. 236-257.

[7] M. Saeki, "Behavioral specification of GOF design patterns with LOTOS," in

APSEC '00: Proceedings of the Seventh Asia-Pacific Software Engineering

Conference, ed. Washington, DC, USA: IEEE Computer Society, 2000, p. 408.

[8] Z. Jalil and A. Hanif, "Improving management of outsourced software projects in

Pakistan," Computer Science and Information Technology, International

Conference on, vol. 0, pp. 524-528, 2009.

[9] T. Toufik, et al., "Stepwise Refinement Validation of Design Patterns Formalized

in TLA+ using the TLC Model Checker," Journal of Object Technology, vol. 9,

No 2, pp. 137 - 161, 2009.

[10] D. J. Armstrong, "The Quarks of Object-Oriented Development," Communications

of the ACM, vol. 49, pp. 123-128, 2006.

[11] B. Meyer, Eiffel: The Language. Hemel Hempstead: Prentice Hall, 1992.

[12] B. Meyer, Object-Oriented Software Construction. New York: Prentice Hall, 1997.

[13] R. Wirfs-Brock, Designing Object-Oriented Software. New York: Knopf Books for

Young Readers, 1990.

 180

[14] C. Alexander, A Pattern Language. New York: Oxford University Press, 1977.

[15] D. Lea, "Christopher Alexander, An Introduction for Object-Oriented Designers,"

Software Engineering Notes, 1994.

[16] D. Riehle and H. Zullighoven, "Understanding and using patterns in software

development," Theor. Pract. Object Syst., vol. 2, pp. 3-13, 1996.

[17] B. Appleton and I. Patterns. (1998, Patterns and Software: Essential Concepts and

Terminology.

[18] R. Gabriel, Patterns of Software: Tales from the Software Community Oxford

University Press, 1996.

[19] J. Coplien, Software Patterns: SIGS, 1996.

[20] C. Alexander, The Timeless Way of Building: Oxford University Press, 1979.

[21] K. Beck and W. Cunningham, "Using Pattern Languages for Object Oriented

Programs," OOPSLA - Conference on Object-Oriented Programming, Systems,

Languages, and Applications1987.

[22] J. O. Coplien, Advanced C++ Programming Styles and Idioms: Addison-Wesley

Pub (Sd), 2002.

[23] S. J. Metsker, Design Patterns Java Workbook: Addison Wesley, 2002.

[24] M. Grand, Patterns in Java, Volume 1, A Catalog of Reusable Design Patterns

Illustrated with UML: John Wiley & Sons, 1998.

[25] E. Language, "World Wide Web Consortium (W3C)," Web page at http://www.

w3c. org/xml, 2000.

[26] P. Buneman, et al., "Constraints for semistructured data and XML," SIGMOD Rec.,

vol. 30, pp. 47-54, 2001.

[27] D. Watson, "Brief history of document markup," Florida Agriculture Information

Retrieval System. Nov, 1992.

[28] J. Grüneis, "Object–XML mapping with JAXB2."

[29] G. Shlezinger, et al., "Analyzing Object-Oriented Design Patterns from an Object-

Process Viewpoint," presented at the NGITS, 2006.

[30] R. R. Raje and S. Chinnasamy, "eLePUS - a language for specification of software

design patterns," in SAC '01: Proceedings of the 2001 ACM symposium on

Applied computing, ed. Las Vegas, Nevada, United States: ACM, 2001, pp. 600-

604.

http://www/

 181

[31] R. M. Smullyan, First-order logic [by] Raymond M. Smullyan Springer-Verlag,

Berlin, New York [etc.] 1968

[32] L. Lamport, "The temporal logic of actions," ACM Transactions on Programming

Languages and Systems, vol. 16, pp. 872-923, 1994.

[33] S. M. Yacoub, et al., Pattern-Oriented Analysis and Design: Composing Patterns

to Design Software Systems, 1st Edition ed. NY: Addison-Wesley Professional,

2003.

[34] A. H. Eden, et al., "A Formal Language for Design Patterns," Washington

University, St. Louis, Missouri, USA1996.

[35] S. Kodituwakku and P. Bertok, "A mathematical approach to object oriented design

patterns," Journal of the National Science Foundation of Sri Lanka, vol. 36, 2009.

[36] T. Taibi, "An Integrated Approach to Design Patterns Formalization," in Design

Pattern Formalization Techniques, ed: IGI Global, 2007, pp. 1-19.

[37] T. Mikkonen, "Formalizing Design Patterns," Software Engineering, International

Conference on, vol. 0, p. 115, 1998.

[38] K. M. Chandy, Parallel program design: a foundation: Addison-Wesley Longman

Publishing Co., Inc., 1988.

[39] T. Taibi and D. C. Ngo, "Formal specification of design pattern combination using

BPSL," Information and Software Technology, vol. 45, pp. 157-170, March 2003.

[40] H. Angel and J. J. Moreno-Navarro, "Modeling and Reasoning about Design

Patterns in Slam-Sl," Design Pattern Formalization Techniques, pp. 206 - 235,

2007.

[41] S. Henninger and V. Corrêa, "Software Pattern Communities: Current Practices and

Challenges," 14th Conference on Pattern Languages of Programs (PLoP 07),

2007.

[42] 15 May 2010). Object Management Group. Available: http://www.omg.org/

[43] J. Luis, et al., "Title," unpublished|.

[44] OMG, "Object Constraint Language Specification, version 2.0," OMG, Ed., ed,

2005.

[45] D. Bohdanowicz, "Toward Tool Support for Usage of Object-Oriented Design

Patterns Expressed inUnified Modeling Language," MS Master Thesis, School of

Engineering, Blekinge Institute of Technology, Ronneby, Sweden, 2005.

http://www.omg.org/

 182

[46] A. Blewitt, "SPINE: Language for Pattern Verification," in Design Pattern

Formalization Techniques, ed: IGI Global, 2007, pp. 109-122.

[47] P. K. G and A. K. K, "MCDMfJ : Mining Creational Design Motifs from Java

source code," International Journal of Computer and Network Security, vol. 2, p.

4, 2010.

[48] E. Braude, Software design: from programming to architecture: J. Wiley, 2004.

[49] K. Lano, "Formalising Design Patterns as Model Transformations," in Design

Pattern Formalization Techniques, ed: IGI Global, 2007, pp. 156-182.

[50] D. Gallardo. 16 May 2010). Java design patterns 101. Available:

ibm.com/developerWorks

[51] D. Chsaputra, "Implementation Factory Method Pattern in ASPNET," in

Professional Development Journal Blog vol. 2010, ed: theCoderBlogs, 2009.

[52] K. C. CARTIER, "APPLICATION OF THE MEDIATOR DESIGN PATTERN TO

MONTE CARLO SIMULATION IN GENETIC EPIDEMIOLOGY," Master,

Department of Epidemiology and Biostatistics, CASE WESTERN RESERVE

UNIVERSITY, 2008.

[53] S. Campbell and A. E. K. Sobel, "Supporting the Formal Analysis of Software

Systems," presented at the Proceedings of the 2008 International Conference on

Computer Science and Software Engineering - Volume 02, 2008.

[54] "Altova XMLSpy 2010," 2010 ed: Altova, 2010.

[55] B. Tihanyi, "NClass," ed: SourceForge, 2009.

[56] M. Simpson, "NSequence," ed: SourceForge, 2006.

[57] J. Pesola, "Building Framework for Early Product Verification and Validation."

[58] "Altova UModel 2010 Enterprise edition," 2010 ed: Altova, 2010.

VITAE

Salman Ahmad Khwaja

Born in Lahore, June 3rd, 1980

Received Bachelor of Science (B.S) in Computer Science from National University of

Computer & Emerging Science (NUCES), Lahore, Pakistan in June 2004.

Joined King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia as a

Research Assistant in September 2007.

Completed Master of Science (M.S.) in Information & Computer Science in June 2010.

Email: salu.ahmad@gmail.com

Present Address: Room 421, Bldg. 903, KFUPM, Dhahran 31261, Saudi Arabia.

Permanent Address: 242 - A, New Muslim Town, Lahore, Pakistan.

