




 

 

 

 

 

 

Affectionately dedicated to 
my parents 

for their love, endless support 
,and encouragement. 

 

 

 

 

 

 

 



iv 

 

ACKNOWLEDGEMENT 

In the name of Allah, the Most Beneficent, Most Merciful. 

 

First of all, praise is due to Almighty Allah the source of all knowledge. Who in His 

Infinite Mercy and Grace enabled me to complete the present thesis.  I bow my head with 

all submission and humility by way of gratitude due to Almighty Allah. May peace and 

blessing of Allah be upon the noble prophet Muhammad. May the mercy and forgiveness 

of Allah be upon the household of Rasul, his companions and all his fervent followers till 

the Day of Judgment.  

 

I wish to express my heartfelt thanks and obligation to my advisor and mentor, Dr. Sajjad 

Mahmood who guided me with keen interest and rendered all possible help inspite of his 

hectic research and teaching schedules. I found no suitable words to thank him. 

 

Thanks also are due to my thesis committee members Prof. Sabri Mahmoud and           

Dr. Mahmoud Elish for their invaluable comments and criticism.   

 

I am also grateful to my family. My particular debt of gratitude is for my parents, my 

aunt, my brothers especially, Adnan, Ali, and my sister, for their encouragement, constant 

care, moral support, and love. 

 

I also extend my thanks and gratitude to my friends: Amin Abo-monasar, Waleed Al-

Zu’bi, Yousef Da’aboush, Abdirahman Daud, Emad Jaha, Basem Ala’alawi, Ali Yaseen, 



v 

 

Shouki Ebad, Abdulaziz Al-Baiz, Zaid Zuraigat, Mohammed Amro, Muaadh 

AbdulGhani, Ashraf AlShaikh, and Mohammed Yahia for their sharing of knowledge and 

experiences. I really had with them an unforgettable and wonderful time of my life. 

 

Special thanks and gratitude to my friends: Mahmoud Al-Na’ami and Abdulaziz Shubaili 

who gave me continuous help, encouragement, and support throughout my life in 

KFUPM.  

 

Also, I am thankful for KFUPM for providing the inspirational research atmosphere. The 

facilities provided by KFUPM were highly appreciated such as providing access to the 

high reputable journals. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



vi 

 

TABLE OF CONTENTS 

ACKNOWLEDGEMENT ............................................................................................... iv 
TABLE OF CONTENTS ................................................................................................ vi 
LIST OF FIGURES ....................................................................................................... viii 
LIST OF TABLES ............................................................................................................ x 
ABSTRACT ...................................................................................................................... xi 
CHAPTER 1 ...................................................................................................................... 1 
INTRODUCTION ............................................................................................................ 1 

1.1 Overview ........................................................................................................... 1 
1.2 Motivation ......................................................................................................... 2 
1.3 Aims of the Work.............................................................................................. 3 
1.4 Contributions..................................................................................................... 4 

1.4.1 Development of Glue Code Specification Framework  ..................... 4 
1.4.2 Applying the Framework to a Case Study  ........................................ 5 
1.4.3 Glue Code Formal Specification ........................................................ 6 

1.5 Thesis Organization  ......................................................................................... 6 
CHAPTER 2 ...................................................................................................................... 8 
BACKGROUND ............................................................................................................... 8 

2.1 Introduction ....................................................................................................... 8 
2.2 Component-Based Software Engineering ......................................................... 8 
2.3 Software Components ..................................................................................... 10 
2.4 Component-Based Software Development ..................................................... 11 
2.5 Components Integration .................................................................................. 15 
2.6 Adaptation (Glue Coding) .............................................................................. 17 

CHAPTER 3 .................................................................................................................... 21 
LITERATURE REVIEW .............................................................................................. 21 

3.1 Overview ......................................................................................................... 21 
3.2 Individual Component’s Point-of-View Approaches ..................................... 21 
3.3 Aspect-Oriented Approaches .......................................................................... 24 

CHAPTER 4 .................................................................................................................... 32 
FRAMEWORK DEVELOPEMENT ............................................................................ 32 

4.1 Introduction ..................................................................................................... 32 
4.2 Glue Code Specification ................................................................................. 33 
4.3 Deriving Glue Code Specification .................................................................. 34 

4.3.1 Cheesman’s Technique for Extracting System Interfaces  .............. 34 
4.3.2 Conceptual and Concrete Interfaces  ............................................... 36 
4.3.3 Deriving Conceptual Interfaces  ...................................................... 39 

4.4 The Glue Code Specification Framework ....................................................... 42 
4.4.1 Components Documentation  ........................................................... 42 
4.4.2 Realization Stage  ............................................................................ 44 

4.4.2.1 Static Realization .............................................................. 45 
4.4.2.2 Dynamic Realization ......................................................... 50 

4.5 Summary ......................................................................................................... 56 



vii 

 

CHAPTER 5 .................................................................................................................... 58 
CASE STUDY FOR REALIZATION STAGE ............................................................ 58 

5.1 Introduction ..................................................................................................... 58 
5.2 Hotel Reservation System (HRS) ................................................................... 58 

5.2.1 Applying Realization Stage  ............................................................ 59 
5.3 Summary ......................................................................................................... 85 

CHAPTER 6 .................................................................................................................... 86 
GLUE CODE FORMAL SPECIFICATION ............................................................... 86 

6.1 Glue Code and Formal Specification .............................................................. 86 
6.2 Object Constraint Language (OCL) ................................................................ 87 
6.3 Composition Stage .......................................................................................... 92 

6.3.1 OCL-Constrained Class Diagram (OCCD)  .................................... 93 
6.3.2 Validating OCCD ............................................................................ 96 

6.4 Summary ....................................................................................................... 103 
CHAPTER 7 .................................................................................................................. 104 
CASE STUDY FOR COMPOSITION STAGE ......................................................... 104 

7.1 Applying Composition Stage ........................................................................ 104 
7.2 OCCD Validation ......................................................................................... 116 
7.3 Summary ....................................................................................................... 124 

CHAPTER 8 .................................................................................................................. 126 
CONCLUSION AND FUTURE WORK .................................................................... 126 

8.1 Summary of the Work ................................................................................... 126 
8.1.1 The Integration Framework  .......................................................... 126 

8.2 Future Research Work .................................................................................. 128 
REFERENCES .............................................................................................................. 129 
APPENDIX .................................................................................................................... 133 
CURRICULUM VITA ................................................................................................. 139 

 

 

 

 

 

 

 

 

 

 

 

 



viii 

 

LIST OF FIGURES 

Figure 1: An overview for CBS development .................................................................... 1 

Figure 2: An example of interfaces between two components represented in UML ....... 11 

Figure 3: CBS development process ................................................................................. 12 

Figure 4: An example of a glue code component ............................................................. 19 

Figure 5: “Make a Reservation” UC of Hotel Reservation system. ................................. 35 

Figure 6: Applying Chessman's technique to “Make a Reservation” UC ........................ 36 

Figure 7: The generic notation for an interface ................................................................ 37 

Figure 8: Conceptual interface for “Make a Reservation” UC ......................................... 41 

Figure 9: An overview for the glue code specification framework .................................. 42 

Figure 10: An example of standard documentation for two components ......................... 43 

Figure 11: An overview of the realization stage of the proposed framework .................. 45 

Figure 12: An example of a UCCM diagram ................................................................... 46 

Figure 13: Note notation in UCCM diagram .................................................................... 46 

Figure 14: CompBSD template ......................................................................................... 55 

Figure 15: An example of scenario represented by a CompBSD ..................................... 56 

Figure 16: Selected software components to be integrated .............................................. 59 

Figure 17: UCCM diagram for IMakingReservation ........................................................ 63 

Figure 18: CompBSD of IMakingReservation ................................................................. 66 

Figure 19: UCCM diagram for ICancelReservation ......................................................... 69 

Figure 20: CompBSD of ICancelReservation .................................................................. 71 

Figure 21: UCCM diagram for IAmendReservation ......................................................... 74 

Figure 22: CompBSD of IAmendReservation .................................................................. 76 

Figure 23: UCCM diagram for IProcessNoShows ........................................................... 78 

Figure 24: CompBSD of IProcessNoShows ..................................................................... 80 

Figure 25: UCCM diagram for ITakingUpReservation .................................................... 82 

Figure 26: CompBSD of ITakingUpReservation .............................................................. 84 

Figure 27: Bank accounts class diagram ........................................................................... 89 

Figure 28: An overview of the composition stage of the proposed framework ............... 93 



ix 

 

Figure 29: An OCCD template ......................................................................................... 94 

Figure 30: Class diagram for persons and a company ...................................................... 96 

Figure 31: Generated object diagram for the model ......................................................... 99 

Figure 32:  The object model after creating the link WorksFor ..................................... 101 

Figure 33: UML sequence diagram representing sequence of operation calls ............... 102 

Figure 34: Skeleton of HRS OCCD ................................................................................ 109 

Figure 35: Attaching interfaces of the components to the OCCD skeleton .................... 110 

Figure 36: The glue component realizing “ReservationOperations” exposed interface 111 

Figure 37: Building OCCD using ArgoUML (Tigris.org) tool ...................................... 111 

Figure 38 :  Class diagram for HRS system .................................................................... 112 

Figure 39: USE tool environment ................................................................................... 117 

Figure 40: A part of OCCD drawn using USE tool ........................................................ 117 

Figure 41: Object diagram corresponding to classes in OCCD ...................................... 118 

Figure 42: Created objects during USE simulation for the system ................................. 119 

Figure 43 : Call simulation for askForReservation() method ......................................... 120 

Figure 44: Another call simulation for askForReservation() method ............................ 120 

Figure 45: Call simulation for askToTakeUp() method .................................................. 121 

Figure 46: Call simulation for askToProcessNoShows() method ................................... 121 

Figure 47: Call simulation for provideNameANDPostCode() method ........................... 122 

Figure 48: Call simulation for getCustomerInfo() method ............................................. 122 

Figure 49: Call simulation for provideReservTag() method ........................................... 122 

Figure 50: Call simulation for getCustomerID() method ............................................... 123 

Figure 51: Call simulation for saveOldReservation () method ....................................... 123 

Figure 52: Sequence diagram for the performed calls simulations ................................ 124 

 

 

 

 

 

 

 



x 

 

LIST OF TABLES 

 

Table 1: A summary of related work done in component integration ............................... 31 

Table 2: The realization table for "IMakingReservation" conceptual interface ............... 49 

Table 3: Realization table for IMakingReservation .......................................................... 64 

Table 4 : Realization table for ICancelReservation .......................................................... 70 

Table 5: Realization table for IAmendReservation ........................................................... 75 

Table 6: Realization table for IProcessNoShows .............................................................. 79 

Table 7: Realization table for ITakingUpReservation ...................................................... 83 

Table 8: List of missing functionalities .......................................................................... 108 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xi 

 

ABSTRACT 

Full Name: Mohammed Abdullah Ali Al-Qadhi 

Thesis Title: A Framework for Integration Specifications for Component-Based 

Software 

Major Field: Information and Computer Science 

Date of Degree: June, 2010 

 

Component-Based Software (CBS) development process relies heavily on integrating 

individual components. Components are usually developed for general purposes and are 

integrated to meet the required functionality of the system-to-be. The integration code 

development is a complex and risk-prone process that needs to handle possible 

mismatches between the components’ interfaces and implement missing functionalities. 

In this thesis, we present a framework that provides a process for deriving an integration 

specification for CBS. The integration specification is aimed to support missing 

functionalities, missing auxiliary services, mismatched interfaces, and flow of control. 

The framework consists of two stages, namely, realization and composition stages. The 

realization stage aims at specifying the mapping between the system-to-be use-cases and 

the selected components to identify the conceptual interfaces and the missing 

functionalities. The composition stage uses the Object Constraint Language (OCL) to add 

constraints to the integration specification. The framework will output two kinds of 

integration specifications. One will be in the form of Component-Based Sequence 

Diagrams (CompBSDs) resulting from the realization stage. The other one will be in the 

form of an OCL-Constrained Class Diagram (OCCD) resulting from the composition 



xii 

 

stage. Furthermore, we present an application of the framework to a Hotel Reservation 

System (HRS) case study. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xiii 

 

 خلاصة الرسالة

  محمد عبدالله علي القاضي الاسم:

  المبنية على المكونات البرمجية يةلبرمجلنظم اتكامل لات اللمواصفعمل  إطار لرسالة:عنوان ا

  علوم الحاسب و المعلومات مجال التخصص:

  2009يونيو,  تاريخ التخرج:

 

ھذه يتم تطوير . منفردة برمجية بشكل كبيرعلى دمج مكونات ةبرمجي مكونات علىة مبنيال يةلبرمجلنظم ااتعتمد 

تعتبر . البرمجي المزمع بناؤه لتلبية الوظيفة المطلوبة من النظام و يجري تكاملھالأغراض عامة  مكونات عادةال

 التباينعرضة للمخاطر التي تحتاج إلى معالجة حالات ممعقدة والشفرة البرمجية التي تقوم بعملية التكامل شفرة 

. في ھذه لتي لا تقدمھا المكونات الجاري تكاملھاالمفقودة اوظائف الوتنفيذ  البرمجية بين واجھات المكونات حتملةالم

جية. ھذه المواصفات برم مكونات القائمة على للبرمجيات مواصفات التكامل لاستنباط عمل الأطروحة ، نقدم إطار

وحل التباين في مواجھات مكونات  ،و الوظائف الثانوية الناقصة ،سوف تقوم بتوفير الوظائف الأساسية الناقصة

مرحلة  ففي .التحقيق و الدمجويتكون الإطار من مرحلتي المحافظة على سير عملية التحكم في النظام. وو ،النظام

المواجھات الاولية و الوظائف المفقودة بناء على المعلومات المعطاة من حالات الإستخدام  تحديد ھدف إلىنالتحقيق 

ودا لغوية بواسطة لغة خدم قيالدمج فسوف نست  مرحلة للنظام و الخدمات المقدمة من قبل المكونات البرمجية. أما في

خراج نوعين من ستسيتم إإطار العمل سوف  في ) لإضافة قيود على مواصفات التكامل.OCL( تقييد الكائن

ل المبنية على المكونات البرمجية سجموعة من مخططات التسلم شكل على أحدھما سيكونمواصفات التكامل. 

)CompBSDs (مقيدمخطط أصناف  لشك يكون الاخر علىمرحلة التحقيق. وسوف  وھو ناتج عن )OCCD ( 

  دراسة حالة.كدق افنالنظام حجز  العمل على تطبيق إطارفقد قمنا بوعلاوة على ذلك ، . الدمج مرحلةوھو ناتج عن 

 

 



1 

 

CHAPTER 1 

INTRODUCTION 

1.1 Overview 

The concept of developing software components and the reuse of them gained 

widespread popularity and has been referred to as the next big phenomenon for 

software engineering. Nowadays, complex software systems are built by integrating 

independent components. The reuse of software components greatly improves the 

software development productivity and also the quality of the final software product. 

An overview for Component-Based Software (CBS) development process is shown 

in figure 1. 

 

Figure 1: An overview for CBS development 



2 

 

1.2 Motivation 

An important challenge associated with CBS integration phase is that, it is rarely the case 

that two components are perfectly matched. Hence, the process generally involves more 

than simply finding two components, which together perform the desired tasks, and then 

connecting their APIs (Baik, Eickelmann, & Abts, 2001). One important issue when 

integrating components is to deal with the interface mismatches that may occur when 

putting together pieces developed by different parties, usually unaware of each other 

(Cechich, Piattini, & Vallecillo, 2003). Also, some system functionalities required by 

stakeholders’ requirements are not provided, so there is a need to implement them.  There 

is also a need for a glue code specification in which mismatches between system-to-be 

requirements and functionalities are addressed.  

 

(Basili & Boehm, 2001) and (Boehm & Abts, 1999) have shown that, if the components 

selected are not appropriate or an inappropriate model is used, or if the components are 

not well understood, the costs of glue code may be greater than that of the development 

of the components themselves (Crnkovic & Larsson, 2002). The effort for the 

development of glue code is usually less than 50% of the total from-scratch-development 

effort, but effort per line of glue code is about three times the effort per line of the 

application's code.  

 

To the best of our knowledge, CBS integration (i.e. glue code) is still being developed in 

an ad hoc manner (Li, Conradi, Bunse, Torchiano, Slyngstad, & Morisio, 2009) which 

results in a brittle code (Baik, Eickelmann, & Abts, 2001). Developers rely on their on-



3 

 

the-fly brainstorming when integrating components rather than a solid and well-defined 

engineering process. There is a need for a framework that supports the process of the glue 

coding in a CBS.   

 

The progress of software development in the near future will depend very much on the 

successful establishment of CBS development, a point that is recognized by both industry 

and academia. So, we believe that this framework is important to further enhance the 

CBS development adoption in the industry.  

 

1.3 Aims of the Work 

The aim of this research work is to develop a framework for deriving glue code 

specification. This will help system analysts to (a) follow a clear sequence of steps for the 

derivation of glue code specification; (b) better overcoming the interface mismatches 

between components; and (c) better identification and implementation for missing 

functionalities.  

 

The final specification is aimed to address the following issues: 

 Missing primary functionalities: the final system may not meet the intended 

functional requirements. 

 Missing auxiliary services: these are like type casting, exception handling, and 

temporary storage which may be needed when executing a scenario. 



4 

 

 Mismatched interfaces:  wrong assumptions that a component makes about 

interfaces of other components which negatively affect the inter-operability. 

 Flow of control: the lack of preserving scenarios sequences may result in 

exhibiting an undesirable behavior of the system’s operation. 

 

1.4 Contributions 

The following subsections briefly list and summarize the contributions of this work.  

 

1.4.1 Development of Glue Code Specification Framework 

Components integration in CBS development is still being done in a traditional way (Li, 

Conradi, Bunse, Torchiano, Slyngstad, & Morisio, 2009). Use-cases of the system-to-be 

are gathered and the system design (if any) will be developed to be given to the 

developer. The developer has to wait till late stages of development to define system 

interfaces which will play an important role in the integration process.  

 

As mentioned in the section of motivation, there is no well-defined engineering process 

for CBS integration rather it is done in an ad hoc manner.  This may lead to mishandling 

many issues like: missing functionalities; mismatched interfaces; and flow of control 

when executing a scenario. This may result in a system that does not fulfill its 

requirements and\or exhibiting undesirable operation. 

  



5 

 

Moreover, the lack of documenting the CBS integration process will result in problems 

when maintaining the system. Maintenance is often performed by individuals who were 

not involved in the original design of the system being changed. Indeed, it is expected 

that many aspects of the system need to be understood in order to properly change it, 

including its functionality, architecture, and a myriad of design details. 

 

In this research work, we developed a framework that will provide an engineering 

process for the components’ integration in CBS development. It provides a clear 

derivation for the glue code specification that is going to connect the components rather 

than doing that in an ad hoc manner. It helps deriving the system interfaces directly from 

use-cases of the system-to-be instead of waiting till late development stages.  It provides 

a means of documenting the integration process by providing a well-defined glue code 

specification. 

  

1.4.2 Applying the Framework to a Case Study 

We present an application of the integration framework to a case study of a Hotel 

Reservation System. This will give a step-by-step demonstration for the process of 

integration beginning with system-to-be use-cases till obtaining the final glue code 

specification. 

 

 

 



6 

 

1.4.3 Glue Code Formal Specification 

Adding OCL formalism to glue code specification will provide us with a more precise 

model. This will help eliminate the problem of ambiguity in the UML model presented 

by glue code specification. The proposed framework provides using OCL as an option to 

ensure the correctness of the glue code specification. The framework can still work 

without using OCL and provide informal glue code specification. 

 

1.5 Thesis Organization 

The structure of the thesis is outlined in the following previews of each of the remaining 

chapters: 

 Chapter 2: gives a background about CBS development, Component integration, 

and Adaptation (Glue Coding) concepts. 

 Chapter 3: provides an indicative literature review of CBS integration by 

presenting the research initiatives. It also shows strengths and weaknesses for 

each initiative. 

 Chapter 4: provides a gradual demonstration of the development of the realization 

stage of the proposed framework till getting one form of glue code specification 

as output. It provides the definition of different concepts, processes, and 

notations involved in the stage. 

 Chapter 5: presents a step-by-step application of the realization stage of the 

framework to a case study of a Hotel Reservation System (HRS).  



7 

 

 Chapter 6: presents the development of the composition stage of the framework 

which will provide a formal glue code specification as its output. Definition of 

different concepts, processes, and notations involved in the stage is provided. 

 Chapter 7: shows an application of the composition stage of the framework to the 

output provided in chapter 5 and resulting from applying the realization stage to 

HRS case study.  

 Chapter 8:  briefly summarizes the framework as well as providing the potential 

strengths and weaknesses of the framework. Possible future work directions are 

also provided. 

 

 

 

 

 

 

 

 

 



8 

 

CHAPTER 2 

BACKGROUND 

2.1 Introduction 

Component-Based Software Engineering (CBSE) emerged in the late 1990s as a reuse-

based approach to software systems development.  Its goal is to increase the productivity, 

quality, and time-to-market in software development. One important paradigm shift 

implied here is to build software systems from standard software components rather than 

"reinventing the wheel" each time.  

 

Its creation was motivated by designers’ frustration that object-oriented development had 

not led to extensive reuse, as originally suggested. Single object classes were too detailed 

and specific, and often had to be bound with an application at compile-time. You had to 

have a detailed knowledge of the classes to use them, which usually meant that you had 

to have the component source code. This made marketing objects as reusable components 

difficult. In spite of early optimistic predictions, no significant market for individual 

objects has ever developed. 

 

2.2 Component-Based Software Engineering  

Component-Based Software Engineering (CBSE) is the process of defining, 

implementing and integrating or composing loosely-coupled independent components 



9 

 

into systems. This has become an important software development approach because 

software systems are becoming larger and more complex and customers are demanding 

more dependable software that is developed more quickly. The only way that we can 

cope with this complexity and deliver better software more quickly is to reuse rather than 

re-implement software components.  

 

The essentials of CBSE are (Sommerville, 2007): 

1. Independent components completely specified by their interfaces. There should be 

a clear separation between the component interface and its implementation so that 

one implementation of a component can be replaced by another without changing 

the system. 

2. Component standards that facilitate the integration of components. These 

standards are embodied in a component model and defined, at the very minimum, 

how component interfaces should be specified and how components 

communicate. Some models define interfaces that should be implemented by all 

conformant components. If components conform to standards, then their operation 

is independent of their programming language. Components written in different 

languages can be integrated into the same system.  

3. Middleware provides software support for component integration. To make 

independent, distributed components work together, you need middleware support 

that handles component communications. Middleware such as CORBA handles 

low-level level issues efficiently and allows you to focus on application-related 

problems. In addition, middleware used to implement a component model may 



10 

 

provide support for resource allocation, transaction management, security and 

concurrency. 

4. A development process geared to CBSE. If you try to add a component-based 

approach to a development process that is geared to original software production, 

you will find that the assumptions inherent in the process limit the potential of 

CBSE. 

 

2.3 Software Components 

There are many existing definitions for a software component in the literature. However, 

there is a general agreement in the software engineering community that a component is 

an independent software unit that can be composed with other components to create a 

software system.  

 

Szyperski (Szyperski , Gruntz , & Murer, 2002) stated that “A software component is a 

unit of composition with contractually specified interfaces and explicit context 

dependencies only. A software component can be deployed independently and is subject 

to composition by third parties.” Szyperski also stated that a component has no externally 

observable state. This means that copies of components are indistinguishable. However, 

some component models, such as the Enterprise Java Beans model, allow stateful 

components so these clearly do not correspond with Szyperski’s definition of a 

component. While stateless components are certainly simpler to use, CBSE should 

accommodate both stateless and stateful components (Sommerville, 2007). In this 

research work, we adopt Szyperski’s definition. 



11 

 

Any software component consists of two parts: its interface and code. The interface is 

accessible and provides a means by which the components can talk to each other in order 

to exchange data and services. Interfaces should ideally contain all information about the 

component's operations and context dependencies. There are two types of interfaces: 

“Requires” and “Provides” type interfaces.  A “Provides” interface defines the services 

provided by the component. A “Requires” interface specifies what services must be 

provided by other components in the system. If these are not available, then the 

components will not work. On the other hand, the code should be completely inaccessible 

(and invisible). The specification of a component therefore must consist 

 of a precise definition of the component's operations and context dependencies 

(Crnkovic & Larsson, 2002). An example for two components is shown in figure 2. 

 
 

 
 

Figure 2: An example of interfaces between two components represented in UML  

 

2.4 Component-Based Software Development 

We are witnessing an enormous expansion in the reuse of software and an increasing 

adoption of CBS development approach by software development parties.  So, software is 



12 

 

no longer built from scratch; instead they are built by assembling pre-existing 

components. This expansion is due to many factors like market competition, rapid 

delivery, and reduced development cost. A typical CBS development process consists of 

seven phases as shown in figure 3 (Crnkovic & Larsson, 2002): 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: CBS development process 

 

1) Requirements Analysis and Definition: The analysis activity involves identifying 

and describing the requirements to be satisfied by the system. In this activity, the system 

boundaries should be defined and clearly specified. Using a component-based approach, 



13 

 

an analysis will also include specifications of the components that are to collaborate to 

provide the system functionality. To be able to do this, the domain or system architecture 

that will permit component collaboration must be defined. In CBS development, the 

analysis is an activity with three tasks. The first task is the capture of the system 

requirements and the definition of the system boundaries. The second task is the 

definition of the system architecture to permit component collaboration, and the third task 

is the definition of component requirements to permit the selection or development of the 

required components.  

 

2) Selection and Evaluation: To perform a search for suitable components and make 

their identification possible, the components must be specified, preferably in a 

standardized manner. Again, this may often not be the case. The component 

specifications will include precisely defined functional interfaces, while other attributes 

will be specified informally and imprecisely (no method is developed for this) if specified 

at all. The components selected must therefore be evaluated. The process of evaluation 

will include several aspects of both a technical and nontechnical nature. Technical 

aspects of evaluation include integration, validation, and verification. Examples of 

nontechnical issues include the marketing position of the component supplier, 

maintenance support provided, and alternative solutions. 

 

3) System Design: System design activity typically begins with the system specification 

and the definition of the system architecture and continues from there. In traditional 

development, the design of the system architecture is the result of the system 



14 

 

requirements, and the design process continues with a set of sequences of refinements 

(for example, iterations) from the initial assumptions to the final design goal. In contrast 

with traditional development, many decisions related to the system design will be a 

consequence of the component model selected. 

 

4) System Implementation: In an ideal CBS development process, the implementation 

by coding will be reduced to the creation of the “glue code” and to component adaptation. 

Also, it may still be necessary to design and implement some components (i.e. those that 

are business critical or unique to a specific solution and those that require refinement to 

fit into a given solution). 

 

5) System Integration: Integration is the composition of the implemented and selected 

components to constitute the software system. The integration process should not require 

great resources, because it is based on the system architecture and the use of deployment 

standards defined by the component framework and by the communication standard for 

component collaboration. Moreover, one of the characteristics of many component-based 

systems is the ability to dynamically integrate components without interrupting system 

execution. This means that the integration activity in CBS development is present in 

several phases of the component-based system life cycle. 

 

6) Verification and Validation: This last step before system delivery is similar to the 

corresponding procedures in a traditional development process. The system must be 

verified and validated. These terms can be easily confused although there is a clear 



15 

 

distinction between them. Verification is a process that determines whether the system 

meets its specified functional and nonfunctional requirements (i.e. are we building the 

product right?). A validation process should ensure that the system meets customer 

expectations (i.e. are we building the right product?).  

 

7) System Operation, Support, Maintenance, and Evolution: The purpose of the 

operational support and maintenance of component-based systems is the same as that of 

monolithic, non-component-based systems, but the procedures might be different. One 

characteristic of component-based systems is the existence of components even at run 

time, which makes it possible to improve and maintain the system by updating 

components or by adding new components to the system. This makes faster and more 

flexible improvement possible (i.e. it is no longer necessary to rebuild a system to 

improve it). In a developed component market it also gives end users the opportunity to 

select components from different vendors. On the other hand, maintenance procedures 

can be more complicated, because it is not necessarily clear who is supporting the system 

(i.e. the system vendor or the component vendors). Moreover, CBS evolution involves 

providing the system with up-to-date versions of its constituent components to enhance 

its quality and performance. 

2.5 Components Integration  

Integrating components can be illustrated as a mechanical process of wiring components 

together. The key in integrating software components is to understand the components 

properties like their intended environment and the assumptions under which they were 



16 

 

developed. Any discrepancies must be handled in order to perform a successful 

integration. It is based on syntactic information such as method signatures and, when 

available, supplementary information supplied in a component's interface. Supplementary 

information will most likely include information such as a description of the function to 

be performed and types of exceptions thrown.  

 

Usually, the components being integrated are developed independently, so there will be 

likely some interface mismatches (Garlan, Allen, & Ockerbloom, 1995). These are 

interface incompatibilities where the interfaces of the components that you wish to 

compose are not the same.  Three types of incompatibility can occur (Sommerville, 

2007):  

1. Parameter incompatibility: The operations on each side of the interface have the 

same name but their parameter types or the number of parameters is different. 

2. Operation incompatibility: The names of the operations in the “provides” and 

“requires” interfaces are different. 

3. Operation incompleteness: The “provides” interface of a component is a subset of 

the “requires” interface of another component or vice versa. 

 

Such interface mismatches will affect the interoperability between these integrated 

systems. A common representation of six major interoperability conflicts that arise 

through discrepancies or direct mismatches among architectural properties of interacting 

components has been defined by (Hepner, Gamble, Kelkar, & Davis, 2006). 



17 

 

The component integration process is composed of adaptation, validation and testing of 

the selected components.  

 

1) Adaptation (Glue Coding): Here is the part where all architectural mismatches 

including those related to the interfaces will be solved by creating adapting 

programming statements called “glue code”. Also, some missing system 

functionalities will be implemented within such code. Look at subsection 2.6 for 

further details.  

2) Validation and Testing: Validating adapted components is a major task for the CBS 

development process. Software component testing and validation techniques focus on 

the expected behavior of the component to ensure that the exhibited behavior is 

correct. The internal structures of the components are usually unknown. The most 

appropriate technique for component testing and validation is black box testing. In 

addition to traditional software testing and validation techniques, CBD introduces a 

set of new challenges, for example, components must fit into the new environment 

and they often require real-time detection, diagnosis and handling of software faults 

(Mahmood, Li, & Kim, 2007). 

2.6 Adaptation (Glue Coding) 

Component adaptation is widely recognized to be one of the crucial problems in CBS 

development (Campbel, 1999) and (Heineman G. T., 1999), and it has been the subject of 

increasing attention in the last few years. The possibility for application builders to easily 

adapt off-the-shelf software components to properly work within their application is a 



18 

 

must for the creation of a true component marketplace and for component deployment in 

general (Brown & Wallnau, 1998).  

 

Component adaptation is mainly concerned with solving mismatches between the 

integrated components. A component mismatch occurs, when a component, which 

implements a provided interface, and a component, which uses a required interface, is not 

cooperating as intended by the designer of the system. Using the concept of provided and 

required interfaces, a component mismatch can be interpreted as a mismatch between 

properties of required and provided interfaces, which have to be connected. 

Consequently, identifying mismatches between components is equivalent to identifying 

mismatches between interfaces.  

 

As an example in which a glue code (a.k.a adapter) component may be used is where one 

component wishes to make use of another, but there is an incompatibility between the 

providers and requires interfaces of these components (Sommerville, 2007). This is 

illustrated in figure 4, where the data collector component is connected to a sensor 

component using an adapter. It reconciles the “requires” interfaces of the data collection 

component with the “provides” interfaces of the sensor component. The data collection 

component was designed with a generic “requires” mechanism that was not based on a 

specific sensor interface. It is anticipated that an adapter would always be used to connect 

the data collector to a specific sensor interface. 



19 

 

 

Figure 4: An example of a glue code component 

 
 

Moreover, realistically speaking, usually it will not be the case that components being 

integrated are providing all functionalities that the final software product is expected to 

deliver. Therefore, a glue code also may contain the implementation of these missing 

functionalities. 

 

There is no doubt that, a component is nothing but a software artifact. This means that we 

are performing a software adaptation. Software adaptation is the sequence of steps 

performed whenever a software entity is changed in order to comply with requirements 

emerging from the environment in which the entity is deployed. Such changes can be 

performed at different stages during the lifecycle. As a result, we can distinguish 

requirement adaptation, design-time adaptation, and run-time adaptation (Canal, Murillo , 

& Poizat, 2005): 

 

 Requirement adaptation is used to react to changes during requirements 

engineering phase, especially when new requirements are emerging in the 

application domain. 



20 

 

 Design-time adaptation is applied during architectural design whenever an 

analysis of the system architecture indicates a mismatch between two constituent 

components. 

 Run-time adaptation takes place when parts of the system offer different behavior 

depending on the context the parts are running in. This kind of adaptation is 

therefore closely related to context-aware systems. 

In this research work, we are only concerned with the adaptation at the design-time. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



21 

 

CHAPTER 3 

LITERATURE REVIEW 

3.1 Overview 

In CBS development, each individual component is developed based on its own 

requirements and context. It is usually necessary to create some sort of adaptation to 

reduce the conflict among the selected components. Different component integration 

mechanisms are presented from an individual component’s point-of-view. Also, aspect-

oriented integration proposals have been applied to component integration by handling 

crosscutting concerns. 

 

3.2 Individual Component’s Point-of-View Approaches  

Filters are perhaps the oldest component integration mechanism (Garlan & Shaw, 1994). 

They only provide access to the data of the components without considering their 

functionality. The most complete mechanism provided by an individual component is an 

API that allows an external component complete access to all data, functions and events. 

An Internal Programming Language (IPL) is also used for component integration. It runs 

from inside the component in the form of macros (e.g. Microsoft Excel and Word). The 

concept of shared data repository is also discussed as a mechanism of component 

integration (Rader, 1997). This method is based on the idea that multiple components 

share a common data repository, while reading and writing the same data object.  



22 

 

The use of adapters to integrate components has been proposed by (Rine, Nada, & Jaber, 

1999). Adapters are introduced to interconnect components containing interaction’s 

protocol and manage component interactions. In this technique, each component has an 

associated adapter. Components request services from each other through their associated 

adapters. The associated adapters are responsible for solving the syntactic interfaces 

mismatch. The individual adapters communicate with each other to fulfill their 

components interaction.  

 

An element of architecture for integration and rules that facilities the integration has been 

defined (Vigder & Dean, 1997). They have identified a set of component integration 

components that are required for the component integration. Wrappers isolate the 

underlying components from other components of the system while a glue code provides 

the functionality to combine the components and component tailoring (i.e. the ability to 

enhance the functionality of a component). 

 

A language concept that facilitates the integration of components into applications is used 

to declare the type of components using the notation of collaboration interface                        

(Mezini & Ostermann, 2002 ). Collaboration interfaces facilitate the bidirectional 

expression of potential contexts (i.e. client-from-server contract and server-from-client 

contract) in which they might be integrated. The decoupling of component 

implementation from binding via re-modularization allows to mix and match re-

modularization and components on demand. The decoupling of components combined 

with integration of collaboration interfaces provides reuse in the proposed model.  



23 

 

(Dietrich, Patila, Sundermiera , & Urbana, 2006) have used active rules to design and 

generate wrappers to adapt components. The wrappers are automatically generated as 

enterprise Java Bean components and they act as proxy objects. These proxy objects 

intercept method calls and provide functionality required by the overall component-based 

system.  

 

(Kouroshfar, Shahir, & Ramsin, 2009) have proposed a generic process framework for 

component-based development CBSDP consisting of four phases (each considered a 

phase process pattern): Analysis, Design, Provision, and Release. The integration takes 

place at the Release phase, where components are assembled together to form the system 

proper.  

 

(Kim , Park, Yun, & Lee, 2008) had established an integration procedure which 

encourages the developers frequent and small releases. They also created an automated 

integration system which continuously runs an integration process in an incremental way 

so as to create and maintain an up-to-the-minute reasonably stable version of the product 

release candidate.  

 

(Gomez, et al., 2008) proposed a platform independent model and architecture based on 

the component-based software composition paradigm. This architecture was intended to 

be used as a reference to develop integration applications through its deployment over a 

specific platform or technology.  

 



24 

 

(Canal, Poizat, & Salaun, 2008) have presented an approach for software adaptation 

which relies on an abstract notation based on synchronous vectors and transition systems 

for governing adaptation rules. Their proposal is supported by dedicated algorithms that 

generate automatically adapter protocols. These algorithms have been implemented in a 

tool.  

 

(Zitouni, Seinturier, & Boufaida, 2008) present a contract-based approach to analyze and 

model the properties of components and their composition in order to detect and correct 

composition errors. With this approach they characterize the structural, interface and 

behavioral aspects, and a specific form of evolution of these components. Enabling this, 

they propose the use of the LOTOS language as an Architecture Description Language 

(ADL) for formalizing these aspects. 

 

(Chi, 2009) has proposed software components composition compatibility checking 

based on behavior description. He defined the signature view and the behavior view of 

the software component then designed the modeling method that transfers the component 

behavior into a π calculus process expression and proposed the algorithm that makes the 

transfer automatically. 

  

3.3 Aspect-Oriented Approaches  

The concepts of aspect-oriented software development have also been incorporated into 

the CBS integration process. For example, (Assman, 2000) presents the concept of 

invasive composition and uses self-generated glue codes to integrate components.  



25 

 

Similarly, (Suvee, Vanderperren, & Jonckers, 2003) presents the JAsCo language for 

CBS integration. The language is designed to be used with Java Beans component model 

and introduces concepts of aspect beans and connectors. An aspect bean describes 

behavior that interferes with the execution of a component. Further, a connector is used to 

deploy the aspect beans in a given context.  

 

(Batista, Chavez, Garcia, Kulesza, Sant’Anna, & Lucena, 2006) present the concept of 

the Aspectual Connector (AC), a special kind of architectural connector, as the only 

necessary enhancement to an ADL in order to support a seamless integration of AOSD 

and Software Architecture. They also present AspectualACME, an extension to ACME 

that incorporates ACs and additional facilities to modularize architectural crosscutting 

concerns.  

 

(Kvale, Li , & Conradi , 2005 ) conducted a case-study to investigate whether AOP can 

help to build an easy-to-change COTS-based system. The case study was performed by 

comparing changeability between an object-oriented application and its aspect-oriented 

version. Results from this study have shown that integrating a COTS component using 

AOP may help to increase the changeability of the COTS component-based system, if the 

cross-cutting concerns in the glue code are homogenous (i.e., consistent application of the 

same or very similar policy in multiple places). Extracting heterogeneous or partial 

homogenous cross-cutting concerns in glue-code as aspects does not provide benefits. 

 



26 

 

(Lee & Bae, 2004.) have proposed an Aspect-Oriented Development Framework (AODF) 

in which functional behaviors are encapsulated in each component and connector, and 

particular non-functional requirements are flexibly tuned separately in the course of 

software composition. To support the modularity for non-functional requirements in 

component-based software systems, they devised Aspectual Composition Rules (ACR) 

and Aspectual Collaborative Composition Rule (ACCR). AODF makes component-based 

software built to provide both supports of modularity and manageability of non-

functional requirements such as synchronization, performance, physical distribution, fault 

tolerance, atomic transaction, and so on. With the Collaboration-Based architectural style, 

AODF explicitly enables one to deal with nonfunctional requirements at the intra-

component and inter-component levels. 

 

(Truyen, J¨orgensen, Joosen, & Verbaeten, 2000) have examined a middle ground 

between aspect-oriented programming and computational reflection that improves the 

dynamics of this gluing process such that interaction between components can be refined 

at run-time. They have shown how this middle ground may be used to dynamically 

integrate into the architecture of the middleware systems some new services that support 

nonfunctional aspects such as security, transactions, and real-time.  

 

Obviously, all initiatives done in component integration do not completely address the 

issues of missing functionalities, mismatched interfaces and preserving flow of control. 

We are addressing these issues in this research work. A summary of this literature review 

is shown in table 1. 



27 

 

Reference Initiative Strengths Weakness 

(Garlan & 
Shaw, 1994) 

Proposing filters. Easy understanding of 
the system's behavior 
as the composition of 
filters; they support 
reuse, easy to maintain 
and enhance; they 
support specialized 
analysis (throughput 
deadlock analysis); 
and they support 
concurrent execution. 

Increased 
complexity; Lowered 
performance due to 
communication 
overhead; poor for 
interactive 
applications; and can 
be difficult to 
maintain 
synchronization 
between two related 
but separate streams. 

(Vigder & 
Dean, 1997) 

Presented wrappers 
and glue for 
integration and has 
defined rules that 
facilitate the 
integration. 

More reliable software 
that can evolve over 
time. 

May become as (or 
more) complex than 
the encapsulated 
element; Some 
undesirable 
functionality may 
exceed the wrapper’s 
ability to buffer the 
system from the 
component (Hardy, 
2000). 

(Rine, Nada, & 
Jaber, 1999) 

Proposed the use of 
adapters to integrate 
components. 

Isolating and 
managing the 
components’ 
interactions outside the 
components using 
adapters decrease 
components’ 
complexity, increase 
their reusability, and 
eases their integration. 

Adapters incur 
latency overhead and 
introduce 
performance penalty. 
The overhead stems 
from excessive data 
copying and non-
optimized data 
structures for data 
buffering (Chiang & 
Ford, 2005). 

(Mezini & 
Ostermann, 
2002 ) 

Proposed a language 
concept that facilitates 
the integration of 
components into 
applications using the 
notation of 
collaboration 
interface. 

Decoupling of 
component 
implementation from 
bindings via 
remodularizations, to 
mix-and-match 
remodularizations and 
components on 
demand. 

No support for 
reusable crosscutting 
concerns. 



28 

 

(Dietrich, 
Patila, 
Sundermiera , 
& Urbana, 
2006) 

They have used active 
rules to design and 
generate wrappers to 
adapt components 
based on EJB 
component model. 

The metadata for the 
components to be 
integrated is used to 
adapt and enhance the 
black-box components 
through the use of 
wrappers; the process 
is an automated one. 

Creating wrappers 
within the container 
proved to be 
challenging because 
EJB standard 
restricts components 
from creating new 
threads. Carrying a 
transactional context 
between containers 
also proved to be 
difficult.  

(Kim , Park, 
Yun, & Lee, 
2008) 

They had established 
an integration 
procedure which 
encourages the 
developers’ frequent 
and small releases in 
an incremental way. 

Being an automated 
integration system; 
continuously runs 
integration process; 
create and maintain an 
up-to-minute 
reasonably stable 
version of the product 
release candidate. 

Minimum unit is not 
a source code line 
but a package itself, 
so package 
maintainers are 
requested to have 
heavier responsibility 
than the developers 
in traditional way of 
software integration. 

(Gomez, et al., 
2008) 

They proposed a 
platform independent 
model and 
architecture based on 
the component-based 
software composition 
paradigm. 

Platform independent.  No attention has 
been paid to control 
and data flow issues 
during composition. 

(Canal, Poizat, 
& Salaun, 
2008) 

They have presented 
an approach for 
software adaptation 
which relies on an 
abstract notation 
based on synchronous 
vectors and transition 
systems for governing 
adaptation rules. 

Based on simple 
adaptation contract 
notation that could be 
used even to express 
correspondences 
(possibly involving 
mismatching 
messages) between 
complex adaptation 
scenarios. 
 
 
 
 
 
 
 

It is global approach 
that is inapplicable 
when the system 
evolve, with 
components entering 
or leaving it at any 
time, 
e.g., for pervasive 
computing. 



29 

 

(Zitouni, 
Seinturier, & 
Boufaida, 
2008) 

They present a 
contract-based 
approach to analyze 
and model the 
properties of 
components and their 
composition in order 
to detect and correct 
composition errors. 

Allows finding errors 
in the design 
composition early in 
the development 
process. 

Being ADL-based 
integration make it 
restricted by ADL 
syntax. 

(Chi, 2009) He proposed software 
components 
composition 
compatibility 
Checking Based on 
Behavior Description. 
He defined the 
signature view and the 
behavior view of the 
software component 
then designed the 
modeling method 
based on π calculus. 

Powerful in term of 
check component 
composition 
compatibility. 

Difficulty in learning 
such method being 
mathematical 
formalized. 

(Kouroshfar, 
Shahir, & 
Ramsin, 2009) 

Proposed a generic 
process framework for 
component-based 
development CBSDP 
consists of four 
phases: Analysis, 
Design, Provision, and 
Release. The 
integration takes place 
at the Release phase, 
where components are 
assembled together to 
form the system 
proper. 

It is a generic 
framework so; it can 
be used for tailoring 
process for CBS 
development. 

More details for 
phase and stage 
levels but, no details 
have been mentioned 
for task patterns. 

(Assman, 
2000) 

Presents the concept 
of invasive 
composition and uses 
self-generated glue 
codes to integrate 
components. 
 
 
 
 

Being handling 
crosscutting concerns. 

Not yet scalable to 
run time. 



30 

 

(Truyen, 
J¨orgensen, 
Joosen, & 
Verbaeten, 
2000) 

A middle ground 
between aspect-
oriented programming 
and computational 
reflection that 
improves the 
dynamics of gluing 
process. 

Defines application-
specific global 
composition strategies 
that govern the gluing 
of aspect wrappers in a 
semantically correct 
way. 

Being ad hoc. 

(Suvee, 
Vanderperren, 
& Jonckers, 
2003) 

They present the 
JAsCo language for 
CBS integration. The 
language is designed 
to be used with Java 
Beans component 
model. 

Introduces a 
component mode that 
incorporates the 
necessary traps to 
enable dynamic aspect 
application and 
removal. Also, 
component developers 
are still able to 
guarantee QoS for 
their components. 

JAsCo is Java Beans 
component model in 
particular; its 
dynamicity and 
flexibility imposes a 
large performance 
overhead so, it is 
unsuitable in 
environments where 
resources are limited.

(Lee & Bae, 
2004.) 

They have proposed 
an Aspect-Oriented 
Development 
Framework (AODF) 
in which functional 
behaviors are 
encapsulated in each 
component and 
connector, and 
particular non-
functional 
requirements are 
flexibly tuned 
separately in the 
course of software 
composition. 
 
 
 
 
 
 
 
 
 
 
 

Supports modularity 
and manageability of 
non-functional 
requirements such as 
synchronization, 
performance, physical 
distribution, fault 
tolerance, atomic 
transaction, and so on.  

Since that AODF 
depends on reflective 
architecture at 
runtime there has 
been neither a 
component writing 
standard nor a 
programming 
language which 
completely provides 
such reflective 
architecture at 
runtime, except for 
several Java 
extensions such as 
Javassist. 



31 

 

(Kvale, Li , & 
Conradi , 2005 
) 

They have shown that 
integrating COTS 
component using AOP 
may help to increase 
the changeability of 
the COTS component-
based system, if the 
cross-cutting concerns 
in the glue-code are 
homogenous. 

When adding or 
replacing a COTS 
component, the main 
benefit of using AOP 
in COTS-based is that 
fewer classes need to 
be changed than using 
OOP.  

It depends on 
whether glue code is 
homogenous or not. 
Using AOP when 
glue code is (partly) 
heterogeneous may 
not bring benefits. A 
careful analysis on 
cross-cutting 
concerns in the glue-
code is therefore 
needed before the 
decision of using a 
certain COTS 
component. 

(Batista, 
Chavez, 
Garcia, 
Kulesza, 
Sant’Anna, & 
Lucena, 2006) 

They Presents the 
concept of the 
Aspectual Connector 
(AC), a special kind 
of architectural 
connector, and 
introduced 
AspectualACME 
ADL to support a 
seamless integration 
of AOSD and 
Software Architecture.

Avoid complexity by 
enriching the 
composition semantics 
supported by 
architectural 
connectors instead of 
introducing new 
abstractions. 

Being ADL-based 
integration make it 
restricted by ADL 
syntax. 

 

Table 1: A summary of related work done in component integration 

 

 

 

 

 



32 

 

CHAPTER 4 

FRAMEWORK DEVELOPMENT 

4.1 Introduction 

In CBS development, like any other development paradigm, system requirements will be 

gathered in the form of use-cases (UCs). At the same time, we do have a set of selected 

components that provide a part of the functionality intended to be delivered by the 

system-to-be. The selected components are either COTS components or in-house 

developed ones. Generally, components will be encapsulated in such a way that the only 

revealed information is about their interfaces. This information includes the interfaces’ 

methods signatures associated with a description about its functionality.  

 

The glue code will be developed during the integration phase. Glue code will facilitate 

communication among components by handling possible interface mismatches between 

components. Also, components do not completely meet the desired functionality of the 

system-to-be. Missing functionalities that are not provided by the components will be 

developed in the glue code. Therefore, one can claim that glue code is the core element of 

the final system.  

 

Prior knowledge about the system UCs is vital to develop the glue code for a CBS to 

meet the required system scenarios. At the same time, the information accompanying 

components will help the glue code developer understand which method of which 



33 

 

interface of which component needs to be called in with which scenario. A study has 

shown that companies still use traditional processes enriched with OTS-specific activities 

to integrate Off-The-Shelf (OTS) components (Li, Conradi, Bunse, Torchiano, Slyngstad, 

& Morisio, 2009). Also, it has been shown that some companies were immature and 

lacked a well-documented development process while using their ad hoc development 

processes. Also, it has been shown by (Vigder & Dean, 1997) and (Baik, Eickelmann, & 

Abts, 2001) that glue coding is done in an ad hoc manner. 

 

4.2 Glue Code Specification  

Intuitively, one can claim that a glue code is the code where all scenarios of the CBS are 

implemented. This is done by specifying the sequence of the methods to be invoked to 

implement a specific scenario. Ideally, the system developer will have the components 

specification and the development will be just a matter of plugging and playing them. 

 

In reality, plug and play is difficult to achieve due to: 

 Complete components specification might be missing. 

 Components interfaces are incompatible to each other. 

 Some of the required functionality might be missing altogether. 

 Furthermore, some components provide additional functionality which are not 

required being in the system-to-be. 

 Lack of a clear integration process results in on-the-fly decisions that may result 

in a brittle glue code (Baik, Eickelmann, & Abts, 2001).  



34 

 

Presence of a suitable specification to represent the glue code specification will help the 

developer in better implementing the system functionalities.   

 

4.3 Deriving Glue Code Specification  

To handle all pre-mentioned issues, we find that there is a need to have an integration 

framework for a CBS. The framework is discussed as follows: 

 

4.3.1 Cheesman's Technique for Extracting System Interfaces 

In this technique, (Cheesman & Daniels , 2000) defined as a first-cut approach a dialogue 

type and one system interface per use-case. The technique works by going through each 

of the use-cases and for each step of a use-case one considers whether or not there are 

system responsibilities that must be modeled. If so, they are going to be represented as 

one or more operations of the appropriate system interface. This gives us an initial set of 

interfaces and operations to work from. If there are several consecutive use-case steps 

that are all system responsibilities, these can be collapsed into a single operation but this 

will not be done if these steps might later need to be split (e.g. by an extension).  The 

example shown in figure 6 illustrates the technique by applying it to “make reservation” 

use-case of a hotel reservation system described in figure 5. 

 

For “make reservation” use-case, we define an initial system interface called 

IMakingReservation. In the main success scenario, in step 2 we see that the system must 

allow the person making the reservation the ability to get details of different hotels, then 



35 

 

Use-Case Description 

Name: Make a Reservation 

Initiator: Reservation Maker 

Goal: Reserve a room at a hotel 

Main Success Scenario: 

1. Reservation Maker asks to make a reservation. 
2. Reservation Maker selects, in any order, hotel, dates, and room type. 
3. System provides price to Reservation Maker. 
4. Reservation Maker asks for reservation. 
5. Reservation Maker provides name and post code (zip code). 
6. Reservation Maker provides contact e-mail address. 
7. System makes reservation and allocates tag to reservation. 
8. System reveals tag to Reservation Maker. 
9. System creates and sends confirmation by e-mail. 

Extensions: 

3. Room not available. 

a. Room not available. 
b. Reservation Maker selects from alternatives 

3b. Reservation Maker rejects alternatives. 

a. Fail 

4. Reservation Maker declines offer. 

      a. Fail 

6. Customer already on file (based on name and post code). 

      a. Resume 7. 

for a given selection provide (in step 3) a price and available ability for a given request. 

We’ll call these the getHotelDetails() and getRoomInfo() operations. In step 7 we can 

deduce the need for a makeReservation() operation that creates a reservation given 

various details, returns a reference number, and confirms the reservation.  

 

 

 

 

 

 

 

 

 

 

 

  

 

    

 

 

 

 

 

 

               Figure 5: “Make a Reservation” UC of Hotel Reservation system. 



36 

 

 

Figure 6: Applying Chessman's technique to “Make a Reservation” UC 

 

The use-case extensions describe alternative behavior under certain situation. From the 

“room not available” extension we can see that the user may select alternative dates or 

room types. However, this is not an operation of the system (i.e. the display and selection 

of information will be handled by the user dialogue logic). 

 

4.3.2 Conceptual and Concrete Interfaces 

We built a framework that derives high-level interfaces from system use-cases to begin 

with by adapting Cheesman’s technique. We are going to map the functionality provided 

by a use-case to a set of “Conceptual Interfaces”. This approach is an alternative to 

waiting to approach late development stages to get system interfaces. We have added the 

modifier “conceptual” to the interface stereotype because, we are still talking about a 

high-level interface that does not exist in reality as a real component interface and we 

want to distinguish them from another type of interfaces we called “Concrete Interfaces”.  



37 

 

For the sake of clarity, interfaces provided by the components are going to be called 

“Concrete Interfaces”.  The “concrete” modifier indicates the low-level of these 

interfaces as being real programming interfaces provided by classes constituting a 

software component. So far we have these two categories of interfaces: 

I) Conceptual Interfaces: These are interfaces we came up with by deriving them 

from their corresponding use-cases of the system we are intending to develop. 

Such that, we convert each use-case into its corresponding interface. 

II) Concrete Interfaces: These are the ones that are well-defined and exposed by the 

selected software components.  

 

Figure 7: The generic notation for an interface 

 

As shown in figure 7, an interface notation should contain two compartments with three 

parts as follows: 

A. Stereotype of the Interface which will take one of these two stereotypes: 

 <<Conceptual Interface Type>>: for conceptual interfaces. 

 <<Concrete Interface Type>>: for concrete interfaces. 

B. Name of the Interface: It is better to give a meaningful and easy-to-understand 

name for the interfaces but it will vary between conceptual and concrete as 

follows: 

 Conceptual interface which only requires any given name of the interface 



38 

 

 Concrete interfaces which will take the following syntactical form: 

Component Name : Interface Name 

Interface Name indicates the very specific name for concrete interface participating in 

the scenario to fulfill the conceptual interface. On the other hand, Component Name 

indicates the component to which the concrete interface belongs. There is a separate 

colon between Component Name and Interface Name. 

C. Interface's Operation(s):  Corresponds to the list of the operations providing 

services by the interface. The operation definition specification is common for 

both conceptual and concrete interfaces and consists of three parts that take the 

following syntactical form: 

                               Operation Name (I/O Parameters): Return Type 

The three parts are: 

 Operation Name: must be a meaningful one. 

 I/O Parameters: represents the input and output parameters to be passed during 

an interface scenario. They will be enclosed by two parentheses and separated by 

a comma. They should take one of two following syntactical forms: 

 (Data type Parameter1 Name, …,…,…..) 

 (Parameter1 Name: Data type, …,…,…..) 

Parameter Name indicates the name to be used to make later one-to-one correspondence 

between the interface specification and the hidden internal implementation of the 

operation provided within the component to which the interface pertains. Data Type 

indicates the data type of the parameter. It may take the values of int, float, char…etc. 



39 

 

 Return type: indicates the data type of the value retuned by the operation. It may 

take the values of:  int, float, char…etc. 

4.3.3 Deriving Conceptual Interfaces 

We have to derive conceptual operations for each conceptual interface. Natural language 

plays a vital role to extract the conceptual operations for a conceptual interface. 

Linguistic analysis will be applied to this description with help of domain modeling 

approaches (Larman, 2004) as follows: 

 Identify all actions within the description: by identifying the verbs in the main 

flow scenario and extensions. Identify only "real" actions by eliminating those 

that are just synonyms, repetition, etc. Also, weed-out actions that do not 

represent an interaction between the system and the actor like what appears in the 

following statement: 

Guest arrives at hotel and claims the reservation 

Here, we should consider only “claims the reservation” as the real action and discarding 

“arrives” action. 

 Generalize the actions that can be generalized. 

So, for our example, for “make a reservation” use-case we can see that from the use-case 

description, we may have the following list of “real” actions from the main success 

scenario and extensions underlined: 

1. Reservation Maker asks to make a reservation. 

2. Reservation Maker selects, in any order, hotel, dates, and room type. 

3. System provides price to Reservation Maker. 



40 

 

4. Reservation Maker asks for reservation. 

5. Reservation Maker provides name and post code (zip code). 

6. Reservation Maker provides contact e-mail address. 

7. System makes reservation and allocates tag to reservation. 

8. System reveals tag to Reservation Maker. 

9. System creates and sends confirmation by e-mail. 

10. System will notify the billing system for the payment. 

Also, extensions statements should be analyzed: 

3. Room not available. 

 Room not available. 

 Reservation Maker selects from alternatives. 

3b. Reservation Maker rejects alternatives. 

a. Fail 

4. Reservation Maker declines offer. 

a. Fail 

6. Customer already on file (based on name and post code). 

  a. Resume 7. 

  Then we can generalize the extracted real actions to get the final conceptual operations: 

 askForReservation( ): to represent asks to make a reservation. This 

operation role is to initiate the whole scenario of making a reservation. 

 selectReservation ( ): to represent selects, in any order, hotel, dates, and room 

type. 

 providePrice( ): to represent provides price. 

 getCustomerInfo( ): to represent provides name and post code (zip code) 

and provides contact e-mail address. 



41 

 

 reservation( ): to represent makes reservation and allocates tag to reservation and 

reveals tag to Reservation Maker and creates and sends confirmation by e-mail. 

 refineReservDeatils( ): refining entered reservation details to provide more 

possible options with different timings and rooms. 

 provideAlternatives( ): to represent Reservation Maker selects from alternatives 

when there is no room with the criteria entered by the customer. 

 acceptOrReject( ): to represent both Reservation Maker rejects alternatives and 

Reservation Maker declines offer. 

 failure( ): for issuing failure messages. 

 notifyBillingSys( ):  to represent System will notify the billing system for the 

payment. 

 

Figure 8: Conceptual interface for “Make a Reservation” UC 

 

 



42 

 

4.4. The Glue Code Specification Framework  

The proposed framework constitutes two main stages: realization and composition, as 

shown in figure 9. It will lead us from the system use-case to the final specification of the 

glue code. 

 

Figure 9: An overview for the glue code specification framework 

 

4.4.1 Components Documentation 

We believe that components constituting a CBS adopting our integration framework 

should be associated with a documentation that meets the following conditions: 

 It should provide the reader with all interfaces exposed by the component. 

 It should provide an informative description of the functionality provided by each 
interface.  

 It should explicitly contain the description about the complete set of the 
operations implemented by each interface. 



43 

 

 It should provide an informative description about each interface operation in 
terms of the following: 

o Operation's name. 
o Operation's signature: the method parameters that should be passed and 

the data type of each one of them. 
o Its return type. 

 

For the sake of standardization and quickly referencing a concrete operation, we may put 

the components, their interfaces, and concrete operations in the form represented in the 

example provided by figure 10. 

 

 

Figure 10: An example of standard documentation for two components 

 

 This will provide us with a way to refer to each concrete operation with its code. 

Concrete Operation Code uniquely identifies a concrete operation. It takes the following 

form: 

1. org.eclipse.Billing: has only one interface named "IBilling" containing just one 
operation. 

1. IBilling: 
1. openAccount(ReservationDetails arg0, CustomerDetails 

arg1): for opening account for a customer containing his payments. 
2. org.eclipse.customermanag: has two interfaces  

1. IADUCustomer: containing the following operations: 
1. deleteCustomer(int arg0):int  for deleting a customer by 

passing his customer_ID 
2. updateCustomer(CustomerDetails arg0):int for updating the 

customer information by entering an entire object pertaining to 
CustomerDetails class encapsulating all information. 
CustomerDetails encapsulates customer number, customer name, 
customer address, customer phone, customer e-mail, customer post 
code and note, respectively.  

2. IcustomerMgt 
1. createCustomer(CustomerDetails arg0):int for adding a 

new customer's record of type CustomerDetails to the database. 
2. getCustomerDetails(int arg0):ArrayList<CustomerDetails> 

for retrieving the customer details from the database.  



44 

 

(ComponentName-InterfaceNumber-OperationNumber) 

For instance, the code (B-2-2) means that this is the second operation of the second 

interface of the component named B which is getCustomerDetails(int arg0) in the 

description example in figure 10.  

 

4.4.2 Realization Stage 

Firstly, use-cases of the system intended to be developed and the documentation of the 

candidate components being integrated will be presented as inputs into the realization 

stage.  Then, a use-case will be picked at time. Use-Case Conceptual Mapping (UCCM) 

diagram which is considered as static realization for the use-case is generated. Tabular 

form of UCCM diagram may be generated to help better viewing the interfaces involved 

in realization of the use-case. Then, Component-Based Sequence Diagram (CompBSD) 

will be generated to represent the dynamic realization of that use-case. Realization phase 

is shown in figure 11. 

 



45 

 

 

Figure 11: An overview of the realization stage of the proposed framework 

 

4.4.2.1 Static Realization (Use-Case Conceptual Mapping) 

We have referred to such a process as a static one because it does not describe "How" 

conceptual interfaces will be implemented (i.e., it does not look to the realization from a 

dynamic point-of-view). Rather, it describes the realization from a domain-model-like         

point-of-view but, in terms of concrete and\or conceptual interfaces instead of domain 

classes by means of a UCCM diagram and realization tables.  



46 

 

UCCM diagram is one that shows all interfaces (i.e. concrete and conceptual interfaces) 

participating to fulfill a conceptual interface derived for a use-case of the system-to-be 

developed. An example of UCCM diagram is shown in figure 12. Obviously, we can see 

that the relationship between the conceptual interface and its underlying interfaces is 

stereotyped as “<<Realize>>”. 

 

 

Figure 12: An example of a UCCM diagram 

 

Also, notes may be added to the UCCM diagram components to provide illustrative 

comments. Such comments may include a brief of the functionality and relationship of 

the component. Notes notation will take the shape in figure 13.  

 

 

Figure 13: Note notation in UCCM diagram 



47 

 

UCCM process will help us to identify the following: 

1) Which components may participate in realizing a use-case? 

2) Which interfaces of which components are fulfilling the use-case interface that is 

being represented in the diagram. 

3) The set of missing operations of a conceptual interface that are completely not 

fulfilled (i.e. realized) by the participating interfaces.  

4) The set of operations of a conceptual interface that are partially fulfilled by the 

participating interfaces.  

5) The additional interfaces of the involved components that have to be stored for 

further analysis. 

When applying a Use-Case Conceptual Mapping (UCCM) process, we will have a 

system use-case model and the documentation of the components interfaces as inputs to 

the process. Then, the following steps should be followed to get a UCCM diagram for a 

use-case as an output. 

1- Derive a corresponding conceptual interface for each use-case of the system-to-

be. 

2- Interface Involvement Identification Process (IIIP): lists all concrete and 

conceptual operations involved in fulfilling each operation for each conceptual 

interface. We have to write each concrete or conceptual interface associated with 

all its operations including even the operations which are not participating in the 

fulfillment. 

3- Building a UCCM diagram for each conceptual Interface. 

4- Generate what we called a “realization table” for each conceptual Interface. 



48 

 

Realization table is a tabular representation for each conceptual interface's UCCM 

diagram to realize each conceptual operation belonging to that interface by means of 

realization statements. However, it contains a more detailed description about the 

realization of each conceptual operation belonging to the conceptual interface. Table 2 

shows an example of the realization table realizing "IMakingReservation" conceptual 

interface. It contains an upper caption containing the name of the conceptual interface 

and two underlying fields: one for the conceptual operations belonging to it and another 

one for the realization statement for each conceptual operation.  

 

Realization Statement is one that describes the execution flow of the concrete operations 

involved in realization of a conceptual operation. It is a combination of the concrete 

operation codes and\or conceptual operation names and relational operators: AND and 

OR. Also, square brackets can provide a way of enclosing more than one operation. The 

execution flow will begin from the left-hand-side of the statement to right-hand-side and 

from inner to outsider brackets. For example, the following is a realization statement for 

the conceptual operation function( ): 

 

[(D-1-8) OR (E-3-8)] AND [(B-1-1) OR (E-1-1)] 

 

This realization statement means that to fulfill function( ) we should firstly, involve 

either operation coded as (D-1-8) or the one coded as (E-3-8). Then, we should involve 

either operation coded as (B-1-1) or the one coded as (E-1-1).  

 



49 

 

Sometimes, we may find that a conceptual interface is needed to be involved to fulfill a 

scenario. In other words, an entire system scenario is needed by another one. In this case, 

we should indicate that in the realization table by putting the name of the scenario 

involved. This scenario should be fully shown in the dynamic realization (i.e. in the 

CompBSD) by embedding all messages represented by the involved scenario’s 

CompBSD within the CompBSD of the involving one. 

 

IMakingReservation 

 

Conceptual Operations Realization 

askForReservation( ) Missing 

selectReservation ( ) Missing 

providePrice( ) Partially{(D-2-6) OR (E-5-3)} 

getCustomerInfo( ) Missing  

reservation( ) (A-1-1) AND [(D-2-8) OR (E-5-4) ] AND [(B-2-5) OR (E-2-4)] 

refineReservDetails( ) Missing 

provideAlternatives( ) refineReservDetails( ) AND [(D-2-6) OR (E-5-3)] 

acceptOrReject( ) Missing 

failure() Missing 

notifyBillingSys( ) Missing 

 

Table 2: The realization table for "IMakingReservation" conceptual interface 



50 

 

The realization table will be fed later into the process of dynamic realization. It will 

provide the system analyst with an initial clue about the concrete operations that may 

contribute to the fulfillment of a specific scenario to be represented, as well as, the initial 

flow of methods invocation to be applied. 

 

4.4.2.2 Dynamic Realization (Component-Based Sequence Diagram) 

We referred to this realization as a dynamic one because each conceptual interface that 

represents a system scenario will be represented as a specific-purpose sequence diagram 

showing the run-time sequence of actions. This diagram is called Component-Based 

Sequence Diagram (CompBSD). This stage reveals significant information that could not 

be caught at static realization like: 

1. Missing functionalities: these are non-existing functionalities but are needed to 

provide the complete intended scenario that fulfills the overall functionality which 

should be provided by a conceptual interface. Even this has been taken into 

account in the static realization stage; this provides an additional assurance to 

avoid incomplete scenarios. 

2. Data mismatch: this happens when a sequence of methods calls occurs and there 

is data-dependency between them. Such dependency may happen when, for 

example, an acquiring method needs the entire or part of the return value of 

another acquired method as argument to pass to it. 

3. Execution precedence: checking the order of execution and method calls such that 

it matches the same execution flow pre-defined in the realization of the 

conceptual interface. 



51 

 

4.  Auxiliary services: a scenario may need some libraries, header files, or temporary 

storage. For example, we can include a library containing the definition for some 

data types by importing it from the component to which it belongs at the 

beginning of a scenario.  

5. Exception handling: there will arise some situations where we have to handle 

some potential situations that may lead to a system failure, for example, a 

scenario including division on zero. 

 

In a CBS, glue code is the part of the code where all scenarios of the system-to-be will be 

implemented. Sequence diagrams (SDs) provide a means of representing system 

scenarios. However, a generic SD is restrictive for representing system scenario for CBS. 

The generic SD represents a scenario as an interaction between the objects of domain 

model classes while in the CBS the interaction will be between the integrated 

components. This means we need a sequence diagram that represents a scenario from a 

components point-of-view. Therefore we introduced what we called Component-Based 

Sequence Diagram (CompBSD).  

 

This CBS-specific sequence diagram differs from the generic SD in the following 

aspects: 

1) In CompBSD, lifelines are stereotyped with “<<Component>>” indicating that 

messages are sent between the constituent components’ lifelines while they are 

sent between the constituent classes’ objects lifelines in a generic SD.  



52 

 

2) The name of a lifeline should be the same name of the component which it 

represents as it appears in the component documentation. 

3) Including a glue code component lifeline is a must. 

4) In CompBSD, a message must be annotated with the name, signature, and the 

stereotype of the component method to be invoked by it. 

5) In CompBSD, the first message is usually sent from the actor to the glue code 

component to trigger the sequence of messages implementing the scenario that it 

represents. 

As mentioned, any message representing an invocation for a missing methods in a 

CompBSD must be annotated with a stereotype (i.e. invoked concrete operation will not 

be given a stereotype). In order to enrich the expressive power provided by CompBSD, 

we introduce here seven types of stereotypes for a method: 

1) <<Initiation>>: a stereotype for methods, usually first sent messages, triggering 

scenarios.  

2) <<Missing>>: some standalone functionalities while realizing a use-case. 

3) <<LibraryImporting>>: for methods importing header files and built-in libraries 

from components. 

4) <<Adapter>>: here an adapter code in the form of a method added to resolve an 

existing data mismatch. Such a method will remedy the mismatch through getting 

the designated return value of the acquired method and converting it to a 

compatible version to be passed to the acquiring method.  

5) <<TemporaryStorage>>: for methods providing temporary variables to store 

long-life needed values (e.g. values to be used more than once at a scenario). 



53 

 

6) <<Utility>>: for methods which just provide input or output data from the user or 

a database. 

7) <<ExceptionHandling>>: for a method providing the service of exception 

handling. 

 

Building CompBSDs should be based on the information provided by use-case 

description and realization tables obtained from the UCCM process. A realization table 

provides a very beneficial starting point for knowing the methods calls and its sequence. 

When looking from a run-time perspective, one could find how necessary it is to 

implement some methods that are not provided by components within the glue code 

component.  

 

The template for CompBSD is shown in figure 14. Messages are represented using 

arrows whose head is always targeting the component being meant for the invocation. 

Any missing method being invoked and annotated to a message must have the following 

syntactical form: 

<<Stereotype>> Missing Method Name (List of Parameters): Return Type 

 Stereotype: will take one of the above mentioned stereotypes based on the type 

of functionality that will be provided by the operation. 

 Missing Method Name: should be a meaningful name given to the missing 

method. 



54 

 

 List of Parameters: list of parameters (if any) to be passed that may contribute to 

the final resulting computation. It will take one of two following syntactical 

forms: 

  (Data type Parameter1 Name, …,…,…..) 

 (Parameter1 Name: Data type, …,…,…..) 

Parameter Name indicates the name to be used to make later one-to-one correspondence 

between the interface specification and the hidden internal implementation of the 

operation provided within the component to which the interface pertains. Data Type 

indicates the data type of the parameter. It may take the values of int, float, char…etc. 

 Return Type: indicates the data type of the value retuned by the operation. It 

may take the values of:  int, float, char…etc.            

Any missing operation should be stereotyped and implemented later within the glue code. 

The first message always is a scenario initiating method with being stereotyped with 

“Initiating”. Messages invoking a concrete operation\method from a specific component 

other than glue code will have the same syntactic form except being not stereotyped and 

the name begins with the operation code as follows:      

Concrete Operation Code) Concrete Method Name (List of Parameters): Return 

Type 

 



55 

 

 sd Business Process Model

«Component»

Component 1

«Component»

Component 2

«Component»

Glue Code

Actor

«Component»

Component n

Missing Operation Name(List of Parameters)

«Stereotype»
Missing Operation Name(List of Parameters) :Return Type

«Stereotype»

Concrete Operation Code) Concerete Operat ion Name(List of Parameters) :Return Type

Missing Operation Name(List of Parameters) :Return Type

«Stereotype»

«Stereotype» Missing Operation Name(List of Parameters) :Return Type

Concrete Operation Code) Concerete Operat ion Name(List of Parameters) :Return Type

result()

Figure 14: CompBSD template 

 

As an example, let’s take the scenario represented by CompBSD shown in figure 15. 

First, the actor will trigger the scenario by invoking missing method op1( ) with being 

stereotyped with “Initiation” and of “void” return type. Then, the missing operation     

op2( ) returning a value of “string” data type will be invoked. op2( )  performs a 

standalone functionality applied to Component 2 so, it is stereotyped with “Missing”. 

After that, op3( ) missing operation being returning an integer value will be invoked . 

op3( ) is being stereotyped with “Adapter” indicating that it is doing a data mismatch 

resolving functionality needed for some data to be used by the scenario. Afterward,        

1-2-5)op5( ) will be invoked from Component 1. From the concrete operation code 

indicated in the beginning of the name of the methods we can conclude that it is the 



56 

 

method numbered 5 implemented by the component numbered 1 existing in its 

implemented interface numbered 2 in the components documentation that meets our 

convention that has been mentioned earlier.  

 

 sd Business Process Model2

«Component»

Component 1

«Component»

Component 2

«Component»

Glue Code

Actor

«Component»

Component n

op1()

«Initiation»

op2() :String

«Missing»

op3() :int

«Adaptor»

1-2-5)op5() :char

 

Figure 15: An example of scenario represented by a CompBSD 

 

4.5 Summary 

In this chapter, we have developed the realization stage of our integration framework. We 

have introduced concepts of static and dynamic realization. UCCM and CompBSD 

diagrams, as well as, realization table have been well-defined in terms of their definitions, 

notations, and processes for deriving them. Examples have been given for all of the 

introduced concepts. 

 

We have demonstrated how we can derive the conceptual interfaces directly from UCs of 

the system-to-be by applying the UCCM process to them. This approach provides us with 

an initial set of interfaces of the system to begin with. This will help getting rid of the 



57 

 

burden of waiting till the coding phase to derive them. Also, we have shown how we can 

apply the dynamic realization process to the same set of UCs with help of realization 

tables obtained from the UCCM process to derive CompBSDs.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



58 

 

CHAPTER 5 

CASE STUDY FOR REALIZATION STAGE 

5.1 Introduction 

In this chapter, the realization stage of the proposed integration specification framework 

will be applied to a case study. An application of it to a case study of Hotel Reservation 

System (HRS) will be presented (Cheesman & Daniels , 2000). This helps to give the 

reader a better clue about the framework. It also helps to validate the framework and 

shows its usefulness and success, as well. 

 

5.2 Hotel Reservation System (HRS)  

This system provides the automated support for a hotel management and staff. It helps 

managing the reservations-related services like: making reservations, cancelling 

reservations, amending reservations, process no-show reservations, and taking up 

reservations.  

 

Here we have group of five selected software components to be integrated. All of them 

are implemented in Java in form of plug-ins as shown in figure 16.  

 

 



59 

 

 

Figure 16: Selected software components to be integrated 

 

5.2.1 Applying Realization Stage 

We will build here a conceptual interface for each use case. This means we will have five 

conceptual interfaces corresponding to the system-to-be use-cases as follows: 

1) IMakingReservation 

2) ICancelReservation 

3) IAmendReservation 

4) IProcessNoShows 

5) ITakingUpReservation 

 

Let’s apply static and dynamic realizations processes for each of the five conceptual 

interfaces individually: 

1) IMakingReservation 

Static Realization: 

From the use-case description, we may have the following list of “real” actions from the 

main success scenario and extensions underlined: 



60 

 

1. Reservation Maker asks to make a reservation. 

2. Reservation Maker selects, in any order, hotel, dates, and room type. 

3. System provides price to Reservation Maker. 

4. Reservation Maker asks for reservation. 

5. Reservation Maker provides name and post code (zip code). 

6. Reservation Maker provides contact e-mail address. 

7. System makes reservation and allocates tag to reservation. 

8. System reveals tag to Reservation Maker. 

9. System creates and sends confirmation by e-mail. 

10. System will notify the billing system for the payment. 

Also, extensions statements should be analyzed: 

3. Room not available. 

a. Room not available. 
b. Reservation Maker selects from alternatives 

3b. Reservation Maker rejects alternatives. 

a. Fail 

4. Reservation Maker declines offer. 

a. Fail 

6. Customer already on file (based on name and post code). 

  a. Resume 7. 

  Then, we can generalize the extracted real actions to get the final conceptual operations: 

 askForReservation( ): to represent asks to make a reservation. This 

operation role is to initiate the whole scenario of making a reservation. 

 selectReservation( ): to represent selects, in any order, hotel, dates, and room 

type. 



61 

 

 providePrice( ): to represent provides price. 

 getCustomerInfo( ): to represent provides name and post code (zip code) 

and provides contact e-mail address 

 reservation( ): to represent makes reservation and allocates tag to reservation and 

reveals tag to Reservation Maker and creates and sends confirmation by e-mail. 

 refineReservDeatils( ): refining entered reservation details to provide more 

possible options with different timings and rooms. 

 provideAlternatives( ): to represent Reservation Maker selects from alternatives 

when there is no room with the criteria entered by the customer. 

 acceptOrReject( ): to represent both Reservation Maker rejects alternatives and 

Reservation Maker declines offer. 

 failure( ): for issuing failure messages. 

 notifyBillingSys( ):  to represent System will notify the billing system for the 

payment. 

Then, we are going to apply IIIP process to find out which concrete and/or conceptual 

operation(s) may contribute to fulfill each conceptual operation within each conceptual 

interface. Each interface contributing to the fulfillment should be shown in the UCCM 

diagram. Matching between concrete and conceptual operations should be based on the 

matching between the functionality that should be provided by the conceptual operation 

and the functionality provided by concrete operations as described by the components’ 

documentation. 

 

 



62 

 

Let’s here apply IIIP to conceptual operations of IMakingReservation one by one: 

 askForReservation( ): By going through the component documenetation,  we can 

see there are no cocncrete operations that are providing either complete or partial 

fulfillment. So, it is considered as a fully missing functioanlity that should be 

implemenetd within the glue code. 

 selectReservation ( ): Also, it is considered as a fully missing functionality that 

should be implemenetd within the glue code. 

 providePrice( ): we can clearly see that there are two concrete operations coded          

(D-2-6) or (E-5-3) that can partially provide the functionality. 

 getCustomerInfo( ): it is considered as a fully missing functionality that should 

be implemenetd within the glue code. 

 reservation( ): There is a sequence of concrete operations that should apply to 

provide the final functionality. The concrete operations that could be involved are: 

(A-1-1), (D-2-8), (E-5-4), (B-2-5), and (E-2-4). 

 refineReservDeatils( ): it is missing. 

 provideAlternatives( ): it is considered as a fully missing functionality that 

should be implemenetd within the glue code. 

 acceptOrReject( ): it is considered as a fully missing functionality that should be 

implemented within the glue code. 

 failure( ): missing. 

 notifyBillingSys( ): missing. 

Then, we get the UCCM diagram in figure 17 and realization table shown in table 3. 

 



63 

 

 

Figure 17: UCCM diagram for IMakingReservation 

 

 

 

 

 

 

 



64 

 

IMakingReservation 

 

Conceptual Operations Realization 

askForReservation( ) Missing 

selectReservation ( ) Missing 

providePrice( ) Partially{(D-2-6) OR (E-5-3)} 

getCustomerInfo( ) Missing  

reservation( ) (A-1-1) AND [(D-2-8) OR (E-5-4) ] AND [(B-2-5) OR (E-2-4)]

refineReservDetails( ) Missing 

provideAlternatives( ) refineReservDetails( ) AND [(D-2-6) OR (E-5-3)] 

acceptOrReject( ) Missing 

failure() Missing 

notifyBillingSys( ) Missing 

 

Table 3: Realization table for IMakingReservation 

 

 

 

 



65 

 

Dynamic Realization: 

Here we are going to build a CompBSD corresponding to IMakingReservation. We 

have a realization table with an initial set of conceptual operations associated with their 

realization statements.  Figure 18 shows the CompBSD of IMakingReservation. 

Missing conceptual operations will be added as complete methods to be implemented in 

the glue code components whereas; realized ones are substituted with their realizing 

concrete operations when representing the scenario in the CompBSD. So, for instance, 

reservation( ) operation has been substituted with its realizing  cocncrete operations. 

However, askForReservation( ) operation has been mentioned in the CompBSD with 

being stereotyped with <<Initaition>> stereotype. 



66 

 

 sd 01-Make a Reserv ation-CompBSD

Reservation Maker

«Component»

Bil ling-(A)

«Component»

customermanag-(B)

«Component»

datatype-(C)

«Component»

hotelmanag-(D)

«Component»

ReservationSystem-(E)

«Component»

Glue Code

alt Room Search

[True]

[True]

alt Room Search

[True]

[True]

opt Alternativ e Reserv ations

[unapplicable Rese rvation Criteria ]

opt Declining Offer

[Reject  Offer]

opt Declining Alternativ es

[Rej ect]

alt Checking Customer Record Existence

[True]

[True]

alt Creating a Customer File

[True]

[True]

opt New Customer

[Customer is not on file]

alt Making Reserv ation

[True]

[True]

alt Sending Confirmation

[True]

[True]

askForReservation()

«Initiation»

importDataTypes()

«LibraryImporting»

selectReservation(int hotel, Date startingDate, Date endDate, String roomType) :ReservationDetails

«Adaptor»

D-2-6)getRoomInfo(ReservationDetails a rg0) :ArrayList<AvailableRoomDetails>

E-5-3)getRoomInfo(ReservationDetails a rg0) :ArrayList<AvailableRoomDetails>

«Missing»
refineReservationDetails()

D-2-6)getRoomInfo(ReservationDetails a rg0) :ArrayList<AvailableRoomDetails>

E-5-3)getRoomInfo(ReservationDetails a rg0) :ArrayList<AvailableRoomDetails>

provideAlternatives(ArrayList<AvailableRoomDetails> AvailableAlternatives)

«Missing»

acceptOrReject() :Boolean

«Utili ty»

failure()

«Uti li ty»

providePrice()

«Uti li ty»

acceptOrReject() :Boolean

«Utili ty»

failure()

«Uti li ty»

getCustomerInfo(String name, String postCode, String email) :CustomerDetails

«Adaptor»

B-2-3)getCustomerMatching(CustomerDetails arg0) :int

E-2-3) getCustomerMatching(CustomerDetails arg0) :int

B-2-1)createCustomer(CustomerDetails arg0) :int

E-2-1)createCustomer(CustomerDetails arg0) :int

D-2-8)makeReservation(ReservationDetails arg0) :int

E-5-4)makeReservation(ReservationDetails arg0) :int

revealTag()

«Uti li ty»

notifyBill ingSys()

«Missing»

B-2-5)notifyCustomer(int custID, St ring Custemail, String msg) :String

E-2-5)notifyCustomer(int custID, St ring Custemail, String msg) :String

 

Figure 18: CompBSD of IMakingReservation 



67 

 

2) ICancelReservation 

Static Realization: 

From the use-case description, we may have the following list of “real” actions from 

the main success scenario and extensions underlined: 

1. Reservation Maker asks to cancel a reservation. 
2. System asks Reservation Maker to enter the reservation tag. 
3. System could find the reservation. 
4. System cancels the reservation. 
5. The system will notify billing system about refund procedure. 
6. System displays the cancellation confirmation and sends it by e-mail. 

 

Extensions: 

2. Reservation tag is not available. 

a. System asks for reservation name and post code. 
b. Get all active reservations for the customer. 
c. The customer will select the designated reservation. 

3a. System could not find the reservation. 

a. Fail 

4. System could not find the reservation. 

a. Fail 

Then, we can generalize the extracted real actions to get the final conceptual operations: 

 askForCancellation( ): This operation role is to initiate the whole scenario of 

cancelling a reservation. 

 provideReservationTag( ): for entering reservation tag. 

 provideNameANDPostCode( ): for entering name and the post code of the 

customer. 

 displayANDSelectActiveReservations( ): for displaying and selecting from active 

reservations found for a customer. 

 cancelReserv( ): for actual procedure of cancelling a reservation. 



68 

 

 failure( ): for issuing failure messages. 

 notifyBillingSys( ): for notifying the Billing system about the refunded and cut 

money. 

 confirmCancellation( ): an operation for confirming the cancellation and sending 

it by e-mail.  

Let’s here apply IIIP to conceptual operations of ICancelReservation one by one: 

 askForCancellation( ): no cocncrete operation available to realize it so it is 

missing and needs to be implemented in the glue code. 

 provideReservationTag ( ): missing. 

 provideNameANDPostCode( ): missing. 

 displayANDSelectActiveReservations( ): it could be partially fulfilled with the 

following concrete operations: (B-2-3), (E-2-3), (D-2-4), and (E-4-3). This partial 

fulfillement should be indicated in the realization table. As shown in table 4 for 

this cocnceptual interface we have indicated that by enclosing the realization 

statement within curley braces. 

 cancelReserv( ): The concrete operations could be involved are: (D-1-8), (E-3-8),        

(B-1-1), and (E-1-1). 

 failure( ): missing. 

 notifyBillingSys( ): missing. 

 confirmCancellation( ):cocncrete operations may involve: (B-2-5) and (E-2-4). 

Then, we get the UCCM diagram in figure 19 and realization table shown in table 4. 



69 

 

Figure 19: UCCM diagram for ICancelReservation 

 

 

 

 

 

 



70 

 

ICancelReservation  

Conceptual Operations Realization 

askForCancellation( ) Missing 

provideReservationTag ( ) Missing 

provideNameANDPostCode( ) Missing 

displayANDSelectActiveReservations( ) Partially{[(B-2-3)OR(E-2-3)] AND [(D-2-4)OR (E-4-3)]} 

cancelReserv( ) 

 
[(D-1-8) OR (E-3-8)] AND[ (B-1-1) OR (E-1-1)] 

failure( ) Missing 

notifyBillingSys( ) Missing 

confirmCancellation( )  (B-2-5) OR (E-2-4) 

 

Table 4 : Realization table for ICancelReservation 

 

Dynamic Realization: 

Here we are going to build a CompBSD corresponding to ICancelReservation as shown 

in figure 20. 



71 

 

 sd 04-Cancel a Reserv ation-CompBSD

Reservation Maker

«Component»

Glue Code

«Component»

ReservationSystem-(E)

«Component»

hotelmanag-(D)

«Component»

datatype-(C)

«Component»

customermanag-(B)

«Component»

Bil ling-(A)

alt Availability of Activ e Reserv ations

[Yes]

[No]

alt Get All Activ e Reserv ations using CustID

[True]

[True]

alt Check For Customer Existence

[True]

[True]

alt Tag Av ailability

[Avail able]

[Unavai lable]

alt Getting Reserv ation Info

[True]

[True]

alt Deleting a Reserv ation

[True]

[True]

alt Sending Confirmation

[True]

[True]

alt Proceeding Cancellation?

[Ye s]

[No]

askForCancellation()

«Initiation,Util i ty»
importDataTypes()

«LibraryImporting»

isTagAvailabl e() :Boolean

«Util i ty»

provideReservTag(S tring Tag) :String

«Missing»

provideNameANDPostCode(String name, String PostCode) :CustomerDetails

«Adaptor»

B-2-3)getCustomerMatching(CustomerDetails arg0) :int

E-2-3) getCustomerMatching(CustomerDetails arg0) :int

«Adaptor» getCustomerID(CustomerDetails arg0) :int

D-2-4)getReservation(int CustID) :ArrayList<ReservationDetails>

E-4-3)getReservation(int CustID) :ArrayList<ReservationDetails>

displayANDSelectActiveReservations(ArrayList<ReservationDetails> Reser) :ReservationDetails

«Missing»

failure()

«Utili ty»

«Adaptor» getReservRef(ReservationDetails Reserv) :String

D-2-3)getReservation(String ref) :ArrayList<ReservationDetails>

E-6-2)getReservation(String ref) :ArrayList<ReservationDetails>

displayReservationInfo()

«Utili ty»

proceedCancella tion() :Boolean

«Utili ty»

D-1-8)deleteReservatio n(String ref) :String

E-3-8)deleteReservatio n(String ref) :String

notifyBil lingSys()

«Missing»

B-2-5)notifyCustomer(int custID, St ring Custemail, String msg) :String

E-2-5)notifyCustomer(int custID, St ring Custemail, String msg) :String

failure()

«Utili ty»

 

Figure 20: CompBSD of ICancelReservation 

 

 



72 

 

3) IAmendReservation 

Static Realization: 

From the use-case description, we may have the following list of “real” actions from 

the main success scenario and extensions underlined: 

1. Reservation Maker asks to amend a reservation. 
2. System asks to enter the reservation tag. 
3. System could find the reservation. 
4. System will go through process of a new reservation scenario. 
5. The system will display the price of the new reservation. 
6. The system will ask the Reservation Maker to pay the difference in price between 

the old and new reservations. 
7. The system will generate a new reservation tag to the Reservation Maker. 
8. The system sends the confirmation by e-mail. 

 

Extensions: 

2. Reservation tag is not available. 

a. System asks for reservation name and post code. 
b. Get all active reservations for the customer. 
c. The customer will select the designated reservation. 

2. System could not find the reservation.  

a. Fail 

Then, we can generalize the extracted real actions to get the final conceptual operations: 

 askForAmending( ): This operation role is to initiate the the whole scenario of 

amending a reservation. 

 provideReservationTag ( ): for entering reservation tag. 

 provideNameANDPostCode( ): for entering name and the post code of the 

customer. 

 displayANDSelectActiveReservations( ): for displaying and selecting from active 

reservations found for a customer. 



73 

 

 calculatePriceDifference( ): for calculating the diffrence between the old and new 

reservation to be paid by\returned to the customer. 

 failure( ): for issuing failure messages. 

 notifyBillingSys( ): for notifying the billing system about the new payement. 

 confirmCancellation( ): an operation for confirming the amending and sending it 

by e-mail. 

 <Make Reservation Scenario>: to carry out a new reseravtion 

Let’s here apply IIIP to conceptual operations of IAmendReservation one by one: 

 askForAmending( ): missing. 

 provideReservationTag ( ): missing. 

 provideNameANDPostCode( ): missing. 

 displayANDSelectActiveReservations( ): it could be partially fulfilled with the 

following cocncrete operations: (B-2-3), (E-2-3), (D-2-4), and (E-4-3). 

 calculatePriceDifference( ): missing. 

 failure( ): missing. 

 notifyBillingSys( ): missing. 

 confirmCancellation( ): cocncrete operations may involve: (B-2-5) and (E-2-4). 

 <Make Reservation Scenario>: realized by IMakingReservation conceptual 

interface. 

Then, we get the UCCM diagram in figure 21 and realization table shown in table 5. 

 

 

 



74 

 

 

Figure 21: UCCM diagram for IAmendReservation 

 

 



75 

 

IAmendReservation 

Conceptual Operations Realization 

askForAmending( ) Missing 

provideReservationTag ( ) Missing 

provideNameANDPostCode( ) Missing 

displayANDSelectActiveReservations( ) Partially{[(B-2-3)OR(E-2-3)] AND [(D-2-4)OR (E-4-3)]} 

calculatePriceDifference( ) Missing 

< Make Reservation Scenario> IMakingReservation 

failure( ) Missing 

notifyBillingSys( ) Missing 

confirmAmending( ) 

 
 (B-2-5) OR (E-2-4) 

 

Table 5: Realization table for IAmendReservation 

 

Dynamic Realization: 

Here we are going to build a CompBSD corresponding to IAmendReservation as shown 

in figure 22. 

 



76 

 

 sd 03-Amend a Reserv ation-CompBSD

Reservation Maker

«Component»

Bill ing-(A)

«Component»

customermanag-(B)

«Component»

datatype-(C)

«Component»

hotelmanag-(D)

«Component»

ReservationSystem-(E)

«Component»

Glue Code

alt Check For Customer Existence

[True]

[True]

alt Get All Activ e Reserv ations using CustID

[True]

[True]

alt Getting Reserv ation Info

[True]

[True]

alt Room Search

[True]

[True]

alt Room Search

[True]

[True]

opt Declining Offer

[Rej ect]

opt Declining Offer

[Rej ect]

alt Making Reserv ation

[True]

[True]

alt Sending Confirmation

[True]

[True]

alt Tag Av ailability

[Avail able]

[Unavai lable]

alt Av ailability of Activ e Reserv ations

[Ye s]

[No]

opt Alternativ e Reserv ations

[Unapplicable Rese rvation Criteria]

askForAmending()

«Initiation»

importDataTypes()

«LibraryImporting»

isTagAvailabl e() :Boolean

«Utili ty»

provideReservTag(S tring Tag) :String

«Missing»

provideNameANDPostCode(String name, String PostCode) :CustomerDetails

«Adaptor»

B-2-3)getCustomerMatching(CustomerDetails arg0) :int

E-2-3) getCustomerMatching(CustomerDetails arg0) :int

«Adaptor» getCustomerID(CustomerDetails arg0) :int

D-2-4)getReservation(int CustID) :ArrayList<ReservationDetails>

E-4-3)getReservation(int CustID) :ArrayList<ReservationDetails>

displayANDSelectActiveReservations(ArrayList<ReservationDetails> Reser) :ReservationDetails

«Missing»

failure()

«Util i ty»

«Adaptor» getReservRef(ReservationDetails Reserv) :String

D-2-3)getReservation(String ref) :ArrayList<ReservationDetails>

E-6-2)getReservation(String ref) :ArrayList<ReservationDetails>

displayReservationInfo()

«Util i ty»

selectReservation(int hotel, Date startingDate, Date endDate, String roomType) :ReservationDetails

«Adaptor»

«TemporaryStorage» saveOldReservation(ReservationDetails OldReserv)

D-2-6)getRoomInfo(ReservationDetails a rg0) :ArrayList<AvailableRoomDetails>

E-5-3)getRoomInfo(ReservationDetails a rg0) ::ArrayList<AvailableRoomDetails>

«Missing» refineReservationDetails()

D-2-6)getRoomInfo(ReservationDetails a rg0) :ArrayList<AvailableRoomDetails>

E-5-3)getRoomInfo(ReservationDetails a rg0) :ArrayList<AvailableRoomDetails>

provideAlternatives(ArrayList<AvailableRoomDetails> AvailableAlternatives)

«Missing»

acceptOrReject() :Boolean

«Util i ty»

failure()

«Util i ty»

providePrice()

«Util i ty»
acceptOrReject() :Boolean

«Util i ty»

failure()

«Util i ty»

«Missing» calculatePriceDifference(ReservationDetails OldReserv, int NewReservPrice) :int

notifyBill ingSys()

«Missing»

D-2-8)makeReservation(ReservationDetails arg0) :int

E-5-4)makeReservation(ReservationDetails arg0) :int

revealTag()

«Util i ty»

B-2-5)notifyCustomer(int custID, St ring Custemail, String msg) :String

E-2-5)notifyCustomer(int custID, St ring Custemail, String msg) :String

 

Figure 22: CompBSD of IAmendReservation 



77 

 

4) IProcessNoShows 

From the use-case description, we may have the following list of real actions from the 

main success scenario underlined: 

 

Main Success Scenario: 

1. Administrator asks the system to display the list of reservations whose holders did 
not show or take them up. 

2. The system will display the list of no shows. 
3. The system administrator will select all or a subset of the no-shows list. 
4. The system will apply the payment-cut to all of the selected no-shows. 
5. The system will notify billing system about the cut and remaining amount. 
6. The system will send an e-mail to the customer informing him about the applied 

procedure. 
 

Then, we can generalize the extracted real actions to get the final conceptual 

operations: 

 askToProcessNoShows( ): for initiating the whole scenario. 

 displayNoShows( ): for display of all available no shows. 

 selectFromNoShows( ): for selecting the group of no shows to which the no 

shows procedure will be applied. 

 applyNoShowProcedure( ): for applying no show procedure (i.e. payment-

cut). 

 notifyBillingSys( ):notifying the billing system about the applied no show 

procedure regarding cut money. 

 confirmNoShow( ):for sending confirmation of no show procedure to the 

corresponding customers. 

Let’s here apply IIIP to conceptual operations of IProcessNoShows one by one: 

 askToProcessNoShows( ): missing. 



78 

 

 displayNoShows( ): missing. 

 selectFromNoShows( ): missing. 

 applyNoShowProcedure( ): missing. 

 notifyBillingSys( ):missing. 

 confirmNoShow( ): cocncrete operations that may be involved: (B-2-5) and 

(E-2-4). 

 

Then, we get the UCCM diagram in figure 23 and realization table shown in table 6. 

 

 

Figure 23: UCCM diagram for IProcessNoShows 

 

 

 

 

 

 



79 

 

IProcessNoShows 

Conceptual Operations Realization 

askToProcessNoShows( ) Missing 

displayNoShows( ) Missing 

selectFromNoShows( ) Missing 

applyNoShowProcedure( ) Missing 

notifyBillingSys( ) Missing 

confirmNoShow( ) (B-2-5) OR (E-2-4) 

 

Table 6: Realization table for IProcessNoShows 

 

Dynamic Realization: 

Here we are going to build a CompBSD corresponding to IProcessNoShows as shown in 

figure 24. 

 



80 

 

 sd 05-Process No Shows-CompBSD

«Component»

Glue Code

«Component»

ReservationSystem-(E)

«Component»

hotelmanag-(D)

«Component»

datatype-(C)

«Component»

customermanag-(B)

«Component»

Bill ing-(A)

Reservation Admin

loop Applying No-Show Procedure For All Selected No-Shows

[Penaltied No-Shows < Selected No-Shows]

alt Sending Confirmation

[True]

[True]

askToProcessNoShows()

«Initiation»

importDataTypes()

«LibraryImporting»

«Missing» displayNoShows()

«Missing» selectFromNoShows() :ArrayList<ReservationDetails>

«Missing» applyNoShowProcedure(ReservationDetails Reserv)

notifyBil l ingSys()

«Missing»

B-2-5)notifyCustomer(int custID, St ring Custemail, String msg) :String

E-2-5)notifyCustomer(int custID, St ring Custemail, String msg) :String

 

Figure 24: CompBSD of IProcessNoShows 

 

5) ITakingUpReservation 

From the use-case description, we may have the following list of real actions from the 

main success scenario and extensions underlined: 

Main Success Scenario: 

1. Guest arrives at hotel and claims a reservation. 
2. Guest provides reservation tag. 
3. Guest confirms details of stay duration, room type. 
4. System allocates room. 
5. System notifies billing system that a stay is starting. 

Extensions: 

3. System cannot find a reservation with the given tag. 

a. Guest provides name and post code. 



81 

 

b. System identifies guest and displays active reservations for the customer. 

c. Guest selects the reservation. 

d. Resume 4. 

3. The reservation tag refers to a reservation at a different hotel. 

a2.  Fail. 

      3c. No active reservations at this hotel for this customer. 

a. Fail 

Then, we can generalize the extracted real actions to get the final conceptual 

operations: 

 askToTakeUp( ): for initiating the whole scenario. 

 provideReservationTag ( ): for entering reservation tag. 

 provideNameANDPostCode( ): for entering name and the post code of the 

customer. 

 displayANDSelectActiveReservations( ): for displaying and selecting from 

active reservations found for a customer. 

 notifyBillingSys( ):notifying the billing system that a stay has begun. 

 failure( ):for issuing failure message. 

Let’s here apply IIIP to conceptual operations of ITakingUpReservation one by one: 

 askToTakeUp( ): missing. 

 provideReservationTag ( ): missing. 

 provideNameANDPostCode( ): missing. 

 displayANDSelectActiveReservations( ): missing. It could be partially 

fulfilled with the following cocncrete operations: (B-2-3), (E-2-3), (D-2-4), 

and      (E-4-3). 



82 

 

 notifyBillingSys( ):missing. 

  failure( ): missing. 

Then, we get the UCCM diagram in figure 25 and realization table shown in table 7. 

 

Figure 25: UCCM diagram for ITakingUpReservation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



83 

 

ITakingUpReservation 

Conceptual Operations Realization 

askToTakeUp( ) Missing 

provideReservationTag ( ) Missing 

provideNameANDPostCode( ) Missing 

displayANDSelectActiveReservations

( ) 

Partially{[(B-2-3)OR(E-2-3)] AND [(D-2-4)OR (E-4-

3)]} 

notifyBillingSys( ) Missing 

failure( ) Missing 

 

Table 7: Realization table for ITakingUpReservation 

 

Dynamic Realization: 

Here we are going to build a CompBSD corresponding to ITakingUpReservation as 

shown in figure 26. 



84 

 

 sd 02-Take up a Reservation-CompBSD

Guest

«Component»

Glue Code

«Component»

ReservationSystem-(E)

«Component»

hotelmanag-(D)

«Component»

datatype-(C)

«Component»

customermanag-(B)

«Component»

Bill ing-(A)

alt Tag Av ailability

[Avail able]

[Unavai lable]

alt Check For Customer Existence

[True]

[Tu re]

alt Get All Activ e Reservations Using CustomerID

[True]

[True]

alt Av ailability of Activ e Reserv ations

[Ye s]

[No]

alt Beginning A Stay

[True]

[True]

askToTakeUp()

«Initiation»

importDataTypes()

«LibraryImporting»

isTagAvailabl e() :Boolean

«Util ity»

provideReservTag(S tring Tag) :String

«Missing»

provideNameANDPostCode(String name, String PostCode) :CustomerDetails

«Adaptor»

B-2-3)getCustomerMatching(CustomerDetails arg0) :int

E-2-3)getCustomerMatching(CustomerDetails arg0) :int

«Adaptor» getCustomerID(CustomerDetails arg0) :int

D-2-4)getReservation(int CustID) :ArrayList<ReservationDetails>

E-4-3)getReservation (int CustID) :ArrayList<ReservationDetails>

displayANDSelectActiveReservations(ArrayList<ReservationDetails> Reser) :ReservationDetails

«Missing»

failure()

«Uti l ity»

«Adaptor» getReservRef(ReservationDetails Reserv) :String

D-2-1)beginStay(Stri ng ReserRef) :String

E-4-1)beginStay(Stri ng ReserRef) :String

notifyBill ingSys()

«Missing»

 

Figure 26: CompBSD of ITakingUpReservation 

 

 

 



85 

 

5.3 Summary 

In this chapter, the realization stage of the proposed framework has been applied to a case 

study of a Hotel Reservation System (HRS).  We had five selected software components 

written in Java in advance. Also, we had the UCs of the system-to-be in the form of UC 

descriptions. We started by applying the UCCM technique to all of the system UCs to 

derive the UCCM diagrams and realization tables. Afterward, we have applied dynamic 

realization process to UCs along with their corresponding realization tables to derive the 

first form of integration specification which were in the form of CompBSDs for HRS 

system. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



86 

 

CHAPTER 6 

GLUE CODE FORMAL SPECIFICATION  

6.1 Glue Code and Formal Specification 

Generally speaking, a formal specification is the expression in some formal language and 

at some level of abstraction, of a collection of properties some system should satisfy. 

Formality helps in obtaining higher-quality specifications; it also provides the basis for 

their automated support. They remove areas of doubt in a specification.  

 

In chapter 4, we have demonstrated how we can derive one form of specification for the 

glue code. This specification was on a form of a set of CompBSDs representing required 

system scenarios. This specification is suspected to be informal, imprecise, and 

ambiguous.  In order to get a more precise and correct glue code specification, more 

formality should be applied to the glue code specification.  

 

In this chapter, we present the composition stage of the framework. This stage produces a 

formal glue code specification. This specification will be in form of OCL-Constrained 

Class Diagram (OCCD). It gives the system developer a better definition of the properties 

that should be implemented by the system-to-be. 

 

 

 



87 

 

6.2 Object Constraint Language (OCL) 

A UML diagram, such as a class diagram, is typically not refined enough to provide all 

the relevant aspects of a specification. There is, among other things, a need to describe 

additional constraints about the objects in the model. Such constraints are often described 

in natural language. Practice has shown that this will always result in ambiguities. In 

order to write unambiguous constraints, so-called formal languages have been developed. 

The disadvantage of traditional formal languages is that they are usable to persons with a 

strong mathematical background, but difficult for the average business or system modeler 

to use (OMG, 2005). 

 

OCL is a formal language used to describe expressions on UML models. These 

expressions typically specify invariant conditions that must hold for the system being 

modeled or queries over objects described in a model. Note that when the OCL 

expressions are evaluated, they do not have side effects; i.e. their evaluation cannot alter 

the state of the corresponding executing system. 

 

OCL expressions can be used to specify operations\actions that, when executed, do alter 

the state of the system. UML modelers can use OCL to specify application-specific 

constraints in their models. UML modelers can also use OCL to specify queries on the 

UML model, which are completely programming language independent. 

 

 

 



88 

 

The general form of an OCL expression is as follows: 

package <packagePath> 

 context <contexualInstanceName> : <modelElement>      

  <expressionType><expressionName> : <expressionBody> 

  <expressionType><expressionName> : <expressionBody> 

   ... 

endpackage 

The following are some basic rules for any OCL expression: 

 The package context is optional. 

 The expression context is mandatory. 

 One or more expressions. 

 Every OCL constraint has a context, the element that is being constrained 

(operation, class). 

 A constraint can be written in a textual form (data dictionary) or attached to 

model elements. 

 Keyword context in bold type as well as constraint stereotypes. 

 The keyword self in the textual form of the constraint simply refers to the instance 

of the context class (not always needed but it aids readability). 

 

 

 



89 

 

As an example, a class may have invariants to preserve a specific property as shown for 

classes in figure 27. There are four business rules about CheckingAccounts and 

DepositAccounts (Arlow & Neustadt, 2005).  

 

 

Figure 27: Bank accounts class diagram 

 

1. No Account shall be overdrawn by more than $1000.00. We can express this first 

rule as an invariant on the BankAccount class because it must be true for all 

instances of BankAccount.  

 context BankAccount 
 inv balanceValue: 
  self.balance >= (-1000.0)  
   /* A bank account shall have a balance > -1000.0 */ 

  



90 

 

This invariant is inherited by the two subclasses, CheckingAccount and DepositAccount.  

These subclasses can strengthen this invariant but can never weaken it.  This is to 

preserve the substitutability principle. 

2. CheckingAccounts have an overdraft facility.  The account shall not be overdrawn 

to an amount greater than its overdraft limit. We can express these rules as 

invariants on the CheckingAccount class: 

  context CheckingAccount 
  inv balanceValue: 
   self.balance >= (-overdraftLimit) 
  inv maximumOverdraftLimit: 

          self.overdraftLimit <= 1000.0 

See how the CheckingAccount subclass has strengthened the BankAccount::balance class 

invariant by overriding it. 

3. DepositAccounts shall never be overdrawn.  We can express this rule as follows: 

  context DepositAccount 
            inv balanceValue: 
  self.balance >= 0.0   
    /* Have a balance of zero or more */ 
  

 This also is a strengthening of BankAccount::balance class invariant. 

 

4. Each accountNumber shall be unique. This constraint is expressed as an invariant 

on the BankAccount class. 

    context BankAccount 
 inv uniqueAccountNumber: 
  BankAccount::allInstances()-> 
                   isUnique( account | account.accountNumber) 
 



91 

 

Also, pre and postconditions apply to operations.  Their contextual instance is an instance 

of the classifier to which the operations belong. Refer to the bank accounts example in 

figure 27 and consider the deposit() operation that both CheckingAccount and 

DepositAccount inherit from BankAccount. There are two business rules for this: 

1. The amount to be deposited shall be greater than zero. 

2. After the operation executes, the amount shall have been added to the balance. 

 These rules can be expressed concisely and accurately in preconditions and 

postconditions on the BankAccount::deposit() operation as follows: 

 context BankAccount::deposit( amount: Real): Real 
  pre amountToDepositGreaterThanZero: 
   amount > 0 
  post depositSucceeded: 
   self.balance = self.balance@pre + amount 
 

Notice the use of the @pre keyword.  This keyword can be used only within 

postconditions. The expression balance@pre refers to the value of balance before the 

operation executes. 

 For completeness, here are the constraints on the BankAccount::withdraw() 

operation 

 context BankAccount::withdraw(ampunt: Real) 
  pre amountToWithdrawGreaterThanZero: 
   amount > 0 
  post withdrawalSucceeded: 
   self.balance@pre – amount  

 When an operation is redefined by a subclass, it gets the preconditions and 

postconditions of the operation it redefines. It can only change these conditions as 

follows: 



92 

 

– The redefined operation may only weaken the precondition. 

– The redefined operation may only strengthen the postcondition.   

6.3 Composition Stage 

In chapter 4, we have seen how one can derive the integration (i.e. glue code) 

specification for a CBS beginning from the UCs of the system-to-be by applying the 

realization stage of our proposed framework. The derived specification was in form of 

CompBSDs.  

 

In the composition stage, we are going to derive a formal specification for the glue code. 

This formal specification will be in form of OCL-Constrained Class Diagrams (OCCDs). 

An overview for the composition stage is shown in figure 28. 

 



93 

 

 

Figure 28: An overview of the composition stage of the proposed framework 

 

6.3.1 OCL-Constrained Class Diagram (OCCD) 

OCCD is a class diagram in which each class represents a constituent component that 

realizes some programming interface(s). Such interfaces have participated in system 

scenarios represented by CompBSDs.  It is noticed here that we began adding the 



94 

 

modifier “programming” to the interfaces due to approaching “coding” arenas. We used 

to call the interfaces of the system-to-be as “conceptual interfaces” due to high level 

interfaces derived from UCs in the framework. Here we are going to map such interfaces 

into programming interfaces implemented by the constituent components. A template of 

OCCD is shown in figure 29. 

 

 

Figure 29: An OCCD template 

 

 

 



95 

 

After passing the realization stage, the composition stage will take the set of CompBSDs 

resulting from the realization stage as input. Redundant and crosscutting operations of the 

glue code lifelines of all CompBSDs will be identified. Then, all glue code's scenarios 

represented by all CompBSDs will be collapsed in a single OCL-Constrained Class 

Diagram (OCCD) providing the formal specification of the glue code. 

 

The process of building the OCCD will begin by creating a corresponding class for each 

component in the system including glue code. Then, we are going to build the interface(s) 

for the glue code component containing all the scenario initiating methods (i.e. missing 

methods stereotyped with “Initiation”).  The glue code class’s method compartment will 

be filled with only the missing methods shown by CompBSDs (i.e. concrete operations 

provided by the pre-existing selected components will not be added to it). The glue code 

interface(s) will be attached to the glue code by a hollow-headed dashed arrow and 

stereotyped with “Realize”. The head of the arrow will be attached to the interface 

whereas its tail is attached to the glue code component.  

 

After all glue code’s interface(s) being created and filled with the designated operations, 

we have to switch consideration to the other components (i.e. the selected components) 

one by one. We are going here to do the same procedure by creating only the interfaces 

which contain the operations that have been invoked during the system scenarios. Since 

an interface may contain many methods, methods’ compartments of the interfaces will be 

filled with only the methods that have been invoked by system scenarios at least once. 



96 

 

Each interface will be attached to its corresponding component using the same arrow 

used to connect glue code component and its interfaces.  

 

Then, OCL constraints will be annotated to OCCD classes that will be in the form of 

class invariants and operations’ pre and postconditions.  Such annotation will provide us 

with a more precise class diagram for the glue code. Actually, these constraints will be 

annotated to the glue code component only because we have nothing to do with the other 

selected components composing the system.  

 

6.3.2 Validating OCCD 

Validating OCL constraints annotated to OCCD can be performed using one of the 

existing automated tools. In this thesis work, we have used UML-based Specification 

Environment (USE) tool for validating the resulting formal specification for the glue code 

(Richters, 2001). Let’s here give an example provided by (Richters, 2001) on the 

validation of the model shown in figure 30. 

 

 
 

Figure 30: Class diagram for persons and a company 

 

 

 



97 

 

In USE tool the validation process will be as follows: 

1) Building the model by mapping the model into USE-based specification as  follows 

model Employee 
-- classes 
 
class Person 
attributes 
name : String 
  age : Integer 
  salary : Real 
operations 
  raiseSalary(rate : Real) : Real 
end 
 
class Company 
attributes 
  name : String 
  location : String 
operations 
  hire(p : Person) 
  fire(p : Person) 
end 
 
-- associations 
 
association WorksFor between 
  Person[*] role employee 
  Company[0..1] role employer 
end 
 

2) Adding pre and postconditions as follows: 

constraints 
context Company::hire(p : Person) 
  pre  hirePre1: p.isDefined() 
  pre  hirePre2: employee->excludes(p) 
  post hirePost: employee->includes(p) 
 
context Company::fire(p : Person) 
  pre  firePre:  employee->includes(p) 
  post firePost: employee->excludes(p) 



98 

 

The first precondition of the hire operation is named hirePre1 and makes sure that 

the operation can only be called with a well-defined person object (Note that the 

operation isDefined is a USE extension. It is not possible to express this constraint 

with standard OCL). The second precondition (hirePre2) makes sure that the person 

passed as parameter p is not already an employee of the company. The postcondition 

(hirePost) guarantees that after the operation has exited, the person actually has been 

added to the set of employees. The constraints for the operation fire work just the other 

way round. 

3) Importing the model into USE tool. 

4) Creating the initial system state: this is achieved by creating all needed objects 

corresponding to classes pre-specified in the model. Assigning values to the data 

members of the objects to be passed in the simulation of the system scenarios. For 

instance, we will create two objects for Person and Company classes using “!create” 

command. Then, we will set the values of the data members of both of them using 

“!set” command as follows: 

use> !create ibm : Company 
use> !create joe : Person 
use> !set joe.name := 'Joe' 
use> !set joe.age := 23 
 

 

 

 

 



99 

 

The current system state can be visualized with an object diagram view shown in figure 

31. 

 

Figure 31: Generated object diagram for the model 

5) Calling Operations and Checking Preconditions: operation calls are initiated with the 

command “!openter”. The syntax is as follows: 

!openter <source-expression> <operation-name> ( [<argument-expression-list>] ) 

Where <source-expression> must be an OCL expression denoting the receiver object of 

the operation named <operation-name>. Depending on the operation's signature an 

<argument-expression-list> has to be passed to the operation.  

The following command shows the top-level bindings of variables. These variables can 

be used in expressions to refer to existing objects. 

use> info vars 
ibm : Company = @ibm 
joe : Person = @joe 



100 

 

We invoke the operation hire on the receiver object ibm and pass the object joe as 

parameter. 

use> !openter ibm hire(joe) 
precondition `hirePre1' is true 
precondition `hirePre2' is true 

The !openter command has the following effects: 

1. The source expression is evaluated to determine the receiver object.  

2. The argument expressions are evaluated.  

3. The variable self is bound to the receiver object and the argument values are 

bound to the formal parameters of the operation. These bindings determine the 

local scope of the operation.  

4. All preconditions specified for the operation are evaluated.  

5. If all preconditions are satisfied, the current system state is saved and the 

operation call is saved on a call stack.  

6) Exiting Operations and Checking Postconditions: we can simulate the execution of an 

operation with the usual USE primitives for changing a system state. The 

postcondition of the hire operation requires that a WorksFor link between the person 

and the company has to be created as shown in figure 32. We also set the salary of the 

new employee. This can be created as follows: 

use> !insert (p, ibm) into WorksFor 

use> !set p.salary := 2000 

 



101 

 

 

Figure 32:  The object model after creating the link WorksFor 

After generating all side-effects of an operation, we are ready to exit the operation and 

check its postconditions. The command “!opexit” simulates a return from the currently 

active operation. The syntax is: 

!opexit [<result-expression>] 

The optional <result-expression> is only required for operations with a result value. An 

example will be given later. The operation hire specifies no result, so we can just issue 

use> !opexit 

postcondition 'hirePost' is true 

The !opexit command has the following effect: 

1. The currently active operation is popped from the call stack.  

2. If an optional result value is given, it is bound to the special OCL variable 

"result".  



102 

 

3. All postconditions specified for the operation are evaluated in context of the 

current system state and the pre-state saved at operation entry time.  

4. All local variable bindings are removed.  

In our example, the postcondition hirePost is satisfied. 

7) Visualization as Sequence Diagram: The USE tool can visualize a sequence of 

operation calls as a UML sequence diagram. The screenshot shown in figure 33 

shows the sequence of calls for the example. During a validation session the diagram 

is automatically updated on each operation call. 

 

Figure 33: UML sequence diagram representing sequence of operation calls  

 

 

 



103 

 

6.4 Summary 

In this chapter, the composition stage of the proposed framework has been well-

explained. We proposed here a formal specification for the glue code in the form of an 

OCL-Constrained Class Diagram.  Notations and definitions for OCCD have been 

established. We have demonstrated the process of deriving OCCD by collapsing the 

resulting CompBSDs from the realization stage of the framework.  Then, the process of 

annotating OCL constraints to OCCD has been illustrated, as well as, the process of 

validating it to check the correctness of the system integration model represented by 

OCCD by means of the USE tool. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



104 

 

CHAPTER 7 

CASE STUDY FOR COMPOSITION STAGE 

7.1 Applying Composition Stage 

In chapter 5, we have derived a set of CompBSDs as a result of the realization stage that 

has been applied to the UCs of Hotel Reservation System. We are here going to map all 

the resulting CompBSDs to a single OCCD to represent the glue code formal 

specification for the HRS system. Firstly, let’s list all the missing methods identified by 

CompBSDs as shown by table 8. 

 

Missing Functionality Stereotype Role 

askForReservation() : void Initiation For triggering 

making reservation 

scenario 

askToTakeUp() : void Initiation For triggering 

taking up 

reservation 

scenario 

askForAmending() : void Initiation For triggering 

amending 

reservation 

scenario 

 

 

 



105 

 

askForCancellation() : void Initiation For triggering 

cancelling 

reservation 

scenario 

askToProcessNoShows() : void Initiation For triggering 

processing no 

show ups scenario 

importDataTypes():void LibraryImporting For importing 

customized data 

types 

selectReservation(hotel :int, startingDate: 

Date, endDate: Date, roomType: String ): 

ReservationDetails 

Adapter To get reservation 

data from user and 

adapt it to the 

“ReservationDetail

s” data type 

refineReservationDetails():void Missing to change 

unapplicable user 

entered reservation 

information to get 

the closest 

reservation 

available 

provideAlternatives(AvailableAlternatives: 

ArrayList<AvailableRoomDetails>): void 

Missing Shows all 

alternative 

reservations  

acceptOrReject():Boolean Utility Prompting the user 

to answer with Yes 

or No 

 

 



106 

 

failure():void Utility Showing a failure 

message regarding 

a specific 

transaction 

providePrice():void Utility Displaying the 

price of a 

reservation 

getCustomerInfo(name: String, postcode: 

String, e-mail: String): CustomerDetails 

Adapter  To get entered 

customer data and 

convert it to the 

“CustomerDetails” 

data type 

 

notifyBillingSys():void Missing For notifying the 

billing system 

about the financial-

related aspect of a 

transaction 

revealTag():void Utility Displaying the 

reservation tag to 

the user 

isTagAvailable():Boolean Utility Asking the user for 

the availability of 

tag, the answer 

will be either Yes 

or No. 

 

provideReservTag(Tag : String):String Missing Getting reservation 

tag from the user 

 



107 

 

provideNameANDPostCode(String 

name:String, PostCode: String): 

CustomerDetails 

Adapter  Getting other 

information of 

customer when tag 

is unavailable and 

converting it to the 

“CustomerDetails” 

data type 

getCustomerID(arg0: CustomerDetails ): int Adapter Extracting 

customer ID from 

the corresponding 

field in the  

customer’s data  of 

“CustomerDeatils” 

data type  

displayANDSelectActiveReservations(Reser: 

ArrayList<ReservationDetails>): 

ReservationDetails 

Missing Display all current 

active reservation 

to the customer to 

choose from 

getReservRef(Reserv: ReservationDetails ): 

String 

Adapter Extracting 

reservation 

reference from the 

corresponding 

field in the  

reservation’s data  

of 

“ReservationDetail

s” data type 

saveOldReservation (OldReserv: 

ReservationDetails): void 

TemporaryStorage Temporarily 

storing reservation 

and customer data 



108 

 

calculatePriceDifference(OldReserv: 

ReservationDetails,  NewReservPrice:int):int 

Missing  Calculating the 

difference between 

two reservations 

prices 

 

 

proceedCancellation():Boolean Utility Asking the user 

whether he want to 

continue 

cancellation 

process 

displayNoShows():void Missing Displaying all 

available 

customers who 

haven’t shown up 

yet 

selectFromNoShows():ArrayList<Reservatio

nDetails> 

Missing Selecting a group 

of no shows 

applyNoShowProcedure(Reserv: 

ReservationDetails):void 

Missing  Applying the 

intended procedure 

to a group of 

selected no shows 

 

Table 8: List of missing functionalities  

 

Also, a list of all concrete operations has appeared to be invoked in CompBSDs. It is 

enough just to list them by their concrete operation codes so that it could be referred 

quickly from the components documentation as follows: 



109 

 

(D-2-6), (E-5-3), (B-2-3), (E-2-3), (B-2-1), (E-2-1), (D-2-8), (E-5-4), (B-2-5), (E-2-5), 

(D-2-4), (E-4-3), (D-2-3), (E-6-2), (D-1-8), (E-3-8), (D-2-1), (E-4-1). 

Then, we will begin building the OCCD skeleton by creating a class for each component 

involved in the scenarios including the glue code component as shown in figure 34. 

 

 

 

Figure 34: Skeleton of HRS OCCD 

 

Then, we are going to attach the interfaces to its corresponding components. For, the 

components other than glue code we are going to attach only the interfaces and 

operations that contributed to the scenarios represented by CompBSDs to their 

corresponding components being stereotyped with “realize” (i.e. interfaces having 

nothing to do with the system-to-be scenarios will be discarded).  This is shown in figure 

35. 



110 

 

 

 

Figure 35: Attaching interfaces of the components to the OCCD skeleton  

 

 

Then, we will add all missing methods to the method compartment of the glue code 

component class. Also, we should attach an interface named “ReservationOperations” to 

the glue code class. The missing methods stereotyped with “Initiation” are surrounded by 

a red colour frame. They will be put as exposed methods in the method compartment of 

this interface being implemented within the glue code component as shown in figure 36. 

The final OCCD will appear as shown in figures 37 and 38. 



111 

 

 

 

Figure 36: The glue component realizing “ReservationOperations” exposed interface 

 

 

 

Figure 37: Building OCCD using ArgoUML (Tigris.org) tool 



112 

 

 

 

Figure 38 :  Class diagram for HRS system 

 

Then, we will add OCL constraints for the resulting class diagram by them to the glue 

component. We are going to provide some examples: 

 

Let’s begin with the glue code component (i.e., class). For instance, we can add a class 

invariant to it to check the validity of any run-time instance of the glue code component. 

We can check that using the following invariant: 

 
context GlueCode 
inv validGlueCode: self.oclIsTypeOf(GlueCode) 
 

 



113 

 

In USE tool, the class invariants as well as the entire structure of the system will be 

automatically checked whenever the system state changes. So, there is no need to check 

the invariants manually.   

 

Also, we can add pre and/or postconditions to any of the missing operations to be 

implemented within the glue code.  For instance, the following pre and postconditions 

will be annotated to the scenario initiating methods askForReservation(): 

 
context GlueCode::askForReservation()  
pre:self.room->exists(r|r.available=true) 
post:(self.room->select(r|r.available=true)->size= 
self.room@pre->select(r|r.available=true)->size -1) and 
self.reservation->size=self.reservation@pre->size+1 
 

 
The precondition will help to make sure that there is still at least one available room that 

has not been booked, yet. This means that this method will not be executed unless its 

precondition is satisfied. While in the postcondition, it will check the correctness of the 

functionality to be provided by checking that there is an increase in the number of the 

reserved rooms within the hotel. 

 

askToTakeUp() method will have a precondition to check whether there are some 

reservation to be claimed or not. On the other hand, its postcondition will check the 

correctness of the method execution by making sure that the number of rooms that have 

not been claimed yet is decreased by one.  

 
 
 
 



114 

 

context GlueCode::askToTakeUp() 
pre:self.reservation->exists(Res|Res.claimed=false) 
post: self.reservation->select(res|res.claimed=false)-
>size=self.reservation@pre->select(res|res.claimed=false)-
>size-1 

 
  

askForCancellation() will have a precondition that is always true but its postcondition 

will check whether the number of reservation has been decreased by one or not before 

exiting the method. 

context GlueCode::askForCancellation()  
pre:true 
post:self.reservation->size=self.reservation@pre->size -1 

 
 

askToProcessNoShows() will have the following pre and postconditions to check the 

availability of non-claimed reservations on the entry to the method and to check for the 

unavailability of any non-claimed reservation before exiting the methods. 

context GlueCode::askToProcessNoShows() 
pre:self.reservation->exists(res|res.claimed=false) 
post:self.reservation->exists(res| res.claimed=true)  

 
 

getCustomerInfo() will have an always true precondition. Also, it will have a 

postcondition for checking the existence of the customer based on his name and post code 

to make sure that it has been added to the customer database. 

 
context GlueCode::getCustomerInfo(name: String, postcode: 
String,e-mail:String):CustomerDetails 
pre: true 
post:self.customer->exists(cust| cust.name<>name) and 
self.customer->exists(cust| cust.postCode<>postcode) and 
result.cust_name=name and result.post_code=postcode  

 
 



115 

 

provideReservTag() have a precondition that will check the existence of the provided 

reservation tag. Its postcondition returns the value 1. 

 
context GlueCode::provideReservTag(Tag : String):String 
pre:self.reservation->exists(res|res.resRef=Tag) 
post:result=1 

 
 

getCustomerID()  checks the availability of the customer in the database and return his id 

if it is on record. 

context GlueCode::getCustomerID(arg0: CustomerDetails ): 
Integer 
pre:self.customer->exists(cust|cust.name=arg0.cust_name)  
post: result=arg0.cust_no 
 
 
getReservRef() checks for the existence of the reservation on the entry to method and 

returns the reservation reference on the exit. 

 
context GlueCode::getReservRef(Reserv: ReservationDetails 
): String 
pre:self.reservation->exists(res|res.resRef 
=Reserv.Res_Ref)  
post: result=Reserv.Res_Ref 
 
 
saveOldReservation()checks for the existence of the reservation on the entry to method 

and returns the value of 1 at exit. 

 
Context GlueCode::saveOldReservation(OldReserv: 
ReservationDetails) 
pre: self.reservation->exists(res|res.resRef 
=OldReserv.Res_Ref)  
post: result=1 

 
 
 
 
 



116 

 

7.2 OCCD Validation 

OCL provides special syntax for specifying pre and postconditions on operations in a 

UML model. Pre and postconditions are constraints that define a contract that an 

implementation of the operation has to fulfil. A precondition must hold when an 

operation is called, a postcondition must be true when the operation returns. As 

mentioned earlier, we will validate the resulting formal glue code specification (i.e. 

OCCD) using USE tool.  

USE can be employed to animate the model and thus validate it according to the system’s 

requirements. These are represented through OCL constraints, which can be evaluated 

and appraised during the animation of the model. New constraints can also be introduced 

in OCL, and applied to the model loaded. The USE tool allows validating pre and 

postconditions by simulating operation calls. 

One specification of USE contains a textual description (classes, associations, attributes, 

operations and constraints) of the previously loaded UML class diagram. The textual 

description of the model is proper to the tool and does not adhere to any standard. A 

screenshot of USE tool is shown in figure 39. 



117 

 

 

Figure 39: USE tool environment 

 

We should create some additional classes to help us in simulating the system. Classes of 

Hotel, Reservation, Room, and Customer will be created. The USE-based specification 

for the OCCD classes, associations, operation and OCL constraints should be written to 

show the resulting class diagram drawn by the USE is shown at figure 40. 

 

 

 

Figure 40: A part of OCCD drawn using USE tool 

 



118 

 

Then, we will create run-time objects corresponding to the classes of OCCD as shown by 

object diagram generated by the USE tool in figure 41. 

 

 

 

Figure 41: Object diagram corresponding to classes in OCCD 

 

We can make a query using the command “info vars” to check the available objects at the 

moment as shown in figure 42. 



119 

 

 

 

Figure 42: Created objects during USE simulation for the system 

 

Let’s now begin simulating the call of askForReservation() method as shown in figure 

43.  We will set the attribute of the single room attribute called “available” to “true” 

indicating the availability of the room.  The simulation will be performed by typing the 

command “!openter” for checking the precondition and the command “!opexit” for 

postconditions. The Command “!openter” will take the following form: 

!openter    <the object of the class to which method belong>    <method name signature> 

 



120 

 

 

 

Figure 43 : Call simulation for askForReservation() method  

 

We have seen in figure 43 that the result of precondition was “true” because the 

precondition has been satisfied. However, the postcondition was “false” due to that there 

is no reservation has been performed. In figure 44, we have reset the availability of the 

room to be unavailable and we called precondition which this results in as “false”. 

 

 

 

Figure 44: Another call simulation for askForReservation() method 

 

The following are screenshots for call simulation for askToTakeUp(), 

askToProcessNoShows(), provideNameANDPostCode(), getCustomerInfo(), 

provideReservTag(), getCustomerID(), saveOldReservation(), respectively. 

 



121 

 

 

 

Figure 45: Call simulation for askToTakeUp() method 

 

 

 

Figure 46: Call simulation for askToProcessNoShows() method 

 



122 

 

 

 

Figure 47: Call simulation for provideNameANDPostCode() method 

 

 

 

Figure 48: Call simulation for getCustomerInfo() method 

 

 

 

Figure 49: Call simulation for provideReservTag() method 

 



123 

 

 

 

Figure 50: Call simulation for getCustomerID() method 

 

 

 

Figure 51: Call simulation for saveOldReservation () method 

 



124 

 

 

 

Figure 52: Sequence diagram for the performed calls simulations  

 

7.3 Summary 

In this chapter, we have presented an application of the composition stage of our 

proposed framework to the Hotel Reservation System. CompBSDs of the system resulted 

from the realization stage that has been presented to the composition stage.  We have 

collapsed them into a single OCCD. Then, we annotated OCL constraints to the diagram. 



125 

 

We converted the final OCCD into USE tool proper specification so that it’s methods pre 

and postconditions as well as the class invariants could be validated by simulating 

methods invocations. 

 

 

 

 

 

 

 

 

 

 

 

 

 



126 

 

CHAPTER 8 

CONCLUSION AND FUTURE WORK 

In this chapter, the work which has been done is summarized and evaluated. We also 

present some suggestions for future research work. 

 

8.1 Summary of the Work 

As outlined in chapter 1, the aims of this thesis were to: 

 Develop a process for CBS integration. 

 The framework will address the following issues during integration: 

o Missing primary functionalities. 

o Missing Auxiliary services. 

o Mismatched interfaces. 

o Flow of control. 

8.1.1 The Integration Framework 

The proposed framework is mainly constituted of two stages: realization and 

composition. Firstly, use-cases of the system intended to be developed and the 

documentation of the selected components being integrated will be presented as input 

into the realization stage.  Then, a use-case will be picked at a time. Use-Case Conceptual 

Mapping (UCCM) diagrams which are considered as static realization for the use-cases 



127 

 

are generated. A tabular form of UCCM diagram may be generated to help in better 

viewing the interfaces’ operations involved in realization of the use-case. Also, the 

Component-Based Sequence Diagram (CompBSD) will be generated to represent the 

dynamic realization of that use-case. CompBSDs will show the pre-existing methods (i.e. 

those provided by components) and missing methods associated with its proper 

stereotypes. Afterward, the composition stage will take the set of CompBSDs resulting 

from the realization stage as input. Redundant and crosscutting operations of all lifelines 

of all CompBSDs will be identified. Then, all system scenarios represented by all CBSDs 

will be collapsed in a single OCL-Constrained Class Diagram (OCCD) providing the 

formal specification of the glue code.   

 

One of strengths of the framework is in its being automated. CompBSD and OCCD can 

be developed by means of one of the available CASE tools by taking advantage of the 

stereotyping feature. Validation of the OCCD is automated using USE tool. Using OCL 

is optional depending on the application domain which makes the framework more 

flexible.  

 

One limitation of the framework is that it has been applied to only one case study. So, 

there is a need to further analyze potential benefits of the framework to different 

application domains. In the scope of this work we have not addressed an important 

research issue of integrating components that have been implemented in a range of 

programming languages. 

 



128 

 

8.2 Future Research Work 

Based on the evaluation of the work done, we propose future research work as follows: 

 Refactoring for glue code interfaces: Since glue code may have more than one 

interface, things can be simplified by refactoring the interfaces, especially by 

introducing new abstract interfaces. These will act as super-types for other 

interfaces, holding common interface information model elements, and, 

sometimes, definitions of common operations. 

 Integration testing for CBS. 

 There is a need to investigate the potential benefit of the framework on 

maintenance and the evolution of CBS application. 

 

 

 

 

 

 

 

 

 

 

 

 



129 

 

REFERENCES 

Arlow, J., & Neustadt, I. (2005). UML 2 and the Unified Process: Practical Object-
Oriented Analysis and Design (2 ed.). Addison-Wesley Professional. 

Assman, U. (2000). A component model for invasive composition. ECOOP 2000 
Workshop on Aspects and Dimensions of Concerns. Cannes, France. 

Baik, J., Eickelmann, N., & Abts, C. (2001). Empirical software simulation for COTS 
glue code development and integration. 25th Annual International Computer 
Software and Applications Conference COMPSAC 2001 (pp. 297-302). 
Chicago,Illinois,USA : IEEE Computer Society. 

Basili, V. R., & Boehm, B. (2001). COTS-Based Systems Top 10 List. IEEE Computer, 
34(5), 91-95. 

Batista, C., Chavez, C., Garcia, A., Kulesza, U., Sant’Anna, C., & Lucena, C. (2006). 
Aspectual Connectors: Supporting the Seamless Integration of Aspects and ADLs. 
ACM SIGSoft XX Brazilian Symposium on Software Engineering (SBES'06). 
Florianopolis, Brazil: ACM. 

Birmingham, U. o. (n.d.). UML2Alloy tool. Retrieved from 
http://www.cs.bham.ac.uk/~bxb/UML2Alloy/ 

Boehm, B., & Abts, C. (1999). COTS integration: plug and pray? IEEE Computer, 32(1), 
135-138. 

Brown, W. A., & Wallnau, C. K. (1998). The current state of CBSE. IEEE Software, 
5(5), 37–47. 

Campbel, G. H. (1999). Adaptable components. 21st international conference on 
Software engineering (ICSE) (pp. 685-686). Los Angeles, California, United 
States: IEEE Press. 

Canal, C., Murillo , J. M., & Poizat, P. (2005). Report from the ECOOP 2004 Workshop 
on Coordination and Adaptation Techniques for Software Entities. Lecture Notes 
in Computer Science, 3344, 133-147. 

Canal, C., Poizat, P., & Salaun, G. (2008). Model-Based Adaptation of Behavioral 
Mismatching Components. IEEE Transactions on Software Engineering, 34(4), 
546-563. 



130 

 

Cechich, A., Piattini, M., & Vallecillo, A. (2003). Assessing Component-Based Systems. 
Lecture Notes in Computer Science, 2693, 1–20. 

Cheesman , J., & Daniels , J. (2000). UML Components: A Simple Process for Specifying 
Component-Based Software . Boston,MA,USA: Addison-Wesley. 

Chi, Z. (2009). Software components composition compatibility checking based on 
behavior description. IEEE International Conference on Granular Computing 
(GRC '09) (pp. 757-760). Nanchang,China: IEEE. 

Chiang, C.-C., & Ford, C. W. (2005). Maintainability and reusability issues in CORBA-
based systems. 43rd annual southeast regional conference. 2, pp. 275 - 280. 
Kennesaw, Georgia: ACM. 

Crnkovic, I., & Larsson, M. (2002). Building Reliable Component-Based Software 
Systems. Norwood, MA: Artech House, Inc. 

Crnkovic, I., Chaudron, M., & Larsson, S. (2006). Component-Based Development 
Process and Component Lifecycle. International Conference on Software 
Engineering Advances (ICSEA'06) (p. 44). Tahiti, French Polynesia: IEEE. 

Dietrich, S. W., Patila, R., Sundermiera , A., & Urbana, S. D. (2006). Component 
adaptation for event-based application integration using active rules. Journal of 
Systems and Software, 79(12), 1725-1734. 

Garlan, D., & Shaw, M. (1994). An Introduction to Software Architecture. Carnegie 
Mellon University, School of Computer Science . 

Garlan, D., Allen, R., & Ockerbloom, J. (1995). Architectural mismatch: Why reuse is so 
hard? IEEE Software, 17–26. 

Gomez, J. M., Alor-Hernandez, G., Posada-Gomez, R., Rivera, I., Mencke , M., Chamizo 
, J., et al. (2008). An Approach for Component-Based Software Composition. 
Electronics, Robotics and Automotive Mechanics Conference, 2008. (CERMA 
'08) (pp. 195-200). Cuernavaca, Morelos, Mexico: IEEE. 

Hardy, M. G. (2000). COTS Components in Software Development. Proceedings of the 
Computer Science Discipline Seminar Conference (CSCI 3901). Minnesota, 
Morris,USA. 

Heineman , G. T., & Councill , W. T. (2001). Component-Based Software Engineering: 
Putting the Pieces Together. Reading: Addison-Wesley Professional. 

Heineman, G. T. (1999). An evaluation of component adaptation techniques. ICSE’99 
Workshop on CBSE.  



131 

 

Hepner, M., Gamble, R. F., Kelkar, M., & Davis, L. A. (2006). Patterns of conflict 
among software components. Journal of Systems and Software, 79(4), 537-551. 

Jackson, D. (2006). Software Abstractions: Logic, Language, and Analysis. Cambridge, 
MA.: MIT Press. 

Kim , S., Park, S., Yun, J., & Lee, Y. (2008). Automated Continuous Integration of 
Component-Based Software: An Industrial Experience. 23rd IEEE/ACM 
International Conference on Automated Software Engineering (ASE 2008) (pp. 
423-426). L'Aquila, Italy: IEEE/ACM. 

Konstantas, D. (1995). Interoperation of object oriented application. In O. Nierstrasz, & 
D. Tsichritzis, Object-oriented software composition (pp. 69–95). Prentice Hall. 

Kouroshfar, E., Shahir, H. Y., & Ramsin, R. (2009). Process Patterns for Component-
Based Software Development. 12th International Symposium on Component-
Based Software Engineering (CBSE’09). LNCS 5582, pp. 54-68. Springer. 

Kvale, A. A., Li , J., & Conradi , R. (2005 ). A case study on building COTS-based 
system using aspect-oriented programming. ACM symposium on Applied 
computing (pp. 1491-1498 ). Santa Fe, New Mexico,USA: ACM. 

Lamsweerde, A. V. (2009). Requirements Engineering: From System Goals to UML 
Models to Software Specifications. Wiley. 

Larman, C. (2004). Applying UML and Patterns: An Introduction to Object-Oriented 
Analysis and Design and Iterative Development (Third ed.). Addison Wesley 
Professional. 

Lee, J.-S., & Bae, D.-H. (2004.). An aspect-oriented framework for developing 
component-based software with the collaboration-based architectural style. 
Information & Software Technology, 46(2), 81-97. 

Li, J., Conradi, R., Bunse, C., Torchiano, M., Slyngstad, O., & Morisio, M. (2009). 
Development with Off-The-Shelf Components: 10 Facts. IEEE Software, 26(2). 

Mahmood, S., Li, R., & Kim, Y. (2007). Survey of component-based software 
development. IET Software, 57-66. 

Mezini , M., & Ostermann, K. (2002 ). Integrating independent components with on-
demand remodularization. 17th ACM SIGPLAN Conference Object-Oriented 
Programming, Systems, Languages, and Appl. (pp. 52-67 ). Seattle, Washington, 
USA : ACM. 

OMG. (2005). OCL 2.0 Specification. OMG. 



132 

 

Rader, J. A. (1997). Mechanisms for Integration and Enhancement of Software 
Components. Fifth International Symposium on Assessment of Software Tools and 
Technologies (SAST'97) (pp. 24–31). Pittsburgh: IEEE Computer Society. 

Richters, M. (2001). UML-based Specification Environment tool. Retrieved from 
http://www.db.informatik.uni-bremen.de/projects/USE/ 

Rine, D., Nada, N., & Jaber, K. (1999). Using Adapters to Reduce Interaction 
Complexity in Reusable Component-Based Software Development. Symposium 
on Software Reusability (pp. 37-43). Los Angeles,Cailfornia,USA: ACM. 

Sommerville, I. (2007). Software Engineering 8. Boston, USA: Addison-Wesley. 

Suvee, D., Vanderperren, W., & Jonckers, V. (2003). JAsCo: an aspect-oriented approach 
tailored for component based software development. Second International 
Conference on Aspect-Oriented Software Development (pp. 21-29). Boston, 
Massachusetts, USA: ACM. 

Szyperski , C., Gruntz , D., & Murer, S. (2002). Component Software: Beyond Object-
Oriented Programming. Addison-Wesley/ACM Press. 

Tigris.org. (n.d.). ArgoUML. Retrieved from ArgoUML: http://argouml.tigris.org/ 

Truyen, E., J¨orgensen, B. N., Joosen, W., & Verbaeten, P. (2000). Aspects for run-time 
component integration. ECOOP 2000 Workshop on Aspects and Dimensions of 
Concerns. Sophia Antipolis and Cannes, France: Springer. 

Vigder, M. R., & Dean, J. (1997). An architectural approach to building systems from 
COTS software components. Conference of the Centre for Advanced Studies on 
Collaborative research (p. 22). Toronto, Ontario, Canada: IBM Press. 

Wegner , P. (1996). Interoperability. ACM Computing Surveys, 28(1), 285 - 287. 

Zitouni, A., Seinturier, L., & Boufaida, M. (2008). Contract-Based Approach to Analyze 
Software Components. 13th IEEE International Conference on Engineering of 
Complex Computer Systems, 2008. (ICECCS 2008) (pp. 237-242). Belfast, 
Northern Ireland: IEEE Computer Society. 

 

 

 

 



133 

 

APPENDIX 

Selected Components Documentation for HRS Case Study 

1. org.eclipse.Billing: has only one interface named "IBilling" contains just one 
operation 

1. IBilling: 
1. openAccount(ReservationDetails arg0, CustomerDetails 

arg1):void for opening account for a customer containing his 
payments. 

2. org.eclipse.customermanag: has two interfaces  
1. IADUCustomer: containing the following operations: 

1. deleteCustomer(int arg0):int  for deleting a customer by 
passing his customer_ID 

2. updateCustomer(CustomerDetails arg0):int for updating the 
customer information by entering an entire object pertaining to 
CustomerDetails class encapsulating all information. 
CustomerDetails encapsulates customer number, customer name, 
customer address, customer phone, customer e-mail, customer post 
code and note, respectively.  

2. IcustomerMgt 
1. createCustomer(CustomerDetails arg0):int for adding a 

new customer's record of type CustomerDetails to the database. 
2. getCustomerDetails(int arg0):ArrayList<CustomerDetails> 

for retrieving the customer details from the database.  
3. getCustomerMatching(CustomerDetails arg0):int for 

checking whether a customer do exist in the database or not using 
his details 

4. getCustomers( ) :ArrayList<CustomerDetails> for showing 
up all existing registered customers within the hotel. 

5. notifyCustomer(int arg0, String arg1, String arg2):String 
for sending a message for notifying the user. 

 

 

 



134 

 

3.   org.eclipse.datatype: has no interface but contains the definition for the data 
types used through the application as follows: 

AvialableRoomDetails  
 int hot_id; 
 Date first_choic_date; 
 Date second_choic_date; 
 int num_available_Room; 
 float Room_price; 

CustomerDetails  
 int cust_no; 
 String cust_name; 
 String cust_address; 
 String cust_phone; 
 String e-mail; 
 String post_code; 
 String note; 

HotelDetails  
 int Hot_Id; 
 String Hot_name; 
 int Room_num; 
 String Hot_address; 
 String Hot_phone; 
 String Hot_fax; 
 String Hot_e-mail; 

InOutGuestDetails  
 int G_num; 
 int hot_id; 
 String G_name; 
 Date Check_in=null; 
 Date Check_out=null; 
 String referen; 
 String Cliamed; 

ReservationDetails  
int Res_no; 
int Hot_id; 
int guest_no; 
String Res_Ref; 
String Book_time; 
Date Check_in=null; 
Date Check_out=null; 
int Room_no; 
String Room_type; 
String claimed; 



135 

 

Roomdetails  
int room_acount; 
float room_price; 
 
RoomDetials  
int hot_id; 
String code; 
int Room_number; 
String Room_type; 
String phone; 
String available; 
String note; 
int price; 

RoomTypeDetials  
int room_type_no; 
String room_type; 
String note; 

 

4. org.eclipse.hotelmanag: has two interfaces 
1. IADUHotel 

1. DeleteRoom(RoomDetials arg0):String for deleting a room 
from the list of room in a hotel from the database. 

2. UpdateRoom(RoomDetials arg0):String update the 
information about a specific existing room in the database. 

3. checkReservation(int arg0, int arg1, int arg2):int to check 
the existence of a reservation.  

4. createHotel(HotelDetails arg0):String  creating a new hotel 
in hotels chain. 

5. createRoom(RoomDetials arg0):String create a new room 
in a specific hotel. 

6. createRoomType(RoomTypeDetials arg0):String for 
introducing a new type of rooms within the hotels chain. 

7. deleteHotel(int arg0):String for deleting one of the hotels of 
the chain from the database. 

8. deleteReservation(String arg0):String for deleting a record 
for a reservation from the database. 

9. deleteRoomType(int arg0):String for deleting a type of 
rooms within the hotels chain from the database. 

10. updateHotel(HotelDetails arg0, int arg1):String for 
modifying the information about a specific hotel in the database. 



136 

 

11. updateReservation(ReservationDetails arg0):int to modify 
information about a specific reservation.  

12. updateRoomType(RoomTypeDetials arg0):String for 
modifying the information about a type of rooms within the hotels 
chain. 

2. IHotelMgt 
1. beginStay(String arg0):String updating the reservation 

record's field named "claimed" with "True" value indicating that 
the stay began. 

2. getHotelDetails( ): ArrayList<HotelDetails> return the 
information about all hotels within the chain. 

3. getReservation(String arg0): 
ArrayList<ReservationDetails> get the information of a specific 
reservation by querying using its reservation reference. 

4. getReservation(int arg0 ): ArrayList<ReservationDetails> 
get the information of a specific reservation by querying using the 
customer ID. 

5. getReservation(Date arg0, int arg1 ): 
ArrayList<ReservationDetails> querying about a specific 
reservation  by displaying a list of reservation to be looked for. 

6. getRoomInfo(ReservationDetails 
arg0):ArrayList<AvailableRoomDetails> retrieving the available 
unreserved rooms within the hotels chain. 

7. getRooms(int arg0):ArrayList<RoomDetials> showing the 
full list of rooms of a specific hotel within the chain by passing its 
Hotel ID. 

8. makeReservation(ReservationDetails arg0):int  reserving a 
room for a customer after entering his full details. 

 
5. org.eclipse.ReservationSystem: has six interfaces 

1. ICustomerADU: All operations here are doing the same functionality of 
their counterparts in org.eclipse.customermanag component by 
delegating the functionality to them. 

1. deleteCustomer(int arg0):int  
2. updateCustomer(CustomerDetails arg0): 

2. IcustomerMgr: All operations here are doing the same functionality of 
their counterparts in org.eclipse.customermanag component by 
delegating the functionality to them. 

1. createCustomer(CustomerDetails arg0):int  



137 

 

2. getCustomerDetails(int arg0):ArrayList<CustomerDetails> 
getCustomerMatching(CustomerDetails arg0):int  

3. getCustomers( ) :ArrayList<CustomerDetails>  
4. notifyCustomer(int arg0, String arg1, String arg2):String  

3. IHotelADU: All operations here are doing the same functionality of their 
counterparts in org.eclipse.hotelmanag component by delegating the 
functionality to them. 

1. DeleteRoom(RoomDetials arg0):String 
2. UpdateRoom(RoomDetials arg0):String 
3. checkReservation(int arg0, int arg1, int arg2):int 
4. createHotel(HotelDetails arg0):String 
5. createRoom(RoomDetials arg0):String 
6. createRoomType(RoomTypeDetials arg0):String 
7. deleteHotel(int arg0):String 
8. deleteReservation(String arg0):String 
9. deleteRoomType(int arg0):String 
10. updateHotel(HotelDetails arg0, int arg1):String 
11. updateReservation(ReservationDetails arg0):int 
12. updateRoomType(RoomTypeDetials arg0):String 

4. IHotelMgr: All operations here are doing the same functionality of their 
counterparts in org.eclipse.hotelmanag component by delegating the 
functionality to them. 

1. beginStay(String arg0):String 
2. getReservation(Date arg0, int arg1 ): 

ArrayList<ReservationDetails> 
3. getReservation(int arg0 ): ArrayList<ReservationDetails> 
4. getRooms(int arg0):ArrayList<RoomDetials> 

5. IMakeReservation 
1. getHotelDetails( ): ArrayList<HotelDetails> doing the same functionality 

of its counterpart in org.eclipse.hotelmanag component by delegating the 
functionality to them. 

2. getInOutCustomers(Date arg0, int arg1): ArrayList<InOutGuestDetails> it 
displays all checked in and out customers within the hotels chain. 

3. getRoomInfo(ReservationDetails 
arg0):ArrayList<AvailableRoomDetails> doing the same functionality of 
its counterpart in org.eclipse.hotelmanag component by delegating the 
functionality to them. 

4. makeReservation(ReservationDetails arg0):int doing the same 
functionality of its counterpart in org.eclipse.hotelmanag component by 
delegating the functionality to them. 



138 

 

6. ITakeUpReservation 
1. beginStay(String arg0,int arg1):String begin the Stay by acknowledging 

the system of the customer attendance then RMI will be done to call 
beginStay( ) method of org.eclipse.hotelmanag. 

2. getReservation(String arg0 ): ArrayList<ReservationDetails> doing the 
same functionality of its counterpart in org.eclipse.hotelmanag 
component by delegating the functionality to them. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



139 

 

CURRICULUM VITA 

Name: Mohammed Abdullah Ali Al-Qadhi 

Date/ Place of Birth of Birth: 16 Feb 1984/ Jazan, Samita, Saudi Arabia 

Nationality: Yemeni 

Marital Status: Single 

Present and Permanent Address: P.O. Box 607, Samita 45922, Jazan, Saudi Arabia 

Contact: +966(0)590784224 

E-mail: mqadhi@hotmail.com 

Education:  

 Master of Science in Computer Science from King Fahd University of 

Petroleum and Minerals, Dhahran, Saudi Arabia 2010. 

 Bachelor of Science Computer Science from King Khalid University, Abha, 

Saudi Arabia 2007, with being ranked 1st in my batch. 

 High School Diploma from Najamia High School, Jazan, Saudi Arabia 2001, 

with a percentage of 95.76/100. 

 


	Thesis Writeup part 1
	Thesis Writeup part 2
	Thesis Writeup part 3

