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ABSTRACT

Name: Radwan Ali Ali Al-Rubaee.

Title: On a Generalized Fisher Equation.

Major Field: Mathematics.

Date of degree: April, 2010.

We consider a reaction diffusion equation known as the Fisher equation which models

problems in genetics, population growth and mathematical biology among others. A

generalized non-linear form of this equation in cylindrical coordinates with radial sym-

metry is studied from Lie symmetry point of view. The diffusivity and the reaction

terms are assumed to be functions of the dependent variable. An attempt to classify

the diffusivity function is made and exact solutions are obtained in some cases. The

known results in case of diffusivity being proportional to the dependent variable are

shown to be a special case of our analysis. It is found that the power law dependence

of diffusivity function leads to exact solution in the form of the respective root of a

linear combination of the Bessel function of order zero of first and the second kind.

However, the reaction term can be classified if the diffusivity is a linear function.

The study can lead to a classification in the most general settings in which no radial

symmetry is present.
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Chapter 1

INTRODUCTION
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Most models in physics, engineering, social and biological sciences are described by

partial differential equations (PDEs) [26,27,28]. In most real life situations, these

PDEs are nonlinear in nature. In many cases the nonlinearity may be due to a non-

homogeneous source function of dependent variable [16] such as in the sine-Gorden

equation or the classical Fisher equation. In case of practical interest however, this

may occur as the properties of medium depend upon independent variables. This

phenomenon is exhibited, for example, in gases in which case the thermal diffusivity is

found to be proportional to the temperature. There are interesting physical processes

that also lead us to nonlinear partial differential equations such as in Burgers equation

and KDV equation. In such cases finding exact solutions of these PDEs is a formidable

task. More often approximate or numerical methods [3, 9, 10, 12, 13, 30] are employed

to obtain approximate solutions. Bokhari et.al. have employed an analytic method

to obtain certain series solutions of a nonlinear heat equation [4, 5]. Over the last

two decades a lot of attention has been given to the use of symmetry methods due to

Sophus Lie [22,23,24]. These methods exploit the invariance properties of the PDEs

under the transformations known as Lie symmetry transformations. This approach

reduces the nonlinear PDEs into one with less number of independent variables and/or

to an ordinary differential equation. A systematic description of this method can be

found in [18, 29, 31] and the method as well as some interesting applications to fluid

dynamics problems in [6] Clarkson and Mansfield [9] and Aijaz Ahmad et.al. [2] have
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performed symmetry analysis of some nonlinear diffusion / heat equations.

In this thesis we are interested in employing the Lie symmetry methods to the so-

called Fisher equation. The Fisher equation was first studied by Fisher [11, 12] in its

simplest form given by

ut − uxx = u(1− u) (1.1)

where u(x, t) denotes the concentration of fluid or bacteria or a particular biological

cell depending upon the nature of the model. The term on the right hand side of (1.1)

corresponds to the reaction or growth term. A more general form of equation (1.1) is

known as Kolmogorov-Petrovskii-Piscounov equation [21] given by

ut − uxx = f(u) (1.2)

where f is a sufficiently smooth function of u. Equation (1.2) reduces to the well

known reaction-diffusion equation when f(u) is a polynomial in u of order three.

There have been a considerable interest in this class of equations. For example the

Huxley equation

∂u

∂t
=
∂2u

∂x2
+ u2(1− u) (1.3)

has been studied for neural model by Hodgkin and Huxley [20, 21] who were awarded

nobel prize for their model. Another important equation of this class is Fitzhugh-
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Nagumo equation given by

∂u

∂t
=
∂2u

∂x2
− u(1− u2) (1.4)

which arises in the study of nerve cells [14].

Newell-Whitehead equation given below has been studied by various authors [9]

∂u

∂t
=
∂2u

∂x2
+ u(1− u2). (1.5)

A more general form of Fitzhugh-Nagumo equation is given by [14, 15]

ut − uxx = αu3 + βu2 + γu, (1.6)

where α, β, γ are arbitrary constants and the equation occurs in various situations such

as population genetics etc. [25]. In [12], the Fisher equation is studied in terms of its

traveling wave solutions while numerical solutions are given in [10]. In [17, 19, 27, 28]

Lie symmetry analysis is used to study a generalized Fisher equation of the type

ut =
∂

∂x
(g(u)ux) + f(u) (1.7)

where f and g are sufficiently smooth functions. It is shown in [18] that equation

(1.7) possesses a minimal ‘two dimensional’ algebra which extends to larger algebras in

special cases [18]. This generalized version of the Fisher equation is used to model heat

and reaction-diffusion problems with reference to their applications in mathematical

biology, chemistry, genetics and bacterial growth problem [25].
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Whereas equation (1.1) - (1.7) have been widely studied in literature, in most cases

the modeling is based on constant diffusivity requiring the Fisher equation to be of

the form

∂u

∂t
− ∇̄ ·

(
d ∇̄u

)
= f(u). (1.8)

For a constant d, equation (1.8), in (2+1) dimensional space, becomes

∂u

∂t
− d

(
∂2u

∂x2
+
∂2u

∂y2

)
= f(u) (1.9)

Realistically, diffusion coefficient is not generally constant. For an example in gases the

coefficient is proportional to uα, where α is some real constant. This fact motivates one

to generalize the Fisher equation in such a way that it incorporates variable diffusivity

g(u) there. In the latter setting (1.8) takes the more general form

∂u

∂t
− ∇̄ ·

(
g(u)∇̄(u)

)
= f(u) (1.10)

where g(u) is the diffusively of the medium. The focus of thesis is to study the

generalized nonlinear Fisher equation (1.10) in cylindrical coordinates. The motivation

behind using this coordinate system is that many engineering situations require use

of the cylindrical coordinates due to the inherent model. In order to write (1.10) in

cylindrical coordinates, we first transform the operator ∇̄ to cylindrical coordinate,

and compute ∇̄ ·
(
∇̄u
)

in cylindrical coordinates and we use x for radial, y for polar
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angle and z for height. In this setting ∇̄ ·
(
g(u)∇̄u

)
takes the from:

∇̄ ·
(
g(u)∇̄(u)

)
=

∂

∂x

(
g(u)

∂u

∂x

)
+

1

x

(
g(u)

∂u

∂y

)
+

1

x2
g(u)

∂2u

∂y2
+ g(u)

∂2u

∂z2

=
1

x

∂

∂x

(
xg(u)

∂u

∂x

)
+

1

x2
g(u)

∂2u

∂y2
+ g(u)

∂2u

∂z2
(1.11)

For the present work we assume radial symmetry and restrict u to depend only on

radius which is denoted by x. Thus, equation (1.11) reads

∇̄ ·
(
g(u)∇̄(u)

)
=

1

x

∂

∂x

(
xg(u)

∂u

∂x

)
. (1.12)

Therefore (1.10), reduces to

∂u

∂t
− 1

x

∂

∂x

(
xg(u)

∂u

∂x

)
= f(u). (1.13)

The objective is now to perform a symmetry analysis of equation (1.13). This re-

quires classifications of both f(u) and g(u). The symmetry generators are then to be

obtained and used to reduce the resulting partial differential equation to an ordinary

differential equation. Since all resulting nonlinear ordinary differential equations can

not be solved, we give solutions in those cases where a solution is possible and leave

others as they are.

This thesis is organized as follows:

In chapter two, we present some basic definitions and results of the Lie symmetry

method. In particular we give procedure for finding Lie point symmetries of the
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PDEs and show how these symmetries are used to reduce the nonlinear PDEs to

ODEs. In chapter three, a simple form of (1.13) with g(u) = u and f(u) = u(1 − u)

is considered and solved [4] to illustrates the Lie symmetry method for this class

of evolution equations. Chapter four deals with a classification of solutions of the

general problem (1.13). We classify f(u) and g(u) and reduce the generalized Fisher

equation (1.13) to an ODE. Moreover, exact solutions in some cases are obtained.

Some recommendations for future work are addressed in chapter five.
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Chapter 2

PRELIMINARIES
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2.1 Introduction

It is well known that the exact solutions of nonlinear PDEs play a pivotal role in un-

derstanding several physical phenomena. However, finding exact solutions of PDEs is

not an easy task. The problem is even more difficult in case of nonlinear PDEs. Over

the past few decades Lie symmetry methods have been widely used and developed.

These methods are commonly known as Lie group theoretic methods and provide pow-

erful tool for dealing with nonlinear PDEs which admit certain Lie point symmetries.

Under the action of such symmetries the PDEs and their solutions remain invariant.

In this chapter we give certain results which form a basis of the Lie symmetry methods

and wherever possible use examples to illustrate the methods.

2.2 Group

Consider (G, ∗) to be a non-empty set with a binary operation ∗ that assigns to every

ordered pair of elements of G a unique element with the following properties:

1. Closure property

For all x, y in G, x ∗ y is also in G.
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2. Associative property

For all x, y, z in G,

(x ∗ y) ∗ z = x ∗ (y ∗ z) (2.1)

3. Identity property

In G there exists an element ‘e’ known as the identity such that x ∗ e = e ∗ x,

for all x in G.

4. Inverse property

For every x in G there exists an element y in G known as inverse of x such that

x ∗ y = e = y ∗ x (2.2)

where e is the identity element of G with respect to the binary operation ∗.

Example 1

Group of integers with binary operation addition.

Example 2

Group of all invertible matrices with binary operation defined as matrix multiplica-

tion.
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Definition 2.1

A group G is called Abelian if in addition to the above properties it satisfies:

x ∗ y = y ∗ x (2.3)

for all x, y in G.

2.3 Lie Group

A Lie group, also called an infinitesimal group, is the one in which the group operations

(multiplication and inversion) are smooth maps possessing derivatives of all order.

Example 3

Consider the set of transformations such that

Tε : (x, y)→ (
−
x,
−
y) = (x+ ε, y)

we show that {Tε} form a group

let Tε1 , Tε2 ∈ {Tε} then

Tε2Tε1(x, y) = Tε2(x+ ε1, y) = (x+ ε1 + ε2, y) = (x+ ε, y) ∈ {Tε}

also, there exist an identity transformation {T0} such that

T0(x, y) = (
−
x,
−
y) = (x+ 0, y) = (x, y)

11



we also, said that Tε2 is an inverse of Tε1 if ε1 + ε2 = 0⇒ ε1 = −ε2 ⇒ ε−1
1 = −ε2 and

the converse is also true, then

T0 ∈ {Tε} , Tε1Tε2 ∈ {Tε} and ∀ Tε ∃ Tε−1 ∈ {Tε} therefore, {Tε} forms a group

2.4 Group of Transformations

Definition 2.2

The set of transformations given by

−
x = χ(x, ε), (2.4)

where x = (x1, x2, ..., xn) lie in region D⊂ Rn is defined for each ε in set S ⊂ R with

the law of composition ψ(ε, δ), forms a one-parameter group of transformation on D

if the following hold:

1. For all ε ∈ S the transformations are one-to-one onto D.

2. S with ψ forms a group G.

3. For all x ∈ D,
−
x =x when ε = ε0 corresponding to the identity e, i.e.,

χ(x, ε0) = x.
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4. If
−
x = χ(x, ε) ,then

−
−
x = χ(

−
x, δ) = χ(x;ψ(ε, δ)).

2.5 Lie Groups of Transformations

Definition 2.3

A group G of transformations with composition law ‘ψ’ is said to be a one-parameter

Lie group of transformation if :

1. ε is a continuous parameter i.e, the set S is an interval in R.

2. χ is infinitely differentiable function with respect to x in D.

3. the composition function ψ(ε, δ) is an analytic function.

Example 4

The transformation defined by

Gi : (x, y) −→ (
−
x,
−
y)

such that,

−
x = αx and

−
y = α2y

13



where 0 < α <∞ is called group of scalings in the xy-plane. Here ψ(α, β) = αβ, and

the identity element corresponds to α = 1. This group of transformations can also be

re-parameterized in terms of ε = α− 1 as

−
x = (1 + ε)x,

−
y = (1 + ε)2y, −1 < ε <∞

where the identity element corresponds to ε = 0 and the law of composition of param-

eters is given by

ψ(α, β) = ε+ δ + εδ.

Example 5

Consider the reflection transformation [1]
−
x = −x,

−
y = −y.

Since
−
−
x = −−x = −(−x) = x
−
−
y = −−y = −(−y) = y,

which shows that it is not invertible hence does not form a Lie group of transformation.

2.6 Infinitesimal Transformations

Consider a one parameter ‘ε’ Lie group of transformation

−
x = Gi(x, ε), (2.5)
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with the identity ε = 0 and law of composition ψ. Expanding (2.5) about ε = 0, one

gets,

−
x = x+ ε

∂x

∂ε

∣∣∣∣
ε=0

+O(ε2) (2.6)

where ∂x
∂ε

∣∣∣
ε=0

= ξ(x). The transformation
−
x = x + ε ξ(x) is called the infinitesimal

transformation of the Lie group of transformation and the component ξ(x) is called

the infinitesimal of the transformation.

Theorem 2.1: (First Fundamental Theorem of Lie[7,9])

There exists a parametrization τ(ε) such that the Lie group of transformations
−
x =

Gi(x, ε) is equivalent to the solution of an initial value problem for the system of first

order ordinary differential equations

∂x

∂τ
= ξ(

−
x) (2.7)

with

−
x = x when τ = 0.

Example 6

Consider the transformation
−
x = Gi(x, ε) where

−
x = x + ε ,

−
y = y, the law of

composition ψ(x, y) = x+ y and ε−1 = ε. Such a Gi defines the group of translations.
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Here,

ξ(x) = ∂χ(x, ε)
∂ε

∣∣∣
ε=0

= 1 and d
−
x
dε

= 1, d
−
y
dε

= 0

with

−
x = x,

−
y = y at ε = 0

2.7 Infinitesimal Generator

Consider the transformation

−
x = Gi(x, ε) (2.8)

where x = (x1, x2,x3, ..., xn) ∈ Rn. Then the operator defined by

X =
n∑
i=1

ξi(x)
∂

∂xi
(2.9)

is called an infinitesimal generator of the one parameter Lie group of transformation

(2.8), where ξi = ∂
−
xi
∂ε

∣∣∣
ε=0

are components of the tangent vector χ. In particular, if a

point p = (x, y) ∈ R2, the above symmetry generator becomes

X = ξ(x, y)
∂

∂x
+ η(x, y)

∂

∂y
, (2.10)

where

ξ(x, y) = d
−
x
dε

∣∣∣
ε=0

, η(x, y) = d
−
y
dε

∣∣∣∣
ε=0

.
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We can determine the transformation (2.8) with the help of infinitesimal generator X

by integrating

ξi(
−
x) =

∂
−
xi
∂ε

(2.11)

with initial condition

−
xi

∣∣∣
ε=0

= xi.

Theorem 2.2. [14]

The one-parameter Lie group of transformations
−
x = Gi(x, ε) is equivalent to :

−
x = eεXx

= x+ εXx+
ε2

2
X2x+ · · ·

= [1 + εX +
ε2

2
X2 + · · · ]x

=
∞∑
k=0

εk

k!
Xkx, (2.12)

where the operator X is given by (2.9).

Example 7

Consider the rotation group:

−
x = x cos ε+ y sin ε,

−
y = −x sin ε+ y cos ε, (2.13)

the infinitesimals ξ(x, y) = ∂
−
x
∂ε

∣∣∣
ε=0

= y and η(x, y) = ∂
−
y
∂ε

∣∣∣∣
ε=0

= −x defines the symme-
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try generator associated with (2.13) as

X = y
∂

∂x
− x ∂

∂y
(2.14)

Alternatively, given the symmetry generator, one can find the transformation associ-

ated with that generator. This can achieved as follows:

Consider the Lie series corresponding to the generator (2.14) given by

(
−
x,
−
y) = (eεXx, eεXy), (2.15)

where Xx = y, X2x = −x and X3x = −y etc. Then (2.15) can be re-cast in the form

of rotations (2.13) as follows:

−
x = eεXx

=
∞∑
k=0

εk

k¡
Xkx

= x+ εXx+
ε2

2
X2x+ · · ·

= (1− ε2

2
+
ε4

4
− · · · )x+ (ε− ε3

3
+
ε5

5
− · · · )y

= x cos ε+ y sin ε. (2.16)

Similarly

−
y = eεXy =

∞∑
k=0

εk

k!
Xky = −x sin ε+ y cos ε. (2.17)
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In matrix notation, the rotation given by (2.16) and (2.17) is written as
−
x

−
y

 =

 cos ε sin ε

− sin ε cos ε


 x

y

 (2.18)

The matrix

 cos ε sin ε

− sin ε cos ε

 in the above expression is known as the rotation ma-

trix.

2.8 Lie Algebras

Lie algebra is a vector space, equipped with bilinear product [ , ]: V ×V →V satisfying

(for all vector fields Xi,Xj,Xk belonging to V) with the following properties:

1. [Xi,Xj] = 0, i=j

2. [Xi,Xj] = −[Xj,Xi],

3. Any three infinitesimal symmetry generators Xi,Xj and Xk, satisfy the Jacobi’s

identity,

[Xi, [Xj,Xk] + [Xk, [Xi,Xj] + [Xj, [Xk,Xi] = 0.
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where the commutator operator [ , ] for any two symmetry generators Xi,Xj is defined,

as in [29], by

[Xi,Xj] = XiXj −XjXi. (2.19)

Definition 2.4

Let G be an r-parameter Lie group of transformations with basis {X1,X2, ...,Xr} ,

where Xi is an infinitesimal symmetry generator corresponding to the parameter εi.

Then the Lie group G of transformations forms an r-dimensional Lie algebra Gr over

the field F=R with respect to commutation law [8].

Thus, the Lie algebra is a vector space ‘G’ together with the commutator operator

which is bilinear skew symmetric and satisfies the Jacobi identity.

Example 8

The group of rigid motions in R2 that preserve distances between any two points in

R2 is the three-parameter Lie group of transformations of rotations and translations

in R2 given by

−
x = x cos ε1 − y sin ε1 + ε2

−
y = x sin ε1 + y cos ε1 + ε3

(2.20)

The corresponding infinitesimal generators are given by

X1 = −y ∂
∂x

+ x ∂
∂y
,

X2 = ∂
∂x
,

X3 = ∂
∂y
.

(2.21)
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The commutator table of the above Lie point symmetries is as follows:

[Xi,Xj] X1 X2 X3

X1 0 −X3 X2

X2 X3 0 0

X3 −X2 0 0

Table 1: commutator table

Example 9

The similitude group in R2 consists of uniform scalings and rigid motions in R2. It is

the four-parameter Lie group of transformations given by

−
x = eε4(x cos ε1 − y sin ε1) + ε2

−
y = eε4(x sin ε1 + y sin ε1) + ε3

(2.22)

The corresponding infinitesimal generators X1,X2,X3 and X4 are,

X1 = −y ∂
∂x

+ x ∂
∂y
,

X2 = ∂
∂x
,

X3 = ∂
∂y
,

X4 = x ∂
∂x

+ y ∂
∂y
.

(2.23)
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The corresponding relation are given as table:

[Xi,Xj] X1 X2 X3 X4

X1 0 −X3 X2 0

X2 X3 0 0 X2

X3 −X2 0 0 X3

X4 0 −X2 −X3 0

Table 2: commutator table

Definition 2.5

A subset A of Lie algebra G is called a subalgebra of G if it is closed under the

commutation operator, i.e for all Xα,Xβ ∈ A, [Xα,Xβ] ∈ A.

2.9 Solvable Lie Algebras

The order of an nth order ordinary differential equation (ODE) can be reduced con-

structively by two if it admits a Lie algebra of transformations of two parameters.

But for an r-parameter Lie algebra (r≥ 3) the order of the differential equation can

be reduced constructively by p, if there exist a p-dimensional solvable subalgebra.
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Definition 2.6

A subalgebra A ⊂ G is called an ideal or normal subalgebra of G if [g, a] ∈ A for all

a ∈ A , g ∈ G.

Definition 2.7

Ap is p-dimensional solvable Lie algebra if there exists a chain of subalgebras, A1 ⊂

A2 ⊂ A3 ⊂ · · · ⊂ Ap−1 ⊂ Ap such that Ai−1 is an ideal of Ai for all i = 2, 3, · · · , p.

Definition 2.8

An algebra G is called an abelian Lie algebra if [Xα,Xβ] = 0 for all Xα , Xβ ∈ G.

Theorem 2.2. [8]

Every two-dimensional Lie algebra and every Abelian Lie algebra is a solvable Lie

algebra.

2.10 Structure Constants

Theorem 2.3:(Second fundamental Theorem of Lie [8])

The commutator of any two infinitesimal generator of an r- parameter Lie group of

transformations is also an infinitesimal generator. In particular,

[Xα,Xβ] =
r∑
r=1

Cr
αβXr ∈ G (2.24)
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where Cγ
αβ are the structure constants.

Definition 2.9 (Commutation Relations)

For an r-parameter Lie group of transformations with basis X1,X2, · · · ,Xr the rela-

tions defined by equation (2.24) are called commutation relations.

Theorem 2.4 (Third Fundamental Theorem of Lie [31])

The structure constants, defined by commutation (2.24), satisfy the relations:

1.Cγ
αβ = −Cγ

βα (skew symmetry).

2.Cρ
αβC

δ
ργ + Cρ

βγC
δ
ρα + Cρ

γαC
δ
ρβ = 0 (Jacobi identity).

2.11 Prolongation

In order to apply the transformations (2.5) to an nth order partial differential equation

(PDE), one needs to extend the infinitesimal symmetry generator (2.9) to include all

derivatives of the dependent variables. In this section we discuss the prolongation

formula for a PDE which consists of ‘p’ dependent and ‘q’ independent variables.

Since we will be dealing with a PDE of order two, we later deduce a prolongation

formula for a second order PDE in which there is only one dependent variable.

Let

F (x;u, u(1), u(2), · · · , u(n)) = 0, (2.25)
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be an nth order PDE with q independent variables x = (x1, x2, x3, · · · , xq), p dependent

variables u = (u1, u2, · · · , up) and the derivatives of dependent up to order n. In this

case the infinitesimal symmetry generator associated with this equation becomes

X =

q∑
i=1

ξi(x, u)
∂

∂xi
+

p∑
k=1

φk(x, u)
∂

∂uk
. (2.26)

Then the prolongation of the generator (2.26) is obtained by extending it to include

all the derivatives [28] as

Xp = X +

p∑
k=1

∑
j

φjk(x, u, u(n))
∂

∂ujk
, (2.27)

where φj and φjk are given [31] by

φj = Dj(φ− ξiu,i) + ξiu,ji (2.28)

φjk = DkDj(φ− ξiu,i) + ξiu,jki, (2.29)

in which Di represents the total derivative given by the formula

Di =
∂

∂xi
+
∑
j

uj,i
∂

∂uj
. (2.30)

2.12 Invariance

A Lie group of transformations can have invariant functions, surfaces, curves, and

invariant points. The invariance can transform the complicated nonlinear conditions
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into simpler linear conditions under the corresponding infinitesimal generator of the

symmetry group. The symmetry group of the system transforms its solutions to other

solutions giving new invariant solutions of the system.

2.12.1 Invariance of a function

Definition 2.10

Let
−
x = Gi(x, ε) be the Lie group of transformations of one parameter ε and let f(u)

be an infinitely differentiable function. The function f(u) is said to be an invariant

function if and only if

f(
−
x) = f(x) (2.31)

Theorem 2.5. [8]

A function f(u) is an invariant of the Lie group of transformation
−
x = Gi(x, ε) if and

only if

Xf(x) = 0 (2.32)

where X is the infinitesimal generator of the symmetry transformation.

Theorem 2.6. [8]

Given a Lie group of transformation
−
x = Gi(x, ε) with a symmetry generator X, the
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identity,

f(
−
x) = f(x) + ε (2.33)

holds if

Xf(x) = 1 (2.34)

and conversely.

2.12.2 Invariance of a surface

Theorem 2.7. [8]

Let f(x) = 0 be a surface and let
−
x = Gi(x, ε) be a one-parameter Lie group of

transformations. The surface f(x) = 0 is said to be an invariant surface under the

symmetry transformation if and only if

Xf(
−
x) = 0 when f(x) = 0 (2.35)
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2.12.3 Invariance of a Partial Differential Equation

Consider a system of partial differential equation of order n with q independent x =

(x1, x2, ..., xq) and p dependent variable u = (u1, u2, ..., up), given by

Fµ(x, u, ∂u, ∂2u, ..., ∂nu) = 0 (2.36)

where

µ = 1, 2, 3, ..., k

The derivative of order m is denoted as,

uαj =
∂muα

∂xj1∂xj2...∂xjm
(2.37)

where 1 ≤ ji ≤ p for all i = 1, 2, ...,m and the order of m-tuple of integers j =

(j1, j2, ..., jm) indicates the order of the derivative.

Theorem 2.8 (Invariance Criterion of PDEs [1])

Let the system (2.36) of k differential equations be of maximal rank. If G is group of

transformations and

X(n){Fµ(x, u, ∂u, ∂2u, ..., ∂nu)} = 0 (2.38)

whenever

Fµ(x, u, ∂u, ∂2u, ..., ∂nu) = 0,

for every infinitesimal symmetry generator X of the group G, then G is a symmetry
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group of the system.

Example 10:(Diffusion Equation [8])

We demonstrate how a PDE remains invariant under a group of transformation. Con-

sider the diffusion equation

∂u

∂t
=
∂2u

∂x2
(2.39)

and the transformation

−
x = eax (2.40)

−
t = eat (2.41)

−
u = eau (2.42)

Different values of a, b, c give different elements of the group of transformations (a =

b = c = 0) gives the identity transformation. It is straightforward to see

∂
−
u

∂
−
t

=
∂

∂
−
t

(ecu) =
∂

∂t
(ecu)

∂t

∂
−
t

= ec−b
∂u

∂t
(2.43)

∂2−u

∂
−
x

2 = ec−2a∂
2u

∂x2
. (2.44)

The diffusion equation transforms into

∂
−
u

∂
−
t
− ∂2−u

∂
−
x

2 = ec−b
∂u

∂t
− ec−2a∂

2u

∂x2
. (2.45)

which gives invariance iff b=2a, as

∂
−
u

∂
−
t
− ∂2−u

∂
−
x

2 = ec−2a(
∂u

∂t
− ∂2u

∂x2
) =

∂u

∂t
− ∂2u

∂x2
. (2.46)
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2.13 Procedure to calculate symmetries

The infinitesimal transformations and the infinitesimal symmetry generators of the Lie

group of a partial differential equation can be calculated by a systematic computational

procedure in the light of Theorem 2.8 and used the prolongation formula(2.27). The

first step is to find the one-parameter symmetry generator X. The coefficients ξi(x, u)

and φα(x, u) of the symmetry generator X will be the functions of x, u. The symmetry

generator X will be prolonged to the order equivalent to the order of partial differential

equation.

Application of a prolonged symmetry generator to the partial differential equation

using the theorem 2.8 of the infinitesimal criterion for the invariance of PDE gives a

general equation that involves x, u and the derivatives of u with respect to x, as well as,

ξi(x, u), φα(x, u) and their partial derivatives with respect to x and u. By comparing

the coefficients of the partial derivatives of u we get a system of equations known

as determining equations for the coefficients functions ξi(x, u) and φα(x, u). The

general solution of this system of determining equations determines the most general

expressions for ξi(x, u) and φα(x, u); thus giving the general infinitesimal symmetry

generator X.
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Chapter 3

A QUASILINEAR FISHER

EQUATION
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As we noted in chapter 1, the Fisher equation arises naturally in a number of situations

such as reaction diffusion processes, genetics, and biology. We remarked that in many

situations of interest, the diffusivity of the medium is not constant but may depend

upon the dependent variable. It was further envisaged that we may need to study

this equation in other coordinate systems to suit a particular model. In this regard

we present here the symmetry analysis of the Fisher equation in which we have the

nonlinear reaction diffusion term g(u) = u(1 − u) and the diffusivity is assumed

proportional to u, or simply, f(u) = u. Bokhari, Mustafa and Zaman [4] have studied

this model with the radial symmetry taken in two account. In this case the Fisher

equation has the form

∂u

∂t
− 1

x

∂

∂x
(xu

∂u

∂x
) = u(1− u). (3.1)

To lay a basis of a more general model which is studied in chapter 4, we present the

symmetry analysis performed recently by Bokhari, Mustafa and Zaman [4] who have

given a complete analysis and some reductions in case of interest. Since the PDE (3.1)

is of order two we prolong the symmetry generator (2.30) to second order [4].

X(2) = ξ
∂

∂x
+ τ

∂

∂t
+ φ

∂

∂u
+ φx

∂

∂ux
+ φt

∂

∂ut
+ φxx

∂

∂uxx
+ φxt

∂

∂uxt
+ φtt

∂

∂utt
, (3.2)

where φx, φt, φtt, φxt and φxx are given by (2.28)-(2.29),

φx = φx + (φu − ξx)ux − τxut − ξuu2
x − τuuxut (3.3)

φt = φt + (φu − τt)ut − ξtux − τuu2
t − ξuuxut (3.4)
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φtx = φtx + φxuut + φtuux + φuuutux + φuutx − utt(τx + τuux)− utx(ξx + ξuux)

−utx(τt + τuut)− uxx(ξt + ξuux)− ut(τtx + τxuut+ τtuux + τuuutux+ τuutx)

−ux(ξtx + ξxuut + ξtuux + ξuuutux + ξuutx) = 0

(3.5)

φxx = φxx + (2φxu − ξxx)ux − τxxut + (φuu − 2ξxu)u
2
x − 2τxuuxut − ξuuu3

x

−τuuu2
xut + (φu − 2ξx)uxx − 2τxutx − 3ξuuxuxx − τuutuxx − 2τuuxuxt

(3.6)

φtt = φtt + 2φtuut + φuuu
2
t + φuutt − 2utt(τt + τuut)− ut(τtt + 2τtuut

+τuuu
2
t + τuutt)− 2utx(ξt + ξ2

uut)− ux(ξtt + 2ξtuut + ξuuu
2
t + ξuutt)

(3.7)

Now the Lie symmetry criterion (2.10) for equation (3.1) takes the form:

X(2)(PDE)
∣∣
PDE=0

= 0 (3.8)

Writing equation (3.8) in the expanded form,

X(2)(xut − uux − xu2
x − xuuxx − xu+ xu2)

∣∣
PDE=0

= 0

Which leads to

ξuux − xφux − x2φuxx − x2φ+ 2x2φu− xφxu− 2x2φxux + x2φt − x2uφxx = 0. (3.9)
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At this stage we substitute values of φx, φt and φxx obtained using (3.4),(3.4)and (3.6)

to get

ξuux − xφux − x2φuxx − x2φ+ 2x2φu− xuφx − xuφuux + xuξxux + xuτxut + xuξuu
2
x

+xuτuuxut − 2x2φxux − 2x2uxφu + 2x2ξxu
2
x + 2x2τxuxut + 2x2ξuu

3
x + 2x2τuu

2
xut + x2φt

+x2φuut − x2τtut − x2uξtux − x2τuu
2
t − x2ξuuxut − x2uφxx − 2x2uφuxux + x2uξxxux

+x2uτxxut − x2uφuuu
2
x + 2x2uξxuu

2
x + 2x2uτxuuxut + x2uu3

x − x2uφuuxx + 2x2uξxuxx

+2x2uτxutx + 3x2uξuuxuxx + x2uτuuxxut + 2x2uτuuxuxt + 2x2uτuuxuxt = 0

(3.10)

Equation (3.10) is an algebraic equation in u, its derivatives and powers and products

of derivatives. In order to proceed with the analysis we compare like terms to obtain

the following determining equations:

ξu = 0 (3.11)

τu = 0 (3.12)

τx = 0 (3.13)

− uξ + xφ+ x2ξt − xuξx − xuτt + 2x2φx − ux2ξxx + 2ux2φxu = 0 (3.14)

− xφ+ 2xuφ− xuτt + xu2τt + xφt + xuφu − xu2φu − uφx − xuφxx = 0 (3.15)

φ− 2uξx + uτt = 0 (3.16)

− 2ξx + τt + φu + uφuu = 0 (3.17)
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Solving the above system we obtain its solution given by

ξ = 0 (3.18)

τ = −e−tk1 + k2 (3.19)

φ = e−tk1u (3.20)

From above we notice that the system admits two symmetries which in generator form

are written as,

X1 = −e−t ∂
∂t
− e−tu ∂

∂u

X2 = ∂
∂t

The commutation relations for the above symmetry generators are listed in the fol-

lowing table:

[Xi,Xj] X1 X2

X1 0 0

X2 −X1 0

Table 3: Commutation Relation

We present procedure to achieve reduction with respect to one symmetry generator

‘X1’ and subsequently obtain one exact solution. Picking the generator

X1 = −e−t ∂
∂t
− e−tu ∂

∂u
, (3.21)
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we re-write it in the form,

X1 = 0
∂

∂x
− e−t ∂

∂t
− e−tu ∂

∂u
(3.22)

The characteristic equations for the above equation is,

dx

0
=

dt

−e−t
=

du

−e−tu
(3.23)

The first two terms give:

dx

0
=

dt

−e−t
, (3.24)

which can be solved to obtain,

x = z(t). (3.25)

Similarly solving the last two terms in (3.23)

dt

1
=
du

u
, (3.26)

giving us,

u = etV (z). (3.27)

Now we use (3.25) and (3.27) to re-cast Equation (3.1) in new coordinates. For this

purpose we take first and second derivatives of u (using chain rule) to obtain:

ut = etV (z), (3.28)

ux = et
dV

dz
, (3.29)
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uxx = et
d2V

dz2
. (3.30)

Using these expressions the Fisher equation (3.1) transforms into a second order ODE,

zV (z)
d2V

dz2
+ z(

dV

dz
)2 + V (z)

dV

dz
− zV 2(z) = 0. (3.31)

Further, it is easy to see that the equation (3.31) is again difficult to solve so we try

to reduce it further by finding its symmetries. Take the infinitesimal generator of its

symmetry algebra of ordinary differential equation (3.31) of the form

X = ξ(z, V )
∂

∂z
+ φ(z, V )

∂

∂V
(3.32)

V ξ + 3V 2z2ξν − V zξz − 2z2φz + V z2ξzz − 2V z2φzν = 0 (3.33)

−zφ− 2V zξz − V zφν + φz + zφzz = 0 (3.34)

zφ− 2V 2ξν − V zφν + 2V 2zξzν − V 2zφνν = 0 (3.35)

−ξν + V ξνν = 0 (3.36)

These equations are again nontrivial to solve. However, by observation, we have

ξ = 0 (3.37)

φ = V (3.38)

satisfy the above system of equations. Hence,

X = V
∂

∂V
(3.39)
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is a symmetry of the ordinary differential equation (3.31) which reduces it to a 1storder

ordinary differential equation. The prolongation is

X = 0
∂

∂z
+ V

∂

∂V
+ V ′

∂

∂V ′
+ V ′′

∂

∂V ′′
(3.40)

we then write characteristic equation

dz

0
=
dV

V
=
dV ′

V ′
=
dV ′′

V ′′
(3.41)

By solving the characteristic system gives differential invariants

z = s, w(s) =
dV

V
(3.42)

Hence

V ′′ =
dV ′

dz
=
d(V w)

dz
= V

dw

ds
+ V ′w (3.43)

Putting the new variables in the ordinary differential equation (3.31) reduces it to the

first order equation

dw

ds
= −2w2 − 1

s
w + 1 (3.44)

The reduced 1storder ordinary differential equation (3.44) is the Riccati equation hav-

ing the solution given by

w(s) =
1

2
{
√

2
C1I1(

√
2s)−K1(

√
2s)

C0I0(
√

2s)−K0(
√

2s)
(3.45)

where

I0, I1, K0 and K1 are modified Bessel functions.
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Now, using the substitutions given by x = z(x, t), w(s) = V ′

V
from above gives

V (z) = e
∫
w(z)dz+C (3.46)

Finally z = x and u(x, t) = etV (z)will gives an exact solution of the Fisher equation

in cylindrical coordinates, given by

u(x, t) = C2e
t

√
C1I0(

√
2x) + k0(

√
2x) (3.47)

We have used here X1to obtain the solution. If X2 = ∂
∂t

is used, this symmetry

generator will lead to the traveling wave solutions as translation in time only. We can

re-write the generator as

X2 = 0
∂

∂x
+ 1

∂

∂t
+ 0

∂

∂u
(3.48)

The characteristic equation is given by

dx

0
=
dt

1
=
du

0
(3.49)

α = x, u = w(α) (3.50)

Now, we prepare to recast equation (3.1) in new coordinates we get,

ut = 0, ux = wα and uαα = wαα (3.51)

By substituting in equation (3.1), we reduce it to the following ordinary differential

equation

d2w

dα2
+

1

w
(
dw

dα
)2 +

1

α

dw

dα
− w + 1 = 0. (3.52)
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This is second order nonlinear ordinary differential equation which needs further in-

vestigations but have not been pursued.
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Chapter 4

A Generalized Nonlinear Fisher

Equation
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In this chapter we classify the symmetries of a generalized Fisher equation. We use

these symmetries to reduce the Fisher equation to second order ordinary differential

equations and solve the reduced ordinary differential equations in some cases. Since

it is not possible to find analytical solutions of the reduced equations in all cases, we

present solutions in cases where solutions are possible. As discussed in chapter 1, the

generalized Fisher equation in cylindrical coordinates with radial symmetry is given

by

∂u

∂t
− 1

x

∂

∂x
(xg(u)

∂u

∂x
) = f(u) (4.1)

Expanding second term in above equation (4.1) and re-writing it gives,

xut − gux − xguu2
x − xguxx − xf = 0 (4.2)

Our aim here is to find the Lie point symmetries of the generalized nonlinear Fisher

equation (4.1). For this purpose we will use its form given by (4.2). The symmetry

generator associated with the above equation is

X = ξ
∂

∂x
+ τ

∂

∂t
+ φ

∂

∂u
, (4.3)

where

ξ = ξ(x, t, u), τ = τ(x, t, u) and φ = φ(x, t, u).

Since equation (4.1) is a second order partial differential equation, the symmetry

generator (4.3) is to be prolonged to second order. The expression for this prolonged
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symmetry generator is given by

X(2) = ξ
∂

∂x
+ τ

∂

∂t
+ φ

∂

∂u
+ φx

∂

∂ux
+ φt

∂

∂ut
+ φxt

∂

∂uxt
+ φxx

∂

∂uxx
+ φtt

∂

∂utt
(4.4)

At this stage one requires that the partial differential equation (4.2) should satisfy the

symmetry criterion [6]

X(2)
[
xut − g(u)ux − xgu(u)u2

x − xg(u)uxx − xf(u)
]∣∣
PDE(4.2)=0

= 0 (4.5)

The above requirement leads to an equation given by,

ξut − ξgu(u)u2
x − ξg(u)uxx − ξf(u)− φgu(u)ux − xφguu(u)u2

x − xφguu(u)uxx

−xφgu(u)uxx − xφfu(u)− g(u)φx − 2xφxgu(u)ux + xφt − xg(u)φxx = 0.

(4.6)

In order to proceed further, we now use the expression of φx, φt and φxx [7] and replace

ut using (4.2) in the above equation (4.6) to get,

ξgux
x
− φguux − xφguuu2

x − xφguuxx − xφfu − gφx − gφuux + gξxux − 2xguφxux

−2xguφxu
2
x + 2xξxguu

2
x + xφt + φuguux + xφuguu

2
x + xgφuuxx + xφuf − gτtux

−xτtguu2
x − xτtguxx − xfτt − xξtux − xgφxx − 2xgφuxux + xgξxxux − xgφuuu2

x

−xgφuuxx + 2xgξxuxx + 2xgτxutx + 2xgξuuxuxx + 2xgτuuxuxt = 0.

(4.7)

The equation (4.7) can be seen as an algebraic equation in derivatives of u. To proceed

further we now compare coefficients of all derivatives to obtain a system which leads
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to the following determining equations

τx = 0, (4.8)

τu = 0, (4.9)

ξu = 0, (4.10)

− 2guξx + guτt + guφu + φguu + gφuu = 0, (4.11)

gξ − xφgu − x2ξt + xgξx − xgτt − 2x2guφx + x2gξxx − 2x2gφxu = 0, (4.12)

xφfu + xfτt − xφt − xfφu + gφx + xgφxx = 0, (4.13)

φgu − 2gξx + gτt = 0 (4.14)

In order to solve the above system for ξ, τ and φ, we proceed as follows:

First differentiating equation (4.14) twice we get

φugu + φguu − 2guξx + guτt = 0, (4.15)

φuugu + 2φuguu + φguuu − 2guuξx + guuτt = 0. (4.16)

In order to classify the generalized Fisher equation equation (4.1) and hence its solu-

tions in terms of g(u), we start by assuming that guu = 0, that is

g = α1 + α2u

where α1 and α2 are some non-zero constants of integration. Using this condition in

(4.16) implies that,

φuu = 0
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which gives,

φ(x, t, u) = A(x, t)u+B(x, t) (4.17)

where A(x, t) and B(x, t) are functions of integration to be determined in the process

of solving above system. Using the above conditions in (4.15) it becomes,

(A− 2ξx + τt) = 0. (4.18)

To proceed further we consider following cases:

Case I

A− 2ξx + τt = 0, φ(x, t, u) = A(x, t)u+B(x, t), g = α1 + α2u.

Notice that equation (4.15) is identically satisfied by the conditions that arise in this

case. Substituting the above conditions in (4.14) we obtain α2B = α1A implying that

φ = A(u+
α1

α2

) (4.19)

Substituting (4.19) in (4.13), we get

α2(xAufu + xfτt − xAtu− xfA+ α2Axu
2 − xα2Axxu

2)+

α1(xAfu − xAt + α1Ax + α1xAxx) + 2α1α2u(Ax + xAxx) = 0

(4.20)

From the above equation two possibilities arise namely:

(a) α2 = 0 and (b) α1 = 0. We first consider possibility (a):
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Case (Ia)

From equation (4.19) it is observed that A = 0 which implies that φ = 0. We also

observe that (4.15) and (4.14) are identically satisfied. Substituting φ = 0 and α2 = 0

in (4.13) we obtain that

xfτt = 0

τt = 0

Above results implies that

τ = c

Since

2ξx − τt = 0,

then

ξx = 0.

so that ξ = ξ(t); here ξ is an arbitrary function of t only. To proceed further, we

assume that ξ(t) = c1t and substitute in (4.12) to get

c1(α1t− x2) = 0 which implies c1 = 0
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So that, we obtain the following system:

ξ = 0,

τ = c,

φ = 0.

(4.21)

Corresponding to the above system (4.21) there exists one infinitesimal symmetry

generator [8] which is given by

X =
∂

∂t
(4.22)

The infinitesimal symmetry generator reduces the number of the independent variables

by one in the partial differential equation [8, 19]. We find reduction of the generalized

Fisher equation under the infinitesimal symmetry generator X. The detailed calcula-

tions for the reduction under X are given below.

Consider the generator (4.22) and re-write it as

X = 0
∂

∂x
+ 1

∂

∂t
+ 0

∂

∂u
.

The characteristic equations for this generator are

dx

0
=
dt

1
=
du

0
.

The similarity variables for the above generator are obtained as follows:

From the first two terms we obtain

dx

0
=
dt

1
, (4.23)
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which implies that,

x = α

Similarly, from the relation

dt

1
=
du

0
(4.24)

we get

u = w(α)

The generalized Fisher equation (4.1) can be transformed into these similarity vari-

ables α,w as follows

ut = ∂w
∂t

= ∂w
∂α

∂α
∂t

= wα.0 = 0

ux = ∂w
∂x

= ∂w
∂α

∂α
∂x

= wα.1 = wα

uxx = ∂wα
∂x

= ∂wα
∂α

∂α
∂x

= wαα.1 = wαα

leading to order ordinary differential equation

d2w

dα2
+

1

α

dw

dα
+

1

α1

f(w) = 0. (4.25)

(i) If we choose f(w) = w the equation (4.25) becomes,

d2w

dα2
+

1

α

dw

dα
+

1

α1

w = 0. (4.26)

which is the Bessel equation of order zero and has the following solution

w(α) = C1J(0,
1
√
α1

α) + C2Y (0,
1
√
α1

α)

u(x, t) = C1J(0,
1
√
α1

x) + C2Y (0,
1
√
α1

x) (4.27)
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Where J and Y are Bessel functions.

(ii) If we choose α1 = 1, f(w) = w2, the equation (4.25) becomes

d2w

dα2
+

1

α

dw

dα
+ w2 = 0. (4.28)

in which the independent variable is α and dependent variable is w. Let

X = ξ(α,w)
∂

∂α
+ φ(α,w)

∂

∂w
.

The second prolongation of X is

X(2) = ξ
∂

∂α
+ φ

∂

∂w
+ φα

∂

∂wα
+ φαα

∂

∂wαα
. (4.29)

The symmetry criterion gives

X(2)(αwαα + wα + αw2)
∣∣
αwαα+wα+αw2=0

= 0. (4.30)

We need only the expansions of φα and φαα. The determining equations, using the

procedure described before are

ξw = 0,

φww = 0,

−ξα + φw − αξαα + 2αφαw

w2ξ + 2αwφ+ φα + αφαα = 0

ξ − 2αξα + αφw = 0

(4.31)
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The general solutions of the determining equations are

ξ = K1α,

φ = −2K1w.

(4.32)

where K1 is constant. The infinitesimal symmetry generator is

X = α
∂

∂α
− 2w

∂

∂w
. (4.33)

The prolongation of X is given by

X = α
∂

∂α
− 2w

∂

∂w
− 3wα

∂

∂wα
− 4wαα

∂

∂wαα
. (4.34)

A part of the characteristic equation corresponding to the above generator is:

dα

α
=

dw

−2w
=

dwα
−3wα

. (4.35)

Solving the characteristic system gives differential invariants:

α2w = u,

α3wα = v.

(4.36)

This implies that

dυ

du
=

3α2wα + α3wαα
2αw + α2wα

=
2υ − u2

2u+ υ
(4.37)

Let 2u+ υ = s. So, υ = s− 2u then

dy

dυ
=
ds

dυ
− 2. (4.38)
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Substituting in equation (4.37), we obtain the following ordinary differential equation

s
ds

du
= 4s− 4u− u2 (4.39)

which is Abel’s equation of second kind and is not generally solvable.

(iii) if we choose α1 = 1, f(w) = exp(w) = ew then equation (4.25) becomes

d2w

dα2
+

1

α

dw

dα
+ ew = 0 (4.40)

we consider the operator

X = ξ(x;w)
∂

∂x
+ φ(x;w)

∂

∂w
. (4.41)

The second prolongation is given by

X(2) = ξ
∂

∂x
+ φ

∂

∂w
+ φα

∂

∂wα
+ φαα

∂

∂wαα
. (4.42)

The symmetry criterion is

X(2)(αwαα + wα + ew)|αwαα+wα+ew=0 = 0, (4.43)

This results in

φαα +
1

α
φα + φew − wα

α2
ξ = 0.

Simplifying the above after expanding φα, φαα and replacing wαα, with −ew − 1
α
wα,

yields

φαα + 2wαφαw + w2
αφww − ( 1

α
wα + ew)φw − wαξxx − 2w2

αξxw − w3
αξww

2( 1
α
wα + ew)(ξα + ξwwα) + 1

α
(φα + wαφw − ξαwα − w2ξw) + φew − 1

α2wαξ = 0.

(4.44)
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This is a cubic equation in wα. It splits into four equations and after one compares

the coefficients of power of wα

w3
α : ξww = 0,

w2
α : φww − 2ξαw + 2

α
ξw = 0,

wα : 2φαw + 3ewξw − ξxx + 1
α
ξα − 1

α2 ξ = 0,

1 : φαα − ewφw + 2ewξα + 1
α
φα + ewφ = 0.

(4.45)

The general solutions of the determining equations are

ξ = C2α lnα− C2α + 1
2
C1α,

φ = −2C2 lnα− C1.

(4.46)

where C1 and C2 are constant, α > 0. Since the determining equations are linear

homogeneous, the general solutions can be represented as linear combination of two

independent solutions.

ξ1 = 1
2
α, φ1 = −1

ξ2 = α lnα− α, φ2 = −2 lnα.

(4.47)

This admits two linearly independent operators and the corresponding symmetry gen-

erators are

X1 = α
2
∂
∂α
− ∂

∂w
,

X2 = (α lnα− α) ∂
∂α
− 2 lnα ∂

∂w
.

(4.48)

This Lie algebra is spanned by X1 and X2 since [X1,X2] = X1. The commutation
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relations for these generators are given in the form of table 4. The commutator table

describes the structure of the associated Lie algebra in a convenient way [8].

[Xi,Xj] X1 X2

X1 0 X1

X2 X1 0

Table 4: Commutator Relations

Since [X1,X2] = X1, we begin the reduction using X1. Now

X1
(1) =

α

2

∂

∂α
− ∂

∂w
− w′

2

∂

∂w′
(4.49)

The invariant of the group generated by X1
(1) are

u = α2ew and υ = αw′ (4.50)

A second-order differential invariant by use of a theorem of Lie can be expressed in

terms of υ,u and du
dυ

. This reduces the ODE (4.40) to the following ODE

dυ

du
=
−1

2 + υ
(4.51)

that admits X2 written in (u, υ) coordinates. The solution of the first-order equation

(4.51) is easily seen to be:

2υ +
1

2
υ2 + u = A (4.52)
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where A is a constant. The Substitution of u = α2ew and υ = αw′ results in

2αw′ +
1

2
α2w′2 + α2ew = A (4.53)

We use an invariant to integrate this equation. This is readily seen to be a variable

in the form u2 = α2ew. We get

α2u′2 = −2u3 + 4u2 + 2u2A (4.54)

which is variables separable.

case (Ib)

α1 = 0, g = α2u

implies that φ = Au. Also, from equation (4.20) we observe that

α2(xAufu + xfτt − xAtu− xfA+ α2Axu− xα2Axxu
2) = 0 (4.55)

Differentiating (4.55) three times with respect to ‘u’ we obtain

ufuuuu
fuuu

=
−2A+ τt

A
= C1. (4.56)

From (4.56) we get

f(u) =
βuc1+3

(c1 + 1)(c1 + 2)(c1 + 3)
+
c2u

2

2
+ c3u+ c4, (4.57)

54



Comparison With Special Case [4]:

We note that if β = 0, C2 = 2, C3 = −1, C4 = 0, and α2 = 1 then,

f(u) = u(u− 1) (4.58)

g(u) = u (4.59)

This is the case discussed in (Bokhari, Mustafa and Zaman) [4]. We find that the

determining equations (4.8-4.14) reduce to those in [4]. The solution is given by

u(x, t) = C2e
t

√
C1I0(

√
2x) + k0(

√
2x) (4.60)

Let us now continue with the general case we are considering, we note that

τt = −A(C1 + 2), (4.61)

Differentiating (4.61) with respect to x we observe that Ax = 0 implies that A = A(t)

only. With this in mind, we have

τ = −(C1 + 2)

∫
A(t)dt+ C5, (4.62)

Substituting (4.62) and (4.57) in (4.55) we obtain,

A
(

βuC1+3

(C1+1)(C1+2)
+ C2u

2 + C3u
)
− A(C1 + 2)

(
βuC1+3

(C1+1)(C1+2)(C1+3)
+ C2u2

2
+ C3u+ C4

)
−Atu− A( βuC1+3

(C1+1)(C1+2)(C1+3)
+ C2u2

2
+ C3u+ C4) = 0.

(4.63)
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At this stage we compare the coefficient of u2, u and 1 to get:

u2 : C1C2 + C2 = 0 implies that C2 = 0 (since C1 6= −1)

u : 2AC3 + AC1C3 + At = 0,

1 : (C1 + 3)C4 = 0. implies that C4 = 0 (since C1 6= −3)

In the light of above we find that

A = C5e
−(C1+2)C3t (4.64)

f(u) =
βuC1+3

(C1 + 1)(C1 + 2)(C1 + 3)
+ C3u (4.65)

Substituting in (4.15) we get

ξ = −1

2
C5(C1 + 1)e−(C1+2)C3tx+ C6. (4.66)

Using above in (4.13) we obtain (C1 + 2)C3 = 0 which implies that C3 = 0.(since

C1 6= −2). Thus,

A = C5

ξ = −1
2
C5(C1 + 1)x+ C6

τt = −C5(C1 + 1)

φ = C5u

(4.67)

Substituting in (4.12) we observe that C5 = 0. Therefore, we obtain the following

system:
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ξ = 0

τ = c

φ = 0

(4.68)

where

f(u) =
βuC1+3

((C1 + 1)(C1 + 2)(C1 + 3))

and C1 is an arbitrary constant not equal to -1, -2 and -3. The symmetry generator

with the above system (4.68) is given by

X =
∂

∂t
. (4.69)

This is the same symmetry generator (4.22) which has the new similarity variables α

and w where

α = x, w(α) = u (4.70)

The new similarity variables transform the generalized Fisher equation (4.1) to the

following ordinary differential equation

d2u

dx2
+

1

u
(
du

dx
)2 +

1

x

du

dx
+

1

α2u
f(u) = 0 (4.71)

where

f(u) =
βuC1+3

(C1 + 1)(C1 + 2)(C1 + 3)
. (4.72)
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In principle we anticipate that f(u) may also be given functional values such as a

constant, u or u2. However, from equation (4.72) we note that these values of f(u)

are not permissible because at c 6= −1,−2 and −3 the equation (4.72) is not valid.

In order to discuss the solution of our generalized Fisher equation for these three

values of f(u), the only route available is to start solving the original determining

equations with (1): g = α2u, and f(u) = constant, (2): g = α2u, and f(u) = u and

(3): g = α2u, and f = u2. Using the procedure followed earlier the solution of the

determining equations can be easily found in all three cases. The solution of the third

case is given by

u(x, t) = (C1J(0,

√
2

α2

x) + C2Y (0,

√
2

α2

x))
1
2

Case II

In order to proceed with the classification and make a general statement we consider

equation (4.16) and the above conditions to obtain

(2A− 2ξx + τt)guu + (Au+B)guuu = 0 (4.73)

and assume guuu = 0. This requirement yields g = α1 + α2u + α3u
2. From equation

(4.73) and using this condition, we get

2A− 2ξx + τt = 0.

From above conditions, we observe that equation (4.73) is identically satisfied. If we
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substitute the above in (4.15) we obtain that B = α2A
3α3

implying

φ = A(u+
α2

3α3

). (4.74)

We note that (4.15) is now identically satisfied. Substituting these values in equation

(4.14) results in the expression (α2 − 4α1α3)A = 0. This leads to the following three

cases

(a) A = 0, (b) α2 − 4α1α3 = 0, (c) both.

Case (IIa)

In this case (4.73) becomes ξx − 1
2
τt = 0 while (4.74) gives φ = 0. It can be easily

seen that (4.18), (4.15) and (4.14) are identically satisfied. Substituting the above

conditions in (4.13), we get τt = 0. This implies that ξx = 0 and τ = C. Substituting

these results in (4.12) we obtain

ξ = C1e
gt

x2 . (4.75)

Since ξx = 0 then ξ = 0. Therefore, we obtain the following system:

ξ = 0

τ = C

φ = 0.

(4.76)

We construct one infinitesimal symmetry X from the system (4.76) given by X = ∂
∂t

.

The corresponding characteristic equation is,

dx

0
=
dt

1
=
du

0
(4.77)
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Using relation dx
0

= dt
1

gives new similarity variable α = x, while the relation dt
1

= du
0

gives the second similarity variable u = w(α). In these similarity variables the partial

differential equation (4.1) reduces to:

d2w

dα2
+ (

α2 + 2α3w

α1 + α2w + α3w2
)(
dw

dα
)2 +

1

α

dw

dα
+ (

1

α1 + α2w + α3w2
)f(w) = 0 (4.78)

Since u = w(α), x = α and f(u) = f(w), then (4.78) takes the form

d2u

dx2
+ (

α2 + 2α3u

α1 + α2w + α3u2
)(
du

dx
)2 +

1

x

du

dx
+ (

1

α1 + α2u+ α3u2
)f(u) = 0 (4.79)

If we choose α1 = α2 = 0 and f(u) = u3 and multiply by u the equation (4.79)

becomes

u
d2u

dx2
+ 2(

du

dx
)2 +

u

x

du

dx
+

1

α3

u2 = 0 (4.80)

Let W = u3 then,

dW

dx

1

3u
= u

du

dx
(4.81)

d2W

dx2

1

3u
= u

d2u

dx2
+ 2(

du

dx
)2 (4.82)

Substituting in the above equation we obtain the following equation

d2W

dx2
+

1

x

dW

dx
+

3

α3

W = 0 (4.83)

which is the Bessel equation of order zero and has the following solution

W (x) = C1J(0,

√
3

√
α3

x) + C2Y (0,

√
3

√
α3

x) (4.84)
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Since W = u3 then,

u(x, t) = (C1J(0,

√
3

√
α3

x) + C2Y (0,

√
3

√
α3

x))
1
3 (4.85)

Case (IIb)

A = ξx − 1
2
τt, g = α1 + α2u + α3u

2, α2
2 − 4α1α3 = 0, φ = A(u + α2

3α3
). Here we

note that equations (4.18) and (4.15) are identically satisfied. Substituting the above

conditions in (4.14) we get:

Ag = 0 (4.86)

From the above equation there arise three cases as before, namely,

(L) A = 0, (m) g = 0, or (n) both.

Case (IIbL)

In this case, A = 0, we have the system given by (4.76) and gives the same solution

as in case (IIa).

Case (IIbm)

For g = 0, the partial differential equation (4.1) degenerates to a first order equation

which is of no interest for our work. Similarly, the case case ((IIbLn)) is same as the

above and is of no interest again.
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Case III

In order to make more general classification we differentiate (4.73) once again with

respect to u and obtain

(3A− 2ξx + τt)guuu + (Au+B)guuuu = 0 (4.87)

and assume guuuu = 0 implying that g = α1 + α2u+ α3u
2 + α4u

3 = 0. From equation

(4.87) and using this conditions, we get

(3A− 2ξx + τt) = 0.

From equations (4.14 - 4.15), and using above conditions, we get

−2ξx + τt = 0 (4.88)

φ = 0 (4.89)

Substituting the above results in (4.12-4.13), we get ξ = 0 and τ = C. Therefore, we

obtain the following system

ξ = 0

τ = C

φ = 0.

(4.90)
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As we discussed before this system gives us new similarity variable α = x and u =

w(α). In these similarity variables the partial differential equation (4.1) reduces to

d2u

dx2
+ (

α2 + 2α3u+ 3α4u
2

α1 + α2u+ α3u2 + α4u3
)(
du

dx
)2 +

1

x

du

dx
+ (

1

α1 + α2u+ α3u2 + α4u3
)f(u) = 0

(4.91)

If we choose α1 = α2 = α3 = 0 and f(u) = u4 and multiply by u the equation becomes

u
d2u

dx2
+ 3(

du

dx
)2 +

u

x

du

dx
+

1

α4

u2 = 0 (4.92)

Let W = u4 then,

dW

dx

1

4u2
= u

du

dx
(4.93)

d2W

dx2

1

4u2
= u

d2u

dx2
+ 3(

du

dx
)2 (4.94)

Substituting (4.93-4.94) in (4.92) we obtain the following equation

d2W

dx2
+

1

x

dW

dx
+

4

α4

W = 0 (4.95)

which is a Bessel equation of order zero and has the following solution

W (x) = C1J(0,
2
√
α4

x) + C2Y (0,
2
√
α4

x) (4.96)

Since W = u4 the solution becomes

u(x, t) = (C1J(0,
2
√
α4

x) + C2Y (0,
2
√
α4

x))
1
4 (4.97)

where J and Y are Bessel functions.
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Case IV

If we proceed the manner above, we obtain

((n− 1)A− 2ξx + τt)guuu...u︸ ︷︷ ︸ + (Au+B)guuu...uu︸ ︷︷ ︸ = 0 (4.98)

and assume guuu...uu = 0. This requirement yields g = α1 + α2u+ α3u
2 + ...+ αnu

n−1.

From equation (4.98) and using this condition, we obtain

(n− 1)A− 2ξx + τt = 0

Substituting the above conditions in (4.15-4.14-4.13-4.12) we get the same system

(4.90) which reduces the PDE to the following ordinary differential equation

d2u
dx2 + (α2+2α3u+3α4u2+...+(n−1)αnun−2

α1+α2u+α3u2+α4u3+...+αnun−1 )(du
dx

)2 + 1
x
du
dx

+ ( 1
α1+α2u+α3u2+...+αnun−1 )f(u) = 0

(4.99)

If we choose α1 = α2 = ... = αn−1 = 0, f(u) = un and multiply by u, the equation

(4.99) becomes

u
d2u

dx2
+ (n− 1)(

du

dx
)2 +

u

x

du

dx
+

1

αn
u2 = 0 (4.100)

Let W = un then,

dW

dx

1

nun−2
= u

du

dx
(4.101)

d2W

dx2

1

nun−2
= u

d2u

dx2
+ (n− 1)(

du

dx
)2 (4.102)
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Substituting equations (4.101-4.102) in equation (4.100) we obtain the following equa-

tion

d2W

dx2
+

1

x

dW

dx
+

n

αn
W = 0 (4.103)

which is a Bessel equation of order zero and has the following solution

W (x) = C1J(0,

√
n

√
αn
x) + C2Y (0,

√
n

√
αn
x) (4.104)

Since W = un the solution becomes

u(x, t) = (C1J(0,

√
n

√
αn
x) + C2Y (0,

√
n

√
αn
x))

1
n (4.105)

This is the general solution where g(u) of the form g(u) = αnu
n−1 and f(u) of the

form f(u) = un

In the light of above results we conclude our work in the form of the following theorem:

Theorem 4.1

In the classification of generalized Fisher equation (4.1) with an in-homogenous term

‘f(u)’ on its right hand side, the classification of ‘f(u)’ appears as follows:

(a). A complete classification of ‘f(u)’ in terms of explicit function of ‘u’ in the

generalized Fisher equation can be achieved when ‘g’ is a linear function of

‘u’.

(b). when g(u) = αnu
n−1 and f(u) = un the solution is given by

u(x, t) = (C1J(0,

√
n

αn
x) + C2Y (0,

√
n

αn
x))

1
n
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where J and Y are Bessel functions of order zero of first and second kind respectively.
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Chapter 5

Conclusion and Future Work
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We have studied a generalized Fisher equation in cylindrical polar coordinates

∂u

∂t
− 1

x

∂

∂x
(xg(u)

∂u

∂x
) = f(u)

to solve from the Lie symmetry point of view. In order to perform the Lie symmetry

analysis of the equation, we have assumed that the equation possesses a radial sym-

metry so that the Fisher equation remains a (1 + 1) partial differential equation. We

conclude that the g(u) representing diffusivity can be classified in terms of powers of

u. For a quadratic inhomogeneous term the g(u) turns out to be an arbitrary function

of u leading to a nonlinear ordinary differential equation.

In future study of the model it is recommended that a complete symmetry analysis

of the generalized Fisher equation without radial and azimuthal symmetry is per-

formed. It is hoped that this will allow the equation to admit additional symmetries

and study of solutions under these symmetries may result in further insights in the

whole reaction-diffusion process.
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