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ABSTRACT
Name: Radwan Ali Ali Al-Rubaee.
Title: On a Generalized Fisher Equation.
Major Field: Mathematics.

Date of degree: April, 2010.

We consider a reaction diffusion equation known as the Fisher equation which models
problems in genetics, population growth and mathematical biology among others. A
generalized non-linear form of this equation in cylindrical coordinates with radial sym-
metry is studied from Lie symmetry point of view. The diffusivity and the reaction
terms are assumed to be functions of the dependent variable. An attempt to classify
the diffusivity function is made and exact solutions are obtained in some cases. The
known results in case of diffusivity being proportional to the dependent variable are
shown to be a special case of our analysis. It is found that the power law dependence
of diffusivity function leads to exact solution in the form of the respective root of a
linear combination of the Bessel function of order zero of first and the second kind.
However, the reaction term can be classified if the diffusivity is a linear function.
The study can lead to a classification in the most general settings in which no radial

symmetry is present.
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Chapter 1

INTRODUCTION



Most models in physics, engineering, social and biological sciences are described by
partial differential equations (PDEs) [26,27,28]. In most real life situations, these
PDEs are nonlinear in nature. In many cases the nonlinearity may be due to a non-
homogeneous source function of dependent variable [16] such as in the sine-Gorden
equation or the classical Fisher equation. In case of practical interest however, this
may occur as the properties of medium depend upon independent variables. This
phenomenon is exhibited, for example, in gases in which case the thermal diffusivity is
found to be proportional to the temperature. There are interesting physical processes
that also lead us to nonlinear partial differential equations such as in Burgers equation
and KDV equation. In such cases finding exact solutions of these PDEs is a formidable
task. More often approximate or numerical methods [3, 9, 10, 12, 13, 30] are employed
to obtain approximate solutions. Bokhari et.al. have employed an analytic method
to obtain certain series solutions of a nonlinear heat equation [4, 5]. Over the last
two decades a lot of attention has been given to the use of symmetry methods due to
Sophus Lie [22,23,24]. These methods exploit the invariance properties of the PDEs
under the transformations known as Lie symmetry transformations. This approach
reduces the nonlinear PDEs into one with less number of independent variables and /or
to an ordinary differential equation. A systematic description of this method can be
found in [18, 29, 31] and the method as well as some interesting applications to fluid

dynamics problems in [6] Clarkson and Mansfield [9] and Aijaz Ahmad et.al. [2] have



performed symmetry analysis of some nonlinear diffusion / heat equations.

In this thesis we are interested in employing the Lie symmetry methods to the so-
called Fisher equation. The Fisher equation was first studied by Fisher [11, 12] in its
simplest form given by

Up — Uz = u(l — ) (1.1)

where u(x,t) denotes the concentration of fluid or bacteria or a particular biological
cell depending upon the nature of the model. The term on the right hand side of (1.1)
corresponds to the reaction or growth term. A more general form of equation (1.1) is

known as Kolmogorov-Petrovskii-Piscounov equation [21] given by

Up — Uz = f(u0) (1.2)

where f is a sufficiently smooth function of u. Equation (1.2) reduces to the well
known reaction-diffusion equation when f(u) is a polynomial in u of order three.
There have been a considerable interest in this class of equations. For example the
Huxley equation
2
% = %+u2(1—u) (1.3)
has been studied for neural model by Hodgkin and Huxley [20, 21] who were awarded

nobel prize for their model. Another important equation of this class is Fitzhugh-



Nagumo equation given by

ou  0%u
5 = A u(l —u?) (1.4)

which arises in the study of nerve cells [14].

Newell-Whitehead equation given below has been studied by various authors [9]
— = — +u(l —u?). (1.5)
A more general form of Fitzhugh-Nagumo equation is given by [14, 15]
Uy — Ugy = U + Bu® + yu, (1.6)

where «, (3, v are arbitrary constants and the equation occurs in various situations such
as population genetics etc. [25]. In [12], the Fisher equation is studied in terms of its
traveling wave solutions while numerical solutions are given in [10]. In [17, 19, 27, 28]

Lie symmetry analysis is used to study a generalized Fisher equation of the type

w = () + F(w) (1.7

where f and g are sufficiently smooth functions. It is shown in [18] that equation
(1.7) possesses a minimal ‘two dimensional’ algebra which extends to larger algebras in
special cases [18]. This generalized version of the Fisher equation is used to model heat
and reaction-diffusion problems with reference to their applications in mathematical
biology, chemistry, genetics and bacterial growth problem [25].

4



Whereas equation (1.1) - (1.7) have been widely studied in literature, in most cases
the modeling is based on constant diffusivity requiring the Fisher equation to be of
the form

Ju =

i V- (d Vu) = f(u). (1.8)

For a constant d, equation (1.8), in (241) dimensional space, becomes

ou %u  0%u
ot~ o) =W o

Realistically, diffusion coefficient is not generally constant. For an example in gases the
coefficient is proportional to u®, where « is some real constant. This fact motivates one
to generalize the Fisher equation in such a way that it incorporates variable diffusivity

g(u) there. In the latter setting (1.8) takes the more general form

ou

5~V (sVW) = fw) (110

where g(u) is the diffusively of the medium. The focus of thesis is to study the
generalized nonlinear Fisher equation (1.10) in cylindrical coordinates. The motivation
behind using this coordinate system is that many engineering situations require use
of the cylindrical coordinates due to the inherent model. In order to write (1.10) in
cylindrical coordinates, we first transform the operator V to cylindrical coordinate,

and compute V - (%) in cylindrical coordinates and we use z for radial, y for polar



angle and z for height. In this setting V - (g(u)Vu) takes the from:

V- (s@vw) = % (g(m%) v (g(U)g—Z) + J%g(u)g—;; —l—g(u)%

x
10 ou 1 0%u 0%u
= —5 (mg(u)%) + ﬁg(u)ﬁ_yz +9(U)@ (1.11)

For the present work we assume radial symmetry and restrict u to depend only on

radius which is denoted by z. Thus, equation (1.11) reads

V- (g(w)V(w) = ia% (mm%) | (1.12)

Therefore (1.10), reduces to

5o (a3 ) = . (1.13)

x 0x

The objective is now to perform a symmetry analysis of equation (1.13). This re-
quires classifications of both f(u) and g(u). The symmetry generators are then to be
obtained and used to reduce the resulting partial differential equation to an ordinary
differential equation. Since all resulting nonlinear ordinary differential equations can
not be solved, we give solutions in those cases where a solution is possible and leave

others as they are.

This thesis is organized as follows:
In chapter two, we present some basic definitions and results of the Lie symmetry

method. In particular we give procedure for finding Lie point symmetries of the



PDEs and show how these symmetries are used to reduce the nonlinear PDEs to
ODEs. In chapter three, a simple form of (1.13) with g(u) = v and f(u) = u(1 — u)
is considered and solved [4] to illustrates the Lie symmetry method for this class
of evolution equations. Chapter four deals with a classification of solutions of the
general problem (1.13). We classify f(u) and g(u) and reduce the generalized Fisher
equation (1.13) to an ODE. Moreover, exact solutions in some cases are obtained.

Some recommendations for future work are addressed in chapter five.



Chapter 2

PRELIMINARIES



2.1 Introduction

It is well known that the exact solutions of nonlinear PDEs play a pivotal role in un-
derstanding several physical phenomena. However, finding exact solutions of PDEs is
not an easy task. The problem is even more difficult in case of nonlinear PDEs. Over
the past few decades Lie symmetry methods have been widely used and developed.
These methods are commonly known as Lie group theoretic methods and provide pow-
erful tool for dealing with nonlinear PDEs which admit certain Lie point symmetries.
Under the action of such symmetries the PDEs and their solutions remain invariant.
In this chapter we give certain results which form a basis of the Lie symmetry methods

and wherever possible use examples to illustrate the methods.

2.2 Group

Consider (G, ) to be a non-empty set with a binary operation * that assigns to every

ordered pair of elements of G a unique element with the following properties:

1. Closure property

For all z,y in G, x * y is also in G.



2. Associative property

For all x,y, z in G,

(xxy)*z=ax*(y=*z) (2.1)

3. Identity property

In G there exists an element ‘e’ known as the identity such that x xe = e x x,

for all z in G.

4. Inverse property

For every z in GG there exists an element y in G known as inverse of x such that

THxY=€e=y*x (2.2)

where e is the identity element of G with respect to the binary operation .

Example 1

Group of integers with binary operation addition.

Example 2
Group of all invertible matrices with binary operation defined as matrix multiplica-

tion.

10



Definition 2.1

A group G is called Abelian if in addition to the above properties it satisfies:
THY=Y*T (2.3)

for all z,y in G.

2.3 Lie Group

A Lie group, also called an infinitesimal group, is the one in which the group operations

(multiplication and inversion) are smooth maps possessing derivatives of all order.
Example 3

Consider the set of transformations such that

T.: (x,y) — (x,y) = (x +€,y)

we show that {7.} form a group
let T,,,T., € {T.} then
ToTo(ry) =T +e,y) = (+ea +e,y) = (2 +6y) € {1}
also, there exist an identity transformation {7y} such that
To(x,y) = (x,y) = (z +0,y) = (z,y)

11



we also, said that T¢, is an inverse of T, if €1 + €2 =0 = € = —€3 = efl = —¢y and
the converse is also true, then

Toe{T.},T. T, €{T.} andV T, 3 T.-1 € {T.} therefore, {T.} forms a group

2.4 Group of Transformations

Definition 2.2

The set of transformations given by

r = x(2,€), (2.4)

where x = (x1, Z, ..., ;) lie in region DC R" is defined for each € in set S C R with
the law of composition (¢, ), forms a one-parameter group of transformation on D

if the following hold:

1. For all € € S the transformations are one-to-one onto D.
2. S with ¥ forms a group G.

3. For all x € D, x =2 when € = ¢, corresponding to the identity e, i.e.,

x(z,€) = x.

12



4. If x = x(z,€) ,then

x(z,0) = x(x;9(€, 0)).

SEI
I

2.5 Lie Groups of Transformations

Definition 2.3

A group G of transformations with composition law ‘)’ is said to be a one-parameter

Lie group of transformation if :

1. €is a continuous parameter i.e, the set S is an interval in R.
2. x is infinitely differentiable function with respect to x in D.

3. the composition function (¢, d) is an analytic function.
Example 4

The transformation defined by

such that,

and

8|
Il
Q
8
< |
I
Q
<
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where 0 < a < oo is called group of scalings in the zy-plane. Here (v, ) = a3, and

the identity element corresponds to o = 1. This group of transformations can also be

re-parameterized in terms of e = a — 1 as

r=(1+¢ez, y=(1+e%, -1<e<oo

where the identity element corresponds to € = 0 and the law of composition of param-

eters is given by

U(a, B) =€+ 0 + €.

Example 5
Consider the reflection transformation [1]
y=—y.

Since

81
Il
|
s

which shows that it is not invertible hence does not form a Lie group of transformation.

2.6 Infinitesimal Transformations

Consider a one parameter ‘e’ Lie group of transformation

x = Gi(x,e),

14



with the identity e = 0 and law of composition . Expanding (2.5) about ¢ = 0, one
gets,
r=x+e—| +O0() (2.6)

where 2 = ¢(z). The transformation z = z + € £(z) is called the infinitesimal
e=0

transformation of the Lie group of transformation and the component £(z) is called

the infinitesimal of the transformation.

Theorem 2.1: (First Fundamental Theorem of Lie[7,9])
There exists a parametrization 7(e) such that the Lie group of transformations x =
Gi(z,€) is equivalent to the solution of an initial value problem for the system of first

order ordinary differential equations

ox -
b 2.7
=@ (27)
with
r=x when 7=0
Example 6
Consider the transformation x = G;(x,¢) where 2 = x + ¢ , y = y, the law of

composition ¥ (z,y) = r +y and €' = €. Such a G; defines the group of translations.

15



Here,

7%
—~
8
S~—
|
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=<
8
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—
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&
]
Il
—_
ﬁ“@\
Il
o

with

2.7 Infinitesimal Generator

Consider the transformation

r = Gi(z,€) (2.8)

where x = (21,2923, ...,x,) € R". Then the operator defined by

X =3 6le) (2.9)

is called an infinitesimal generator of the one parameter Lie group of transformation

(2.8), where & = a@_{i are components of the tangent vector y. In particular, if a

€=

point p = (z,y) € R?, the above symmetry generator becomes

0 0

where

Slwy) =G| o @y =F



We can determine the transformation (2.8) with the help of infinitesimal generator X

by integrating

—. Oz
(z) = 2.11
6@ =5 2.11)
with initial condition
| =
e=0
Theorem 2.2. [14]
The one-parameter Lie group of transformations z = G;(x, €) is equivalent to :
r = Xz
= :L‘—f-EXI—I—EX T4
2
— [1+eX+§X2+ |z
= ZEX z, (2.12)
k=0
where the operator X is given by (2.9).
Example 7
Consider the rotation group:
T = xcose+ ysine, Yy = —xsine + y cose, (2.13)
the infinitesimals &(x,y) = % =Y and n(z,y) = % = —x defines the symme-

e=0

17



try generator associated with (2.13) as

0 0

Alternatively, given the symmetry generator, one can find the transformation associ-

ated with that generator. This can achieved as follows:

Consider the Lie series corresponding to the generator (2.14) given by

PO X

(z,y) = (eTx,ey), (2.15)

x, e’

where Xz = y, X%z = —x and X3z = —y etc. Then (2.15) can be re-cast in the form

of rotations (2.13) as follows:

r = Xz

= E — Xk
ki
k=0
2

= x+eX:v—i—%X2x+---

2 4 3 5

e € e €
— -S4 8 S s
= xcose+ ysine. (2.16)
Similarly
<k
y=eXy= Z%Xky = —xsine + ycose. (2.17)
k=0""

18



In matrix notation, the rotation given by (2.16) and (2.17) is written as

T cos€e sine x
= (2.18)
Y —sine cose Y
cose sine
The matrix in the above expression is known as the rotation ma-

—sine cose

trix.

2.8 Lie Algebras

Lie algebra is a vector space, equipped with bilinear product [, |: V xV —V satisfying

(for all vector fields X;, X;, X}, belonging to V) with the following properties:

2. X, Xy = —[X;, X4,

3. Any three infinitesimal symmetry generators X;, X; and Xj,, satisfy the Jacobi’s

identity,

19



where the commutator operator [, | for any two symmetry generators X;, X; is defined,
as in [29], by

X5, X;] = X X; — XX, (2.19)
Definition 2.4
Let G be an r-parameter Lie group of transformations with basis {Xj, X, ..., X, },
where X, is an infinitesimal symmetry generator corresponding to the parameter e;.
Then the Lie group G of transformations forms an r-dimensional Lie algebra G" over
the field F'=R with respect to commutation law [8].
Thus, the Lie algebra is a vector space ‘G’ together with the commutator operator
which is bilinear skew symmetric and satisfies the Jacobi identity.
Example 8
The group of rigid motions in R? that preserve distances between any two points in
R? is the three-parameter Lie group of transformations of rotations and translations
in R? given by

T =xCcose — ysine + e (2.20)

Yy = xsine; + ycoser + €3

The corresponding infinitesimal generators are given by

Xi = —yg + g, (2.21)
X2 = %7
X3 = o



The commutator table of the above Lie point symmetries is as follows:

(X, X5 [ Xa | Xe | Xy

X4 0 —X3 | Xo
Xy X3 0 0
X3 X510 0

Table 1: commutator table

Example 9
The similitude group in R? consists of uniform scalings and rigid motions in R2. It is

the four-parameter Lie group of transformations given by

= e“(xzcose; — ysine) + € (2.22)

SN

= e“(xsine; +ysiner) + €3

|

The corresponding infinitesimal generators Xy, Xs, X3 and X, are,

X;=-yZ + xa%, (2.23)
XQ = 5%7
X3 = %7

21



The corresponding relation are given as table:

X0, X5 | Xy | Xy | X3 | Xy

X1 0 —X3 | Xo 0

Xy X3 0 0 X,

X3 —-X5 0 0 X3

Xy 0 —X5 | —X3 | 0

Table 2: commutator table

Definition 2.5
A subset A of Lie algebra G is called a subalgebra of G if it is closed under the

commutation operator, i.e for all X,, Xz € A, [X,, Xg] € A.

2.9 Solvable Lie Algebras

The order of an n'™ order ordinary differential equation (ODE) can be reduced con-
structively by two if it admits a Lie algebra of transformations of two parameters.
But for an r-parameter Lie algebra (r> 3) the order of the differential equation can

be reduced constructively by p, if there exist a p-dimensional solvable subalgebra.

22



Definition 2.6

A subalgebra A C G is called an ideal or normal subalgebra of G if [g,a] € A for all
ac€ A, geq.

Definition 2.7

AP is p-dimensional solvable Lie algebra if there exists a chain of subalgebras, A' C
A2 Cc A3 C ... C Ar71 C AP such that A" is an ideal of A for all i = 2,3,--- ,p.
Definition 2.8

An algebra G is called an abelian Lie algebra if [X,,Xs] = 0 for all X, , X3 € G.
Theorem 2.2. [8]

Every two-dimensional Lie algebra and every Abelian Lie algebra is a solvable Lie

algebra.

2.10 Structure Constants

Theorem 2.3:(Second fundamental Theorem of Lie [8])
The commutator of any two infinitesimal generator of an r- parameter Lie group of

transformations is also an infinitesimal generator. In particular,
Xo, Xp] =) CrX, €G (2.24)
r=1

23



where C’gﬁ are the structure constants.

Definition 2.9 (Commutation Relations)

For an r-parameter Lie group of transformations with basis Xy, X5, --- , X, the rela-
tions defined by equation (2.24) are called commutation relations.

Theorem 2.4 (Third Fundamental Theorem of Lie [31])

The structure constants, defined by commutation (2.24), satisfy the relations:

1L.Cls = —C}, (skew symmetry).
2.05,C8 + C5.Co + CL,Co% = (Jacobi identity).

2.11 Prolongation

In order to apply the transformations (2.5) to an n'* order partial differential equation
(PDE), one needs to extend the infinitesimal symmetry generator (2.9) to include all
derivatives of the dependent variables. In this section we discuss the prolongation
formula for a PDE which consists of ‘p’ dependent and ‘¢’ independent variables.
Since we will be dealing with a PDE of order two, we later deduce a prolongation

formula for a second order PDE in which there is only one dependent variable.

Let

F(a;u,u®,u® ... u) =0, (2.25)

24



be an n'* order PDE with ¢ independent variables z = (x1, 9, 3, - - ,1,), p dependent

variables u = (u!,u?, -+ uP) and the derivatives of dependent up to order n. In this

case the infinitesimal symmetry generator associated with this equation becomes

I 0 P 0
X =) :gi(x,u)ax' +) ¢k(x,u)%. (2.26)
i=1 tok=1

Then the prolongation of the generator (2.26) is obtained by extending it to include

all the derivatives [28] as

P
: 0
p_ ik (n)y_~__
XV =X+ ;ijqﬁ (x,u,u )aujk’ (2.27)
where ¢’ and ¢’* are given [31] by
¢ = Dij(¢—E&uy)+Euy (2.28)
¢ = DpDj(¢ — Euy) + E'u i, (2.29)

in which D; represents the total derivative given by the formula

0 0
D=+ Y s 2.
" o + ]- Uj i o, (2.30)

2.12 Invariance

A Lie group of transformations can have invariant functions, surfaces, curves, and
invariant points. The invariance can transform the complicated nonlinear conditions

25



into simpler linear conditions under the corresponding infinitesimal generator of the
symmetry group. The symmetry group of the system transforms its solutions to other

solutions giving new invariant solutions of the system.

2.12.1 Invariance of a function

Definition 2.10

Let © = G;(z, €) be the Lie group of transformations of one parameter € and let f(u)
be an infinitely differentiable function. The function f(u) is said to be an invariant

function if and only if

f(z) = f(z) (2.31)

Theorem 2.5. [§]
A function f(u) is an invariant of the Lie group of transformation z = G;(x, €) if and
only if

Xf(x)=0 (2.32)
where X is the infinitesimal generator of the symmetry transformation.

Theorem 2.6. [§]

Given a Lie group of transformation x = G;(x,€) with a symmetry generator X, the
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identity,

flz)=f(z)+e (2.33)

holds if

X f(z) =1 (2.34)

and conversely.

2.12.2 Invariance of a surface

Theorem 2.7. [8]
Let f(z) = 0 be a surface and let ¥ = G;(z,€) be a one-parameter Lie group of
transformations. The surface f(z) = 0 is said to be an invariant surface under the

symmetry transformation if and only if

Xf(zx)=0  when  f(z)=0 (2.35)
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2.12.3 Invariance of a Partial Differential Equation

Consider a system of partial differential equation of order n with q independent z =

(z1, %9, ..., z,) and p dependent variable u = (u',u?, ..., uP), given by
F,(z,u,0u,0%u,...,0"u) =0 (2.36)
where
W=1,23,.k
The derivative of order m is denoted as,
am (0%
ue l (2.37)

J - axﬂ@xjg...axjm
where 1 < j; < p for all + = 1,2,...,m and the order of m-tuple of integers j =

(71, J25 ---, jm) indicates the order of the derivative.
Theorem 2.8 (Invariance Criterion of PDEs [1])

Let the system (2.36) of k differential equations be of maximal rank. If G is group of

transformations and
X"UF (2, u,Ou, 8*u, ..., 0"u)} = 0 (2.38)
whenever
F,.(z,u,0u,du,...,0"u) = 0,
for every infinitesimal symmetry generator X of the group G, then G is a symmetry
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group of the system.
Example 10:(Diffusion Equation [8])
We demonstrate how a PDE remains invariant under a group of transformation. Con-

sider the diffusion equation

% = % (2.39)
and the transformation
r=e"r (2.40)
t = et (2.41)
u=eu (2.42)

Different values of a, b, ¢ give different elements of the group of transformations (a =
b= c = 0) gives the identity transformation. It is straightforward to see

ou 9 0 ot ou

— = —(eu) = (eu)— =" — (2.43)
ot ot LY ot
0%u 0, 0%
— =T 2.44)
_2 2 (
oz ox
The diffusion equation transforms into
ou  Pu  ,0u 0%
S e e (2.45)
ot Ox
which gives invariance iff b=2a, as
ou  Pu 5, 0u Pu, Ou D
e o= g ) T e (2.46)
ot Ox
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2.13 Procedure to calculate symmetries

The infinitesimal transformations and the infinitesimal symmetry generators of the Lie
group of a partial differential equation can be calculated by a systematic computational
procedure in the light of Theorem 2.8 and used the prolongation formula(2.27). The
first step is to find the one-parameter symmetry generator X. The coefficients & (z, u)
and ¢, (z,u) of the symmetry generator X will be the functions of , u. The symmetry
generator X will be prolonged to the order equivalent to the order of partial differential

equation.

Application of a prolonged symmetry generator to the partial differential equation
using the theorem 2.8 of the infinitesimal criterion for the invariance of PDE gives a
general equation that involves x, u and the derivatives of u with respect to x, as well as,
& (x,u), ¢o(x,u) and their partial derivatives with respect to x and u. By comparing
the coefficients of the partial derivatives of u we get a system of equations known
as determining equations for the coefficients functions £'(z,u) and ¢o(z,u). The
general solution of this system of determining equations determines the most general
expressions for £'(x,u) and ¢, (x,u); thus giving the general infinitesimal symmetry

generator X.
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Chapter 3

A QUASILINEAR FISHER

EQUATION
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As we noted in chapter 1, the Fisher equation arises naturally in a number of situations
such as reaction diffusion processes, genetics, and biology. We remarked that in many
situations of interest, the diffusivity of the medium is not constant but may depend
upon the dependent variable. It was further envisaged that we may need to study
this equation in other coordinate systems to suit a particular model. In this regard
we present here the symmetry analysis of the Fisher equation in which we have the
nonlinear reaction diffusion term g(u) = w(l — u) and the diffusivity is assumed
proportional to u, or simply, f(u) = u. Bokhari, Mustafa and Zaman [4] have studied
this model with the radial symmetry taken in two account. In this case the Fisher
equation has the form

% — i(%(xu%) = u(l —u). (3.1)
To lay a basis of a more general model which is studied in chapter 4, we present the
symmetry analysis performed recently by Bokhari, Mustafa and Zaman [4] who have

given a complete analysis and some reductions in case of interest. Since the PDE (3.1)

is of order two we prolong the symmetry generator (2.30) to second order [4].

0 0
2) _ ¢ 7 T t TT Tt tt
6 +rat+¢ + 75— +¢ +¢ aum+¢ ax ¢8utt (3:2)
where ¢, ¢', ¢, ™" and ¢™ are given by (2.28)-(2.29),
" = ¢p + (dy — E)Up — Totly — EgUE — Tyl (3.3)
¢t = ¢t + (¢ - Tt) gtux Tuut fuuazut (34>
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¢t:1: = ¢ta: + ¢azuut + gbtu“x + qbuuutua: + ¢uutx - utt(TCC + Tuux) — Uiy (51‘ + guuz)
_uta:(Tt + Tu“t) - umc(ft + fuuz> - ut(Ttm + TxUUt + Ttu Uy + Ty Ut UT + Tu“tx)

—Uy (gtz + gxuut + ftuua: + guuutux + €uut$) =0
(3.5)

_Tuuuiut + (¢u - 2650)qu - 27—asutx - 3€uu:cumc — Ty UtUgy — QTuuxuxt

Ot = O + 20,0 + ¢uuu% + Gyt — 2 (Te + Tuts) — w(Ter + 2T Uy (3.7)

+Tuuu§ + Tyug) — 2 (& + é}%ut) — Uy (& + 280 + fuuuf + )

Now the Lie symmetry criterion (2.10) for equation (3.1) takes the form:

X®(PDE 0 (3.8)

) |PDE:O -

Writing equation (3.8) in the expanded form,

X (21 — utty — 2u2 — TUULe — TU + TU 0

2 _
) ‘PDE:O -

Which leads to

Uty — TPUy — T Py — 120 + 22° U — 10" U — 22°¢ Uy + 220 — 2Pu™ = 0. (3.9)
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At this stage we substitute values of ¢, ¢' and ¢™ obtained using (3.4),(3.4)and (3.6)

to get

Eutly — TPuUy — T2PUyy — TP + 222 Pu — TUP, — TUPLUL + TUE U, + TUTL U + TUEUE
+rUT UL — 222ty — 2% Up Py + 202603 + 20 Tpuguy + 2026 ud + 20 T uluy + 22 ¢y

+22 Py uy — 21Uy — 2Pubu, — mQTuuf — 22E U — TGy — 20U Uy + TPUE Uy

+X2UT Uy — T2UPuu? + 202Ul + 202 uT Uty + T2uud — 2Pudu s + 202U Uy

F222UTp Uy + 3TPUE UG Uy + TPUT Ugp Uy + 222 UT U Uy + 222 UT Ul = 0

(3.10)
Equation (3.10) is an algebraic equation in u, its derivatives and powers and products
of derivatives. In order to proceed with the analysis we compare like terms to obtain

the following determining equations:

=0 (3.11)
T, =0 (3.12)
T, =0 (3.13)
— ué 4 ¢ + 126, — 2uéy — zuT + 2070y — ur®Epy + 2ur Py, =0 (3.14)

— ¢ 4 2xud — ruT, + TUAT, + TP + TUG, — TUP Dy — UGy — TUG Ly = 0 (3.15)
¢ —2uly +ur, =0 (3.16)

— 28, + Tt + Oy + UGy =0 (3.17)
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Solving the above system we obtain its solution given by

=0 (3.18)
T = —€7tk1 + k’Q (319)
¢ =e 'ku (3.20)

From above we notice that the system admits two symmetries which in generator form
are written as,
X, =—et2 ety l

ot ou

o)
XQZE

The commutation relations for the above symmetry generators are listed in the fol-

lowing table:

X, X5 | Xy | Xs

X4 0 0

Xy -X; ] 0

Table 3: Commutation Relation

We present procedure to achieve reduction with respect to one symmetry generator

‘X’ and subsequently obtain one exact solution. Picking the generator

0 0
e
X;=—e 5 ¢ Y (3.21)
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we re-write it in the form,

X, =0——e'"— —efu— 3.22
e S e © Yo (3.22)
The characteristic equations for the above equation is,
dx dt du
i — 3.23
0 —e !t —e 7ty ( )
The first two terms give:
dx dt
— = 3.24
0 —et’ ( )
which can be solved to obtain,
r = z(). (3.25)
Similarly solving the last two terms in (3.23)
dt  du
- =— 3.26
Lo (326)
giving us,
u=eV(z). (3.27)

Now we use (3.25) and (3.27) to re-cast Equation (3.1) in new coordinates. For this

purpose we take first and second derivatives of u (using chain rule) to obtain:

uy = 'V (2), (3.28)
av
t
X - 9 2
Uz = € (3.29)



Upy = €' —. (3.30)

Using these expressions the Fisher equation (3.1) transforms into a second order ODE,

d*V av av
zV(z)W + z(E)2 + V(Z)E —2V3(z) = 0. (3.31)

Further, it is easy to see that the equation (3.31) is again difficult to solve so we try
to reduce it further by finding its symmetries. Take the infinitesimal generator of its

symmetry algebra of ordinary differential equation (3.31) of the form

X:ﬂ@V%%+M@W§% (3.32)
VE+3V22, — V2, — 2220, + V22, —2V220,, =0 (3.33)
—2¢ —2V2E, —V2d, + ¢, + 2¢,, =0 (3.34)

2¢ —2V3E, — Vzo, +2V32E,, — V226,, =0 (3.35)
=&+ V&, =0 (3.36)

These equations are again nontrivial to solve. However, by observation, we have

£=0 (3.37)

o=V (3.38)

satisfy the above system of equations. Hence,

0
X=Vo (3.39)
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is a symmetry of the ordinary differential equation (3.31) which reduces it to a 15order

ordinary differential equation. The prolongation is

0 0 0 0

X=0—+V—+V |7 3.40
o: T avt av T v (3.40)
we then write characteristic equation
dz dVv av’' dV”
TSV v v (3.41)
By solving the characteristic system gives differential invariants
av
= = — 3.42
Hence
av’  dV d
pr - V0 dVw) e (3.43)

dz dz ds
Putting the new variables in the ordinary differential equation (3.31) reduces it to the
first order equation

dw 1
— = —2uw?— = 1 44
- w” = —w+ (3.44)

The reduced 1¥order ordinary differential equation (3.44) is the Riccati equation hav-

ing the solution given by

1 C11,(V/2s) — K1(V/25)
w(s) = 5{\/50010(\/53) — Ko(v/25) (3.45)

where
Iy, I, Ky and K are modified Bessel functions.
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Now, using the substitutions given by x = z(z,t), w(s) = %’ from above gives
V(z) = el w2)d+C (3.46)

Finally z = z and u(x,t) = 'V (z)will gives an exact solution of the Fisher equation

in cylindrical coordinates, given by

u(z, 1) = Cae' CiI(v21) + ko(V2x) (3.47)

We have used here Xjto obtain the solution. If X, = % is used, this symmetry

generator will lead to the traveling wave solutions as translation in time only. We can

re-write the generator as

o 0 0
Xy =0+ 1o +0-- (3.48)

The characteristic equation is given by

der dt du
= 3.49
0 1 0 ( )
a=z, u=w(a) (3.50)
Now, we prepare to recast equation (3.1) in new coordinates we get,
u =0, Uy, =w, and Uy = Waa (3.51)

By substituting in equation (3.1), we reduce it to the following ordinary differential
equation

_+_(_)2+———w+120. (3.52)



This is second order nonlinear ordinary differential equation which needs further in-

vestigations but have not been pursued.
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Chapter 4

A Generalized Nonlinear Fisher

Equation
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In this chapter we classify the symmetries of a generalized Fisher equation. We use
these symmetries to reduce the Fisher equation to second order ordinary differential
equations and solve the reduced ordinary differential equations in some cases. Since
it is not possible to find analytical solutions of the reduced equations in all cases, we
present solutions in cases where solutions are possible. As discussed in chapter 1, the
generalized Fisher equation in cylindrical coordinates with radial symmetry is given
by

ou 10 ou
% E%(l’g(u)%) = f(u) (4.1)

Expanding second term in above equation (4.1) and re-writing it gives,
Uy — GUy — TGU> — TGUge — Tf = 0 (4.2)

Our aim here is to find the Lie point symmetries of the generalized nonlinear Fisher
equation (4.1). For this purpose we will use its form given by (4.2). The symmetry

generator associated with the above equation is
0 0 0
X=£(— — — 4.3
o0 "ot 0 (4:3)

where
fzé-(I,t,U), T:T(xvtuu) and ¢:¢($,t,U)
Since equation (4.1) is a second order partial differential equation, the symmetry

generator (4.3) is to be prolonged to second order. The expression for this prolonged
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symmetry generator is given by

a Tx 8 tt a

x® —¢ 9 o 8t+¢ +¢“38 +¢t +¢“ (4.4)

or 9

8 Ut

At this stage one requires that the partial differential equation (4.2) should satisfy the

symmetry criterion [6]

X® [vus — g(w)u, — zgu(w)ul — xg(u)ug, — zf (u)] ‘PDE(4 2=0 = 0 (4.5)

The above requirement leads to an equation given by,

§uy — Egu(u )u —&g(u)uyy — Ef (1) — dgu(u)u, — mgbguu(“)uz — 2OGuu(U) Uz (4.6)
—2¢gu(W)Uyy — 2P fu(u) — g(u)® — 22¢% g, (w)u, + 29" — 2g(u)d™ = 0.
In order to proceed further, we now use the expression of ¢*, ¢' and ¢** [7] and replace

u; using (4.2) in the above equation (4.6) to get,

guz

— PGuly — TPGuu U2 — TPGulzy — TG fu — Pz — GPully + g€ty — 20y Py
_thguui — TT4GUgy — l'f’i't - lftux - xg¢xx - 2xg¢uxux + wggxxua: - xg¢uuu;%

—XGPuUpr + 209E 1 Upy + 209ToUiy + 209EUg Uy + 209Ty Uz Uy = 0.
(4.7)

The equation (4.7) can be seen as an algebraic equation in derivatives of u. To proceed

further we now compare coefficients of all derivatives to obtain a system which leads
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to the following determining equations

7 =0, (4.8)
Ty = 0, (4.9)
& =0, (4.10)
— 20u8s + GuTt + GuPu + OGuu + 9Puu = 0, (4.11)
g€ — Thgy — °& + 19&, — 29T — 20°gudy + 1°9Es — 28 g, = 0, (4.12)
TOfu+2fT — 2P — fPu + 9Pz + £GPrn = 0, (4.13)
GGy — 298 + g7 =0 (4.14)

In order to solve the above system for £, 7 and ¢, we proceed as follows:

First differentiating equation (4.14) twice we get

In order to classify the generalized Fisher equation equation (4.1) and hence its solu-

tions in terms of g(u), we start by assuming that g,, = 0, that is

g = a1+ asu
where aq and ay are some non-zero constants of integration. Using this condition in
(4.16) implies that,

¢uu:O
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which gives,

oz, t,u) = A(x,t)u + B(x,t) (4.17)

where A(z,t) and B(x,t) are functions of integration to be determined in the process

of solving above system. Using the above conditions in (4.15) it becomes,

(A—2¢,+7)=0. (4.18)

To proceed further we consider following cases:

Case I

A=26+4+71=0, ¢z, tu)=Ax,t)u+ B(z,t), g=a+ au.

Notice that equation (4.15) is identically satisfied by the conditions that arise in this

case. Substituting the above conditions in (4.14) we obtain asB = a1 A implying that

6= Alu+ <L) (4.19)

6%)

Substituting (4.19) in (4.13), we get

as(zAuf, + o fr — v A — o f A+ anAgu® — xan A u?)+ (4.20)
ay(TAf, — Ay + Ay + gz Agy) + 20100u(A, + TAL) =0
From the above equation two possibilities arise namely:

(a) ap =0 and (b) «a; =0. We first consider possibility (a):
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Case (Ia)
From equation (4.19) it is observed that A = 0 which implies that ¢ = 0. We also
observe that (4.15) and (4.14) are identically satisfied. Substituting ¢ = 0 and ay =0

in (4.13) we obtain that

xfr, =0
=0
Above results implies that
T=c
Since
26, — =0,
then
£ =0.

so that £ = £(t); here £ is an arbitrary function of ¢ only. To proceed further, we

assume that £(t) = ¢;t and substitute in (4.12) to get

ci(agt —2?) =0 which implies ¢; =0
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So that, we obtain the following system:

£=0, (4.21)
T =¢,
=0

Corresponding to the above system (4.21) there exists one infinitesimal symmetry
generator [8] which is given by

X=_ 4.22
Py (4.22)

The infinitesimal symmetry generator reduces the number of the independent variables
by one in the partial differential equation [8, 19]. We find reduction of the generalized
Fisher equation under the infinitesimal symmetry generator X. The detailed calcula-
tions for the reduction under X are given below.

Consider the generator (4.22) and re-write it as

o .o 0
X =05+ 15 40

The characteristic equations for this generator are

The similarity variables for the above generator are obtained as follows:

From the first two terms we obtain

do _ di (4.23)



which implies that,

r=a«
Similarly, from the relation

% _ %” (4.24)
we get

u=w(a)

The generalized Fisher equation (4.1) can be transformed into these similarity vari-

ables o, w as follows

Uz = o da 0x waa-l = Waq

leading to order ordinary differential equation

Fw  Ldw 1oy (4.25)

do?  ada o

(i) If we choose f(w) = w the equation (4.25) becomes,

which is the Bessel equation of order zero and has the following solution

’LU(CY) = OlJ(O, CY)+OQY(0,

(07] \/Oé_l
! x) + CLY (0, Lx) (4.27)

Qg Vv a1

a)

u(z,t) = C1J(0,
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Where J and Y are Bessel functions.

(ii) If we choose a; = 1, f(w) = w?, the equation (4.25) becomes

Pw  ldw
E—FEE—FIU =0. (4.28)

in which the independent variable is a and dependent variable is w. Let

X = f(oz,w)2 + (b(oz,w)i

oo ow
The second prolongation of X is
0 0 0 0
X2 — ¢~ - o~ e 4.2
56?04 * gb@w e Ow,, +¢ MW, (4.29)

The symmetry criterion gives

X3 (QWaa + wa + aw?)| = 0. (4.30)

AWaa+Wa+aw?2=0

We need only the expansions of ¢® and ¢**. The determining equations, using the

procedure described before are

&w =0, (4.31)

_Sa + gbw - a/é.ococ + 2a¢aw
w2 + 20w + P + APan =0

§—2aé, + agp, =0
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The general solutions of the determining equations are

é": KlOé,
(b = —2K1w

where K is constant. The infinitesimal symmetry generator is

0 0
X=a——2w—.
Yoo~ “Vow
The prolongation of X is given by
0 0 0 0]
X = Oéa—a - 2wa—w — Swaa_u;a - 4waaaw—aa.

A part of the characteristic equation corresponding to the above generator is:

dov dw dw,,

a 2w 3w,

Solving the characteristic system gives differential invariants:

a’w = u,
aBw, = v
This implies that
dv 30w, + @ Waq
du 20w+ 2w,
v —u?
 2u+wv
Let 2u 4+ v = s. So, v = s — 2u then
dy ds
dv  dv
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(4.33)

(4.34)

(4.35)

(4.36)

(4.37)

(4.38)



Substituting in equation (4.37), we obtain the following ordinary differential equation

d
sd—z = 4s — du — u? (4.39)

which is Abel’s equation of second kind and is not generally solvable.

(iii) if we choose oy = 1, f(w) = exp(w) = € then equation (4.25) becomes
S e =0 (4.40)

we consider the operator

0 0

X =¢&(zw)— Sw)— 4.41
€3 w0) o + 0l 0) £ (2.41)

The second prolongation is given by

0 0 0 0
X® = ¢ =t o~ +¢° oo : 4.42
58:1: - ¢8w e Ow, e OWaq ( )
The symmetry criterion is

X(Z)(O‘waa + Wa + €")|awan+water=0 = 0, (4.43)

This results in
oo 1 o w Wq
o o
Simplifying the above after expanding ¢“, p** and replacing wg,,, with —e" — éwa,

yields

gbaa + 2wo¢¢o¢w + wigbww - (éwa + 6w)¢w - wozga:w - 2w3§xw - wigww

2(&11)01 + ew)(é‘a + fwwa) + é(¢a + wa(bw - fawa - w2£w) + (bew - éwaf = 0
(4.44)
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This is a cubic equation in w,. It splits into four equations and after one compares

the coefficients of power of w,,

W £ = 0, (4.45)
Wh  Gww — 2o + 6w =0,

Wa : 200w + 36¥ 6w — Eae + 260 — 2E =0,

1: Paa — €“huy + 26“Eq + =0 + €9 = 0.

The general solutions of the determining equations are

¢ =Coalna — Cha + %Cla, (4.46)
¢=—-20Ina— C.
where € and Cy are constant, > 0. Since the determining equations are linear
homogeneous, the general solutions can be represented as linear combination of two

independent solutions.

=350, ¢1=-1 (4.47)
S=alna—a, ¢y=—-2Ilna.
This admits two linearly independent operators and the corresponding symmetry gen-
erators are

X; =920, (4.48)

|

Xy = (ozlnoz—oz)a% —21noz6%.

This Lie algebra is spanned by X; and Xj since [X;,Xs] = X;. The commutation
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relations for these generators are given in the form of table 4. The commutator table

describes the structure of the associated Lie algebra in a convenient way [8].

X5, X5 | X | X

X4 0 | Xy

Xy Xy 0

Table 4: Commutator Relations

Since [X1, Xa] = X3, we begin the reduction using X;. Now

X -_— - — 4.49
! 20ac Ow 2 ow' ( )
The invariant of the group generated by X; M are

u=a’" and v=ow (4.50)

A second-order differential invariant by use of a theorem of Lie can be expressed in

terms of v,u and 2. This reduces the ODE (4.40) to the following ODE

dv -1
ot 4.51
du 2+v ( )

that admits Xg written in (u,v) coordinates. The solution of the first-order equation

(4.51) is easily seen to be:
1
2v + 51)2 +u=A (4.52)
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where A is a constant. The Substitution of u = a?e® and v = aw’ results in
R 2w
20w’ + FE W +a‘e”=A (4.53)

We use an invariant to integrate this equation. This is readily seen to be a variable

2

in the form u? = a?e”. We get

?u? = —2u® + 4u? + 2uP A (4.54)

which is variables separable.
case (Ib)

a; =0,9 =asu

implies that ¢ = Au. Also, from equation (4.20) we observe that
ao(vAuf, + 2 fr — v A — 2 f A+ apAgu — TanAgu?) =0 (4.55)

Differentiating (4.55) three times with respect to ‘u’ we obtain

ufuuuu o _2A + Tt
fuuu B A

= (). (4.56)

From (4.56) we get

_ ﬁucl-i—?) CQUQ
flw) = (c1 4+ 1)(e1+2)(e1 + 3) Ty et (4.57)
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Comparison With Special Case [4]:

We note that if 3 =0,Cy =2,C3 = —1,C4y = 0, and as = 1 then,

f(u) =u(u—1) (4.58)

g(u) =u (4.59)

This is the case discussed in (Bokhari, Mustafa and Zaman) [4]. We find that the

determining equations (4.8-4.14) reduce to those in [4]. The solution is given by

u(z, 1) = Coe'/Crlo(V2x) + ho(V22) (4.60)
Let us now continue with the general case we are considering, we note that
7, = —A(C) + 2), (4.61)

Differentiating (4.61) with respect to x we observe that A, = 0 implies that A = A(t)

only. With this in mind, we have
= —(Cy +2) / A(t)dt + Cs, (4.62)

Substituting (4.62) and (4.57) in (4.55) we obtain,

6u01+3 Bucl+3 Cou?
A <<Cl+1)<cl+2) +Cou® + C3“> - Al +2) ((cl+1)(01+2)(01+3) +55 + Csut C4>

ﬂucl+3 C u2 .
— Ay — A((C1+1)(C1+2)(C’1+3) + == + Cyu+ Cy) = 0.

(4.63)
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At this stage we compare the coefficient of u?, v and 1 to get:
u?: C1Cy + Cy =0 implies that Cy =0 (since C; # —1)
u:2AC; + AC1C5 + A = 0,

1:(C} +3)Cy = 0. implies that Cy = 0 (since Cy # —3)

In the light of above we find that

A — 0567(014’2)0:%

5u01 +3

flu) = (Cr + 1)(Ch +2)(Ch + 3)

+ Cgu

Substituting in (4.15) we get

1
§ = —505(01 + 1) (ISl 4 G,

(4.64)

(4.65)

(4.66)

Using above in (4.13) we obtain (C; + 2)C3 = 0 which implies that C5 = 0.(since

Cy # —2). Thus,
A=Cs
£ =—1C5(Ch + D + Cy
7 =—C5(Cy + 1)

¢=C5U

(4.67)

Substituting in (4.12) we observe that C5 = 0. Therefore, we obtain the following

system:
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£€=0 (4.68)

T=c
»=0
where
6u01+3

fu) =

((Cr+1)(C1+2)(C1 +3))

and C is an arbitrary constant not equal to -1, -2 and -3. The symmetry generator

with the above system (4.68) is given by

B,
X = (4.69)

This is the same symmetry generator (4.22) which has the new similarity variables «

and w where

a=z, wla)=u (4.70)

The new similarity variables transform the generalized Fisher equation (4.1) to the

following ordinary differential equation

du 1 du, 1ldu 1
I A 4 = =0 4.71
dx? u(dx) + x dx + Oég'uf(U) ( )
where
ﬁu01+3
f(u) = (4.72)

(C1 +1)(Cy +2)(Cy +3)
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In principle we anticipate that f(u) may also be given functional values such as a

2

constant, u or u®. However, from equation (4.72) we note that these values of f(u)

are not permissible because at ¢ # —1,—2 and —3 the equation (4.72) is not valid.
In order to discuss the solution of our generalized Fisher equation for these three
values of f(u), the only route available is to start solving the original determining
equations with (1): g = asu, and f(u) = constant, (2): g = asu, and f(u) = u and

2

(3): g = awu, and f = u®. Using the procedure followed earlier the solution of the

determining equations can be easily found in all three cases. The solution of the third

case is given by

u(z,t) = (C1J(0, \/O%x) + CLY (0, 3x))

(&%)

[V

Case 11
In order to proceed with the classification and make a general statement we consider

equation (4.16) and the above conditions to obtain

(2A — 28, + 7¢) guu + (At + B) gy = 0 (4.73)

and assume gy, = 0. This requirement yields g = a; + asu + azu?. From equation

(4.73) and using this condition, we get

2A—2§I+Tt:O

From above conditions, we observe that equation (4.73) is identically satisfied. If we
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substitute the above in (4.15) we obtain that B = % implying

¢:Aw+£%) (4.74)

We note that (4.15) is now identically satisfied. Substituting these values in equation

(4.14) results in the expression (g — 4aya3)A = 0. This leads to the following three

cases
(@) A=0, (b))  ay—4dajaz =0, (¢)  both.
Case (Ila)

In this case (4.73) becomes &, — %Tt = 0 while (4.74) gives ¢ = 0. It can be easily
seen that (4.18), (4.15) and (4.14) are identically satisfied. Substituting the above
conditions in (4.13), we get 7, = 0. This implies that £, = 0 and 7 = C. Substituting
these results in (4.12) we obtain

¢ = Chest. (4.75)

Since &, = 0 then £ = 0. Therefore, we obtain the following system:

=0 (4.76)
T=C
¢ =0.
We construct one infinitesimal symmetry X from the system (4.76) given by X = %.
The corresponding characteristic equation is,
dr dt du
TS1 0 (4.77)



dt:du

Using relation %’3 = % gives new similarity variable a = z, while the relation § =

gives the second similarity variable u = w(«). In these similarity variables the partial

differential equation (4.1) reduces to:

d?>w Qo + 2003w dw

1 dw 1
e

o do a1 + aw + azw?

)? +

do?  “ay + agw + agw? flw)=0  (4.78)

Since u = w(«a), x = a and f(u) = f(w), then (4.78) takes the form

d*u g + 2031 du., 1du 1
dx? a1 + aw + azu?’ N dr x dx a1 + asu + azu?

)f(u) =0 (4.79)

If we choose @y = as = 0 and f(u) = »® and multiply by u the equation (4.79)

becomes
d*u du udu 1
au @y, udw 1o 4.80
udx2+ (daz) +xda:+a3u ( )
Let W = u? then,
dw 1 du
- - = 2= 4.81
dz 3u udx (4.81)
W 1 d*u du
= y—— 4 2(250)? 4.82
dz? 3u udx2 + (dx) (4.82)

Substituting in the above equation we obtain the following equation

W  1dw 3
—+—W =0 4.83
dx? + T dx + o3 ( )

which is the Bessel equation of order zero and has the following solution

\/iaigx) + CLY (0, ﬁx) (4.84)

x)=C )
W(z) J(0 N
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Since W = u? then,

W=

U(ZL‘, t) = (OlJ(O, ﬁx) + CQY(O,

T z))

(4.85)

HE

Case (IIb)
A=& =51, g=oa+autogu’, of —doaz =0, ¢ = A(u+ 32). Here we
note that equations (4.18) and (4.15) are identically satisfied. Substituting the above

conditions in (4.14) we get:

Ag=0 (4.86)

From the above equation there arise three cases as before, namely,

(L) A=0, (m) ¢g=0, or(n) both.

Case (IIbL)
In this case, A = 0, we have the system given by (4.76) and gives the same solution

as in case (Ila).

Case (ITbm)
For g = 0, the partial differential equation (4.1) degenerates to a first order equation
which is of no interest for our work. Similarly, the case case ((IIbLn)) is same as the

above and is of no interest again.
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Case III
In order to make more general classification we differentiate (4.73) once again with

respect to u and obtain

and assume ¢,y = 0 implying that ¢ = o + asu + azu? + agu® = 0. From equation

(4.87) and using this conditions, we get

From equations (4.14 - 4.15), and using above conditions, we get

—2,+1 = 0 (4.88)
¢ =0 (4.89)

Substituting the above results in (4.12-4.13), we get £ = 0 and 7 = C. Therefore, we

obtain the following system

§=0 (4.90)
T=C
¢=0



As we discussed before this system gives us new similarity variable o = x and u =
w(«). In these similarity variables the partial differential equation (4.1) reduces to

d*u Qg + 203U + 3au? du., 1du 1

da? o + asu + asu? + auud’ N do z dx a1 + apu + asu? + agud

u) =0
(4.91)
If we choose a; = aps = a3 = 0 and f(u) = u* and multiply by u the equation becomes

d*u du wdu 1
()2 —— 2 = 4.92
udx2 + (d:v) + x dx + a4u ( )

Let W = u* then,

daw 1 du
W 1 d*u du

Substituting (4.93-4.94) in (4.92) we obtain the following equation

W 1dw 4
t-—t—W=0 (4.95)

de?  xdr oy

which is a Bessel equation of order zero and has the following solution

2 2

g g
Since W = u* the solution becomes

2 2

N

u(z,t) = (C1J(0, —=z) + C2Y (0, —=x))

Ner Ner (4.97)

where J and Y are Bessel functions.

63



Case IV

If we proceed the manner above, we obtain

((n = 1A =28 + ) guuu...u, + (Au + B)guun...uy, = 0 (4.98)

and assume Guuu..uu = 0. This requirement yields g = aq + asu + agu? + ... + a,u™ L.

1

From equation (4.98) and using this condition, we obtain

(n—1)A-2,+7=0

Substituting the above conditions in (4.15-4.14-4.13-4.12) we get the same system

(4.90) which reduces the PDE to the following ordinary differential equation

If we choose oy = a9y = ...

(4.99) becomes

Let W = u™ then,

d?u az+203ut3ouu’ 4.+ (n—Danu™ 2\ rdu\2 | 1du
+ ( a1tagutasu?tagud+..+anunr—1 )( ) + z (499>

dx

+(

d“u

aw
dr nu™?
PW 1

dzr? nun—2

1 JR—
a1+a2u+a3u2+...+anu“—1)f(u> =0

= a1 = 0, f(u) = v" and multiply by u, the equation

du udu 1

— 4+ —u? = 4.1
popn + anu 0 (4.100)
du
- y— 4.101
U ( )
d*u du
— e —1)(=)2 4.102
u g+ (= 1) (1102)



Substituting equations (4.101-4.102) in equation (4.100) we obtain the following equa-

tion

dPW  1dW n
——+—W =0 4.103
dx? + x dx + O ( )

which is a Bessel equation of order zero and has the following solution

W) = (0,2 2) + oy (0,

Jan

\/ﬁ
J/an

x) (4.104)

Since W = 4™ the solution becomes

n an

3=

u(x,t) = (C1J(0,

z)) (4.105)

This is the general solution where g(u) of the form g(u) = a,u™ ! and f(u) of the

form f(u) =u™

In the light of above results we conclude our work in the form of the following theorem:

Theorem 4.1

In the classification of generalized Fisher equation (4.1) with an in-homogenous term

‘f(u)” on its right hand side, the classification of ‘f(u)" appears as follows:

(a). A complete classification of ‘f(u)” in terms of explicit function of ‘u’ in the
generalized Fisher equation can be achieved when ‘g’ is a linear function of

‘u’.

(b).  when g(u) = a,u™* and f(u) = u™ the solution is given by

u(z,t) = (CLI(0, [ —2) + CoY (0, | | )

Qn Qn

3=
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where J and Y are Bessel functions of order zero of first and second kind respectively.
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Chapter 5

Conclusion and Future Work
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We have studied a generalized Fisher equation in cylindrical polar coordinates

ou 10 ou
Er ;a—x(w(u)%) = f(u)

to solve from the Lie symmetry point of view. In order to perform the Lie symmetry
analysis of the equation, we have assumed that the equation possesses a radial sym-
metry so that the Fisher equation remains a (1 + 1) partial differential equation. We
conclude that the g(u) representing diffusivity can be classified in terms of powers of
u. For a quadratic inhomogeneous term the g(u) turns out to be an arbitrary function
of u leading to a nonlinear ordinary differential equation.

In future study of the model it is recommended that a complete symmetry analysis
of the generalized Fisher equation without radial and azimuthal symmetry is per-
formed. It is hoped that this will allow the equation to admit additional symmetries
and study of solutions under these symmetries may result in further insights in the

whole reaction-diffusion process.
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