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Chapter 1

Introduction

Wireless devices such as mobile phones have been gaining more and more popu-

larity mainly because of their mobility. Though voice was the only service avail-

able on early phones, more recently internet and multimedia services including

pictures and videos have started to emerge. The demand for these services is

on the rise. At the same time wireless networks still have to compete with their

wired counterparts mainly because of their high data rates. Wireless networks

are attractive for their mobility, but the high data rates available on the wired

networks still seem to be unreachable in wireless networks. A requirement for

high data rates directly translates into a wider bandwidth requirement which is

not feasible because of the limited radio spectrum. The increasing adoption of

multimedia and demand for mobility in computer networks have resulted in a

huge wireless research effort in the recent years. Given the limited radio spec-
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trum and unfriendly propagation conditions, designing reliable high data rate

wireless networks has lots of problems.

The maximum capacity of a radio channel with a given bandwidth is lim-

ited by the Shannon formula [1]. The Shannon limit gives the maximum limit on

transmission rate but does not say anything about how to achieve that limit. Var-

ious techniques have been proposed to counter the problem of propagation con-

ditions, and to achieve data rates that are very close to the Shannon limit. One of

these techniques is using multiple-input multiple-output (MIMO) systems which

uses antenna arrays at both the transmitter and the receiver. Wolniansky et al.

has proposed in [2] the well-known MIMO scheme, known as vertical Bell Labs

space-time (VBLAST). In VBLAST architecture, parallel data streams are sent via

the transmit antennas at the same carrier frequency. Given that the number of

receive antennas is greater than or equal to the number of transmit antennas, the

receiver employs a low complexity method based on successive interference can-

cellation (SIC) to detect the transmitted data streams. In this manner, VBLAST

can achieve high spectral efficiencies without any need for increasing the sys-

tem’s bandwidth or transmitted power.

While MIMO systems such as VBLAST can improve the system capacity greatly

[3], it is difficult to implement antenna arrays on hand-held terminals due to size,

cost and hardware limitation[4], also it has poor energy performance and does

not fully exploit the available diversity. In order to overcome these problems,
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Alamouti has presented in [4] a new scheme called space-time block codes (STBC)

with two transmit and one receive antennas that provides the same diversity or-

der as maximal-ratio receiver combining (MRRC) with one transmit and two re-

ceive antennas. This scheme can be generalized to two transmit antennas and M

receive antennas to provide a diversity order of 2M. Similar work was considered

in [5] where space-time trellis codes (STTC) were used as the component codes.

With the tempting advantages of VBLAST and STBC, many researchers have at-

tempted to combine these two schemes to result in a multilayered architecture

called MLSTBC [6] with each layer being composed of antennas that correspond

to a specific STBC. This combined scheme arises as a solution to jointly achieve

spatial multiplexing and diversity gains simultaneously. With MLSTBC scheme,

it is possible to increase the data rate while keeping a satisfactory link quality in

terms of symbol error rate (SER) [7].

Another powerful scheme called beamforming, has been combined with ML-

STBC in [8] to produce a hybrid system called the layered steered space time

codes(LSSTC), in which beamforming was added to MLSTBC to improve the per-

formance of the system by focusing the energy towards one direction, where the

antenna gain is increased in the direction of the desired user, whilst reducing

the gain towards the interfering users. In multi-user systems, scheduling can

be used to increase the system capacity as in [9], where it was shown that the

independence of fading among users in multi-user environments that results in
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multi-user diversity is capable of increasing the system capacity. The outline of

this chapter is as follows. Section 1.1 addresses a general background on wireless

channels, and starts by discussing the characteristics of radio channels such as

attenuation, multipath, the Doppler effect and fading, followed by an introduc-

tion to transmit diversity techniques. A detailed literature survey on the subject

is presented in Section 1.2. In Section 1.3, we list the thesis contributions. Finally,

Section 1.4 gives an outline for the rest of the thesis.

1.1 Background

1.1.1 Propagation Characteristics of Wireless Channels

In a real environment radio waves from mobile devices travel through the air,

buildings and other obstacles. Reflections from different objects cause the waves

to travel via multiple paths to the receiver. The movement of objects in the chan-

nel or that of the receiver cause an apparent shift in the carrier frequency. A reli-

able communication system tries to overcome or take advantage of these channel

perturbations. In the following subsections, we will discuss some of those per-

turbations as follows.
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Attenuation

Attenuation is the loss of the average received signal power [10]. Factors respon-

sible for attenuation are the distance between the transmitter and receiver, the

obstacles in between, their physical properties, etc. The presence of very large

obstacles such as buildings, hills, etc. causes another type of attenuation known

as log-normal shadowing [11]. Geometric models have been proposed to explain

these large-scale power losses but statistical models are often used because of

their accurate description of particular real environments. Statistically, the atten-

uation is considered as a random variable having a well known distribution. A

common formula used to model attenuation is [3]

PL(d)[dB] = PL(d0)+10n log
(

d
d0

)
+Xσ (1.1)

where Xσ is a zero mean Gaussian distributed random variable (in dB) with stan-

dard deviation σ (also in dB) and accounts for the log normal shadowing effect.

The path loss at any arbitrary distance d is statistically described relative to the

close-in reference point d0, the path loss exponent n, and the standard deviation

σ. The exponent n can have values from 1.6 (in indoor line of sight) up to 6 (in

highly builtup cites).
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The Doppler Effect

When there is a relative movement between the transmitter and receiver, the car-

rier frequency, as perceived by the receiver, gets shifted by some amount; this

is known as the Doppler effect [3]. The amount of frequency shift depends on

the relative mobility, the direction of movement and the frequency of the car-

rier. Another parameter, often used to characterize the time varying nature of the

channels is the coherence time which is related to the Doppler shift [3].

Multipath Fading

Radio waves traveling along different paths arrive at the receiver at different

times with random phases and combine constructively or destructively. The net

result is a rapid fluctuation in the amplitude of the received signal in a short

period of time or distance travelled. However, the large-scale average path loss

remains constant. Multipath propagation had previously been considered a prob-

lem, but in MIMO systems it is exploited to achieve higher capacity. The multi-

path structure of a channel is quantified by its delay spread or by its root-mean-

square (RMS) value [3]. A channel having delay spread less than the symbol

period of transmission offers frequency-nonselective attenuation, and a larger

value of delay spread means there is a frequency-selective variation in the chan-

nel. Another parameter, the coherence bandwidth is also often used to describe

the frequency selectivity [3].
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The result of multipath and the Doppler shift is fading. Fading is the rapid

variation in signal strength over a short distance or time interval where the large

scale attenuation is constant. A fade can be flat or frequency selective depending

on the multipath structure of the channel, and slow or fast depending on the

Doppler effect.

Slow fading describes the channel where the symbol transmission time Ts is

less than the channel coherence time. In this regime, the amplitude and phase

change imposed by the channel can be considered roughly constant over the pe-

riod of use. Slow fading can be caused by events such as shadowing, where a

large obstruction obscures the main signal path. The amplitude change caused

by shadowing is often modeled using a log-normal distribution with a standard

deviation according to the log-distance path loss model. Fast fading occurs when

the coherence time of the channel is small relative to Ts. In this regime, the am-

plitude and phase change imposed by the channel vary considerably over the

period of use.

A fade can be flat or frequency selective depending on the multipath struc-

ture of the channel [3]. In flat fading, the coherence bandwidth of the channel is

larger than the bandwidth of the signal. Therefore, all frequency components of

the signal will experience the same magnitude of fading. In frequency-selective

fading, the coherence bandwidth of the channel is smaller than the bandwidth of

the signal [12]. Different frequency components of the signal therefore experience
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decorrelated fading.

Fading Distributions

The fading effect is usually described statistically using the Rayleigh distribu-

tion. The amplitude of the sum of two quadrature Gaussian signals follows

the Rayleigh distribution whereas the phase follows a uniform distribution. The

probability distribution function (PDF) of a Rayleigh distribution is given by

p(r) =
r

σ2 exp
(
− r2

2σ2

)
, (1.2)

where σ2 is the average power of the received signal. In environments where

the chance of a line-of-sight path is high, the fading follows a Ricean distribution

with PDF given by:

p(r) =
r

σ2 exp

(
−
(
r2 +A2)

2σ2

)
I0

(
Ar
σ2

)
, (1.3)

where A is the peak amplitude of the dominant path and I0(.) is the modified

Bessel function of the first kind and order zero. Figure 1.1 shows the PDFs of

Rayleigh and Ricean distributions.
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Figure 1.1: PDFs of Rayleigh and Ricean distributions.

1.1.2 Diversity

Diversity is a powerful technique that provides link improvement at low cost. In

fading channels, there is a high probability that a path will be in a deep fade at

a time instant, thus the path will suffer from errors. A natural way to suppress

these errors is to reduce the probability of signal fading at any time instant. This

is done by providing multiple independently faded versions of the transmitted

signal (diversity branches) at the receiver in order to produce a better version

of the transmitted signal, thus ensuring more reliable communication as long as

one of the received versions is not in a deep fade. Consider two independently

faded versions of the transmitted signal. The probability distribution of the fad-

ing determines the probability of outage, which is defined as the probability of

the signal envelope falling below a certain threshold [3]. If the probability of sig-
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nal outage i.e., P(ri < Rth) = 0.2, i = 1,2 then the probability that both signals will

fade simultaneously is P(r1 < Rth,r2 < Rth) = 0.22 = 0.04.

There are many ways of combining the diversity branches [3]. In selection diver-

sity (SC), the best diversity branch is selected for detection. In maximal ratio com-

bining (MRC), the signals from each diversity branch are aligned in phase, and

weighted by their channel gains before adding them coherently. If the weights

used in MRC is set to be the same for all the branches, then the resulting com-

bining scheme is called equal gain combining (EGC) [13]. Different diversity

branches can be provided using one of the following techniques:

• Time diversity: Because the channel characteristics change with time, an-

other replica of the signal can be sent after a certain time interval. This time

interval must be longer than the coherence time of the channel [3]. This

time separation is required in order to ensure that the channel characteris-

tics have changed enough so that they can be uncorrelated. While highly

effective in fast fading environments, time diversity is not as effective in

slow fading channels unless a large decoding delay can be tolerated. A cod-

ing structure known as interleaving is often used to realize time diversity

where the receiver knows the code before any transmission takes place.

• Frequency diversity: In this technique, the signal is transmitted over more

than one frequency which are separated by more than the channel coher-

ence bandwidth which is the bandwidth over which the channel response
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is highly correlated [3].

• Space diversity: Here, multiple antennas can be used at the transmitter

and/or the receiver. The separation between the antennas must be more

than the coherence distance, which is about half of the signal’s wave length

[14]. In this case, the channel gains between different antenna pairs fade

independently and independent signal paths are created at the receiver.

1.2 Literature Survey

1.2.1 Multi-Antenna Systems

Recent research on wireless communication systems has shown that using mul-

tiple antennas at both the transmitter and the receiver offers the possibility of

higher data rates compared to single antenna-systems. The information-theoretic

capacity of MIMO channels was shown to grow linearly with the minimum of

the numbers of transmit and receiver antennas in rich scattering environments,

and at sufficiently high signal-to-noise (SNR) ratios [15]. However, for single-

input single-output (SISO) channels, the capacity increases logarithmically with

SNR. Thus, a significant capacity increase can be achieved using MIMO systems

without any increase in transmit power or expansion in the bandwidth [16]. In

the following, we will review some of the major contributions in multi-antenna

systems.
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Diversity-Based Systems

In 1998, Alamouti designed a simple transmission diversity technique for sys-

tems having two transmit antennas called space-time block codes (STBC) [4].

This method provides full diversity and requires simple linear operations at both

transmission and reception side. The encoding and decoding processes are per-

formed with blocks of transmission symbols. The Alamouti’s simple transmit

diversity scheme was extended in [17] and [18] with aid of the theory of orthogo-

nal designs to larger number of transmit antennas. These codes are referred to in

the literature as orthogonal space-time block codes (OSTBCs).

Multiplexing-Based Systems

The Bell Labs Layered Space-Time Architecture (BLAST) is a narrowband point-

to-point communication architecture for achieving high spectral efficiency. BLAST

architecture was one of the first spatial multiplexing systems; it is also called lay-

ered space-time (LST).

Flat fading MIMO channels having multiple transmit and receive antennas

were shown to offer relatively huge spectral efficiencies compared to SISO chan-

nels [19, 20]. To achieve this capacity, diagonal BLAST (DBLAST) was proposed

by Foschini in [19], which utilizes multi-element antenna arrays at both ends of

wireless link. However, the complexity of D-BLAST implementation led to the

vertical BLAST (VBLAST) which is a modified version of BLAST [2]. Two nulling
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criteria, namely zero-forcing (ZF) [21] and minimum mean squared error (MMSE)

are utilized as detection algorithms. Originally, the BLAST detection scheme was

based on a successive interference cancellation (SIC) [2, 21, 22], and later on, a

parallel interference cancellation (PIC) scheme was proposed in [23].

BLAST detectors including both SIC and PIC suffer from the error propaga-

tion problem, so that they lead to the poor energy efficiency which can be im-

proved if the previously detected layers were perfectly canceled because the fol-

lowing layers depend highly on the result of the previous detected signals. The

error propagation problem of BLAST detectors can be reduced with channel cod-

ing and interleaving [24, 25]. In [6], decoding algorithms for multi-layered space

time block codes (MLSTBC) were compared. In addition, a scheme that combines

serial group interference cancellation (SGIC) and parallel group interference can-

cellation (PGIC) was proposed. It was shown in [6] that the optimal performance

of MLSTBC can be achieved by using sphere decoding (SD).

Beamforming-Based Systems

In adaptive antenna systems multiple antennas are used to receive (or transmit)

the same information. Instead of using only one antenna to receive (or transmit)

the radio signal, combinations of multiple antennas output (or input) are used

to focus the energy towards one direction. The adequate combination of the sig-

nals received by the different antennas results in a better link quality for a given
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transmitted power, or a lower transmitted power required for a given link qual-

ity [26]. The same concept of adaptive antennas can be found under different

names such as smart antennas, or adaptive beamforming [27]. The basic concept

behind adaptive antennas is to change the standard antenna that has an omnidi-

rectional radiation pattern for a new one with a directive radiation pattern that is

continuously adapted to the environment [26].

Engineers in the second-generation cellular systems were aware of the capac-

ity gain of using directional antennas and they mostly implemented three direc-

tional antennas covering a 120◦ sector each instead of an omnidirectional unique

one [27]. The utilization of three sectors multiplied the cell capacity by a factor

close to three. In this case three is an upper bound for the capacity improve-

ment. In a general case with N sectors, the upper bound for the capacity gain is

N [26]. Actual figures are always lower than that, but for the case of three sectors

of 120◦-sectors and uniformly distributed users the actual capacity gain is quite

close to the upper bound [26]. Adaptive antennas go a step further; they provide

as many radiation patterns (sectors) as users in the cell. Each radiation pattern,

usually named as beam, is steered toward one user to maximize its signal-to-

Interference plus noise ratio (SINR).Antenna Arrays (AAs) do not maintain fixed

beams, but they are adapted continuously to match the dynamics of the envi-

ronment. Because of its capability of following the users and maximizing their

quality of service (QoS), AAs are also referred to as smart antennas [27]. Because
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of the duality of the antennas, which states that the transmission and reception

behaviour of an antenna are equal, adaptive antennas can be used in transmission

or reception [26].

Many authors have contributed to the field of adaptive antenna arrays for

wireless communications. Godara’s papers [28, 29] form an excellent review and

introduction to the topic in a comprehensive way with many references. The pa-

per by W.F Gabriel [30] provide excellent introductions to the general theory of

adaptive antenna arrays. A lot of research is going on in implementing smart

antennas in the existing and future generations of mobile communication sys-

tems. In [31] a brief description of the technical challenges facing wireless ser-

vices providers is presented, along with that, historical attempts to address the

challenges and proposing smart antenna technology as a solution for them were

presented. In [32] some experimental results demonstrating the efficacy of smart

antenna technology involving spatial domain multiple access SDMA in improv-

ing the capacity and coverage is given. The use of spatial and temporal process-

ing in improving the performance in mobile radio communications is presented

in [33, 34].

The application of smart antennas in wireless systems using CDMA1, GSM

and IS-136 in different environments and performance analysis is presented by

Winters in [35]. Rappaport and Liberti Jr. in [36] gave in-depth concepts on the

1Code Division Multiple Access
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use of smart antennas in IS-95 and third-generation CDMA applications. A thor-

ough investigation of the comparison of tracking beam array and switching beam

array is done by Choi et al. in [37].

Various beamforming and null-steering strategies have been proposed to com-

bat interference. One of the earliest forms of quasi-adaptive generic arrays is the

side lobe canceller (SLC) presented in [38]. Sng et al. in [39] suggested a new gen-

eralized side lobe canceller (GSC) beamforming structure, in which the weight

updates are calculated based on the steering vectors responding to be DOA2 of

the jammers. This research was further extended in [40] to reduce the adaptive

dimension of the array. Zooghby et al. in [41] carried out multiple source tracking

with neural network based smart antennas. The proposed neural multiple source

tracking (N-MUST) algorithm is used to perform DOA, and the experimental val-

idation of this proposed work is presented in [42]. Zetterberg and Ottersen in [43]

investigated the spectral efficiency gain using transmit antenna arrays at the base

station. The proposed system estimates the angular positions of the mobiles from

the received data and allows multiple mobiles to be allocated to the same chan-

nel within the cell. Ponnikanti and Sali [44] devised an effective adaptive antenna

scheme to prevent the desired signal cancellation in optimal weight vector com-

putation of the beamformer. Kozick et al. [45] investigated the effect of steering

the individual element patted along with adjusting complex weights to improve

2Direction of Arrival
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the performance of adaptive arrays. Choi et al. in [46, 47] proposed a novel adap-

tive beamforming algorithm for a smart antenna base station system (SA-BTS).

The new technique is based on the eigen-space method for computing the op-

timal weight vector which does not degrade the receiving performance even in

wide angle-spread circumstances.

Hybrid Systems

Several systems that combine two or more MIMO schemes have been proposed

in order to satisfy certain tradeoffs.

In [48], Meixia et al. has implemented a combination of BLAST and space-time

coding (STC) for MIMO systems which they called generalized layered space-

time coding (GLST). In [48] post-ordered detection algorithm is introduced based

on the generalization of the original BLAST ordering detection algorithm. The

performance is analyzed through a comparison to that of pre-ordered decoding

with and without power allocation. In [6], the combination of V-BLAST and STBC

is referred to as multi layer space-time block codes (MLSTBC). The basic idea of

this scheme is to partition the transmit antennas into different groups and assign

each group to a layer of VBLAST. Within each group, the signals are space-time

block coded. So the transmit diversity of the layered architecture increases. Also,

exploiting the orthogonal nature of STBC, the number of received antennas can

be reduced compared to traditional VBLAST. The combination of VBLAST and
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STBC has been also proposed in [49], in which STBC is associated with each layer

of VBLAST as a way of improving its energy efficiency. At the receiver, a reduced

number of antennas are used to take advantage of the delay structure of STBCs.

Chong et al. in [7] considered the combination of VBLAST and STBC by propos-

ing an algorithm that combines the algorithm of successive interference cancel-

lation zero-forcing (SIC-ZF) and successive interference cancellation zero-forcing

with maximum aposteriori probability (SIC-ZF-MAP). The proposed algorithm

(SIC-ZF-MAP) reduces the complexity if compared with using the individual al-

gorithms alone.

In [5], Tarokh et al. proposed using a combined scheme that is called multi-

layered space-time trellis code (MLSTTC), in which space-time trellis code (STTC)

is used in each layer of VBLAST with different transmission power. In other

words, the decoding order is pre-determined based on the power level. One ad-

vantage of using MLSTBC over MLSTTC is that the orthogonal structure and the

short code length can be exploited at the receiver to reduce the minimum required

number of receive antennas [50]. For MLSTTC [5, 51], the number of receive an-

tennas should be at least equal to the total number of transmit antennas, while

for MLSTBC, it should be at least equal to the number of layers [51].

In [52], the authors proposed a scheme that combines VBLAST with beam-

forming, this is carried out by using an L-element beamformer with each layer of

VBLAST. This scheme utilizes the uplink direction of arrival (DOA), and it was
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shown that this scheme provides (10log(L) dB) performance enhancement to the

traditional VBLAST scheme.

Recently, many researches have focused on combining beamforming and STBC

techniques [53, 54, 55]. The combining techniques usually require more than one

AA at the transmitter. The transmitted signal is encoded by STBC and precoded

by beamforming weights independently before transmitting on different antenna

arrays [27]. One way to obtain the beamforming weights is through eigen decom-

position of the estimated channel covariance matrix as in [53]. Another way is to

utilize the direction of arrival information (DOA) to calculate the beamforming

weights as conducted in [53, 54]. In addition, a transmission scheme that effec-

tively combines conventional transmit beamforming with orthogonal spacetime

block coding was proposed in [56], in which the side information was utilized for

improving a pre-determined orthogonal STBC by means of a linear transforma-

tion that leads to the optimal solution.

Upon Combining beamforming and STBC, it was able to achieve both diversity

and beamforming gain that can improve the system performance but it cannot

improve the system spectral efficiency, since these two techniques are mainly

meant to combat fading. Therefore, there is a need for a scheme that adds spec-

tral efficiency improvement to the combined system of STBC and beamform-

ing, which was achieved in [8], namely, a multi-functional MIMO scheme was

proposed in [8], that combines the benefits of STBC, beamforming, as well as
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VBLAST to further enhance the system performance and maximize the coding

advantage of the transmission scheme. In addition, the capacity limits for this

novel scheme were derived in [8].

Analytical performance evaluation of VBLAST systems employing zero-forcing

successive interference cancellation (ZF-SIC) without ordering and using BPSK

over Rayleigh-fading channel was presented in [57]. Further, a general recursive

procedure to calculate the bit error rate (BER) of each sub-stream with arbitrary

number of transmit and receive antennas was proposed. Similar work but with

different approach has been conducted in [58]. It would be interesting and novel

to extend this analysis to the case of LSSTC.

1.2.2 Scheduling

In systems with a single base station antenna, it was shown in [59] that transmit-

ting to the user with the strongest channel at any given time achieves the sum rate

capacity, which is the sum-of rates of all the users [59]. The resulting multi-user

diversity is expected to be present as well in the multiantenna case. In [9], multi-

user diversity resulting from independence of fading among users in multi-user

environments was shown to be capable of increasing the system capacity. Moti-

vated by information-theoretic results, an approach to increase the throughput of

multi-user systems is proposed in [60] that takes advantage of the independence

of the fading statistics of the different users. This requires a packet scheduler to
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preferentially allocate radio resources to users in good channel conditions. Two

critical targets of packet scheduling are to maximize the system rate and to offer

fairness among users.

In [9], the scheduling scheme maximizes the system capacity through the use

of multi-user diversity. Specifically, each spatial channel is allocated to a user

with the best channel condition for each time slot. Therefore, some users in ad-

verse channel conditions may not be served, causing unfairness among users.

In [61], the round robin (RR) scheduling scheme was studied for MIMO cellular

systems. In RR scheduling channel is assigned in a cyclic fashion regardless of

the channel conditions, and thus achieves fairness among users. However, the

RR scheme does not use multi-user diversity, resulting in the same capacity as a

single user system. In order to exploit the multi-user diversity and at the same

time maintain fairness across the users, two other scheduling schemes have been

proposed. In [62] the antenna assisted round robin scheduling (AA-RR) scheme

has been proposed, which is an improved version of RR scheme that exploits

multiple antennas to achieve a diversity effect from multiple users.

In situations where minimal channel variation is experienced, opportunistic

beamforming (OBF) has been proposed in [63] to create artificial channel varia-

tion where it might not otherwise exist. Proportional fair (PF) scheduling was

also investigated in [63] as a way to ensure that users are treated fairly over

some time interval. The PF scheduler assigns a user for transmission when its
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instantaneous channel capacity is high relative to its average channel condition.

As such, the benefit of multi-user diversity can be exploited and fairness among

users can be maintained. Some work has been done in extending the opportunis-

tic beamforming idea to the case where base station and mobile stations all have

multiple antennas [9], but this has not been yet studied extensively. Multiple ran-

dom beams are used in [64] with limited feedback to communicate with many

users. Further work on feedback reduction has been conducted in [65], where it

is shown that the feedback rate can be minimized without losing the gains due

to adaptive modulation and multi-user diversity. Along with that the authors

in [65] present an in-depth study of the literature in the area, and evaluate the

performance of several state-of-the-art channel quality feedback schemes.



23

1.3 Thesis Contributions

The contributions of this thesis can be summarized as follows:

• We investigate the analytical error performance of single user LSSTC, and

recursive expressions for the probability of error is obtained starting from

previously obtained results for VBLAST; our work extends that work to the

LSSTC case where beamforming and STBC are involved. The analytical

results are supported by simulation results. In addition, a formula for the

instantaneous capacity of single-user LSSTC is derived.

• We analyze the diversity, multiplexing, and beamforming tradeoff curve

for LSSTC. This curve relates these three extremes, where increasing one

parameter causes the other parameters to decrease and vice versa.

• We propose a multi-configuration transmission scheme based on LSSTC

and VBLAST systems. This scheme suggests the configuration and the

modulation scheme in order to improve the performance. The main results

of this study showed that combining beamforming, STBC, and VBLAST has

better performance than VBLAST at high SNR range.

• We suggest a power allocation scheme for LSSTC that is based on the results

of [66] for VBLAST. Also we obtain formulas for the symbol error rate for

M-ary PSK and M-ary QAM. This system enhances the performance and

capacity by assigning power to the layers in an optimum manner.



24

• Finally, we evaluate LSSTC in multi-user environments. This is done by

comparing the capacity and the probability of error for several combina-

tions of algorithms and criteria for scheduling the users’ data. Also we

derive a formula for the PDF of the maximum pre-processing SNR for a

Greedy-based multi-user LSSTC.
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1.4 Thesis Outline

In Chapter 2 we describe a number of multi-antenna systems, namely, STBC,

VBLAST, and beamforming. The system model of each of those systems is in-

troduced with necessary details.

Chapter 3 introduces the system model of single-user LSSTC, where we show

in detailed mathematical steps the benefit of combining STBC, VBLAST, and

beamforming. Also we find formulas for the instantaneous capacity and the prob-

ability of bit error. Along with that we discuss the tradeoff between diversity,

multiplexing, and beamforming.

In 4 we suggest a modified scheme for LSSTC that enhances the capacity by

assigning power to the layers in an optimum manner. We investigate the per-

formance of this scheme for different modulation schemes, namely, BPSK, M-ary

PSK and M-ary QAM. also, we use numerical methods for finding the optimum

power conditions.

Chapter 5 addresses the use of LSSTC in multi-user environments where schedul-

ing techniques can be applied to improve the performance of LSSTC systems.

Finally in Chapter 6, the main conclusions from the thesis and possible future

research directions are discussed.



Chapter 2

Multi-Antenna Systems

In this chapter we will discuss a number of multi-antenna systems, namely, STBC,

VBLAST, and beamforming. These systems are the components that constitute

the LSSTC. Therefore a detailed description of each system is essential for the

complete understanding of the topic. The Chapter is organized as follows. Sec-

tion 2.1 gives a description of STBC and presents the system model of Alamouti’s

transmit technique. The system model of VBLAST is presented in Section 2.2,

where the vertical encoding process of VBLAST is also discussed. Finally, Section

2.3 introduces the system model of adaptive antenna arrays.

2.1 Space-Time Block Codes (STBC)

The challenge of communication over Rayleigh fading channels is that the error

probability decays only inversely with SNR, compared with the exponential de-

26
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cay observed on AWGN channels. STBC [4] is a simple method that enhances the

reliablility by increasing the decay of error probability through diversity.

The encoder of an STBC can be described as follows. The symbols (x1,x2, . . . ,xn)

arrive at the encoder which are mapped to an m× l orthogonal transmission ma-

trix, where the ith row represents the transmitted symbols from the ith antenna

and the jth column represents the transmitted symbols in the jth time slot. Since

n symbols are transmitted during l time slots, the rate (Rs) of STBC is

Rs =
n
l

symbols/time slot. (2.1)

The maximum transmission rate of STBC is equal to one symbol/time slot. For

orthogonal STBC, the maximum rate is achieved only for the two transmit anten-

nas case which is Alamouti’s scheme [17].

Alamouti’s Transmit Technique

Historically, the transmit diversity technique proposed by Alamouti was the first

STBC. The encoding and decoding operation is carried out in sets of two mod-

ulated symbols. These two symbols are transmitted at two consecutive time in-

stances t1 and t2. The times t1 and t2 are separated by a constant time duration

T .

The encoding operation for Alamouti’s 2Tx− 1Rx scheme is shown in Figure

2.1. The following notation will be used throughout this thesis. s = [x1,x2]T is an
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STBC block that consists of two symbols. The transmission rate is equal to the

transmission rate of a SISO system.The space-time encoding mapping of Alam-

outi’s two-branch transmit diversity technique can be represented by the coding

matrix

CA =

 x1 −x∗2

x2 x∗1

 . (2.2)

The above coding matrix is orthogonal because CA ·CH
A is a diagonal matrix

according to CACH
A =

[
∑

n
i=1 |xi|2

]
· Im, where CH

A is the hermitian of CA, Im is the

identity matrix of size m×m, where m represents the number of transmit anten-

nas, and n is the number of symbols transmitted per transmission block in CA.

The decoding operation assumes that the fading channel coefficients during

the two consecutive transmission time periods, t1 and t2, are to remain constant.

In other words, the channel coefficients from the first antenna to the jth receiver

antenna α j,1 and those from the second antenna to the jth receiver antenna α j,2

must satisfy the following set of equations:

α j,1 = α j,1(t) = α j,1(t +T ) = α j,1(t1) = α j,1(t2)

α j,2 = α j,2(t) = α j,2(t +T ) = α j,2(t1) = α j,2(t2).
(2.3)

The receiver observes the received signals for the whole block length l. Assum-

ing that the MIMO channel is constant during the transmission of one block, the
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Figure 2.1: STBC Block Diagram (Alamouti’s 2Tx−1Rx scheme) .

discrete-time received signals over the l time slots can be written as [6]

Y︸︷︷︸
n×l

= H︸︷︷︸
n×m

CA︸︷︷︸
m×l

+ N︸︷︷︸
n×l

. (2.4)

To illustrate the decoding algorithm, consider transmitting over 2× 2 MIMO

channel using CA transmission matrix, the received signal over two time slots is

given by  y1
1 y2

1

y1
2 y2

2

=

 h1,1 h1,2

h2,1 h2,2


 x1 −x∗2

x2 x∗1

+

 z1
1 z2

1

z1
2 z2

2

 . (2.5)

A transformation of the channel matrix into a virtual matrix was proposed in

[6], where the received vectors from the l time slots are rearranged into one vector
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using the virtual MIMO model [16], resulting in (2.5) rewritten as



y1
1

y1
2

y2
1
∗

y2
2
∗


=



h1,1 h1,2

h2,1 h2,2

h∗1,2 −h1,1

h∗2,2 −h∗2,1



 x1

x2

+



z1
1

z1
2

z2
1
∗

z2
2
∗


(2.6)

yv = Hvs+ zv, (2.7)

where v refers to the virtual representation, and yt
i and zt

i indicate the received

signal and the AWGN at receive antenna i at time t, respectively. Since Hv is

orthogonal, the transmitted symbols could be easily estimated by decoupling the

received signals after multiplying yv by HH
v , and thus the estimated symbols can

be written as [16]

ŝ = HH
v yv = HH

v Hvs+HH
v zv, (2.8)

and since

HH
v Hv =

[
|h1,1|2 + |h1,2|2 + |h2,1|2 + |h2,2|2

]
· I2 = b · I2, (2.9)

where b is constant, then

 x̂1

x̂2

=

 b 0

0 b


 x1

x2

+HH
v zv. (2.10)

We notice that the decision statistics are composed of an amplified version of
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the transmitted signals and a noise component. The signal amplification is equal

to the sum of the amplitudes of all channel coefficients. The noise component

is a sum of the receiver antenna noises multiplied by channel fading compo-

nents. The combined signals are then sent to the maximum likelihood detector

[4] which, for each of the signals x1 and x2 uses the maximum likelihood decision

rule that operates on each estimated symbol separately. For example, for detect-

ing x1 the detector will choose symbol xi if the following condition is satisfied

[
|h1,1|2 + |h1,2|2 + |h2,1|2 + |h2,2|2−1

]
|xi|2 +d2 (x̂1,xi)

≤
[
|h1,1|2 + |h1,2|2 + |h2,1|2 + |h2,2|2−1

]
|xk|2 +d2 (x̂1,xk) ∀i 6= k,

(2.11)

where d2 (x̂1,xi) is the squared Euclidian distance between x̂1 and xi. For equal-

energy signals, such as PSK, the above decision criterion simplifies to the follow-

ing

d2 (x̂1,xi)≤ d2 (x̂1,xk) ∀i 6= k; (2.12)

2.2 Vertical Bell Labs Layered Space-Time Architec-

ture

A high-level block diagram of a single user VBLAST system is shown in Figure

2.2 where the number of transmit antennas is NT and the number of receive an-

tennas is NR. A single bit stream is demultiplexed into several layers, and each
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layer is then modulated independently and sent through a separate transmit an-

tenna. The condition of operation for the VBLAST system is that NR is equal or

greater than NT , so if that is satisfied, and there is rich scattering in the channel

such that the layer channel vectors are independent, one can use the V-BLAST

detection algorithm to demodulate the layers, which is based only on the spatial

characteristics formed by the antenna array.

VBLAST signal 
processing: 

estimate a and 
decode

Rx

Rx

Rx

Vector 
encoder 

Tx

Tx

Tx

1

2

TN

a

a
a

a

 
 
 
 
 
  



Tx data

Rx data

1
a

2a

TNa

Rich 
scattering 

environment

 
TAnt N

Ant 2

Ant 1 Ant 1

Ant 2

RAnt N

Figure 2.2: high-level block diagram of a single user VBLAST system.

Although V-BLAST, as shown above, is essentially a single-user system which

uses multiple transmitters, it was shown in [2] that it differs from traditional

multiple-access techniques. Some of the differences are as follows. First, unlike

CDMA or other spread-spectrum multiple access techniques, the total channel

bandwidth utilized in a BLAST system is only a small fraction in excess of the

symbol rate. Second, unlike frequency division multiple access (FDMA), each

transmitted signal occupies the entire system bandwidth. Finally, unlike time
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division multiple access (TDMA), the entire system bandwidth is used simulta-

neously by all of the transmitters all of the time.

A block diagram of a VBLAST transmitter with four antennas is shown in

Figure 2.3. A single data stream is demultiplexed into 4 sub-streams, and each

sub-stream is then encoded into symbols and fed to its respective transmitter.

Transmitters 1 to 4 operate using the same channel at a symbol rate of 1/Ts sym-

bols/sec, where Ts is the symbol duration, where the symbol timing is synchro-

nized.

Time

Ant 1

Ant 2

Ant 4

Ant 3

1ST Frame 2nd Frame 3rd Frame 4th Frame

4

1
Encoder Int. Mapper S/P 

Input Data

Vertical 
encoding 
in VBLAST

Figure 2.3: Block diagram of a VBLAST transmitter.

Figure 2.3 also shows the vertical encoding in VBLAST where each frame is

partitioned over the transmit antennas and sent in a vertical manner. The vector

encoding process is simply a demultiplex operation followed by independent bit-

to-symbol mapping of each layer. No inter-layer coding, or coding of any kind,

is required, though conventional coding of the individual layers may certainly be

applied. For the remainder of this work, we will assume that the layers comprise
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uncoded, independent data symbols.

2.3 Adaptive Antenna Arrays

According to Sections 2.1 and 2.2, it becomes clear that multiple antennas can be

used for the sake of attaining either spatial diversity or spatial multiplexing gains.

However, multiple antennas can also be used in order to improve the SNR at the

receiver or the SINR in a multi-user scenario. This can be achieved by employing

adaptive antenna arrays (AAs) techniques [67].

In order to implement an antenna with multiple beams and with the capability

of dynamically changing the radiation pattern of each beam, AAs are constructed

as a digital combination (in baseband) of an array of elementary antennas. Be-

cause of this implementation, AAs are also named adaptive antenna arrays and

the elementary antennas composing the array are called antenna elements. Tech-

niques used to compute the optimal combination of the antenna elements are

referred to as array processing algorithms.

Beamforming is an effective technique for reducing the multiple-access inter-

ference, where the antenna gain is increased in the direction of the desired user,

whilst reducing the gain towards the interfering users [68]. If the directions of

the different propagation paths are known at the transmitter or the receiver, then

beamforming techniques can be employed in order to direct the received beam

pattern in the direction of the specified antenna or user [28, 29]. Hence, signifi-
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cant SNR gains can be achieved in comparison to a single-antenna system. On the

transmitter side, when the DOA of the dominant paths at the receiver is known

for the transmitter, then the transmit power is concentrated in the direction of

the target user, and less power is wasted in the other directions. On the other

hand, beamforming can be used in order to reduce the co-channel interference or

multi-user interference [68]. When using beamforming, each user adjusts their

beam pattern to ensure that there are nulls in the directions of the other users,

while there is a high directivity in the direction of the desired receiver. Hence, the

system attains an SINR gain.

Basic block diagram for the AA architecture is depicted in Figure 2.4. the

AA consists of L elements that are spaced at a distance of d = λ/2 for the sake

of achieving beamforming, where λ is the signal’s wavelength. The AA algo-

rithm defines the weight vector wi which determines the radiation pattern of the

overall antenna. The array processing algorithm considered in this work will be

described in Section 3.1 where transmit beamforming is used.

wL

Beamformer

w1

 DOA

AA
Tx Rx

Figure 2.4: Block diagram for the AA architecture.
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2.4 Chapter Conclusions

In this Chapter we described the system models of STBC, VBLAST, and beam-

forming. These systems are the components of LSSTC, therefore, understanding

the system model of each of those systems is essential in this thesis. It was shown

that STBC introduces diversity by providing redundancy in both time and space.

VBLAST can increase the data rate by providing spatially-multiplexed channels

that operates with same frequency. On the other hand, beamforming can provide

a direct SNR gain by steering the radiation pattern toward the desired user.



Chapter 3

LSSTC in Single-User Systems

In this chapter we introduce of the layered steered space-time codes (LSSTC) in

single-user systems. We will show the benefit of combining STBC, VBLAST, and

beamforming in a detailed mathematical approach. Also, we investigate the error

performance and capacity of single-user LSSTC. The Chapter is organized as fol-

lows. Section 3.1 gives a detailed description of our system model considering its

components VBLAST, beamforming, and STBC. Section 3.2 presents the detector

used in this thesis which is the serial group interference cancelation (SGIC) [48].

Section 3.3 presents the performance analysis of LSSTC, in which we derive a for-

mula for the probability of bit error. In Section 3.4, we derive a formula for the

instantaneous capacity of single-user LSSTC. In Section 3.5 the tradeoff between

several advantages of LSSTC is analyzed. Section 3.6 presents the simulation re-

sults conducted to evaluate the LSSTC system. Finally, Section 3.7 presents the

37
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chapter’s conclusions.

3.1 System Model

Figure 3.1 shows the block diagram of a single-user LSSTC system proposed in

[8]. The system has NT total transmitting antennas and NR receiving antennas and

is denoted by an NT ×NR LSSTC. The antenna architecture employed in Figure

3.1 has M transmit adaptive antenna arrays (AAs) spaced sufficiently far apart

in order to experience independent fading and hence achieve transmit diversity.

Each of the AAs consists of L elements that are spaced at a distance of d = λ/2 to

ensure achieving beamforming. A block of B input information bits is sent to the

LSSTC 
processing: 
estimate a 

and decode

S
T

C
 1

1

2

K

B

B
B

B
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Vector Encoder: 

Serial to Parallel 

Converter

Tx data       
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bML

Beamformer
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 DOA

MAA

( 1)KM mAA  

Figure 3.1: Block diagram of a single user LSSTC system.

vector encoder of LSSTC and serial-to-parallel converted to produce K streams
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(layers) of length B1,B2, . . . ,BK, where B1 + B2 + · · ·+ BK = B. Each group of Bk

bits, k ∈ [1,K], is then encoded by a component space-time code STCk associated

with mk transmit AAs, where m1 + m2 + · · ·+ mK = M. The output of the kth STC

encoder is a mK× l codeword, ci, that is sent over l time intervals. The space-time

coded symbols from all layers can be written as C = [c1,c2, . . . ,cK]T , where C is an

M× l matrix.

The coded symbols from C are then processed by the corresponding beam-

formers, and then transmitted simultaneously over the wireless channels. The

transmit antennas of all the groups are synchronized and allocated equal power.

Moreover, the total transmission power is fixed, where the transmitted symbols

have an average power of PT = 1, where the average is taken across all code-

words over both spatial and temporal components. For the LSSTC system to

operate properly, the number of receive antennas NR should be at least equal to

the number of layers K.

We formulate the system model as follows. The channel model is a MIMO

quasi-static Rayleigh flat-fading channel with NT transmit antennas and NR re-

ceive antennas. The quasi-static assumption indicates that the channel gain co-

efficients remain constant for the duration of the STBC block and change inde-

pendently for each STBC block. The flat-fading assumption allows each trans-

mitted symbol to be represented by a single-tap in the discrete-time model with

no inter-symbol interference (ISI). We assume independent Rayleigh coefficients,
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i.e.,fading coefficients are independent and identically distributed (i.i.d.) circular-

complex normal random variables with zero-mean and 0.5 variance per dimen-

sion, abbreviated as CN (0,1). The correlation caused by the small distance sep-

aration is approximately removed using the beamforming processing as we will

show in this Section. At the receiver, White Gaussian noise is added. The system

model also assumes that the receiver has perfect channel state information (CSI),

whereas the transmitter does not have any knowledge of the channel.

Denote the L-dimensional channel impulse response (CIR) vector spanning

the mth AA, m ∈ [1, . . . ,M] and the nth receiver antenna, n ∈ [1, . . . ,NR] as hn,m(t).

Over flat fading channels hn,m can be expressed as [52]

hn,m(t) = [dn,m]T ·αn,m(t), (3.1)

where αn,m is the rayleigh faded coefficient coupling the mth AA to the nth receiver

antenna, and dn,m is the adaptive antenna array response corresponding to the mth

AA and the nth receiver antenna, defined as [52]

dn,m =
[
1,e− j2πd(m)sin(Ψn,m)/λ, . . . ,e− j2π(L−1)d(m)sin(Ψn,m)/λ

]T
, (3.2)

where d(m) is the distance between the elements of the mth AA, Ψn,m is the nmth

link’s DOA, and superscript ′T ′ denotes the matrix transposition.

The system model can be described in matrix notation, where the received
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baseband data matrix Y can be expressed as

Y = HWC+N, (3.3)

where Y is the received signal over l time intervals and has a dimension of NR× l,

and H is an NR×M matrix whose entries are hn,m defined in (3.1), and N is an

NR× l matrix that characterizes the additive white Gaussian noise (AWGN). The

nth row of N denoted as zn, where n ∈ [1, . . . ,NR], is a row vector of l columns,

the ith entry of zn is a spatially uncorrelated circular-complex normal random

variable, and can be written as zi
n = zi

I,n + jzi
Q,n, where zi

I,n and zi
Q,n are two in-

dependent zero-mean Gaussian random variables having a variance of N0/2, we

will represent zi
n as CN (0,N0). Furthermore, W is an M×M diagonal weight ma-

trix, whose diagonal entry wm,m is the L-dimensional beamforming weight vector

for the mth beamformer AA and the nth receive antenna, and can be written as

wm,m = [bm1, · · · ,bmL], where bmi, i ∈ [1, . . . ,L], is the ith weighting gain of the mth

AA. The received signal Y can be written in matrix form as



y1

y2

...

yNR


=



h1,1w1,1 · · · h1,MwM,M

h2,1w1,1 · · · h2,MwM,M

... . . . ...

hNR,1w1,1 · · · hNR,MwM,M





c1

c2

...

cK


+



z1

z2

...

zNR


. (3.4)
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Throughout this thesis, the LSSTC model presented in this section will be used to

design single and multiple user transmission systems. Also, whenever the phrase

”sub-stream” is mentioned it refers to the data stream of each AA, which we

denote as x, whereas, the term ”layer”, denoted by s, represents the data stream

to be encoded by STBC. In the case of Alamouti’s 2Tx− 1Rx scheme, s = [x1,x2]T

where xi is the symbol of the ith AA substream.

The beamforming vector wm,m is given by [52] as wm,m = d∗n,m, where the su-

perscript ∗ represents the conjugate of the matrix. Refering to (3.4), we define a

modified channel matrix as

Ĥ =



h1,1w1,1 · · · h1,MwM,M

h2,1w1,1 · · · h2,MwM,M

... . . . ...

hNR,1w1,1 · · · hNR,MwM,M


, (3.5)

where Ĥ is the reconstructed channel matrix comprising the MIMO fading chan-

nel and the DOA information. Note that we assumed that the nulling vector for

all the paths corresponding to one AA (wm,m) is the same. This follows from the

assumption that the separation between the receive antennas is much less than

the distance between the AA and the receiver, then roughly speaking, they will

have the same direction of arrival, which will result in having the same nulling

vector.
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According to Equation (3.4) Y can be rewritten as:

Y = ĤC+N. (3.6)

The channel coefficient Ĥn,m can roughly expressed as

Ĥn,m = hn,mwm,m

= αn,m · [dn,m]T [dn,m]∗ (3.7)

= L ·αn,m.

Therefore the received signal can be expressed as in [8]:

Y = LH̃C+N, (3.8)

where H̃ is an (NR×M) matrix whose entries are αn,m. Looking at (3.8), the effect

of beamforming can be clearly seen, which is a direct SNR gain. Expressing H̃C

in terms of the layers components we get

Y = L
K

∑
k=1

h̃kck +N, (3.9)

where ck represents the component STBC used at layer k, where k ∈ [1, . . . ,K], and
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H̃ =


α1,1 · · · α1,m1 α1,m1+1 · · · α1,M

... . . . ...
... . . . ...

αNR,1 · · · αNR,m1 αNR,m1+1 · · · αNR,M

 . (3.10)

Partitioning H̃ into groups corresponding to each layer, the channel matrix can be

rewritten as in [6]:

H̃ =
[
h̃1, . . . , h̃K

]
, (3.11)

where the kth vector in (3.11) represents the channel matrix of each layer, which

can be written as:

h̃k =


α1,mk−1+1 · · · α1,mk−1+mk

... . . . ...

αNR,mk−1+1 · · · αNR,mk−1+mk

 , (3.12)

where m0 = 0.

3.2 Serial Group Interference Cancelation (SGIC)

The detection process can be classified into two types [48]. The first type is the

non-ordered detection, in which choosing the layer to be detected does not de-

pend on the power of the layer, and the detection order is predetermined before

the signal is received. The second type is the post-ordered detection, where the
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detection order is not known until the channel realization is perfectly estimated

at the receiver. The steps of post-ordered SGIC proposed in [6, 48] can be sum-

marized as follows:

1. Ordering: Determining the group (layer) with the maximum SNR to opti-

mize performance. Since the average power of the codeword in each group

is assumed to be the same, the post-detection SNR of the ith layer is pro-

portional to the squared Frobenius norm (FN) of the channel matrix of the

corresponding layer [6]. Therefore, the optimal ordering is based on simply

selecting the group h̃i from the channel matrix H̃ that has the highest FN at

each stage of the detection. In fact, the transmitted symbol with the smallest

post-detection SNR will dominate the error performance of the system. So,

we decode first the streams which exhibit highest SNR so as to minimize

propagating errors in later stages. According to [6] the detection order at

the ith layer ki is given by

ki = argmax
i
{‖hi‖F}, 1 6 i 6 K. (3.13)

The squared FN that measures the MIMO fading power is given by:

‖hi‖2
F = trace

(
hih

H
i

)
, (3.14)

where {}H is the Hermitian operator.
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2. Group interference nulling: interference from yet-to-be-detected groups is

nulled out by projecting the desired group on their null space, resulting in

nulling out all the other streams for each transmit antenna.

3. Slicing: estimating the detected group.

4. Symbol canceling: To improve the performance subtract the detected group

from received signal vector and return to the nulling step.

Steps {1-4}will be repeated until all symbols that have been transmitted from

all layers are detected. Note that the detection here is serial, i.e., layer-by-layer de-

tection. The optimum ordered set Ω = {k1,k2, . . . ,kK} is chosen such that the post

detection SNR is maximized in each iteration of the LSSTC detection algorithm.

Components of the transmitted symbol vector will be extracted according to Ω.

In contrast, for non-ordered decoding the order set is just {1,2, . . . ,K}. Figure 3.2

shows how the optimal detection ordering operates in LSSTC receivers.

The procedure described above can be implemented in the LSSTC using the

following algorithm[5, 6, 48]:

1. The layer that has the maximum post-detection SNR (or highest FN) is as-

signed to the index ”1”, and the detection will start from this layer, and

therefore Y is assigned to r1 .

2. Assuming the desired layer is k. Let N (ck) be the left null space of Λ(ck)
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Figure 3.2: General block diagram of LSSTC receiver.

where

Λ(ck) =
[
h̃1, . . . , h̃k−1, h̃k+1, . . . , h̃K

]
. (3.15)

3. The detector of layer k finds the (NR−M+mk)×NR matrix Θ(ck), whose rows

form a set of orthonormal vectors in N (ck).

4. The detector left multiplies the received signal r1 by Θ(ck), and the decision

statistics for ck are found as

ř1 = Θ(ck)Y = ȟkck + ň, (3.16)

where ȟk is the (NR−M + mk)×mk modified channel matrix, and ň is the
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(NR−M +mk)× l modified noise matrix. Hence ck can be decoded using the

STBC maximum likelihood decoder.

5. Once ck is decoded, its contribution is subtracted out from the original re-

ceived signal r1 as follows

r2 = r1− ȟk čk , (3.17)

where čk is the estimated STBC block of the kth layer.

6. The nulling and cancellation procedure in steps (2) to (5) are repeated seri-

ally until all the layers are detected.

3.3 Performance Analysis of LSSTC

In this section we derive a nearly exact error probability analysis for the LSSTC

with SGIC receiver employing Binary Phase-Shift Keying (BPSK) modulation. In

the analysis we will consider the effect of errors propagating from the previous

erroneous layers. We will analyze the system assuming that the power is equally

splitted among the AAs at the transmitter. Therefore it is denoted as equal power

LSSTC (EPA-LSSTC). Our analysis gives recursive expressions for the error prob-

ability of each symbol which is evaluated using a recursive procedure [57]. In our

analysis we assumed Alamouti’s encoding matrix expressed in (2.2) where two

symbols are transmitted over two time slots from each layer.

For the purpose of finding the probability of error we will use the virtual
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MIMO model discussed in Section 2.1, where the system will be equivalent to

an M-branch VBLAST system, where M is the number of AAs. For convenience

the received signal obtained from (3.8) is re-written as

y︸︷︷︸
(NR∗l)×1

= L Hv︸︷︷︸
(NR∗l)×M

s︸︷︷︸
M×1

+ n︸︷︷︸
(NR∗l)×1

, (3.18)

where y and n denotes the virtual matrices of Y and N respectively as defined in

Section 2.1. Further, Hv can be partitioned into groups corresponding to each sub-

stream as H̃v = [h1, . . . ,hM]. Using the received signal, the detector will perform

non-ordered SGIC since the post-ordered scheme will make our analysis more

complicated. In addition, in [69] it was shown that the post-ordering does not

increase diversity order, but only increases the SNR gain. The detector applies the

algorithm discussed in Section 2.1. At the end of each stage and after subtracting

the contribution of {x1, . . . ,xk} the updated received signal becomes:

Yk
v = Yv−∑

k
j=1 h jx̂ j

=
M

∑
j=k+1

h jx j︸ ︷︷ ︸
faded target signal with interference

+

(
n+

k

∑
j=1

h j ·
(
x j− x̂ j

))
︸ ︷︷ ︸

equivalent noise

, (3.19)

yk is composed of three parts: the yet-to-be-detected symbols, the noise vector

and the potential error propagation signal. We refer to the last two terms of (3.19)

as the equivalent noise.
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Assuming a total transmit power of PT , each AA will have (PT /M) as a transmit

power. Since each AA results in a scalar αi, j after multiplying by the weight ma-

trix W, each AA will be treated as a single antenna for the purpose of calculating

transmit power and received SNR. According to [13], if a system has M indepen-

dent sub-channels, the exact probability of bit error on the kth symbol when using

BPSK modulation can be expressed as

Pek =
[

1
2
(1−µ)

]Dk Dk−1

∑
t=0

(
Dk−1+ t

t

)[
1
2
(1+µ)

]t

, (3.20)

where µ =
√

ρ

1+ρ
, ρ is the sub-stream SNR, ρ =

(L2PT /NT )
N0

, and Dk is the diversity

order of the layer Γ(k) from which the kth symbol is transmitted, and of course,

all sub-streams associated with the same layer have the same diversity order, for

instance, if we used Alamouti’s STBC, the first and second sub-streams will have

the same diversity order. We write the diversity order of the kth sub-stream as

Dk = mk(NR−K +Γ(k)). This definition is quite reasonable and proven to be valid

by the simulation results. It can be noted that STBC increases the diversity order

of each layer. It is clear to see that the generalization of this procedure to M-ary

PSK, or M-ary QAM can be done simply by replacing (3.20) with the formulas

corresponding to these modulation schemes. Note that all the sub-streams of a

layer employing STBC have the same probability of error. For instance, if mk = 2,

then Prob{x1 6= x̂1}= Prob{x2 6= x̂2}.
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The sub-stream error will depend on the number of errors that occurred in

the sub-stream itself and on the errors propagating from the previous layers, and

will not depend the errors occurring in the other sub-streams of the same layer.

Therefore, we will calculate the layer probability of error, which will be equal

to the probability of sub-stream error of the sub-streams sent from that layer.

Therefore throughout this thesis we will express the layer performance in terms

of that of one of its substreams. For the ith layer the latter will be denoted as si.

Since Equation (3.20) will be used very often in our analysis, and for the sake of

simplicity, we define the function

Pe(Dk,ρ) =
[

1
2
(1−µ)

]Dk Dk−1

∑
t=0

(
Dk−1+ t

t

)[
1
2
(1+µ)

]t

. (3.21)

It is clear that in the absence of error propagation, the layer probability of error of

the kth layer for k = 1, . . . ,K, can be expressed as

Pek = Pe(Dk,ρ). (3.22)

But when considering the presence of error propagation, the probability of error

can be expressed as

Pek = Prob{sk 6= ŝk}

=
k−1

∑
i=0

Prob{sk 6= ŝk | Ai
k−1}Prob{Ai

k−1}, (3.23)
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where Ai
k−1 defines the event of having i errors in the symbols ŝ1 ∼ ŝk−1. Now in

order to find Pek , we need to find Prob{sk 6= ŝk | Ai
k−1} and Prob{Ai

k−1} first, which

is discussed in the following sections.

3.3.1 Calculation of Prob{sk 6= ŝk | Ai
k−1}

Define the equivalent noise as a new random variable Ni,k given by

Ni,k = n | Ai
k−1

= n+
k−1

∑
j=1

h j ·
(
s j− ŝ j

)
. (3.24)

given that i detection errors exist in k− 1 symbols that were detected in the first

k−1 layers, then there will be (k−1− i) correct decissions in which s j and ŝ j are

equal. To generalize our work as in [57], we didn’t restrict the order of errors.

Instead, a map function gk(·) is defined to accommodate for any injection of i

errors, and therefore the equivalent noise can be written as

n+
i

∑
j=1

hgk ( j) ·
(

sgk ( j)− ŝgk ( j)

)
. (3.25)

Since we assume BPSK modulation, sgk ( j) will take one of the values in the set

{−
√

PT /M,+
√

PT /M}, and therefore,
(

sgk ( j)− ŝgk ( j)

)
given that sgk ( j) 6= ŝgk ( j), will

take a value from the set {−2
√

PT /M,+2
√

PT /M}. Note that the equivalent noise

given in (3.25) is not Gaussian [57] since the event Ai
k−1 will bring restrictions on
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n and hgk ( j). However, in the analysis of [57] it was assumed that Ni,k is white

Gaussian, which turned out to be a valid assumption when comparing with the

simulation results. In order to completely express Ni,k assuming it is a white

Gaussian random variable (RV), we need to find its mean and variance. First,

let’s calculate the mean of the RV Ni,k:

E
[
n | Ai

k−1
]

= E[n]+
i

∑
j=1

E
[
hgk( j)

]
·E
[
sgk( j)− ŝgk( j)

]
. (3.26)

Since sgk ( j) and ŝgk ( j) are taken from the same constellation then they have same

expected value, which is zero, and therefore

E
[
n | Ai

k−1
]
= E[n] = 0. (3.27)

We calculate the covariance matrix of Ni,k in Appendix A as

Cov
[
Ni,k

m ,Ni,k
n

]
=
[

N0 +
4PT iL2

M

]
IN×N , (3.28)

and thus Prob{sk 6= ŝk | Ai
k−1} in (3.23) can be expressed as

Prob{sk 6= ŝk | Ai
k−1}= Pe

(
mk(NR−K + k),

PT L2

MN0 +4PT iL2

)
. (3.29)
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3.3.2 Calculation of Prob{Ai
k−1}

In this section we will summarize the formulas used to find Prob{Ai
k−1} for three

cases using the approach adopted in [57]. The details of the derivation can be

reviewed from Appendix B.

Prob{Ai
k−1}=



[
1−Pe

(
mk−1(NR−K + k), PtL2

MN0

)]
×Prob{A0

k−2}, i = 0

Pe

(
mk−1(NR−K + k), PtL2

MN0+4Pt(k−2)L2

)
×Prob{Ak−2

k−2}, i = k−1

Prob{sk−1 6= ŝk−1 | Ai−1
k−2}Prob{Ai−1

k−2}

+
[
1−Prob{sk−1 6= ŝk−1 | Ai

k−2}
]

Prob{Ai
k−2}, 0 < i < k−1

3.3.3 Calculation of Pek

After finding Prob{sk 6= ŝk | Ai
k−1} and Prob{Ai

k−1}, the probability of error on the

kth layer denoted as Pek can be evaluated directly using (3.23). From that we can

find the probability of error of the individual sub-streams by

Prob{xk 6= x̂k}= PeΓ(k), (3.30)
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where Γ(k) is the layer from which the kth sub-stream is sent. The average proba-

bility of error over all M sub-streams can be written as

Pav =
1
M
·

M

∑
k=1

Prob{xk 6= x̂k}. (3.31)

3.4 Capacity of LSSTC

To derive a formula for the capacity of LSSTC per user, we will follow the deriva-

tion of [50]. First, the instantaneous capacity was found in [70] for an orthogonal

STBC with Ms transmit antennas and Rs code rate,

CST BC = Rs · log2

(
1+

PT

Ms
‖H‖2

)
(3.32)

In MLSTBC which is a combination of VBLAST and STBC, an outage occurs if an

outage happens in any layer because all the STBC encoders (layers) are transmit-

ting at the same rate. The layer that is the most probable to fall in an outage is the

weakest layer, i.e. the one that has the least value of ‖Hi‖2, i = 1,2, . . . ,K, where Hi

is the ith matrix of H. Therefore, the instantaneous capacity of a K layered STBC

system with a sub-stream SNR of ρ can be written as:

C = K ·Rs · log2

(
1+ρ · min

k=1,2,...,K

{
‖Hi‖2})

= K ·Rs · min
k=1,2,...,K

{
log2

(
1+ρ · ‖Hi‖2)} . (3.33)



56

Extending the last results, the instantaneous capacity of LSSTC can be expressed

as:

CLSSTC = K ·Rs · min
k=1,2,...,K

{
log2

(
1+

L2 ·PT

M ·N0
· ‖HPP,k‖2

)}
(3.34)

where HPP,k is the Post-Processing (PP) matrix corresponding to the kth layer after

nulling out the interference from the yet-to-be-detected layers. It is clear that the

LSSTC capacity is dominated by the worst group which has the minimum value

of HPP,k, k = 12, . . . ,K.

3.5 Diversity, Multiplexing, and Beamforming Trade-

off in LSSTC

In [71] the authors have found the tradeoff curve for a MIMO system that has

the capability of providing both diversity and multiplexing advantage. In this

section, we add to that the beamforming advantage of LSSTC by providing a

comparison among the LSSTC system configurations. A system is said to have a

diversity gain of d if the error probability decays as (SNR)−d [71] , and a spatial

multiplexing gain of r if the rate of the scheme is (r logSNR).

In an LSSTC system with NT transmit and NR receive antennas, assuming the

path gains between individual antenna pairs are i.i.d. Rayleigh faded, the max-

imum diversity gain ignoring the antennas assigned for beamforming is
(NT NR

L

)
,

which is the total number of fading realizations over which system performance
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is averaged.

The tradeoff curve shows the diversity advantage achievable by the LSSTC

system for each multiplexing gain r, and beamforming gain which we define as

the number of beamforming elements (L). Clearly, L cannot exceed the total num-

ber of transmit antennas NT . On the other hand, r cannot exceed the total number

of degrees of freedom provided by the channel min
(NT NR

L ,NR
)
; and d(r,L) cannot

exceed the maximum diversity gain of the channel
(NT NR

L

)
. The tradeoff curve

links between these three extreme limits. The tradeoff curve is found in a simi-

lar manner to [71], and is given by the piecewise-linear function connecting the

points (r,d(r,L)), r = 0,1, . . . , min
{NT NR

L ,NR
}

. For each possible value of L, the

diversity gain d(r) is given by

d(r,L) =
(

NT

L
− r
)(

NR− r
)

(3.35)

3.6 Numerical Results

In all the Monte-Carlo simulations conducted in this work, we used Alamouti’s

STBC matrix of unity rate expressed in (2.2) for the STBC encoders in each layer.

In addition, unless otherwise mentioned, the SGIC detector does not perform

ordering, rather it performs detection starting from the first layer in the H̃ matrix,

which is not necessarily the best decoding order.

Figure 3.3 compares the symbol error rate of an LSSTC system with different
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number of receive antennas, and 16-QAM modulation is used. The transmiter

sends the symbols on two layers (K = 2) each of which consists of two sub-streams

(mk = 2) that corresponds to Alamouti’s STBC encoder. Each of those sub-streams

is then transmitted through the corresponding AA of two elements (L = 2). It is

clear to see that increasing NR will improve the performance since increasing NR

will result in higher diversity order, which will lead to having a steeper slope of

the error probability curve versus SNR.

Figure 3.4 shows the effect of increasing the downlink beamforming gain by

increasing the number of beam-steering elements L in each AA, while maintain-

ing the same number of layers (K = 2) and AAs (mk = 2), also the number of

receive antennas is the same (NR = 2). As shown in the Figure, when the number

of beam-steering elements L increases, the achievable SER performance signifi-

cantly improves.
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Figure 3.3: SER of LSSTC employing non-ordered SGIC and using 16-QAM mod-
ulation with K = 2 & L = 2 (comparing different number of receive antennas).
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Figure 3.4: SER of LSSTC employing non-ordered SGIC and using 16-QAM mod-
ulation with K = 2 & NR = 2 (comparing different number of beam-steering ele-
ments).
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Now a fair comparison between LSSTC and VBLAST is conducted. This fair-

ness is achieved by structure and spectral efficiency fairness, that means that the

total number of antennas at the transmitter NT and the number of symbols sent

every time slot are the same for both systems.

Figure 3.5 shows a comparison between LSSTC and VBLAST in terms of the

symbol error rate. The two systems use a total number of transmit antennas,

NT = 8, and the receiver is equipped with 4 antennas. In this comparison we have

also compared many transmitter configurations, in each a different modulation

scheme is used such that the spectral efficiency would be the same for all of them,

which is set to 4 bps/Hz. From Figure 3.5 it can be clearly seen that VBLAST

outperforms LSSTC in the low range of SNR, whereas for values of SNR that

exceed 9 dB, the LSSTC outperforms VBLAST because it has a higher diversity

order resulting from using STBC, which drives the SER to decay sharply.
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Figure 3.5: SER of LSSTC employing non-ordered SGIC at 4 bps/Hz and dif-
ferent modulation schemes with NT = 8 & NR = 4 (comparing VBLAST to LSSTC
fairly).
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Next, we propose a multi-configuration transmission scheme based on LSSTC

and VBLAST systems. This scheme suggests the configuration and the modula-

tion scheme in order to improve the performance. Table 3.1 lists the proposed

transmitter configuration and modulation scheme depending on the SNR level

in the system.

For example if the SNR in a wireless system ranges from (6.6 dB-9.2 dB), then

the performance will be better if VBLAST scheme with 16-QAM modulation is

used, while if it lies in the range(>9.2 dB) then it is better to use LSSTC scheme

with 16-QAM modulation.

One might say, why do not we design an adaptive system that chooses between

VBLAST and LSSTC? This can be done using an antenna array with the capa-

bility of electronically activating specific antenna elements and deactivating the

remaining ones. This is done to meet the antenna separation conditions of each

mode in the multi-configuration system. In LSSTC, there are two conditions for

the antenna element separation. (1) The AAs should be sufficiently far apart in or-

der to experience independent fading. (2) Beamforming elements within each AA

should be spaced at small distance that is less than λ/2 for the sake of achieving

beamforming. On the other hand, VBLAST requires all the antennas to be spaced

Table 3.1: Proposed transmitter configuration and modulation schemes.
SNR level (dB) Transmitter configuration Modulation scheme

< 6.6 VBLAST QPSK
6.6−9.2 VBLAST 16-QAM

> 9.2 LSSTC 16-QAM
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sufficiently far from each other. In Figure 3.6, the SER performance of LSSTC em-

ploying non-ordered SGIC is compared to LSSTC employing post-ordered SGIC,

where QPSK modulation with K = 3 and NR = 4 is used. As shown in the Fig-

ure, employing post-ordered SGIC will improve the SER performance, and this

improvement can be seen more clear at high values of SNR. In addition, it can

be noted that while increasing the SNR, the difference between non-ordered and

post-ordered SGIC will increase.

Figure 3.7 compares the simulation results to the analysis results for the sym-

bol error rate of an LSSTC system employing non-ordered SGIC and BPSK mod-

ulation with K = 2 and NR = 2. It can be seen that the simulation and analysis

results match quite well, which proves the validity of the analysis. Figure 3.7

proves the validity of approximating the equivalent noise Ni,k to a white gaus-

sian random variable
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Figure 3.8 shows the SER of the individual layers of a 16× 2 LSSTC using

non-ordered SGIC detector employing BPSK modulation with K = 2 and L = 4

obtained from both the simulation and the analysis. The Figure compares the an-

alytical results obtained for the EPA-LSSTC to those obtained from the simulation

results with equal power allocation. It is clear that the Monte Carlo simulation

makes a nearly perfect match to the analysis methods, which demonstrates the

validity of the analysis proposed in this chapter.

Figure 3.9 fairly compares LSSTC to VBLAST in terms of the ergodic capacity

of an 8×4 MIMO using non-ordered SGIC at 15 dB average SNR. Several config-

uration are considered, and the capacity is plotted versus Es/N0. As it can be seen

from the figure, the capacity is approximately linearly increasing with increasing

Es/N0. It is clear to see that VBLAST outperforms LSSTC, which is actually ex-

pected, since VBLAST is a pure spatial multiplexing unlike LSSTC, where some

antennas are assigned for diversity.
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Figure 3.9: Ergodic Capacity vs. Es/N0 for an 8×4 MIMO at 15 dB average SNR
(comparing VBLAST to LSSTC fairly).
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Figure 3.10 compares the outage capacity of LSSTC to that of VBLAST for an

8×4 MIMO at 10% Outage probability and 15 dB average SNR. The different con-

figurations behave in a similar manner to that in Figure 3.9. For the 4-layer case,

we see that LSSTC approaches VBLAST, one possible reason for that is that the

STBC processing will tend to average the channel, and as a result LSSTC will be

less probable to fall in an outage. On the other hand, VBLAST doesn’t have such

a capability. Figure 3.10 shows that we can design a multi-configuration system,

such that to maximize the capacity for all values of SNR. For the forementioned

configuration we choose the single-layer VBLAST system for the first range (-

15 dB up to 1 dB), and for the second range (1 dB up to 20 dB) the dual-layer

VBLAST system gives the highest capacity. If the SNR lies in the last range(>20

dB), then using either LSSTC or VBLAST with 4 layers will have approximately

the same capacity. However, Figure 3.5 shows that LSSTC has a lower SER in the

last range, and therefore, we choosing LSSTC is better. Figure 3.11 shows simi-

lar results to those of Figure 3.10 but with using an 8× 8 MIMO at 90% Outage

probability. There is a huge jump in the capacity due to increasing the number of

receive antennas, and consequently increasing the spatial multiplexing gain.
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Figure 3.10: Outage Capacity vs. Es/N0 for an 8×4 MIMO at 10% Outage proba-
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Figure 3.11: Outage Capacity vs. Es/N0 for an 8×8 MIMO at 90% Outage proba-
bility, and 15 dB average SNR (comparing VBLAST to LSSTC fairly).
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Figure 3.12 shows the diversity-multiplexing tradeoff curve of a 16×8 LSSTC

system. As we can see from the figure, two points of interest can be identified

dmax = d(rmin,Lmin) = d(0,1) =
NT NR

L
(3.36)

rmax = min
{

NT NR

L
,NR

}
(3.37)

It can be noted that increasing the diversity advantage at a specific beam-

forming gain comes at a price of decreasing the spatial multiplexing gain, and

vice versa. Figure 3.13 shows the same tradeoff of a 64× 32 LSSTC system. Fig-

ure 3.14 shows the diversity-beamforming tradeoff of a 16×8 LSSTC system. In

Figure 3.12 it should be noted that the points to the left of each curve represent

an achievable diversity gain for that specific configuration, whereas the points

to the right are not achievable. This means that we may find systems that has a

trade-off curve to the left of the optimum trade-off curve, but not to his right.

Figure 3.15 shows the diversity-multiplexing-beamforming tradeoff of a 16×8

LSSTC system plotted in 3−D format. In the figure, it can be noted that increasing

one parameter causes the other parameters to decrease and vice versa.



74

0 1 2 3 4 5 6 7 8 9
0

20

40

60

80

100

120

140

Spatial Multiplexing Gain

D
iv

er
si

ty
 G

ai
n

 

 

(0,MNR)

(min(M,NR),0)

(r,(M−r)(NR−r))

M =
NT

L

 LSSTC (K= 8  L= 1)
 LSSTC (K= 4  L= 2)
 LSSTC (K= 2  L= 4)
 LSSTC (K= 1  L= 8)
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Figure 3.13: Diversity-multiplexing tradeoff of LSSTC (NT = 64 & mk = 2 & NR =
32).
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Figure 3.14: Diversity–beamforming tradeoff of LSSTC (NT = 16 & mk = 2 & NR =
8).
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3.7 Chapter Conclusions

In this chapter we investigated the performance of single-user LSSTC. A brief

mathematical description on beanmforming was explained. We extended the

derivation of the probability of error for VBLAST system employing BPSK to in-

clude the effect of beamforming and STBC. We showed that using antenna arrays

results in a direct SNR gain. On the other hand, using STBC increases the diver-

sity order of each layer. The analytical results were verified by the simulation re-

sults. Also, a formula for the instantaneous capacity of single-user LSSTC was de-

rived. Additionally, the diversity, multiplexing, and beamforming tradeoff curve

for LSSTC was investigated. This curve provided a deeper insight to the system

where it was found that increasing one parameter causes the other parameters to

decrease and vice versa. Finally, we proposed a multi-configuration transmission

scheme based on LSSTC and VBLAST systems. This scheme showed that LSSTC

has better performance than VBLAST at high SNR range.



Chapter 4

Power Allocation in LSSTC

In this chapter we suggest a new scheme for LSSTC, in which we have modified

the LSSTC system model presented in Section 3.1 by assuming that the user feeds

the BS with the average SNR per layer through the uplink feedback channel. The

reason for designing such a system is to enhance the performance and capacity

by assigning power to the layers in an optimum manner. Our analysis is based on

the results of [66] for VBLAST applying the power allocation scheme and extends

to the LSSTC case where beamforming and STBC are involved. We refer to the

system proposed in this chapter as the power allocation LSSTC (PA-LSSTC). We

also investigate the performance of PA-LSSTC, and extend the results to M-ary

PSK and M-ary QAM.

The Chapter is organized as follows. Section 4.1 presents the notation used for

the power allocation scheme. Section 4.3 shows the performance analysis of PA-

79
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LSSTC, in which we derive a formula for the probability of error of the individual

layers employing different modulation schemes, Furthermore, we formulate the

the average SER of the LSSTC system. In Section 4.4, the optimum PA scheme

for LSSTC is derived so that the probability of error is minimized. Section 4.6

presents the simulation results conducted to evaluate the PA-LSSTC system. Fi-

nally, Section 4.7 presents the chapter’s conclusions.

4.1 The Power Allocation Scheme

The PA pattern for the PA-LSSTC scheme is defined in a similar manner as for

VBLAST in [66]. The system is characterized by the vector K = [K1,K2, · · · ,KM−1]

where Ki is defined as the transmit power ratio of the ith sub-stream to the sum of

sub-stream i+1, · · · ,M. Ki is defined by

Ki =
Pi

∑
M
j=i+1 Pj

, i = 1,2, · · · ,M−1, (4.1)

where Pi denotes the transmit power of the ith sub-stream. Similarly, we define the

layer PA pattern as KL = [KL,1,KL,2, · · · ,KL,K−1] where K is the number of layers,

and KL,i is defined as the transmit power ratio of the ith layer to the sum of layer

i+1, · · · ,K. KL,i is defined by

KL,i =
PL,i

∑
K
j=i+1 PL, j

, i = 1,2, · · · ,K−1, (4.2)
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where PL,i denotes the transmit power of the ith layer. For fair comparison among

different energy allocation patterns, Pi must satisfy the energy conservation con-

straint, PT = ∑
M
i=1 Pi = Ps, where Ps denotes the average transmit power per mod-

ulation symbol.

The reason for defining K is intended to reduce the hardware complexity be-

cause we use Newton’s method to find the optimum power allocation in Section

4.4. Using K reduces the number of equations by one since we express it in terms

of of the total power, otherwise, we would have to write K equations correspond-

ing to the power of the layers, where K is the number of layers.

4.2 System Model

The system model we use in this chapter is built on that proposed in Section 3.1,

with an exception that the BS of PA-LSSTC prompts the user to feedback the CSI

per layer via the feedback channel along with the DOA data. Also the transmitter

is capable of performing PA processing. The system model of PA-LSSTC is shown

in Figure 4.1

4.3 Performance Analysis

In this section, the performance of LSSTC systems employing PA scheme and

SGIC receivers with a fixed detection ordering is analyzed. The analysis is car-
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Figure 4.1: Block diagram of a single user PA-LSSTC system.

ried out for slow Rayleigh fading channels, in which we assume that the channel

remains constant for many STBC blocks. Thus the transmitter obtains the esti-

mates of the average SNR per layer from the receiver, finds the optimum power

allocation, and uses the same power allocation pattern till the channel changes.

Using this assumption minimizes the feedback load by a significant amount. We

first denote the SER of the ith sub-stream under PA pattern KL and noise of vari-

ance N0 as Pei|(KL,N0) = P{ŝi 6= si
∣∣ KL,N0}. The SER of the ith layer has the form

Pei|(KL,N0) =
i−1

∑
l=0

P{si 6= ŝi,Al
i−1
∣∣ KL,N0}, (4.3)
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where the event Al
i−1 is defined in Section 3.3. Let Vm denote one of the

(
i−1
l

)
events which has detection errors at certain l layers among the i−1 processed lay-

ers at each time slot. Thus Vm is a set that contains the layer indices for one of the(
i−1
l

)
combinations of choosing l error symbols among the i−1 layers [66], where

m = 1,2, · · · ,
(

i−1
l

)
. We can express Vm as a set Vm = {vm,1,vm,2, · · · ,vm,l} where vm,k

denotes the index of the layer in which the kth error has occurred. For instance,

if Vm = {1,3,4} then the first error was in the first layer, while the second was

in the third layer, and the third was in the fourth layer. Also, we assume that

vm,1 < vm,2 < · · ·< vm,l , vm,k ∈ {1,2, · · · , i−1}. Further more, the complement set of

Vm is defined as

Wm = {1,2, · · · , i−1}−Vm = {wm,1,wm,2, · · · ,wm,i−1−l}

where wm,1 < wm,2 < · · ·< wm,i−1−l , wm,k ∈ {1,2, · · · , i−1}. Similar to [66] we define

ei
Vm

as the event of having the ith layer in error and having l erroneous layers

indicated by Vm given a specific PA pattern KL and noise of variance N0

ei
Vm

=
{

si 6= ŝi
⋂

∀vm,k∈Vm

{svm,k 6= ŝvm,k}

⋂
∀wm,k∈Wm

{swm,k = ŝwm,k}
∣∣ KL,N0

}
.

(4.4)

Then, then the probability that the ith layer along with l proceeding layers defined

by Vm given KL and N0 can be found by simply summing the probability of all the
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possible combinations of Vm. Mathematically, we can write this as

P{si 6= ŝi,Al
i−1
∣∣ KL,N0}=

(i−1
l )

∑
m=1

P(ei
Vm

). (4.5)

Moreover, P(ei
Vm

) can be decomposed into a product of i components as follows

P(ei
Vm

) = P(ei,i
Vm

) ·P(ei,i−1
Vm

) · · ·P(ei,1
Vm

) =
i

∏
t=1

P(ei,t
Vm

), (4.6)

where ei,t
Vm

is defined similar to ei
Vm

except that it corresponds to the tth layer

(whether erroneous or correct). In [66], ei,t
Vm

was defined as

ei,t
Vm

=



{
st 6= ŝt

∣∣ ⋂
∀vm,k<t

{svm,k 6= ŝvm,k}

⋂
∀wm,k<t

{swm,k = ŝwm,k},KL,N0

}
, t ∈Vm

{
st = ŝt

∣∣ ⋂
∀vm,k<t

{svm,k 6= ŝvm,k}

⋂
∀wm,k<t

{swm,k = ŝwm,k},KL,N0

}
, t ∈Wm

(4.7)

Thus, using (4.6) in (4.5) the latter becomes

P{si 6= ŝi,Al
i−1
∣∣ KL,N0}=

(i−1
l )

∑
m=1

i

∏
t=1

P(ei,t
Vm

). (4.8)

The exact SER of the ith layer without error propagation given the diversity

order and the SNR for different modulation schemes have been derived in the
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literature [13].As defined earlier in Section 3.3, we denote the SER of ith layer as

Pe(Di,ρi), where Di and ρi are the diversity order and the SNR of the ith layer,

respectively. By approximating the symbol errors caused in the previous layers

as Gaussian random variable, we can write the following

P(ei,t
Vm

) =


Pe(N−M + t,Pt/σ2

t ), t ∈Vm

1−Pe(N−M + t,Pt/σ2
t ), t ∈Wm,

(4.9)

where σ2
t is the variance of the approximated Gaussian noise variable. The value

of σ2
t depends on the modulation scheme and the symbol energy used in previous

layers as will be described in the following subsections in which we will present

the expression of σ2
t and Pe(Di,ρi) for the case of BPSK, M-QAM, and M-PSK.

4.3.1 BPSK

As defined earlier in section 3.3, the diversity order of the sub-streams of the ith

layer is Di = mi(N −K + Γ(i)). According to [13], the exact SER of the ith layer

without error propagation using BPSK modulation,

Pe(Di,ρi) =
[

1
2

(1−µi)
]Di Di−1

∑
τ=0

(
Di−1+ τ

τ

)[
1
2

(1+µi)
]τ

, (4.10)

where µi =
√

ρi/(1+ρi) and ρi denotes the SNR of the ith layer. By applying Gaus-

sian approximation to the error propagation component in (3.19), and extending
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the results of [66] for LSSTC, the noise variance, σ2
t , can be approximated by

σ
2
t = N0 + ∑

∀vm,k<t
E
[
‖hvm,k‖

2] ·Var
[
evm,k | xvm,k 6= x̂vm,k

]
= N0 + ∑

∀vm,k<t
L2 ·4PL,vm,k

= N0 +4L2 · ∑
∀vm,k<t

PL,vm,k , (4.11)

where ‖hvm,k‖2, PL,vm,k , and evm,k denotes the FN, transmit power, and the error

event of layer vm,k respectively. E[.] is the expectation Operator, and Var[.] is the

variance operator.

4.3.2 M-QAM

For simplicity, we consider square M-QAM modulation schemes such as 16-QAM,

64-QAM, etc. Under a Rayleigh fading channel and with diversity order Di, the

SER of a square M-QAM can be written as follows [72]

Pe(Di,ρi) = 4
(

1− 1√
M

)
I1−4

(
1− 1√

M

)2

I2, (4.12)

where the terms I1 and I2 are defined as

I1 =
[

1
2

(1−µi)
]Di

·
Di−1

∑
k=0

(
Di−1+ k

k

)[
1
2

(1+µi)
]k

, (4.13)
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I2 =
1
4
−µi ·

(
1
2
− 1

π
· tan−1(µi)

)
·

Di−1

∑
k=0

(
2k
k

)
· (4τi)

−k

+
µi

π
sin
(
tan−1(µi)

)Di−1

∑
k=1

k

∑
i=1

τ
−k
i ·Tik ·

(
cos
(
tan−1(µi)

))2(k−i)+1
, (4.14)

where

µi ,

√
ρi

2
3(M−1)+ρi

, (4.15)

τi ,

(
3ρi

2(M−1)
+1
)

, (4.16)

Tik ,

(2k
k

)(2(k−i)
k−i

)
4i · (2(k− i)+1)

. (4.17)

The variance of the effective noise affecting the tth layer is approximated by

σ
2
t = N0 +

6L2

M−1
· ∑
∀vm,k<t

PL,vm,k . (4.18)

4.3.3 M-PSK

Using the result of [72], the SER of ith layer assuming perfect interference cancel-

lation and M-PSK modulation with diversity order Di and layer SNR ρi is written

as follows

Pe(Di,ρi) =
M−1

M
− µi√

µ2
i +1

(
1
2

+
ωi

π

)Di−1

∑
k=0

(
2k
k

)[
4(µ2

i +1)
]−k

− µi√
µ2

i +1
· 1

π
sin(ωi)

Di−1

∑
k=1

k

∑
i=1

Tik

(µ2
i +1)k

[cos(ωi)]
2(k−i)+1 , (4.19)
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where

µi ,
√

ρi sin(
π

M
), (4.20)

ωi , tan−1

√ρi cos( π

M )√
µ2

i +1

 , (4.21)

Tik ,

(2k
k

)(2(k−i)
k−i

)
4i · (2(k− i)+1)

. (4.22)

The variance of the effective noise affecting the tth layer is approximated by [66]

as

σ
2
t = N0 + ∑

∀vm,k<t
E
[
‖hvm,k‖

2] ·Var
[
evm,k | xvm,k 6= x̂vm,k

]
= N0 + ∑

∀vm,k<t
L2 ·4 · sin2

(
π

M

)
PL,vm,k

= N0 +4L2 · sin2
(

π

M

)
· ∑
∀vm,k<t

PL,vm,k . (4.23)

After finding the expressions of σ2
t and Pe(Di,ρi), they can be substituted into

(4.9). The SER of the ith layer, Pei|(KL,N0), can be evaluated by combining (4.3), (4.8),

and (4.9), and from that we can find the probability of error of the individual sub-

streams by

Pexi |(K,N0) = Prob{xi 6= x̂i |K,N0)} (4.24)

= PeΓ(i)|(KL,N0), (4.25)
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and the average SER over all M sub-streams is simply written as

Pav|(K,N0) =
1
M
·

M

∑
i=1

Pexi |(K,N0). (4.26)

4.4 Optimum Power Allocation

In this Section, we aim to find the optimum power allocation K that would re-

sult in optimizing the performance by minimizing the probability of error for the

LSSTC system. To achieve this we need to differentiate the formula of the aver-

age SER Pav|(K,N0) with respect to K to find the minimum value of the SER. Clearly

such analytical differentiation is very difficult, therefore we use a numerical ap-

proach applying Newton’s method [66]. To minimize Pav|(K,N0), we need to find

the value of K = [K1,K2, · · · ,KM−1] that satisfies the following set of equations

∂Pav|(K,N0)

∂Ki
= 0, i = 1,2, · · · ,M−1. (4.27)
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To solve the set of equations in (4.27) by Newton’s method [66], we first define

the following parameters

fi ,
∂Pav|(K,N0)

∂Ki
,

fi j , ∂ fi
∂K j

=
∂2Pav|(K,N0)

∂Ki∂K j
,

Ki+∆ , [K1, · · · ,Ki+∆, · · · ,KM−1],

Ki+∆, j+∆ , [K1, · · · ,Ki+∆, · · · ,K j+∆, · · · ,KM−1],

(4.28)

where i, j ∈ {1,2, · · · ,M−1}. Given that the step size ∆ is chosen to be small, then

the partial derivatives in (4.28) can be found numerically by Newton’s method

by the following approximation

fi ' 1
∆

(
Pav|(Ki+∆,N0)−Pav|(K,N0)

)
,

fi j ' 1
∆2

(
Pav|(Ki+∆, j+∆,N0)−Pav|(Ki+∆,N0)−Pav|(K j+∆,N0) +Pav|(K,N0)

)
,

(4.29)

where i, j ∈ {1,2, · · · ,M− 1}. To use Newton’s method we start with an initial

guess K(0) = [K(0)
1 ,K(0)

2 , · · · ,K(0)
M−1], after that we compute the corresponding par-

tial derivatives f (0)
i and f (0)

i j using (4.30). To compute the power allocation at the
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uth iteration K(u), we apply the following procedure

K(u+1)
1 = K(u)

1 −
|A(u)

1 |
|J(u)|

,

K(u+1)
2 = K(u)

2 −
|A(u)

2 |
|J(u)|

,

...

K(u+1)
M−1 = K(u)

M−1−
|A(u)

M−1|
|J(u)|

, (4.30)

where | · | denotes the matrix determinant, the matrix J(u) is defined as

J(u) =



f (u)
11 f (u)

12 · · · f (u)
1(M−1)

f (u)
21 f (u)

22 · · · f (u)
2(M−1)

...
... . . . ...

f (u)
(M−1)1 f (u)

(M−1)2 · · · f (u)
(M−1)(M−1)


, (4.31)

the matrix A(u)
v is defined to be the matrix obtained by replacing the vth column of

J(u) with
[

f (u)
1 , f (u)

2 , · · · , f (u)
(M−1)

]T
. The optimum PA pattern Kopt can be obtained by

repeating the procedure until Ku converges, which depends on the initial guess

K(0) and the step size ∆. We will refer to the optimum PA-LSSTC as OPA-LSSTC.
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4.5 Complexity of OPA-LSSTC

It was observed that the optimum power allocation at high SNR provides a sig-

nificant SNR gain with little increase in the complexity of the signal. The main

parameters that will be affected by the OPA processing are the feedback load and

the number of operations per unit time.

The BS analyzes the CSI data to optimize the performance by assigning the

layer powers according to Kopt . As a result, the number of operations will in-

crease, and faster processors will be required. Observing the simulation results,

the computational complexity was noted to be higher for small SNR values. The

reason for that is hardware limitation, as the tiny difference between the opti-

mum powers will require the step size δ to be very small. In such a case, finding

the solution by numerical methods will require a huge number of operations.

The minimum step size used to solve the optimum PA equations was 10−4. Also

it should be clear that finding the optimum PA in the low SNR range will not

improve the performance much, and therefore no need to allocate powerful com-

putational resources for it. For the high SNR range, few operations are enough to

provide the optimum performance.

To speed up the convergence of Kopt , The BS can have a database that contains

the best initial guess of each SNR value. This way the number of operations

required will be minimized and the system resources are used efficiently.

The feedback load does not increase much when using OPA-LSSTC since we
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have assumed that the channel changes slowly, and the CSI need to be sent only

if the channel state changes.

4.6 Numerical Results

In this section we illustrate the numerical results of the proposed PA scheme for

LSSTC systems with different modulation schemes and transmitter configura-

tions. Throughout this thesis, the following notation will be used:

• EPA-LSSTC will be used to denote equal power allocation LSSTC system in

which all the layers are assigned the same amount of power.

• OPA-LSSTC will be used to denote optimum power allocation LSSTC sys-

tem in which the layers are assigned different amounts of power according

to Kopt .

Figure 4.2 shows the SER of the individual layers of an 8× 2 LSSTC using non-

ordered SGIC detector employing BPSK modulation with K = 2 and L = 2 ob-

tained from both the simulation and the analysis. The Figure compares the ana-

lytical results of the SER obtained in this chapter, denoted as ”analysis 2”, to that

obtained in Chapter 3, denoted as ”analysis 1”. Also, the simulation results with

equal power allocation is shown. It is clear that the simulation makes a nearly

perfect match to the two analysis methods, which demonstrates the validity of

the analysis methods we have proposed.
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Figure 4.2: SER of the individual sub-streams of an 8×2 LSSTC employing SGIC
without ordering and BPSK modulation with K = 2 & L = 2 (comparing analysis
to simulation results).
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Figure 4.3 compares the simulation results to the results of the two methods

of analysis for SER of an LSSTC system employing non-ordered SGIC and BPSK

modulation with K = 2 and NR = 2 and different number of beamforming ele-

ments. It can be seen that the simulation and analysis results match quite well,

which proves the validity of the analysis. Figure 4.4 shows the same results but

with K = 4 and NR = 4.
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Figure 4.3: SER of LSSTC employing non-ordered SGIC and BPSK modulation
with K = 2 & NR = 2 (comparing analysis to simulation results).
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with K = 4 & NR = 4 (comparing analysis to simulation results).



98

Figure 4.5 shows a fair comparison between different transmitter configura-

tions of the LSSTC system in terms of the SER, obtained from both the EPA-LSSTC

analysis and simulation. The three configurations use a total number of transmit

antennas, NT = 8, and the receiver is equipped with 4 antennas. In this compari-

son a different modulation scheme is used such that the spectral efficiency would

be the same for all of them, which is set to 4 bps/Hz.

Figure 4.6 shows the SER of the individual layers of an 8× 4 LSSTC using

non-ordered SGIC ordering employing BPSK modulation with K = 4 and L = 1

obtained using the PA-LSSTC analysis. From Figure 4.6 it can be seen that the

first layer dominates the probability of error because it has the lowest diversity

order of (m1(NR−K +1) = 2).

Figure 4.7 shows SER of the individual layers of an 8× 4 LSSTC using non-

ordered SGIC detector employing QPSK modulation with K = 2 and L = 2 ob-

tained using the PA-LSSTC analysis.

Figure 4.8 shows the SER of a 2× 1 LSSTC using SGIC detector employing

BPSK modulation with K = 1 and L = 1 obtained using the PA-LSSTC analysis.

This result is exactly the same result obtained by Alamouti in [4] for 2T x× 1Rx

STBC, which is equivalent to the 2×1 LSSTC, and that proves the validity of our

analysis.
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Figure 4.6: SER of the individual layers of an 8×4 LSSTC employing SGIC with-
out ordering and BPSK modulation with K = 4 & L = 1.
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Figure 4.7: SER of the individual layers of an 8×4 LSSTC employing SGIC with-
out ordering and QPSK modulation with K = 2 & L = 2.
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Figure 4.8: SER of a 2× 1 LSSTC employing SGIC and BPSK modulation with
K = 1 & L = 1.
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A 16× 4 OPA-LSSTC employing BPSK modulation with K = 4 and L = 2 is

considered. The optimum PA for each layer versus Es/N0 is plotted in Figure 4.9,

where it can be seen that at high SNR, the impact of error propagation is more

dominant than the noise. It can be seen from Figure 4.9 that the SER is dominated

by the first layer, and that the detection errors in the first layer would cause se-

vere detection errors to the following layers, therefore, the optimum PA scheme

suggests assigning the earlier layers higher power than the later ones as the SNR

increases. Note that the first layer gets most of the transmit power at high SNR

since it is the weakest layer that has the lowest diversity order among all lay-

ers. In Figure 4.10, we plot the SER of a 16× 4 LSSTC system employing BPSK

modulation with K = 4 and L = 2. We compare two cases, PA-LSSTC with equal

power allocation (EPA-LSSTC), and the PA-LSSTC with optimum power alloca-

tion (OPA-LSSTC). Our SER analysis is shown to be very accurate as compared

to simulation results. It is observed that the proposed OPA-LSSTC has about 2.5

dB gain at a SER of 10−4 compared to EPA-LSSTC. This shows the superior per-

formance of the proposed scheme.
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Figure 4.9: Optimum PA for each layer for a 16× 4 PA-LSSTC employing BPSK
modulation with K = 4 & L = 2.
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Figure 4.10: SER of 16× 4 LSSTC system using PA-LSSTC scheme employing
BPSK modulation with K = 4 & L = 2.
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Next, we consider a 16×4 OPA-LSSTC employing QPSK, and 16-QAM mod-

ulation respectively with K = 4 and L = 2. Similar results to what have been

described earlier for the case of BPSK have been obtained in the Figures 4.11, and

4.12 for QPSK, and in the Figures 4.13, and 4.14 for 16-QAM. It can be seen from

the figures that the optimum power allocation provides about 2.7 dB gain at a

SER of 10−4 in the case of QPSK, and about 2.8 dB gain at a SER of 10−4 in the

case of 16-QAM. Regarding the layer optimum PA of QPSK and 16-QAM, the

points in the low SNR range were discarded due to hardware limitations.
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Figure 4.11: Optimum power assigned for each layer for a 16× 4 OPA-LSSTC
scheme employing QPSK modulation with K = 4 & L = 2.
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Figure 4.12: SER of 16× 4 LSSTC system using PA-LSSTC scheme employing
QPSK modulation with K = 4 & L = 2.
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Figure 4.13: Optimum power assigned for each layer for a 16× 4 OPA-LSSTC
scheme employing 16-QAM modulation with K = 4 & L = 2.
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Figure 4.14: SER of 16×4 LSSTC system using PA-LSSTC scheme employing 16-
QAM modulation with K = 4 & L = 2.
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Now, we want to study the effect of changing the parameters of the LSSTC

system on the PA gain. Figure 4.15 shows the SER of LSSTC versus the number

of beam-steering elements (L) at an Es/N0 of 35 dB using SGIC and BPSK modu-

lation with K = 4, mk = 2, and NR = 4. In Figure 4.16 we plot the PA gain, GPA (dB)

versus (L) at a SER of 10−6. It is observed that the gain remains approximately

constant and does not depend on L, which is actually expected since L is not re-

lated directly to the distribution of the power among the layers, i.e. if L increase

or decrease the layer will still get the same amount of power.

Figure 4.17 shows the SER of LSSTC versus the number of AAs associated

with each STBC encoder (mk) at an Es/N0 of 35 dB using SGIC and BPSK mod-

ulation with K = 4, L = 2, and NR = 4. In Figure 4.18 we plot the PA gain, GPA

(dB) versus mk at a SER of 10−6, where it can be seen that GPA does not increase

significantly with increasing mk. The small increase can be related to the diversity

order.

In Figure 4.19 we plot the power allocation gain, GPA (dB) versus number of

Layers (K) at a SER of 10−6 using SGIC employing BPSK modulation with mk = 2,

L = 2, and NR = 8, where it can be seen that GPA increases with increasing K,

which is expected, since increasing the number of layers will lead to an increase

in the degrees of freedom. Therefore a better distribution for the power can be

found, since the total number of layers over which the power can be distributed

is increased.
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Figure 4.16: PA gain, GPA versus the number of beam-steering elements (L) at
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We can summarize four possible Transmitter-Receiver configurations for LSSTC

in Table 4.1.

Table 4.1: Possible Transmitter-Receiver configurations for LSSTC.

Transmitter
Receiver Non-ordered detector Post-ordered detector

Equal Power Allocation EPA-LSSTC EPA-LSSTC
with non-ordered detector with post-ordered detector

Optimum Power Allocation OPA-LSSTC OPA-LSSTC
with non-ordered detector with post-ordered detector

Figure 4.20 plots the SER versus Es/N0 of the four possible configurations

listed in Table 4.1. Looking at the SER around 10−5, we can see that in the case

of EPA using the post-ordered detector provides a gain of 1.2 dB compared to

using the non-ordered detector, while in the case of OPA using the post-ordered

detector provides a gain of 0.5 dB compared to using the non-ordered detector,

because the OPA had already pre-ordered the detection of the sub-streams, there-

fore attempting to further order them by the post-ordered detector will not result

in much gain. We can also note that the using the OPA is better than using the

a post-ordered detector, since it provides about 2.8 dB gain compared to 2.1 dB

for the latter, and also because using the post-ordered detector will require more

processing at the user handset and that will consume the battery, on the other

hand, the PA will be done at the base station where the processing and power is

not an issue.
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It has been mentioned earlier that the first layer dominates the probability of

error, therefore we can approximate the probability of error of whole system by

that of the first layer. In the following, we seek to further study the last statement,

by comparing the SER of the first layer to the average SER, aiming to find which

parameters or conditions will make this approximation much accurate.

Figure 4.21 shows the SER of LSSTC with varying the number of beamform-

ing elements (L), where we can see that the gap between the first layer and the

average doesn’t change, and therefore it does not depend on L.

Figure 4.22 shows the SER of LSSTC with varying the number of layers (K),

and we can see that the gap between the first layer and the average increases with

increasing K.

In Figure 4.23 the SER of LSSTC is plotted with varying the STBC size (mk)

which corresponds to the number of AAs per layer. We can see that the gap

between the first layer and the average decreases with increasing mk. We can also

note that the gap becomes constant when mk becomes high, this is because the

diversity order becomes high and the improvement doesn’t change much after

further increase in mk.
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Figure 4.21: First layer & average SER of EPA-LSSTC employing SGIC and BPSK
modulation with K = 2 & NR = 2 & mk = 2 (varying the number of beamforming
elements (L)).
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modulation with L = 2 & mk = 2 & NR = 8 (varying the number of layers (K)).
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Figure 4.23: First layer & average SER of EPA-LSSTC employing SGIC and BPSK
modulation with L = 2 & K = 2 & NR = 2 (varying the STBC size (mk)).
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4.7 Chapter Conclusions

In this chapter we investigated the performance of single-user PA-LSSTC. We

have derived an expression for the probability of error for PA-LSSTC employing

BPSK by extending previously obtained results for VBLAST, such that it includes

the diversity gain and SNR gain of beamforming. The results also included other

modulation schemes, such as, M-ary PSK and M-ary QAM. The analytical results

have shown merely a perfect match with simulation results, which proves their

validity. Also from the numerical results, we have seen the benefits of PA-LSSTC

in improving the performance. Finally, the optimum PA performance for LSSTC

was derived using Newton’s method, and we noted that choosing a small value

for the step size will lead to convergence in just a few iterations.



Chapter 5

LSSTC in Multi-User Systems

The statistical randomness in the time-varying MIMO wireless channel across the

different users results in creating the multiuser diversity gain. The multiuser di-

versity is harnessed by scheduling to enhance the average SNR and the sum-rate

capacity [59]. In this chapter we investigate the use of LSSTC in a multi-user wire-

less network with applying scheduling technique to improve the performance of

LSSTC systems.

The outline of this chapter is as follows. Section 5.1 gives a description of

the system model for the Multi-User LSSTC. In Section 5.2, Scheduling is dis-

cussed along with presenting its definition, algorithms, criteria, and fairnes. In

Section 5.3 we derive the PDF of the maximum pre-processing SNR for a Greedy-

based multi-user LSSTC. Section 5.4 presents the simulation results conducted to

evaluate the multi-user LSSTC system. Finally, Section 5.5 presents the chapter’s

124
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conclusions.

5.1 System Model

The model we consider applies to the downlink channel of a MlMO wireless cel-

lular packet data system as illustrated in Figure 5.1. We assumed having a single

BS equipped with multi antennas (M AAs) that provides data services to J users,

each of which could be equipped with NR antenna elements, where we should

have NR ≥ K. Since the data rate that can be supported for each user is propor-

tional to its received SNR, the instantaneous channel conditions are assumed to

be known perfectly at the BS. That is each user reports his channel state informa-

tion (CSI) every STBC block, using it and harnessing the unequal latency property

of the service to serve multiple users with disparate SNRs. The scheduler at the

BS may decide to schedule transmissions to one or more users based upon their

reported CSI in the uplink channel. For simplicity purposes, we assume perfect

channel tracking at the receiver and perfect feedback of the CSI to the base sta-

tion. It is also assumed that the J users experience the same average SNR. Each

MIMO link exhibits quasi-static frequency non-selective (flat) fading so that the

channel gains remain constant throughout the transmission of an STBC block,

which we refer to as a time slot, and the channel is assumed to vary indepen-

dently between STBC blocks. The received baseband data matrix for the jth user,
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Figure 5.1: Block diagram of a multi-user LSSTC system.

Yj, can be expressed as

Yj = HjWjCj +Nj, (5.1)

The parameters in (5.1) have been defined earlier for single-user system, the

reader may refer to 3.1 for further details. Figure 5.2 shows the structure of the

time frame considered in this Chapter where each frame consists of Q time slot,

each time slot has a duration that is equal to that of the STBC block, this assump-

tion is to ensure that the STBC block is sent to the same user, otherwise it will lose

the advantage of time redundancy. In addition, we consider the case where the

antennas of the base station are assigned to the same users in any time slot.
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5.2 Scheduling for Packet Data

5.2.1 The Definition of Scheduling

Scheduling is a method of allowing multiple users to share a common resource.

Scheduling allocates systems resources (e.g; transmit power, bandwidth, modu-

lation scheme), to optimize a measure of goodness (e.g; throughput, delay) [73].

The scheduling process on the downlink of a wireless, time-slotted system an-

swers two questions. The first one is related to user scheduling, i.e; ”which user(s)

should be served in a time slot?”. The second question is related to selecting be-
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tween different types of data [73], i.e; ”If we have different types of traffic di-

rected to a single-user, which traffic flow should get served first?”. Unlike voice,

data is typically delay insensitive. Exceptions to this statement are the cases of

streaming live video or speech over data packets. Data systems can exploit fad-

ing channels by using scheduling algorithms. The best strategy to maximize sys-

tem throughput is to transmit to users who have the best channel conditions by

continuously monitoring fading coefficients at the receiver (as we are interested

in the downlink) [74]. An important scheduling criterion is fairness, because if

the base station always serves the user with the best channel, poor-channel users

would be left with no service. Hence, algorithms need a way of balancing the

scheduled users. As it is expected the scheduling algorithms are executed within

the medium access control (MAC) layer, while the space-time processing is exe-

cuted in the physical (PHY) layer [75].

5.2.2 Scheduling Algorithms

Scheduling on the downlink in MIMO and multiple-input single-output MISO

systems can be employed in two methods. The first is by dedicating all the an-

tennas of the BS to a single-user at any time slot. The second is by allocating the

antennas of the BS to many users at any time slot. In our work we have used the

former method where only one user is served in each time slot and so he will be

given all the resources from all the transmission antennas. The reason for using
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this method is that it has been proven in [76] that scheduling to more than one

user at the same time will complicate the system without providing worthy ad-

vantages. Algorithms that do not take channel conditions into considerations are

called non-opportunistic. An example of this algorithm is the the round robin

(RR). On the other hand, opportunistic algorithms take channel conditions into

consideration before allocating the resource to any user. Next, we will describe

three opportunistic algorithms, along with the RR scheme which will be used as

a benchmark for evaluating the opportunistic algorithms.

Round Robin

In RR users are chosen in cyclic order for transmission, regardless of their individ-

ual requested rates. This algorithm provides the highest degree of fairness with

respect to the air interface, but suffers low average throughput [75], since channel

conditions are ignored. The round robin scheduler is equivalent to the single-user

case since all users are equally served in an orthogonal TDM-like manner, such

as in TDMA.

Greedy Scheduling

In this scheme, the scheduler selects a user who reports the the best instantaneous

channel conditions. This provides the maximum possible average throughput

[75]. The ”greedy” scheduler gives rise to multiuser diversity mechanism, where



130

the link with the best instantaneous SNR is selected out of many independent

links on a per time slot basis.

Opportunistic Round Robin (ORR)

ORR guarantees that all the J users will be assigned a the time slot within a farme.

The time slots are assigned opportunistically such that the users will be assigned

the time slots that maximizes the total throughput within a frame [77]. The ORR

algorithm works as follows. In the first time slot the scheduler selects the best

user according to some scheduling criterion, after that this user will be excluded

from the competition of the coming time slots, and the the process is repeated un-

til the frame is finished and all the time slots have been assigned to users ranging

from the best user to the worst one. This algorithm captures part of the available

multiuser diversity [16], and provides the highest short term fairness when the

number of time slots allocated in frames is equal to the number of users J [77].

Proportional Fair (PF)

In this scheme, the PF scheduler assigns a user for transmission when its instan-

taneous channel capacity is the highest relative to its average channel condition

[76]. As such, the benefit of multiuser diversity can be exploited and fairness

among users can be maintained. This scheme comes in the middle between

two extremes, one is the RR that result in the maximum fairness, the other is
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the greedy scheduling that result in maximum system capacity. Originally the

PF scheme has been proposed for SISO and single-input multiple-output (SIMO)

systems. When multiple input and multiple output systems achieve spatial multi-

plexing, multiple spatial links are created at each time slot. Different information

symbols can be transmitted through these multiple spatial links during the same

time slot. As a result, the data rate DRCi is defined. DRCi(t) is the instantaneous

data rate experienced by user i if it is served by the packet scheduler. DRCi(t) is

represented by the sum of the data rates of the M spatial links for that user, and

can be written as [76]:

DRCi (t) =
M

∑
n=1

Rk,n (t), (5.2)

where Rk,n (t) denotes the data rate of the nth spatial channel for the kth user at the

tth time slot. In the PF scheme the scheduler selects the mobile with the highest

ratio DRCi(t)/Ri(t) [76], where Ri(t) is the average data rate received by the mobile

over a window of an appropriate time duration. This can be expressed by:

k(t) = arg max
i∈{1,2,···,K}

DRCi(t)
Ri(t)

(5.3)

where k(t) denotes the index of the user selected to be served at the tth time slot.

The computation of the user average data rate Ri(t) is given from the following
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equation [63]:

Ri(t) =


(1− 1

tc
)Ri(t−1) , i 6= k

(1− 1
tc
)Ri(t−1)+ 1

tc
DRCi(t) , i = k

(5.4)

Further, DRCi(t) is given from the following equation in the case of a MIMO mul-

tiuser system [76]

DRCi (t) =
M

∑
n=1

log2
(
1+ γk,n(t)

)
, (5.5)

where γk,n denotes the post-processing SNR for the channel corresponding to the

nth transmit antenna and the kth user.

5.2.3 Time Slot Fairness

Fairness is an important measure in performance studies, especially in distributed

systems where a set of resources is to be shared by a number of users [78]. For

fairness comparison, we employ the Jain fairness index (JFI) [78, 77] which is de-

fined as

FJ(T ) =
(ET [X ])2

ET [X2]
, (5.6)

where X is a random variable describing the amount of resources allocated to

a user and ET [·] is the expectation calculated over T time-slots. JFI is bounded

between zero and one, where zero means total unfairness and one means total

fairness. It should be noted that total unfairness will occur when we have an
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infinite number of user and one user dominates over all the resources [77].

5.2.4 Scheduling Criteria

A scheduling criterion is defined as the condition that the scheduling algorithm

consider to differentiate between users. Throughout this chapter we will use the

following scheduling criteria:

1. MaxSNR

2. MaxSNRWL

3. MinES

4. MaxMinSV

5. MaxLSSTCCap

In this section, we illustrate and evaluate the above scheduling criteria when ap-

plied to the downlink channel of a multi-user LSSTC system. When applying the

MaxSNR criteria the scheduler selects the user that has the maximum received

SNR [16], thus, the selected user satisfies:

max
k=1,2,...,J

{
trace(HkHH

k )
}

(5.7)

For the MaxSNRWL criterion, the subscript ’WL’ refers to the worst layer. Since the

performance is dominated by the worst layer (group), then choosing the user that
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has the best worst layer in terms of the squared Frobenius norm corresponding

to that group, will result in a better performance. In this case, the scheduler will

select the user with

max
k=1,2,...,J

min
i=1,2,...,K

{
‖h(k)

i ‖
2
}

, (5.8)

where ‖H̃(k)
i ‖2 is the squared Frobenius norm of the ith group of H̃ corresponding

to the kth user.

In case of the MinES, the scheduler selects the user with the minimum eigen-

spread of (HHH) [79]. On the other hand, the MaxMinSV criterion selects the user

that has the largest minimum singular value of (Hk) [16], mathematically

max
k=1,2,...,J

{ρmin(Hk)} . (5.9)

For the MaxLSSTCCap criterion, the scheduler selects the user that maximizes

the LSSTC capacity, i.e.

max
k=1,2,...,J

{
C(k)

LSSTC

}
, (5.10)

where C(k)
LSSTC is the LSSTC capacity of the kth user. Substituting the value of C(k)

LSSTC

in (5.10) will lead to

max
k=1,2,...,J

{
K ·Rs · min

i=1,2,...,K

{
log2

(
1+

L2 ·PT

M ·N0
· ‖H(k)

PP,i‖
2
)}}

, (5.11)
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where H(k)
PP,i is the post-processing matrix corresponding to the ith group of the

the kth user. As stated in Section 3.4, the LSSTC capacity is dominated by the

worst group, therefore, we can say that choosing the best user according to the

MaxLSSTCCap criterion is equivalent to choosing the user that has the best worst

post-processing group. In other words choosing the user whose worst post-

processing group is the maximum among all users. Therefore, 5.11 can be re-

duced to:

max
k=1,2,...,J

min
i=1,2,...,K

{
‖H(k)

PP,i‖
2
}

(5.12)

Note that the slight difference between the MaxSNRWL and the MaxLSSTCCap cri-

teria is just that the former uses the pre-processing SNR (received SNR), while the

latter uses the post-processing SNR, but actually, that leads to a huge difference in

the performance as we will show in the simulation results. Throughout this chap-

ter we will be using several combinations of scheduling algorithms and criteria,

thus it is useful to define the algorithm−criteria configuration as the combination

of using the specified algorithm with the specified criteria to schedule the users,

for instance, the ORR−MaxSNR configuration indicates that the scheduler will

apply the ORR algorithm with the MaxSNR criteria as the merit of goodness to

schedule the users.
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5.3 PDF of the Greedy Algorithm with MaxSNR Crite-

ria

In this Section we derive the PDF of the maximum pre-processing SNR for a

Greedy-based multi-user LSSTC, i.e., Greedy−MaxSNR LSSTC. For a MIMO sys-

tem the pre-processing SNR can be defined in terms of the squared FN H̃ is an

(NR×M) matrix whose entries are αn,m. Therefore, the squared FN of H̃ can be

written as

‖H̃‖2 =
NR

∑
n=1

M

∑
m=1
‖αn,m‖2

=
NR

∑
n=1

M

∑
m=1
‖αn,m R‖2 +‖αn,m I‖2, (5.13)

where both αn,m R and αn,m I are complex Gaussian random variables with zero

mean and variance σ2. This shows that ‖H̃‖2 is a central Chi-squared random

variable with n = 2MNR degrees of freedom, which has the following PDF [80]:

f
Γ
(γ) =

1
γ̄ · (m−1)!

(
γ

γ̄

)m−1

exp
(
−γ

γ̄

)
, (5.14)

where γ̄ is the mean of ‖H̃‖2, γ̄ = 2σ2, and m =
n
2

. Given the power constraints

stated in 3.3, γ̄ for the case of LSSTC can be written as γ̄ =
(L2PT /NT )

N0
. On the
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other hand, the CDF of ‖H̃‖2 is given by [80]:

F
Γ
(γ) = 1− exp

(
−γ

γ̄

)m−1

∑
k=0

1
k!

(
γ

γ̄

)k

. (5.15)

The Greedy−MaxSNR scheduler selects the best user out of J users. Thus, from

order statistics theory [75], the PDF the maximum pre-processing SNR will be

g
Γ
(γ) = J f

Γ
(γ)F

Γ
(γ)J−1 (5.16)

=
J

γ̄ · (m−1)!

(
γ

γ̄

)m−1

exp
(
−γ

γ̄

)(
1− exp

(
−γ

γ̄

)m−1

∑
k=0

1
k!

(
γ

γ̄

)k
)J−1

.

The last result is compared to simulation results for verification.

5.4 Numerical Results

In all the simulations conducted in this section, unless otherwise mentioned, we

assume a multi-user 16× 4 LSSTC system with BPSK modulation. The base sta-

tion sends the data to a single-user per time slot, so all the antennas are dedicated

to that user. The average SNR is set to 15 dB, and the B.S. transmits via K = 4 lay-

ers each of which is equipped with alamouti STBC encoder and transmit using

Ms = 2 AAs, and each AA is composed of L = 2 antennas that are responsible for

beamforming. On the other hand, the receiver of each user employs post-ordered

SGIC, and is equipped with NR = 4 antennas.
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Figure 5.3 shows a sample of scheduling 30 users over 30 time slots using sev-

eral combinations of scheduling algorithms and criteria. The Y-axis represents

the percentage of time the user takes the channel, while the abscissa marks the

user indices. In RR all users takes the channel for equal time periods, the same

happens in the case of ORR−MaxSNR this might have been caused from the as-

sumption of equal average power among users. The other subfigures of Figure

5.3 show the effect of scheduling on a group of 30 users.
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Figure 5.3: Percentage of time the user takes the channel (TP) using several
scheduling algorithms.
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Figure 5.4 plots Jain’s Fairness Index vs. the number of time Slots of a 16×

4 LSSTC system serving 5 users at 15 dB average SNR for several scheduling

algorithms and criteria. It can be seen that if the number of the time slots becomes

high, Jain’s fairness index for all the tested methods gradually approaches 1, that

means it is highly probable that all the users will be able to use the channel if the

number of time slots is large compared to the number of users, this is because the

channel is assumed independent and uncorrelated. Also, it should be observed

that the fairness of the RR and the ORR algorithms is perfect when all the users

are served equally within the frame, which results if the number of time slots is

a multiple of the number of users. In our case, where J = 5, the perfect fairness

is when the number of time slots per frame is 5, 10, 15, etc. Figure 5.4 shows that

the fairness does not depend on the scheduling criteria and depends solely on

the scheduling algorithm. Figure 5.4 shows that RR provides the highest fairness

followed by PF , and the worst fairness is experienced with the greedy algorithm.
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Figure 5.4: Jain’s Fairness Index vs. the Number of time Slots of a 16× 4 LSSTC
serving 5 users at 15 dB average SNR for several cases.
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In Figure 5.5, we compare the supported system capacity of different schedul-

ing schemes versus the number of users at 10% Outage probability. As expected,

for the Round Robin Scheduler the capacity doesn’t increase with increasing J,

while in the Greedy scheme, we see that it is increasing with J, as while we’re

increasing the number of users there will be a higher possibility of getting a

high channel coefficient. Among the scheduling criteria, The MaxLSSTCCap is

the best because it directly coincides with the detection mechanism, i.e. interfer-

ence nulling at the receiver, and it doesn’t matter whether ordering is used or not.

The MaxMinSV is second best, since it takes into account both the user’s instan-

taneous power and the eigenspread of the user’s channel matrix as ρmin = ρmax√
s ,

though, MaxMinSV is inferior to MaxLSSTCCap since it doesn’t coincide with the

detection mechanism of LSSTC. Figure 5.5 also shows that the ORR algorithm

doesn’t increase the capacity much compared to the simple RR algorithm.
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Figure 5.5: Capacity vs. number of users for a 16×4 LSSTC at 10% Outage prob-
ability and 15 dB SNR.
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Figure 5.6 shows the capacity of the forementioned configuration plotted ver-

sus Es/N0, and in all cases, the system serves 30 users. As it can be seen from the

figure, the capacity is approximately linearly increasing with increasing Es/N0.

the different configurations behave in a similar manner to that in 5.5.
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Figure 5.6: Capacity vs. Es/N0 for a 30 user 16×4 LSSTC at 10% Outage probabil-
ity.



146

Figure 5.7 shows the SER versus Es/N0 for a 20 user 16× 4 LSSTC system.

Figure 5.7 shows the performance superiority of the MaxLSSTCCap criteria as it

provides a gain of 7.5 dB compared to RR at a SER of 10−3. While one might

have good expectations about Greedy−MaxSNR, it is clear that it doesn’t perform

well in the case of LSSTC, where it only provides 1.9 dB over RR, this might

be caused from the fact that STBC, which is a component of LSSTC, tends to

average the channel while the MaxSNR scheduler tends to take the maximas of

the channel. Thus, we can conclude that MaxSNR criteria and LSSTC is not a very

good combination. Most of the tested configurations have a similar behaviour to

Greedy−MaxSNR. The gain for several algorithm-criteria combinations over the

RR algorithm at a SER of 10−3 is summarized in Table 5.1. The gains are ordered

descendingly.

Table 5.1: Gain of several configurations over RR at SER = 10−3.
Configuration Gain over RR

Greedy−MaxLSSTCCap 7.5 dB
Greedy−MaxMinSV 2.4 dB

Greedy−MinES 2.2 dB
Greedy−MaxSNR 1.9 dB

PF−MaxSNR 1.8 dB
Greedy−MaxSNRWL 1.7 dB

ORR−MaxSNRWL 0.8 dB
ORR−MaxSNR 0.6 dB
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Figure 5.7: SER versus Es/N0 for a 20 user 16× 4 LSSTC (comparing several
scheduling configurations).
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In Figure 5.8, we compare the SER versus Es/N0 for a 16× 4 LSSTC serving

different number of users using the MaxLSSTCCap criterion. As expected, the

diversity gain increases with increasing the number of users, as the plot becomes

more steep while increasing the number of users. It seems that the rate of the

slope increase will be slower with increasing number of users. Figure 5.9 shows

similar results for the case of the MaxMinSV , for the other configurations, the

diversity gain was very small, and the performance of the system with increasing

the number of users was close to the single-user case, therefore, there were no

need to include their plots.
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Figure 5.8: SER vs. Es/N0 for a 16× 4 LSSTC serving different number of users
using the MaxLSSTCCap criterion.
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Next we examine the cumulative distribution function (CDF) for some of the

forementioned the scheduling criteria. Figure 5.10 shows the CDF of the pre-

processing SNR of the best user for a 16×4 LSSTC serving 20 users. The schedul-

ing is conducted using the proposed configurations. It can be inferred that the

pre-processing SNR (received SNR) of the Greedy−MaxSNR criterion has the best

behaviour (highest values) but this doesn’t necessarily mean that it will result

in the best system performance, since the latter depends on the post-processing

SNR rather than the the pre-processing SNR.
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Figure 5.10: CDF of the pre-processing SNR of the best user for a 16× 4 LSSTC
serving 20 users (comparing several scheduling configurations).
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Figure 5.11 shows the PDF of the maximum pre-processing SNR of a 16× 4

LSSTC serving 20 users. Figure 5.11 compares the analytical results derived in

5.3 to simulation results, also the PDF for the single-user case is included for

reference. It is clear that the Monte Carlo simulation makes a nearly perfect match

to the analytical results, which demonstrates the validity of the analytical results.
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Figure 5.12 compares the post-processing PDFs of the worst layer. Unlike Fig-

ure ??, Figure 5.12 coincides directly with the results of Figure 5.5 for the capacity,

and Figure 5.7 for the SER. Figure 5.12 shows the PDF of the post-processing SNR

of the best user for a 16×4 LSSTC serving 20 users. where the scheduling is con-

ducted using the proposed configurations. where the scheduling are from best

to worst as in Table which reflects the actual performance of the system since the

worst group is the one dominating the performance whether we are talking about

capacity or SER.
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Figure 5.12: PDF of the post-processing SNR corresponding to the weakest layer
of the scheduled user for a 16× 4 LSSTC serving 20 users (comparing several
scheduling configurations).
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Figure 5.13 shows the PDF of the post-processing SNR of the scheduled user

according to the MaxLSSTCCap criterion when used with a 16×4 LSSTC employ-

ing post-ordered SGIC and serving 20 users. Figure 5.13 also shows the PDF of

each group, where the 4th layer is the worst layer since ordering is used.

5.5 Chapter Conclusions

In this chapter we investigated the performance of multi-user LSSTC. The work

of this chapter depends mainly on simulations in which we have used to eval-

uate the system with several combinations of scheduling algorithms and crite-

ria. The main result of this chapter is finding that the most suitable scheduling

criteria to multi-user LSSTC is the one that maximizes its capacity, namely, the

MaxLSSTCCap criteria. This is because it directly coincides with the detection

mechanism at the receiver, which means that it will result in the highest possible

post-processing SNR per layer, which will result in improving the capacity and

SER of multi-user LSSTC. Additionally, other configurations were studied, and

plots of the PDF, CDF, and CCDF were generated to illustrate the differences. Fi-

nally, we derived a formula for the PDF of the maximum pre-processing SNR for

a Greedy-based multi-user LSSTC.
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Chapter 6

Conclusions and Future Research

In this concluding chapter, we summarize the content of the thesis and we discuss

some of the possible future research directions.

6.1 Conclusions

In Chapter 2 we describe STBC, VBLAST, and beamforming, these systems are

the components of LSSTC, therefore, the system model of each of those systems

was introduced.

In Chapter 3 we investigated the analytical error performance of single user

LSSTC, and we were able to obtain recursive expressions for the probability of

error. The analytical results were verified by comparing to simulation results.

In addition, a formula for the instantaneous capacity of single-user LSSTC is de-

rived. Also, we obtained the diversity, multiplexing, and beamforming tradeoff

159
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curve for LSSTC. which links the extremes of beamforming gain, diversity gain,

and the multiplexing gain. Finaly we proposed a multi-configuration transmis-

sion scheme based on LSSTC and VBLAST systems that suggests the configura-

tion and the modulation scheme in order to improve the performance, where it

was noted that LSSTC has a better performance than VBLAST at high SNR range.

In Chapter 4 we proposed the PA-LSSTC scheme that enhances the perfor-

mance and capacity. Also, we investigated the performance of this scheme for

BPSK, M-ary PSK and M-ary QAM. In addition, we obtained the optimum PA

performance by using numerical methods.

In Chapter 5, we evaluated the multi-user LSSTC system, this was done by

comparing the capacity and the probability of error for different algorithm−criteria

configurations. Also we derived a formula for the PDF of the maximum pre-

processing SNR for a Greedy-based multi-user LSSTC.
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6.2 Future Research

The advantages of using LSSTC in wireless systems calls to further research on

the topic, as there is a lot possibilities of what can be done. In the following we

list some suggested points:

• Conducting complexity analysis for the LSSTC system in single and multi-

user environment.

• Designing a system that combines VBLAST, beamfoming, and space-time

trellis code (STTC), and studying the error performance,capacity, and op-

timum power allocation in both single and multi-user environments. This

scheme replaces STBC in our LSSTC system with STTC. The motivation for

proposing is that STBC has a fixed performance while STTC can improve

its performance by increasing the number of states [81]. On the other hand,

STTC is not always reliable to implement because of the detection complex-

ity.

• Finding formulas for the probability of error for multi-user LSSTC for the

different algorithm− criteria configurations used in Chapter 5, this can be

done by first finding the PDF of the post-detection SNR, and then integrat-

ing the error probability conditioned on a certain SNR over the obtained

PDF.

• Proposing a new scheduling criteria, MaxOptPA, in which we schedule the
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user that has the best optimum PA performance, i.e. the user that has the

best performance given his optimum PA vector Kopt .

• Finding formulas for the average feedback load for the different algorithm−

criteria configurations used in Chapter 5.

• Extending the multi-user LSSTC model to the case where the antennas of

the base station can be assigned to different users at the same time. Al-

though it seems complicated, the proposed scheme is expected to improve

the performance of the multi-user LSSTC system.
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we’ll add them up as follows

E [nmnn] = Cov [nmnn]+E [nm]+E [nn]

= N0IN×N . (A.3)

E

[
nm

i

∑
j=1

hgk,n( j) ·
(

sgk,n( j)− ŝgk,n( j)

)]
= E [nm] ·E

[
i

∑
j=1

hgk,n( j) ·
(

sgk,n( j)− ŝgk,n( j)

)]
= 0. (A.4)

And the same applies for the third term

E

[
i

∑
jm=1

i

∑
jn=1

hgk,m( jm)hgk,n( jn)

(
sgk,m( jm)− ŝgk,m( jm)

)(
sgk,n( jn)− ŝgk,n( jn)

)]

= E

[
i

∑
jm=1

h2
gk,m( jm)

(
sgk,m( jm)− ŝgk,m( jm)

)2
]

+E

 i

∑
jm=1

i

∑
jn=1

jm 6= jn

hgk,m( jm)hgk,n( jn)

(
sgk,m( jm)− ŝgk,m( jm)

)(
sgk,n( jn)− ŝgk,n( jn)

)
=

i

∑
jm=1

E
[

h2
gk,m( jm)

(
sgk,m( jm)− ŝgk,m( jm)

)2
]

+
i

∑
jm=1

i

∑
jn=1

jm 6= jn

E
[
hgk,m( jm)hgk,n( jn)

(
sgk,m( jm)− ŝgk,m( jm)

)(
sgk,n( jn)− ŝgk,n( jn)
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=
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∑
jm=1

E
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h2

gk,m( jm)

]
E
[(

sgk,m( jm)− ŝgk,m( jm)

)2
]

+
i

∑
jm=1

i

∑
jn=1

jm 6= jn

E
[
hgk,m( jm)hgk,n( jn)

(
sgk,m( jm)− ŝgk,m( jm)

)(
sgk,n( jn)− ŝgk,n( jn)

)]

(A.5)
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Since hgk,m( jm) and hgk,n( jn) are independent, and both of their expected values are

equal to zero, then the second term in (A.5) will vanish. Therefore we are left with

following

E
[
h2

gk,m( jm)

]
= E

[(
L · h̃gk,m( jm)

)2
]

= L2IN×N , (A.6)

where E
[(

h̃gk,m( jm)

)2
]

is the power of a Rayleigh-distributed random variable

that have been assumed unity. The last term to be found is

E
[(

sgk,m( jm)− ŝgk,m( jm)

)2
]

= Var
[
sgk,m( jm)− ŝgk,m( jm)

]
+E

[
sgk,m( jm)− ŝgk,m( jm)

]2

= Var
[
sgk,m( jm)− ŝgk,m( jm)

]
+
(

E
[
sgk,m( jm)

]
−E

[
ŝgk,m( jm)

])2
(A.7)

= Var
[
sgk,m( jm)

]
+Var

[
ŝgk,m( jm)

]
+2Cov

[
sgk,m( jm), ŝgk,m( jm)

]
.

The first and second terms of A.7 can be found by

Var
[
sgk,m( jm)

]
=

1
2

(√Pt

M
−0

)2

+

(
−
√

Pt

M
−0

)2
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M
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[
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]
, (A.8)

to find the third term in A.7 we write

Cov
[
sgk,m( jm), ŝgk,m( jm)

]
= E

[
sgk,m( jm)ŝgk,m( jm)

]
−E

[
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ŝgk,m( jm)

]
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Pt

M
. (A.9)
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Thus A.7 can be written as

E
[(

sgk,m( jm)− ŝgk,m( jm)

)2
]

=
4Pt

M
. (A.10)

Therefore, the fourth term in (A.2) is equal to 4Pt iL2

M . collecting the above terms,

we can write the covariance as

Cov
[
Ni,k

m ,Ni,k
n

]
=
[

N0 +
4Pt iL2

M

]
IN×N , (A.11)

Appendix B: Calculation of Prob{Ai
k−1}

In this section we derive in a similar way as [57] the Prob{Ai
k−1} for three cases:

Case I (i = 0):

If there are no detection errors up to layer (k−1), that can be translated into hav-

ing a correct decision in detecting the layer (k− 1), along with having no errors

up to the layer (k−2), mathematically,

Prob{A0
k−1} = Prob{Sk−1 = Ŝk−1,A0

k−2}

= Prob{Sk−1 = Ŝk−1 | A0
k−2}Prob{A0

k−2}

=
[
1−Prob{Sk−1 6= Ŝk−1 | A0

k−2}
]

Prob{A0
k−2} (B.1)

=
[

1−Pe

(
mk−1(N−K + k),

PT L2

MN0

)]
Prob{A0

k−2}
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Case II (i = k−1):

In this case all the sub-streams up to and including the currently detected layer

are in error, we may write

Prob{Ak−1
k−1} = Prob{Sk−1 6= Ŝk−1,Ak−2

k−2}

= Prob{Sk−1 6= Ŝk−1 | Ak−2
k−2}Prob{Ak−2

k−2} (B.2)

= Pe

(
mk−1(N−K + k),

PT L2

MN0 +4PT (k−2)L2

)
Prob{Ak−2

k−2}

Case III (i = 1, . . . ,k−1):

This case come between the two extremes of zero or all error. Here some of the

detected sub-streams are detected correctly, while the others are detected erro-

neously, it can be written as

Prob{Ai
k−1} = Prob{Sk−1 6= Ŝk−1,Ai−1

k−2}+Prob{Sk−1 = Ŝk−1,Ai
k−2}

= Prob{Sk−1 6= Ŝk−1 | Ai−1
k−2}Prob{Ai−1

k−2}

+Prob{Sk−1 = Ŝk−1 | Ai
k−2}Prob{Ai

k−2} (B.3)

= Prob{Sk−1 6= Ŝk−1 | Ai−1
k−2}Prob{Ai−1

k−2}

+
[
1−Prob{Sk−1 6= Ŝk−1 | Ai

k−2}
]

Prob{Ai
k−2}
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