

������������	
������������������

���������	
�� �!""#$%&'(&')*(+,!""%-.+-(',*$/(,0%""12,3"()4(%2)'+$(24+-56%/12,3"()4(7&'&282&+(9($/:%2)4$%/(&29%1&24+-&'3,$1%'*//(''5!2)9%:7&'#(%/(%2);"(''&24';(*#,2-&'82%"9(''(24($<*-%99%).%4*&)%2/(%2)&2'#&$%+&,2+,,*$"&=('5>-('*//(''0*"/,9#"(+&,2,0+-&'3,$13%'9%)(#,''&;"(;:%2*9;($,09%?,$/,2+$&;*+&,2'0$,9)&@($(2+#($',2'%2),$4%2&A%+&,2'%"&1(.+,3-,963&'-+,(B#$(''9:)*(4$%+&+*)(56%94$%+(0*"+,C&24D%-)E2&=($'&+:,0F(+$,"(*9G<&2($%"'0,$4&=&249(+-(,##,$+*2&+:+,/%$$:,*++-&'+%'1*2)($+-(4*&)%2/(,0%'/-,"%$":0%/*"+:%2)%#$,#($$('(%$/-(2=&$,29(2+5<:'&2/($(4$%+&+*)(%2)+-%21'4,('+,9:+-('&'%)=&',H5!A())&2(I($4*&2(0,$-&'9(+&/*",*'%++(2+&,2.-&'4*&)%2/(.%2)-&'#%+&(2/(3&+-9(56%9+-%210*"+,-&90,$+-(9*"+&+*)(',00%=,$'6-%=(+%1(20$,9-&9.%2)0,$%""+-(+-&24'-(-%'+%*4-+9(563,*")%"',"&1(+,(B+(2)9:%##$(/&%+&,2+,9:+-('&'/,99&++((9(9;($'H$5J%9&$!;)*"KL%*3%)%2)H$5!'$%$E575J-(&1-0,$+-(&$-("#0*"&2'&4-+'%2)%)=&/(5!/12,3"()49(2+&')*(+,H$5<,&2*))&20,$",24-,*$',0)&'/*''&,2',29:+-('&'.%2)0,$-&'/,*2+"(''0%=,$'(=($'&2/(6(2+($()CDEF<5&&

����������	�
�		������������������������������������		�����
������������������
���������������	���
����
��
�������������������������������	
��
���
����������
�������
���
�������������	
������������������
�����
���������
��������������	���
��
�	�����	��������	�����������	�����������
���
�����������
�	��������������	��
������������������
��������

������
���������������������		���������
���
�����
��		������������
����	
���
�	����
����	�����������
�������������

������	
��

��������������	�
	����
���	 ���	���������
	�� ����	��������
�� �������������� ������������
�������
�� ���� ������ !"�#$!%&"'(�)*�+)#��%� ����������������� ,��- &((#).'�)!/�!$&"'(�)*�+)#��%�������������������� 0��-�� ������1"�/�)2.'�)!/��������������������� 3��-�- 1/*�%�� !"�#)/4!%567'#)8'�)!/ �������������� 3��-�, 9!)��:'/.�#'�)!/����������������������� ;��, &"'(�)*�+)#��%)/4!%)�<��=<�!%� ��������������� >��,�� &"'(�)*�+)#��%=<�!%��������������������� >��,�- ?�'�� �'/�67'%�+'�)#�!$!%)�<������������ �,��,�, ?�'�� �'/+!7%�<+'�)#�!$!%)�<������������ �@��@ =<�A�)4<�B%)$�'/"?�'C�? ������������������� �3��0 !�)*'�)!/$!%?�'C�? +���������������������� �>��3 =<��)�DEF�.�)*����������������������������� �>������G�������HI���	���������������
J�����
��� GK)*

��� ������	
���������������������������������� ����� ���������������� ������������������������� ����� ���������������������������������� �������������� ���� !"#$ %& "$ '()#'" ' *+()(,-"�# !$,!,(#.*# /+*0- . !")1# *2,$)"�0 34��� ������	
���������������������������������� �5��� 6���������������� �������������������������� �5����� 7������������
�8������������������������ �9����� ������	
�������:��������	������������������ �;����� 6����������������<����������	�=������������� ������> 6����������������<������������=�������������� ������5 7���?@	���?��A����� �������������������� �;�� !"#$B&("# .+(" "# ' *+()(,-*# /+*0- BC�� !"#$4&"$ �/)'2 ' *+()(,-*# /+*0- BD5�� ���������E7����������������������������� >95�� 6��
E������������<:��E�:7F<�����������E7�������� >G5�� ��������F������������7����������������������� 5��� !"#$ D& !#$-,$0 '�# ' *+()(,- "�# !$,H!,(#.*# /+*0- *2,$)"�0 449�� �����������<:7F���:��E�:7F��������=��<������������ 599�� �����������<���:��E�:7F�����:��E�:7?��������� 5I9�� �����������<���6�������
�����?��	���������	���F��6���J�� 9�9�> 6��
E������������<:��E�:7F ������������������ GG�� !"#$ K&"�#()(�,'"$)LM"),'('. $#�,00#'H. "),'(-,$-M"M$#N,$/ COC;�� 6�����������A	����������������������������������

��� ��������	
��� ���� !"� ��#$�

�����������	�
�
 ��� �
�� ��
�! "����#��#������������������������������������� $�
 %���&���'����(������������������������������ �)$�� *��'�����#��'���+,-./������+,-.0��1�(�������������� 2�! *��'�����#��'���+,-./������+,-.0��(��'������������� $
$�3 *��'�����#��'���+,-./������+,-.0'�������#����������� $�$�� -��+,-./.04��1�(����������5��&5&�������������������#�2�
������������������������������� 3�$ -��+,-./.06��1�(����������5��&5&�����������������7��#�2�
��������������������������������� $�$� -��+,-./.04��1�(����������5��&#��������4����������8�����#�2�
������������������������������ $$$�) -��+,-./.06��1�(����������5��&#������������������������#�2�
������������������������������� $ $�9 -��+,-./.04��1�(�����"����5��&5&�������������������#�2�2
������������������������������ $)$�
2-��+,-./.06��1�(����������5��&5&�����������������7��#�2�2
�������������������������������� 9�

-��+,-./.04��1�(����������5��&#������������������������#�2�2
������������������������������ 2$�
�-��+,-./.06��1�(����������5��&#������������������������#�2�2
������������������������������
���

����������	
	��� ������������	
	�� ����� ������	
	����������������������!�� ������������	
	����������������������!�� � ����������	
	�����"��#�� �����$������	
	�����"��#�� �����%������	
	�����"��#������������!�� �$����������	
	�����"��#������������!�� �%����������	
	�����"��#�� $�����������	
	�����"��#�� $�����������	
	�����"��#������������!�� $�����������	
	�����"��#������������!�� $���� ������	
	�����"��#�� $�����������	
	�����"��#�� $ ����������	
	�����"��#������������!�� $��

����������	
	�� ������ �����!	�"��������	
�#���������������!�����������$%����������������������������������� ����&� �����!	����������	
�#���������������!�����������$%����������������������������������� ����&� �����!	�"��������	
�#���������������!�����'������$(�������������������������������� ����&� �����!	����������	
�#������)������*�!�����'������$(�������������������������������� ����&& �����!	�"��������	
�#���������������!�����������$+����������������������������������� �&��&, �����!	����������	
�#���������������!�����������$+����������������������������������� �,��&- �����!	�"��������	
����������������!�����������$%����������������������������������� �-��&� �����!	����������	
����������������!�����������$%����������������������������������� ����&� �����!	�"��������	
����������������!�����������$(����������������������������������� ����&� �����!	����������	
����������������!�����������$(����������������������������������� ����&� �����!	�"��������	
����������������!�����������$+����������������������������������� ����,� �����!	����������	
����������������!�����������$+��������������������������������������.

��������������	�
�� ������������������������������ � !��"���#"��$�%���&'����()*'�����
�+�������� ,)�-���-�),�*�������*��������.���� /01,2334567896:878;<:8:=9896:>?<@A?=:?=BC:B@BD:EFB8:AGB<7B=9?H96:I:B89J:B=K?L<96BCD?<796MN56:;:<H?<MB=O:B88:88M:=9?H96:BCD?<796M78OB<<7:A?L9L87=D96:O?=O:;98?H:=:<DPO?=8:<GB97?=N56787=OCLA:879889:BAP89B9:Q9<BO@7=DB=A9<B=87:=9B=BCP878NK7=BCCPQB=LMF:<?H87MLCB97?=86BG:F::=OB<<7:A?L99?O?M;B<:96:;<?;?8:ABCD?<796M9?96:I:B@PIJRB=A96:O?=G:=97?=BCIJKB8>:CCB8;<?G:96:BOOL<BOP?H96:96:?<:97OBCS=A7=D8NTUVWXYZ[�\AB;97G:SC9:<8QIJKQ]:7D69̂ <7H9QR9BF7C79PQIIJKBCD?<796MN_

xi

	�� ا������

	�ك: ا��� �� ���� ا��

� ا��اب� ا��� : ���ان ا��������� ا�$�ارزم�� ا��� � ���

� م�%*��� () ا�'��م: ا��ر%� ا�����

+,$� ا�/���� ا�0/�ب�.��: -� ا�

 م2009ی�ن�� : ت�ری2 م�1 ا��ر%�

� ا��اب� ا������ت-��� اداء ه=< . ه=< ا������ ت-�م ا�'�� ا�=ي ت� ��; ن�ع م�ص م�
�ارزم�� ا��

���. ا�$�ارزم�� ت� ب���$�ام م��أ CD ا�	����وا����F ه=ا ا��-��� یI�� ا����F ا��*�-�ة و تF��� ا�
����-��/� ب'�د م� ا�$�. ا�ن�ارزم��ت ا�
�ى () ا�
�� ت�K م�Fآ�ة ا�$�ارزم�� و م-�رن

� ا��Nن) ا������� ا��اب� ا��� ا��-���ی� و ا�$�ارزم�� ا��� � ������ .آ$�ارزم�� ا��

� ا��اب� ا��� م�Dدات���� ا��Nن) ا��� ا�$�ارزم�� ا��� � ������ا����F ,ا�$�ارزم�� ا��� � ���
 .ا��*�-�ة

 در%� ا���%*��� () ا�'��م

��ول و��� �/) Q��ا��'�دن %�م'� ا�
 م2009ی�ن��

���������	
����������	 ������������������������������ � �����������������������!"# �$�%��&��'����&���(�������" �)*������+,���&���(�������- �.�����������/01 �2��������3���������������/04 �2��������3�����54 ��67��*���������3�����8 �9�,���,����(: �;������3��%��&��'�����������< �;����������3���*�������'�����������= �>���3�������? �@�����A��3�*�������,�����(�B �C��%���9�����D �E���(�������������������<F ������������������������������������<GF �&���(��*�����������������������������������3��&���(���������!HI �>��������9���J����!�3�K ��*�����'�����! !��

�����������	
�� ������������������ �������������������� ����������������������� ������������������� ����������������������� ���������� �!"��"���"""

CHAPTER 1

INTRODUCTION

This thesis work is concerned with a member of the least mean fourth family of

on-line adaptive filter algorithms. Adaptive filters are widely used in our everyday

lives in a variety of areas such as plant modeling or system identification, noise

cancelation and adaptive equalization, to name a few. The theory, benefits and

applications of adaptive filters have been widely described in literature (see [1],

[2] and references therein). We will go into more detail into the aforementioned

applications of adaptive filtering in the next section.

The most important motivation for the development of adaptive filter theory

has been the tracking of changes in parameters of the environment in which the

filter is being used. Of course, with changes in the environment, the parameters

of the filters being used will also change to keep the behavior of the overall system

of the filter and the environment to continue to be agreeable to our purposes.

As an example, consider the use of adaptive filters in wireless communication

systems. An inherent property of wireless communication channels is their time-

1

varying behavior which is shown by their changing amplitude and phase response

characteristics. In order to combat the Inter Symbol Interference (ISI) occurring

due to the multipath property of these channels, the inverse filter of the channel to

remove the ISI requires the capability to change its parameters in accordance with

changes in the wireless channels so that the behavior of the overall system of the

channels and inverse filter, i.e., minimum ISI, is maintained. In communication

literature, such an inverse filter is known as an ”equalizer” and equalizers which

have the property of adapting themselves to the channel are known as ”adaptive

equalizers” [3].

An adaptive filter is characterized by the adaptive algorithm that is imple-

mented therein. These adaptive filter algorithms can be classified in a number of

ways. For example, we can classify them according to batch-processing algorithms

which process a collection of data inputs at the same time or online algorithms

which process the input data as it arrives i.e in real time. They can also be

categorized according to supervised and unsupervised adaptive filters where the

former use a training sequence to adjust its parameters in the beginning and then

switch to decision directed mode at the steady state to track variations in the

environment whereas the latter do not use a training sequence at all and instead

use the statistical properties of the signals.

The common property that all these algorithms share is the use of a cost

function which describes the deviation of the actual behavior of the filter from the

behavior that is needed. The algorithm then processes the signals with the aim

2

of reducing this deviation, or equivalently, minimizing the cost function.

From this point onwards, we will only consider the supervised adaptive filtering

category.

1.1 System Model for Adaptive Filters

Before proceeding to give a general overview of the prominent online adaptive

algorithms, it is instructive that we formulate the problem that is solved using

the theory of the adaptive filters. Consider the case of an adaptive identification

problem as shown in Fig. 1.1. The output dk is given by

dk = ukwo + nk, (1.1)

where

wo = [wo1, wo2, ..., woM]T (1.2)

is the vector of the unknown system parameters and

uk = [u1k, u2k..., uMk] (1.3)

is the input data vector at time k, nk is the plant noise, M is the number of

plant parameters and [.]T is the transpose operation. The inputs u1k, u2k..., uMk

may be successive samples of some signal, such as in the case of adaptive echo

cancelation and adaptive line enhancement. They may also be the instantaneous

3

outputs of M parallel sensors, such as in the case of adaptive beamforming. The

identification of the plant is performed by an adaptive FIR filter whose weight

vector wk, assumed of dimension M , is adapted on the basis of error ek given by

ek = dk − ukwk. (1.4)

It is important to note at this point that regardless of whether the problem to

be solved using adaptive filters is a system identification problem, a channel esti-

mation problem or an inverse system estimation problem etc., the same adaptive

filter algorithm can be used. The only difference between the different problems

is the definition of ek. For example ek defined above for the plant identification

problem is the difference between the known output of the unknown system and

the output of the FIR adaptive filter whereas for the inverse system estimation

problem, ek is defined as the difference between the output of the inverse system

and the known input dk at time k to the system whose inverse system is to be

estimated.

It is this error ek which is used as the independent variable in the objective

function for adaptive filtering. But since ek is a function of the weight vector

wk, the objective function can, therefore, be formulated as function of this weight

vector and minimization of the cost function will give us the optimal weight vector

in the sense of the objective function used. This important observation will be

useful when we review some of the more important and prominent applications of

adaptive filtering in the coming section.

4

Figure 1.1: Adaptive filter.

1.2 Applications of Adaptive Filters

Adaptive filters has a number of applications, one of which was the system identi-

fication problem that was formulated in the previous section. Other applications

that widely employ adaptive filters in their implementation are

• Inverse modeling or equalization

• Noise cancelation

Although these applications are quite different in nature, they have one im-

portant feature in common: An input signal and a desired output response signal.

As was described at the end of the previous section, the main difference in formu-

lating these problems into a structure suitable for applying an adaptive filtering

solution is the manner in which the desired response is extracted.

Now we shall study in detail the applications of adaptive filtering that have

been mentioned.

5

1.2.1 System Identification

The problem of system identification arises when we want to model a certain

system or plant whose parameters are unknown to us and which may be time-

varying. In this case, we feed the same known input into the system as well as

an adaptive filter. The responses of the adaptive filter and the system are then

compared and the difference between them i.e. the error, is then used to adjust the

parameters of the adaptive filter iteratively. As the number of iterations increase,

the parameters of the adaptive filter approach those of the system in a specific

sense as dictated by the criterion used.

1.2.2 Inverse Modeling or Equalization

A brief overview and need for equalization was given in the introduction. However,

we shall now explain how it can be formulated into a problem solvable by use of

adaptive filters. Therefore, we can view equalization as the problem of estimating

the inverse of an unknown noisy system as shown in Fig. 1.2. A delay is introduced

into the desired response path to account for the delay of the signal through

the channel. This ensures that the adaptive filter is causal and stable. The

primary use of an equalizer is to reduce Inter-Symbol Interference (ISI) in digital

communication receivers, as was described before.

6

Figure 1.2: Inverse modeling problem.

Figure 1.3: Noise cancelation problem.

1.2.3 Noise Cancelation

In this application, the adaptive filter is used to cancel unknown interference in

a primary signal as shown in Fig. 1.3. The primary signal in this case serves as

the desired response of the system. This type of application is used in adaptive

beamforming and adaptive noise cancelation [1], [2].

7

1.3 Adaptive Filtering Algorithms Theory

In this section, a brief background on stochastic gradient algorithms, which in-

clude the Least Mean Square (LMS) and the Least Mean Fourth (LMF) family of

algorithms, is given.

Concepts of cost functions, the steepest descent methods to achieve the min-

imum of these cost functions and how stochastic gradient algorithms stem from

the steepest descent methods will also be discussed.

After that, we shall give a brief overview of the LMS and the LMF family of

adaptive algorithms.

1.3.1 Adaptive Filter Theory

Now, a brief description of the fundamental ideas that are most widely used in the

design of adaptive algorithms will be given. First we will describe what is meant

by steepest descent and Newton’s methods and then stochastic gradient methods

in the context of adaptive filtering will be studied. Finally, we will list some of

the prominent stochastic gradient algorithms that have been developed. These

algorithms include the LMF [4] and NLMF [5] algorithm.

Steepest Descent Method

The steepest descent method [1],[2],[6] is a popular method used in unconstrained

optimization. The basic idea of the steepest descent method is to use a scalar

cost function of a variable, be it scalar-valued, vector-valued or matrix-valued,

8

and iteratively find the optimum value of this independent variable such that the

cost function is minimum at that optimal value.

The steepest descent method is a well-documented method of finding optimum

values when the optimal values can not be found in closed form.

To put this in mathematical terms, consider a cost function J(w) which is

a continuously differentiable function of some unknown weight vector w. This

function maps the elements of J(w) into real numbers. We want to find an

optimal solution solution wo that satisfies the following condition:

J(wo) ≤ J(w). (1.5)

In the steepest descent method, we start with an initial guess for wo and denote

it by w0, generate a sequence of weight vectors w1,w2, . . . , such that the cost

function J(wk) comes closer to a local minimum at each iteration k; that is,

J(wk+1) < J(wk). (1.6)

Before proceeding further, it is necessary that the reason for stating that the cost

function reaches it local minimum value be understood. The reason is that the

function may not be a convex function in which case the only local minimum is

the global minimum. Examples of such non-convex cost functions frequently arise

in the study of unsupervised adaptive filtering algorithms [6] which have 2 or more

local minima. This brings forth a drawback of the steepest descent method, that

9

is, this method does not distinguish between local and global minima; depending

on the choice of the initial guess, the cost function could converge to a value that

is not the absolute minimum. Now, proceeding forward, we write in more explicit

mathematical terms the steepest descent method by the recursive equation

wk+1 = wk + µp, (1.7)

where wk+1 is the updated weight vector at time k + 1, wk is the current weight

vector, µ is the step size, k is the time index and p is the update direction vector.

It is shown in [2] that a proper choice for p such that w converges to the proper

value is given by

p = −S[∇wJ(wk)], (1.8)

where S is any positive-definite matrix and

∇wJ(w) =
∂J

∂w
|w=wk

. (1.9)

This value for p has an interesting interpretation. The direction of p at a point is

opposite to the direction in which the cost function is increasing, which incidently,

is the direction of the gradient vector of the function at that point.Therefore, we

move along the surface of the cost function towards its minimum because of the

negative sign in (1.8). When the cost function reaches its local minimum, relative

to the initial guess, the gradient will become zero and the weight vector converges

to a finite value.

10

Another important aspect of the steepest descent method is the selection of a

proper step size µ. A value too small will lead to slow convergence whereas a value

too large might make the method unstable. For example, it can be shown that in

the case of minimizing the mean square cost function, to be discussed later, the

range of values µ can take while keeping the algorithm stable are between 0 and

2
λmax

where λmax is the largest eigenvalue of the correlation matrix R of the input

vector uk given as

R = E[uT
k uk]. (1.10)

The main advantage of the steepest descent method is its simplicity. However, the

convergence rate may be too slow in the case of steepest descent method. This

is due to the fact that this method is based on the first order approximation of

the error-performance surface around the current point in that it only uses the

first-order derivatives i.e. the gradient, in its update equation.

A faster rate of convergence can be achieved by using a second-order approxi-

mation of the error-performance surface around the current point, which translates

to assigning to S the value of the inverse of the Hessian matrix [1],[2] of the cost

function. This method is known as Newton’s method.

Stochastic Gradient Methods

There are two types of objective functions used in adaptive filtering-stochastic

and deterministic. Objective functions which are given in terms of statistics of

the input signals are stochastic objective functions whereas functions which act

11

on the actual values of the signals are known as deterministic objective functions.

Examples of the former is the least mean square and least mean fourth criteria

whereas an example of the latter is the least squares criteria [1],[2],[6].

When using the steepest descent method to optimize stochastic cost functions,

the gradient and the Hessian matrices of the stochastic cost functions with respect

to the weight vector are also stochastic in nature. However, in practice, we do not

have information about the stochastic properties of the signal and only have the

instantaneous values. For this reason, when using the steepest descent method

in this case, we try to approximate the gradient and/or the Hessian Matrix using

functions. The resulting algorithms are known as Stochastic gradient algorithms.

Because we are using approximations to the true gradient and/or Hessian

matrix, there will be a difference in the successive values the adaptive filter weight

vector obtains using the steepest descent method and the corresponding stochastic

gradient method at each iteration. This difference is termed as gradient noise.

The more accurate the approximation functions, the closer the performance of

the stochastic gradient algorithm will be to the corresponding steepest descent

algorithm and smaller will the gradient noise [1],[2].

A stochastic gradient algorithm based on the steepest descent method to min-

imize the mean square error criterion is the Least Mean Square (LMS) algorithm

and the stochastic gradient algorithm for the least mean fourth criterion is the

Least Mean Fourth (LMF) [4] algorithm. The LMF algorithm is the subject of

interest in this thesis.

12

1.3.2 Least Mean Square Family of Algorithms

The Least Mean Square (LMS) algorithm was first proposed in 1960 by Widrow

and Hoff [7] and has since become the benchmark of adaptive filter theory. Very

few algorithms in estimation and filtering theories have found so much success and

used in so many widespread areas line echo cancelation, antenna beamforming and

system identification, to name a few.

The LMS algorithm is a stochastic gradient algorithm that minimizes the Mean

Square Error (MSE) criterion [1],[2] given by

J = E[e2]. (1.11)

The resulting LMS recursion equation is found to be [1],[2]

wk+1 = wk + µeku
T
k . (1.12)

Another variation of the LMS algorithm is the Normalized LMS (NLMS) algo-

rithm proposed independently by Nagumo and Noda [8] and Albert and Gardner

[9] which is given by

wk+1 = wk +
µ

ǫ + ‖uk‖2
eku

T
k . (1.13)

The NLMS has the advantage of removing the bias of the norm of the input uk on

the update of the weight vectors, which has an adverse effect on the performance

of the LMS algorithm [1],[2].

13

An important variant of the LMS algorithm is the Leaky LMS [13]. The

Leaky LMS was proposed to stabilize the weight drift problem (i.e. the possibility

of unbounded weight estimates) that may occur in LMS in the presence of noise

or in finite word-length implementations. The weight drift phenomenon causes

overflow and degrades performance in many applications. More details about the

Leaky LMS and the weight drift problem will be discussed in a later section as

the Leaky LMS is the inspiration for the Leaky LMF proposed in this thesis.

1.3.3 Least Mean Fourth Family of Algorithms

The Least Mean Fourth family of adaptive algorithms were first proposed in [4]

to the Least Mean Square (LMS) algorithm [1],[2]. The goal of the algorithms

was to give a lower steady-state of misadjustment for a given rate of convergence

using a different cost function where misadjustment Υ is defined as

Υ =
MSE − Jmin

Jmin

, (1.14)

where MSE is the steady state mean square error given as

MSE = limk→∞E[e2
k]. (1.15)

14

At this point, we can provide another useful expression for ek which is given as

follows

ek = dk − ukwk

= uk(wo − wk) + nk

= eak + nk, (1.16)

with eak being the a priori output estimation error given as

eak = uk(wo − wk). (1.17)

The cost function from which the LMF is derived is given as

J(w) = E[(dk − ukwk)
4], (1.18)

with the corresponding update equation characterizing LMF being

wk+1 = wk + µe3
ku

T
k . (1.19)

It is shown in [4] that for the LMF algorithm to converge, the step size µ must

be between 0 and 1
3σ2

nλmax
, exclusive, where σ2

n is the variance of the noise and

λmax is the largest eigenvalue of the correlation matrix R as defined before.

To overcome the dependance of the step size value on the input statistics, the

normalized version of LMF, known as Normalized LMF (NLMF), was proposed

15

in [5] which has the following recursive equation:

wk+1 = wk + µe3
k

uT
k

‖uk‖2
. (1.20)

1.4 The Weight Drift and Leaky LMS

There are a number of papers on this phenomenon which is a cause of instability

in LMS adaptive filters [10]-[13].To begin with, recall that the conventional LMS

recursion is given by

wk+1 = wk + µeku
T
k , (1.21)

ek = dk − ukwk. (1.22)

The weight drift problem can be understood by the following example: As-

sume, that at iteration k, the input vector uk is orthogonal to the weight error

vector vk = wo −wk i.e ukvk It then follows that dk −ukwk = nk. Consequently,

the weight error vector satisfies the update equation

vk+1 = vk + µuT
k nk. (1.23)

Taking norms, we get

‖vk+1||
2 = ‖vk‖

2 + µ2‖uk‖
2n2

k. (1.24)

16

Solving this recursion for ‖vN ||
2, we get

‖vN ||
2 = ‖v0||

2 +
N∑

i=1

µ2‖ui‖
2n2

i . (1.25)

This relation shows that ‖vN ||
2 → ∞ as N → ∞, if µ‖ui‖

2ni is not a finite energy

sequence. This situation usually occurs in practical scenarios when the following

two conditions are satisfied [2]:

1. The input covariance matrix is singular. This phenomenon occurs in digi-

tally implemented fractionally space equalizers.

2. The quantization noise or output noise is non-zero mean.

This situation does not occur with Leaky LMS algorithm [13] described by the

following update equation:

wk+1 = (1 − µα)wk + µuT
k ek. (1.26)

where α is the leakage parameter. The term leakage stems from the fact that,

unlike the conventional LMS, where the weights remain static in case of stalling

i.e. the input sequence becomes zeros, in Leaky LMS, the weights leak out i.e.

become zeros.

To see how Leaky LMS mitigates the drift problem in LMS algorithm, using

the same example and by the same steps of computation, we get

‖vk+1||
2 = (1 − µα)2‖vk‖

2 + µ2‖uk‖
2n2

k, (1.27)

17

so that ‖vk+1||
2 remains bounded for 0 < µα < 1.

However, the Leaky LMS does add bias to the solution and ‖vk+1||
2 does not

reach 0 except for when α = 0 which is the case for LMS [14]. To remove this bias,

there are a number of variants of the Leaky LMS algorithm which mitigate the

weight drift problem yet give the same misadjustment as the conventional LMS

algorithm. Examples of these include Circular Leaky LMS [14] and the Subspace

Leaky LMS [15].

1.5 Motivation for Leaky LMF

The description and use of the Leaky LMS was described in the previous section.

The LMF algorithm, just like the LMS algorithm, suffers from the weight drift

problem. Considering this fact, we shall employ the leakage technique to the LMF

algorithm and refer to the resulting algorithm as the Leaky LMF.

1.6 Thesis Objectives

The aim of this thesis is to derive the Leaky-LMF algorithm which would be

the LMF counterpart of the Leaky-LMS algorithm, establish the condition for

convergence and then compare the performance to the LMF algorithm. We will

also perform the steady-state, transient and tracking analysis on the proposed

algorithm.

We shall now tabulate the objectives of the thesis:

18

1. To derive the recursive update equation of the Leaky LMF adaptive algo-

rithm.

2. To find the range of values for which the step size in the recursive update

equation of the Leaky-LMF guarantees convergence of the algorithm.

3. To derive the steady-state analysis of Leaky LMF.

4. To derive the tracking analysis of Leaky LMF where we will see how capable

the newly proposed algorithm is of tracking changes in the environment.

5. To derive the transient analysis of the Leaky LMF algorithm.

19

CHAPTER 2

THE LEAKY LEAST MEAN

FOURTH ADAPTIVE

ALGORITHM

2.1 Introduction

In this chapter, the cost function used in the development of the proposed al-

gorithm is presented followed by the derivations of the corresponding steepest

descent algorithm and stochastic gradient algorithms. The resulting stochastic

gradient update equation formulated will then fully describe the proposed leaky

Least Mean Fourth algorithm. Following this, we will discuss the fundamen-

tal weighted energy relation that will be used in the transient, steady state and

tracking analysis of the Leaky Least Mean Fourth algorithm.

20

2.2 Proposed Algorithm

The algorithm that is proposed in this thesis is the leaky Least Mean Fourth

Algorithm. The assumptions used in the analysis are stated

A1 There exists a vector wo such that dk = ukwo + nk.

A2 The noise sequence {nk} is i.i.d. with zero odd order moments and variance

σ2
n = E[n2

k].

A3 The sequence nk is independent of uj,wk for all j,k.

A4 The regressor covariance matrix is R = E[uT
k uk] > 0.

A5 The random variables {dk,uk, nk} have zero means.

To develop the proposed algorithm, we will be using the system identification

model (1.1). The stochastic cost function which is used as a basis for the proposed

algorithm is given as

J(w) = E[(dk − ukwk)
4] + α||wk||

2, (2.1)

where α is the leakage factor. The direction vector of this function p (1.8) is then

given as

p = −∇wJ(wk) = 4E[(dk − ukwk)
3] + 2αwk. (2.2)

21

Putting this in (1.7), we get the resulting steepest descent update equation to

minimize (2.1) given as

wk+1 = (1 − 2µα)wk + µuT
k E[e3

k], (2.3)

where we have used (1.22).The stochastic gradient update equation originating

from this to minimize (2.1) is found by removing the expectation operator and is

wk+1 = (1 − µα)wk + µuT
k e3

k, (2.4)

where the factor 2 is absorbed into µ.

As we can see,(2.4) is similar in form to the Leaky LMS update equation

(1.26) and we will show through simulations how this algorithm helps to prevent

the weight drift problem due to finite precision effects from occurring.

2.3 Weighted Energy Conservation Relation

The fundamental energy conservation relation [2][16]-[18] is a very useful frame-

work for the analysis of adaptive filters which will be used in this thesis to study

the performance behavior of the Leaky Least Mean Fourth adaptive algorithm. Its

main advantage is that it can be applied across a wide spectrum of adaptive filter

algorithms without resorting to restrictive assumptions that are generally used

in the literature in the study of adaptive filtering algorithms. These restrictive

assumptions include the Gaussianity assumption on the noise. The general nature

22

of this approach also allows for easy comparison between different algorithms.

Before we proceed, the weighted squared Euclidean norm of a column vector

x is first defined as

||x||2
A

= xTAx, (2.5)

where A is some positive-definite symmetric weighting matrix. The choice A = I

results in the standard Euclidean norm of x

||x||2 = xTx. (2.6)

To commence the energy conservation relation for the Leaky LMF, we shall start

with the Leaky LMF update equation given by (2.4). Subtracting both sides of

(2.4) from wo, we get

vk+1 = (1 − µα)vk + µαwo − µuT
k e3

k. (2.7)

Taking the weighted norms of both sides (2.7), using some positive definite weight-

23

ing matrix A, we get the following weighted energy relation for the Leaky LMF:

||vk+1||
2
A

= (1 − µα)2||vk||
2
A

+ ||µαwo||
2
A

+ µ2||uk||
2
A
e6

k

+2µα(1 − µα)wT
o Avk − 2µ(1 − µα)e3

kukAvk

−2µ2αwT
o Ae3

kuk

= (1 − µα)2||vk||
2
A

+ ||µαwo||
2
A

+ µ2||uk||
2
A
e6

kvk

−2µ(1 − µα)e3
ke

A

ak + 2µαwT
o A

[
(1 − µα)vk − µe3

kuk

]
. (2.8)

where eA

ak = ukAvk is the weighted a-priori estimation error. For A = I , we have

the standard a-priori estimation error eak as defined in (1.17).

(2.8) is the weighted energy conservation relation that will be used in the

coming chapters to study the performance of the Leaky LMF adaptive algorithm

in terms of

Steady State Analysis, which relates to determining the steady state values of

E[||vk||
2], E[e2

ak] and E[e2
k].

Stability, which relates to determining the range of values of the step-size over

which E[||vk||
2] and E[e2

ak] remain bounded.

Transient Analysis, which is concerned with studying the time evolution of

E[||vk||
2] and E[e2

ak].

24

CHAPTER 3

TRANSIENT ANALYSIS OF

THE PROPOSED LEAKY LMF

ADAPTIVE ALGORITHMS

3.1 Introduction

The transient analysis of adaptive algorithms lends its importance to the require-

ment of the algorithms to adapt to changes in the signal statistics in a quick and

stable manner. Therefore, the study of the transient behavior of the adaptive

algorithms in terms of convergence rates and stability conditions is an essential

part of adaptive filter performance analysis. As was stated in the previous chapter,

(2.8) will be used to pursue the transient analysis.

25

3.2 Transient Analysis

The transient analysis carried out in this chapter will deal with the following three

questions that frequently arise when dealing with adaptive filter properties:

1. What are the ranges of the step size for which the ||vk|| and ek remain

bounded in both the mean and mean-square sense?

2. How does E[||vk||
2] and E[e2

k]evolve with time?

The first question is answered by finding the bounds on the step size values for

which ||vk|| remains bounded. The second question is answered by formulating

a suitable model that predicts the values of E[||vk||
2] and E[e2

k] for each time

instant k.Therefore, we shall proceed by first finding the conditions for which

||vk|| remains stable in the mean; then we will move on to construct a suitable

framework to accurately model the time-evolution of E[||vk||
2] and E[e2

k]. After

this, we shall find the conditions for which ||vk|| remains stable in the mean-square

sense.

3.2.1 Mean Convergence Behavior

To begin with, taking expectations of both sides of (2.7), we get

E[vk+1] = (1 − µα)E[vk] + µαwo − µE[uT
k e3

k]. (3.1)

To solve for E[uT
k e3

k], we will use the following assumption:

26

A6 The regressors uk are Gaussian distributed.

Although A6 is not practical in communication scenarios where the infor-

mation data is not Gaussian, it is useful in making the analysis tractable for

performance comparisons with other adaptive algorithms [19]. Using this, we can

find the following expression for E[uT
k e3

k] [19]:

E[uT
k e3

k] = 3(σ2
n + ζ)RE[vk]. (3.2)

where ζ = E[e2
ak].

Putting the above expression for E[uT
k e3

k] in (3.1) and simplifying, we get

E[vk+1] = [I − µ{αI + 3(σ2
n + ζ)R}]E[vk] + µαwo. (3.3)

To find the mean convergence condition on the step-size, we will use the ap-

proach used in [20]. Therefore, let ϑ ≤ ζ be the Cramer-Rao bound associated

with estimating ukwo by ukwk; then from (3.3), we see that vk is convergent

in the mean if the eigenvalues of [I − µ{αI + 3(σ2
n + ϑ)R}] lie between −1 and

1. From this, we can find the range of step-size values for which the vk remains

bounded in the mean sense which is given as

0 < µ <
2

α + 3(σ2
n + ϑ)λmax(R)

. (3.4)

27

3.2.2 Constructing the Learning Curves

In this subsection, we will construct a state-space model that describes the time

evolution of E[||vk||
2] and E[e2

ak]. Taking the expectation of both sides of (2.8),

we get

E
[
||vk+1||

2
A

]
= (1 − µα)2E

[
||vk||

2
A

]
+ ||µαwo||

2
A

+ µ2E
[
||uk||

2
A
e6

k

]

−2µ(1 − µα)E
[
e3

ke
A

ak

]

+2µαwT
o A

[
(1 − µα)E [vk] − µE

[
e3

ku
T
k

]]
. (3.5)

To proceed further with the analysis, we have to evaluate E [||uk||
2
A
e6

k] and

E
[
e3

ke
A

ak

]
.

Evaluation of Term E
[
e3

ke
A

ak

]

Since eak and eA

ak are jointly Gaussian by A6 and independent of nk by A2, then

using Price’s theorem [2] and (1.17), we can express E
[
e3

ke
A

ak

]
as

E
[
e3

ke
A

ak

]
= E

[
eake

A

ak

]
Gk, (3.6)

where Gk in our case is found to be

Gk = 3(σ2
n + ζ). (3.7)

28

Evaluation of Term [||uk||
2
A
e6

k]

To evaluate this term, we will the following approximation [2]:

A7 The adaptive filter is long enough so that ||uk||
2
A

is independent of ek.

Simulations done in this report have shown that even for filter lengths of 5, A7

is reasonable. This assumption allows us to write E [||uk||
2
A
e6

k] as

E
[
||uk||

2
A
e6

k

]
= E

[
||uk||

2
A

]
E

[
e6

k

]
. (3.8)

From this, we can express E [||uk||
2
A
e6

k] further as

E
[
||uk||

2
A
e6

k

]
= tr(RA)Zk, (3.9)

where

Zk = E
[
e6

k

]

= 15ζ3 + 45ζ2σ2
n + 15ζξ4

n + ξ6
n, (3.10)

with ξ4
n and ξn

v being the fourth and sixth order moments of nk, respectively.

Using (3.2),(3.6) and (3.9) in (3.5) and some algebraic manipulation, we get

the following result:

E
[
||vk+1||

2
A

]
= (1 − µα)2E

[
||vk||

2
A

]
+ ||µαwo||

2
A

+ µ2tr(R)Zk

−2µ(1 − µα)E
[
eake

A

ak

]
Gk + 2µαwT

o AHE [vk] , (3.11)

29

where

H = I − µ{αI + 3(σ2
n + ζ)R}. (3.12)

More is needed in order to evaluate (3.11) since it is hard to evaluate E
[
eake

A

ak

]
due

to the dependencies among the regressors uk. Therefore, will make the following

assumption [2],[16]:

A8 The sequence of vectors uk are independent and identically distributed.

Using this assumption, uk and vk become independent since now vk depends

only on uk−1 which is assumed to be independent of uk. Therefore, we can express

E
[
eake

A

ak

]
as

E
[
eake

A

ak

]
= E

[
vT

k uT
k ukAvk

]

= E
[
vT

k E
[
uT

k uk|vk

]
Avk

]

= E
[
vT

k E
[
uT

k uk

]
Avk

]

= E
[
vT

k RAvk

]

= E
[
||vk||

2
RA

]
. (3.13)

From (3.13) we can see that for A = I, (3.13) results in

E
[
||vk||

2
R

]
= E [eakeak]

= ζ. (3.14)

30

Now, E
[
eake

A

ak

]
, Zk, and Gk are functions of vk, so that (3.11) becomes

E
[
||vk+1||

2
A

]
= (1 − µα)2E

[
||vk||

2
A

]
+ ||µαwo||

2
A

+ µ2tr(RA)Zk

−2µ(1 − µα)GkE
[
||vk||

2
RA

]
+ 2µαwT

o AHE [vk] . (3.15)

We can now use the above relation to study the transient behavior of the proposed

Leaky LMF adaptive algorithm for both white as well as correlated input data.

We will now develop a state-space model for both cases.

3.2.3 Transient Analysis for White Input Data

For white input data i.e R = σ2
u, using (3.14), we get

ζ = E
[
||vk||

2
R

]

= σ2
uE

[
||vk||

2
]
. (3.16)

From this, we can see that for white input data,

Gk = 3(σ2
n + σ2

uE
[
||vk||

2
]
), (3.17)

Zk = 15
(
σ2

uE
[
||vk||

2
])3

+ 45
(
σ2

uE
[
||vk||

2
])2

σ2
n

+15
(
σ2

uE
[
||vk||

2
])

ξ4
n + ξ6

n, (3.18)

tr(R) = Mσ2
u, (3.19)

H = 1 − µ{α + 3(σ2
n + σ2

uE
[
||vk||

2
]
)σ2

u. (3.20)

31

Using (3.3) and (3.17)-(3.20), we can compactly represent the evolution of the

E [vk] and E [||vk||
2] by the following state space equation:

E [||vk+1||
2]

E [vk+1]

=

f1 f2

0 H

E [||vk||
2]

E [vk]

+ µ

µα2||wo||
2 + Mσ2

uξ
6
n

αwo

(3.21)

where

f1 = (1 − µα)2 + µ215Mσ4
uξ

4
n − 6µ(1 − µα)σ2

nσ
2
u + µ245Mσ6

uσ
2
nE

[
||vk||

2
]

−6µ(1 − µα)σ4
uE

[
||vk||

2
]
+ µ215Mσ8

uE
[
||vk||

2
]2

, (3.22)

and

f2 = 2µαHwT
o . (3.23)

The time evolution of E[e2
ak] can be found using (3.16) and (3.21). The time

evolution of E[e2
k] is then found by using

E[e2
k] = E[e2

ak] + σ2
n. (3.24)

3.2.4 Transient Analysis for Correlated Data

For uncorrelated data, we see from (3.15) that only unweighted norms of vk and

vk+1 appear on both sides of the equation. However, when the input data is

correlated i.e. R is a non-diagonal matrix, different weighting matrices will appear

on both sides of the equation. To solve this problem, we shall start with (3.15)

32

and for A = I, we get

E
[
||vk+1||

2
]

= (1 − µα)2E
[
||vk||

2
]
+ ||µαwo||

2
R

+ µ2tr(R)Zk

−2µ(1 − µα)GkE
[
||vk||

2
R

]
+ 2µαwT

o HE [vk] . (3.25)

It can be seen that a weighted norm of vk appears with a weighting matrix . This

can be inferred from (3.15) for A = R, which leads to

E
[
||vk+1||

2
R

]
= (1 − µα)2E

[
||vk||

2
R

]
+ ||µαwo||

2
A

+ µ2tr(R2)Zk

−2µ(1 − µα)GkE
[
||vk||

2
R2

]
+ 2µαwT

o RHE [vk] . (3.26)

We see that a weighted norm of vk appears again, this time with a weighting

matrix A = R2, which can then in turn be inferred from (3.15) for A = R3.

Continuing in this fashion, (3.15) for A = RM−1 becomes

E
[
||vk+1||

2
RM−1

]
= (1 − µα)2E

[
||vn||

2
RM−1

]
+ ||µαwo||

2
A

+ µ2tr(RM)Zk

−2µ(1 − µα)GkE
[
||vk||

2
RM

]

+2µαwT
o RM−1HE [vk] . (3.27)

where we see now that a weighted norm of vk appears again, this time with a

weighting matrix A = RM .

33

Using the Cayley-Hamilton theorem [2], we can write RM as

RM = −pM−1R
M−1 − pM−2R

M−2 − . . . − p1R − p0I, (3.28)

where p0,p1,. . .,pM−1are the coefficients of the characteristic polynomial of R, given

as

p(x) = det(xI − R). (3.29)

Using (3.28), we have

E
[
||vk||

2
RM

]
= −pM−1E

[
||vk||

2
RM−1

]
−pM−2E

[
||vk||

2
RM−2

]
−. . .−p1E

[
||vk||

2
R

]
−p0E

[
||vk||

2
]
.

(3.30)

Ultimately, we can combine (3.3) and (3.25)-(3.27) as

Ak+1

E [vk+1]

︸ ︷︷ ︸

Wk+1

=

F1 F2

0 H

︸ ︷︷ ︸

Fk

Ak

E [vk]

︸ ︷︷ ︸

Wk

+µ

Lk

αwo

︸ ︷︷ ︸

Y
k

(3.31)

34

with Ak,Lk,F2,F1 are given as

Ak =

E [||vk||
2]

E [||vk||
2
R
]

E
[
||vk||

2
R2

]

...

E
[
||vk||

2
RM−2

]

E
[
||vk||

2
RM−1

]

(3.32)

Lk = µZk

tr(R)

tr(R2)

tr(R3)

...

tr(RM)

+ µα2

||wo||
2

||wo||
2
R

||wo||
2
R2

...

||wo||
2
RM−1

(3.33)

F2 = 2µαwT
o

I

R

R2

...

RM−1

H (3.34)

35

where H comes from (3.12) and

F1 =

k1 −k2 0 0 · · · 0

0 k1 −k2 0 · · · 0

0 0
.

...

...
...

. 0

0 0 · · · 0 k1 −k2

k2p0 k2p1 · · · · · · k2pM−2 k1 + k2pM−1

(3.35)

where

k1 = (1 − µα)2, (3.36)

and

k2 = 2µ(1 − µα)Gk. (3.37)

From this, we can see that that the evolution of E[||vk||
2] and E[e2

ak] can be

described by the first and second entries of the state vector Wk+1, respectively.

The resulting learning curve of the filter is then

E[e2
k] = E[e2

ak] + σ2
n. (3.38)

We can also see that for R = σ2
uI, (3.31) degenerates to (3.21).

36

3.2.5 Mean Square Stability

As can be seen from the block triangular structure of Fk in (3.31), we find that

one of the conditions for the mean-square stability of the Leaky LMF algorithm

is that it be mean convergent. The mean convergence condition was found before

and shown in (3.4). To find the second condition for the mean-square stability of

the Leaky LMF to hold, we will use the same approach as was done for finding

the mean convergence on the step size.

Therefore, let ϑ ≤ ζ be the Cramer-Rao bound associated with estimating

ukwo by ukwk; then G∗ and Z∗ are defined as

G∗ = 3(σ2
n + ϑ), (3.39)

Z∗ = 15ϑ3 + 45ϑ2σ2
n + 15ϑξ4

n + ξ6
n. (3.40)

Using this, let us define F∗
1 and L∗ as follows

F∗
1 = F1|Gk=G∗ , (3.41)

L∗ = Lk|Zk=Z∗ . (3.42)

F∗
1 can then be written as

F∗
1 = I − µG1 + µ2G2, (3.43)

37

where

G1 = 2(αI + G∗T), (3.44)

and

G2 = α(αI + 2G∗T), (3.45)

where in (3.44) and (3.45),

T =

0 1 0 0 · · · 0

0 0 1 0 · · · 0

0 0
.

...

...
...

. 0

0 0 · · · 0 0 1

−p0 −p1 · · · · · · −pM−2 −pM−1

(3.46)

From [2], a sufficient condition for F1 to be stable, and thus constitute the second

condition for the mean square stability of the proposed algorithm is that the step

size lies in the following range:

0 < µ <
1

λmax(G
−1
1 G2)

. (3.47)

Combining (3.4) and (3.47), we find that the condition for vk to converge in both

the mean and mean square sense is

0 < µ < min

(
2

α + G∗λmax(R)
,

1

λmax(G
−1
1 G2)

)

. (3.48)

38

To be more explicit, we first note from (3.46) that T is a companion form matrix

of R. Therefore it has the same eigenvalues as R. Let λi,λ
′
i, and λ′′

i be the ith

eigenvalues of T, G1, and G2, repectively. Then, from using the matrix eigenvalue

properties [21] and (3.44)-(3.46), the relations between them are given as,

λ′
i = 2(α + G∗λi),

λ′′
i = α(α + 2G∗λi).

Furthermore, G1, G2 and T will have the same eigenvectors.

Using this, we find that the ith eigenvalue of G−1
1 G2 is given by

λ
G

−1
1 G2

i =
λ′′

i

λ′
i

=
α(α + 2G∗λi)

2(α + G∗λi)

= α −
α2

2(α + G∗λi)
. (3.49)

Furthermore

λG
−1
1 G2

max = α −
α2

2(α + G∗λmax(R))

=
α(α + 2G∗λmax(R))

2(α + G∗λmax(R))
, (3.50)

and

1

λ
G

−1
1 G2

max

=
2(α + G∗λmax(R))

α(α + 2G∗λmax(R))
. (3.51)

Now, by comparing (3.4) and (3.51) and after some algebraic manipulation, we

39

get the following result for the upper bound µmax on the step size to ensure mean

and mean square stability:

µmax=

2
α+G∗

k
λmax(R)

, α >
G∗

k
λmax(R)

4
,

1
λmax(G−1

1 G2)
, otherwise.

(3.52)

40

CHAPTER 4

STEADY STATE ANALYSIS OF

LEAKY LMF

In this chapter, the steady state analysis of the proposed Leaky LMF algorithm

is carried out. We will be using the assumptions used in the previous chapter in

addition to the following assumption:

A9 The regressors uk have covariance matrix R = σ2
uI.

The reason for using this restrictive assumption is to make the analysis more

tractable. For the case of correlated regressors, we end up with a single equation

with two variables E[||vk||
2] and E[e2

ak] which have do not have a linear relation

between them. Thus we end up with an under-determined system. However, for

white Gaussian regressors, we have an additional equation that relates E[||vk||
2]

and E[e2
ak] given by (3.16).

41

Therefore, we will use (3.16) and (3.21) in our study of the steady-state be-

havior of the Leaky LMF. To begin with, we use (3.21) to get

E
[
||vk+1||

2
]

= f1E
[
||vk||

2
]
+ f2E [vk] + µ2α2||wo||

2 + µMσ2
uξ

6
n, (4.1)

E [vk+1] = HE [vk] + µαwo, (4.2)

where the terms inside the equations are given by (3.17)-(3.20).

Assuming the step size satisfies the mean and mean square convergence con-

ditions, then at steady state (as k → ∞), we have

lim
k→∞

E
[
||vk+1||

2
]

= lim
k→∞

E
[
||vk||

2
]

= E
[
||v∞||2

]
(4.3)

lim
k→∞

E [vk+1] = lim
k→∞

E [vk] = E [v∞] (4.4)

Then, taking the limit as k → ∞ on both sides of (4.1)-(4.2), we have

E
[
||v∞||2

]
= f1∞E

[
||v∞||2

]
+ f2∞E [v∞] + µ2α2||wo||

2 + µMσ2
uξ

6
n, (4.5)

E [v∞] = H∞E [v∞] + µαwo, (4.6)

where

f1∞ = (1 − µα)2 + µ215Mσ4
uξ

4
n − 6µ(1 − µα)σ2

nσ
2
u + µ245Mσ6

uσ
2
nE

[
||v∞||2

]

−6µ(1 − µα)σ4
uE

[
||v∞||2

]
+ µ215Mσ8

uE
[
||v∞||2

]2
, (4.7)

42

f2∞ = 2µαH∞wT
o , (4.8)

H∞ = 1 − µ
{
α + 3(σ2

n + σ2
uE

[
||v∞||2

]
)σ2

u

}
. (4.9)

From (4.6) and using (4.9), we get

E [v∞] =
αwo

α + 3(σ2
n + σ2

uE [||v∞||2])σ2
u

. (4.10)

Let

C = α + 3(σ2
n + σ2

uE
[
||v∞||2

]
)σ2

u. (4.11)

Then using (4.10) in (4.5), we get

E
[
||v∞||2

]
= f1∞E

[
||v∞||2

]
+

2µα2(1 − C)||wo||
2

C
+ µ2α2||wo||

2 + µMσ2
uξ

6
n.

(4.12)

Multiplying both sides of (4.12) by C, we get

CE
[
||v∞||2

]
= Cf1∞E

[
||v∞||2

]
+ 2µα2(1 − C)||wo||

2 + Cµ2α2||wo||
2

+µMCσ2
uξ

6
n. (4.13)

Opening this expression and grouping together coefficients of different powers of

E [||v∞||2] together, then after some algebra, we get the following quartic polyno-

43

mial in E [||v∞||2]:
4∑

j=0

βj(E
[
||v∞||2

]
)j = 0, (4.14)

where

β0 =
(
2µα2 − µ2α3 − 3σ2

nσ
2
uµ

2α2
)
||wo||

2, (4.15)

β1 = µ23Mσ4
u(α5ξ4

n + 15Mσ2
nσu2ξ4

n + σ2
uξ

6
n)

−6µσ2
nσu2

(
α(2 − µα) − 3(1 − µα)σ2

nσ2
u

)

−2µα2 − µ2α3 + 3µ2α2σ2
u(σu2||wo||

2 + σ2
n), (4.16)

β2 = µ245Mσu6(ασ2
n + 3σ4

nσu2 + ξ4
nσu2)

−6µ(1 − µα)σu4(α + 6σ2
nσu2) − 3σu4, (4.17)

β3 = 3µσu8(µα5M + µ60Mσ2
nσu2 − 6(1 − µα)), (4.18)

β4 = µ245Mσu12. (4.19)

Since E [||v∞||2] will be very small, we can assume (E [||v∞||2])
4

to be negligible

and the problem of finding E [||v∞||2] is now solved by finding the roots of the

following polynomial equation:

3∑

j=0

χj(E
[
||v∞||2

]
)j = 0, (4.20)

where

χj =
βj

β4

. (4.21)

44

Equation (4.20) has three roots [21]. From simulations, we found that the

smallest positive square root of the polynomial gives E [||v∞||2].

45

CHAPTER 5

TRACKING ANALYSIS OF

LEAKY LMF

The aim of tracking analysis of an adaptive filter is to provide a quantitative

measure of how well the adaptive algorithm is able to track variations in the

signal statistics. In this chapter, the tracking analysis of the proposed algorithm

is carried out. Both the random walk model and the Rayleigh fading model (single

path and multipath) to model the time varying channels and the analysis is carried

out in the same way as was done for the steady state analysis.

5.1 Random Walk Model

The first order random-walk model for a channel is given as

ck+1 = ck + qk, (5.1)

46

where ck is the time-varying wide-sense stationary unknown system that is to be

tracked and qk is assumed to be a zero-mean stationary random vector process

with a positive-definite covariance matrix Q. It is also statistically independent

of all other parameters of the adaptive filter. The noisy measurement that arises

from the random walk model is given by

dk = ukck + nk. (5.2)

It can be seen from the assumptions used for qk and (5.1) that

E [ck+1] = E [ck] = c. (5.3)

Now it was observed in [2] that the covariance matrix of ck+1 Ck+1 is given by

Ck+1 = E
[

(ck+1 − c) (ck+1 − c)T
]

(5.4)

= E
[

(ck + qk − c) (ck + qk − c)T
]

(5.5)

= E
[

(ck − c) (ck − c)T
]

+ Q (5.6)

= Ck+1 + Q. (5.7)

We see that a positive-definite matrix is added to the covariance matrix of the

the unknown system vector at each iteration and thus grows unbounded. A more

47

practical model that can be used is by replacing (5.1) by

ck+1 − c = ̺(ck − c) + qk, (5.8)

for some scalar |̺| < 1. In this case, the covariance matrix of ck+1 would tend to

a finite steady-state value given by

lim
k→∞

Ck+1 =
Q

1 − |̺|2
. (5.9)

However, the tracking analysis of this model is more demanding. As mentioned in

[2], it was found that in the literature it is a convention to assume the value of ̺

to be sufficiently close to 1 to warrant the use of model (5.1) which simplifies our

analysis greatly.For this reason , we have used the model model (5.1) for tracking

analysis of the Leaky LMF.

5.2 Tracking Analysis of Leaky LMF for Ran-

dom Walk Model

To begin with, we shall rewrite the Leaky LMF update equation , taking the

non-stationarity of the channel into account, we get the following recursion:

wk+1 = (1 − µα)wk + µuT
k e3

k. (5.10)

48

Let vj = cj − wj, then

ck+1 − wk+1 = ck+1 − (1 − µα)wk − µuT
k e3

k

= ck+1 − wk + µαwk − µuT
k e3

k

= ck+1 − wk + µα (ck − vk) − µuT
k e3

k

= ck + qk − wk + µα (ck − vk) − µuT
k e3

k

= vk + qn + µαck − µαvk − µuT
k e3

k

vk+1 = (1 − µα)vk + µαck − µuT
k e3

k + qk. (5.11)

Taking the weighted norms of both sides of (5.11), with A being the symmetric

weighting matrix, and using A1-A9 along with the assumptions on the statistics

of qk, we get

E
[
||vk+1||

2
A

]
= (1 − µα)2E

[
||vk||

2
A

]
+ ||µαc||2

A
+µ2tr(RA)Zk

−2µ(1 − µα)GkE
[
||vk||

2
RA

]
+ 2µαcTAJE [vk]

+tr (QA) . (5.12)

We see that the only difference between (3.15) and (5.12) is the addition term

tr (QA). Using this fact, we can approach the problem of tracking analysis of the

Leaky LMF in the same way as was done for the steady state analysis for white

gaussian data.

Furthermore, after applying the same steps and assumptions done for transient

49

analysis of stationary environment to non-stationary environment expressed by the

random walk model, we get the following state space equation representing the

evolution of E[||vk||
2] and E[e2

ak] in a random walk model:

Ak+1

E [vk+1]

︸ ︷︷ ︸

Wk+1

=

F1 F2

0 H

︸ ︷︷ ︸

Fk

Ak

E [vk]

︸ ︷︷ ︸

Wk

+

Mk

µαc

︸ ︷︷ ︸

Y
k

(5.13)

where the only difference between (3.31) and (5.13) is the term Mk given by

Mk = µ2Zk

tr(R)

tr(R2)

tr(R3)

...

tr(RM)

+ µ2α2

||c||2

||c||2
R

||c||2
R2

...

||c||2
RM−1

+

tr(Q)

tr(QR)

tr(QR2)

...

tr(QRM−1)

(5.14)

5.3 Rayleigh Fading Channel Model

In a wireless communications environment, the transmitted signal suffers from

multipath reflections while traveling from the transmitter to the receiver so that

the receiver gets several replicas of the transmitted signal with different amplitude

and phase distortions at different delays so that the overall receiver signal is the

sum of all the reflections. Based on the relative phases of the reflections, the

signal may add constructively or destructively at the receiver. Furthermore, if the

50

receiver is moving with respect to the transmitter, then these interferences will

vary with time, This phenomenon is described in [2] [3] as channel fading.

The impulse response of a single tap (i.e single path) fading channel can be

described as

h(n) = ψx(n)δ(n − no), (5.15)

where {x(n)} is a time-variant unit variance complex sequence that models the

channel variations in the channel, and no is the channel delay. ψ2 is the power

attenuation that a signal will undergo when it passes through the channel. Al-

though there are several models to describe the fading characteristics of {x(n)}

the most widely used is the Rayleigh fading model. In this model, for each time

instant n, the amplitude |{x(n)}| has a Rayleigh distribution given by

f|x(n)|(|x(n)|) = |x(n)| e
−|x(n)|2

2 , (5.16)

while the phase 6 x(n) is assumed to be uniformly distributed within [−π, π]

f6 x(n)(6 x(n)) =
1

2π
,−π ≤ 6 x(n) ≤ π. (5.17)

Zeroth order Bessel function has been used extensively in the literature to model

the autocorrelation function of {x(n)}. This model is based on the assumption

that all the scatterers are uniformly distributed around the receiver, so that its

51

power spectral density has a U-shaped function. This function is expressed as

r(k) ∼= E[x(n)x(n − k)] = Jo(2πfDTsk), n = · · · ,−1, 0, 1, · · · (5.18)

where Ts is the sampling period, fD is the maximum Doppler frequency of the

Rayleigh fading channel and Jo is the zeroth order Bessel function defined by

Jo(y) =
1

π

π∫

0

cos(y sin θ)dθ. (5.19)

The Doppler frequency is related to the speed of the mobile user v and to the

carrier frequency fc as follows

fD = ±
vfc

c
= ±

v

λsig

. (5.20)

where c is the speed of light and λsig is the wavelength of the signal.

Therefore, the weight vector we wish to estimate has the form

[

0 0 x(n) 0 0

]

(5.21)

When we investigate further into the fading phenomenon, we find in the case

where the reflections originate from far off objects like mountains and buildings,

then the signal replicas corresponding to these reflections arrive at a much larger

delay as compared to the first group of reflections in which case, a single path

Rayleigh fading channel is not sufficient and we can use a finite impulse response

52

model to simulate the channel which can be expressed as

h(n) =
L∑

k=1

ψkxk(n)δ(n − k + 1), (5.22)

where ψk and xk are, respectively, the path loss and fading sequence of the kth

cluster of reflectors. In this analysis, a two-path Rayleigh fading channel has been

assumed where the signals along both paths are assumed to fade independently

with same Doppler frequency. Although this assumption is unrealistic, it does

allow for us to express Rayleigh fading using a random walk model.The channel

impulse response is assumed to consist of an initial delay of 2 samples followed by

a Rayleigh fading path and the signal arriving on the second path one sampling

delay after the first one such that the channel vector that we wish to estimate has

the form of a 5-tap FIR filter with coefficients expressed in vector form as

cn =

[

0 0 x2(n) 0 x4(n)

]

(5.23)

As mentioned in [2], a first order approximation for the variation of the Rayleigh

fading coefficient x(n) is to assume that x(n) varies according to the AR model

given by

x(n) = r(1)x(n − 1) +

√

1 − |r(1)|2η(n), (5.24)

where r(1) = Jo(2πfDTs) and η(n) denotes the white noise process with unit

variance.

The above approximation indicates that the fluctuations in the channel weight

53

vector could be approximated as

ck+1 = τck + qk, (5.25)

where the covariance matrix of {qn} is Q = (1 − τ 2)I where τ = r(1). It is

clear from (5.18) that the value of τ depends on fD and if τ is chosen to be

approximately equal to 1, then the results of the analysis that we have done for

the random walk model can be applied for the Rayleigh fading channel estimation

problem as well.

54

CHAPTER 6

PERFORMANCE ANALYSIS

OF THE PROPOSED LEAKY

LMF ALGORITHM

In this chapter, the results of the computer simulations to investigate the perfor-

mance behavior of the Leaky LMF are presented. A number of simulation results

are carried out to corroborate the theoretical findings.

First, we will show how the Leaky LMF mitigates the weight drift problem that

is encountered in the conventional LMF algorithm. After that, we will show how

the Leaky LMF provides better performance in terms of the mean-square deviation

as compared to the Leaky LMS algorithm for different noise environments. After

this, we will present a number of simulations which show that there is a good

match between the theoretical findings of the Leaky LMF and the simulation

results. These simulations can be divided into the following two categories:

55

1. Comparison of the transient performance of the Leaky LMF and the sim-

ulation results for Gaussian, Uniform and Laplacian noise environments at

noise variance of 0.1, 0.01 and 0.001.

2. Comparison of the tracking performance of the Leaky LMF and the simula-

tion results for Gaussian and Uniform noise environments at noise variance

of 0.1, 0.01 and 0.001.

6.1 Comparison of LMF and Leaky LMF in

Weight Drift Environment

In this section, we will present the simulation to show how weight drift problem

occurs in the LMF algorithm and how it can be prevented from happening using

the Leaky LMF. In this simulation, the parameters have been chosen to speed up

the weight drift phenomenon as was done in [14]. The true weight error vector is

given by [0.7071 − 0.7071]T while the input regressor vector is randomly assigned

values of ±[0.5 − 0.5] with equal probability so that the input covariance matrix

is singular. The output noise and the quantization noise are grouped together and

modeled as a Gaussian random vector with mean [0.49 − 0.49]T whose elements

are independent of each other and have a variance of 10−3 . The number of

quantization bits for the adaptive filter coefficients and the regressor values are

set to 10. The step size was taken to be 0.0156 and the product of the step size

and the leakage factor was set at 0.002. We make a single run over 104 samples

56

and have taken the infinite norms of the updated weight vectors in case of both

the LMF and the Leaky LMF.

As can be seen from Fig. 6.1, we see that in the case of LMF, the parameter

drift causes the adaptive filter weights to blow up while in the case of the Leaky

LMF, the adaptive filter weights are bounded.

57

0 2000 4000 6000 8000 10000
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

No. of iterations

In
fi
n
it
e
 n

o
rm

LMF

Leaky LMF

LMF

Leaky LMF

Figure 6.1: Weight drift situation.

58

6.2 Comparison of the Leaky LMF to the Leaky

LMS

We shall now compare the Leaky LMF to the Leaky LMS algorithm and show

that for the same step size, the Leaky LMF outperforms the Leaky LMS in the

mean square deviation (MSD) sense. The true weight vector was chosen to be

[

0.227 0.460 0.688 0.460 0.227

]T

The step size values for the Leaky LMS and the Leaky LMF were set at 0.01 and

0.09, respectively, while the leakage factor for both algorithms was set at 10−5.

A white Gaussian input process with zero mean and unit variance was fed into

both the Leaky LMF and the Leaky LMS algorithms while the output noise was

set as a zero mean random process with variance 0.001. The experiment was

conducted for Gaussian, Laplacian and Uniformly distributed noisy environments

and the results were averaged over 20 trials while number of samples used was set

at 3 × 104. Fig. 6.2, 6.3 and 6.4 shows the result of the simulations in Gaussian,

Uniform and Laplacian noise environments, respectively.

We can see from the resulting simulations that the Leaky LMF performance

better in the MSD sense even with a larger step-size.

59

0.5 1 1.5 2 2.5 3

x 10
4

−45

−40

−35

−30

−25

−20

−15

−10

−5

No. of iterations

M
S

D
 (

d
B

)

Leaky LMF

Leaky LMS

Figure 6.2: Performance of leaky LMF vs. leaky LMS in Gaussian noise.

60

0.5 1 1.5 2 2.5 3

x 10
4

−45

−40

−35

−30

−25

−20

−15

−10

−5

No. of iterations

M
S

D
 (

d
B

)

Leaky LMF

Leaky LMS

Figure 6.3: Performance of leaky LMF vs. leaky LMS in uniform noise.

61

0.5 1 1.5 2 2.5 3

x 10
4

−45

−40

−35

−30

−25

−20

−15

−10

−5

No. of iterations

M
S

D
 (

d
B

)

Leaky LMF

Leaky LMS

Figure 6.4: Performance of leaky LMF vs. leaky LMS for laplacian noise.

62

6.3 Comparison of the Theoretical and Simula-

tion Results For Transient Analysis

In this section, we will try to see if the theoretical findings pertaining to the

transient analysis of the Leaky LMF agree with the simulation results. A random

normalized system weight vector was generated with the number of taps set at 5.

For white input data, with variance of the regressors was set to unity. The

step size and the leakage factor were set at 0.01 and 0.001, respectively, while

the number of trials and the number of samples used in the experiment were set

to 500 and 104, respectively.For correlated input data, the eigenvalue spread of

the regressor covariance matrix was set to 5. All other parameters are the same

as for white data. The simulations were performed for uniform and Gaussian

noise environments with the noise variance values set at 0.1, 0.01 and 0.001. The

theoretical curves were generated by using (3.31).As we can see from the Fig.

6.5-6.28, there is a very good match between theory and simulation results.

We can see that the rate of convergence is must more in a given noise en-

vironment i.e. type of noise and variance value, for white data as compared to

correlated data. The reason for this is that the increase in the eigenspread value

of R decreases the speed of convergence [2].

We also note that for the same nature of input data i.e. correlated or white,

and noise variance, the MSE performance of the Leaky LMF is much better in

uniform noise than gaussian noise. This is to be expected as the conventional

LMF also performs better in non-gaussian noise scenarios [4],[5].

63

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

−25

−20

−15

−10

−5

0

No. of iterations

M
S

D
 (

d
B

)

Simulation

Theory

Figure 6.5: Leaky LMF MSD in Gaussian noise with white data and noise variance
0.1.

64

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

−10

−9

−8

−7

−6

−5

−4

−3

−2

−1

0

No. of iterations

M
S

E
 (

d
B

)

Simulation

Theory

Figure 6.6: Leaky LMF MSE in Gaussian noise with white data and noise variance
0.1.

65

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

−25

−20

−15

−10

−5

0

No. of iterations

M
S

D
 (

d
B

)

Simulation

Theory

Figure 6.7: Leaky LMF MSD in Gaussian noise with correlated Data and noise
Variance 0.1.

66

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
−11

−10

−9

−8

−7

−6

−5

−4

−3

−2

−1

No. of iterations

M
S

E
 (

d
B

)

Simulation

Theory

Figure 6.8: Leaky LMF MSE in Gaussian noise with correlated data and noise
variance 0.1.

67

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
−30

−25

−20

−15

−10

−5

No. of iterations

M
S

D
 (

d
B

)

Simulation

Theory

Figure 6.9: Leaky LMF MSD in Gaussian Noise with white data and noise variance
0.01.

68

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

−20

−18

−16

−14

−12

−10

−8

−6

−4

−2

0

No. of iterations

M
S

E
 (

d
B

)

Simulation

Theory

Figure 6.10: Leaky LMF MSE in Gaussian noise with white data and noise vari-
ance 0.01.

69

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

−18

−16

−14

−12

−10

−8

−6

−4

−2

0

No. of iterations

M
S

D
 (

d
B

)

Simulation

Theory

Figure 6.11: Leaky LMF MSD in Gaussian noise with correlated data and noise
variance 0.01.

70

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

−18

−16

−14

−12

−10

−8

−6

−4

−2

No. of iterations

M
S

E
 (

d
B

)

Simulation

Theory

Figure 6.12: Leaky LMF MSE in Gaussian noise with correlated data and noise
variance 0.01.

71

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

−20

−15

−10

−5

0

No. of iterations

M
S

D
 (

d
B

)

Simulation

Theory

Figure 6.13: Leaky LMF MSD in Gaussian noise with white data and noise vari-
ance 0.01.

72

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

−20

−15

−10

−5

0

No. of iterations

M
S

E
 (

d
B

)

Simulation

Theory

Figure 6.14: Leaky LMF MSE in Gaussian noise with white data and noise vari-
ance 0.01.

73

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

−14

−12

−10

−8

−6

−4

−2

0

No. of iterations

M
S

D
 (

d
B

)

Simulation

Theory

Figure 6.15: Leaky LMF MSD in Gaussian noise with correlated data and noise
variance 0.01.

74

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

−20

−18

−16

−14

−12

−10

−8

−6

−4

No. of iterations

M
S

E
 (

d
B

)

Simulation

Theory

Figure 6.16: Leaky LMF MSE in Gaussian noise with correlated data and noise
variance 0.01.

75

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
−35

−30

−25

−20

−15

−10

−5

0

No. of iterations

M
S

D
 (

d
B

)

Simulation

Theory

Figure 6.17: Leaky LMF MSD in uniform noise with white data and noise variance
0.1.

76

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

−10

−9

−8

−7

−6

−5

−4

−3

−2

−1

0

No. of iterations

M
S

E
 (

d
B

)

Simulation

Theory

Figure 6.18: Leaky LMF MSE in uniform noise with white data and noise variance
0.1.

77

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

−30

−25

−20

−15

−10

−5

0

No. of iterations

M
S

D
 (

d
B

)

Simulation

Theory

Figure 6.19: Leaky LMF MSD in uniform noise with correlated data and noise
variance 0.1.

78

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

−10

−9

−8

−7

−6

−5

−4

−3

−2

No. of iterations

M
S

E
 (

d
B

)

Simulation

Theory

Figure 6.20: Leaky LMF MSE in uniform noise with correlated data and noise
variance 0.1.

79

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
−30

−25

−20

−15

−10

−5

No. of iterations

M
S

D
 (

d
B

)

Simulation

Theory

Figure 6.21: Leaky LMF MSD in uniform noise with white data and noise variance
0.01.

80

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

−20

−18

−16

−14

−12

−10

−8

−6

−4

−2

0

No. of iterations

M
S

E
 (

d
B

)

Simulation

Theory

Figure 6.22: Leaky LMF MSE in uniform noise with white data and noise variance
0.01.

81

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

−16

−14

−12

−10

−8

−6

−4

−2

0

No. of iterations

M
S

D
 (

d
B

)

Simulation

Theory

Figure 6.23: Leaky LMF MSD in uniform noise with correlated data and noise
variance 0.01.

82

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

−18

−16

−14

−12

−10

−8

−6

−4

−2

No. of iterations

M
S

E
 (

d
B

)

Simulation

Theory

Figure 6.24: Leaky LMF MSE in uniform noise with correlated data and noise
variance 0.01.

83

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

−22

−20

−18

−16

−14

−12

−10

−8

−6

−4

−2

0

No. of iterations

M
S

D
 (

d
B

)

Simulation

Theory

Figure 6.25: Leaky LMF MSD in uniform noise with white data and noise variance
0.01.

84

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

−20

−15

−10

−5

0

No. of iterations

M
S

E
 (

d
B

)

Simulation

Theory

Figure 6.26: Leaky LMF MSE in uniform noise with white data and noise variance
0.01.

85

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

−16

−14

−12

−10

−8

−6

−4

−2

0

No. of iterations

M
S

D
 (

d
B

)

Simulation

Theory

Figure 6.27: Leaky LMF MSD in uniform noise with correlated data and noise
variance 0.01.

86

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

−22

−20

−18

−16

−14

−12

−10

−8

−6

−4

−2

No. of iterations

M
S

E
 (

d
B

)

Simulation

Theory

Figure 6.28: Leaky LMF MSE in uniform noise with correlated data and noise
variance 0.01.

87

6.4 Tracking Analysis of Leaky LMF

In this section, we will look at the behavior of the Proposed Leaky LMF algorithm

in a non-stationary environment for which we will use the random walk model.

The step size, leakage factor and the noise variance were set at 0.01, 0.001 and

0.001, respectively. The number of samples used was 104 and the number of

trials was set at 800. The mean vector of the varying true system weight was

randomly generated and normalized and the number of taps was set to 5. The

elements of the weight vector are independent and identically distributed. The

simulations were carried out for both Uniform and Gaussian noise and algorithm

was tested with the variances of true weight vector elements set at 10−5,10−6

and 10−7. Theoretical results were generated using (5.13). We see from the Fig.

6.29-6.40 that the theoretical and the simulation results match.

Moreover, as expected, it is observed that as the variance of the true weight

vector decreases from 10−5 to 10−7, the MSE performance of the Leaky LMF

improves.

88

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

−16

−14

−12

−10

−8

−6

−4

−2

No. of iterations

M
S

D
 (

d
B

)

Simulation

Theory

Figure 6.29: Tracking MSD of leaky LMF in Gaussian noise with weight variance
10−5.

89

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

−15

−10

−5

0

No. of iterations

M
S

E
 (

d
B

)

Simulation

Theory

Figure 6.30: Tracking MSE of leaky LMF in Gaussian noise with weight variance
10−5.

90

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

−20

−15

−10

−5

0

No. of iterations

M
S

D
 (

d
B

)

Simulation

Theory

Figure 6.31: Tracking MSD of Leaky LMF in Gaussian noise with weight variance
10−6.

91

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

−18

−16

−14

−12

−10

−8

−6

−4

−2

0

No. of iterations

M
S

E
 (

d
B

)

Simulation

Theory

Figure 6.32: Tracking MSE of Leaky LMF in Gaussian Noise with Weight variance
10−6.

92

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

−25

−20

−15

−10

−5

No. of iterations

M
S

D
 (

d
B

)

Simulation

Theory

Figure 6.33: Tracking MSD of leaky LMF in Gaussian noise with weight variance
10−7.

93

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
−20

−18

−16

−14

−12

−10

−8

−6

−4

−2

0

No. of iterations

M
S

E
 (

d
B

)

Simulation

Theory

Figure 6.34: Tracking MSE of leaky LMF in Gaussian noise with weight variance
10−7.

94

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

−16

−14

−12

−10

−8

−6

−4

−2

0

No. of iterations

M
S

D
 (

d
B

)

Simulation

Theory

Figure 6.35: Tracking MSD of leaky LMF in uniform noise with weight variance
10−5.

95

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

−15

−10

−5

0

No. of iterations

M
S

E
 (

d
B

)

Simulation

Theory

Figure 6.36: Tracking MSE of leaky LMF in uniform noise with weight variance
10−5.

96

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

−22

−20

−18

−16

−14

−12

−10

−8

−6

−4

−2

0

No. of iterations

M
S

D
 (

d
B

)

Simulation

Theory

Figure 6.37: Tracking MSD of leaky LMF in uniform noise with weight variance
10−6.

97

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

−18

−16

−14

−12

−10

−8

−6

−4

−2

0

No. of iterations

M
S

E
 (

d
B

)

Simulation

Theory

Figure 6.38: Tracking MSE of Leaky LMF in uniform noise with weight variance
10−6.

98

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

−25

−20

−15

−10

−5

0

No. of iterations

M
S

D
 (

d
B

)

Simulation

Theory

Figure 6.39: Tracking MSD of leaky LMF in uniform noise with weight variance
10−7.

99

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

−18

−16

−14

−12

−10

−8

−6

−4

−2

0

No. of iterations

M
S

E
 (

d
B

)

Simulation

Theory

Figure 6.40: Tracking MSE of leaky LMF in uniform noise with weight variance
10−7.

100

CHAPTER 7

THESIS CONTRIBUTIONS

AND RECOMMENDATIONS

FOR FUTURE WORK

7.1 Thesis Contributions

This work successfully presented the Leaky LMF algorithm. This algorithm was

analyzed in terms of its convergence properties, steady-state and tracking perfor-

mances and transient behavior. The performance of the proposed algorithm has

been supported by presenting the simulation scenarios. the major contributions

of this thesis work are as follows:

1. A new LMF variant with a leakage factor which mitigates weight drift.

2. The convergence analysis of the proposed algorithm derived in terms of the

mean and mean square sense and as well as a model for estimating the time

101

evolution of the mean square error and the mean square deviation for the

algorithm.

3. The steady state analysis of the algorithm carried as the limiting case of the

transient behavior of the algorithm.

4. Tracking ability of the algorithm analyzed and the model for the time evo-

lution of the algorithm in a non-stationary environment derived.

5. Finally, the analytical results compared with the experimental results which

support the analysis.

7.2 Recommendations for Future Work

There are a few suggestions regarding future work. In this thesis, a constant leak-

age factor was used which caused bias in the mean square error. However, by

using the various techniques used for removing the bias in the case of Leaky LMS,

we can find even better variants of the Leaky LMF that mitigate the weight drift

problem without causing a bias. Furthermore, these variants are expected to per-

form better than their LMF counterparts in terms of steady state misadjustment.

102

REFERENCES

[1] S. Haykin, Adaptive Filter Theory. Upper Saddle River, NJ:Prentice-Hall,

1996.

[2] A.H. Sayed, Fundamentals of Adaptive Filtering. New York, NY:Wiley Inter-

science,2003.

[3] J.G. Proakis, Digital Communications, McGraw-Hill, 2001.

[4] E. Wallach and B. Widrow, ”The Least Mean Fourth (LMF) Adaptive Al-

gorithm and its Family,” IEEE Trans. Information Theory, vol. IT-30, no. 2,

March 1984.

[5] A. Zerguine, ”Convergence Behaviour of the Normalized Least Mean Fourth

Algorithm,” Proceedings of the 34th Annual Asilomar Conf. on Signals, Sys-

tems, and Computers, pp. 275-278, Oct.29-Nov.1, 2000.

[6] S. Haykin,Unsupervised Adaptive Filtering Volume I:Blind Source Separation.

New York, NY:Wiley Interscience, 2000.

[7] B. Widrow and M.E. Hoff,Jr., ”Adaptive Switching Circuits”, IRE WESCON

Conv.Rec., Pt.4, pp. 96-104.

103

[8] J.I. Nagumo and A. Noda, ”A Learning Method for System Identification”,

IEEE Trans. on Automatic Control,vol 4C-12, no.3, pp. 282-287.

[9] A.E. Albert and L.S. Gardner,Jr., Stochastic Approximations and Nonlinear

Regression, MIT Press, Cambridge, MA.

[10] W. Sethares et al, ”Parameter Drift in LMS Adaptive Filters”, IEEE Trans.

Accoustics, Speech and Signal Processing, Vol. ASSP-34, No.4, August 1986

[11] D. A. Lawrence and W. Sethares, ” Parameter Drift Instability in

Disturbance-Free Adaptive Systems”, IEEE Trans. Automatic Control, Vol.38,

No.4, April 1993.

[12] M. Hovd and R. R. Bitmead, ” Directional Leakage and Parameter Drift”,

International Journal of Adaptive Control & Signal Processing, 20:27-39, 2006

[13] J. Cioffo, ”Limited Precision Effects in Adaptive Filtering”, IEEE Trans. on

Signals & Systems, CAS-34, no.7, pp. 821-833, July 1987.

[14] V.H. Nascimento and A.H. Sayed, ”Unbiased and Stable Leakage-Based

Adaptive Filters”, IEEE Trans. Signal Processing, vol. 47, No.12, pp. 3261-

3276, December 1999.

[15] B.D. Rigling and P. Scniter, ”Subspace Leaky LMS”, IEEE Trans. Signal

Processing, Vol. 11, no.2, pp. 136-139, February 2004.

104

[16] T. Y. Al-Naffouri and A. H. Sayed, ”Transient Analysis of Adaptive FIlters

with Error Non-Linearities”, IEEE Trans. Signal Processing, Vol.51, No.3, pp.

653-663, March 2003.

[17] T. Y. Al-Naffouri and A. H. Sayed, ”Transient Analysis of Data-Normalized

Adaptive FIlters”, IEEE Trans. Signal Processing, Vol.51, No.3, pp. 639-652

March 2003.

[18] T. Y. Al-Naffouri and A. H. Sayed, ”Mean Square Analysis of Normalized

Leaky Adaptive FIlters”, Proceedings of ICASSP, Salt Lake City, Utah, May

2001.

[19] P. I. Hubscher and J. C. Bermudez, ” An improved Statistical Analysis of

the Least Mean Fourth Algorithm”, IEEE Trans. Signal Proc., Vol. 51, No.3,

pp. 664-671, March 2003.

[20] A. Zerguine et al, ” Convergence and Tracking Analysis of a Variable Nor-

malized LMF (XE-NLMF) Algorithm”, Signal Processing, Vol. 89, No. 5, pp.

778-790, May 2009.

[21] A.D. Poularikas, The Handbook of Formulas and Tables for Signal Processing.

Boca Raton, FL:CRC Press,1999.

105

Vitae

• Obaid ur Rehman Khattak.

• Pakistani

• Born in Karak, Pakistan on August 2nd, 1984.

• King Fahd University of Petroleum & Minerals, P.O.Box# 1854, Dhahran

31261, Kingdom of Saudi Arabia.

• House# 344, Street# 14, Sector F-10/2, Islamabad, Pakistan.

• Received Bachelor of Science in Computer Engineering from King Fahd Uni-

versity of Petroleum & Minerals, Dhahran, KSA in June 2006.

• Joined King Fahd University of Petroleum and Minerals, Dhahran, Saudi

Arabia as a Research Assistant in September 2006.

• Completed Master of Science (M.S.) in Electrical Engineering in June 2009.

• Email: obaidkhattak@gmail.com.

106

