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THESIS ABSTRACT 
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                 Permeability, Porosity and Lithofacies are key factors in reservoir 

characterizations. Permeability, or flow capacity, is the ability of porous rocks to transmit 

fluids, porosity, represent the capacity of the rock to store the fluids, while lithofacies, 

describe the physical properties of rocks including texture, mineralogy and grain size.  

Many empirical approaches, such as linear/non-linear regression or graphical techniques. 

Were developed for predicting porosity, permeability and lithofacies. Recently, 

researches used another tool named Artificial Neural Networks (ANNs) to achieve better 

predictions. To demonstrate the usefulness of Artificial Intelligence technique in 

geoscience area, we describe and compare two types of Neural Networks named 

Multilayer Perception Neural Network (MLP) with back propagation algorithm and 

General Regression Neural Network (GRNN), in prediction reservoir properties from 

seismic attributes and well log data. 
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This study explores the capability of both paradigms, as automatique systems for 

predicting sandstone reservoir properties, in vertical and spatial directions. As it was 

expected, these computational intelligence approaches overcome the weakness of the 

standard regression techniques. 

Generally, the results show that the performances of General Regression neural networks 

outperform that of Multilayer Perceptron neural networks. In addition, General 

Regression Neural networks are more robust, easier and quicker to train. Therefore, we 

believe that the use of these better techniques will be valuable for Geoscientists. 
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 ملخص الرسالة
  
  
  

  محمد ستواح                   :الكامل  الإسم
  

  تقدير خصائص المكامن من المعطيات السيزمية و بيانات الآبار       :عنوان الرسالة
  باستخدام الذآاء الصناعي                                            

  
  جيزفيزياء           :التخصص

  
  

  ٢٠٠٩جوان       :تاريخ الشهادة
  
  

هو  النفاذية ، أو تدفق القدرة ،. هي عوامل رئيسية في تحديد خصائص المكمن  المسامية، النفاذية والسحن الصخري

وصف  السحن الصخري فهو  بينما قدرة الصغور لنقل السوائل ، المسامية ، تمثل قدرة الصخر لتخزين السوائل ،

توجد الكثير من الطرق التجربية للتنبأ بالنفاذية،   .والمعادن الحبوب حجم الملمس منالخصائص الفيزيائية للصخور 

  .المسامية و السحن الصخري ، مثل الانحدار الخطي و الانحدار اللاخطي و آذا الطرق البيانية

هذه الطرق أثبتت محدويتها في هذا المجال عندما يتعلق الأمر بتنبأ خصائص المكامن الغير متجانسة حيث أن 

  .رات في خصائص المكمن تجعل من الصعوبة بمكان التنبأ بخصائصهالتغي

 لتحقيق مستوى أفضل من) ANNs(أداة أخرى للبحوث اسمها الشبكات العصبية الاصطناعية  مؤخرا ، استخدم

لإثبات جدوى تقنية الذآاء الاصطناعي في مجال علوم الأرض ،  قمنا بإجراء مقارنة بين نوعين من . التوقعات

و ذلك باستعمال المعطيات السيزمية و ).   MLP(     و الثاني (GRNN )ت العصبية النوع الأول يسمى الشبكا

 .تسجبل بيانات المكامن

ن البترولية آالمسامية، النفاذية المكامفي هذا البحث تم تناول قدرة آلتا الشبكتين العصبيتين على تنبأ بعض خصائص 

على تنبأ )  GRNN(   دراسة أثبتت نجاعت و قدرة الشبكة العصبية المسماة عموما نتائج هذه ال .و السحن الصخري

بالاضافة ).    MLP(      خصائص المكمن و بدقة عالية تفوق تلك التي تم تقديرها باستعمال الشبكة الثانية المسماة
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التقنيات المتطورة سيساعد لهذا نعتقد أن استعمال هذه . أآثر سرعة و أآثر قوة)   GRNN(  الى أن الشبكة العصبية 

و يعطي نظرة أوضح للجيولوجيين و الجيوفيزيائين في تقدير حرآة السوائل داخل أآثر في تطوير المكامن البترولية 

  .المكمن
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CHAPTER ONE 

Introduction 
 
 

1.1   Overview 
 
 

    Reservoir characteristics can be divided into three groups: geological characteristics 

(structure and seal, lithology, diagenesis), engineering data (well spacing, well-bore 

integrity, etc.) and rock-fluid properties (porosity, permeability, resistivity, etc.), (see 

James and Lawrence , 2002). Porosity, permeability and lithofacies are key factors for 

reservoir modeling. Permeability is the ability of the porous rock to transmit fluid, it 

depends on the statistics of the pore throat diameters rather than of the pore size, and is 

related to effective porosity rather than the total porosity.  

Lithofacies identification is a primary task in reservoir characterization; it is achieved by 

studying a combination of petrophysical and petrographical properties of the rock. In 

general, when core samples are taken from rocks, they are described and classified into 

categories called “Facies” or “Lithofacies”. Such lithofacies represent a well defined rock 

type  (e.g. sandstone, limestone, dolomite, etc.). To build a 3D geological model for a 

reservoir, accurate knowledge of permeability, porosity and lithofacies is required. The 

best method to get accurate values for these three factors is to measure them directly in 

the laboratory; however, this method has some disadvantages: its high cost, being time 

consuming, and incomplete representation of the total depth range.  For these reasons 

geologists often core only a few out of all  
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wells and even then only a small portion of the well. Geologists generally use a statistical 

approach, such as linear or non-linear multiple regressions (Wendt et al.,1981;  Jensen et 

al. 1985) to correlate different reservoir properties (such as: porosity and permeability). 

In these approaches, a linear or non-linear relationship is assumed between permeability 

and other reservoir properties. However, these techniques have proved inadequate for 

certain geological problems like heterogeneous reservoirs (Moline and Bahr, 1995).  

Recently, geoscientists have utilized methods of Artificial Intelligence (AI), especially 

Neural Networks (NNs), to predict reservoir properties.  Neural Networks have been 

widely used in many fields of science and engineering (e.g.  in economy to predict 

chaotic stock market behavior, or to optimize financial portfolios). In Petroleum Industry, 

Neural Networks have been used to predict fracture intensity (Boevner et al., 2003; 

Ouenes et al., 1998), for field development (Dorusamy, 1997), for litho-facies analysis 

(Tanmbasu et al., 2004), to  predict irreducible water saturation (Goda et al., 2007), to 

predict drilling hydraulics in real time (Fruhwirth et al., 2007),  and for other purposes, 

such as to optimize hydraulic fracture designs, characterize oil and gas reservoirs, 

optimize drilling operation, interpret well logs, generate virtual magnetic resonance logs, 

and to select candidate wells for reservoir stimulation.  

Artificial Neural Networks are powerful tools for modeling nonlinear, complex systems. 

They are distributive, parallel systems, very useful to deal with pattern recognition 

problems. They are able to predict complex relationships between several variables (e.g. 

between well log data and seismic attributes, permeability, porosity and rock types). 

However, Neural Networks are black-box models that use activation functions of a 

predefined form (but with parameters adjusted through learning) and a predefined 
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architecture (number of hidden layers, number of neurons in each layer), without duly 

considering the specific properties of the phenomena being modeled.  

Computer scientists in the field of Machine Learning and Data Mining have found 

several alternative methods to get over the limitations of Neural Networks. One of the 

popular methods is Adaptive Neural Fuzzy Inference System (ANFIS), which is a new 

framework, dealing with prediction and classification problems.  

1.2   Problem Statement 
Permeability, porosity and rock types are important reservoir properties to build a 3D  

geological model. The best way to get information about these factors would be to 

measure them in laboratories, however this procedure is costly and time consuming. 

Well log and core data are local measurements that may not reflect the reservoir  

behavior as a whole. In addition, well log data do not cover the whole area of the field 

whereas 3D seismic covers larger areas. Changes in the lithology and fluids result in 

changes in amplitude, wavelet shape, lateral coherence, and other seismic attributes. 

These attributes can provide information for the construction of reservoir models. Neural 

Networks for quantitative analysis of reservoir properties from well logs have been 

demonstrated in several practical applications (e.g. Huang et al., 1996; Huang and 

Williamson, 1997; Zhang et al., 2000; Helle et al., 2001), a simple and accurate 

alternative for converting well logs to common reservoir properties such as porosity and 

permeability. Multilayer perceptron (MLP) with back-propagation algorithm has been the 

popular tool for most practical applications over the last decade. However, one major 

problem encountered in the back-propagation algorithm is its slow convergence during 

learning and the local minima problem which may reduce the network performance.  
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Thus, to overcome the drawbacks of multi-layer perceptron neural networks, we are 

interested in designing and investigating some more adequate intelligent system 

techniques which have been proposed  as an improvement to neural networks, and can be 

utilized in estimation of porosity and permeability. 

1.3   Thesis Objectives 
 

The main objective of this research work is to explore new techniques developed by 

computer scientist particularly neural networks to predict reservoir properties such us 

porosity,  permeability and rock types in vertical and spatial directions from well log data 

and seismic attributes. This study aims to develop the best approach for the estimation of 

these properties. More specifically this work aims to achieve the following 

1. Investigate and develop a multi layer perceptron (MLP) to estimate porosity and 

permeability from well log data. 

2. Investigate the suitability of estimating porosity and permeability from well logs 

using general regression neural network (GRNN). 

3. Compare the above two techniques and choose the better one. 

4.  Estimate porosity and permeability from seismic attributes using the selected 

algorithm. 

5. Build a 3D model for the properties estimated by the selected  neural network. 

1.4   Thesis Organization 
 

In the introductory Chapter one, I highlight the motivation behind this work. Chapter two 

describes the geological setting of the study area and the main reservoirs. Chapter three 
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deals with seismic attributes calculation and analysis.  The main technique, neural 

networks are discussed in detail in Chapter four.  In Chapter five I discuss the results 

provided by MLP and GRNN and investigate the performance of both techniques in 

estimating reservoir properties. Finally, conclusions and recommendations will be given 

in Chapter six. 

1.5   Literature review 
 

Porosity, permeability and lithofacies are very important factors in geological modeling. 

Many empirical approaches are available to estimate these reservoir properties such as 

linear/non-linear multiple regression. Recently, geoscientists benefited from the fast 

development in computer science, and used other, non standard approaches to solve 

complicated geological problems, related to reservoir heterogeneity (e.g.: permeability 

and lithofacies distributions). The following   discussion focuses on the use of Artificial 

Neural Networks (NNs) in prediction reservoir properties. 

Mohaghegh et al. (1991, 1997) designed a Neural Network model for permeability 

determination from well log data. Smith et al. (1991) used a distributed Neural Network 

to identify the presence of lithographic facies types in an oil well, using only the readings 

obtained by a log probe. Hsien-Cheng et al. (1991) presented a hybrid system consisting 

of three adaptive resonance-theory NNs and a rule-based expert system to identify 

lithofacies from well log data. Rogers et al. (1992) also determined lithology from well 

logs using NNs. Huang (1996) used NNs to predict permeability in a venture gas field 

offshore eastern Canada.  Olson (1998) used NNs to predict porosity and permeability in 

a low permeability gas reservoir based on well log data. Garrouch et al. (1998) used a 



6 
 

back-propagation NN to estimate tight gas sand and permeability from porosity, mean 

pore size and mineralogical data. Tamhane (2000) presented an overview of soft 

computing technologies for reservoir characterization, including Neural Networks, fuzzy 

logic and evolutionary algorithms. Soto et al. (2000, 2001) developed an integrated 

concept of multi-variant statistical analysis, Neural Networks and Fuzzy Logic to predict 

reservoir properties on uncored wells. Jong et al. (2004) combined fuzzy logic and neural 

networks to predict reservoir porosity and permeability from well log data. 

Tanwi et al. (2004) integrated core data and log data for facies analysis using NNs. Ferraz 

and Garcia (2005) made a comparative study of four different techniques: traditional 

discriminant analysis, neural networks, fuzzy logic and neuro-fuzzy system, to determine 

the rock's lithofacies. El-shafei and Hamada (2007) used NNs to identify the 

Hydrocarbon Potential of shaly sand reservoirs.  
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CHAPTER TWO 

Geological Setting of Study Area 

 

2.1   Overview 
 
The study area is situated in the North East of the Algerian Sahara (Figures 2.1 and  2.2). 

The exploration area is 4353.46KM2 and its surface altitude is about 230M. 

 

 

Figure 2.1 Satellite Image of the Study area ( Google Earth) 
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Figure2.2 Geographical Map of the Study Area (Bellaoueur.A, 2008) 
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2.2  Regional Geological description of the basin  
There have been a great number of published articles and reports on the geology of the 

sedimentary basin of the Sahara (Busson, 1970; Conrad, 1969 and Dubief, 1959). 

The study is located in the sedimentary basin of Oued Mya, North-Eastern Sahara, whose 

large geologic features are given below. 

 2.2.1  The Southern accident atlas: 
Its separates the Maghrebian mobile zone from the remainder of Western Africa.  The 

rigid shield is made of sedimentary and eruptive, folded and metamorphosed rocks.  

2.2.2  The Paleozoic of the Sahara: 
It corresponds to the deposits of periglacial desert climate. Around the outcrops of the 

base, sandy and schist layers of Tassilis are staged. The Hercynian movements caused the 

erosion of the shield, then settled a great continental period during the Triasic  

(Busson, 1970). TheTriassic is divided into large distinct lithological units which can be: 

salty, argillaceous, argilo-sandy or carbonate. The thickness of these various formations 

varies mainly where salty benches are intercalated. The thickness of Triassic shaly-sand 

increases towards the North-West (150-180 m) and decreases in the zones of  Hassi 

Messaoud and R. El Baguel. Triassic has a thickness of 700 m in the N-E of Ghadamès  

and which reaches 1300 m in H. Messaoud. 

2.2.3   The Lower and the Middle Jurassic (Lias-Dogger)  
 It consists of mainly  evaporate layers primarily made up of salt, anhydrite and clays 

which are superimposed in  marine layers and which are presented in the form of 

limestones and clays with anhydrite benches. The Middle Jurassic is characterized by a 
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transgression covering all the basin of the Great Eastern Erg and the deposits are thick 

there. 

2.2.4   The Upper Jurassic 
It is characterized by a relative permanence of the marine mode with sediments of 

confined surroundings. In the Western part of the basin, the marine mode shows a certain 

regression .The passage of the  upper Jurassic  to the lower Cretaceous is characterized by 

terrigenous contributions having for origin the feeder reliefs located at the South of the 

Saharan basin (Hoggar) (Figure.2.3) (Busson, 1970). 

 

Figure 2.3 Origin of Sands of  Lower Cretaceous  (Ouaja, 2003) 
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2.2.5  The Lower Cretaceous 
 

The study of core data (Busson, 1970) made possible to specify the succession of 

paleogeography in the lower Cretaceous. It consists of fluvio-deltaic layers which are in 

lithological and sedimentary contrast with the marine deposition  of the upper Jurassic . It 

include the following: 

2.2.5.1  Barremian 
It is characterized by a spreading of the detrital formations of the Lower Cretaceous into 

the Low-Sahara. These formations arise in the form of fine to coarse sandstones and of 

clays coming apparently from the South (Hoggar) (Figure.2.3). The intercalations of 

carbonates are very few and confined in the North-East of the Algerian Sahara. 

2.2.5.2  Aptian 
It is a good lithological reference marker in the surveys. It is represented in most of the 

Low-Sahara, by 20 to 30 m of dolomite alternating with beds of anhydrite, clays and 

lignite. 

2.2.5.3  Albian 
 It is characterized by a remarkable return of sedimentation. This stage gathers the mass 

of sands and clays lain between the Aptian bar and the overlying argillaceous horizon 

allotted to Cenomanian. It has been noticed that the change of the sedimentary mode and 

the arrival of clastic rock mass occurred during the Albian (Fabre, 1976). 
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2.2.5.4  Cenomanian 
 It is formed by an alternation of benches of dolomite, dolomitic limestone, clays and 

evaporates (anhydrite or salt). 

Its facies varies: 

a- In the South of the basin, clays and evaporate. 

b- In North, the dolomite and limestone benches are dominant. 

Moreover, the thickness increases along South-North direction from 50 m in Tademaït to 

350 m in the Low-Sahara. The presence of many benches of evaporates and clays make 

Cenomanian sediments impermeable (Bel and Cuche, 1969). The lower and the middle 

Cenomanian are argillaceous in Tinrhert and Lower-Sahara, whereas  the upper 

Cenomanian is a calcareous (Busson, 1970). 

2.2.5.5 Turonian 
 It is presented in three different facies, from the South to the North: 

a- In the South of the parallel of El Goléa, it is marly-limestone 

b-  Between El Goléa and Djamaâ, it is primarily calcareous. 

c-  In the North of Djamaâ, it is again marly-limestone. 

Its average thickness varies between 50 and 100 m. However, it increases in the area of 

the chotts , where it exceeds 300 m (Bel and Cuche, 1969). 

2.2.5.6 Santonian 

It subdivides into two facies.  Lower Santonian with Laguna sedimentation characterized 

by argillaceous and salty formations with anhydrite, it is an impermeable formation 

(Busson, 1970).  Upper Santonian , which  is a permeable carbonated formation. 
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2.2.5.9 Eocene 

 from the lithological point of view, we distinguish between two different sets: 

a- At the base: The carbonated Eocene is formed primarily by dolomites and 

limestones with some intercalations of marls, clays and even of anhydrite and 

marls. The thickness of this formation varies between 100 and 500 m, the 

maximum thickness being in the zone of the Low-Sahara. 

b- At the top: The Eocene evaporitic is formed by an alternation of limestone, 

anhydrite and marls. Its thickness reaches a hundred meters under Chotts (Bel and 

Cuche, 1969). 

The Eocene constitutes the last marine episode of the Algerian Sahara (Busson, 1970). 

2.2.5.10   The Quaternary  
The continental Tertiary sector of the Sahara can be relatively thick (150 m). It is 

presented in the form of a sandy and argillaceous facies with gypsum. In the Lower-

Sahara, (lacustrine sedimentation) is presented in the form of sandy and argillaceous 

series known as the Continental Terminal (Me-Pliocene) in which the thickness can 

reach, in the area of Chotts  Algéro-Tunisian, a few hundred meters. We identify there, in 

the area of Oued. Rhir, two aquiferous levels within sands which are separated by an 

argillaceous layer in the medium of Oued Rhir. The unit is overcome by Plio-Quaternary 

argilo-sandy and gypseous formations which results from medium sedimentation in lake 

during the phase of draining lagoons of the chotts (Busson, 1970). 
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Figure 2-4 Regional geological Map showing the geological time of each zone 

(OSS, 2003)  
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Figure 2.5 Stratigraphic Colum of the Northeast of Sahara showing the main lithology in 

each stage ((Bellaoueur.A, 2008) 
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2.3   Local geological framework 
The exploration area is 4353.46KM2 and its surface altitude is about 230m. The surface 

slope of the block dips down from west to east, the central and west area are dunes and 

dune ridges, and the east is desert. 

The seismic and drilling was started in 1970's. Now there are 7900km2 2D-seismic  and 

266km2 of 3D seismic data. Totally there are 62 wells  drilled in this block, from among 

them 20  are production wells. The oil fields were discovered between 1970 and 1984, 

with a daily oil production of 624 m3/d (3925bbl/d).  

According to the regional geological analysis and drilled formations in this basin the 

strata sequence is Precambrian basement, Palaeozoic Cambrian (which is constituted by 

one set of volcanic and meta sandstone with stable sedimentary facies), marine facies 

sandstone and mudstone of Ordovician, clay shale of Silurian, sand-shale interbedding of 

Devonian; sandstone/shale/gypsum-salt rock of Triassic in Mesozoic, gypsum-salt 

rock/calcareous rock with shale of Jurassic, sandstone/calcareous rock/gypsum rock of 

Cretaceous; the development of Cenozoic is not entire, it is mainly sand-mud rock of 

Miocene and Pliocene of Tertiary. The main targets of exploration are Triassic, Devonian 

and Ordovician. 

The Triassic 

 It has been divided into 6 layers from bottom to top.  

1. SI:  interbedding of fine to medium sandstone with maroon and celadon 

mudstone. 
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2. Volcanic effusive rock: andesite, basalt. 

3. T1:  consists of gray and maroon fine-to medium sandstone, its bottom 

contains granules; the maroon  barrier bed on its top is split from T2. It is the 

production layer of this area. 

4. T2: consists of brown and crimson-pearl silt and fine sandstone, its top is pelite 

siltstone. 

5. Argillaceous: mainly maroon mud stone. 

6. S4:  interbedding of white and pink salt rock with maroon and celadon mud 

stone. 

From the cross plane of well, the longitudinal distribution character of Triassic strata 

shows the trend of gradually thickening from west to east, and sharply thinning from 

south to north. The thickness of SI in Triassic changes between 12-96m, the northwest is 

thicker than the southeast part and in the central part of this Block, the thickness 

distribution is more stable, generally between 70-80m.The thicknesses of volcanic 

effusive rock changes between 0-110m, its distribution characteristic shows that the 

southern part is thicker than the northern part. The thickness of T1 in Triassic changes 

between 0-78m, its northern thickness is larger than of the southern part. Note the 

absence of T1 in well-4B and well-5. The thickness of T2 in Triassic changes between 9-

66m and its thickness distribution shows more stability in the central and the eastern area, 

and it increases to northwest. 



18 
 

The thickness of the Devonian changes between 9-66m, and its thickness distribution 

shows that the thickest part is located along the well-5� well-1Line and the strata sharply 

thin down to the east. 

2.4   The Geological Structure of the Study Area  
 This block is geographically located in the north of OUED MYA Basin with more 

flattening stratum and simple structure. Tectonically,  this basin is located in the North 

Africa platform. The structural system with SSW-NNE trend controls the areal structure 

unit. Because of the Hercynian uplift, the strata of Paleozoic have been eroded.  The 

structure system trending SSW-NNE was formed by the Australian compression structure 

movement in the end period of Lower Cretaceous. That movement controls the 

distribution of structural traps. All the monoclines in this area are distributed from 

Southwest to East North and show the complication caused by two set of fractures 

trending in North East and East West. 

 Interpretation of 237 profiles indicated the existence of the structures below: 

 The top Triassic (S4), bottom Triassic (Hercynian surface SI), lower Ordovician (O). 

32 traps have been discovered in this area, 27 traps confirmed and 5 new traps 

discovered. The structural traps are mainly attached with fracture belt, and show the 

distribution in form of pinch-and-swell. I list below some of the structures which are 

traversed by  wells. 

Well-4 Structure  

It is a fault anticline structure with drilling history. Its south and east regions are sheltered 

by the normal faults trending NE and NW and the structure appears clearly on the 2D 
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seismic profiles LINE97-NGS-2 and LINE97-NGS-6. Now there are 11 controlled 

survey lines, and 3 wells were drilled, out of which 2 wells have oil production history. 

Well-5 Structure 

It is an anticline structure with drilling history. Its east region is sheltered by a normal 

fault trending NE; the axial direction is NE-SW and the structure is shown clear on the 

2D seismic profiles LINE97-NGS-1 and LINE97-NGS-10.  Now there are 14 controlled 

survey lines, and 5 wells were drilled, 4 having oil production history. 

Well-1B Structure 

 This trap is located to the south of Well-1B with distance of 2Km, its eastern region is 

sheltered by the north south fault and its south is sheltered by the east fault, thereby it 

forms a faulted anticline and its structural area is about 6.17Km2, the structural amplitude 

closure is about 30ms two-way time.  

2.5   Geological History of the Study Area  

Sedimentary evolution of this area is a marine and continental facies. Sedimentary 

association developed from Precambrian basement which consists mainly of volcanic 

rocks and metamorphic quartz sandstone in Precambrian. This area was an open sea 

deposition during Ordovician and Silurian periods, mainly developed marine facies 

(quartz sandstone, mudstone and shale). Mudstone and shale developed from lower 

Silurian is the main hydrocarbon source rock in this area. Sea water gradually shrunk 

during Devonian period, developed a neritic shelf fades deposition; after that, the strata 

uplifted and suffered from erosion due to Hercynian uplift. In Carboniferous, Permian, 

this area integrally sank  and undertook sedimentation, mainly of fluvial type. The 
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direction of main source material is SW—NE.  The Devonian formation and overlying 

Triassic formation present an unconformable contact. 

2.6   The characteristics of the Source Rock  
The main source rock in the study area is the hot shale mudstone and shale in lower 

Silurian. Its distribution keeps stable in the whole area, with a  thickness of 40—60m . 

Hot shale mudstone and shale (radioactive black shale) contain high abundance of 

organic matter (TOC,  generally about 4—10%). The  kerogen is of type-2 which leads to 

oil generation. 

The lower Silurian clays are essentially grey to black clays, radioactive at the base. They 

are present over the whole Saharan Platform. At a few places they have been removed 

away by the Hercynian erosion phases (Figure 2.6a). The radioactive clays were 

deposited immediately after the late Ordovician glacial period and correspond to the first 

significant Paleozoic marine transgression. Radioactivity is mainly due to a high uranium 

concentration. Thicknesses vary from 10 m to 100m with the maxima located in the 

basins of Ahnet, Ghadames, Illizi, Oued Mya, Mouydir, to the north of Timimoun Basin 

(Guern El Mor trough) and in the Benoud and Sbaa troughs (Figure 2.6 b). The total 

organic carbon (TOC) varies from 1% to 11% but reaches 20% in some cases. The richest 

zones are located in the vicinity of Hassi Rmel and Hassi Messaoud structures, in the 

north-east of the Triassic province (El Borma and north of Ghadames Basin), to the west 

of Illizi Basin, in the Sbaa trough and in the NE of the Grand Erg occidental. Organic 

matter is of marine origin (algae, chitinozoa, graptolites; amorphous sapropelic organic 

matter). The resulting source rock is of excellent quality and its hydrocarbon potential is 

often in excess of 60 Kg HC/t as it is the case for the lower Silurian formations of the 
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Saharan Platform The separate evolution of each basin means that residual hydrocarbon 

potentials vary from basin to basin. They are controlled by the state of maturation 

reached in the radioactive clays. Kerogen maturation is the gas window (dry gas and 

condensate) for the basins of Timimoun, Ahnet, Bechar and Mouydir, in the central and 

northern parts of the Reggane and Tindouf Basins, in the centre of Ghadames Basin and 

Oued Mya , and in the centre and the NW of the Sbaa trough. In other parts the same 

kerogen is in the oil window, as in the rest of the Triassic province, in Illizi Basin, in the 

south of the Reggane and Tindouf basins, in the east of Reggane in the vicinity of 

Ougarta and finally in the SE of the Sbaa trough. In other cases the kerogen is not mature 

(for example: in the south east of the Sbaa trough close to the Azzene uplift). 

The mudstone and shale of the upper Ordovician is considered as a source rock for this 

basin. Its organic matter content  (TOC) is about 1-5%. The lower Ordovician (Shal 

d’Azel and d’El Gassi) can also be considered as a source rock. 
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Figure 2.6  Maturation in the Lower Silurian Radioactive Clays (Geology of Algeria) 
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Figure 2.6 b.TOC Distribution in the Lower Silurian Radioactive Clays (Geology of 

Algeria) 
 

2.7   Sedimentary facies Analysis  
      From bottom to top, sedimentary cap rock in this area is composed of deep, shallow 

sea and continental facies strata. In Ordovician, marine sedimentary facies are mainly 

quartz sandstone, mudstone and shale. Mudstone and shale are the main hydrocarbon 

source rocks. The reservoir in this area is buried deeply and its porosity is low. Its 

lithology is relative compact, so the effective reservoir storage place is formed only by 

fractures. Lower Devonian (under Hercynian unconformity), is a neritic shelf fades 

sedimentary, its thickness ranges from 0 to 239m. Reservoir lithology in the Devonian is 

medium to fine grained sandstone, with porosity 4—20 % (average 12 %) and low 

permeability is 0.03 — 100 md. 
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In Silurian, marine sedimentary facies  mainly consist of a stable distribution of mud- 

stone, dolomitic mudstone and argillaceous limestone.  

In this area, Triassic is the main target layer and it is deposited in  fluvial environment. 

According to layer's color, depositional structure, lithology assembly and electrical 

characteristics the classification can be as follows: 

1. SI layer: It is mainly braided river sedimentation, it can be divided into over bank 

deposit, channel bar sedimentary, fluvial-channel lag deposit. 

2.  T1, T2 layers: They are meandering river sedimentary, they can be divided to 

point bar deposit, over bank deposit, crevasse splay deposit and fluvial-channel 

lag deposit. 

2.7.1   Fluvial-channel lag deposit 
It is medium to fine grained sandstone interbeded by argillaceous siltstone. Degree of 

roundness is high. Gamma ray (GR) values range 20-160 API and resistivity response 

shows large values, generally from 1 to 30Ω.m, resistivity curve appears as zigzag.  

2.7.2   Point bar deposit 
It is meandering river sediments with medium to fine grained sandstone. The degree of 

roundness is high. Gamma ray (GR) values range 30-50 API, resistivity value is low, 

generally from 3 to 10Ω.m, resistivity curve is zigzag. 

2.7.3   Channel bar sedimentary 
It is braided river sedimentation with medium to fine grained sandstone. The degree of 

roundness is high. Gamma ray (GR) values range 20-40 API with high resistivity, 

generally from 10 to 50Ω.m. Resistivity curve is shown as zigzag or bell shape. Sand 

body maturity of this sedimentary micro-facies is high, this sedimentary formation is the 
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main reservoir. 

2.7.4   Over bank deposit 
It is mudstone and silty mudstone, frequently has a massive structure, parallel and small-

sized cross bedding. Gamma ray (GR) values range 70-120 API with low resistivity 

values, generally from 1 to 4Ωm. Resistivity curve is box shaped 

2.7.5   Crevasse splay deposit 
It is an argillaceous siltstone, silty mudstone, with little sandstone at the bottom. 

Frequently shows massive structure, sometimes shows parallel and small-sized cross 

bedding. Gamma ray (GR) value is high, from 60 to 100 API with large resistivity values 

range, generally from 2 to 100Ωm. Resistivity curve is dentate. 

2.8   Reservoir Properties  
The main reservoirs (T1, TSI, Lower Devonian, Upper and Middle Ordovician ) with 

their properties are summarized in the table below. 
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Table1.The main reservoirs in the study area and their properties. 

 

Reservoir Thickness Lithology Porosity and Permeability 

Triassic 

T1, 

sandstone 
<75 

medium to 

fine 

sandstone 

Φ: 2～17 % (average=10 %) 

K: 0.1～300md (max500md) 

TSI 

Sandstone 
<95 

coarse to 

fine 

Sandstone 

Φ: 1～14 % (average= 8 %) 

K: 0.04～200md(max800md) 

Lower Devonian <240 

medium to 

fine 

Sandstone 

Φ: 4～20 % (average= 12 

%)K:0.03～100md(max200md) 

Upper Ordovician 
<20 

Quartz 

sandstone 

Φ: 2～10 % (average= 6 %) 

K: 0.02～3md(100md) 

Middle Ordovician 150 
Quartz 

sandstone 

Φ: 2～11 % (average= 7 %) 

K: 0.03～8md(max200md) 
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Figures 2.7a , 2.7b and 2.7 c  illustrate porosity distribution  within the lower Devonian ,  

the upper Devonian and Triassic reservoirs in the Sahara platform (south of Algeria)  

 

 

Figure.2.7a. Porosity Distribution within lower Ordovician (Geology of Algeria) 
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Figure 2.7 b. Porosity Distribution within upper Ordovician (Geology of Algeria) 
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Figure 2.7c. Porosity distribution within Triassic (Geology of Algeria) 

 
 

   The Triassic (TSi) sandstone lithology is fine to coarse  grained sandstone and it is the 

main production formation. TSi sand layer is the lower Triassic, the Hercynian erosion 

plane landform controls Triassic Si sedimentary, it is the most favorable oil-gas 

accumulation formation. Its main source material direction is SW—NE. The thickest of 

TSi layers in this block is 95m, it is a braided river sedimentation formation with a net 

thickness of sandstone   generally 20-30m. TSi sandstone porosity is medium, with  

medium pore size, permeability is not high but the existence of micro-fractures has made 

a great improvement in reservoir properties, note  ( Table.1) that the highest permeability 

value is about 800mD. 

Triassic T1: It is a meandering river deposit; its lithology is fine to medium  grained 
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sandstone. T1 material source is from Hassi R’Mel ancient highland, with a thickness of 

75m (the net thickness of the sandstone is 10-20m). The reservoir porosity is low to 

medium with low permeability which was improved by the micro-fractures. 

Devonian layer: This section is mainly shallow marine and continental shelf sediments. 

It develops as offshore bar and underwater channel-mouth bar sand bodies. The oil 

production from this reservoir is low. 

Ordovician: Little oil and gas have been discovered in the northeast section of this area. 

 

2.9   Cap rock characteristics 
    The Mesozoic cap rocks correspond to the Triassic and Liassic clays and evaporites. In 

the Triassic basin they act as cap rocks for the sandstone reservoirs and in some cases, 

through an unconformity surface, for the Paleozoic reservoirs. 

Due to their thickness, in excess of 2000 m, and  their lithology they are classified as 

"super seals". The cover consists of a number of sub-units. The "argillaceous Triassic" is 

made of salty clays. Unit "S4" is a salty interval. The "argillaceous Liassic" is generally 

overpressured. Unit "S3" is a Liassic interval, formed of salt and shale. It is followed by 

units S1 and S2 which consist of salts, anhydrites and clays, topped by the Liassic B 

dolomitic horizon and terminated by the upper Liassic anhydritic clays (Figure 2.8). Due 

to pinchouts only the upper units are found on the borders of the Triassic basin. The 

gypsum-salt rock of the Upper Triassic, the gypsum-salt rock, mud stone and limestone 

of Jurassic-Cretaceous are good cap rocks in the study area. 

The thickness of these rocks is up to 1000m. 
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Figure 2.8 . Distribution of Clay & Evaporate deposits from Triassic & Liassic 
(Geology of Algeria) 

 

2.10 Migration System  
      The oil and gas accumulation of this area has a direct relation with the Hercynian 

unconformity plane and fault zone. The Hercynian movement in the Devonian caused an 

erosion of the study area, and formed a local Hercynian unconformity plane. 

Additionally, Australian structure movements formed a series of SSW – NNE direction 

compresso-shear fault structural zones in early Cretaceous (Australia rifted away from 

Africa), the long fracture extension and fault horizon reached Silurian, interconnected the 

hydrocarbon source rock and overlaying sandstone rock  reservoir.  
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CHAPTER THREE 
 
SEISMIC ATTRIBUTES CALCULATIONS AND ANALYSIS 
 

3.1 Introduction  
 

   Seismic Reservoir Characterization (SRC) is a branch of Reservoir Geophysics, which 

provides reservoir description using 2-D or 3-D seismic reflection methods. The main 

objective of Seismic Reservoir Characterization is to predict and estimate reservoir 

properties using 3-D seismic attributes as the main source of estimation of reservoir 

parameters in the sparse inter-well area. 

Generally, porosity, permeability, rock type, pore fluid, pore shape, burial depth 

(temperature and pressure), consolidation (compaction and cementation) and geological 

age are the most important rock properties to be considered in any description of the 

reservoir. However, only some of these properties have a considerable effect on the 

dominant component in the seismic response (namely: the velocity). 

3.2   Definitions  
 

       Seismic attribute is any characteristics, qualitative or quantitative, measured, 

calculated or inferred from seismic data, representing all the parameters of the trace 

complex, geometrical configurations of seismic events and their spatial variations. Taner 

et al. (1979) defined seismic attributes as all the information obtained from seismic data, 

either by direct measurements or by logical or experience-based reasoning. They relate to 
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basic information from the seismic data, time, amplitude, frequency and attenuation. The 

attributes provide alternative representations of seismic data and can be used for 

geological and petrophysical characterization. These attributes can be classified in a way 

that allows one to make the most of their usefulness in seismic. 

Generally, the calculation of seismic attributes is based on data represented in time. 

Therefore, conventional sections (CDP stack), the migrated sections before or after stack 

are given as input for this calculation. The attributes derived from the migrated sections 

in time, due to the accurate positioning  of  reflectors, may be more beneficial for the 

objectives of the seismic interpretation.  

Seismic attributes were introduced   in the 1970's  as useful tool to help interpret the 

seismic data in a quantitative way. Walsh (1971) published the first paper under the title 

of “Color Sonograms”. In the same period, Nigel Anstey published “Seiscom 1971” and 

he introduced the concept of reflection strength and mean frequency. Realizing the 

potential for extracting useful instantaneous information, Taner, Koehler and Anstey 

turned their attention to wave propagation and simple harmonic motion (Taner, 2000). 

Neidell  proposed the use of the Hilbert transform to derive the kinetic portion of the 

energy flux. In the mid 70’s three major attributes were established. Since the early 

1990s, the quantitative analysis of seismic attributes has become widely used and applied 

through calibration with well bore measurements (Doyen, 1988, Schultz et al.1994, Taner 

et al.. 1994, Trappe and Hellmich, 1998). 

In reservoir geophysics, rock physics play a role of a bridge establishing physical 

relationships between seismic attributes and reservoir properties. Many examples are 

found in literature related to seismic attributes and their application to reservoir 
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characterization;(Taner et al. 1979; Lawrence 1998; Brown 1999 and 2001;  Skiruis 

1999; Hampson et al. 2001). 

3.4   Classification of Seismic Attributes 
 

    Chan and Sidney (1997) divided seismic attributes into two categories 

 Horizon based attributes 

The average properties of the seismic trace are computed between two geologic 

boundaries generally defined by picked horizons. 

 Sample based attributes 

The input seismic traces are transformed in such a way as to produce  a new output trace 

with the same number of samples as the input (e.g., transformation of seismic amplitude 

sample based volume to acoustic impedance sample based volume).  

Post stack attributes can, therefore, be extracted along one horizon or over a specific 

window (window attributes). 

Taner et al. (1994) divided the attributes into two general categories 

3.4.1   Geometrical attributes (reflection configuration) 

         
          They describe the spatial and temporal relationship of all other attributes. Lateral 

continuity measured by semblance is a good indicator of bedding similarity as well as 

discontinuity. Bedding dips and curvatures give depositional information. Geometrical 

attributes are generally found useful in structural interpretation (e.g., faults) and in 

seismic stratigraphic interpretation of 3D data volumes. Their objective is to enhance the 
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visibility   of the geometrical characteristics of seismic events for the interpreter ( Taner 

et al. 1994,  2000). 

3.4.2 Physical attributes (reflection characteristics). 
 
They are related to physical qualities and quantities. The magnitude of the trace envelope 

is proportional to the acoustic impedance contrast, frequencies are related to the bed 

thickness, wave scattering and absorption. Instantaneous and average velocities are 

directly related to rock properties. These attributes are mainly applicable for lithological 

and reservoir characterization (Taner et al., 2000). They can be divided into two sets 

• Attribute computed from seismic data planes (2-D planes): these attributes, computed 

from analytical traces, are the most widely used ones. They include the trace envelope 

and its first and second derivatives, instantaneous phase and instantaneous frequency, 

instantaneous acceleration, apparent polarity, bandwidth, instantaneous Q factor 

(attenuation), and their statistic computed along reflectors over a time window. 

• Attributes computed from the pre-stack data: which reflect variation of various attributes 

with offset, such as amplitude (AVO) and instantaneous frequency, ect. (Taner et al., 

1994). 

3.4.3 Pre-stack Attributes: Seismic data are CDP or image gather traces. 

They will have directional (azimuth) and offset related information. Computations 

generate huge amounts of data; hence they are not practical for initial studies 

(Taner, 2000).  

3.4.4 Post stack Attributes: Stacking is an averaging process, losing offset and 

azimuth information. Seismic data could be CDP stacked or migrated. 

Based on the information content, attributes are divided into two groups (Taner, 2000). 
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3.4.5   Instantaneous Attributes:  

Instantaneous attributes computed sample by sample, representing instantaneous 

variations of different parameters. Instantaneous values of attributes such as trace 

envelope, its derivatives, frequency and phase may be determined from the complex 

trace. 

3.4.6  Wavelet Attributes: Instantaneous attributes computed at the peak of the trace 

envelope have a direct relation to the Fourier transform of the wavelet in the vicinity of 

the envelope peak. For example, the instantaneous frequency at the peak of the envelope 

is equal to the mean frequency of the wavelet amplitude spectrum. 

Therefore, attributes can be divided into two sets based on their origin. 

3.4.7  Reflection Attributes: They correspond to the characteristics of interfaces. All 

instantaneous and wavelet attributes can be included under this category. Pre-

stack attributes such as AVO are also reflective attributes, since AVO analysis 

measures the angle versus reflection response of an interface. 

3.4.8 Transmissive Attributes: they are related to the characteristics of a bed between 

interfaces. Q, absorption, dispersion, interval-, RMS-  and average velocities 

come under this category 
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Fig 3.1 Seismic Atrributes Classification ( After Brown,2001)                                                    
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3.5   Hilbert Transform 
  

  Hilbert transform and analytical signal are useful for several applications in the field of 

telecommunication and electronics. Hilbert transform  has  many seismic applications  

such as: 

• Introducing a phase shift. 

• Measure of trace envelope. 

• Measure of Instantaneous phase. 

• Measure of Instantaneous frequency.  

In seismic, these concepts are used to provide the local characteristics of a trace. 

3.5.1 Definition of the Hilbert Transform 
 

  The Hilbert Transform of a function s(t) is given by: 

=)(ˆ ts HT [ s(t) ]                                                                                                      (3.1) 

In the frequency domain HT defined  by: 

Sq(f)= FT[ )().()(ˆ fSfisignts −=                                                                                    (3.2) 

In the time domain the transform is : 

τ
τ
τ

ππ
d

t
sPv

t
Pptsts ∫

+∞

∞− −
=∗=

)(111)()(ˆ                                             (3.3) 

Where Pv means Cauchy's principal value. Principal value integration is the limit of the 

sum of two integrals from -∞ to -ε and from  ε to +∞ as  ε tends to zero. 

PP: Principal part. The integration of the convolution is done as a principal value. 
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Figure 3.2 Hilbert Filter 
 
3.5.2    Properties of Hilbert Transform 
 

 BEDROSIAN Theorem 

Let s1(t)  and   s2(t)  , two signals , the HT of their product is 

HT [ s1(t) . s2(t) ] =  [ ])()(11
21 tststVp ⋅∗π                                                                                                      

 HT [ s1(t) . s2(t) ] ( ) )()(11
21 tststVp ∗π=                                                           (3.4)                             

which enable us to write the following equality 

HT[ s1(t) . s2(t) ]  =  s1(t) . HT [ s2(t) ]  = HT [ s1(t) ] . s2(t)                                           (3.5) 

 

 Orthogonality 

The scalar product  < s(t) , HT [ s(t) ] >  is  zero 

Therefore, 

< s(t) , )(ˆ ts  >  = ∫∫
∞

∞−

∞

∞−

= dffSfSdttsts )(ˆ)()(ˆ)(                                                          (3.6)                        

with  

             FT [ 
t

PP1
 ] = )sgn(fjπ−   
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  So  

               )()sgn()(ˆ fSfjfS ⋅−=  

                

The final result will be 

               ∫
∞

∞−

∧

=−=〉〈 0)sgn()(, 2 dfffSjss                                (3.7)                             

 Convolution 

The HT of a convolution product is equal to the convolution  product of one of the 

signals with the HT of the other. If )()()()( 2121 fSfStsts ⋅↔∗  

HT [ S1(f) . S2(f) ] =  j sgn(-f) .[ S1(f) . S2(f) ] 

                               =  [ j sgn(-f) . S1(f) ] . S2(f) 

                     =  HT [ S1(f) ] . S2(f) 

So  

HT [ )()( 21 tsts ∗  ]  =  HT [ s1(t) ] ∗=∗ )()( 12 tsts  HT [ s2(t) ]                                       (3.8) 

 

3.5.3   Discrete Hilbert Transform            

      The introduction of the discrete Hilbert transform makes possible the calculation of 

analytical signal from sampled data, knowing that the majority of the data gathered for 

processing,  particularly in  seismic, are in numerical form.  

Given, the discrete sequence of complex numbers S (n), whose  real part is indicated by 

sr(n)), imaginary part by si(n)  :                                    sr(n) = Re [ s(n) ] 
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 si(n) = Im [ s(n) ] 

in the frequency domain the Fourier Transform  is: 

S(f)=Sr(f)+jSi(f)                                                                                                              (3.9) 

Fourier Transform causality is defined by: 

⎪⎩

⎪
⎨
⎧

<≤−

≤≤
=

02
10

2
10)(

)(
f

ffS
fS

                                                                            (3.10) 

 

 The conjugate  of S(f) is given by: 

)()()( fjSfSfS ir −−−=−  

sr(n) is real so: Sr(-f) = Sr(f) 

from equations (3.9) and (3.10) we get: 

 

[ ])()(
2
1)( fSfSfS r −+=                                                                        (3.11) 

And 

[ ])()(
2
1)( fSfS
j

fS i −−=                                                                      (3.12) 

Following the property of causality of Fourier transform, a relation between the real and 

imaginary parts  can be established. 

⎪⎩

⎪
⎨
⎧

<≤−−

≤≤
=

02
1)(

2
10)(

)(2
ffS

ffS
fS r                                                                (3.13) 
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)(2
ffS

ffS
fjS i                                                                   (3.14) 

By comparing these two last expressions, the relation established is 

⎪⎩
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ffjS

ffjS
fS

r

r
i

                                                            (3.15) 

Or 

Sr(f)=G(f).Si(f)                                                                                                              (3.16) 

with  

⎪⎩
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G (F) can be written in another form: G(f) = - jsgn(f)     with   f ≤ 2
1   

g(n) = FT -1 [ G(f) ]  = ∫
+∞
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π
dfefG

fnj2
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Finally, the impulse response of Hilbert  filter is given by 
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Figure 3.3 Impulse Response of Hilbert Transform 
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3.6   Computation of Seismic Attributes 
In this section several methods of analytic trace computation will be reviewed. 

 Frequency Domain Computation 

The real and imaginary part of the analytical trace are Hilbert Transform pairs, then their 

Fourier Transforms have to be causal, their amplitude spectra have to be the same and 

their phase spectra have to be 90 degrees out of phase. 

The analytical trace can be formed by the following steps: 

• Transfer the seismic trace to a complex array and place it into the real part, leaving the 

imaginary part equal to zero. 

• Compute Fourier Transform by FFT. 

• Zero out negative frequency, double the positive side, but leave zero and folding 

frequencies as they are. This will create the causal Fourier Transform. 

• The inverse Fourier Transform will give an input trace that is unaltered in the real part 

and the imaginary part will contain the Hilbert Transform of the input trace. 

 Discrete Time Domain Computation 

The discrete Hilbert Transform in the time domain is an infinitely long filter with zero 

weights at the center and at all even-numbered samples. Its odd numbered coefficients are 

1/n (Clearbout, 1976). In practice we use a limited-length filter which causes the 

spectrum of the computed imaginary part to differ from that of the real part. The main 

problem comes from phase discontinuities at zero samples. In order to overcome this, we 

use a more convenient band-pass filter ( Butterworth). 

 Gabor-Morlet Decomposition 

A major problem associated with the Hilbert Transform is that it is only valid for narrow- 

band signals. For example, the spike has the widest possible bandwidth among all signals 
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and its Hilbert Transform is the time domain response of the transform. In the Gabor-

Morlet decomposition we divide the signal bandwidth into smaller Gabor-Morlet bands. 

)exp().exp(),( 2 tittG ωαω −=                                                                 (3.17) 

The decomposition process is done by convolving the data by a series of Gabor-Morlet 

wavelets. Since the wavelets are complex valued, their output will also be complex 

valued and analytic. 

3.6.1   Formulation of Seismic Attributes 

 

 Taner et al. (1979) gave the initial formulation of seismic attributes as applied to seismic 

interpretation. His work covered five main attributes: envelope amplitude, instantaneous 

phase, instantaneous frequency, weighted mean frequency and apparent polarity. Their 

application was discussed by Robertson and Nogami (1984) for thin bed analysis, and 

Robertson and Fisher (1988) for general interpretation. 

In this section we will discuss the attributes computed directly from individual traces. We 

will give the mathematical formulation of each attribute and indicate their direct or 

possible relation to the physical properties of the subsurface. 

 (Amplitude/Trace) Envelope: 

Let the analytical trace be given by  

)()()( tihtstF +=                                                                             (3.18) 

where 

 s(t): the real part corresponding to the seismic data. 

 h(t): the imaginary part corresponding  to the  Hilbert Transform of s(t). 

The envelope is the modulus of the complex function F(t) 
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)()()( 22 thtstE +=                                                                                          (3.19) 

 it represents the total energy, varies between 0 and the maximum amplitude of the trace. 

The trace envelope is a physical attribute and it can be used as an  indicator of the 

following characteristics: 

• Represents mainly the acoustic impedance contrast, hence reflectivity, 

• Bright spots, 

• Possible gas accumulation, 

• Sequence boundaries, 

• Unconformities, 

• Major change in lithology, 

• Major change in depositional environment, 

• Lateral change indicating faulting, 

• It has spatial correlation to porosity  

 Rate of Change of the Envelope 

It shows the variation of the energy of the reflected events, it indicates the absorption 

effects. A slower rise indicates larger absorption. The mathematical expression is given 

by: 

)(*)()]([ tdifftEdttEd =                                             (3.20) 

where 

 *: denotes convolution operation 

 diff: the differentiation operation. 
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This attribute has a concrete physical meaning and it can be used to detect possible 

fracturing and absorption effects. 

 Instantaneous Phase 

The argument of the complex analytic signal is the instantaneous phase 

]
)(
)(arctan[)(

ts
thtPh =                                                                      (3.21) 

The phase information is independent of trace amplitude and it relates to the propagation 

phase of the seismic wave front. The instantaneous phase is also a physically meaningful 

attribute and can be used for: 

• To  indicate lateral continuity, 

• To compute the phase velocity, 

• Has no amplitude information, hence all events are represented, even the weak ones 

• Shows discontinuity, but may not be the best for this purpose 

• Indicate sequence boundaries, 

• Gives detailed visualization of bedding configurations, 

• It is used to compute instantaneous frequency and acceleration 

 Instantaneous frequency 

Represent the time rate of change of phase 

t
txPhtxFreq

∂
∂

=
)],([),(                                                                (3.22) 

Instantaneous frequency is a physical attribute; it can be used as effective discriminator in 

case of  lateral changes: 
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• Seismic character correlator in lateral direction, 

• Indicates the edges of low impedance thin beds, 

• Hydrocarbon indicator by low frequency anomaly, 

• Fracture zone indicator, fractures may appear as lower frequency zones. 

• Bed thickness indicator, high frequencies indicate sharp interface of thin shale bedding, 

lower frequencies indicate sand-rich bedding. 

• Sand /Shale ratio indicator in a clastic environment 

 

 

 Thin Bed Indicator 

Information that can be extracted is the locations where instantaneous frequencies jump 

or go in the reverse direction. These jumps are indicative of closely arriving reflected 

wavelets. The thin-bed indicator is computed as the difference between the instantaneous- 

and the time-averaged frequencies 

)()()(. tttbedthin ωω −=                                                 (3.23) 

This attribute is a physical attribute, it can be used for 

• As an indicator of overlapping events, 

• To indicate thin beds, when laterally continuous, 

• To indicate non-reflecting zones, when they appear laterally random. 

• Shows the fine details of bedding patterns. 

 Instantaneous Dominant Frequency 

Similar to instantaneous frequency, it can be used as a reflection correlation tool. 
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 Instantaneous Band Width 

Related to overall absorption effects, considered as a high resolution seismic character 

correlator tool. 

 Instantaneous Q Factor 

It is a good indicator of absorption effects, fractures, gas zone and a possible permeability 

indicator. 

 Normalized Amplitude 

Useful for correlation , it is an event tracking tool and event termination indicator. 

 Dip of Maximum Coherency (a  coherency attribute) 

It is a good indicator for parallel, divergent or convergent bedding. 

 Apparent polarity 

May differentiate between various types of bright spots, a section polarity indicator 

 

 Arc length  

It measures reflection heterogeneity, and may be used to quantify lateral changes in 

reflection patterns. It is calculated using the following formula: 

ratesamplen

tjAmpjAmp
Z

n

ij

×−

++−
=
∑
−

=

)1(

)()1()((
1

22

        (3.24), 

 

where Z is in milliseconds in time domain, or in feet or meters in depth domain. 

Arc length is a stratigraphic sequence indicator.  
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 Average energy 

 

This is the squared RMS (Root Mean Square) Amplitude. This attribute is a measure of 

reflectivity within a time or depth window and may be used to map direct hydrocarbon 

indicators in a zone. 

Average energy is computed using the following formula: 
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assuming all samples are live samples. 

 Half energy 

 

This operation computes the time or depth required for the cumulative energy within a 

window to reach one-half of the total energy within the entire window. Half Energy is 

computed by finding 2/1k from the following equation: 
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Half energy may indicate asymmetric changes in lithology or porosity within a specified 

zone. 
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 RMS Amplitude 

RMS Amplitude is the square root of the sum of all squared amplitudes, divided by the 

number of live samples as shown in the following formula: 
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Where n is number of all amplitudes, k is the number of live samples.  

RMS may map directly to hydrocarbon indicators and other geologic features which 

emerge from the background by their amplitude response. Additional discussion on 

attribute categories and their relationships to reservoir properties are found in much 

geophysical literature such as: Chen and Sidney (1997); Taner et al. (1979 & 2000) and 

Brown (2001). 
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CHAPTER FOUR 

Artificial Neural Networks 
 

4.1  Definition 

The Artificial Neural Network (ANN) is a processing paradigm imitating the way 

biological nervous systems (eg: brain), process information, in other words, is an 

emulation of a biological neural system. It is composed of a large number of 

interconnected elements (neurons) working in parallel to solve specific problems. A 

given ANN is configured for the specific application, such as pattern recognition or data 

classification, through a learning process. Learning in biological systems involves 

adjustments to the synaptic connections that exist between the neurons. This is true of 

ANNs as well.  

4.2   Historical background of Neural Networks 

The history of neural networks can be divided into several periods: 

4.2.1 First Period (Initial attempts) 

In 1943, McCulloch and Pitts developed models of neural networks based on their 

expertise in neurology. These models involved several assumptions about how neurons 

worked. The networks were based on simple neurons which were considered to be binary 

devices with fixed thresholds. The outputs of the models were simple logic functions 

such as "A or B" and "A and B". An other attempt was made by using computer 

simulations. In 1954, Farley and Clark (IBM researchers) maintained closed contact with 
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neuroscientists at McGill University. So whenever their models did not work, they 

consulted the neuroscientists. This interaction established a multidisciplinary trend which 

has continued to the present day.  

 

4.2.3  Second Period (Promising & Emerging Technology) 

Not only was neuroscience influential in the development of neural networks, but 

psychologists and engineers also contributed to the progress of neural network 

simulations. Rosenblatt (1958) stirred considerable interest and activity in the field when 

he designed and developed the Perceptron. The Perceptron had three layers with the 

middle layer known as the association layer. This system could learn to connect or 

associate a given input to a random output unit. In 1960, Rosenblatt demonstrated the 

Mark I Perceptron. The Mark I was the first machine that could “learn” to identify optical 

patterns. 

Another system was the ADALINE (Adaptive Linear Element) which was developed in 

1960 by Widrow and Hoff (of Stanford University). The ADALINE was an analogue 

electronic device made from simple components. The method used for learning was 

different to that of the Perceptron, it employed the Least-Mean-Squares (LMS) learning 

rule.  

4.2.4 Third Period (Frustration & Disrepute) 

In 1969, Minsky and Papert wrote a book in which they generalized the limitations of 

single layer Perceptrons to multilayered systems. In the book they said: "...our intuitive 

judgment that the extension (to multilayer systems) is sterile". The result of their book 
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was to eliminate funding for research with neural network simulations. As a result, 

considerable prejudice against this field was created.  

4.2.5 Fourth Period (Innovation) 

 Although public interest and available funding were minimal, several researchers 

continued working to develop neuromorphically based computational methods for 

problems such as pattern recognition. During this period several paradigms were 

generated which modern work continues to enhance. Grossberg's (Steve Grossberg and 

Gail Carpenter in 1988) influence founded a school of thought which explores resonating 

algorithms. They developed the ART (Adaptive Resonance Theory) networks based on 

biologically plausible models. Anderson and Kohonen developed associative techniques, 

independently of each other. Klopf  in 1972, developed a basis for learning in artificial 

neurons based on a biological principle for neuronal  learning  called it heterostasis. 

Werbos (1974) developed and used the back-propagation learning method, however 

several years passed before this approach was popularized. Back-propagation nets are 

probably the most well known and most widely applied of the neural networks today. In 

essence, the back-propagation net is a Perceptron with multiple layers, a different 

thershold function in the artificial neuron, and a more robust and capable learning rule. 

Amari (A. Shun-Ichi, 1967) was involved with theoretical developments, he published a 

paper which established a mathematical theory for a learning basis (error-correction 

method) dealing with adaptive pattern classification. Fukushima (F. Kunihiko) developed 

a step-wise trained multilayered neural network for interpretation of handwritten 

characters. The original network was published in 1975 and was called the Cognitron.  
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4.2.6 Fifth Period (Re-Emergence) 

 Progress during the late 1970's and early 1980's was important for the re-emergence of 

interest in neural networks. Several factors influenced this movement. For example, 

comprehensive books and conferences provided a forum for people in diverse fields with 

specialized technical languages, and the response to conferences and publications was 

quite positive. The news media picked up on the increased activity and tutorials helped 

disseminate the technology. Academic programs appeared and courses were introduced at 

most major Universities (in US and Europe). In Europe, Japan and the US funding had 

become available, and several new applications in industry and financial institutions 

emerged.  

4.2.7 Today 

 Significant progress has been made in the field of neural networks. Improvement beyond 

current commercial applications appears to be possible, and research is advancing the 

field on many fronts. Clearly, today is a period of transition for neural network 

technology.  

Why use neural networks 

Neural networks, with their ability to derive meaning from complicated or imprecise data, 

can be used to extract patterns and detect trends that are too complex to be noticed by 

either humans or other computer techniques. A trained neural network can be thought of 

as an "expert" in the category of information it has been trained to analyze. This expert 

system can then be used to provide projections for new situations of interest and answer 

"what if" questions. 
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Other advantages include:  

a) Adaptive learning 

An ability to learn how to do tasks based on the data given for training or initial 

experience.  

b) Self-Organization 

 An ANN can create its own organization or representation of the information it 

receives during the learning time.  

c) Real Time Operation 

ANN computations may be carried out in parallel, and special hardware devices 

are being designed and manufactured which take advantage of this capability.  

d) Fault Tolerance via Redundant Information Coding 

 Partial destruction of a network leads to the corresponding degradation of 

performance. However, some network capabilities may be retained even with 

major network damage.  

4.2 Comparison between Artificial neurons and Human  
  neurons 

Little information is available about how the human brain trains itself to process data. To 

construct an artificial neural network, researchers imitated the individual cells that make 

up of the brain rather than the whole brain which is enormously complicated. A neuron 

cell, as seen in Figure (4.1) is the basic building block of the human brain. A typical 

neuron collects signals from other neurons through a net of fine structures called 

dendrites.  
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      Components of neurons                                                  the synapse 

Figure.4.1 Comparison between Artificial neurons and Human neurons 

( Practical Neural Networks Recipes in C++) 

4.3.1  a simple neuron 
An artificial neuron is a device which has many inputs and one output (figure 4.2). The 

neuron has two modes of operation:  The training mode and the using mode.  

In the training mode, the neuron can be trained to fire (or not), for particular input 

patterns. In the using mode, when an already encountered ("taught")  input pattern is 

detected at the input, its associated output becomes the current output. If the input pattern 

does not belong to the taught list of input patterns, the "firing rule" is used to determine 

whether to fire or not. 
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                                                                    TEACH/USE 

                  X1 
 
                 X2                                                                                      
INPUTS                              .                                                                 OUTPUTS 
                              . 
                              . 
        
 
                   Xn 
                                                                   TEACHING INPUT 
 
 

Figure 4.2 a simple neuron    

4.3.2   Firing rules 
The firing rule is an important concept in neural networks. It determines how one 

calculates whether a neuron should fire for  a given input pattern. It relates to all possible 

input patterns, not only to the ones on which the node was trained.  

A simple firing rule can be implemented by using the Hamming distance technique. The 

rule goes as follows: 

 Take a collection of training patterns, some of which cause it to fire (the set of 

patterns taught as "1") and others which prevent it from doing so (the set taught as 

"0").  

  The patterns not in the collection cause the node to fire as follows: if on 

comparison, they have more input elements in common with the 'nearest' pattern 

in the "1" set than with the 'nearest' pattern in the "0" set. If there is a tie, then the 

pattern remains in the undefined state.  

 

Neuron 



59 
 

Example: 

 A 3-input neuron is taught to produce output 1 when the input (X1, X2 and X3) is 111 or 

101 and to output 0 when the input is 000 or 001. Then, before applying the firing rule, 

the truth table is: 

Table 2: The truth table 

 

X1 0 0 0 0 1 1 1 1 

X2 0 0 1 1 0 0 1 1 

X3 0 1 0 1 0 1 0 1 

output 0 0 0/1 0/1 0/1 1 0/1 1 

4.3.3   How the firing rule works  

Example 1: 

Take the pattern 010. It differs: 

 from 000 in 1 element   

 from 001 in 2 elements 

 from 101 in 3 elements  

 from 111 in 2 elements.  

Therefore, the 'nearest' pattern is 000 which belongs in the 0-taught set. Thus the firing 

rule requires that the neuron should not fire when the input is 001. 
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Example 2: 

 The pattern 011 is equally distant from two taught patterns that have different outputs 

and thus the output stays undefined (0/1). 

By applying the firing rule, the truth table becomes 

X1 0 0 0 0 1 1 1 1 

X2 0 0 1 1 0 0 1 1 

X3 0 1 0 1 0 1 0 1 

output 0 0 0 0/1 0/1 1 1 1 

 

Note : the difference between the two tables is called" the generalization of the 

neuron". 

4.4    Neural network structure 

An artificial Neural Network is composed of several elements: 

A - Input layer: the role of the input units is to receive the raw information that is fed into 

the network. 

B- Hidden layers: it is the processing unit for the network. Its activity is determined by 

the activities of the input units and the weights of the connections between the input and 

the first row of the hidden units, or between nodes of adjacent hidden layers. 

C- Output layer: The behavior of the output units depends on the activity of the last row 

of the hidden units and the weights between the nodes in this row and the output units. 
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D- Neuron: it is the basic elements of the neural network. It is a communication conduit 

that accepts inputs and produces outputs. In the case when a neuron produces output, it 

becomes active, or "fires". A neuron will be active when the sum of its inputs satisfies the 

neuron’s activation function. 

4.4.1   Feed-forward networks 

Feed-forward ANNs (figure 4.3) allow signals to travel one way only; from input to 

output. There is no feedback (loops) i.e. the output of any layer does not affect that same 

layer or a previous layer. Feed-forward ANNs tend to be straight-forward networks that 

associate inputs with outputs. They are extensively used in pattern recognition.  

 

 

 

 

 

 

Figure 4.3 Feed Forward Neural Networks Structure 

The Learning Process 

Memorization of patterns and subsequent response of the network can be categorized 

into: 
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Associative mapping 

In which the network learns to produce a particular pattern on the set of input units 

whenever another particular pattern is applied on the set of input units. In associative 

mapping the network stores the relationships among patterns. It can generally be broken 

down into two mechanisms: 

Auto association and hetero-association. 

Regularity detection  

In which the network learns to respond to particular properties of the input patterns. In 

regularity detection the response of each unit has a particular 'meaning'. This type of 

learning mechanism is essential for feature discovery and knowledge representation. 

Notice that information is stored in the weight matrix of the neural network. 

Following the way as the network learns we can distinguish between two types of neural 

networks: 

A- Fixed networks  

In which the weights can not be changed( dW/dt=0). In such networks, the weights are 

fixed a priori according to the problem to solve. 

B- Adaptive networks  

These are able to change their weights ( dW/dt ≠ 0). 

4.4.2 Adaptive networks 
Adaptive means that the system parameters (Weights) are changed during operations. 

This is called done during the training step. After the training phase the Artificial Neural 
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Network parameters are fixed and the system is deployed to solve the problem at hand 

(the testing phase). Learning methods used in adaptive neural networks can be 

categorized into two groups: 

 Supervised learning ( Figure 4.4) 

Which incorporates an external teacher, the network is trained by providing it with input 

and matching output patterns. During the learning process global information may be 

required. Paradigms of supervised learning include error-correction learning, 

reinforcement learning and stochastic learning. An important issue concerning supervised 

learning is the problem of error convergence, the minimization of error between the 

desired and computed unit values. The aim is to determine a set of weights which 

minimizes the error. In one well-known method, which is commonly used for many 

learning paradigms, the system converges to a set of weights providing the least mean 

square (LMS) error. 
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Figure 4.4 Supervised Learning Scheme  

 

 Unsupervised learning 

It is based upon only local information (no external teacher), it is also called Self 

Organization, in the sense that it self-organizes the data presented to the network and 

detects their emergent collective properties. In this paradigm the system is supposed to 

discover statistically salient features of the input data. Unlike the supervised learning 

process, there is no a priori set of categories into which the patterns are to be classified; 

rather the system must develop its own representation of the input stimuli. 

4.5   The Mathematical Model (figure 4.5) 
When we model a biological neuron, there are three important components: 

1- The synapses of the neuron are modeled as weights. The strength of the 

connection between an input and a neuron is given by the value of the weight. 

+ 
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2- An adder sums up all the inputs multiplied by their respective weights. This 

activity is referred to as linear combination. 

3- An activation function controls the amplitude of the output of the neuron. An 

acceptable range of output is usually between 0 and 1, or -1 and 1. 

 

 

Figure 4.5 Mathematical model of ANNs  

(Artificial Intelligence Technologies Tutorial 2002) 

Mathematically the function of the neuron k can be expressed by equation 4.1: 

     
          yk = φ (uk +bk)                                                                                           (4.1) 
 
 
 
 
Where 
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     ∑
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                                                                                                 (4.2) 

And where 

 xj  is the input signal from an m dimensional input. 

 wkj  is the synaptic weights of neuron k. 

 uk is the linear combiner output due to the input signals. 

  bk is the bias, )(⋅ϕ is the activation function.   

 yk is the output signal of the neuron.  

The relation between the linear combiner output uk and the activation potential vk is 

 

   vk= uk +bk                                                                                                               (4.3) 

The activation function )(vϕ defines the output of a neuron in terms of the 

induced local field v.  

 
 

Activation  Function 

The behavior of an ANN (Artificial Neural Network) depends on the weights and the 

input-output function (transfer function) that is specified for the units. This function 

typically falls into one of three categories: 

 Linear: the output activity is proportional to the total weighted output. The 

mathematic expression is y= ax, its graph is given in figure (4.6). 
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Figure 4.6 Purelinear function 

 

 Threshold Function (figure 4.7) 

The output is set at one of two levels, depending on whether the total input is 

greater than or less than some threshold value. The mathematical expression is 

given by:  
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Figure 4.7  Threshold function 

 

 

 Sigmoid: the output varies continuously but not linearly as the input changes. 

Notice that sigmoid units bear a greater resemblance to real neurons than do linear or 

threshold units, but all three must be considered rough approximations. The mathematical 

expression is given by 

av-1

1)(
e

v
+

=φ  

where a is the slope parameter of the sigmoid function. By varying the parameter a, 

we can obtain sigmoid functions of different slopes. 

A sigmoid graph is given in figure 4.8. For a =1. 

 



69 
 

 

Figure 4.8 Sigmoid Function  

Tangent Hyperbolic Function 

 This transfer (activation) function is sometimes used in place of the sigmoid function and 

is described by the following mathematical form 

avav
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Figure 4.9 Tangent Hyperbolic Function for a =1. 

 

4.6   Multilayer Perceptron Neural Network (MLP) 
 
 
Feed-forward neural networks are the type most used in both correlation- and prediction 

problems. In Feed-forward neural networks, the neurons are organized in different layers, 

and each of the neurons in one layer can receive only one input from units in the previous 

layers. Figure 4.10 gives a simple example of a four-layer neural network that contains an 

input layer, two hidden layers, and an output layer, interconnected by modifiable weights, 

represented by links between layers.  
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Figure 4.10: Multilayer Perceptron with two hidden layers (Artificial Intelligence 

Technologies Tutorial 2002) 

 

The presence of one or more hidden layers, whose neurons are correspondingly called 

hidden neurons, enables the network to extract higher order statistics. Thus the network 

acquires a global perspective, despite its local connectivity, by virtue of the extra set of 

synaptic connections and the extra dimension of neural interaction. Such a network is 

called a “multilayer feed-forward network”. 

Learning Process of MLP 

In the learning procedures one provides the network with a training set of patterns having 

inputs and outputs. Real valued m–dimensional input feature vectors  

(x1 ,x2,…xn) are presented to each of the first hidden layer units through the weight vector 

w. Hidden layer unit k receives input j through the synaptic weight wkj 
⎩
⎨
⎧
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Unit k computes a function of the input signal x and the weights wkj and then it passes  its 

output forward to all of the units in the next successive layer. Like the first hidden layer, 

the units of the second hidden layer are fully connected to the previous layer through the 

synaptic weights. These units also compute a function of their inputs and their synaptic 

weight and they pass their output on to the next layer. The output of one layer becomes 

the input to the following layer. Then, at the output, the unit error is calculated between 

the target value and the computed value of the pattern. This process is repeated until the 

final computation is produced by the output unit. The learning algorithm for this type of 

network is called the back propagation (BP) algorithm, and it was published in the mid-

1980s for multilayer perceptrons. This architecture of the network is the basic unit in the 

present study. Hornik et al. (1989) suggested that, if a sufficient number of hidden units 

are available, then an MLP with one hidden layer and  a sigmoid transfer function in the 

hidden layer and a linear transfer function in the output layer can approximate any 

function to any degree of accuracy. 

Back-propagation is a reliable method for training multilayer neural networks due to its 

strong mathematical foundation. Despite its limitations, back-propagation has 

dramatically expanded the range of problems we can solve by ANN's. Many successful 

implementations demonstrate its power. The steps to implement the back-propagation 

algorithm are as follows: The error signal at the output of neuron j at iteration n (i.e. 

presentation of the nth training pattern) is defined by 

 Ej(n)=dj(n)-yj(n)                                                                                                (4.4) 
 

     where 
dj(n) is the desired response for neuron j 

yj(n) is the function signal appearing at the output of neuron j 
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Ej(n) refers to the error signal at the output of neuron j. 

 The instantaneous value of the sum of squared errors is obtained by summing the 

sum of squared errors over all neurons in the output layer; as 

∑
∈

=
cj

j ne )(
2
1 2ξ                                                                                          (4.5) 

 The net internal activity level vj(n) produced at the of neuron j is therefore written 
as 
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=                                                                            (4.6) 

where p is the total number of inputs applied to neuron j and wji(n) denote the synaptic 

weight connecting the output of neuron i to the input of neuron j at iteration n. Hence the 

output of neuron j at iteration n is given as  

   Yi(n)= φj(vj(n))                                                                                                           (4.7) 

 The instantaneous gradient which is proportional to the weight correction term is 

given as 
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  The correction Δwji (n) applied to wji(n)  is defined by the delta rule as 
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η is a small constant called Learning rate, it determines to what extent the newly 

acquired information will override the old ones. 

When neuron j is located in a hidden layer of the network, the local gradient is redefined 

as 

)())(()(

))((
)(
)()(

'

'

nwnvn

nv
ny
nn

kjk kjjj

jj

j

j

∑=

∂
∂

=

δφδ

φξδ
                                                                     (4.10) 

where computation of δk requires the knowledge of the error signals ek for all those 

neurons that lie in the layer to the immediate right of hidden neuron j. The wkj(n) consists 

of the synaptic weights associated with these connections. We are now ready to carry out 

the weight correction update for the back-propagation algorithm, which is defined by the 

delta rule 

jjji ynw ηδ=Δ )(                                                                                              (4.11) 

Note: the weight correction term depends on whether neuron j is an output node or a 

hidden node: 

 if neuron j is an output node, equation 4.10 is used for the computation of the 

local gradient. 
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 if neuron j is a hidden node, equation 3.11 is used for the computation of the local 

gradients. 

4.6.1   The Network Performance  
 
  The network performance is checked  by monitoring the mean square error. The mean 

squared error is obtained by summing ξ (n) over all n and then normalizing with respect 

to N (number of training patterns) 

∑
=

=
N

nAv n
N 1

)(1 ξξ                                                                                                (4.12) 

The process is repeated several times for each pattern in the training set, until the total 

output squared error converges to a minimum, or until some preset limit is reached in the 

number of training iterations. 

One of the major problems with the back propagation algorithm is the long training times 

due to the steepest descent method of optimization (minimization), which is 

algorithmically simple but slow. The learning rate is sensitive to the weight changes. The 

smaller the learning rate, the smaller will be the changes to the synaptic weights from one 

iteration to the next, and the smoother will be the trajectory in the weight space. 

However, if the learning rate is chosen too large in order to speed up the learning process, 

the resulting large changes in the synaptic weights make the network unstable. The 

solution for this problem is to add a momentum term to the weight update in the back 

propagation algorithm.  

Momentum term is simple to implement, and it significantly increases the speed of 

convergence. The inclusion of the momentum term may also have the benefit of 
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preventing the learning process from terminating in shallow local minima on the error 

surface. 

An other method of accelerating the back propagation algorithm is achieved by using the 

Levenberg - Marquardt algorithm (Hagan et al., 1996). It is based on Newton’s 

optimization method (Hagan et al., 1996) and differs from the usual back propagation 

algorithm in the manner in which the resulting derivatives are used to update the weights. 

The main drawback of the LMBP (Levenberg - Marquardt Back Propagation) algorithm 

is the need for large memory and storage space of the free parameters in the computers. If 

the network has more than a few thousand parameters, the algorithm becomes impractical 

on current machines.  

4.6.2 Testing (Generalizing)  
A network is said to generalize well when the input-output mapping computed by the 

network is correct for test data which is unknown to the network. A well designed neural 

network will produce a correct output mapping, even when the input is slightly different 

from the data used for training. However, when a neural network has too many neurons 

in the hidden layers, the network may end up memorizing the training data. It even find 

some irrelevant feature that is present in the training data (noise) but not a real property 

of the underlying function that is to be modeled. This phenomenon is referred to as 

overfitting. Overfitting is the result of more hidden neurons than actually necessary, with 

the result that undesired contributions in the input space due to noise, spurious 

periodicities, etc.  are stored in the synaptic weights. 
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On the other hand if the number of hidden neurons is less than the optimum number, then 

the network is unable to learn the correct input-output mapping. Therefore, it is important 

to determine the optimum number of hidden neurons for a given problem. 

Testing is  influenced by three factors (Haykin, 1999) 

 the size of the training set. 

 the architecture of the neural network. 

 the complexity of the problem.  

4.6.3   Advantages and disadvantages of MLP 
 

    An MLP network generates a nonlinear relationship between inputs and outputs by 

interconnecting nonlinear neurons. The nonlinearity is distributed throughout the 

network. It does not require any assumption about the underlying data distribution for 

designing the networks. The network exhibits a great degree of robustness or fault 

tolerance because of its built-in redundancy. Damage to a few nodes or links thus need 

not impair overall performance significantly. It can form in any unbounded decision 

region in the space spanned by the inputs. Such regions include convex polygons and 

unbounded convex regions. The network has a strong capability for function 

approximation. The abilities to learn and generalize are additional qualities. Previous 

knowledge of the relationship between input and output is not necessary, unlike for 

statistical methods. The MLP has a built-in capability to adapt its synaptic weights to 

changes in the surrounding environment by adjusting the weights to minimize the error. 

Experience with neural networks has revealed a number of drawbacks for the technique. 

For an MLP network, the,  i.e. the number of hidden layers and neurons, the size of the 
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training dataset, and the type of transfer function(s) for neurons in the various layers are 

all important for the solution of a given problem,. With no analytical guidance on the 

choice of the design parameters (initial weights, learning rate, and momentum), the 

developer has to follow an ad hoc, trial-and-error approach of manual exploration. 

Although acceptable results may be obtained with some effort, it is obvious that 

potentially superior models might be easily overlooked. The considerable amount of user 

intervention not only slows down model development, but also works against the 

principle of ‘letting the data speak’, i.e. objectivity. Over-fitting or poor network 

generalization with new data during actual use is another problem. The commonly used 

back-propagation training algorithm, with a gradient descent approach to minimize the 

error during training, suffers from the local minima problem, which may prevent to arrive 

at the optimum model. 

Another problem is the black-box nature of neural network models. The lack of 

explanation capabilities is a handicap in many decision support applications such as 

medical diagnostics, where the user would naturally like to know how the model has 

come to a certain conclusion. Model parameters are buried in large weight matrices, 

making it difficult to gain insight into the modeled phenomenon or compare the model 

with available empirical or theoretical models. Information on the relative importance of 

the various inputs to the model is not readily available, which hampers efforts for model 

reduction by discarding less significant inputs. Additional processing, using techniques 

such as the principal component analysis, may be required for this purpose. 
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4.7   General Regression Neural Networks 
 
In 1990, Donald F. Specht formulated the weighted-neighbor method in the form of a 

neural network. He called this a Probabilistic Neural Network. Here is a diagram of a 

GRNN network 

 

 

 

 

 

 

 

 

 

 

Figure.4.11 Typical GRNN architecture 

All GRNN networks have four layers: 

 Input layer ( Input nodes) 

    There is one neuron in the input layer for each predictor variable. The input 

neurons (or pre-processing before the input layer) standardize the range of the values 

by subtracting the median and dividing by the interquartile range. The input neurons 

then feed the values to each of the neurons in the hidden layer. 
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 Hidden layer ( Hidden nodes) 

   This layer has one neuron for each case in the training data set. The neuron stores 

the values of the predictor variables for the case along with the target value. When 

presented with the x vector of input values from the input layer, a hidden neuron 

computes the Euclidean distance of the test case from the neuron‘s center point and 

then applies the RBF (Radial Basis Function) kernel function using the sigma 

value(s). The resulting value is passed to the neurons in the pattern layer. 

 Pattern layer ( Class nodes) 

 
    This layer has one neuron for each case in the training data set. The neuron stores the 

values of the predictor variables for the case along with the target value. When presented 

with the x vector of input values from the input layer, a pattern neuron computes the 

Euclidean distance of the test case from the neuron’s center point, and a radial basis 

function (RBF) (also called a "kernel function") is applied to the distance to compute the 

weight (influence) for each point,  

           Weight = RBF (distance) (equation 4.13).  

The calculations performed in each pattern neuron of GRNN are exp(-D2/2σ2) with the 

normal distribution centered at each training sample. The radial basis function is so 

named because the radial distance is the argument to the function. The further some other 

point is from the new point, the less influence it has. Different types of radial basis 

functions can be used, but the most common is the Gaussian function (figures 4.12 

&4.13). The peak of the radial basis function is always centered on the point it is 

weighting. The function’s sigma value (σ) determines the spread of the RBF function; 

that is, how quickly the function declines as the distance increases from the point. With 



81 
 

larger sigma values and more spread, distant points have a greater influence. Then the 

resulting value is passed to the neurons in the summation layer. 

 Summation layer  

        There are only two neurons in the summation layer. One is the denominator 

summation unit, the other numerator summation unit. The denominator summation unit 

adds up the weight values coming from each of the hidden neurons. The numerator 

summation unit adds up the weight values multiplied by the actual target value for each 

hidden neuron. 

 Decision layer ( Decision nodes) 

           The decision layer divides the value accumulated in the numerator summation unit 

by the value in the denominator summation unit, and it uses the result as the predicted 

target value. 

 

Figure.4.12 Radial Basis Transfer Function for one input 
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Figure.4.13 Radial Basis Transfer Function for multi inputs 

The main consideration when training a GRNN network is the proper selection of the 

optimal sigma values to control the spread of the RBF functions. 
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4.7.1   Advantages and disadvantages of GRNN 
 
       GRNN networks have advantages and disadvantages compared to multilayer   

perceptron networks: 

 
 It is usually much faster to train a GRNN network than an MLP network.  

 GRNN networks are often more accurate than MLP networks.  

 GRNN networks are relatively insensitive to outliers  

 GRNN networks are slower than MLP networks at classifying new cases.  

 GRNN networks require more memory space. 
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CHAPTER FIVE 
 

PERFORMANCE ANALYSIS AND COMPARATIVE 
STUDIES 

 

5.1   Overview 
 
   The main contribution of this Thesis is to investigate and develop neural network 

models for porosity, permeability and lithofacies estimation using Multilayer Perception 

Neural Network and General Regression Neural Network. 

In the first part of this chapter, I present the implementation process for estimation of 

porosity, permeability and lithofacies from well logs based on the framework discussed 

in Chapter 4.  The results to be presented have been obtained from the implementation of 

Multilayer Perception Neural Network (MLP) and General Regression Neural Networks 

(GRNN). 

 In the second part, I present the estimation of reservoir properties (porosity, permeability 

and lithofacies) from Seismic Attributes. Only those  results will be  presented which 

were obtained  using General Regression Neural Network (GRNN). 

In the third part, integration of well logs and seismic attributes will be used to predict 

porosity, permeability and lithofacies as a function of depth.  

 In the last part of the Thesis, I present the spatial prediction of these properties. The  

Neural Network Model used for this purpose was built using the professional software 

“Petrel” of Sclumberger. 
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5.2   DATA ANALYSIS 
 

      In this study I used a data set from a Reservoir in South Algeria.  The data consist of 

well logs, core porosity values, core permeability values and data of a 3-D seismic 

survey. The study area has seven wells from which 3 wells have core data. In this work 

we used two wells named Well-1 , Well-2 with a total  of 145 data samples. I investigated 

these data sets, and performed statistical analysis to determine the hidden patterns and  

deterministic relationship between the actual outputs and the provided input features. 

This helps to get more knowledge about the data. The two wells were combined together 

and divided randomly into two sets, namely the training and testing sets of 70% and 30% 

respectively. The training set was then used to build the model while the testing set was 

used to evaluate the predictive power of the model. In order to study the prediction of 

porosity and permeability six well logs namely; Sonic log (DT), Neutron log (NPHI), 

Density log (RHOB), Gamma Ray (GR), Deep Resistivity (LLD), and Shale Volume 

(Vsh) were used as inputs to both networks.  

To determine the performance and accuracy of the models, I made use of some of the 

statistical quality measures, namely: correlation coefficient, and root mean squared error. 

A good model should have a high correlation coefficient (CC) and a low root mean 

square error (RMSE). 
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Table 5.1: Statistics of the combined wells 1 and 2 (Training set) 

 
Well Logs Min Max Mean STDEV 
DT(Sonic) 

sfoot μ/  
52.94 72.54 65.61 3.96 

GR(Gamma 
Ray) API 

43.12 132.80 84.36 22.23 

RHOB(Bulk 
Density) 3/ cmg  

2.40 2.77 2.62 0.08 

NPHI (Porosity 
Log) % 

3.31 18.41 8.91 3.67 

LLD(deep 
resistivity) mΩ  

2.93 16.79 7.55 2.97 

Vsh( Shale 
volume) % 

12.30 99.80 58.19 28.21 

 
 

 

Table 5.2: Statistics of the combined wells 1 and 2 (Testing set)  

Well Logs Min Max Mean STDEV 
DT(Sonic) 

sfoot μ/  
52.94 72.54 64.91 3.84 

GR(Gamma 
Ray) API 

43.12 132.80 87.99 41.44 

RHOB(Bulk 
Density) 3/ cmg  

2.41 2.77 2.53 0.08 

NPHI (Porosity 
Log) % 

3.31 18.41 5.56 1.18 

LLD(deep 
resistivity) mΩ  

2.93 16.79 6.98 4.76 

Vsh( Shale 
volume) % 

12.30 99.8 23.21 12.24 
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5.3   Experimental Results Using Mutilayer Perception and 
General Regression Neural Networks 
 
 An MLP model was developed to estimate porosity and permeability along the vertical 

axis using well log data. Different models were tried before selecting the best one. The 

best model had one input layer with six neurons, two hidden layers with twenty neurons 

(ten for each) and one output layer. Purely linear and sigmoidal functions were used as 

activation functions for this model. 

5.3.1   Porosity Estimation Results From Well Logs 
 The MLP model is able to predict porosity, with a correlation coefficient 

CC=0.91 and MSE=0.10 for the training set, but CC = 0.66 and MSE= 0.40 for 

the testing set. The results for the estimation are shown in Table 4.3, while 

Figures 4.1a and 4.1b show the performance plot for the best selected model. 

 The GRNN model was built to predict porosity, using the  following 

parameters:    The apropriete sigma (0.01-50) for each variable and  the Gaussian 

as kernel function. The results provided by GRNN were for the training process 

CC=0.97 and MSE =0.07, while for the testing process  CC=0.81 and MSE=0.37. 

Figures 4.2a and 4.2b show the performance plot for the best selected model. 
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Figure 5.1a Training core porosity vs predicted porosity using MLP 
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Figure 5.1b Testing core porosity vs predicted porosity using MLP 
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Figure 5.2a Training core porosity vs predicted porosity using GRNN 
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Figure 5.2b Testing core porosity vs predicted porosity using GRNN 
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5.3.2   Permeability Estimation Results From Well Logs 
 

 An MLP model was built to predict permeability from well log data.  The results 

gave a correlation coefficient CC=0.81 and MSE=0.67 for the training set, but 

CC = 0.72 and MSE= 0.37 for the testing set. Figures 4.3a and 4.3b show the 

performance plot for the permeability prediction using MLP model. 

 Another model for permeability estimation was developed using GRNN 

paradigm. The results were much better with CC=0.99 and MSE=0.23 for 

training data and CC=0.96  and MSE =0.24 for the testing data. Figures 4.4a and 

4.4b show the performance of the model. 
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 Figure 5.3a Training core permeability vs predicted permeability using MLP 
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Figure 5.3b Testing core permeability vs predicted permeability using MLP 
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Figure 5.4a Training core permeability vs predicted permeability using GRNN 
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Figure 5.4b Testing core permeability vs predicted permeability using GRNN 
 
 

Table 5.3 Results Summary for MLP and GRNN models 
 
 

Type of Paradigm Porosity Permeability

Multilayer Perceptron 
Neural Network 

Training (CC=0.91& 
MSE=0.10) 

 
Testing (CC=0.66 & 

MSE=0.40 )

Training (CC=0.81 & 
MSE=0.67) 

 
Testing (CC=0.72 & 

MSE=0.37 )
General Regression Neural 

Network 
Training (CC=0.97 & 

MSE=0.67 ) 
 

Testing (CC=0.81& 
MSE=0.37 )

Training (CC=0.99 & 
MSE=0.23) 

 
Testing (CC=0.96 & 

MSE=0.24)
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5.3.3   Porosity Estimation Results From Seismic Attributes 
In this study five attributes were selected for reservoir properties prediction: 

Instantaneous Frequency, Instantaneous Phase, Arc length, Half Energy, RMS amplitude. 

These attributes were described in Chapter Three (Seismic Attributes). 

Table 4.4 and 4.5 summarize the statistical properties of the selected attributes 

Table 5.4 Statistical Properties of the Seismic Attributes (Training set) 
 

Seismic 
Attributes 

Min Max Mean STDEV 

Instantaneous 
Frequency 

26.31  98.82  39.47  17.12 

Instantaneous 
Phase 

 

‐28.02  29  ‐3.83  12.29 

Arc length 60.1  5741.5  480.04  705.94 

Half energy 4  26  13.28  5.80 

RMS amplitude 1888.24  210696  10364.64  25688.18 

 
Table 5.5 Statistical Properties of the Seismic Attributes (Testing set) 

Seismic 
Attributes 

Min Max Mean STDEV 

Instantaneous 
Frequency 

25.92 
 

40.92 
 

32.65 
 

3.60 
 

Instantaneous 
Phase 

 

‐43.47 
 

‐0.52 
 

‐21.23 
 

12.18 
 

Arc length 228.80 
 

5741.50  424.90 
 

115.52 
 

Half energy 10 
 

26 
 

18.5 
 

4.98 
 

RMS amplitude 1091.18 
 

7861.8 
 

5834.81 
 

2198.29 
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Note: For GRNN and MLP models using Seismic Attributes I used the two wells, and 

extracted the seismic attributes at the well location ("Well Seismic"). I took as a reference 

the top of the reservoir and calculated the attributes at every  two millisecond (sample 

rate =2 ms) for the total depth of 80ms ( TWT) in each well. 

Figures 4.5 and 4.6 show the base map and the 3-D seismic volume for the study site in 

which it indicates the location of the main wells drilled in this area. Figure 4.7 illustrate 

the  top of the reservoir T1. 

 

 

Figure 5.5 Base map of the study area 
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Figure 5.6 3D Seismic Volume of the study site 
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Figure 5.7 Top of T1 on base map 

As it was mentioned in Chapter Three, the seismic attributes can be extracted as a total 

volume or as a surface or horizon. Figures 4.8 and 4.8b   illustrate the total volume of the 

instantaneous frequency and RMS amplitude attributes.  
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Figure 5.8a 3D Volume of Instantaneous Frequency 
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Figure 5.8b 3D Volume of RMS amplitude 

 
 
 

From these volumes surface or horizon attributes can be extracted. Figures 4.9a, 4.9b, 

4.9c, 4.9d show the time-slice attributes (Instantaneous Frequency) at different levels 

(2ms,8ms,12ms,20ms), while figures 4.10a, 4.10b, 4.10c, 4.10d show the time slice of 

 ( Instantaneous Phase ) at ( 2ms,6ms,10ms,12ms). 
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Figure 5.9a Time slice of the Instantaneous Frequency at 2ms 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.9b Time slice of the Instantaneous Frequency at 8ms 
 



104 
 

  
 
 
 
 
 

Figure 5.9c Time slice of the Instantaneous Frequency at 12ms 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Figure 5.9d Time slice of the Instantaneous Frequency at 20ms 
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Figure 5.10a Time slice of the Instantaneous Phase at 2ms 

 
 

Figure 5.10b Time slice of the Instantaneous Phase at 6ms 
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Figure 5.10c Time slice of the Instantaneous Phase at 10ms 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.10d Time slice of the Instantaneous Phase at 12ms 
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5.3.4   GRNN MODEL FOR POROSITY  
 
General Regression Neural Network was used to predict porosity along the vertical axis. 

Note that the core porosities used in the training process were averaged and scaled to be 

at the same scale as the seismic attributes. The results were acceptable with CC= 0.76 and 

MSE= 1.05 in the training stage, while the testing process gave CC=0.66 and MSE=0.66. 

Figures 4.11a and 4.11b show the model results 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Figure 5.11a Training core porosity vs predicted porosity using GRNN 
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                 Figure 5.11b Testing core porosity vs predicted porosity using GRNN 
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5.3.5   GRNN MODEL FOR PERMEABILITY 
 
 The same what I did for porosity prediction was also repeated  with the permeability 
model. The results gave CC= 0.83 and MSE = 2.21 in the training process but CC= 0.73 
and 0.77 in the testing stage. Figures 4.12a and 4.12b illustrate the model performance. 
 
 

 
Figure 5.12a Training core permeability vs predicted permeability using GRNN 
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Figure 5.12b Testing core permeability vs predicted permeability using GRNN 
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5.4   Predicting Porosity and Permeability using Well logs and Seismic 
Attributes 
 
The main objective of this Thesis has been the integration of well log data and seismic 

attributes to improve the results provided by each of them. 

As I did in the previous section when I averaged the core data, in this section the logs 

were also averaged. Tables 4.6 and 4.7 summarize the statistical analysis of both seismic 

attributes and well logs after averaging.  

Table 5.6 Statistical Analysis for Seismic Attributes  and Logs ( Training data) 

Seismic 
Attributes 

Min Max Mean STDEV 

Instantaneous 
Frequency 

26.31  98.82  39.48  17.12 

Instantaneous 
Phase 

‐28.02  29  ‐3.83  12.29 

Arc length 60.10  5741.50  480.04  705.94 

Half energy 4  26  13.28  5.80 

RMS 
amplitude 

1888.24  210696  10364.64  25688.18 

DT(Sonic) 
sfoot μ/  

58.06 
 

77.88 
 

66.07 
 

4.24 
 

GR(Gamma 
Ray) API 

26.66 
 

168.32 
 

69.88 
 

37.66 
 

RHOB(Bulk 
Density) 

3/ cmg  

2.29 
 

2.72 
 

2.56 
 

0.08 
 

NPHI 
(Porosity Log) 

% 

0.82 
 

16.52 
 

7.25 
 

3.49 
 

LLD(deep 
resistivity) mΩ  

2.32 
 

87.72 
 

10.76 
 

18.59 
 

Vsh( Shale 
volume) % 

3.74 
 

99.80 
 

35.43 
 

26.38 
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Table 5.7 Statistical Analysis for Seismic and Logs ( Testing data) 

Seismic 
Attributes and 

well logs 

Min Max Mean STDEV 

Instantaneous 
Frequency 

25.92 
 

40.92 
 

32.65 
 

3.60 
 

Instantaneous 
Phase 

‐43.47 
 

‐0.52 
 

‐21.23 
 

12.18 
 

Arc length 228.8 
 

5741.5  424.9  115.52 
 

Half energy 10 
 

26 
 

18.5 
 

4.98 
 

RMS 
amplitude 

1091.18 
 

7861.8 
 

5834.81 
 

2198.29 
 

DT(Sonic) 
sfoot μ/  

68.44 
 

55.93 
 

62.41 
 

3.74 
 

GR(Gamma 
Ray) API 

102.24 
 

36.73 
 

65.18 
 

20.25 
 

RHOB(Bulk 
Density) 

3/ cmg  

2.69 
 

2.20 
 

2.45 
 

0.14 
 

NPHI 
(Porosity Log) 

% 

27.86 
 

5.17 
 

11.90 
 

5.94 
 

LLD(deep 
resistivity) mΩ  

102.52 
 

4.47 
 

34.07 
 

35.58 
 

Vsh( Shale 
volume) % 

70.94 
 

4.35 
 

28.42 
 

21.25 
 

 

5.4.1   GRNN MODEL FOR POROSITY 
A GRNN  model was built to estimate porosity using both seismic attributes and well log 

data. The results show CC = 0.93 and MSE =0.29 in the training stage, while testing 

produced results with CC= 0.90 and MSE= 0.16. Figures 4.13a and 4.13b show the 

model performance 
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Figure 5.13a Training core porosity vs predicted porosity using GRNN 
(Logs + Attributes) 
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Figure 5.13b Testing core porosity vs predicted porosity using GRNN 
(Logs + Attributes) 
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5.4.2   GRNN MODEL FOR PERMEABILITY 
A model was built using GRNN to estimate permeability using both seismic attributes 

and well log data. The results show CC = 0.99 and MSE= 0.32  in training stage, while 

testing produced results with CC= 0.96  and MSE= 1.29. Figures 4.14a and 4.14b show 

the model performance for permeability prediction. 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 5.13c Training core permeability vs predicted permeability using GRNN (Logs + Attributes) 
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Figure 5.13d Testing core permeability vs predicted permeability using GRNN (Logs + Attributes) 
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5.5   Prediction of Lithofacies Using ANNs 
 
The last properties which were predicted in this work are the rock types or lithofacies. In 

this part we used only the log data to estimate lithofacies at the bore hole locations. The 

same two wells  were selected for this purpose. The results are given in Figure 4.14b 

show a good match between rock types interpreted by geologists and those given by 

ANNs. Figure 4.14a shows the facies descriptions from well log data. 

 

Figure 5.14a Facies Description of well-1 and well-2 
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Figure 5.14b Facies Predictions using ANNs 
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5.6  Predicting the Spatial Distribution of Porosity, Permeability and 
Lithofaces  
 
The last part of this study is to build a 3D model for porosity, permeability and rock type 

for a given reservoir. Petrel software from Schlumberger was used to build the 3D grid 

from the interpreted seismic surfaces. The model was built using the top and the bottom 

of the reservoir.  Figure 4.15 shows the seismic interpretation of the three main reservoirs 

existing in the study area. 

 

 

Figure 5.15 Seismic Interpretation of T1, SI and Dev reservoirs in the study area 
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5.6.1   Porosity Models 
 Figure 4.16 shows the histogram of porosity distribution. Figure 4.16a shows the 

porosity model for the given reservoir, while Figures 4.16b and 4.16c present the porosity 

distribution from 10% to 30 % and from 0% to 9.9% separately.  

 

 

 

 

 Figure 5.16a  Histogram of the porosity distribution 
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Figure 5.16b Porosity distributions in the 3D model for SI Reservoir, pink color indicates 
low porosity, red color indicates high porosity 

Figure.5.16c  Porosity (10% - 30 %) distribution in the 3D model for SI Reservoir, pink 
color indicates low porosity, red color indicates high porosity 
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5.6.2   Permeability Models 
 

Figure 4.17 shows the histogram of permeability distribution. Figure 4.17a illustrates 

permeability model obtained using ANNs, while Figure 4.17b shows permeability  

distribution  from  10 mD  to  300mD. 

 

 

 Figure 5.17 Histogram of permeability distribution 
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Figure 5.17 a. Permeability Distribution in 3D model for SI Reservoir, pink color indicates 
low permeability, red color indicates high permeability 

 

Figure 5.17b .Permeability (10-300 mD)  distribution for SI Reservoir, pink color indicates low 
permeability, red color indicates high permeability 
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5.6.3   Lithofacies models 
 
The histogram of facies distribution is illustrated in Figure 4.18. Figures 4.18a, 4.18b, 

4.18c and 4.18d show the 3 D model of the different facies  (channel lag, point bar and 

overbank) existing in this field. 

 

 

 Figure 5.18 Histogram of facies distribution ,with 0 channel lag, 1 point bar and 2 

overbank  
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Figure 5.18a  Facies model for SI  Reservoir , blue color indicates overbank, pink color 

point bar and yellow indicates channel lag 
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Figure 5.18b  Channel lag distribution in SI Reservoir 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.18. c. Point bar distribution for SI Reservoir   
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Figure 5.18d  Over bank distribution for SI Reservoir 
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CHAPTER SIX 
 
 

CONCLUSION AND RECOMMENDATIONS 
 

6.1    Summary  
 

This research work investigated the application of two paradigms in neural networks in 

developing accurate models for the prediction of reservoir properties (porosity, 

permeability and lithofacies). 

The first part of this study focused on designing and investigating multilayer perceptron 

(MLP) and general regression neural networks (GRNN) for the prediction of these 

reservoir properties using well log data. 

From the previous part we selected the best algorithm (GRNN) and we used it to predict 

porosity and permeability using seismic attributes derived from 3D seismic volume. 

 In the third part, we integrated seismic attributes with well log data for better prediction 

of reservoir properties. 

The last part of this study was to build 3D models for the predicted properties (porosity, 

permeability and lithofacies). 
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6.2   Conclusions 

Based on the research and analysis discussed previously in this work, the following 

conclusions are reached: 

• Porosity, permeability and lithofacies can be easily predicted using well log data 

rather than coring every well in the field. 

• The agreement between the core data and the predicted values by neural networks 

demonstrate a successful implementation and validation of the network’s ability 

to map complex non-linear relationships between well logs, seismic attributes, 

permeability and porosity. 

• Results from this study show how powerful general regression neural network  

(GRNN) is compared to multilayer perceptron (MLP). 

• Multilayer perceptron (MLP) can have good generalization if there is enough time 

and knowledge of the network topology. 

• The use of seismic attributes combined with well log data gave better prediction 

results and enhanced the results reached by using well logs only. 

• The 3D geological models gave the full distribution of reservoir properties and 

indicated the appropriate zones for future well implementation. 

6.3   Recommendations for Future Work 

Although good results were obtained from the investigation carried out in this research 

work, better accuracy and generalization may be obtained from the following 

recommendations: 
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• Investigating using new development of neural network techniques such us 

function networks ( FN) and Cascaded correlation neural network (CCNN). 

• Using other techniques in artificial intelligence such as support vector machine  

( SVM) , fuzzy logic ( FL) and neuro-fuzzy systems ( NFL). 

• Investigating combined networks in the form of committee machine or modular 

networks where different networks such as Ploynet, FN and GRNN are combined. 

These three models were suggested because of the unique results that can be 

obtained from them. However, many factors need to be considered in developing 

such architecture, including:   

1- There are several different methods of combining networks, depending on the 

task at hand. 

2- Determination of training strategy for different networks to achieve more 

accurate network model can be challenging. For example, do we train  each 

network with the same data set, or different data sets, with overlapping or 

without overlapping? 

3-  Determination of the techniques to combine is also not an easy task. 

4-  Model complexity versus gained accuracy is another factor to consider. 

It is also recommended to integrate more data for more accurate predictions such 

as petrography data ( Grain size, Sorting , percentage of cements, gain 

shape…ect). It is hoped that implementation of these recommendations will lead 

to better models for the prediction of rock properties. 
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