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The present investigation assesses the applicability of waste materials—bottom ash and deoiled soya—for
the removal of the colorant Congo red from wastewaters. The adsorption characteristics and dye removal
efficiency of adsorbents have been determined by investigating factors such as effect of pH, effect of
concentration of the dye, amount of adsorbents, contact time, and temperature. Langmuir, Freundlich,
Tempkin, and Dubinin–Radushkevich isotherm models have been used to evaluate the ongoing adsorp-
tion. With the help of adsorption isotherm data different thermodynamic parameters such as free energy;
enthalpy, and entropy have been calculated. The estimated free energy has been obtained as
�21.52 kJ mol�1 for bottom ash and �16.88 kJ mol�1 for deoiled soya. On the basis of pseudo-first-order
and pseudo-second-order kinetic equations different kinetic parameters have been obtained. Column
operations depicted good adsorptive tendencies for Congo red with 96.95% and 97.14% saturation of
dye on bottom ash and deoiled soya, respectively. Regeneration of the saturated columns has been made
by eluting NaOH solution and more than 90% dye has been recovered in both cases.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

An increasing population leads to rapid proliferation of indus-
tries and their pollution. Dyestuff manufacturing industries and
many other dye and pigment-using industries such as rubber, pa-
per, textile, plastics, and cosmetics generate highly colored and
toxic effluent. Reports suggest that nearly 10,000 different com-
mercial dyes and pigments are known, with worldwide annual
production of over 7 � 105 tons [1]. Among various industries a
huge amount of dyes is discharged by textile industries due to im-
proper processing [2]. The water polluted by these industries is
characterized by high COD, dissolved and suspended solids, and
high color contents [3]. The dye effluents are highly visible and
toxic even at very minimum concentrations [4]. The water bodies
and dependent flora and fauna are highly affected by these pollu-
tants. Problems related with the water pollution include damage
of the aesthetic nature of water, interference with the process of
photosynthesis, destruction of the food web existing in water eco-
system [5], etc. The polluted water is also harmful to animals and
human beings as the dyes and their metabolites are highly toxic
[6,7] and carcinogenic [8,9] in nature. The passivity of the dyes in
the presence of heat, light, microbes, and even oxidizing agents
ll rights reserved.
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makes the degradation of coloring material difficult [10]. This is
attributed to the complex structure of the dyes. Moreover, increas-
ing water demand for industrial and public uses necessitates the
reclamation of the effluents and treatment of wastewater [11].
Thus removal of color is highly desirous.

From several decades various methods have been evolved in
wastewater treatment such as electrochemical treatment methods
[12–14], oxidation [15], and ozonation [16]. However, the adsorp-
tion process has been proven as a most effective and reliable meth-
od for dye removal. The major advantages of an adsorption
treatment for the control of water pollution are less investment
in terms of initial development cost, simple design, easy opera-
tions, free from generation of toxic substances, and easy and safe
recovery of the adsorbent as well as adsorbate materials [17]. In
the adsorption technique the major concern is the selection of
adsorbent material. In the last few years there has been an empha-
sis to develop waste materials as potential scavengers for the re-
moval of different types of pollutants from water and waste
materials such as baker’s yeast [18], tamarind wood [19], agricul-
tural waste biomass [20], gypsum [21], and sludge [22,23] have
been employed. A significant contribution in the removal of toxic
dyes from the wastewater has also been made from our laborato-
ries [24–36].

The present research deals with the applicability of adsorption
techniques in the removal of the dye Congo red from wastewaters.
Congo red is a highly water-soluble diazo dye. It exists as brown-
ish-red crystal and is stable in air with a solubility of 1 g/30 mL
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in water [37]. It is an anionic acid dye used as a laboratory aid in
testing for free hydrochloric acid in gastric contents, in the diagno-
sis of amyloidosis, as an indicator of pH, and also as a histological
stain for amyloid. It has a strong affinity to cellulose fibers and thus
is employed in textile industries. It is a derivative of benzidine and
napthoic acid and metabolizes to carcinogenic products [38].
It is investigated as a mutagen and reproductive effector. It is a
skin, eye, and gastrointestinal irritant. It may affect blood factors
such as clotting, and induce somnolence and respiratory problems
[39].

Thus keeping the toxic effects of the dye in view, attempts have
been made to develop an efficient and cost-effective technique for
removal of dye from wastewaters by employing two waste materi-
als, namely bottom ash and deoiled soya. The disposal of bottom
ash is always a problem for the station authorities so it was worth-
while to employ it as an adsorbent for color removal. The abun-
dantly available soya industries waste, i.e., deoiled soya, was
employed as an animal feed but its use is banned nowadays due
to formation of antimetabolites in living systems [40].
2. Experimental

2.1. Materials and methods

Congo red, is an anionic azo dye having IUPAC name as 1-nap-
thalenesulfonic acid, 3,3-(4,4-biphenylenebis(azo))bis(4-aminodi-
sodium) salt. Some other important chemical properties of the
dye are noted in Table 1. The dye was obtained from M/s Merck
and its stock solution was prepared in double-distilled water. All
the test solutions were prepared by diluting the stock with dou-
ble-distilled water.

NH2

NH2

N N N N
SO3Na

SO3Na

CONGO RED
Both adsorbent materials, used in the present research work,
are waste materials and available easily and abundantly. One of
the adsorbent materials, bottom ash was obtained from thermal
power station (TPS) of M/s Bharat Heavy Electrical Limited
(B.H.E.L.), Bhopal, India, while the other adsorbent material deoiled
soya, an agricultural waste, was a kind gift from M/s Sanwaria Agro
oils Ltd., Bhopal, India.

Bottom ash is a noncombustible constituent of coal with traces
of combustibles. It appears as granules of dark gray black color. The
adsorbent, deoiled soya, is obtained from soyabean oil-extracting
mills as a by-product after extracting all the nutrients of soyabean.
It is a porous and dry flaky material with brownish white color.
Table 1
Physicochemical properties of the dye Congo red.

Parameter Values

Molecular weight 696.68
Molecular formula C32H22N6Na2O6S2

Solubility in water Soluble (1 g/30 mL)
Absorption maxima 497 nm
Synonyms Direct red 28, cotton red, C.I 22120
2.2. Material development

Both adsorbent materials, bottom ash and deoiled soya, were
first thoroughly washed with distilled water and dried. To oxidize
the organic impurities both these materials were then treated with
30% v/v H2O2 solution for about 24 h and then washed with dou-
ble-distilled water. The moisture of the materials was then re-
moved by heating at 100 �C for about 1 h in an electric oven.
Deoiled soya was then sieved to various mesh sizes (36, 100, and
170 BSS mesh). On the other hand bottom ash was further heated
at 500 �C for 15 min and then sieved to the same sieve sizes. The
activated adsorbent materials were finally stored separately in
desiccators.

2.3. Instrumentation

The absorption studies of the test solutions were carried out
using a UV–Vis spectrophotometer Model 117 (Systronics, Ahemda-
bad, India). A microprocessor-based pH meter Model HI 8424 (M/s
Henna Instruments, Italy) was used for carrying out pH measure-
ments. A Philips SEM 501 electron microscope was employed to
obtain scanning electron microscopy photographs at various magni-
fications, while a Philips X-ray diffractophotometer was used for
X-ray measurements. A Quantasorb QS-7 surface analyzer, mercury
porosimeter, and specific gravity bottles were used to calculate sur-
face area, pore properties, and specific gravity of the adsorbent
materials, respectively.

2.4. Adsorption studies

Batch experiments were performed to study the effects of
important parameters such as effect of concentration, amount of
adsorbent, and pH. For this, 25 mL of dye solutions was taken in
100 mL airtight volumetric flasks with a weighted amount of
adsorbents. The flasks were then subjected to intermittent shaking
for proper adsorption. After about 24 h of contact, these solutions
were filtered with Whattman filter paper (No. 41) and the amount
of the dye adsorbed was analyzed at kmax 497 nm. In order to
determine the uptake of the dye, an entire set of experiments
was performed at different adsorbent dosages, concentrations of
the adsorbate, time of contact, temperatures (30, 40, and 50 �C),
etc. for both adsorbent materials.

2.5. Kinetic studies

For kinetic studies 25 mL of the dye solution was taken in a 100-
mL volumetric flask. Accurately weighted activated bottom ash or
deoiled soya was taken separately in these flasks and adsorption
studies were performed at different temperatures (30, 40, and
50 �C) under predetermined conditions of pH and concentration.
After shaking for a desired time these solutions were then filtered
and the amount adsorbed over the adsorbent was estimated
through spectrophotometric analysis.

2.6. Column studies

Column studies were carried out by using two separate glass
columns of dimensions 30 cm length and 1 cm internal diameter.
A known amount of bottom ash and deoiled soya was filled into
two separate columns, each supported on glass wool. Adsorbents
were fed into the columns in the form of slurry, which is obtained
after placing both adsorbents in water for about 24 h. The amount
of 10 � 10�5 M Congo red solution was then percolated through
each column under the influence of gravity at a fixed flow rate of
0.5 mL/min. Adsorption in column was then followed by a desorp-
tion operation where elution of the dye was done using NaOH



Table 2
Chemical constituents of the adsorbents.

Bottom ash Deoiled soya

Constituents Percentage by weight Constituents Percentage by weight

Moisture 15 Moisture 11
SiO2 45.4 SiO2 6
Al2O3 10.3 Fiber 2
Fe2O3 9.7 Ca 0.2
CaO 15.3 P 0.7
MgO 3.1 Profat 48

Table 3
Physical and chemical characteristics of the adsorbents.

Parameter Bottom ash Deoiled soya

Porosity (%) 46 67
Density (g L�1) 0.6301 0.5614
Nature Acidic Acidic
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solution. The columns were washed with distilled water after com-
plete elution.
3. Results and discussion

3.1. Characterization of the adsorbents

The details of the constituents of the adsorbent materials ob-
tained from standard chemical analysis are provided in Tables 2
and 3. Electron microscopy was helpful in analyzing the nature
of the surfaces of both adsorbents. SEM photographs ascertained
that the particulates of bottom ash and deoiled soya are porous
and almost spherical.

Infrared spectroscopy helped in determination of the absorptive
nature of the two adsorbents. Bottom ash gave a sharp absorption
band in the region of 3700–3500 cm�1 and bands at 3467, 2930,
2676, 1502, 1097, and 790 cm�1 thereby indicate presence of
laumonite [4(CaAl2Si4O12�4H2O)], amber, mulite [2Al2O3�2SiO2)],
azurite [Cu3(CO3)2(OH)2], bavenite [4Ca4(BeAl)4Si9O�OH)29(OH)2],
and kaolinite [2(Al2Si2O5(OH)4]. In the case of deoiled soya gorthite
[4(FeO�OH)], coesite [SiO2], corundum [2(a-Al2O3)], and laumonite
[4(CaAl2Si4O12�4H2O)] were indicated by the bands obtained at
479, 779, 1113, and 3459 cm�1, respectively.

The X-ray spectrum of the adsorbents showed the presence of
gypsum(CaSO4�2H2O, beverite [Pb(Cu, Fe, Al)3(SO4)2(OH)6], alu-
mina(Al2O3, kaolinite [2(Al2Si2O5(OH)4)], and borax (Na2B4O7�
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Fig. 1. Effect of pH on adsorption of Congo red
10H2O). In the case of deoiled soya, the XRD spectrum does not
give any major peak(s), which could be due to the absence of inor-
ganic substances in the activated deoiled soya. DTA curves ob-
tained for bottom ash showed negligible weight loss at high
temperatures and also indicate the thermal stability of both
materials.

3.2. Adsorption studies

3.2.1. Effect of pH
To investigate the effect of pH on the adsorption of Congo red

dye the pH range 2.50–10.50 was chosen. The pH of the test solu-
tions was adjusted by using HCl and NaOH solutions. As evident
from Fig. 1, with increase in pH of the solution the amount ad-
sorbed increases till pH 7.50 but with further increase in the pH,
percentage adsorption drops in case of both adsorbents.

The increase in the extent of adsorption with increase in pH va-
lue is due to the neutralization of the charges at the surface of the
adsorbents. It can be safely assumed that by increasing the pH of
the solution preference of the negative centers (SO�3 ) of the dye
for the active sites of the adsorbents increases, which in turn facil-
itates the adsorption process. However, beyond pH 7.5 with in-
crease in alkaline conditions protonation of the dye is reduced,
and electrostatic repulsion between OH– adsorbed on the adsor-
bent and ionized dye molecule retards the extent of diffusion
and adsorption thereby. Since maximum adsorption is obtained
at pH 7.5, all further studies were carried out at pH 7.5.

3.2.2. Effect of amount of adsorbents
A batch adsorption study was performed to ascertain the effect

of variation of amount of adsorbent on the uptake of the dye.
Amounts ranging from 0.01 to 0.05 g for bottom ash and deoiled
soya were taken separately in 100-mL volumetric flasks having a
dye solution of 10 � 10�5 M concentration at pH 7.50. With in-
crease in the amount of adsorbent up to 0.05 g for each adsorbent
adsorption was found to increase (Fig. 2). This may be due to an in-
crease in number of active sites of the adsorbent material with
increasing amount of the adsorbent. Further increase in the
amount of the adsorbent does not bring any considerable change
in the adsorption; thus 0.05 g was chosen as the optimum amount
for all studies of both adsorbents. It is also interesting to note that
with increasing temperature from 30 to 50 �C the dye uptake
decreases.

3.2.3. Effect of particle sizes
The dye uptake was also observed under different particle sizes,

viz. 36, 100, and 170 BSS mesh. Table 4 indicates that by decreasing
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over bottom ash and deoiled soya at 30 �C.
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Fig. 2. Effect of amount of adsorbent on uptake of Congo red over bottom ash and deoiled soya at different temperatures.

Table 4
Effect of sieve size of different adsorbents on the rate of adsorption of Congo red over
bottom ash and deoiled soya [concentration = 10 � 10–5 mol L–1, pH 7.50, temper-
ature = 30 �C, adsorbent dose = 0.05 g/25 mL (bottom ash) and 0.1 g/25 mL (deoiled
soya)].

Mesh size
(mm)

Bottom ash Deoiled soya

Amount
adsorbed � 10�6

(mol g�1)

k (h�1) Amount
adsorbed � 10�6

(mol g�1)

k (h�1)

0.425–0.15 1.217 0.028 1.290 0.036
0.15–0.08 1.355 0.032 1.450 0.040
60.08 1.52 0.039 1.590 0.042
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the size of the adsorbent material the percentage adsorption of the
dye increases. This is mainly due to increase in surface area of the
adsorbent material with the decrease in its size. The rate constant
of each adsorption process was also calculated during the adsorp-
tion of the dye over adsorbent materials of different sizes. It is ob-
tained that the rate constant increases with decrease in size of the
adsorbent (Table 4). The increase in the rate constant values sug-
gests increased diffusion of the dye molecules on small sized
adsorbent materials.

3.2.4. Effect of concentration
The adsorption is greatly influenced by the concentration of the

solution, as the adsorptive reactions are directly proportional to
the concentration of the solute [41]. A concentration range of
1 � 10�5 to 10 � 10�5 M was taken in separate 100-mL experimen-
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Fig. 3. Effect of concentration of Congo red on adsorption ove
tal flasks and added with fixed amounts of the adsorbents. It was
found that with the increase in concentration of the dye adsorption
increases at all temperatures (30, 40, and 50 �C) in the case of both
bottom ash and deoiled soya (Fig. 3). The figures also reveal that in
each case greater adsorption occurs at lower temperatures.

3.2.5. Effect of contact time
Contact time studies are helpful in understanding the amount of

dye adsorbed at various time intervals by a fixed amount of the
adsorbent (0.05 g for bottom ash and deoiled soya) at various tem-
peratures 30, 40, and 50 �C. Fig. 4 clearly indicates a rapid increase
in the amount of adsorption with increase in time initially, gradu-
ally leading to equilibrium. Although at higher contact time, the
rate of adsorption decreased and a saturation stage was attained
due to the accumulation of the adsorption sites by the dye ions.
This decline is due to decrease in total adsorbent surface area
and increased diffusion pathway. At all temperatures about 4 h of
contact was sufficient to attain saturation in the adsorption for
both adsorbents.

3.3. Adsorption isotherms

Successful application of the adsorption technique demands
studies based on various adsorption isotherm models [42] because
adsorption isotherm models clearly depict the relationship of
amount adsorbed by a unit weight of adsorbent with the concen-
tration of adsorbent remaining in the medium at equilibrium. Thus
following Freundlich, Langmuir, Tempkin, and D–R isothermal
models were applied to the experimental data.
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Fig. 4. Effect of contact time on the uptake of Congo red by bottom ash and deoiled soya at different temperatures.

Table 5
Freundlich constants for removal of Congo red at different temperatures and pH 7.50
[adsorbent dose = 0.05 g/25 mL (bottom ash) and 0.05 g/25 mL (deoiled soya)].

Adsorbent Freundlich constants

n KF

30 �C 40 �C 50 �C 30 �C 40 �C 50 �C

Bottom ash 1.180 1.043 0.958 0.213 0.547 0.908
Deoiled soya 1.089 1.139 1.275 0.796 0.215 0.042
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3.3.1. Freundlich isotherm
The Freundlich model is based on the assumption that adsorp-

tion occurs on a heterogeneous adsorption surface having un-
equally available sites with different energies of adsorption [43]
and is given by the relation

qe ¼ log KF þ
1
n
þ log Ce; ð1Þ

where qe is the amount adsorbed (mol/g), and Ce is the equilibrium
concentration of the adsorbate (mol/L). KF and n, the Freundlich
constants, are related to adsorption capacity and adsorption inten-
sity, respectively. The comparative graphical presentations for the
Freundlich isotherm for the two adsorbents along with their R2 val-
ues are presented in Fig. 5. For both adsorbents the straight lines
obtained for the Freundlich isotherm models at different tempera-
tures were used to calculate different Freundlich constants. Values
of both Freundlich constants (KF and n) are presented in Table 5.
For all cases the value of n is almost unity at all temperatures, there-
by indicating similar adsorption intensities of the dye for both
adsorbent materials. For both adsorbents an increase in value of
KF is observed with increasing temperature, thereby indicating an
increased dye–adsorbent interaction at higher temperature.
3.3.2. Langmuir isotherm
The Langmuir isotherm assumes that the surface of any adsor-

bent material contains a fixed number of active sites and satura-
tion of these active sites stops the adsorption of the adsorbate.
This indicates that the adsorption occurs until a monolayer of
adsorption is completed and after completion of adsorption no
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Fig. 5. Freundlich adsorption isotherms for adsorption of Co
more interaction between the adsorbent and adsorbate molecules
takes place [44]. The Langmuir isotherm is expressed as,

1
qe
¼ 1

Q o
þ 1

bQoCe
; ð2Þ

where qe is the amount of Congo red adsorbed (mol/g), Ce is the
equilibrium molar concentration of the dye (mol/L), Qo is the max-
imum adsorption capacity (mol/g), and b is the energy of adsorption
(L/mol).

Linear plots obtained for 1/qe against 1/Ce with R2 values close
to unity indicate that the Langmuir isotherm holds good for the
Congo red–bottom ash and Congo red–deoiled soya systems
(Fig. 6), at each temperature. Straight lines obtained were used
for calculating Langmuir constants for both adsorbents at all tem-
peratures and are presented in Table 6. It is evident from Table 6
that with the increase in temperature monolayer adsorption capac-
ity (Qo) values decreases from 2.05 � 10–4 to 1.89 � 10�4 mol g�1

for bottom ash and from 15.55 � 10�4 to 12.72 � 10�4 mol g�1 in
the case of deoiled soya. The decreasing values Qo with increasing
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Fig. 6. Langmuir adsorption isotherms for adsorption of Congo red over bottom ash and deoiled soya at pH 7.50.
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temperature clearly suggest the exothermic nature of the ongoing
adsorption processes.

3.3.2.1. Calculation of separation factor. The Langmuir adsorption
isotherm was also used for calculating the constant ‘‘separation
factor” (r), using the formula

r ¼ 1
1þ bCo

; ð3Þ

where b denotes the Langmuir constant and Co the initial concentra-
tion [45].

The parameters ‘‘r” indicates the shape of the isotherm. If r is
greater than unity and equal to one, the process is said to be unfa-
vorable and linear, respectively. On the other hand, irreversible
process occurs when the ‘‘r” value is obtained to be equal to zero.
The only favorable condition is when 0 < r < 1. At all temperatures r
values have been found less than unity (Table 7), thereby indicat-
ing favorable processes for both adsorbents.

3.3.2.2. Calculation of thermodynamic parameters. Gibb’s free energy
(DG�), change in entropy (DS�), change in enthalpy (DH�), etc. have
been calculated from the relations [46]

DG� ¼ �R T ln b; ð4Þ

DH� ¼ �R
T2T1

ðT2 � T1Þ

� �
� ln

b2
b1

� �
; ð5Þ
Table 6
Langmuir constants for removal of Congo red at different temperatures and pH 7.50
[adsorbent dose = 0.05 g/25 mL (bottom ash) and 0.05 g/25 mL (deoiled soya)].

Adsorbent Langmuir constants

Qo � 10–4 (mol g–1) b � 103 (L mol�1)

30 �C 40 �C 50 �C 30 �C 40 �C 50 �C

Bottom ash 2.05 2.07 1.89 5.640 3.930 2.773
Deoiled soya 15.55 13.08 12.72 1.359 0.648 0.339

Table 7
r values obtained at different temperatures for Congo red–bottom ash and Congo red–
deoiled soya adsorption.

Adsorbent r Value

30 �C 40 �C 50 �C

Bottom ash 0.94 0.96 0.97
Deoiled soya 0.98 0.99 0.99
DS� ¼ DH� � DG�

T
; ð6Þ

where R is a universal gas constant, b, b1, and b2 are the Langmuir
constants at 30, 40, and 50 �C, respectively, obtained from slopes
and intercepts of Langmuir isotherms.

The feasibility of the process is shown by negative values of free
energy (Table 8). The decrease in the value of the free energy with
increase in the temperature suggests that adsorption is favored
more at the lower temperature. The exothermic nature of the pro-
cess is further confirmed by the negative value of enthalpy
(�28.886 kJ mol�1 for bottom ash and �56.429 kJ mol�1 in case
of deoiled soya). The negative value of entropy change indicates
decrease in the dye concentration at the solid–solution interface.

3.3.3. Tempkin isotherm
The Tempkin isotherm assumes that the heat of adsorption of

all the molecules increases linearly with coverage of the adsorbate
molecules over adsorbent surface [47]. The linear form of this iso-
therm can be given by

qe ¼ k1 ln k2 þ k1 ln Ce; ð7Þ

where qe is the amount adsorbed at equilibrium in mol g�1, k1 is the
Tempkin isotherm energy constant in L mol�1, and k2 is the Temp-
kin isotherm constant. The slopes and intercepts obtained from the
graphical plot (Fig. 7) were used to calculate the Tempkin constants
(Table 9).

3.3.4. Dubinin–Radushkevich isotherm
The linear form of the Dubinin–Radushkevich isotherm [48] can

be given as

ln Cads ¼ ln Xm � b e2; ð8Þ

where Cads is the amount of the dye adsorbed per unit weight of the
adsorbent in mg g�1, Xm is the maximum sorption capacity pro-
vided by the intercept in mol g�1, b (mol2 J�2) is obtained from
the slope of the straight-line plot of ln Cads versus e2 (Fig. 8), and
e, the Polanyi potential, can be calculated as
Table 8
Thermodynamic parameters for the uptake of Congo red at pH 7.50 [adsorbent
dose = 0.05 g/25 mL (bottom ash) and 0.05 g/25 mL (deoiled soya)].

Adsorbent �DG� (kJ mol�1) –DH�
(kJ mol�1)

–DS�
(J K�1 mol�1)

30 �C 40 �C 50 �C

Bottom ash 21.759 21.537 21.290 28.886 23.490
Deoiled soya 18.174 16.847 15.647 56.429 126.391
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Fig. 7. Tempkin adsorption isotherms for Adsorption of Congo red over bottom ash and deoiled soya at pH 7.50.

Table 9
Tempkin and D–R isotherm parameters for adsorption of Congo red over bottom ash
and deoiled soya at pH 7.50 [adsorbent dose = 0.05 g/25 mL (bottom ash) and 0.05 g/
25 mL (deoiled soya)].

Tempkin
isotherm

Bottom ash Deoiled soya

k1 (L mol�1) k2 k1 (L mol�1) k2

30 �C 1 � 10–5 2.202 � 104 1 � 10–5 4.85 � 108

40 �C 1 � 10–5 2.202 � 104 8 1 � 10–5 2.202 � 104

50 �C 1 � 10–5 2.202 � 104 7 � 10–6 8.932 � 104

D–R isotherm b (mol2 J–2) Xm b (mol2 J–2) Xm

30 �C 6 � 10–9 1.83 � 10–3 5 � 10–9 3.47 � 10–3

40 �C 6 � 10–9 2.59 � 10–3 6 � 10–9 1.61 � 10–3

50 �C 6 � 10–9 2.92 � 10–3 6 � 10–9 0.622 � 10–3
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� ¼ RT ln 1þ 1
Ce

� �
; ð9Þ
where R is the universal gas constant in kJ/(mol K) and T is the tem-
perature in Kelvin.

E, the mean sorption energy, is calculated using the following
relation (Table 9):
E ¼ 1ffiffiffiffiffiffiffiffiffiffi
�2b

p : ð10Þ

The values of E for both Congo red–bottom ash and Congo red–
deoiled soya systems are found to be within the range 8–16 kJ
mol�1, suggesting that chemisorption is responsible for the adsorp-
tion process for both systems [49].
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3.4. Rate constant study

3.4.1. Pseudo-first-order kinetics
The equation given below represents Lagergren’s pseudo-first-

order rate equation [50],

logðqe � qtÞ ¼ log qe �
k1

2:303
� t: ð11Þ

In the above equation, qe and qt denote the amount adsorbed at
equilibrium and at any time t, respectively and k1 is the first-order
rate constant. The graph was plotted between log(qe – qt) versus
time, the slope of which gives the value of k1. It was observed that
with increase in temperature the values of the first-order rate con-
stant decreased from 2.3 � 10�4 to 2.1 � 10�4 h�1 for bottom ash,
while in the case of deoiled soya the k1 value obtained remained at
2.3 � 10�3 h�1 at all temperatures. Further, lower values of correla-
tion coefficient (R2 values) suggested that first-order kinetics was
not followed during the adsorption process over both adsorbents.

3.4.2. Pseudo-second-order kinetics
The pseudo-second-order rate equation was also applied to

Congo red–bottom ash and Congo red–deoiled soya systems
[51,52]. The Mckay pseudo-second-order rate equation is repre-
sented as

t
qt
¼ 1

k2q2
e
þ t

qe
: ð12Þ

In the above equation qe and qt denote the amounts adsorbed at
equilibrium and at any time t, respectively, and k2 is the second-or-
der rate constant. The graph was plotted between t/qt versus time
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Fig. 9. Plot of time versus t/qt for adsorption of Congo red over bottom ash and deoiled soya at pH 7.50.
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and straight lines were obtained at all temperatures in the case of
both adsorbents (Fig. 9).

On comparing the R2 values obtained for first-order and second-
order kinetics it can be easily concluded that the ongoing reaction
proceeds via a pseudo-second-order mechanism rather than a
pseudo-first-order mechanism. The second-order rate constant
values for both adsorbents were calculated and are presented in
Table 10.

3.5. Rate expression and treatment of the data

For proper interpretation of the kinetic data, it is vital to identify
the adsorption process steps, which govern the overall rate of
adsorption. The mathematical treatment recommended by Boyd
et al. [53] was employed to differentiate between particle diffusion
and film diffusion.

Film diffusion occurs when the transport of adsorbate to the
surface of the adsorbent takes place (external transport > internal
transport) and particle diffusion, when transport of the adsorbate
within the pores of the adsorbent takes place (external trans-
port < internal transport).

A quantitative treatment of the adsorption dynamics was done
by determining the fractional attainment F, of equilibrium at time t
using the following expressions:

F ¼ 1� 6
p2

X1
1

ð1=n2Þ expð�n2BtÞ; ð13Þ

F ¼ Q t

Q1
: ð14Þ

Here, Qt and Q1 are amounts adsorbed after time t and after infinite
time, respectively.

B ¼ p2Di

r2
o
¼ time constant; ð15Þ

where B is the time constant, Di is the effective diffusion coefficient
of adsorbate, and ro is the radius of spherical adsorbent particle.
Table 10
Kinetic parameters for removal of dye Congo red using bottom ash and deoiled soya at
pH 7.50 [adsorbent dose = 0.05 g/25 mL (bottom ash) and 0.05 g/25 mL (deoiled soya)
pH 7.50].

Pseudo-second-
order

Bottom ash Deoiled soya

k2

(g mg�1s�1)
qe

(mg g�1)
R2 k2

(g mg�1 s�1)
qe

(mg g�1)
R2

30 �C 5.05 � 10–5 28.30 0.99 4.72 � 10–5 30.10 0.99
40 �C 4.98 � 10–5 26.20 0.99 4.43 � 10–5 28.40 0.99
50 �C 4.32 � 10–5 23.40 0.99 4.55 � 10–5 24.80 0.99
The F values were used to determine the Bt values using
Reichenberg’s table [54]. Film diffusion and particle diffusion
adsorption rate were determined with the help of Bt versus time
graphs. The pictorial presentation of the Bt as function of time
(Fig. 10) displays linearity with straight lines not passing through
the origin in the case of adsorption of the dye over bottom ash
and deoiled soya at different temperatures. The results clearly sug-
gest that the rate determining process is film diffusion, where
external transport of the ions is less than the internal transport.

For both adsorbent materials the values of effective diffusion
coefficient Di were calculated with the help of slopes of time versus
Bt graphs at 30, 40, and 50 �C. The energy of activation (Ea), entropy
(DS#), and preexponential constant (Do) values were calculated
using the following equations:

Di ¼ Do exp � Ea

RT

� �
; ð16Þ

Do ¼ ð2:72 d2kT=hÞ exp
DS#

R

 !
: ð17Þ

In the equations given above Do is the preexponential constant,
DS# is the entropy, d gives the average distance between two suc-
cessive sites of the adsorbent, h is Planks constant, k, Boltzmann
constant, Ea, the energy of activation, T, the temperature, and R is
the universal gas constant (Table 11). It is clear from the decreasing
values of effective diffusion coefficient (Di) that as temperature is
elevated from 30 to 50 �C, the mobility of the ions decreases due
to increased retarding force acting on diffusing ions of the dye.
The negative values of DS# obtained for both systems reveal that
the internal structure of the adsorbents do not go through any sig-
nificant change during the adsorption of the dye.

3.6. Column studies

In order to observe the adsorptive tendency of the two adsor-
bent materials and also to derive a method for the bulk removal
of the dye Congo red fixed-bed column studies were applied
[55]. It is now well established that column studies are more ben-
eficial than the batch method as exhaustion capacity of the column
is usually relatively higher in this case [56]. Also fixed-bed opera-
tions are simple to operate and can be easily scaled up from a lab-
oratory process. Moreover, the continuous adsorption in fixed-bed
columns is also advantageous from an industrial point of view.

3.6.1. Column adsorption
A solution of concentration 10 � 10�5 M of the dye was perco-

lated through the columns at the rate of 0.5 mL/min. The parame-
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Fig. 10. Correlation of time versus Bt for adsorption of Congo red over bottom ash and deoiled soya at pH 7.50.

Table 11
Values of effective diffusion coefficient (Di), preexponential constant (Do), activation
energy (Ea), and entropy of activation (DS#) for the diffusion of Congo red adsorbing
over bottom ash and deoiled soya.

Adsorbent Di � 10�7 Do –Ea

(kJ mol �1)
–DS#

(J K�1 mol �1)
30 �C 40 �C 50 �C

Bottom ash 1.797 1.881 1.101 8.04 � 10�11 45.967 397.07
Deoiled soya 1.203 1.168 1.086 2.34 � 10�7 9.149 330.76
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ters such as inlet flow rates, concentration, and bed height were
adjusted for proper output of the process. Idealized breakthrough
curves is expressed by plotting a graph between the volumes of
effluent coming out of the column against the concentration of
the adsorbate and are depicted in Fig. 11. It is found that 0.1 g of
bottom ash adsorbs 1.51 mg of the dye from 11.84 mg of the dye
present in the solution, whereas on the other hand the same
amount of deoiled soya (0.1 g) adsorbs 3.76 mg of the dye out of
14.63 mg of it in the solution.

The following equations were used to calculate different param-
eters describing breakthrough curves:

tx ¼
Vx

Fm
; ð18Þ

td ¼
Vx � Vb

Fm
; ð19Þ

d
D
¼ td

tx � tf
¼ td

tx � t1ðf � 1Þ ¼
ðVx � VbÞ

Vbþ f ðVx � VbÞ
; ð20Þ
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Fig. 11. Breakthrough curve for Congo red–botto
f ¼ 1� tf

td
¼ Ms

ðVx � VbÞCo
; ð21Þ

Percentage saturation ¼ Dþ dðf � 1Þ
D

� 100: ð22Þ

Here, d is the length of the primary adsorption zone, tx is the to-
tal time involved for the establishment of primary adsorption zone,
td time for the primary adsorption zone to move down its length, tf,
time for initial formation of primary adsorption zone, Fm, mass rate
of flow of the adsorbent, and f, fractional capacity of the column.
Tables 12 and 13 portray the values calculated for all these param-
eters. The mass flow rate was obtained as 0.044 mg/cm2/min. The
values of tx and td obtained for the Congo red–deoiled soya system
were greater than the Congo red–bottom ash system. The percent-
age saturation obtained for deoiled soya (97.15%) was greater than
bottom ash (96.95%), suggesting a better adsorptive ability for Con-
go red.

3.6.2. Column regeneration and dye recovery
The selection of suitable eluent for dye recovery is made by

understanding its affinity with the dye material. The dye under
consideration is acidic in nature and exhibits good attraction to-
ward basic medium and therefore sodium hydroxide solution
was used as an eluent for the desorption of the dye from the col-
umns. The flow rate of the eluent in both cases was maintained
as 0.5 mL/min. The curves for desorption obtained for the two
adsorbents are seen in Fig. 12. A total of 170 mL of the eluent
was sufficient for complete desorption of the dye from bottom
ash while 200 mL of the NaOH solution was needed for deoiled
soya desorption. Out of the 1.50 mg of the dye adsorbed 1.20 mg
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Table 12
Calculations for fixed-bed adsorbers—bottom ash and deoiled soya.

Adsorbent Co (mol L–1) Cx (mol L–1) Cb (mol L–1) Fm (mg/cm2/min)

Bottom ash 10 � 10�5 9.99 � 10�5 8.94 � 10�5 0.044
Deoiled soya 10 � 10�5 9.99 � 10�5 3.93 � 10�6 0.044

Table 13
Parameters for fixed-bed adsorbers—bottom ash and deoiled soya.

Adsorbent tx (min) td (min) tf (min) Percentage saturation (%)

Bottom ash 3380.31 2253.54 100 96.95
Deoiled soya 3605.67 2478.90 100 97.14
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Fig. 12. Regeneration of Congo red from bottom ash and deoiled soya columns.
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(80% recovery) of the dye was removed in the case of bottom ash,
whereas out of 3.76 mg of the dye adsorbed 3.37 mg (90%) is re-
moved in the case of deoiled soya.

4. Summary

The important outcomes of the developed methodology
adapted for the removal of the anionic dye Congo red using bottom
ash and deoiled soya as adsorbents are as follows:

1. Studies clearly reveal that both waste materials, bottom ash and
deoiled soya, are highly efficient adsorbents for the removal of
Congo red from wastewaters.

2. The value of mean sorption energy (8–16 kJ mol�1) indicates
that adsorption of dye over both adsorbents occurs through
chemisorption.

3. The negative values of free energy (DG�) indicate the spontane-
ity, whereas negative values of DH� and DS� signify the exother-
mic nature and decrease in randomness of the process,
respectively.

4. The ongoing process proceeds via a pseudo-second-order mech-
anism for both adsorbents and in each case high correlation
coefficients are obtained.

5. Desorption of the dye can be successfully carried out by using
NaOH solution with about 80% and 90% recovery of Congo red
from bottom ash and deoiled soya, respectively.

Acknowledgment

One of the authors (Arti Malviya) is thankful to CSIR, New Delhi,
for the award of Senior Research Fellowship.

References

[1] V.K. Garg, R. Kumar, R. Gupta, Dyes Pigm. 62 (2004) 1–10.
[2] Sumanjit, T.P.S. Walia, R. Kaur, Online J. Health Allied Sci. 6 (2007).
[3] M. Unlu, H. Yukseler, U. Yetis, Desalination 240 (2009) 178–185.
[4] S.M. Sachdeva, K.V. Mani, S.K. Adval, V.P. Jalpota, K.C. Rasela, D.S. Chadha, J.

Assoc. Physic. India 40 (1992) 239–240.
[5] E. Longhinotti, F. Pozza, L. Furlan, M.N.M. Sanchez, M. Klug, M.C.M. Laranjeira,

V.T. Favere, J. Braz. Chem. Soc. 99 (1998) 435–440.
[6] S.S. Chandro, T. Nagaraja, Med. J. Armed Forces India 43 (1987) 291–300.
[7] M.M. Biswas, K.E. Taylor, J.K. Bewtra, N. Biswas, Water Environ. Res. 79 (2007)

351–356.
[8] S. Gupta, M. Sundarrajan, K.V.K. Rao, Teratogen. Carcinogen. Mutagen. (suppl.

1) (2003) 301–312.
[9] S.V. Mohan, N.C. Rao, J. Karthikeyan, J. Hazard. Mater. 90 (2002) 189–204.

[10] S.P. Raghuvanshi, R. Singh, C.P. Kaushik, Appl. Ecol. Environ. Res. 2 (2004) 35–
43.

[11] M.I. Alcaina-Miranda, S. Barredo-Damas, A. Bes-Pia, M.I. Iborra-Clar, A. Iborra-
Clar, J.A. Mendoza-Roca, Desalination 240 (2009) 290–297.

[12] B. Merzouk, B. Gourich, A. Sekki, K. Madani, Ch. Vial, M. Barkaoui, Chem. Eng. J.
149 (2009) 207–214.

[13] M.M. Emamjomeh, M. Sivakumar, J. Environ. Manage. 90 (2009) 1663–1679.
[14] N. Bensalah, M.A. Quiroz Alfaro, C.A. Martinez, Chem. Eng. J. 149 (2009) 348–

352.
[15] A. Ozcan, M.A. Oturan, N. Oturan, Y. Sahin, J. Hazard. Mater. 163 (2009) 1213–

1220.
[16] K. Turhan, Z. Turgut, Desalination 242 (2009) 256–263.
[17] G. Crini, Bioresour. Technol. 97 (2006) 1061–1085.
[18] J. Yu, B. Li, X. Sun, Y. Jun, R. Chi, Biochem. Eng. J. 45 (2009) 145–151.
[19] J. Acharya, J.N. Sahu, B.K. Sahoo, C.R. Mohanty, B.C. Meikap, Chem. Eng. J. 150

(2009) 25–39.
[20] B.H. Hameed, A.A. Ahmad, J. Hazard. Mater. 164 (2009) 870–875.
[21] M.A. Rauf, S.M. Qadri, S. Ashraf, K.M. Al-Mansoori, Chem. Eng. J. 150 (2009) 90–

95.
[22] N. Caner, I. Kiran, S. Ilhan, C.F. Iscen, J. Hazard. Mater. 165 (2009) 279–284.
[23] H. Dhaouadi, F. M’Henni, J. Hazard. Mater. 164 (2009) 448–458.
[24] A. Mittal, D. Kaur, J. Mittal, J. Hazard. Mater. 163 (2009) 568–577.
[25] A. Mittal, D. Kaur, J. Mittal, J. Colloid Interface Sci. 326 (2008) 8–17.
[26] A. Mittal, V.K. Gupta, A. Malviya, J. Mittal, J. Hazard. Mater. 151 (2008) 821–

832.
[27] V.K. Gupta, A. Mittal, V. Gajbe, J. Mittal, J. Colloid Interface Sci. 319 (2008) 30–

39.
[28] A. Mittal, V. Gajbe, J. Mittal, J. Hazard. Mater. 150 (2008) 364–375.
[29] A. Mittal, A. Malviya, D. Kaur, J. Mittal, L. Kurup, J. Hazard. Mater. 148 (2007)

229–240.
[30] V.K. Gupta, A. Mittal, L. Kurup, J. Mittal, J. Colloid Interface Sci. 304 (2006) 52–

57.
[31] A. Mittal, J. Mittal, L. Kurup, A.K. Singh, J. Hazard. Mater. 138 (1) (2006) 95–

105.
[32] A. Mittal, J. Mittal, L. Kurup, J. Hazard. Mater. B137 (2006) 591–602.
[33] A. Mittal, J. Mittal, L. Kurup, J. Hazard. Mater. 136 (3) (2006) 567–578.
[34] V.K. Gupta, A. Mittal, V. Gajbe, J. Mittal, Ind. Eng. Chem. Res. 45 (2006) 1446–

1453.
[35] A. Mittal, J. Hazard. Mater. 128 (2–3) (2006) 233–239.
[36] A. Mittal, L. Kurup, V.K. Gupta, J. Hazard. Mater. 117 (2005) 171–178.
[37] <http://en.wikipedia.org/wiki/Congo_red>.
[38] <http://www.jtbaker.com/msds/englishhtml/c5148.htm>.
[39] <http://www.sciencelab.com/xMSDS-Congo_red-9927502>.
[40] S.V. Rama Rao, A.K. Panda, M.V.L.N.G. Raju, S. Sunder, N.K. Praharaj, Anim. Feed

Sci. Technol. 106 (2003) 199.
[41] F. Helferrrich, Ion Exchange, McGraw-Hill, New York, 1962.
[42] A. Mittal, L. Kurup, J. Mittal, J. Hazard. Mater. 146 (2007) 243–248.
[43] F. Colak, N. Atar, A. Olgun, Chem. Eng. J. 150 (2009) 122–130.
[44] X. Li, Q. Xu, G. Han, W. Zhu, Z. Chen, X. He, X. Tian, J. Hazard. Mater. 165 (2009)

469–474.
[45] T.W. Weber, R.K. Chakrabarti, J. Am. Inst. Chem. Eng. 20 (1974) 228–238.
[46] N.K. Amin, J. Hazard. Mater. 165 (2009) 52–62.

http://en.wikipedia.org/wiki/Congo_red
http://www.jtbaker.com/msds/englishhtml/c5148.htm
http://www.sciencelab.com/xMSDS-Congo_red-9927502


26 A. Mittal et al. / Journal of Colloid and Interface Science 340 (2009) 16–26
[47] R. Nadeem, M.H. Nasir, M.S. Hanif, Chem. Eng. J. 150 (2009) 40–48.
[48] Y.S. Ho, J.F. Porter, G. McKay, Water Air Soil Pollut. 141 (2002) 1–33.
[49] V.K. Gupta, Ind. Eng. Chem. Res. 37 (1998) 192–202.
[50] K. Li, X. Wang, Bioresour. Technol. 100 (2009) 2810–2815.
[51] E. Demirbas, N. Dizge, M.T. Sulak, M. Kobya, Chem. Eng. J. 148 (2009) 480–487.
[52] R.B.M. Bergamini, E.B. Azevedo, L.R.R. Araujo, Chem. Eng. J. 149 (2009) 215–

220.
[53] E. Boyd, A.W. Adamson, L.S. Meyers, J. Am. Chem. Soc. 69 (1947) 2836–2848.
[54] D. Reichenberg, J. Am. Chem. Soc. 75 (1953) 589–597.
[55] S.A. Figueiredo, J.M. Loureiro, R.A. Boaventura, Water Res. 39 (2005) 4142–

4152.
[56] G. Bayramoglu, G. Celik, M.Y. Arica, J. Hazard. Mater. 137 (2006) 1689–

1697.


	Adsorptive removal of hazardous anionic dye “Congo red” from wastewater  using waste materials and recovery by desorption
	Introduction
	Experimental
	Materials and methods
	Material development
	Instrumentation
	Adsorption studies
	Kinetic studies
	Column studies

	Results and discussion
	Characterization of the adsorbents
	Adsorption studies
	Effect of pH
	Effect of amount of adsorbents
	Effect of particle sizes
	Effect of concentration
	Effect of contact time

	Adsorption isotherms
	Freundlich isotherm
	Langmuir isotherm
	Calculation of separation factor
	Calculation of thermodynamic parameters

	Tempkin isotherm
	Dubinin–Radushkevich isotherm

	Rate constant study
	Pseudo-first-order kinetics
	Pseudo-second-order kinetics

	Rate expression and treatment of the data
	Column studies
	Column adsorption
	Column regeneration and dye recovery


	Summary
	Acknowledgment
	References


