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(LMF) algorithm. In his work, we have developed a variable step-size least-mean
fourth algorithm with the aim in mind to achieve performance enhancement than the
traditional least-mean fourth algorithm in terms of the excess mean-square error and
retain its inherent dominance over the least-mean square algorithm in non-Gaussian
noise environments. The motivation behind it being that the time-varying step-size
model of the LMS algorithm have contributed a lot in the performance enhancement
of LMS algorithm. In contrast, the LMF algorithm that gives better convergence rate
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ملخص
 

سید ممد اسد: السم
الوارزمیة الطوة التغیة القوة الرابعة للمتوسطة من نوذج القسمة:العنوان
ماجستی علوم:الدرجة

الندسة الکهربائیة: التخصص
۲۰۰۹یونیو :تاریخ التخرج

وها قوة الدف من هذه الرسالة هو استغلل البحوث ف خوارزميات التكيف على أساس نج التدرج النسب ،  
.للمتوسط الرابعة وتوسيع نطاقه ليشمل الوارزمية القوة الربعة للمتوسط ، وخاصة ف متباینة التوقيت خطوة متغية  

بدف ف العتبار لتحقيق تسي الداء بالقارنة مع للمتوسط الرابعة خطوة متغية القوة فی هذا العمل ، وقد وضعنا  
الرابعة القوة والحتفاظ بيمنتها الصيل على التقليدیة ، من حيث الطا الربعة للمتوسط للمتوسط الرابعة القوة  

من طراز القوة الربعة للمتوسط الدافع وراء ذلك هو أن متباینة التوقيت خطوة. ف بيئات غي ضوضاء تویه للمتوسط  
للمتوسط الربعة  قوة  من  الداء  تسي  ف  أسهمت كثيا  القوة. قد  ،الوارزمية  القابل  للمتوسط الرابعة ف   

 الت تعطي أفضل معدل التقارب ف غي غاوسي ضوضاء البيئة ل یتم بثها ف الطيف الكامل

 بوجه الاص ، البحوث وتقييمها الوارزمية ف الداء من خلل تليل شامل من حيث الداء الطرد الدولة ، وتتبع
وأخيا ، فإن .ت استخدام مبدأ الفاظ علی الطاقة للحصول علی التحليل. سلوك عابر من خلل الوسائل التحليلية  

۔عددا من نتائج الاكاة تتم لثبيت هذه النتائج النظریة الت كما هو متوقع ل تسفر عن تسي الداء
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Chapter 1

Introduction

With the advancement in digital electronics and communication techniques, there

has been extensive research in various domains of signal processing that mainly deal

in achieving close-to-optimal performance for various systems like in system identi-

fication and inverse modelling. Recently digital wireless communication has been a

central field of active research due to the promise it holds.

Signal processing plays a key role in all digital communication systems where

certain system behaviours are dealt with signal processing techniques. One of these

is adaptive signal processing where a certain system, often called a filter, tries to

learn the behaviour of another without any outside intervention, hence adaptive.

This adaptation mechanism of adaptive filters make them an ideal choice for systems

that are blind to certain statistics of a system.

Due to their ease of implementation as a digital filter, their field of application

can be as diverse as digital communication systems, industrial equipment, medical

instrumentation, geophysical sciences and military where they can be utilised for
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equalisation [1], system identification [2], noise cancellation [3] and linear prediction

[4]. Hence there is extensive research in the performance enhancement of adaptive

filters.

With this in mind, we will discuss some key principles and applications of adaptive

filters and later on carry out a thorough analysis of their performance characteristics

which is basically the broader aim of this study.

1.1 Adaptive Filters : Basics

The need for adaptive filters arise in the case where certain statistics of the system are

unknown. The argument to use adaptive filters can be motivated through the fact that

the Wiener filter gives the optimum steady-state solution in a stationary environment

for the case where all the statistics of the system are known [2]. In particular, it means

that the statistics of the input signal like its autocorrelation matrix and the cross

correlation between the desired and the input signals are known. Hence the goal of

an adaptive filter is to “find and track” the optimum filter corresponding to the same

signal operating environment with complete knowledge of the required statistics. In

this context, optimum filters provide both guidance for the development of adaptive

algorithms and a yardstick to evaluate the theoretical performance of adaptive filters.

The process of “find and track” is usually achieved in a recursive manner. The

adaptive filter is initialised with some conditions independent of the stochastic en-

vironment it is operating in. The mechanism of adaptation tracks some statistical

criteria against which the filter learns and adapts. As time proceeds, the recursive

2



mechanism achieves the solution that is close to the optimum in some statistical

sense. This adaptability, with no outside intervention, makes adaptive filters the

most elegant solution that can be employed in such applications.

The performance of adaptive filters is evaluated using the concepts of stabil-

ity, speed of adaptation, quality of adaptation, and tracking capabilities. This is

a formidable task due to the fact that adaptive filters are inherently nonlinear devices

whose performance depend on sequences that are themselves nonlinear and time-

varying. Further complications arise due to the fact that these signals are stochastic

in nature.

The parameters of performance evaluation of an adaptive filter is its steady-state

performance, tracking performance and transient performance. Steady state perfor-

mance analysis is carried to study the amount of error that remains (i.e. residual

error) when the adaptation reaches its final state after sufficient time has passed.

Tracking performance analyses the filter’s capability in tracking changes in the sys-

tem. The transient analysis studies the time-evolution of the adaptive filter. The

main aim is to study its convergence rate and stability.

1.2 Adaptive Filters : Applications

As described earlier, the usefulness of adaptive filter manifests in the situation where

practical applications cannot successfully be implemented by using fixed digital filters.

This is due to the fact that either we do not have sufficient information to design a

digital filter with fixed coefficients or the design criteria change during the normal

3



operation of the filter. Some applications where adaptive filters are used are briefed

here to emphasise their diversity and necessity.

1.2.1 System Identification

In the class of applications dealing with system identification, an adaptive filter is used

to provide a linear model that represents the best fit (in some sense) to an unknown

plant. The depiction of this scenario is given in Figure 1.1. The plant and the adaptive

filter are driven by the same input {xn}. The plant output supplies the desired

response, dn, for the adaptive filter. If the plant is dynamic in nature, the model will

be time-varying. This application is abundantly used in wireless communication for

channel estimation [5].

P l a n t

A d a p t i v e  F i l t e r

+

S y s t e m
I n p u t

S y s t e m
O u t p u t

x

e
y-

d+

Figure 1.1: Adaptive system identification

1.2.2 Adaptive Equalisation

Every waveform propagating through a channel suffers a certain amount of time

dispersion because the frequency response of the channel does not have constant

magnitude and linear phase. As a result, the tails of adjacent pulses interfere with
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the measurement of the current pulse (inter-symbol interference) and can lead to

an incorrect decision. Equalisation corresponds to adjusting the relative phases of

different frequencies to achieve a constant group delay.

D e l a y

A d a p t i v e  F i l t e r

+

S y s t e m
I n p u t

S y s t e m
O u t p u t

u

e
y-

d+

P l a n t

Figure 1.2: Adaptive equaliser

Since the channel can be modelled as a linear system, we can compensate for

its distortion by using a linear equaliser as depicted in Figure 1.2. The goal of the

equaliser is to restore the received pulse, as closely as possible, to its original shape.

The equaliser learns the channel and inverses its effects. Equalisers are therefore

categorised as inverse modelling filters because they actually behave as inverse of

the channel. The combined response of the channel and the adaptive filters should

thus be a delta function. Adaptive equalisers are an essential part of any digital

communication system and have thus been analysed extensively in literature [1] .

1.2.3 Linear Prediction

The function of the adaptive filter shown in Figure 1.3 provides the best prediction of

the present value of a random signal. Thus the current value of the signal serves the

purpose of a desired response, dn, for the adaptive filter. Past values of the signal,

{un}, are input to the adaptive filter. Depending on the application of interest, the
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adaptive filter output or the estimation (prediction) error may serve as the system

output. In the first case, the system operates as a predictor; in the latter case, it

operates as a prediction-error filter.

A d a p t i v e  F i l t e r +
S y s t e m

I n p u t
S y s t e m

O u t p u t  1

u

e

y

-

d+

D e l a y

S y s t e m
O u t p u t  2

Figure 1.3: Linear prediction

1.2.4 Interference Cancellation

In this application, the adaptive filter is used to cancel unknown interference contained

in a primary signal which also contains the information-bearing signal component,

with the cancellation being optimised in some sense. Figure 1.4 depicts the filter

operation. The primary signal serves as the desired response for the adaptive filter.

A reference signal is employed as the input to the adaptive filter. The reference signal

is derived in relation to the primary signal in such a way that the information-bearing

signal component is weak or essentially undesirable. These type of filters are used in

noise cancellation applications [3].

A d a p t i v e  F i l t e r +
S y s t e m

I n p u t
S y s t e m
O u t p u t

u

e

y

-

d+

P r i m a r y
S i g n a l

Figure 1.4: Interference cancellation
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1.3 Adaptive Filters : Features

Every adaptive filter involves one or more input signals and a desired response signal

that may or may not be accessible to the adaptive filter. Every adaptive filter consists

of three modules as depicted in Figure 1.5:

– Filtering structure. This module is formed by the digital filter design techniques

that are available. It can either be a finite impulse response (FIR) digital filter or

an infinite impulse response (IIR) digital filter. The filtering structure is linear

if the output is obtained as a linear combination of the input measurements;

otherwise it is said to be nonlinear. FIR filter is an example of linear structure,

where it can be implemented with a direct or lattice structure. The structure is

fixed by the designer, and its parameters are adjusted by the adaptive algorithm.

Adaptive filters use FIR filters as a favourable design implementation where the

filter is commonly termed a transversal filter or a tapped delay line.

– Criterion of performance. This module processes the desired response (when

available) and output of the adaptive filter by the criterion of performance to

assess its quality with respect to the requirements of the particular application.

The choice of the criterion is a balanced compromise between what is acceptable

to the user of the application and what is mathematically tractable; that is, it

can be manipulated to derive an adaptive algorithm.

– Adaptation algorithm. The adaptive algorithm uses the value of the criterion

of performance, or some function of it, and the measurements of the input and

7



desired response (when available) to decide how to modify the parameters of

the filter to improve its performance. The complexity and the characteristics of

the adaptive algorithm are functions of the filtering structure and the criterion

of performance.

A d a p t a t i o n
A l g o r i t h m

A d a p t i v e  F i l t e r

S y s t e m
O u t p u t

S y s t e m
I n p u t

P e r f o r m a n c e
E v a l u a t i o n

Figure 1.5: Principle of adaptive filters

The design of any adaptive filter is highly dependent on the a priori information

about the signals and the dynamics of the application. Unreliable a priori informa-

tion and/or incorrect assumptions about the signal can lead to serious performance

degradations or even unsuccessful adaptive filter applications. The conversion of the

performance assessment to a successful parameter adjustment strategy, that is, the

design of an adaptive algorithm, is the most difficult step in the design and application

of adaptive filters.

1.4 Adaptive Filters : Algorithms

Generally adaptive filter algorithms are implemented in an iterative or recursive man-

ner. With each iteration, they improve the performance of the filter according to the
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criteria of performance. Specifically if we let wn to be a vector of length N whose

elements are the time-varying coefficients of an FIR filter at time index n, then the

adaptation mechanism of the vector can be given by

wn+1 = wn − µ [∇wJw] , (1.1)

where µ is the learning parameter called the step-size that controls the amount of

correction applied to the weight vector in each iteration and ensures the convergence

of the adaptive algorithm. The term ∇wJw is the gradient of the cost function with

respect to the weight vector of the algorithm. Equation (1.1) represents a special

approach in adaptive algorithms called the steepest descent [2]. In this approach, the

solution to the problem, i.e., the filter that best suits the application, is sought in the

direction where the cost function is minimised. Hence the term ∇wJw is given as

∇wJw =
∂J

∂w
=

∂

∂w
E [g (en)] , (1.2)

where g (en) is a function of the error and consequently

Jw = E [g (en)] (1.3)

is the cost function. According to the steepest descent approach, the gradient of the

cost function can be written as

∇wJw = Rxwn −Rdx, (1.4)
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where xn is the tap input regressor taken from the input sequence {xn}, Rx =

E
[
xnx

T
n

]
is the autocorrelation of the input regressor and Rdx = E [xndn] is the

cross-correlation of the input regressor and the desired response. The expectation

that appears in (1.2) requires the knowledge of the statistics of the tap input vec-

tor that, in practise, is not available. Hence the gradient has to be estimated by

dropping the expectation and taking the sample value of the tap input. This intro-

duces a randomness or stochastic behaviour to all such adaptive algorithms and are

hence termed stochastic gradient algorithms. The approximation made for (1.2) can

be further explored where [5]

−∇̂wJw = R̂dx − R̂xwn,

= xn
[
dn − xTnwn

]
,

−∇̂wJw = xnen, (1.5)

or in general it can be setup as

−∇̂wJw = xng (en) , (1.6)

where g (en) is a function of the error,∇̂wJw can be viewed as the gradient applied to

the instantaneous error function, and

R̂dx = dnxn, R̂x = xnx
T
n

10



are the instantaneous cross-correlation between the desired and tap input vector and

the autocorrelation of the tap input vector, respectively. Substituting (1.6) in (1.1)

will give us the generic adaptation equation for stochastic gradient algorithms as

wn+1 = wn + µxng (en) , (1.7)

where µ is the step-size of the algorithm. Selecting the appropriate error function,

g (en), will yield different algorithms that behave totally differently and require ex-

tensive analysis for their proper behaviour to be characterised.

1.4.1 Least-Mean Square (LMS) Algorithm

By far the most popular stochastic gradient algorithm is the Least-Mean Square

(LMS) algorithm developed by Widrow and Hopf. The name signifies its cost function

as the minimisation of the mean squared error. For the filters of type (1.7), the error

function for LMS is given by g (en) = en, so the LMS weight update recursion will be

wn+1 = wn + µxnen. (1.8)

Due to its simple yet elegant mathematics, this algorithm has been extensively

used in various applications. The most motivating factor of its usage is its simplicity

of implementation. The LMS algorithm achieves good performance characteristics

when the condition of operation are rightly suited for it. This performance is seen

where the noise environment is Gaussian. Even then there are limitations to its
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performance that has seen its fair share of research. The motivation behind improving

the LMS algorithm is its slow convergence rate and higher steady-state error. The slow

convergence of the LMS algorithm is due the fact that it is based on the minimisation

of the mean-squared error and is only dependent upon the second order moment of

the noise; this results in identical convergence rates in various noise environments.

Also the steady-state error of the LMS algorithm is dependent on the second order

moment of noise which, as we shall see later, compared to algorithms based on higher

order moments of error, results in higher steady-state error. Moreover, the steady-

state error and rate of convergence are highly dependent upon the step-size of the

algorithm. In fact the steady-state error is inversely proportional to the step-size

parameter. This highlights a compromise that has to be made in every design of

fixed step-size algorithms.

1.4.2 Variable Step-Size (VSS) LMS Algorithms

A popular approach for the improvement of fixed step-size algorithms is to implement

the step-size that is time-varying in the steepest descent manner. The weight update

equation only changes in the sense that now the learning parameter µ becomes time-

varying. So (1.8) becomes

wn+1 = wn + µnxnen, (1.9)

where µn is the time-varying step-size. The variable step-size LMS (VSSLMS) pro-

vides improved performance while maintaining the inherent simplicity and robustness

of the conventional fixed step-size algorithm.
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Generally, the approach with VSSLMS is to devise step-size rules that give large

steps when the estimated error is large and small steps when the error is small,

thereby avoiding the trade-off between convergence rate and steady-state error for

fixed step-size LMS. This mechanism is mostly data-dependent and is implemented

in an iterative manner (steepest descent). For this reason, there has been a lot of

research in the VSSLMS field [6–15] and their stability [16–18]. The two main aims of

these researches are to either improve the convergence rate of the algorithm for a given

Excess Mean-Square Error (EMSE) or to improve the EMSE for a given convergence

rate. In terms of the convergence rate, the desired performance enhancement is the

speed with which an algorithm attains the steady-state. With high data rates, it

is a desirable feature of any algorithm to achieve the steady-state in the minimum

number of iterations. Conversely, in terms of the excess mean-square error, the desired

performance is to attain lower steady-states at a certain convergence rate. Lower

excess mean-square error means the filter attains a steady-state error that is closer to

the minimum achievable steady-state error, that is, the minimum mean-square error.

With the advancement of modern digital communication systems, both performance

aspects are of great importance.

Some of the most popular implementations of the VSSLMS algorithms are dis-

cussed below.

1. Kwong and Johnston (1992) [12] used the mean-square error value to update

the step-size in the sense that higher value resulted in a steep step while smaller

error resulted in smaller steps, allowing the adaptive filter to track changes in
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the system as well as produce a small steady-state error. The update equation

of the step-size is given as

µn+1 = αµn + γe2
n, (1.10)

where 0 < α < 1 and γ > 0.

2. Mathews and Xie (1993) [15] used a gradient descent algorithm designed to

reduce the squared estimation error during each iteration to update the step-

size as

µn+1 = µn + ρenen−1x
T
n−1xn, (1.11)

where ρ is a small positive constant that controls the adaptive behaviour of the

step-size sequence.

3. Aboulnasr and Mayyas (1997) [6] recognised the sensitivity of the previous

VSSLMS implementations to the measurement noise and proposed using an

estimate of the autocorrelation between successive estimation errors as follows:

µn+1 = αµn + γp2
n, (1.12)

pn = βpn−1 + (1− β) enen−1. (1.13)

The use of pn in the update has two advantages. First, the error autocorrela-

tion is generally a good measure of the proximity to the optimum. It ensures

the adaptation in the direction of minimisation. Second, it rejects the effect
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of the uncorrelated noise sequence on the step-size update as consecutive noise

samples would be uncorrelated. In the early stages of adaptation, the error au-

tocorrelation estimate p2
n is large, resulting in a large step-size. As we approach

the optimum, the error autocorrelation approaches zero, resulting in a smaller

step-size. This provides the fast convergence due to large initial µn while en-

suring low misadjustment near optimum due to the small final µn even in the

presence of measurement noise.

4. Zhao et al (2008) [13] have recently proposed a new VSSLMS algorithm where

they have improved the previous algorithms in terms of their performance

against measurement noise [6, 8, 9, 12]. The applications where signal-to-noise

ratios are low, are bound to have a critical impact on the performance of adap-

tive filters. The idea here is to adjust the variable step-size using a quotient

form of filtered versions of the quadratic error. The filtered estimates of the

error are based on exponential windows, applying different decaying factors for

the estimations in the numerator and denominator. This scheme is given as

µn+1 = αµn + γθn, (1.14)

θn =

∑n
i=0 a

ie2
n−i∑n

j=0 b
je2
n−j

. (1.15)

where a and b are decaying factors used for the exponential windows of (1.15)

and bounded as 0 < a < b < 1.
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1.4.3 Least-Mean Fourth (LMF) Algorithm

Adaptive filters based on higher order statistics are known to perform better than

the mean square estimation employed in the Least-Mean Square algorithm in some

scenarios. An algorithm based on the minimisation of the fourth moment of the

output estimation error, namely the Least-Mean Fourth (LMF) algorithm [19] is one

such example. For the filters of type (1.7), the error function for LMF is given by

g (en) = e3
n. Then by substituting in (1.7), we get the LMF recursion as

wn+1 = wn + µxne
3
n. (1.16)

The LMF algorithm exhibits lower steady-state error relative to LMS algorithm

as shown in non-Gaussian environments [19]. This is due to the fact that the excess

mean-square error of the LMS algorithm is dependent only on the second order mo-

ment of the noise. The second order moment, or variance of the noise evaluates to

be the same for all the noise environments. In contrast, the excess mean-square error

of the LMF algorithm depends on higher order moments of the noise that results in

lower steady-state error as compared to the LMS algorithm. Recognising this feature

of the LMF algorithm, it was also known that the convergence behaviour of the LMS

and LMF algorithms are susceptible to the condition number, i.e., on the ratio of

the maximum to the minimum eigenvalues of the input signal autocorrelation matrix

(R) [19].

To overcome this dependency on the condition number, the normalised LMF

(NLMF) algorithm was introduced [20–23] where the LMF recursion was modified

16



to include an inverse norm of the input regressor. This resulted in a faster conver-

gence of the algorithm and more stability.

However, this higher-order statistics of the error in the LMF algorithm requires a

much smaller step-size to ensure stable adaptation [21]. The cubic error in the LMF

recursion can cause severe initial instability. In order to ensure the stable adaptation

of the algorithm, a normalisation of the step-size was proposed [24–26]. The step-size

was normalised by weighted signal and error powers through a mixing parameter.

It is evident from above that research in LMF algorithm and its variants is largely

focused on their steady-state performance. Recently though, quite a number of stud-

ies have emerged particularly dealing with convergence and stability analysis [27–32].

Particularly in [31], it has been shown that the LMF algorithm is never mean-square

stable for input regressors that are unbounded. There is always a non-zero proba-

bility of divergence, even for Gaussian distribution. Nevertheless, results based on

standard mean-square stability analysis are useful for practical design purposes. The

probability of divergence which was shown to be a function of the step-size, tends to

rise abruptly only when it moves past a given threshold. Before that, the probability

of divergence tends to be sufficiently small to grant the practical applicability of the

LMF algorithm. In case the error becomes unbounded, a re-initialisation scheme can

be included in practical scenarios. The estimation of the region of the quick rise of

the probability has been tackled in [30]. Moreover, signal amplitudes are necessar-

ily limited in practical applications, which contributes to reduce the probability of

divergence for step sizes smaller than the threshold.
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1.5 Thesis Objectives and Organisation

This thesis work is carried out to develop a Variable Step-Size Least-Mean

Fourth algorithm with a Quotient form. The proposed algorithm exploits the

fact that time-varying step-size LMS algorithms have outperformed the ones with

fixed step-size. There seems to be a lack of the time-varying step-size model and

analysis of LMF algorithm in the strict sense of the word. This study aims to tackle

this untapped design flexibility of the variable step-size to be utilised with LMF al-

gorithm.

The main objectives of this study can be enumerated as:

1. To come up with the weight update equation of the VSSLMFQ algorithm from

the traditional LMF algorithm.

2. To analyse the performance of the algorithm when it has converged, that is,

the steady-state performance of the proposed algorithm in terms of its excess

mean-square error.

3. To establish the necessary conditions for the convergence of the algorithm in

terms of its stability in the mean and mean-square sense.

4. To analyse the performance of the algorithm to time-variations or nonstation-

arity in the system in terms of the tracking excess mean-square error.

5. To analyse the performance of the algorithm in terms of the time-evolution of

the weight vector and derive its mean-square deviation and mean-square error.

6. To carry out experiments to corroborate the analytical analysis.
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The thesis has been organised to fulfil all these objectives. In Chapter 2, the proposed

algorithm is presented and its recursion is described. Moreover, this Chapter also

describes the mathematical layout of the thesis by describing the concept of energy

conservation [5], which underlies the whole framework of the analysis carried out. In

Chapter 3, the steady-state analysis is carried out and expressions for the excess mean-

square error have been derived. Additionally, the advantage of using the proposed

algorithm is highlighted in detail. While Chapter 4 discusses the tracking analysis

of the proposed algorithm and obtains expression for excess mean-square error for

the tracking scenario, Chapter 5 details the transient behaviour through a rigorous

analysis and derives expressions for the mean-square error and misadjustment.

Chapter 6 reports the different simulation results carried out in different noise en-

vironments to corroborate the theoretical findings for the proposed algorithm. Finally

Chapter 7 summarises the thesis contributions and motivations for future research.
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Chapter 2

A Variable Step-Size Least-Mean

Fourth Algorithm of the Quotient

Form

2.1 Introduction

An overview of the various adaptive algorithms and their variants in the previous

chapter has given us an insight on how adaptive filters are classified and charac-

terised. The two main performance factors that are highlighted are its convergence

rate (speed) and residual error (accuracy). It has also been established that these are

reciprocating factors, meaning both cannot be optimised at the same time. So any

analysis has to have a compromise between the two.

One main performance degrading factor that all adaptive filter suffer from is the

measurement noise statistics. In fact, according to the Wiener filter theory, measure-
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ment noise is the minimum achievable error floor [2]. Due to the stochastic nature of

adaptive filters, this minimum error floor is not achievable. This becomes a motivating

factor for research to find ways in which this difference can be minimised.

Most of the adaptive algorithms discussed in the previous chapter recognised this

and proposed ways to minimise the excess error. Particularly the approaches devised

in [6,8,13] achieved better results. Zhao et al [13] have proposed a time-varying step-

size based on the quotient of the filtered quadratic error. This affects the performance

of the algorithm profoundly in terms of the excess mean-square error.

2.2 System Model

Before delving into the details of the proposed algorithm, it would be appropriate

to layout the system for which the performance of the algorithm would be tested.

It has been a common practise to employ a problem of system identification for the

performance analysis of adaptive filters. The system is depicted in Figure 1.1.

Based on the system identification problem, two types of channel models are

going to be used in the analysis; namely time-invariant and time-varying. The time-

invariant channel model is given as

dn =
N−1∑
i=0

xiw
o
n−i + zn = xTnwo + zn, n = 0, 1, 2, 3... (2.1)
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whereas the time-varying channel model is given as

dn =
N−1∑
i=0

xiw
o
n,n−i + zn = xTnwo

n + zn, n = 0, 1, 2, 3... (2.2)

where in both the equations {xn} is the input process with zero mean and variance

σ2
x, {zn} is the stationary noise process with zero mean and variance σ2

z and [wo,wo
n]

are the time-invariant and time-varying channel impulse responses, respectively, with

taps N . The adaptive filter response corresponding to this problem of estimation can

be given as

yn =
N−1∑
i=0

xiwn,n−i = xTnwn, n = 0, 1, 2, 3... (2.3)

where {xn} is again the input process with zero mean and variance σ2
x and wn is an

N × 1 weight vector of the adaptive filter updated through an algorithm. With this

model at hand, we can express the problem of minimisation of the mean fourth error

as

min
w
E
[
|en|4

]
, (2.4)

or

∇wJw =
∂J

∂w
=

∂

∂w
E
[∣∣dn − xTnwn

∣∣4] , (2.5)

where ∂
∂w

is the differentiation with respect to a vector and the gradient is thus given
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as

∂J

∂w
=

1

2



∂J
∂x0

+ j ∂J
∂y0

∂J
∂x1

+ j ∂J
∂y1

...

∂J
∂xN−1

+ j ∂J
∂yN−1


, (2.6)

where generally each element of the vector w is given as wk = xk + jyk. Evaluating

the gradient for (2.4) gives us

∇wJw = −2E
[
xne

3
n

]
. (2.7)

Replacing the expectation by instantaneous values, we can express (2.7) as [5]

∇̂wJw ≈ −xne
3
n, (2.8)

where we have used the convention of incorporating the constant multiplier with the

step-size of the algorithm thus eliminating it in the recursion. This leads us to the

LMF recursion given in (1.16).

2.3 Proposed Algorithm

The proposed Variable Step-Size Least-Mean Fourth algorithm of the Quotient form

(VSSLMFQ) is based on the variable step-size update equation recently proposed by

Zhao et al (2008) given in [13]. For the filters employing variable step-size, (1.16) will
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become

wn+1 = wn + µnxne
3
n, (2.9)

where now µn represents the time-varying step-size parameter governed by some up-

date mechanism.

The variable step-size update mechanism employed in the proposed algorithm is

designed to achieve lower steady-state EMSE or misadjustment, faster tracking prop-

erty in nonstationary environment and enhanced performance for the applications like

noise cancellation as compared to the traditional LMF algorithm. It will be shown

through analysis that the parameter adjustment of the proposed variable step-size is

independent of the measurement noise, making it a more robust design. It also adds to

the design flexibility of the algorithm by introducing four design parameters as com-

pared to one in the traditional LMF algorithm. The overall performance enhancement

achieved at the expense of implementation complexity makes the algorithm a viable

alternative to the traditional LMF algorithm.

The variable step-size algorithm adjusts the time-varying step-size based on a

quotient of filtered quadratic error. The proposed scheme is listed as follows:

µn+1 = αµn + γθn, (2.10)

θn =

∑n
i=0 a

ie2
n−i∑n

j=0 b
je2
n−j

. (2.11)

where a and b are decaying factors used for the exponential windows of (2.11) and

bounded as 0 < a < b < 1. The constant parameters α and γ are adjusted as in [13].
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The use of a quotient form in (2.10) and (2.11) serves two objectives. First, the

quotient is expected for a smoothing decrease of the step-size, where the transient be-

haviour of the proposed variable step-size in stationary environment may be described

by a reformulation of (2.11) as follows:

θn =
An
Bn

=
aAn−1 + e2

n

bBn−1 + e2
n

, (2.12)

≈ a

b
θn−1 +

e2
n

bBn−1

. (2.13)

Note that in derivation of (2.13), we have neglected the value of e2
n in the denomi-

nator, since compared to e2
n, the error cumulant bBn−1 becomes much larger during

adaptation because the decaying factor b is very close to one. If we assume that the

initial step-size is set to µmax for fast convergence, then from (2.13) we see that the

ratio of e2
n and bBn−1 decreases with the decrease in the error power. This ensures

that the step-size also decreases with the decrease in θn. Second, in steady-state,

the EMSE of the algorithm should be much smaller compared to the power of mea-

surement noise. This implies that the measurement noise dominates the numerator

and denominator of (2.11). In statistic sense, the power of measurement noise in the

numerator and denominator could be cancelled out, leaving the steady-state mean

step-size determined only by the constant parameters. Therefore, the decaying fac-

tors a and b could be designed beforehand for a desired steady-state mean step-size

level.

In the next section we are going to layout the mathematical basis on which we

are going to base our analysis. It is called the fundamental energy conservation
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method [5]. It neatly unifies the performance analysis of adaptive filters into a single

concept of energy conservation.

2.4 Energy Conservation Method

The energy conservation relation described here will hold for any general data {dn, xn}.

The generic form of the filter update equation is given as

wn+1 = wn + µnxng (en) , (2.14)

where xn is input regressor, µn is the time-varying step-size and g (en) is a function

of the error. Defining the weight-error vector as

vn , wo −wn, (2.15)

subtracting wo from both sides of (1.7), we can rewrite the recursion (2.14) as

vn+1 = vn − µnxng (en) . (2.16)

We now define two new error quantities namely a priori estimation error , ean, and a

posteriori estimation error , epn, obtained by pre-multiplying the above equation by

xTn to get

epn = ean − µn ‖xn‖2 g (en) , (2.17)
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where

ean , xTnvn, epn , xTnvn+1. (2.18)

One important result that is worth noting here is the relationship between the a priori

estimation error and the EMSE. By definition,

EMSE = lim
n→∞

E
[
e2
n

]
− Jmin, (2.19)

where Jmin = σ2
z . Using

en = dn − xTnwn,

= zn + xTn (wo −wn) .

Then by using (2.18) we get

en = zn + ean. (2.20)

Equation (2.20) will later be used to find an alternate expression for the EMSE.

The equations (2.17) and (2.18) provide an alternative description of adaptive

filters in terms of error quantities epn, ean, vn+1, vn and g (en). This description is

useful since we are often interested in questions related to the behaviour of these

errors, such as:

1. Steady-state behaviour, which relates to determining the steady-state val-

ues of the weight error variance, E
[
‖vn‖2], a priori estimation error variance,

E
[
|ean|2

]
and mean-square error, E

[
|en|2

]
.
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2. Stability, which relates to determining the range of values of the step-size µ

over which the variances E
[
‖vn‖2] and E [|ean|2] remain bounded.

3. Transient behaviour, which relates to studying the time-evolution of the

weight error variance, E
[
‖vn‖2], mean weight error vector, E [vn] and mean-

square error, E
[
|en|2

]
.

For the above analysis to be carried out, we will be relying on the energy conservation

relation that relates the squared norms of the error quantities.

In order to derive the energy relation, we will first remove the error nonlinear-

ity function g (en) from (2.16) by solving (2.17) for g (en) and substituting in (2.16),

meaning that the resulting energy relation will hold irrespective of the error nonlin-

earity. Consider the following two case:

1. xn = 0. This is a degenerate situation. In this case, it is obvious from (2.16) and

(2.17) that vn+1 = vn and ean = epn so that ‖vn+1‖2 = ‖vn‖2 and |ean|2 = |epn|2.

2. xn 6= 0. In this case, we solve for g (en) from (2.17) to get

g [en] =
1

µn ‖xn‖2 [ean − epn] . (2.21)

Substituting the above equation in (2.16) we get

vn+1 = vn −
xn

‖xn‖2 [ean − epn] . (2.22)

The above equation gives the relation in terms of the four error quantities vn+1, vn, ean
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and epn. It is also worth noting that even the step-size is cancelled out. Rearranging

(2.22) we get

vn+1 +
xn

‖xn‖2 ean = vn +
xn

‖xn‖2 epn. (2.23)

By evaluating the energies on both sides, the following energy equality holds:

‖vn+1‖2 +
1

‖xn‖2 |ean|
2 = ‖vn‖2 +

1

‖xn‖2 |epn|
2 . (2.24)

Considering both zero and nonzero regressors by defining xn such that

xn ,


1/ ‖xn‖2 if xn 6=0

0 otherwise

. (2.25)

Using xn we arrive at the general energy relation as

‖vn+1‖2 + xn |ean|2 = ‖vn‖2 + xn |epn|2 . (2.26)

This result will the used extensively in the analysis of adaptive filters [5].
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Chapter 3

Steady-State Analysis of the

VSSLMFQ Algorithm

3.1 Introduction

In this chapter, the steady-state analysis of the proposed algorithm in terms of its

Excess Mean Square Error (EMSE) is carried out. For this purpose we are going

to make use of the energy conservation relationship derived in the previous chapter.

The analysis will be general, meaning it will require the least amount of assumptions.

This benefit follows from the use of energy conservation method as will be discussed

later. Before we proceed, a few assumptions do need to be made that are going to be

used in the analysis of the algorithm [5]:

A1 The input process {xn} is zero-mean with autocorrelation matrix

R = E
[
xnx

T
n

]
.
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A2 The noise process {zn} is a zero mean and (i.i.d.) with variance σ2
z and

independent of the input process {xn}.

A3 The step-size µn is statistically independent of the weight update vector

wn.

A4 The noise process {zn} is independent of the a priori estimation error ean

and weight-error vector {vn for j < n}.

The assumptions taken here are quite general in nature. Assumption A1 is a con-

sequence of using the energy conservation method. Hence the analysis will be valid

for any general data that meets the condition in A1. A2 is required on the basis

that to keep the analysis tractable and is very common in literature. It is known as

the independence assumption. we require the noise process to have such statistics.

A3 is required because of the stochastic nature of the step-size µn. Although A3 is

not true in general because µn and wn are functions of xn and zn for any given n

and therefore are dependent but in the steady-state, since the step-size varies slowly

around its mean value, justifies A3. A4 follows from A2.

3.2 Mean Square Analysis of the VSSLMFQ

The proposed algorithm’s weight update equation given in Chapter 2 can be written

as

wn+1 = wn + µnxne
3
n, (3.1)
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where µn varies as given in (2.10) and (2.11). With reference to the energy conser-

vation method discussed in Chapter 2 where the energy conservation relation was

derived in (2.26) for a generic algorithm, the error function used was given as g (en).

The selection of this error function lead to various algorithms whose performance

analysis is totally different for any given g (en). In the present case of VSSLMFQ,

this error function is given as g (en) = e3
n.

Taking into account the definition of steady-state operation of an adaptive filter

as

E [vn+1] = E [vn] = s as n→∞, (3.2)

E
[
‖vn+1‖2] = E

[
‖vn‖2] = c as n→∞, (3.3)

where vn is the weight-error vector defined in (2.15), we take the expectation of the

energy conservation relation (2.26) to arrive at

E
[
‖vn+1‖2]+ E

[
xn |ean|2

]
= E

[
‖vn‖2]+ E

[
xn |epn|2

]
. (3.4)

Evaluating (3.4) for n→∞(steady-state) then using (3.2) and (3.3) we can write

E
[
xne

2
an

]
= E

[
xn
(
ean − µn ‖xn‖2 e3

n

)2
]
, (3.5)

where we have used (2.17) with g (en) = e3
n. Expanding the right hand side of (3.5)
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and simplifying gives us

xn
(
ean − µn ‖xn‖2 e3

n

)2
= xn

(
e2
an + µ2

n ‖xn‖
4 e6

n − 2eanµn ‖xn‖2 e3
n

)
. (3.6)

Substituting in (3.5) we get

E
[
xne

2
an

]
= E

[
xne

2
an

]
+ E

[
µ2
n ‖xn‖

2 e6
n

]
− 2E

[
eanµne

3
n

]
. (3.7)

Using A4 we can write (3.7) as

E
[
xne

2
an

]
= E

[
xne

2
an

]
+ E

[
µ2
n

]
E
[
‖xn‖2 e6

n

]
− 2E [µn]E

[
eane

3
n

]
,

µ2
nE
[
‖xn‖2 e6

n

]
= 2µnE

[
eane

3
n

]
, (3.8)

where µn = E [µn] and µ2
n = E [µ2

n]. The relation in (3.8) is known as the variance

relation. We see that the relation involves ean. It can be shown that the a priori

estimation error can be used to evaluate the EMSE of an adaptive filter. Recall the

definition of EMSE from (2.19), the result of (2.20) and invoking A4, we get

E
[
e2
n

]
= σ2

z + E
[
e2
an

]
, (3.9)

and therefore an alternative expression for the EMSE can be given by substituting

the above in (2.19) to get

EMSE = lim
n→∞

E
[
e2
an

]
= Jex. (3.10)
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Using the identities

e6
n = e6

an + 6e5
anzn + 6eanz

5
n + 15e4

anz
2
n + 15e2

anz
4
n + 20e3

anz
3
n + z6

n, (3.11)

and

e3
n = e3

an + z3
n + 3e2

anzn + 3eanz
2
n, (3.12)

in (3.8) and ignoring third and higher-order terms in ean we obtain

µ2
nE
[
‖xn‖2 (15e2

anz
4
n + z6

n

)]
= 6µnE

[
e2
anz

2
n

]
. (3.13)

Let E [zmn ] = ψmz and using assumptions A2 and A4, the above expression can be

written as

6µnσ
2
zE
[
e2
an

]
= µ2

nψ
6
ztr(R) + 15µ2

nψ
4
zE
[
‖xn‖2 e2

an

]
. (3.14)

The relation given in (3.14) is the variance relation for the proposed VSSLMFQ

algorithm and can now be used to evaluate the steady- state EMSE subject to a

few assumptions. These assumptions are mainly introduced to solve the expectation

E
[
‖xn‖2 e2

an

]
involved in (3.14). We shall examine two scenarios namely separation

principle and Gaussian regressor [5]. But before proceeding to it, we would like

to examine the steady-state behaviour of the time-varying step-size of the proposed

algorithm. The results will be used in conjunction with (3.14) to arrive at the final

expression of the EMSE.
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3.2.1 Steady-State Mean andMean-Square Behaviour of Step-

Size

The step-size update equation for the proposed algorithm is given as

µn+1 = αµn + γθn, (3.15)

where θn, the quotient of the filtered quadratic error is given as

θn =

∑n
i=0 a

ie2
n−i∑n

j=0 b
je2
n−j

, (3.16)

which can be written in a recursive manner as

θn =
An
Bn

=
aAn−1 + e2

n

bBn−1 + e2
n

,

≈ a

b
θn−1 +

e2
n

bBn−1

. (3.17)

For the steady-state mean behaviour of step-size we take the expectation of both sides

of (3.15) and assuming that n→∞ we have

lim
n→∞

E [µn+1] = α lim
n→∞

E [µn] + γ lim
n→∞

E [θn] . (3.18)
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At the steady-state, we can expect to have limn→∞E [µn+1] ≈ limn→∞E [µn] then

(3.18) can be approximated as

µ∞ ≈
γE [θ∞]

1− α
. (3.19)

The term E [θ∞] in (3.19) is given by

E [θ∞] = E

[
A∞
B∞

]
. (3.20)

From (3.17) we know that An and Bn are of recursive form. Assuming n→∞, they

can be written as

lim
n→∞

An = a lim
n→∞

An−1 + lim
n→∞

e2
n,

A∞ = aA∞ + e2
∞,

E [A∞] = aE [A∞] + E
[
e2
∞
]
.

Therefore

E [A∞] ≈ 1

1− a
E
[
e2
∞
]
. (3.21)

Similarly

E [B∞] ≈ 1

1− b
E
[
e2
∞
]
. (3.22)
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To proceed with (3.20) we make the assumption that

E

[
A∞
B∞

]
≈ E [A∞]

E [B∞]
. (3.23)

The assumption is taken to be valid because An and Bn both will vary slowly at the

steady-state and can be assumed to be independent. A description into the conditions

where such simplification can be done is detailed in Appendix 7.3. By using the results

in (3.21) and (3.22) we can approximate (3.20) as

E [θ∞] ≈ 1− b
1− a

. (3.24)

Substituting (3.24) in (3.19) we get

µ∞ ≈
γ (1− b)

(1− α) (1− a)
. (3.25)

Remark One important point worth noting is that (3.25) is free from steady-state

MSE, i.e., Jmin + Jex. This may lead us to predict that the proposed algorithm

will exhibit less sensitivity to the measurement noise as compared to other LMF

algorithms. Also the mean behaviour is proportional to the ratio
(

1−b
1−a

)
. This

prompts us to predict that steady-state MSE will be dependent of parameters a

and b. Particularly, larger a and smaller b will result in poor MSE performance

but for smaller a and larger b we will have lower MSE. This behaviour will be

seen through simulations as well.
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For the mean squared behaviour of step-size, squaring (3.15), taking the expectation

and assuming n→∞ gives us

lim
n→∞

E
[
µ2
n+1

]
= lim

n→∞

{
α2E

[
µ2
n

]
+ 2αγE [µn]E [θn] + γ2E

[
θ2
n

]}
. (3.26)

As γ is usually very small therefore the term involving γ2 can be neglected. The

approximation leads to

µ2
∞ ≈

2αγE [µ∞]E [θ∞]

1− α2
. (3.27)

Substituting results from (3.24) and (3.25) in (3.27) we get

µ2
∞ ≈

2αγ2 (1− b)2

(1− α2) (1− α) (1− a)2 . (3.28)

Equations (3.25) and (3.28) also imply a relationship between them and can thus be

written as:

µ2
∞ =

2α

1 + α
(µ∞)2 . (3.29)

The relation in (3.29) will be used to gain more insight into the EMSE of the algorithm

as we shall see later. Now that we have evaluated both the steady-state mean and

mean square step-size, we can replace them in (3.30) and (3.34) to evaluate the

steady-state EMSE for the proposed algorithm.
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3.2.2 Steady-State EMSE of the VSSLMFQ Algorithm

As described at the end of Section 3.2, the EMSE will be evaluated for two scenarios

mainly due to the expectation involved in (3.14). The two scenarios are separation

principle and Gaussian regressor [5].

Separation Principle

The separation principle is used when the step-size does not converge to a small

enough value but still guarantees the convergence of the algorithm. In this section

we will make the assumption that

A5 At steady-state,‖xn‖2 is independent of ean.

The assumption is valid under special cases for example when ‖xn‖2 have constant

Euclidean norms. So (3.14) can now be evaluated assuming n→∞ as

6µ∞σ
2
zJex = µ2

∞ψ
6
ztr(R) + 15µ2

∞ψ
4
ztr(R)Jex,

Jex =
µ2
∞ψ

6
ztr(R)

6µ∞σ2
z − 15µ2

∞ψ
4
ztr(R)

. (3.30)

Substituting the relations derived for µ∞ and µ2
∞ in (3.25) and (3.28) in (3.30) we get

Jex =

2αγ2(1−b)2

(1−α2)(1−α)(1−a)2
ψ6
ztr(R)

6 γ(1−b)
(1−α)(1−a)

σ2
z − 15 2αγ2(1−b)2

(1−α2)(1−α)(1−a)2
ψ4
ztr(R)

,

=
2αγ2 (1− b)2 ψ6

ztr(R)

6γ (1− α2) (1− a) (1− b)σ2
z − 30αγ2 (1− b)2 ψ4

ztr(R)
,

39



Jex =
αγ (1− b)ψ6

ztr(R)

3 (1− α2) (1− a)σ2
z − 15αγ (1− b)ψ4

ztr(R)
. (3.31)

White Gaussian Regressor

In this case we are going to assume that the regressor input xn has a circular Gaussian

distribution. Using white Gaussian regressor means that the individual entries of the

regressor xn = {xN−1, xN−2, . . . , x2, x1}T are uncorrelated with each other. This

results in the autocorrelation matrix of the input regressor to be of the form

R = σ2
xI. (3.32)

Also we shall assume in this section that

A6 At steady-state,vn, is independent of xn.

With these assumptions at our disposal, we will be able to find out the expectation

E
[
‖xn‖2 e2

an

]
explicitly. It can be shown that the expectation E

[
‖xn‖2 e2

an

]
can be

written as a scaled multiple of E [e2
an], i.e.,

E
[
‖xn‖2 e2

an

]
= (N + 2)σ2

xE
[
e2
an

]
. (3.33)
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The derivation of (3.33) is highlighted in Appendix 7.3. Using the above relation in

(3.14), we get assuming n→∞

6µ∞σ
2
zJex = µ2

∞ψ
6
zσ

2
xN + 15µ2

∞ψ
4
z (N + 2)σ2

xJex,

6µ∞σ
2
zJex − 15µ2

∞ψ
4
z (N + 2)σ2

xJex = µ2
∞ψ

6
zσ

2
xN,

Jex =
µ2
∞Nψ

6
zσ

2
x

6µ∞σ2
z − 15µ2

∞ (N + 2)ψ4
zσ

2
x

. (3.34)

Substituting the relations derived for µ∞ and µ2
∞ in (3.25) and (3.28) in (3.34), we

get

Jex =

2αγ2(1−b)2

(1−α2)(1−α)(1−a)2
ψ6
zσ

2
xN

6 γ(1−b)
(1−α)(1−a)

σ2
z − 15 2αγ2(1−b)2

(1−α2)(1−α)(1−a)2
ψ4
z (N + 1)σ2

x

,

=
2αγ2 (1− b)2 ψ6

zσ
2
xN

6γ (1− α2) (1− a) (1− b)σ2
z − 30αγ2 (1− b)2 ψ4

z (N + 1)σ2
x

,

Jex =
αγ (1− b)ψ6

zσ
2
xN

3 (1− α2) (1− a)σ2
z − 15αγ (1− b)ψ4

zσ
2
xN

. (3.35)

Remark Comparing the parameter of design of FSSLMF and VSSLMFQ algorithms,

their is only one behaviour controlling parameter in the FSSLMF algorithm, i.e.,

the step-size µ. The VSSLMFQ algorithm, on the other hand, offers greater

flexibility in design by introducing four design parameters namely α, γ, a and b

that control the convergence and steady-state behaviour of the step-size. Fur-
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thermore referring to (3.29), we can rewrite equations (3.31) and (3.35) as

Jex =
αµ∞ψ

6
ztr(R)

3 (1 + α)σ2
z − 15αµ∞ψ4

ztr(R)
, (3.36)

and

Jex =
αµ∞Nψ

6
zσ

2
x

3 (1 + α)σ2
z − 15αµ∞ (N + 2)ψ4

zσ
2
x

, (3.37)

respectively. For α = 1, the equations reduce to the EMSE of LMF algorithm.

Conventionally α < 1 that shows that the VSSLMFQ algorithm will exhibit a

lower EMSE than the traditional LMF algorithm.

3.3 Computation of LMF and VSSLMFQ Algorithms

Comparing the computational complexities of the FSSLMF and VSSLMFQ algo-

rithms, we find that the VSSLMFQ algorithm additionally requires six multiplica-

tions, three additions and a division per iteration by using the recursive forms of An

and Bn in (3.17). Note that there is a division computation in the VSSLMFQ algo-

rithm, which usually requires some more processing time compared to additions or

multiplications. Table (3.1) lists the computational cost of various stochastic-gradient

algorithms. Considering the processing speeds that now exist and the success of the

variable step-size in adaptive algorithms, it can safely be said that this algorithm can

be utilised for run-time applications like channel estimation/tracking and channel

equalisation.
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Table 3.1: Computational complexity per iteration for different algorithms for real-
valued data in terms of the real multiplications, real additions and real divisions.

Algorithm × + /

LMS 2N+1 2N
VSSLMS (Zhao et al) 2N+7 2N+3 1
LMF 2N+3 2N
VSSLMFQ 2N+9 2N+3 1
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Chapter 4

Tracking Analysis of the VSSLMFQ

Algorithm

4.1 Introduction

Tracking analysis plays a vital role in the performance analysis of adaptive filters. The

main aim is to analyse the algorithm’s ability to track changes in the channel. Most

practical channel are modelled as random processes so their behaviour is time-varying.

In this Chapter, the proposed algorithm is analysed for its tracking performance.

Two time-varying channel models are considered namely Random Walk and Rayleigh

fading models. Again we are going to use the energy conservation method for the

analysis as given in [5]. First we are going to describe the Random-Walk model.
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4.2 Random-Walk Model

The first order Random Walk model for a time-varying channel having weight wo
n can

be given as

wo
n+1 = wo

n + qn, (4.1)

where

A7 qn is assumed to be i.i.d., zero mean, with covariance matrix E
[
qnq

T
n

]
= Q

and independent of {xn} and {zn} for all n.

It can be seen from (4.1) that E
[
wo
n+1

]
= E [wo

n] , so that E [wo
n] will have a constant

mean given by E [wo
n] = wo. Although the model of (4.1) is valid but analysis shows

the covariance matrix of wo
n grows unbounded with time. This can be seen by

wo
n+1 − wo = wo

n − wo + qn, (4.2)

then

E
[(

wo
n+1 − wo

) (
wo
n+1 − wo

)T]
= E

[
(wo

n − wo) (wo
n − wo)

T
]

+ Q. (4.3)

This shows that a non-negative definite matrix is added to the covariance matrix of

wo
n at each iteration. This naturally leads to an unbounded matrix with time. This is

more appropriately dealt with a model that slightly changes the original one to give

wo
n+1 − wo = η (wo

n − wo) + qn, (4.4)
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where the scalar factor η < 1. This leads to a more stable model which would converge

to a steady-state given by

lim
n→∞

(
wo
n+1 − wo

) (
wo
n+1 − wo

)T
=

Q

1− |η|2
. (4.5)

The analysis of this model being quite involved, the model of (4.1) is used in the

tracking analysis with the value of η being very close to one [5]. This simplifies the

analysis to a great deal.

4.2.1 Tracking Analysis : VSSLMFQ Algorithm for Random-

Walk Model

The proposed algorithm’s weight update equation given in Chapter 2 can be written

as

wn+1 = wn + µnxne
3
n, (4.6)

where again µn varies as given in (2.10) and (2.11). With the weight-error vector

being defined as vn+1 = wo
n+1−wn+1, there is a slight modification in the expression

of the a priori estimation error due to the time-varying nature of the channel and is

defined as

ean , xTn
(
wo
n+1 −wn

)
, epn , xTn

(
wo
n+1 −wn+1

)
. (4.7)
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We can write (4.6) in terms of the weight-error vector vn to get

wo
n+1 −wn+1 =

(
wo
n+1 −wn

)
− µnxne3

n. (4.8)

Multiplying both sides of this equation by xTn from the left we find that the a priori

and a posteriori estimation errors,{epn, ean}, are related via

epn = ean − µn ‖xn‖2 e3
n. (4.9)

This is an identical equation that we got previously in Chapter 2 for the stationary

case. By following the same arguments, we can write

∥∥wo
n+1 −wn+1

∥∥2
+ xne

2
an =

∥∥wo
n+1 −wn

∥∥2
+ xne

2
pn, (4.10)

where again

xn ,


1/ ‖xn‖2 if xn 6=0

0 otherwise

. (4.11)

One difference worth noting is that the first term on the left hand side is ‖vn+1‖2 but

this is not the case for the first term in right hand side. This difference occurs due to

the fact that the expression of the a priori estimation error in the nonstationary case

is different compared to the stationary case. Substituting (4.1) in the right hand side
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of (4.10) we get

∥∥wo
n+1 −wn+1

∥∥2
+ xne

2
an = ‖wo

n + qn −wn‖2 + xne
2
pn,

‖vn+1‖2 + xne
2
an = ‖vn‖2 + xne

2
pn + ‖qn‖2 . (4.12)

Taking the expectation of (4.12) we arrive at the following expression [5]:

E
[
‖vn+1‖2]+ E

[
xne

2
an

]
= E

[
‖vn‖2]+ E

[
xne

2
pn

]
+ tr(Q). (4.13)

Compared to the stationary case equation (3.4), (4.13) only differs in the term tr(Q)

on the right hand side of the equation. Therefore the arguments made in the arriving

at (3.8) hold here as well and we can write

µ2
nE
[
‖xn‖2 e6

n

]
+ tr(Q) = 2µnE

[
eane

3
n

]
. (4.14)

Recognising that all the terms have been defined in Chapter 3, following a similar

procedure we can arrive at the variance relation of the proposed VSSLMFQ algorithm

for tracking case as well. Therefore, expression for finding the tracking steady-state

EMSE of the VSSLMFQ algorithm is given as

6µnσ
2
zE
[
e2
an

]
= µ2

nψ
6
ztr(R) + 15µ2

nψ
4
zE
[
‖xn‖2 e2

an

]
+ tr(Q). (4.15)

Considering the two scenarios for which the EMSE can be defined, we find the tracking

steady-state EMSE as:
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Separation Principle

By using the same arguments presented in Section 3.2.2, the EMSE for the separation

principle in the nonstationary case is given as

Jex =
µ2
∞ψ

6
ztr(R) + tr(Q)

6µ∞σ2
z − 15µ2

∞ψ
4
ztr(R)

. (4.16)

Substituting (3.25) and (3.28) in (4.16) we get

Jex =

2αγ2(1−b)2

(1−α2)(1−α)(1−a)2
ψ6
ztr(R) + tr(Q)

6 γ(1−b)
(1−α)(1−a)

σ2
z − 15 2αγ2(1−b)2

(1−α2)(1−α)(1−a)2
ψ4
ztr(R)

,

=
2αγ2 (1− b)2 ψ6

ztr(R) + (1− α2) (1− α) (1− a)2 tr(Q)

6γ (1− α2) (1− a) (1− b)σ2
z − 30αγ2 (1− b)2 ψ4

ztr(R)
,

Jex =
αγ (1− b)ψ6

ztr(R)

3 (1− α2) (1− a)σ2
z − 15αγ (1− b)ψ4

ztr(R)

+
(1− α2) (1− α) (1− a)2 tr(Q)

6γ (1− α2) (1− a) (1− b)σ2
z − 30αγ2 (1− b)2 ψ4

ztr(R)
. (4.17)

Gaussian Regressor

Using again the same arguments presented in Section 3.2.2, the EMSE for the Gaus-

sian regressor in the nonstationary case is given as

Jex =
µ2
∞Nψ

6
zσ

2
x + tr(Q)

6µ∞σ2
z − 15µ2

∞ (N + 2)ψ4
zσ

2
x

. (4.18)
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Substituting (3.25) and (3.28) in (4.18) we get

Jex =

2αγ2(1−b)2

(1−α2)(1−α)(1−a)2
ψ6
zσ

2
xN + tr(Q)

6 γ(1−b)
(1−α)(1−a)

σ2
z − 15 2αγ2(1−b)2

(1−α2)(1−α)(1−a)2
ψ4
z (N + 1)σ2

x

,

=
2αγ2 (1− b)2 ψ6

zσ
2
xN + (1− α2) (1− α) (1− a)2 tr(Q)

6γ (1− α2) (1− a) (1− b)σ2
z − 30αγ2 (1− b)2 ψ4

z (N + 1)σ2
x

,

Jex =
αγ (1− b)ψ6

zσ
2
xN

3 (1− α2) (1− a)σ2
z − 15αγ (1− b)ψ4

zσ
2
xN

+
(1− α2) (1− α) (1− a)2 tr(Q)

6γ (1− α2) (1− a) (1− b)σ2
z − 30αγ2 (1− b)2 ψ4

zσ
2
xN

. (4.19)

Remark It is evident that due to the nonstationarity of the channel, the additional

term in (4.17) and (4.19), will increase the EMSE as compared to the stationary

case. Furthermore referring to (3.29), we can rewrite equations (4.16) and (4.18)

as

Jex =
2αµ∞ψ

6
ztr(R) + (1 + α)µ∞

−1tr(Q)

6 (1 + α)σ2
z − 30αµ∞ψ4

ztr(R)
, (4.20)

and

Jex =
2αµ∞Nψ

6
zσ

2
x + (1 + α)µ∞

−1tr(Q)

6 (1 + α)σ2
z − 30αµ∞ (N + 2)ψ4

zσ
2
x

, (4.21)

respectively. Observe again that for α = 1, the equations reduce to the tracking

EMSE of LMF. Also noticeable is the inverse variable step-size that is multiplied

with the trace of the perturbation covariance matrix, tr(Q). This means, the

larger the step-size, the lower the effects of nonstationarity [5]. This follows from

the fact that larger step-size signifies faster adaptation hence better tracking
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while a smaller one may result in degradation in tracking performance. This

motivates an introduction of the optimum choice of step-size. This can be

obtained by minimising (4.20) and (4.21) with respect to µ. Differentiating

(4.20) and (4.21) and equating to zero, we get

µopt =

√
(1 + α) tr (Q)

2αψ6
ztr (R)

+
25 (tr (Q))2

4 (σ4
z)

2 − 5tr (Q)

2σ4
z

, (4.22)

and

µopt =

√
(1 + α) tr (Q)

2αNψ6
ztr (R)

+
25 (N + 2)2 (tr (Q))2

4 (σ4
z)

2 − 5 (N + 2) tr (Q)

2Nσ4
z

. (4.23)

These can be substituted in (4.20) and (4.21) to get the minimum EMSE.

4.3 Rayleigh Fading Channel Model

It is known that in a wireless communications environment, signals suffer from multi-

ple reflections while travelling from the transmitter to the receiver so that the receiver

ends up getting several (almost simultaneous) replicas of the transmitted signal. The

reflections are received with different amplitude and phase distortions, and the overall

received signal is the combined sum of the reflections. Based on the relative phases

of the reflections, the signals may add up constructively or destructively at the re-

ceiver. Furthermore, if the transmitter is moving with respect to the receiver, these

destructive and constructive interferences will vary with time. This phenomenon is

known as channel fading.
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4.3.1 Single Path Channel

The impulse response of a single-path (i.e., single-tap) fading channel can be described

as

hn = ζsnδn−no (4.24)

where {sn} is a time-variant complex sequence that models the time-variations in the

channel, and no is the channel delay. Without loss of generality, the sequence {sn} is

assumed to have unit variance, and the scalar ζ is used to model the actual path loss

that is introduced by the channel. That is, ζ2 is equal to the power attenuation that

a signal will undergo when it travels through the channel.

There are several mathematical models can be used to characterise the fading

properties of {sn},but one that is widely used is known as Rayleigh fading. The

amplitude |sn| in this scenario is assumed to have a Rayleigh distribution for all n

given by

f|sn| (|sn|) = |sn| e−|sn|2/2, |sn| ≥ 0 (4.25)

while the phase ∠ |sn| is assumed to be uniformly distributed within [−π, π]

f (∠ |sn|) =
1

2π
, −π ≤ ∠ |sn| ≤ π. (4.26)

In addition, it is further assumed that all scatterers are uniformly distributed on

a circle around the receiver. Then the model widely used in literature to fit the

autocorrelation function of {sn} is the zeroth-order Bessel function of the first kind
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given by [5]

rn , snsn−k = Jo(2πfDTsk), k = . . . ,−1, 0, 1, . . . (4.27)

where Ts, is the sampling period of the sequence {sn}, fD is called the maximum

Doppler frequency of the Rayleigh fading channel, and the function Jo(.) is defined

by

Jo(y) =
1

π

ˆ π

0

cos (ysin (t)) dt. (4.28)

The Doppler frequency fD is related to the speed of the mobile user, v, and to the

carrier frequency, fc, as follows:

fD =
vfc
c
, (4.29)

where c denotes the speed of light, c = 3×10−8m/s. The power spectral density of the

channel fading gain {sn}, in continuous-time, would have the following well-known

U-shaped spectrum:

S (f) =
1

πfD

√
1−

(
f
fD

)2
, |f | ≤ fD. (4.30)

4.3.2 Multipath Channel

It is commonly seen in wireless communication that other reflections might be origi-

nated from a far away object such as a mountain or a tall building. These reflections

arrive at the receiver with longer delay than the first group of reflections. In such

situations, a single-path Rayleigh fading model is not adequate to represent the wire-
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less channel. To model this multipath phenomenon, a finite-impulse response model

for the channel can be used, say one of the form

hn =
L∑
k=1

ζksnk
δn−nk

, (4.31)

where {ζk} and {snk
} are, respectively, the path loss and fading sequence of the

k − th cluster of reflectors, and the {nk} are the cluster delays. The sequence {snk
}

are modelled as independent Rayleigh fading sequences and the channel is referred to

as a multipath Rayleigh fading channel.

In this analysis, we consider a wireless channel with two Rayleigh fading rays

with both rays assumed to fade at the same Doppler frequency. The channel impulse

response sequence consists of two zero initial samples (i.e., delay of two samples),

followed by a Rayleigh fading ray, followed by another zero sample, and by a second

Rayleigh fading ray. In other words, we are assuming a channel length of N = 5 taps

with only two active Rayleigh fading rays, so that the weight vector that we wish to

estimate has the form

[0 0 s1n 0 s2n] . (4.32)

According to [5], a first-order approximation for the variation of a Rayleigh fading

coefficient sn is to assume that sn varies according to the auto-regressive model

sn = r (1) sn−1 +

√
1− |r (1)|2νn, (4.33)

where r (1) = Jo(2πfDTs) and νn denotes a white noise process with unit variance.
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Now since the multipath rays of the channel are assumed to fade at the same rate,

the above approximation indicates that the variations in the channel weight vector

could be approximated as

wo
n+1 = ηwo

n + qn, (4.34)

where the covariance matrix of sequence {qn} is Q = (1− η2) I with r (1) = η. The

value of η depends upon the Doppler frequency of the channel. Unless this value is

other than unity, the analysis for the Random-Walk model is equally applicable to

this scenario as well.
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Chapter 5

Transient Analysis of the VSSLMFQ

Algorithm

5.1 Introduction

Transient analysis is one of the most important aspects of performance analysis of

adaptive filters. It involves the analysis of the time-evolution of the adaptive al-

gorithms under variations to the signal statistics; the main aim being to study the

learning mechanism of the adaptive algorithm. Consequently, the algorithm’s rate of

convergence and stability performance becomes a central part of transient analysis.

The methodology used for the transient analysis was given in [33] and described in

detail in [5] where again the concept of energy conservation is used to carry out the

analysis. The main benefit of using this approach is that it does not require the input

regressor to be Gaussian. So as we described in Chapter 3, the analysis presented

here would be general for all data. Moreover, there is no need for the recursions of
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the weight-error covariance matrix to be evaluated.

Before proceeding to the analysis, lets go through the underlying assumptions

made for the analysis.

A8 The input process {xn} is an i.i.d. sequence of Gaussian random variable

with zero-mean and autocorrelation matrix R = E
[
xnx

T
n

]
.

A9 The noise process {zn} is a zero mean and identically distributed (i.i.d.)

with variance σ2
z and independent of the input process {xn}.

A10 The step-size µn is statistically independent of the weight update vector

wn.

Withe the exception of A8, these assumptions have been described in detail in Chap-

ter 3 and are relevant for the transient analysis as well. Assumption A8 is not true

in practise but it is very common in literature and many works have shown that the

analytical results obtained under this assumption agree closely with simulation results

under general conditions.

5.2 Transient Analysis of the VSSLMFQ Algorithm

The proposed algorithm’s weight update equation given in Chapter 2 can be written

as

wn+1 = wn + µnxne
3
n, (5.1)
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where µn varies as given in (2.10) and (2.11). With the weight-error vector defined

as vn = wo −wn, we can write (5.1) as

vn+1 = vn − µnxne3
n. (5.2)

With reference to the energy conservation method discussed in Chapter 2, in this

section we have used a weighted version of the energy relation. Moreover, as opposed

to the steady-state, where the weight-error vector vanished under the limit n → ∞,

the transient analysis is based on its time-evolution.

Let us define the weighted squared Euclidean norm of a vector xn as

‖xn‖2
Σ = xTnΣxn, (5.3)

where Σ is any positive-definite weighting matrix. Choosing Σ = I results in the

standard Euclidean norm on x

‖xn‖2
I = xTnIxn = ‖xn‖2 . (5.4)

We now define the two weighted error quantities, weighted a priori estimation error,

eΣ
an and the weighted a posteriori estimation error, eΣ

pn as

eΣ
an , xTnΣvn, (5.5)
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and

eΣ
pn , xTnΣvn+1. (5.6)

If we multiply (5.2) by xTnΣ, then the expression relating eΣ
an and eΣ

pn is given as

eΣ
pn = eΣ

an − µn ‖xn‖
2
Σ e

3
n. (5.7)

The expression gives an alternate description of adaptive filter in terms of its error

quantities, eΣ
an, eΣ

pn, vn, vn+1 and e3
n. Solving it for e3

n and substituting in (5.2) results

in

vn+1 +
xne

Σ
an

‖xn‖2
Σ

= vn +
xne

Σ
pn

‖xn‖2
Σ

. (5.8)

Taking the weighted Euclidean norm on both sides and equating gives us

∥∥∥∥∥vn+1 +
xne

Σ
an

‖xn‖2
Σ

∥∥∥∥∥
2

Σ

=

∥∥∥∥∥vn +
xne

Σ
pn

‖xn‖2
Σ

∥∥∥∥∥
2

Σ

. (5.9)

By evaluating the energies on both sides and knowing the fact that P
[
‖xn‖2

Σ = 0
]

= 0

, the following energy equality holds:

‖vn+1‖2
Σ + xΣ

n

∣∣eΣ
an

∣∣2 = ‖vn‖2
Σ + xΣ

n

∣∣eΣ
pn

∣∣2 , (5.10)

where

xΣ
n ,


1/ ‖xn‖2

Σ if ‖xn‖2
Σ 6=0

0 otherwise

. (5.11)
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The weighted energy conservation relation in (5.10) shows the time-evolution of the

error quantities. The free parameter Σ can be appropriately chosen to have different

values allowing us to analyse the algorithm for different performance measures. These

performance measures will be discussed later.

Now by replacing eΣ
pn from (5.6) in (5.10) to get the expression in terms of eΣ

an, we

get

‖vn+1‖2
Σ + xΣ

n

∣∣eΣ
an

∣∣2 = ‖vn‖2
Σ + xΣ

n

∣∣eΣ
an − µn ‖xn‖

2
Σ e

3
n

∣∣2 . (5.12)

Expanding the right hand side and taking the expectation on both sides gives us

E
[
‖vn+1‖2

Σ

]
= E

[
‖vn‖2

Σ

]
+ µ2

nE
[
‖xn‖2

Σ e
6
n

]
− 2µnE

[
eΣ
ane

3
n

]
, (5.13)

whereµ2
n = E [µ2

n] and µn = E [µn]. In order to evaluate the expectation in the above

equations, we make the following assumptions [5], [33]:

A11 The a priori estimation errors
{
ean, e

Σ
an

}
are jointly Gaussian.

A12 The a priori estimation error ean and the noise process {zn} are indepen-

dent.

Both of these assumptions are valid enough for long adaptive filters. As ean = xTnvn,

it can be thought of as the sum of (N − 1) random variables. According to the Central

Limit Theorem [34], [35], as the length of the filter increases, the distribution of the

sum can be approximated as Gaussian. Similar arguments hold for
{
eΣ
an

}
. This test

of Gaussianity was also carried out in [33] and the result was quite consistent with

A11. Coming back to the equation, we can simplify the expectation E
[
eΣ
ane

3
n

]
using
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Price’s Theorem [36], A11 and the fact that en = ean + zn, as

E
[
eΣ
ane

3
n

]
= E

[
eΣ
anean

]
.

(
E [eane

3
n]

E [e2
an]

)
. (5.14)

It is known that from literature that the expectation of a function of Gaussian random

variable will depend only on the variance of this variable and not on the higher order

moments of it [35]. Therefore, according to A11, the expectation E
[
eΣ
ane

3
n

]
depends

on ean only through it second moment, E [e2
an]. Using this result, we can introduce a

new term as defined in [5], [37]

hg =
E [eane

3
n]

E [e2
an]

. (5.15)

This simplifies in the case of our proposed VSSLMFQ algorithm as

hg = 3
(
E
[
e2
an

]
+ σ2

z

)
. (5.16)

Hence the expectation of E
[
eΣ
ane

3
n

]
becomes

E
[
eΣ
ane

3
n

]
= hgE

[
eΣ
anean

]
. (5.17)

The other expectation in (5.13), E
[
‖xn‖2

Σ e
6
n

]
, also needs to be simplified in order to

make the analysis tractable. This is done by assuming a long enough filter and that

A13 The weighted error norm of the input regressor ‖xn‖2
Σ is independent of

en.
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This allows us to split the expectation as

E
[
‖xn‖2

Σ e
6
n

]
= E

[
‖xn‖2

Σ

]
E
[
e6
n

]
. (5.18)

The same logic used in defining hg can be used here motivated by the fact that ean is

Gaussian and independent of the noise, therefore E [e6
n] depends on ean only through

its second moment. This allows us to introduce another term as defined in [5], [37]

hU = E
[
e6
n

]
. (5.19)

After some straight forward manipulations, this simplifies in the case of our proposed

VSSLMFQ algorithm as

hU = 15
(
E
[
e2
an

])3
+ 45σ2

z

(
E
[
e2
an

])2
+ 15ψ4

zE
[
e2
an

]
+ ψ6

z . (5.20)

Hence the expectation of E
[
‖xn‖2

Σ e
6
n

]
can be written as

E
[
‖xn‖2

Σ e
6
n

]
= hU tr (RΣ) . (5.21)

With the expectations simplified, we can substitute (5.17) and (5.21) in (5.13) to get

the following version of the weighted-variance relation:

E
[
‖vn+1‖2

Σ

]
= E

[
‖vn‖2

Σ

]
+ µ2

nhU tr (RΣ)− 2µnhgE
[
eΣ
anean

]
. (5.22)
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This is the weighted variance relation that will be used for the time-evolution analysis

of the algorithm. The expression still holds an expectation, i.e., E
[
eΣ
anean

]
that needs

to be solved before we can proceed. The evaluation of this expectation is difficult due

to the dependencies among the regressors {xn}. With assumption A8, we can solve

this expectation as

E
[
eΣ
anean

]
= E

[
xTnΣvnx

T
nIvn

]
= E

[
‖vn‖2

ΣE[xnxT
n ]I

]
= E

[
‖vn‖2

ΣR

]
. (5.23)

and therefore (5.22) reduces to

E
[
‖vn+1‖2

Σ

]
= E

[
‖vn‖2

Σ

]
+ µ2

nhU tr (RΣ)− 2µnhgE
[
‖vn‖2

ΣR

]
. (5.24)

The most important result underlying the above equation is that the study of tran-

sient analysis of the proposed VSSLMFQ algorithm reduces to evaluating hg and hU .

Recalling the fact discussed earlier that the choice of the free parameter Σ influences

the performance analysis of the algorithm, the following analysis is divided into two

parts.
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5.2.1 Transient Analysis of the VSSLMFQ : White Input Data

In the case when the input data is white, the individual entries of {xn} are i.i.d., i.e.,

R is a diagonal matrix with entries R = σ2
xI and E [e2

an] = σ2
xE
[
‖vn‖2], then for

Σ = I, the variance relation of (5.24) becomes

E
[
‖vn+1‖2] = E

[
‖vn‖2]+ µ2

nhUσ
2
xN − 2µnσ

2
xhgE

[
‖vn‖2] . (5.25)

With hg and hU now being functions of the E
[
‖vn‖2], we can replace these, derived

in (5.17) and (5.21), respectively, for the proposed VSSLMFQ algorithm, into the

above equation to arrive at

E
[
‖vn+1‖2] = E

[
‖vn‖2]+ µ2

nσ
2
xN
[
15
(
E
[
e2
an

])3
+ 45σ2

z

(
E
[
e2
an

])2
+ 15ψ4

zE
[
e2
an

]
+ ψ6

z

]
−6µnσ

2
xE
[
‖vn‖2] [(E [e2

an

]
+ σ2

z

)]
. (5.26)

This can be compactly expressed as

E
[
‖vn+1‖2] = fE

[
‖vn‖2]+ µ2

nσ
2
xψ

6
zN, (5.27)

where

f = 1 + σ2
x

(
15µ2

nσ
2
xψ

4
zN − 6µnσ

2
z

)
+ σ4

x

(
45µ2

nσ
2
xσ

2
zN − 6µn

)
E
[
‖vn‖2]

+15µ2
nσ

8
xN
(
E
[
‖vn‖2])2

. (5.28)
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The expression arrived in (5.27) describes the transient behaviour of the proposed

VSSLMFQ algorithm for white input data.

5.2.2 Transient Analysis of the VSSLMFQ : Correlated Input

Data

When the data is correlated, it can be seen that different weighting matrices will

appear on both sides of (5.24). This was not the case in the uncorrelated data where

unweighted norms of vn appeared on both sides. For this analysis, we have taken

advantage of the free parameter Σ by choosing Σ = I, R, R2, . . . , RN−1. Writing

(5.24) for Σ = I and also keeping in mind the fact that E [e2
an] = E

[
‖vn‖2

R

]
we get

E
[
‖vn+1‖2

I

]
= E

[
‖vn‖2

I

]
+ µ2

nhU tr (RI)− 2µnhgE
[
‖vn‖2

RI

]
. (5.29)

It is seen that a weighting matrix R appears on the right-hand side of the equation

that weights the norm E
[
‖vn‖2]. This term can be inferred by writing (5.24) for

Σ = R, which gives us

E
[
‖vn+1‖2

R

]
= E

[
‖vn‖2

R

]
+ µ2

nhU tr
(
R2
)
− 2µnhgE

[
‖vn‖2

R2

]
. (5.30)

Again, the the norm E
[
‖vn‖2] is weighted by the weighting matrix R2, appearing on

the right-hand side. Again in the same fashion, we can infer the term by writing (5.24)
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for Σ = R2 and continue in the same fashion until we write (5.24) for Σ = RN−1 as

E
[
‖vn+1‖2

RN−1

]
= E

[
‖vn‖2

RN−1

]
+ µ2

nhU tr
(
RN
)
− 2µnhgE

[
‖vn‖2

RN

]
. (5.31)

In the above equation, the weighted norm E
[
‖vn‖2] is now weighted by the weighting

matrix RN that appears on the right-hand side. In all the above variance relations,

the left-hand side is always one variable short of the number of variables on the right-

hand side. Fortunately, we do not have to continue in this manner indefinitely since

the additional variable E
[
‖vn‖2

RN

]
can be inferred from the prior weighting factors,

{
E
[
‖vn‖2] , E [‖vn‖2

R

]
, E
[
‖vn‖2

R2

]
, · · · , E

[
‖vn‖2

RN−1

]}
,

by expressing RN as a linear combination of the “lower order” variables using the

Cayley–Hamilton theorem [33]. Therefore, we can write

RN = −p0I + p1R− . . . · · · − pN−1R
N−1, (5.32)

where

p(x) , det(xI−R),

= p0 + p1x+ · · ·+ pN−1x
N−1 + xN , (5.33)
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is the characteristic polynomial of R. This gives us the desired result and the variance

relation (5.24) can be written as

E
[
‖vn+1‖2

RN−1

]
= E

[
‖vn‖2

RN−1

]
+ µ2

nhU tr
(
RN
)

+ 2µnhg
(
p0E

[
‖vn‖2

I

]
+p1E

[
‖vn‖2

R

]
+ · · ·+ pN−1E

[
‖vn‖2

RN−1

])
. (5.34)

The variance relations for Σ = I, R, R2, . . . , RN−1 describe the transient behaviour

of the proposed VSSLMFQ algorithm and can therefore be written as



E
[
‖vn+1‖2

I

]
= E

[
‖vn‖2

I

]
+ µ2

nhU tr (RI)− 2µnhgE
[
‖vn‖2

RI

]
,

E
[
‖vn+1‖2

R

]
= E

[
‖vn‖2

R

]
+ µ2

nhU tr (R2)− 2µnhgE
[
‖vn‖2

R2

]
,

...

E
[
‖vn+1‖2

RN−1

]
= E

[
‖vn‖2

RN−1

]
+ µ2

nhU tr
(
RN
)
− 2µnhgE

[
‖vn‖2

RN

]
.

(5.35)

The equation warrants a compact form and therefore (5.35) can be written in a

recursive manner as

Vn+1 = FnVn + µ2
nhUY , (5.36)

where

Vn =
[
E
[
‖vn‖2] E [‖vn‖2

R

]
· · · E

[
‖vn‖2

RN−1

]]T
, (5.37)

Y =
[
tr (R) tr

(
R2
)
· · · tr

(
RN
)]T

, (5.38)
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and Fn is given by

Fn =



1 −2µnhg 0 · · · 0 0

0 1 −2µnhg · · · 0 0

...
...

...
...

...
...

0 0 0 · · · 1 −2µnhg

2µnp0hg 2µnp1hg 2µnp2hg · · · 2µnpN−2hg 1 + 2µnpN−1hg


, (5.39)

where (5.36) is a state-space equation,Vn is the state vector that represents the time-

evolution of the filter and Fn is the coefficient matrix.

The contrast between the transient behaviour for white input data (5.27) and cor-

related input data (5.36) can be appreciated by elaborating the fact that in the later

case, the transient behaviour is described by an N -dimensional state-space equation

while the former was a one-dimensional recursion.

Another important consequence of (5.36) being a state vector is that the mean-

square deviation (MSD) and the mean-square error (MSE) can be obtained from the

first and second entries of this vector, respectively. As E [e2
an] = E

[
‖vn‖2

R

]
, we have

MSE = lim
n→∞

E
[
‖vn‖2

R

]
+ σ2

z . (5.40)

Also the MSD would be given as

MSD = lim
n→∞

E
[
‖vn‖2] . (5.41)
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In all of the discussions done so far, we have not taken into account the transient

behaviour of the time-varying step-size. The transient analysis will remain incom-

plete without a detailed analysis of the time-varying step-size. We now proceed to

characterise the transient behaviour of our time-varying step-size to arrive at the

expressions for µn and µ2
n.

5.2.3 Mean and Mean-Square Behaviour of the Step-Size

In this section, we have discussed the transient behaviour of the time-varying step-

size parameter of the proposed VSSLMFQ algorithm. This is essential because the

algorithms main controlling parameter is the step-size. It being time-varying, hence

a random variable, needs to be properly studied and analysed. For the analysis in

this section, we have supposed the input regressor to be white Gaussian.

The step-size update equation is given by the following equation [13]:

µn+1 = αµn + γθn, (5.42)

where θn, the quotient of the filtered quadratic error is given as

θn =

∑n
i=0 a

ie2
n−i∑n

j=0 b
je2
n−j

, (5.43)

which can be written in a recursive manner as

θn =
An
Bn

=
aAn−1 + e2

n

bBn−1 + e2
n

. (5.44)
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The parameter θn is of a special form called the ratio of quadratic forms of random

variables. In our case, this quadratic form consists of a linear combination of corre-

lated Gaussian variables. Finding the expectation of this term is challenging under

normal circumstances. But under certain conditions and assumptions, we can either

estimate or find the exact moments of this ratio. Therefore, we have divided the

analysis into three cases under various assumptions. Simulations will show that all

the three cases discussed agree very closely with the simulation results.

Case 1:

In the first case, we make the assumption that

A14 The decaying parameters a and b are very close to unity.

With the assumption A14 at our disposal, taking the expectation of both sides of

(5.42) gives us

E [µn+1] = αE [µn] + γE [θn] . (5.45)

As a consequence of using A14, we can separate the expectation in the numerator

and the denominator of (5.44), i.e.,

E [θn] = E

[
An
Bn

]
≈ E [An]

E [Bn]
. (5.46)

Although this assumptions is very weak under normal conditions, we still employ it

to simplify the expectation of (5.44). Therefore, both the expectations are dealt with
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separately and we can write

E [An] = aE [An−1] + E
[
e2
n

]
,

= aE [An−1] + E
[
(ean + zn)2] ,

E [An] = aE [An−1] + σ2
xE
[
‖vn‖2]+ σ2

z . (5.47)

Similarly

E [Bn] = bE [Bn−1] + σ2
xE
[
‖vn‖2]+ σ2

z . (5.48)

Substituting in (5.46) we get

E [θn] ≈
aE [An−1] + σ2

xE
[
‖vn‖2]+ σ2

z

bE [Bn−1] + σ2
xE
[
‖vn‖2]+ σ2

z

. (5.49)

For the mean-square behaviour, taking the expectation of the squared of (5.42) we

get

E
[
µ2
n+1

]
≈ α2E

[
µ2
n

]
+ γ2E

[
θ2
n

]
+ 2αγE [µn]E [θn] . (5.50)

Note that we have used A3 to write E [µnθn] ≈ E [µn]E [θn]. If we neglect the term

involving γ2 (γ � 1) we can approximate (5.50) as

E
[
µ2
n+1

]
≈ α2E

[
µ2
n

]
+ 2αγE [µn]E [θn] . (5.51)

Now the equation (5.45) along with (5.49) and (5.51) completely describe the mean

and mean-square behaviour of the time-varying step-size of the proposed algorithm.
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Case 2:

In this case, we have used an approximation of the recursion (5.44) to simplify the

expectation of the quadratic ratio. We use the idea that the value of the error ,e2
n, can

be neglected as compared to the error cumulant bBn−1 because the decaying factor b

is very close to unity. Following this argument, we can rewrite (5.44) as

θn ≈
a

b
θn−1 +

e2
n

bBn−1

. (5.52)

Taking the expectation of both sides, we get

E [θn] ≈ a

b
E [θn−1] +

1

b
E

[
e2
n

Bn−1

]
. (5.53)

Noting the fact the e2
n and Bn−1 are uncorrelated, the expectation of the numerator

and the denominator of the second term on the right-hand side of the equation can

be taken separately . This leads to

E [θn] ≈ a

b
E [θn−1] +

1

b

E [e2
n]

E [Bn−1]
. (5.54)

E [θn] ≈ a

b
E [θn−1] +

1

b

σ2
xE
[
‖vn‖2]+ σ2

z

E [Bn−1]
. (5.55)

Considering the same arguments for the mean-squared case given for (5.51), the tran-

sient behaviour of the step-size is characterised by (5.45), (5.51) and (5.55).
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Case 3:

In this case, we have used the exact moments of ratio of quadratic form of random

variables to arrive at the expectation of (5.43). Since exact moments are obtained,

this method by far is the most accurate in describing the transient behaviour of the

time-varying step-size. This method is based on the exact moments of the ratio

of quadratic form in normal variables as given in [38]. The general solution and

description is provided in Appendix 7.3. Thus, the first and second moment of θn can

be written as

E [θn] = e(−(1/2)m′K−1m) ×
ˆ 1

0

|4| e1/2ζ′ζ [Tr (G) + ζ ′Gζ] dt, (5.56)

and

E
[
θ2
n

]
= e(−(1/2)m′K−1m)

∑
l

δ2 (l)×
ˆ 1

0

|4| e1/2ζ′ζ
2∏
j=1

[
Tr
(
Gj
)

+ ζ ′Gjζ
]rj dt. (5.57)

There is no close form solution of the integrals in both of the above equations. There-

fore, they have to be numerically integrated to arrive at the final result. So the equa-

tions (5.45), (5.50), (5.56) and (5.57) completely describe the transient behaviour of

the time-varying step-size.

In summary, the variance equations derived for the proposed VSSLMFQ algorithm

in (5.27) and (5.36) in conjunction with any of the 3 cases of the transient behaviour

of the step-size constitute the transient behaviour of the proposed algorithm.
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5.3 Stability Analysis of the VSSLMFQ Algorithm

The stability analysis of an adaptive algorithm provides necessary and sufficient con-

ditions for the algorithm to converge. Hence this is an important design parameter

that needs to be analysed properly.

5.3.1 Stability in the Mean Sense

For the proposed VSSLMFQ algorithm, the weight-error vector update equation is

given by

vn+1 = vn − µnxne3
n. (5.58)

where en = xTnvn + zn. It is shown in [19] and [28] that we can write the (5.58) as

vn+1 = vn − µn
3∑
i=0

 3

i

xn

{[
xTnvn

]i
vnz

3−i
n

}
. (5.59)

Using assumptions A8, A9 and A10 and taking the expectation, we can write the

above equation as

E [vn+1] = [I− 3µnE [zn] R]E [vn] , (5.60)

where µn = E [µn]. Changing the coordinates by applying unitary transformation

gives us the kth natural mode as

vkn+1 =
[
1− 3µnσ

2
zλ

k
]
vkn, k = 1, 2, . . . , N (5.61)
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In order for the modes to decay to zero, the necessary condition on the step-size is

−1 < 1− 3µnσ
2
zλmax < 1,

or

0 < µn <
2

3σ2
zλmax

, (5.62)

where λmax is the largest eigenvalue of the autocorrelation matrix of the input regres-

sor xn.

5.3.2 Stability in the Mean-Square Sense

For stability in the mean-square sense, we have relied on (5.24) and A11. With

Σ = I, we get

E
[
‖vn+1‖2] = E

[
‖vn‖2]+ µ2

nhU tr (R)− 2µnhgE
[
e2
an

]
, (5.63)

where we have used the fact that E [e2
an] = E

[
‖vn‖2

R

]
. The proposed VSSLMFQ

algorithm will be mean-square stable only if

µ2
nhU tr (R)− 2µnhgE

[
e2
an

]
≤ 0. (5.64)

75



The above inequality after substituting the values of hg and hU from (5.16) and (5.19)

respectively, gives the following condition for the mean-square stability:

µ2
n

µn
≤


2Cn

5(Cn+σ2
z)3tr(R)

for Gaussian Noise,

6Cn(Cn+σ2
z)

(15C3n+45σ2
zC2n+15ψ4

zCn+ψ6
z)tr(R)

otherwise,

(5.65)

where Cn ≤ E [e2
an] is the Cramer–Rao Bound associated with the problem of esti-

mating the random quantity xTwo by using xTwn [39]. The rationale behind using

Cramer-Rao Bound for the mean-square stability analysis is thoroughly highlighted

in [32].

We can also find the bound on the parameter α, γ, a and b which can guaran-

tee the convergence of the proposed VSSLMFQ algorithm to the steady-state value.

Considering for n→∞, then we can substitute the values of µ∞ and µ2
∞ from (3.25)

and (3.28) in (5.65) to get

0 ≤ Ω ≤


2C∞

5(C∞+σ2
z)3tr(R)

for Gaussian Noise,

6C∞(C∞+σ2
z)

(15C3∞+45σ2
zC2∞+15ψ4

zC∞+ψ6
z)tr(R)

otherwise,

(5.66)

where we have represented the ratio µ2
∞
µ∞

by Ω = 2αγ(1−b)
(1+α)(1−α)(1−a)

.

5.4 Convergence Time of the VSSLMFQ Algorithm

In this section, using the results of the transient analysis, we have estimated the

convergence time of our proposed VSSLMFQ algorithm. For this purpose, we have
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only taken the case when the input regressor is white as it simplifies the solution.

The convergence time of an adaptive filter is defined as the number of iterations, τ ,

needed for the mean-square error to reach (1 + ε) times the steady-state error for a

given ε > 0, i.e.,

E
[
e2
τ

]
= (1 + ε)E

[
e2
∞
]
. (5.67)

Then we first need to establish the learning curve recursion for our proposed algo-

rithm. Recalling the variance relation in Section 5.2.1 derived as

E
[
‖vn+1‖2] = fE

[
‖vn‖2]+ µ2

nσ
2
xψ

6
zN, (5.68)

where

f = 1 + σ2
x

(
15µ2

nσ
2
xψ

4
zN − 6µnσ

2
z

)
+ σ4

x

(
45µ2

nσ
2
xσ

2
zN − 6µn

)
E
[
‖vn‖2]

+15µ2
nσ

8
xN
(
E
[
‖vn‖2])2

. (5.69)

Now since E [e2
an] = σ2

xE
[
‖vn‖2] and E [e2

n] = σ2
z + E [e2

an] and ignoring the higher

powered terms of E
[
‖vn‖2] in (5.69), after some mathematical manipulation, we can

arrive at the following recursion for the learning curve:

E
[
e2
n

]
=

[
1 + σ2

x

(
15µ2

nσ
2
xψ

4
zN − 6µnσ

2
z

)]
E
[
e2
n−1

]
+ µ2

nσ
2
xψ

6
zN

−σ2
xσ

2
z

(
15µ2

nσ
2
xψ

4
zN − 6µnσ

2
z

)
. (5.70)
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which be expressed compactly as

E
[
e2
n

]
= ρE

[
e2
n−1

]
+ φ, (5.71)

where

ρ =
[
1 + σ2

x

(
15µ2

nσ
2
xψ

4
zN − 6µnσ

2
z

)]
, (5.72)

φ = µ2
nσ

2
xψ

6
zN − σ2

xσ
2
z

(
15µ2

nσ
2
xψ

4
zN − 6µnσ

2
z

)
. (5.73)

Solving (5.71) for steady-state, i.e., as n→∞, we get

MSE = E
[
e2
∞
]

=
φ∞

1− ρ∞
. (5.74)

We centre the mean-square error by subtracting the MSE from both sides to get

E
[
e2
n

]
− φ∞

1− ρ∞
= ρ

(
E
[
e2
n−1

]
− φ∞

1− ρ∞

)
. (5.75)

The solution to this difference equation can be written as

E
[
e2
n

]
−MSE = ρn

(
E
[
e2

0

]
−MSE

)
. (5.76)

This equation can be manipulated to be expressed as the output signal-to-noise ratio

(SNR) of the desired filter. Knowing the fact that E [ea0] = σ2
z + σ2

x ‖wo‖2, we can
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write the above equation as

E
[
e2
n

]
−MSE = ρn

(
σ2
z (1 + SNR)−MSE

)
, (5.77)

where

SNR =
σ2
x ‖wo‖2

σ2
z

. (5.78)

For n = τ , E [e2
τ ] = (1 + ε)MSE, and solving for τ , we get the expression

τ ln ρ = ln

[
εMSE

σ2
z (1 + SNR)−MSE

]
. (5.79)

This result can be rearranged in terms of the misadjustment of the proposed algo-

rithm. Defining misadjustment asM = EMSE/σ2
z , we can write (5.79) as

τ =
ln
[
ε(1+M)
SNR−M

]
ln ρ

. (5.80)

Equation (5.80) shows that the convergence time of the proposed VSSLMFQ depends

upon the misadjustment, SNR and the time-varying step-size of the algorithm.

Remark As a corollary to the results achieved in this section, we can arrive at the

EMSE and the misadjustment of the proposed algorithm, based solely on the

arguments given for the transient analysis. From the time-evolution equation

of (5.24) and unity weight matrix, Σ = I, we get

E
[
‖vn+1‖2] = E

[
‖vn‖2]+ µ2

nhU tr (R)− 2µnhgE
[
e2
an

]
, (5.81)
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where we have used the fact that E [e2
an] = E

[
‖vn‖2

R

]
. Replacing (5.19) and

(5.16) and ignoring higher order powers of E [e2
an] in the above equation and

furthermore assuming the weight-error vector reaches the steady-state, that is

n→∞, we get

(
6µ∞σ

2
z − 15µ2

∞ψ
4
ztr(R)

)
Jex = µ2

∞ψ
6
ztr(R). (5.82)

Evaluating for Jex we get

Jex =
µ2
∞ψ

6
ztr(R)

6µ∞σ2
z − 15µ2

∞ψ
4
ztr(R)

, (5.83)

where if we substitute (3.29) in the above equation results in

Jex =
αµ∞ψ

6
ztr(R)

3 (1 + α)σ2
z − 15αµ∞ψ4

ztr(R)
. (5.84)

Comparing equations (3.36) and (5.84) indicates that they are identical. This

shows a close interconnect between the steady-state analysis and the transient

analysis. In fact the transient analysis is a more general investigation into the

performance and behaviour of an adaptive filter. As a consequence, steady-

state and tracking analysis become a special case of the transient analysis. The

misadjustment defined asM = EMSE/σ2
z can thus be expressed as

M =
αµ∞ψ

6
ztr(R)

3 (1 + α)σ4
z − 15αµ∞σ2

zψ
4
ztr(R)

. (5.85)
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5.5 Steady-State MSE and MSD

The expressions for the steady-state mean-square error and mean-square deviation

can also be derived from the (5.36) as stated earlier. Following the definition given

for MSE in (5.40) , we have:

MSE = lim
n→∞

E
[
‖vn‖2

R

]
+ σ2

z ,

or

MSE = Jex + Jmin, (5.86)

where by using (5.84), it evaluates to

MSE =
αµ∞ψ

6
ztr(R) + 3 (1 + α)σ4

z − 15αµ∞σ
2
zψ

4
ztr(R)

3 (1 + α)σ2
z − 15αµ∞ψ4

ztr(R)
. (5.87)

For the mean-square deviation, we choose the weight matrix that is equal to the

inverse of the input regressor correlation matrix, that is Σ = R−1. Hence (5.24) can

be written as

E
[
‖vn+1‖2

R−1

]
= E

[
‖vn‖2

R−1

]
+ µ2

nhU tr (I)− 2µnhgE
[
‖vn‖2] . (5.88)
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Following the definition of MSD as in (5.41), assuming n→∞, we get

MSD =
µ2
∞hUN

2µ∞hg
. (5.89)

Substituting the values of hU and hg (ignoring third and higher order powers of

E [e2
an]) and making use of (3.29), we get

MSD ≈ αµ∞ (15Jexψ
4
z + ψ6

z)N

3 (1 + α)MSE
. (5.90)
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Chapter 6

Performance Analysis of the

VSSLMFQ Algorithm

In this chapter, we present the result of the computer simulations carried out to in-

vestigate the performance characteristics of the proposed VSSLMFQ algorithm. The

proposed algorithm is compared with the traditional LMF algorithm under a system

identification problem. The simulations; carried out to corroborate the theoretical

analysis; have been found to exhibit improved performance for the proposed algo-

rithm over the traditional one.

The major performance criteria chosen for performance comparison is the residual

error or the mean-square error that remains in the steady-state. For this, the perfor-

mance analysis is categorised in three sections. The first pertains to the steady-state

mean-square analysis of the proposed algorithm in stationary environments. The sec-

ond pertains to the tracking performance of the proposed algorithm for non-stationary

environments. The final sections pertains to the transient performance of the pro-
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posed algorithm.

In order to have a fair comparison between both the algorithms, the parameters

governing their behaviour are set such that they have either the same misadjustment

or the same convergence rate. Same misadjustment results in the comparison of their

convergence rate, that is, how fast the algorithm attain the prescribed misadjust-

ment. Having the same convergence rate results in the comparison of their EMSE

(excess mean-square error). In our case, we have used the later and have selected the

parameters so as to achieve the same convergence rate for both the algorithms.

6.1 Steady-State Performance Analysis : VSSLMFQ

Algorithm

The general layout of the computer simulations runs around the FIR system identi-

fication problem that can also be seen as a problem of channel estimation. For the

convergence rates to be the same would mean to have the same step-sizes for both

the algorithms. As the proposed algorithm has a time-varying step-size, its initial

condition µ0 has been set to be the same as that of the traditional LMF, i.e.,

µV SSLMFQ
0 = µLMF .

The constant parameters α and γ are set according to the same manner as described

in [13]. Furthermore, the FIR channel response to be estimated is a normalised

Hanning window (i.e., woTwo = 1) where the length of the adaptive filter is equal
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to the unknown system. The input sequence {xn} is taken to be BPSK {±1} signal.

The performance is analysed in three noise environments namely Gaussian, Laplacian

and Uniform. The experiments are conducted for SNR ranges of 0 dB, 10 dB and 20

dB. The results obtained are averaged over 500 independent runs.

In order to motivate the idea of using LMF algorithm for non-Gaussian noise

environments, we have presented a result where it is seen that the LMF algorithm

performance better than the LMS algorithm in terms of the steady-state EMSE.

Figure (6.1) gives the EMSE performance of both the algorithms in Uniform noise

environment. This result also corroborates the findings in [19] where a similar result

was shown.
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Figure 6.1: Comparison of the EMSE of LMF algorithm and LMS algorithm in Uni-
form Environment with SNR=10dB.

The main results presented in this section can be divided into 2 parts. The first

one deals with the mean behaviour of the time-varying step-size and the proposed
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algorithm’s performance dependence on the design parameters a and b in terms of

the mean-square error. The second part deals with the EMSE performance of the

proposed VSSLMFQ algorithm against the traditional LMF algorithm. The main

results presented in this section are summarised as follows:

– Part 1 - Performance of the time-varying step-size of the proposed VSSLMFQ

algorithm in terms of the:

1. Mean step-size behaviour in the presence of Gaussian noise for different

values of parameter a and b.

2. Mean step-size behaviour in the presence of Laplacian noise for different

values of parameter a and b.

3. Mean step-size behaviour in the presence of Uniform noise for different

values of parameter a and b.

4. Mean step-size behaviour in the presence of Gaussian noise for SNR -10

dB, 0 dB, 10 dB and 20 dB.

5. Mean step-size behaviour in the presence of Laplacian noise for SNR -10

dB, 0 dB, 10 dB and 20 dB.

6. Mean step-size behaviour in the presence of Uniform noise for SNR -10 dB,

0 dB, 10 dB and 20 dB.

7. Analytical and experimental mean-square error for different values of pa-

rameters a and b.
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8. EMSE for different values of parameters a and b in the presence of Gaus-

sian, Laplacian and Uniform noise environments, respectively.

– Part 2 - Comparison of the EMSE of LMF algorithm with the proposed VSSLMFQ

algorithm.

1. In the presence of Gaussian noise for SNR 0 dB, 10 dB and 20 dB.

2. In the presence of Laplacian noise for SNR 0 dB, 10 dB and 20 dB.

3. In the presence of Uniform noise for SNR 0 dB, 10 dB and 20 dB.

4. In the presence of all the three noise environments namely Gaussian, Lapla-

cian and Uniform for SNR 0 dB, 10 dB and 20 dB.

6.1.1 Performance of the time-varying step-size of the pro-

posed VSSLMFQ algorithm

In this section, we have investigated the performance of the time-varying step-size of

the proposed VSSLMFQ algorithm, its properties and impact on the MSE (mean-

square error). The experiments conducted mainly test the impact of the design param-

eters a and b on the performance of the algorithm. It is observed that the performance

of the proposed algorithm is highly dependent on these parameters. Particularly Fig-

ures 6.2, 6.3 and 6.4 illustrate the mean behaviour of the step-size in all the noise

environments for different values of parameters a and b with SNR 10 dB. First thing

to be observed is the smooth transition of the variable step-size as predicted in the

analytical results. Second, it is seen that the convergence rate of the variable step-
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size is independent of the choices of these parameters. But the steady-state MSE is

determined by the parameters a and b. A larger value of a and smaller value of b

will result in poor MSE while a smaller a and larger b will result in lower MSE. This

is consistent with the analytical results of the algorithm. This observation is further

illustrated in Figures 6.8 and 6.9 where both the experimental and theoretical MSE

are evaluated for different values of a and b. Both the experimental and analytical

results are in close agreement. It would be appropriate to mention here that the

theoretical values of the MSE are evaluated using the second entry in the state-space

vector given by (5.36) and subsequently (5.40).

The EMSE for the different values of a and b are provided in Figures 6.10, 6.11

and 6.12 for all the three noise environments to provide a clear picture of the level of

EMSE attained for these parameter choices.

The results shown in Figures 6.5, 6.6 and 6.7 demonstrate that the steady-state

performance of the algorithm is insensitive to the choices of noise levels and environ-

ments. This explains the proposed algorithm’s resilience to noise and hence lower

EMSE as compared to the traditional LMF algorithm.
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Figure 6.2: Mean behaviour of the variable step-size of VSSLMFQ for various values
of parameter a and b in the presence of Gaussian noise with SNR = 10dB.
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Figure 6.3: Mean behaviour of the variable step-size of VSSLMFQ for various values
of parameter a and b in the presence of Laplacian noise with SNR = 10dB.
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Figure 6.4: Mean behaviour of the variable step-size of VSSLMFQ for various values
of parameter a and b in the presence of Uniform noise with SNR = 10dB.
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Figure 6.5: Mean behaviour of the variable step-size of VSSLMFQ in the presence of
Gaussian environment with various values of SNR.

90



0 0.5 1 1.5 2

x 10
5

10
−7

10
−6

10
−5

10
−4

10
−3

Iterations

M
ea

n 
S

te
p 

S
iz

e 
B

eh
av

io
ur

 

 

SNR = −10dB
SNR = 0dB
SNR = 10dB
SNR = 20dB

Figure 6.6: Mean behaviour of the variable step-size of VSSLMFQ in the presence of
Laplacian environment with various values of SNR.

0 0.5 1 1.5 2

x 10
5

10
−7

10
−6

10
−5

10
−4

10
−3

Iterations

M
ea

n 
S

te
p 

S
iz

e 
B

eh
av

io
ur

 

 

SNR = −10dB
SNR = 0dB
SNR = 10dB
SNR = 20dB

Figure 6.7: Mean behaviour of the variable step-size of VSSLMFQ in the presence of
Uniform environment with various values of SNR.
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Figure 6.8: Comparison of Analytical and Experimental MSE of the proposed
VSSLMFQ algorithm for different values of parameter a.
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Figure 6.9: Comparison of Analytical and Experimental MSE of the proposed
VSSLMFQ algorithm for different values of parameter b.

92



0 1 2 3 4 5 6 7 8

x 10
4

−45

−40

−35

−30

−25

−20

−15

−10

−5

0

Iterations

E
M

S
E

 (
dB

)

 

 

1−>a = 0.9 b = 1−1e−5
2−>a = 0.99 b = 1−1e−5
3−>a = 0.999 b = 1−1e−5
4−>a = 0.9 b = 1−1e−6
5−>a = 0.9 b = 1−1e−4

3
2

1 4 5

Figure 6.10: Comparison of the EMSE of the proposed VSSLMFQ algorithm for
different values of parameter a and b in Gaussian environment with SNR = 10 dB.
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Figure 6.11: Comparison of the EMSE of the proposed VSSLMFQ algorithm for
different values of parameter a and b in Laplacian environment with SNR = 10 dB.
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Figure 6.12: Comparison of the EMSE of the proposed VSSLMFQ algorithm for
different values of parameter a and b in Uniform environment with SNR = 10 dB.

6.1.2 Comparison of the EMSE of LMF algorithm with the

proposed VSSLMFQ algorithm

In this section, the LMF algorithm and the proposed VSSLMFQ algorithm are com-

pared in terms of their excess mean-square error. In all the results provided here,

we see that the proposed VSSLMFQ algorithm achieves a lower EMSE than the tra-

ditional LMF algorithm. Particularly, it can be seen in Figures 6.13, 6.14 and 6.15

that the proposed VSSLMFQ algorithm achieves an EMSE that is lower by 15 dB,

10 dB and 10 dB for Gaussian noise environments with SNR of 0 dB, 10 dB and 20

dB, respectively, as compared to the traditional LMF algorithm.

Similar behaviour is observed for the non-Gaussian environments where Laplacian

and Uniform noises are used. The difference in the EMSE between LMF and the
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proposed VSSLMFQ for the Laplacian case as demonstrated in Figures 6.16, 6.17

and 6.18 is 15 dB, 10 dB and 10 dB with SNR of 0 dB, 10 dB and 20 dB, respectively.

Figures 6.19, 6.20 and 6.21 illustrate the same performance enhancement for Uniform

noise. Table 6.1 provides a summary of the results obtained in this section. In order

to illustrate the respective algorithm’s performance in all the noise environments i.e

Gaussian, Laplacian and Uniform, Figures 6.22, 6.24 and 6.26 provide the EMSE

for the LMF algorithm while Figures 6.23, 6.25 and 6.27 provide the EMSE for the

proposed VSSLMFQ algorithm.

The point worth noting is the proposed algorithm’s resilience exhibited in all the

noise environments irrespective of the SNR level. This was predicted in the arguments

presented while proposing the time-varying behaviour of the step-size. This has been

clearly illustrated in the simulation results in the previous section.
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Figure 6.13: Comparison of the EMSE of LMF and the proposed VSSLMFQ in
AWGN environment with SNR = 0 dB.
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Figure 6.14: Comparison of the EMSE of LMF and the proposed VSSLMFQ in
AWGN environment with SNR = 10 dB.
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Figure 6.15: Comparison of the EMSE of LMF and the proposed VSSLMFQ in
AWGN environment with SNR = 20 dB.
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Figure 6.16: Comparison of the EMSE of LMF and the proposed VSSLMFQ in
Laplacian environment with SNR = 0 dB.
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Figure 6.17: Comparison of the EMSE of LMF and the proposed VSSLMFQ in
Laplacian environment with SNR = 10 dB.
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Figure 6.18: Comparison of the EMSE of LMF and the proposed VSSLMFQ in
Laplacian environment with SNR = 20 dB.
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Figure 6.19: Comparison of the EMSE of LMF and the proposed VSSLMFQ in
Uniform environment with SNR = 0 dB.
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Figure 6.20: Comparison of the EMSE of LMF and the proposed VSSLMFQ in
Uniform environment with SNR = 10 dB.

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

−60

−50

−40

−30

−20

−10

0

Iterations

E
M

S
E

(d
B

)

 

 

LMF VSSLMFQ

Figure 6.21: Comparison of the EMSE of LMF and the proposed VSSLMFQ in
Uniform environment with SNR = 20 dB.
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Figure 6.22: EMSE of the LMF algorithm in the presence of Gaussian, Laplacian and
Uniform environment with SNR = 0 dB.
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Figure 6.23: EMSE of the proposed VSSLMFQ algorithm in the presence of Gaussian,
Laplacian and Uniform environment with SNR = 0 dB.
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Figure 6.24: EMSE of the LMF algorithm in the presence of Gaussian, Laplacian and
Uniform environment with SNR = 10 dB.
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Figure 6.25: EMSE of the proposed VSSLMFQ algorithm in the presence of Gaussian,
Laplacian and Uniform environment with SNR = 10 dB.
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Figure 6.26: EMSE of the LMF algorithm in the presence of Gaussian, Laplacian and
Uniform environment with SNR = 20 dB.
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Figure 6.27: EMSE of the proposed VSSLMFQ algorithm in the presence of Gaussian,
Laplacian and Uniform environment with SNR = 20 dB.
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Table 6.1: Steady-State EMSE of the LMF algorithm and the proposed VSSLMFQ
algorithm

Gaussian Laplacian Uniform
0dB 10dB 20dB 0dB 10dB 20dB 0dB 10dB 20dB

LMF -15.99 -29 -38.8 -8.82 -21.31 -31.59 -21.68 -35.78 -45.88
VSSLMFQ -31 -39.14 -49 -23.3 -31.64 -41.2 -37.03 -44.7 -54.33

6.2 Tracking Performance of the VSSLMFQ Algo-

rithm

In this section, we demonstrate the tracking capabilities of the proposed VSSLMFQ

algorithm for time-varying channel. The two channel model used are Random-Walk

Channel and Rayleigh Fading Channel (both single and multipath). The input re-

gressor {xn} is taken to be BPSK {±1} signal. A Gaussian noise environment is used

with variance to achieve an SNR of 10 dB.

6.2.1 Random-Walk Model

The Random-Walk model as discussed in Section 4.2 provides the time-varying chan-

nel as:

wo
n+1 = wo

n + qn, (6.1)

where vector qn is an iid zero mean Gaussian sequence with variance σ2
q = 10−10.

This corresponds to a degree of nonstationarity (DN) of 3.16× 10−4. Thus it satisfies

the condition that DN � 1 for the adaptive filter to track the variations successfully.

The parameters of the proposed VSSLMFQ algorithms are set as in the mean-square
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analysis. The initial condition of the channel is also taken to be the same as in the

mean-square analysis, i.e., normalised Hanning window. The results given in Figures

6.28 and 6.29 are the experimental and analytical MSE of the proposed VSSLMFQ

algorithm for different values of parameters a and b. It can be observed that the

experimental and analytical findings are in close agreement. Also the dependence of

the MSE on a and b, as observed in the stationary case is also exhibited here.
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Figure 6.28: Comparison of Experimental and Analytical MSE of VSSLMFQ algo-
rithm for Random-Walk Channel for different values of parameter a.
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Figure 6.29: Comparison of Experimental and Analytical MSE of VSSLMFQ algo-
rithm for Random-Walk Channel for different values of parameter b.

6.2.2 Rayleigh Fading Channel Model

In the case of Rayleigh fading channel model, the two types of channels considered

are single-path and multipath channels. Both channels to be estimated are give as:

[0 0 s1n 0 0] , (6.2)

[0 0 s1n 0 s2n] , (6.3)

where {s1n} and {s2n} are the absolute values of a Rayleigh distributed sequence that

represent Rayleigh fading channel. The Doppler frequency was chosen to be 10Hz

with a channel sampling period of Ts = 0.8µs. This corresponds to a degree of non-

stationarity (DN) of 1.1 × 10−3. Thus also satisfies the condition that DN � 1 for
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the adaptive filter to track the fading channel successfully. The experimental and an-

alytical MSE of the proposed VSSLMFQ algorithm for the single-path fading channel

for different values of parameters a and b is shown in Figures 6.30 and 6.31. It is ob-

served that both the experimental and analytical results are in very close agreement.

Figures 6.32 and 6.33 provide the experimental and analytical MSE of the proposed

VSSLMFQ algorithm for a multipath fading channel for the same parameters. Again

the close agreement between theory and simulation is observed. Although not visible

but the dependency of the MSE on parameters a and b, seen in the Random-Walk

case, is still valid here. This behaviour would be evident for either very higher value

of a and lower value of b.
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Figure 6.30: Comparison of Experimental and Analytical MSE of VSSLMFQ algo-
rithm for single-path Rayleigh Fading Channel for different values of parameter a.
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Figure 6.31: Comparison of Experimental and Analytical MSE of VSSLMFQ algo-
rithm for single-path Rayleigh Fading Channel for different values of parameter b.
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Figure 6.32: Comparison of Experimental and Analytical MSE of VSSLMFQ algo-
rithm for Multipath Rayleigh Fading Channel for different values of parameter a.
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Figure 6.33: Comparison of Experimental and Analytical MSE of VSSLMFQ algo-
rithm for Multipath Rayleigh Fading Channel for different values of parameter b.

6.3 Transient Performance of the VSSLMFQ Algo-

rithm

In this section, we illustrate the transient behaviour of the proposed VSSLMFQ al-

gorithm to investigate the time-evolution of both the weight-error vector as well as

the time-varying step-size. The investigation for the time-varying step-size is under

taken to corroborate the theoretical assumptions done during its analysis. Mainly we

had discussed 3 cases for the transient behaviour of the variable step-size. Experi-

ments to verify all the three cases have been carried out. Figure 6.34 illustrates the

experimental and theoretical mean step-size behaviour of the proposed algorithm for

all the three cases discussed. It can be seen that all the three cases demonstrate very
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close agreement with the theoretical result. Therefore all the three cases provide a

very accurate model for the evolution of the time-varying step-size. Also the time-

evolution of the weight-error vector is demonstrated through the MSD (mean-square

deviation) and MSE. The theoretical values of the MSD are evaluated using the first

entry in the state-space vector given by (5.36) and the MSE is evaluated using the

second entry in (5.40) and subsequently (5.40).

For the case of time-evolution of the weight-error vector, we have considered both

the uncorrelated and correlated input signals.
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Figure 6.34: Comparison of Experimental and Analytical mean step-size behaviour
of the proposed VSSLMFQ algorithm for all the three cases with SNR 10dB.
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Figure 6.35: Experimental and Analytical MSD of the LMF algorithm for Correlated
input.
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Figure 6.36: Experimental and Analytical MSE of the LMF algorithm for Correlated
input.
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Figure 6.37: Experimental and Analytical MSD of the LMF algorithm for white input
data.
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Figure 6.38: Experimental and Analytical MSE of the LMF algorithm for white input
data.
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Figure 6.39: Experimental and Analytical MSD of the VSSLMFQ algorithm for cor-
related data.
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Figure 6.40: Experimental and Analytical MSE of the VSSLMFQ algorithm for cor-
related data.
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Figure 6.41: Experimental and Analytical MSD of the VSSLMFQ algorithm for white
input data.
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Figure 6.42: Experimental and Analytical MSE of the VSSLMFQ algorithm for white
input data.
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Chapter 7

Conclusions and Future

Recommendations

7.1 Thesis Contributions

In this work, we have successfully presented a variable step-size LMF algorithm,

namely the Variable Step-Size Least-Mean Fourth Algorithm of the Quotient Form

(VSSLMFQ). The algorithm has been thoroughly analysed for its steady-state per-

formance, tracking properties, transient performance, stability and convergence rate.

These analyses have been supported by experimental results. The major contributions

of this thesis can be summarised as follows:

1. A new variable step-size LMF (VSSLMFQ) algorithm has been presented that

takes into account the measurement noise as a major degrading factor in achiev-

ing a lower EMSE performance and proposes a new methodology to mitigate
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it.

2. The steady-state analysis of (VSSLMFQ) algorithm is presented and carried

out in the mean square sense to derive an expression for the excess mean-square

error using the fundamental energy relation.

3. The tracking properties of (VSSLMFQ) algorithm are analysed and an expres-

sion for the tracking excess mean-square error is derived.

4. Transient behaviour of (VSSLMFQ) algorithm is analysed to derive the time-

evolution of the algorithm.

5. Lastly, the analytical results are experimentally verified to be consistent.

7.2 Conclusions

In this work, we have presented a variable step-size LMF algorithm (VSSLMFQ) to

be used in applications for digital or wireless communication. Hence, the algorithm

has been analysed for such applications and environments. The study included a

comprehensive comparison of the VSSLMFQ algorithm with the traditional LMF

algorithm and demonstrated its dominance over it in terms of the excess mean-square

error for different noise environments.

Although the performance enhancement was achieved with a slight increase in

the complexity of the algorithm, it was stated earlier that with the advance in digi-

tal electronics, this algorithm can have real time applications. With the demand in

wireless communication on the increase, the proposed algorithm, with its ability to
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mitigate the measurement noise to such a degree, can be used in wireless commu-

nication receivers where accurate channel estimation is required that result in lower

bit-error rates.

7.3 Future Recommendations

With every research work, there is always room for improvement. There are a few

suggestions regarding any future work that can be undertaken. It was seen that the

performance of the algorithm was highly dependent upon the design parameters of

the variable step-size, i.e., α, γ, a and b. With regards to parameters α and γ, they

can be optimised to achieve a lower EMSE than achieved in the experiments. For

the case of variable step-size LMS, these parameters were analysed in [18]. A similar

approach can be used for the VSSLMFQ case. For the case of parameters a and

b, it was seen that they also play a key role in the MSE of the algorithm. These

parameters of the quotient form can be optimised to get a minimum MSE.
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Appendix A

Approximation in Equation (3.23)

The assumption taken in (3.23) is not valid under normal circumstances. Even if we

assume independence, then the ratio, E
[
A∞
B∞

]
, can be written as

E

[
A∞
B∞

]
= E [A∞]E

[
1

B∞

]
.

where

E [A∞]E

[
1

B∞

]
6= E [A∞]

E [B∞]
, (A.1)

because

E

[
1

B∞

]
6= 1

E [B∞]
. (A.2)

Since our assumption is taken for the limiting case when n→∞, it has been shown

in [40] and [41] that for vectors of the form

x′Ax

x′Bx
=

x′Ax

Σbix2
i

, (A.3)
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the ratio is independent of its denominator if and only if the b′s are all equal and x

has zero mean. In our case, the values of b, for n→∞, are almost identical. Also the

vector x which in our case is the a priori estimation error, ean, is zero mean, hence

the expectation of the ratio can be written as the ratio of expectations.
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Appendix B

Derivation of Equation (3.33)

This equation suggests that we can express E
[
‖xn‖2 e2

an

]
and a scaled multiple of

E [e2
an] [5]. In order to do this, lets first expand the expectation E

[
‖xn‖2 e2

an

]
as:

E
[
‖xn‖2 e2

an

]
= E

[
xTnxn

(
xTnwo

n+1 − xTnwn

) (
woT
n+1xn −wT

nxn
)]
,

= E
[
tr
(
xTnxnx

T
n

(
wo
n+1 −wn

) (
woT
n+1 −wT

n

)
xn
)]
,

= E
[
tr
(
xTnxn

(
wo
n+1 −wn

) (
woT
n+1 −wT

n

)
xTnxn

)]
,

= tr
(
E
[
xTnxn

(
wo
n+1 −wn

) (
woT
n+1 −wT

n

)
xTnxn

])
. (B.1)

As the term E
[
xTnxn

(
wo
n+1 −wn

) (
woT
n+1 −wT

n

)
xTnxn

]
is a covariance matrix, then

under the property of conditional expectation for any two random variable x and y,

it states that E [x] = E [E [x|y]]. So we have
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E
[
xTnxn

(
wo
n+1 −wn

) (
woT
n+1 −wT

n

)
xTnxn

]

= E
[
E
[
xTnxn

(
wo
n+1 −wn

) (
woT
n+1 −wT

n

)
xTnxn|xn

]]
,

= E
[
xTnxnE

[(
wo
n+1 −wn

) (
woT
n+1 −wT

n

)
|xn
]
xTnxn

]
,

E
[
xTnxn

(
wo
n+1 −wn

) (
woT
n+1 −wT

n

)
xTnxn

]
= E

[
xTnxnCnx

T
nxn

]
, (B.2)

where

E
[(

wo
n+1 −wn

) (
woT
n+1 −wT

n

)
|xn
]

= E
[(

wo
n+1 −wn

) (
woT
n+1 −wT

n

)]
, Cn.

In order to solve E
[
xTnxnCnx

T
nxn

]
which involves fourth order moments, for any real-

valued Gaussian random variable g with zero mean and diagonal covariance matrix

E
[
ggT

]
= Λ, and any symmetric matrix K we have:

E
[
ggTKggT

]
= Λtr(KΛ) + 2ΛKΛ,

which in this case will be:

g← xn, K← Cn, Λ← σ2
xI,

so that we can write:

E
[
xTnxnCnx

T
nxn

]
= σ4

x [tr (Cn) I+2Cn] . (B.3)
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Substitute in (B.1), we get:

E
[
‖xn‖2 e2

an

]
= tr

[
σ4
x [tr (Cn) I+2Cn]

]
= (N + 2)σ4

xtr (Cn) . (B.4)

Moreover we can express E [e2
an] in terms of tr (Cn) as follows

E
[
e2
an

]
= E

[
xTn
(
wo
n+1 −wn

) (
woT
n+1 −wT

n

)
xn
]
,

= E
[
xTnCnxn

]
,

= tr
(
E
[
xnx

T
nCn

])
,

= tr (E [RCn]) ,

= σ2
xtr (E [Cn]) ,

= σ2
xtr (Cn) .

Substituting the above result in (B.4) we get

E
[
‖xn‖2 e2

an

]
= (N + 2)σ2

xE
[
e2
an

]
. (B.5)
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Appendix C

Exact Moments of Ratio of Quadratic

Forms in Normal Variables

Ratio of quadratic forms are often encountered in estimation problems. But their

characterisation is difficult due to the complex expectation that have to be evaluated

in order to get the desired result. Here, we are going to lay out an approach to find

the exact moments of ratio of quadratic form in normal variables based on [38].

The problem can be motivated by stating that for Gaussian random variable, often

a situation is encountered when we need to perform an expectation of the form:

E

[
x′Ax

x′Bx

]
(C.1)

where A is symmetric, B positive semi-definite and x is normally distributed with

some non zero mean and positive definite covariance matrix. The main idea in finding

the moments of the ratio is that the moments of any random variable can be expressed

as polynomial of its cumulants (cumulants are logs of moment-generating function).
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This result is then extended to the case of quadratic form.

The moments of the ratio of two random variables is dealt with the s-fold differ-

entiation of the moment-generating function (provided it exists) under the integral

sign to obtain the sth moment. Then this result is extended to the quadratic form.

In the end, we are able to combine all these results to get the expression for the exact

moments of the ratio of quadratic form.

In the case of our proposed algorithm, we encountered this problem when trying

to evaluate the expectation:

θn =

∑n
i=0 a

ie2
n−i∑n

j=0 b
je2
n−j

. (C.2)

We can reformulate the problem as:

E [θn] = E

[
eTAe

eTBe

]
, (C.3)

where e is a vector of length (N + 1) × 1 with elements e = (en en−1 en−2 . . . e0), A

and B are (N + 1)× (N + 1) diagonal matrices given by:

diag (A) =
{
a0 a1 . . . an

}
, diag (B) =

{
b0 b1 . . . bn

}
. (C.4)

Now we suppose e to be a normally distributed vector with mean m and positive-

definite covariance matrix K. Let P be an orthogonal (N + 1) × (N + 1) and Λ a

diagonal (N + 1)× (N + 1) matrix such that

PTLTBLP = Λ, PTP = I. (C.5)
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This type of decomposition can be achieved by Cholesky decomposition. Also define

A = PTLTALP, m = PTL−1m. (C.6)

Then if the expectations exist, we can write:

E

[
eTAe

eTBe

]s
=

e(−(1/2)m′K−1m)

(s− 1)!

∑
l

δs (l)

×
ˆ ∞

0

ts−1 |4| e1/2ζ′ζ
s∏
j=1

[
Tr
(
Gj
)

+ ζ ′Gjζ
]rj dt. (C.7)

We are going to explain the terms one by one. Firstly the summation is over all

possible 1×s vectors l = (r1, r2, . . . , rs) whose components rj are non-negative integers

satisfying
∑s

j=1 jrj = s, so that:

δs (l) = s!2s
s∏
j=1

[rj! (2j)rj ]
−1
. (C.8)

The matrix ∆ is diagonal positive definite, G is a symmetric (N+1)×(N+1) matrix

and ζ is an (N + 1)× 1 vector given:

∆ = (I + 2tΛ)−1/2 , G = ∆A∆, ζ = ∆m. (C.9)

For our case, we require the first two moments of θn, so s = 1, 2. The corresponding
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vectors, l, for this case are:

s = 1 : r1 = 1

s = 2 : (r1, r2) = (2, 0) , (0, 1)

so

δ1 (l1) = 1,

δ2 (l1) = 1,

δ2 (l2) = 2.

Hence substituting this data to evaluate for s = 1, 2 we get:

E [θn] = e(−(1/2)m′K−1m) ×
ˆ 1

0

|4| e1/2ζ′ζ [Tr (G) + ζ ′Gζ] dt, (C.10)

and

E
[
θ2
n

]
= e(−(1/2)m′K−1m)

∑
l

δ2 (l)×
ˆ 1

0

|4| e1/2ζ′ζ
2∏
j=1

[
Tr
(
Gj
)

+ ζ ′Gjζ
]rj dt.

(C.11)

Notice the upper limit is set to 1. This is because θn is a decreasing function and

bounded between [0, 1]. Lastly, both the equations have integrals in them as there

is no close form solution to them. So they have to be evaluated through numerical

integration.
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