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THESIS ABSTRACT 

Name: Hosam Abdul Rahim Fareed Arabasy 

Title:  LMI-based control of nonlinear time-delay model for “type 1-diabetic patient” 

Major:  Systems Engineering 

Date:  June 2009 

Diabetes mellitus is one of the worst diseases with respect to the size of the affected 

population. It is very difficult to maintain the Normoglycemia for type 1 diabetic 

patient. This motivates many researchers to study the glucose-insulin endocrine 

regulatory system and try to find a proper controllable mathematical model. These 

models are in the form of ordinary differential, partial-differential, delay-differential, 

and integral-differential equations. Partial closed-loop and closed-loop control 

strategies were found in the literature for this task. These strategies did not consider 

the presence of time delay in the model, which may affect systems' performance and 

stability. 

In this thesis, new criteria for LMI-based characterization of Nominally Linear Time 

Delay system and ℒ2  gain analysis based on Lyapunov-Krasovskii Functional will be 

developed. Later on, this method will be extended to design feedback controllers, 

which ensure robustness against disturbances and parameter variations. All the 

developed theorems are verified through simulations, and compared with each 

other, with partial closed-loop, and with Model Predictive Control technique using 

Bergman model.  
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 ملخص الرسالة

 ػشتاسٙ فشٚذ حساو ػثذ انشحٛى :ـــمـــــــــالاســ

خطٛح نُظاو غٛش خطٙ يصحٕب تانرأخٛش انضيُٙ انًرشاظحح انًصفٕفٛح الانرحكى انًثُٙ ػهٗ : الرسالة عنوان

" نًشٚط انثٕل انسكش٘ يٍ انُٕع الأٔل"

 ُْذسح انُظى :صـــــــالتخص

 2009َٕٕٚٛ  :ــخــــــــالتاريــ

 

، إَّ يٍ انصؼة الإصاتاخ فٙ انسكاٌٚؼرثش يشض انثٕل انسكش٘ أحذ أسٕأ الأيشاض فٙ انٕقد انحاظش َظشا نحعى 

انسٛطشج ػهٗ يسرٕٖ سكش انذو فٙ انحذٔد انطثٛؼٛح نًشض انسكش يٍ انُٕع الأٔل، ْزا كاٌ دافؼا نكصٛش يٍ فشق 

ذحكى  ًَٕرضانثحس انؼهًٙ نذساسح انغذد انصًاء ٔ ػلاقح انسكش فٙ انذو يغ ْشيٌٕ الأَسٕنٍٛ ٔ رنك يٍ أظم إٚعاد 

احصٌٕ إنٗ ًَارض يؼادلاخ ذفاظهٛح اػرٛادٚح ٔ ذفاظهٛح ظضئٛح ٔ ذفاظهٛح يحرٕٚح ػهٗ ذأخٛش نقذ ذٕصم انة سٚاظٙ،

انحهقح شثّ انًغهقح ٔ انحهقح  غشق اسرشاذٛعٛاخ انرحكى انًٕظٕدج فٙ الأتحاز ذشًم ػهٗ ،صيُٙ ٔ ذفاظهٛح ذكايهٛح

ٔرض ٔ انز٘ يٍ انًًكٍ أٌ ٚؤشش ويُٙ فٙ انٍنكٍ كم ْزِ الاسرشاذٛعٛاخ نى ذأخز تؼٍٛ الاػرثاس ٔظٕد ذأخٛش صانًغهقح، 

. ػهٗ أداء ٔ اسرقشاس انُظاو

َظاو غٛش خطٙ  انًثُٛح ػهٗ انًرشاظحح انًصفٕفٛح انخطٛحفٙ ْزِ انشسانح سٛرى ذطٕٚش ظٕاتػ ظذٚذج نٕصف 

ذؼًٛى  ، تؼذ رنك سٛرىآساسٕفسكٙ يصحٕب تانرأخٛش انضيُٙ ٔ حساب يؼايم انكسة تالاػرًاد ػهٗ غشٚقح نٛاتَٕٕٛف

نهقلاقم ٔ  انُظاو احرٕاء نعًاٌ انؼكسٛح ْزِ انطشٚقح تحٛس ذصثح صانحح نرصًٛى ٔ اخرثاس يرحكًاخ انرغزٚح

انعذٚذج انرٙ ذى ذطٕٚشْا فٙ ْزا  سٛرى إظشاء يحاكاج نهُظشٚاخ ،انًُٕرضب ػٕايم انرعشتح انخاصحفٙ  الاَحشافاخ

ًَٕرض َرائط  يغذائط انًرحصم ػهٛٓا تؼعٓا يغ تؼط ٔ نهٍ يقاسَاخ ػًم ، ٔ كزنكانثحس نهرأكذ يٍ صلاحٛرٓا

. تشظًاٌ تاسرخذاو انرحكى انرُثؤ٘ نهًُٕرض ٔ تاسرخذاو انرحكى تئسرشاذٛعٛح انحهقح شثّ انًغهقح

  



1 

 

Chapter 1 MEDICAL BACKGROUND 

MEDICAL BACKGROUND 

1-1 Introduction 

When the pancreas does not release or properly use the insulin to uptake and control the 

blood glucose [1], it is considered that the patient has diabetes mellitus. Thus Diabetes 

mellitus can be considered as a group of metabolic disorders characterized by inability of 

the pancreas to regulate blood glucose concentration due to defects in insulin secretion 

and/or insulin action. 

The Insulin, discovered in 1921, is considered as a heart of blood glucose control. 

Development of the DNA technology leads to have pure insulin. Insulin treatment is used 

to mimic normal physiology in order to prevent hyperglycemia or hypoglycemia side 

effects. The amount of the injected insulin is typically based on the blood glucose level. 

According to the American Diabetes Association [2] data [3] published in 2002, about 

6.3% of the total population had type 2-diabetes in the United States. Thus, diabetes 

mellitus is considered as one of the worst diseases with respect to the size of affected 

population. The direct and indirect cost of the treatment of diabetes was $132 billion. The 

world wide diabetic population is much higher, especially in underdeveloped countries. 

The medical diabetic complications will be provided in this chapter to give better 

understanding of the models and controls that will be presented in the following chapters. 
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1-2 Blood Glucose Classification 

The Diabetes Control and Complications Trial (DCCT) Research Group have classified 

the blood glucose level into three main categories: Hypoglycemia, Normoglycemia, and 

Hyperglycemia [4].  

The normal condition with blood glucose concentrations is called Normoglycemia.  The 

narrow range limits of Normoglycemia, after overnight fasten, is 70 mg/dl (3.9 mmol/l) to 

110 mg/dl (6.04 mmol/l), and can be accepted for random test to be in the range of 60 

mg/dl to 140 mg/dl as wide range limits. Inadequate secretion of insulin by the diabetic 

pancreas results in poor maintenance of the Normoglycemia with elevated blood glucose 

concentrations. The only treatment is with Subcutaneous (SC) or Intravenous (IV) insulin 

injections, traditionally administered in an open-loop manner. Without insulin treatment, 

these patients will die. 

The patient will have Hypoglycemia when his blood glucose level turns out to be less than 

40 mg/dl (2.2 mmol/l) [5]. The over delivery of insulin is the typical cause of this class. 

Hypoglycemia is a short term concern because it starves the body cells of fuel. The risk of 

Hypoglycemia is that it can lead to insulin shock, faint, coma, and death. 

While induce insulin resistance and diabetes via increased blood glucose levels is 

normally called Hyperglycemia [6]. Thus, Hyperglycemia is considered when blood 

glucose exceeds 140 mg/dl (7.8 mmol/l) after an Oral Glucose Tolerance Test, or 100 

mg/dl (5.5 mmol/l) after a Fasting Glucose Tolerance Test. In the United Kingdom 

Prospective Diabetes Study (UKPDS) [1] only 23% of patients allocated to diet alone 

attained fasting plasma glucose levels below 140 mg/dl.  
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According to DCCT [4] the persistent Hyperglycemia in diabetes is associated with long-

term complications and dysfunction of various organs, especially the eyes, kidneys, 

nerves, heart, and blood vessels. 

1-3 Types of diabetes 

Medical researchers have classified diabetes mellitus to be in to two types: Type 1-

diabetes, or Insulin Dependent Diabetes Mellitus (IDDM), and Type 2-diabetes, or Non 

Insulin Dependent Diabetes Mellitus (NIDDM) [7, 8].  

Type 1-diabetes is characterized by the patient‟s immune system destroying the insulin 

producing β-cells in the pancreas such that exogenous insulin is required to control the 

disease. This type commonly develops in young people (under 20 years old) and persists 

throughout life [1]. Insulin dependent diabetes accounts for 5–10% of the diabetic 

population. It is believed that both genetic factors and virus infections are responsible for 

causing this type of diabetes. Risk factors for type 1-diabetes include autoimmune, 

genetic, and environmental factors. DCCT [4] showed that an improved metabolic control 

was achieved using intensive insulin treatment in type 1-diabetes patients. Even more 

severe defects in insulin secretion are present in patients with type 1-diabetes following 

islet transplantation, when Normoglycemia is maintained in the absence of exogenous 

insulin treatment [8]. This suggests that glucose homeostasis can be maintained despite 

significant loss of β-cell function when an individual has normal insulin sensitivity. 

While Type 2-diabetes has been associated with defects in components of both the short 

term and chronic negative feedback loops [7]. Type 2-diabetes is known as a 



4 

 

heterogeneous disorder characterized by insulin resistance and insulin deficiency due to a 

deficit in the mass of β-cells, reduced insulin secretion, and resistance to the action of 

insulin [1]. The relative contribution and interaction of these defects in the pathogenesis 

of this disease remains to be clarified. About 90% to 95% of all diabetics diagnose type 2-

diabetes. This type of diabetes is associated with older age, obesity, family history of 

diabetes, prior history of gestational diabetes, impaired glucose tolerance, physical 

inactivity, and race/ethnicity. Type 2-diabetes is increasingly being diagnosed in children 

and adolescents [5]. About 150 million individuals are estimated to have type-2 diabetes 

worldwide [1].  

Insulin stimulated glucose disposal is reduced by 50-100% in patients with type 2-

diabetes as compared to non diabetic controls. However, insulin resistance of a similar 

magnitude also has been documented in many non-diabetic individuals including obese 

subjects, or during pregnancy, puberty, and aging [7]. Thus, Normoglycemia can be 

maintained in subjects with insulin resistance via increases in blood insulin levels. Defects 

of insulin secretion have been demonstrated in some people with type 2-diabetes [9].  

It was observed that the β-cell mass is reduced by 40-50% in patients with type 2-diabetes 

when compared with weight matched non diabetic subjects [8]. In comparison, 

approximately 80% to 90% of the β-cell mass is lost before the onset of hyperglycemia in 

individuals who develop type 1-diabetes, suggesting that a greater β-cell mass is required 

in the presence of insulin resistance. This is also consistent with the observation of a 43% 

higher β-cell mass in Normoglycemia subjects with insulin resistance due to obesity. 
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Although these data suggest that multiple defects are required for the onset of type 2-

diabetes, it is unclear if these defects have a single causal origin or if they occur 

independently. Experimental induction of insulin resistance using either high fat feeding, 

glucocorticoid administration, or genetically induced obesity has been shown to cause 

type 2-diabetes under certain circumstances. This supports the hypothesis that insulin 

resistance can cause β-cell defects, and hence diabetes, either by overworking the β-cells 

or by toxic effects of hyperglycemia on the β-cells. However, the existence of 

Normoglycemia in humans and animals highly resistant to insulin suggests independent 

defects in insulin sensitivity and β-cell function are required for type 2-diabetes [8]. 

Moreover some women can have glucose intolerance that is diagnosed during pregnancy 

for Type 1-diabetes and Type 2-diabetes. These types are common among obese women 

and women with a family history of diabetes. Gestational diabetes requires treatment 

during pregnancy period to normalize maternal blood glucose levels to avoid 

complications in the infant. After pregnancy, 5% to 10% of women with gestational 

diabetes are found to have Type 2-diabetes. 20% to 50% chance of developing diabetes in 

the next 5-10 years can be happen with women who have had gestational diabetes [5].  

Other specific types of diabetes result from specific genetic conditions (such as maturity-

onset diabetes of youth), surgery, drugs, malnutrition, infections, and other illnesses. Such 

types of diabetes may account for 1% to 5% of all diagnosed cases of diabetes [5]. 

DCCT and UKPDS [1] demonstrated that tight glucose control reduces the risk of long 

term complications of type 1-diabetes and type 2-diabetes, and hence reducing the cost to 

the health care system. There is no threshold for the relationship between blood glucose, 
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Glycosylated Hemoglobin (HbA1C), and reduced risk. This indicates that glucose levels 

in subjects with type 1-diabetes or type 2-diabetes should be as close as possible 

Normoglycemia.  

It is estimated that nearly 50% subjects with type 2-diabetes will receive insulin at some 

stage of their disease [5]. 

1-4 Insulin-Glucose Control in Healthy Individuals 

For a normal subject, the liver releases glucose into the blood. This helps the body to keep 

cells functioning 24 hours a day. The goal of intensive insulin therapy is to mimic the 

natural pattern of insulin release from the pancreas so that plasma glucose levels can be 

kept close to normal [10]. 

The insulin required for the normal person can be varied from 0.5 units per kilogram per 

day up to 2.0 units per kilogram per day at maximal stress situations. Insulin is secreted 

from β-cells.  A diabetic patient‟s response to insulin can vary significantly for a variety 

of reasons since the insulin sensitivity varies with the time of day and the fitness and 

health of the patient [11]. The normal physiologic insulin secretion has two profiles [12]:  

1- The basal secretion: The pancreas responds by releasing a small but steady amount 

of insulin into the bloodstream day and night in pulsating manner, providing a 

background rate of insulin to the body. This constant basal insulin rate of 

approximately 22 mU/min [13]. 

2- The bolus secretions: The pancreas responds by releasing a large amount of 

insulin, after meals, to uptake the glucose produced when food is digested. 
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The variables that state the basal insulin needs for an individual include growth and 

development, hormonal status, age, gender, stress levels, health status, and activity level. 

In addition, the amount and composition of food dictate the meal related needs [14]. 

Stress and exercise levels affect the patient‟s insulin sensitivity. Furthermore, the 

timescales of the variations for a diabetic can vary from hours to months. Thus, practical 

automated glucose control strategies have to be adaptive to some extent in order to 

accommodate changing and unknown patient conditions [11]. Insulin is cleared mainly by 

the liver and kidney. Insulin is degraded by enzymes in the subcutaneous tissue and 

interstitial fluid as well.  

While the glucagon, counter regulatory hormone, would be released in response to 

hypoglycemia to raise blood glucose concentration in a healthy individuals. This hormone 

is secreted from α-cells. However, the counter regulatory response in the diabetic patient 

is often blunted or absent, and hence it is less effective [15].  The exogenous factors that 

can affect the blood glucose concentration level include food intake, rate of digestion, 

exercise, reproductive state.  

The optimum treatment strategy for insulin treatment is used for type 1-diabetes. Insulin 

titration, or optimum insulin dosing, is a difficult task but is at the cornerstone of the 

management of type 1-diabetes [1]. DCCT has shown that intensive insulin therapy leads 

to improved outcomes of blood glucose control. On the other hand DCCT showed that 

resources needed to achieve this goal are beyond the present means. Novel approaches are 

needed to assist patients with type 1-diabetes and healthcare professionals in achieving the 
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goals set by the DCCT. Information technology has an important role to play contributing 

to these activities [4]. 

It was documented that even minor glucose elevations increase the risk of complications 

[11]. DCCT was the landmark study of 1440 type 1-diabetic people randomized into two 

treatment groups: intensive insulin delivery and standard care. Those people who had 

mean blood glucose concentrations below 110 mg/dl had no increase risk for retinopathy, 

nephropathy and peripheral vascular disease. Those patients who had elevated glucose 

hemoglobin levels had a significant and positive correlation with increased risk [4]. 

However, when the blood glucose concentration was normalized, the risk of sever life 

threatening hypoglycemia increased up to 10 fold above the risk in those patients with 

hyperglycemia. Thus the goal of achieving and maintaining normal blood glucose 

includes accepting the risk of hypoglycemia. The recent long term study by the DCCT 

group has confirmed these conclusions. 

As shown in Figure 1.1, the normal pancreas has two phases of insulin delivery: a first 

phase consisting of an immediate bolus and a second phase of prolonged insulin delivery 

[5], [11]. The function of the first phase is to reduce the glucagon secretion from the 

pancreatic α-cell and thus turn off the hepatic output of glucose, while the function of the 

second phase of insulin secretion is to metabolize the slower acting carbohydrates. The 

normal β-cell has its first priory to prevent hyperglycemia. Thus the α-cells are needed to 

secrete glucagon to prevent late postprandial hypoglycemia [11]. 

It is important to regulate diabetic patient blood glucose concentrations to be within the 

Normoglycemia limits [15]. When the blood glucose concentration level is high, the β-
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cells release insulin which results in lowering the blood glucose concentration level by 

inducing the uptake of the excess glucose by the liver and other cells such as muscles, and 

by inhibiting hepatic glucose production [16]. The only way the β-cell can respond to a 

falling blood glucose concentration is to turn off the insulin secretion. There is no way the 

β-cell can retract the insulin once it is given. 

Normal Plasma 

Glucose Level

High Plasma 

Glucose Level

Low Plasma 

Glucose Level

Glucose Infusion, 

meal, oral intake, 

and others 

Exercises, fasten, 

and other

α-cells release 

glucagon
β-cells release 

Insulin

Glucagon Insulin

Lever convert 

partial glucagon 

released from α-

cells and partial 

glycogen stored in 

liver to glucose

Insulin helps to 

consume plasma 

glucose

Lever

Pancreas

 

Figure 1.1: Insulin-Glucose regulatory system diagram. 

When the blood glucose level is low, the α-cells release glucagon, which results in 

increasing the blood glucose level by acting on liver cells and causing them to release 

glucose into the blood [16]. 



10 

 

The β-cell depends on the other counter regulation hormones that should be secreted to 

buffer the falling glucose concentration. The hormones that play a major role in counter 

regulation are glucagon, epinephrine, cortisol and growth hormone. This delicate balance 

is perfectly arranged to maintain the blood glucose within the Normoglycemia range [11]. 

In short, hyperglycemia stimulates a rapid increase in insulin release from the pancreatic 

β-cells. The associated increase in blood insulin levels causes increased glucose uptake 

and decreased glucose production leading to a reduction in blood glucose [7]. Recent 

indication proposes that chronic hyperglycemia may contribute to a second negative 

feedback loop by increasing the mass of insulin secreting β-cells, through changes in the 

rates of β-cells replication, and death. An increased β-cell mass represents an increased 

capacity for insulin secretion which, in turn, would lead to a decrease in blood glucose 

[8]. 

Treatment of type 2-diabetes has received little attention from the adaptive control 

community, except when titrating insulin dosing [1]. This may need revision given the 

complexities associated with the management of type 2-diabetes. It is usual to start the 

treatment of type 2-diabetes with non pharmacological therapies. The base effort of these 

therapies is to improve both good glycogenic control and to begin the process of helping 

patients to make healthy life style changes. Modification of the nutrition is the first task 

that is undertaken. If treatment goals are not achieved after a trial of dietary and lifestyle 

changes, an oral hypoglycemic are prescribed alone or in combination with insulin [4]. 

Various in-vivo and in-vitro experiments have shown that the Insulin Secretion Rate (ISR) 

from pancreatic islets, oscillates in a number of different time scales [17-19]:  
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1- The fastest oscillations have a period of tens of seconds and they have been shown 

to be in phase with oscillations in the free Ca2
+
 concentration of β-cells 

2- The rapid oscillations have a period of 5–15 minutes, and are caused by coordinate 

periodic secretory insulin bursting from the β-cells. 

3- The ultradian oscillations, or slow oscillations, have a period within the range of 

50–120 minutes. These oscillations of insulin concentration are associated to 

similar oscillations of the plasma glucose concentration, and they are best seen 

after meal ingestion, oral glucose intake, continuous enteral nutrition or IV 

glucose infusion [19-20]. 

In addition to these types of oscillations, circadian rhythms have been also observed [17]. 

These bursts are the dominant mechanism of insulin release at basal states [18]. In some 

cases compound bursting occurs [17], the term referred to episodic bursts clustered 

together and they propose that the compound bursting is responsible for insulin 

oscillations with a period of approximately 5 minutes. 

The most important factors that play vital role for glucose disposal are [21]: 

1- Insulin sensitivity: the capability of insulin to increase glucose disposal to 

muscles, liver and adipose tissue. 

2- Glucose effectiveness: the ability of glucose to enhance its own disposal at basal 

insulin level. 

3- Pancreatic responsiveness: the ability of the pancreatic β-cells to secrete insulin in 

response to glucose stimuli. 
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Any failure in these may lead to damage the glucose tolerance. Quantitative assessment is 

possible [22] and may improve classification, prognosis and therapy of the disease [23]. 

1.5 Insulin Therapy for Type-1 Diabetic patients 

DCCT [4, 5] have shown that there is an important correlation between a Normoglycemia 

and the prevention or delay of the complications of insulin-dependent diabetes. The 

DCCT has demonstrated that Intensive Insulin Therapy (IIT), consisting of three or more 

SC insulin injections per day or in the use of insulin pumps, significantly reduces the 

incidence of rethynopathies, autonomic neuropathies, and other complications. 

Alternatively, IIT shows an increased probability of hypoglycemic events, 2 to 3 times, 

and a remarkable increase of the costs of patient monitoring [4]. 

Three control variables affecting the blood glucose level are insulin, meals, and physical 

exercise. Although meals and physical exercise are crucial in determining the quality of 

metabolic control, their quantitative evaluation still represents a major problem in home 

monitoring [24]. Thus, meals and physical exercise are usually considered as (known) 

disturbances that can be compensated for by suitable feed-forward control laws in any 

insulin therapy control strategies that will be presented later.  

The metabolic control of type-1 diabetic patients can be evaluated by: 

1. Physicians during periodical control visits, on the basis of data coming from 

patient home monitoring.  
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2. The self-monitoring procedure includes the reading of blood glucose level, by 

portable devices and then records the insulin dosages and the relevant events 

related to meals and physical exercise.  

3. The medium period indicators is based on the measurement of the percentage of 

hemoglobin bound to glucose, that uses the HbA1c, to reflect the average glucose 

levels over the past 60 days. 

The objective of insulin therapy is to reproduce the physiological insulin profiles of the 

diabetic patient. This profile is characterized by a bi-phasic pattern, in response to a meal, 

and by a basal level in the fasting state. This goal is nearly impossible to achieve through 

a small number of SC injections. Pharmaceutical research has produced various types of 

insulin to mimic, through their combined injection, such that the plasma insulin being 

similar to normal individual profile.  

Various insulin analogues are available for SC injection. Each product is used for specific 

case and action such that [22 ,25]: 

1- Rapid-acting insulin analogues use Lispro and Aspart Insulin. 

2- Short-acting insulin analogues use Buffered regular insulin. 

3- Intermediate-acting insulin analogues use Lente and NHP (Neutral Protamine 

Hagedorn) Insulin. 

4- Long-acting insulin analogues use Glargine and Ultralente insulin. 

Table 1.1 lists the pharmacokinetics of available insulin products such as the time needed 

for the onset, peak, and duration of several types of insulin. Figure 1.1.2 shows the plasma 



14 

 

insulin concentration after SC injection of a typical dose of the most widely used insulin 

preparations.  

Table 1.1: Pharmacokinetics of available insulin products. 

Insulin Action since 
injection 

Peak time  
(hours) 

Duration 
(hours) 

Action 

Lispro 5-15 minutes 0.5-1.5 3-5 Rapid 
Aspart 10-20 minutes 1-3 3-5 Rapid 
Regular insulin 30-60 minutes 1-5 6-10 Short 
Buffered regular insulin 30-60 minutes 1-3 8 Short 
Lente 1-3 hours 6-14 16-24 Intermediate 
NPH 1-2 hours 6-14 16-24 and more  Intermediate 
Glargine 1.1 hours None 24 Long 
Ultralente 4-6 hours 8-20 More than 24 Long 

 
Figure 1.1.2: Time course of plasma insulin concentration after a subcutaneous injection (10 U) of 

regular (solid), Lispro (dash-dot), and NPH insulin (dotted). 

 

The insulin preparations with rapid action are used to obtain post-prandial peaks in 

plasma insulin concentration. Delayed action (Intermediate or long) Insulin is used to 

satisfy the basal insulin requirement. It is not possible to reproduce exactly the 

physiological profile due to the suboptimal insulin profile. Using an appropriate mixture 

of Lispro and NPH can give good results [24].  

Unfortunately, there is great variability of SC insulin absorption, especially for the 

delayed action insulins [26]. Large day by day plasma insulin fluctuations may be caused 
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by the variable SC absorption combined with errors in SC delivery (the drug is self-

administered). Also, undesired side-effects may occur such that a delay in the insulin peak 

can produce a post-prandial hyperglycemia followed by hypoglycemia. Hence, new 

intermediate-acting insulin preparations, such as the Neutral Protamine Lispro (NPL), are 

becoming available to enhance the blood glucose control when used in conjunction with 

Lispro insulin [27]. 

Insulin therapy can be viewed as an optimization problem with constraints. Optimization 

requires the search in a four-dimension space [24]: 

1. Number of injections: two to four per day. 

2. Time of injection: usually four per day: meals and bed times. 

3. Insulin type: Lispro, regular, NPH, and their mixtures. 

4. Insulin dosage.  

It is known that Lispro and regular insulin cannot be delivered at the same time. This will 

clinically limit the search to a subspace of possible combinations. Today, good evidence 

exists that an insulin protocol made of mealtime injections of a Lispro and NPH mixture, 

followed by a pre-bedtime NPH, is probably the most reliable strategy for blood glucose 

control [28]. 

Unfortunately, in addition to the intrinsic complexity of the decision space, other 

problems affect the design of a partially closed-loop control strategy that are: 

1. Blood glucose concentration is under-sampled [29]: Patients usually measure their 

blood glucose 3-4 times a day, while it is required to be measured at least 8 times 

per day to completely reconstruct the glycemic profile.  
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2. Intra-individual variability is rather high, even in patients whom maintain nearly 

the same habits every day [30]. 

These difficulties have motivated the researchers to develop suboptimal control strategies 

for defining the best insulin therapy as will be illustrated later in Chapter 3.  
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Chapter 2 GLUCOSE-INSULIN MODELS 

GLUCOSE-INSULIN MODELS 

2-1 Introduction 

The Insulin dose needs to be adjusted based on the blood glucose level after an initial 

insulin dose is given. This method of insulin delivery is fraught with continuous risk of 

hyperglycemia and hypoglycemia because the moment to moment fluctuations in glucose 

are not adequately treated with intermittent SC insulin injections. The optimal insulin 

delivery protocol would be performed such that the blood glucose monitoring and insulin 

dosing are continuously managed in real time. The meal-related insulin need is also 

difficult to derive and allow for the incorporation of carbohydrate into the meal plan and 

minimize the postprandial glucose peak.  

Thus, it is important to have insulin glucose model in order to normalize the glucose 

levels of type 1-diabetic patients. To do so, all glucose-insulin variables are needed to be 

included into an algorithm for insulin delivery.  

The minimal model and its siblings study the insulin sensitivity, while the proposed 

mathematical models aim to better understand the glucose-insulin regulatory system. 

Virtual patient need to be implemented using an appropriate mathematical model such 

that we can test the performance of the control algorithm.  

During the last decades, Many Insulin glucose mathematical models have been developed 

in order to have better understanding of the mechanisms of the glucose insulin regulatory 
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system. These models differ in the way in which they formulate and mimic the process. 

Each of these models has its own advantages and weaknesses. Different aspects were used 

to deal with insulin regulatory processes. The general form of Glucose-Insulin model can 

be expressed by the following mass conversion law: 

𝐺 (𝑡) = Glucose change rate = Glucose Production Rate – Glucose Utilization Rate 

𝐼 (𝑡) = Insulin change rate = Insulin Production Rate – Insulin Removal Rate 

The types of model used in the literature can be classified mathematically as: Ordinary 

Differential Equations (ODEs), Delay Differential Equations (DDEs), Partial Differential 

Equations (PDEs), Stochastic Differential Equations (SDEs), Fredholm Integral Equations 

(FIEs) (in the estimation of parameters problem), and Integro Differential Equations 

(IDEs).  

In this chapter, we will present some literature surveys that discuss the most important 

insulin-glucose mathematical models and control of insulin-glucose regulatory system.  

2-2 Ordinary Differential Equations (ODEs) 

Several sets of Ordinary Differential Equations (ODEs) mathematical models have been 

proposed to describe the insulin-glucose action. These ODEs are classified into three main 

classes that are: the Nonlinear Model, the Bergman Minimal Model, and the Six-

Dimensional model. 
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2-2-1 Nonlinear Model 

The nonlinear model, that has long been identified, was demonstrably more appropriate 

under many circumstances particularly in the control context where the model structure 

should remain minimal [31]. The following set of equations describing the glucose-insulin 

kinetics was used for the maintenance of basal glycemia during hyperinsulinemic clamps: 

𝐺 =
𝑑𝐺 𝑡 

𝑑𝑡
= − 𝑘𝑜 + 𝑘 𝑡  𝐺 𝑡 + 𝑅𝐺 𝑡  (2.1-1) 

𝑘 =
𝑑𝑘  𝑡 

𝑑𝑡
= −𝑎1𝑘 𝑡 + 𝑎2𝑖 𝑡  (2.1-2) 

𝑖 =
𝑑𝑖  𝑡 

𝑑𝑡
= −𝑎3𝑖 𝑡 + 𝑎4𝑘 𝑡 + 𝑎6𝑖3 𝑡 + 𝑅𝐼 𝑡  (2.1-3) 

𝑖3  =
𝑑𝑖3 𝑡 

𝑑𝑡
= −𝑎6𝑖3 𝑡 + 𝑎5𝑖 𝑡  (2.1-4) 

where 

𝐺 𝑡  is the plasma glucose concentration (mg/ml) 

𝑘𝑜  is the insulin-independent fractional removal rate of glucose (min
-l
) 

𝑘 𝑡  is the insulin-dependent fractional removal rate of glucose (min
-1

) 

𝑖 𝑡  is the insulin mass in the central compartment (µU) 

𝑖3 𝑡  is the insulin mass in a peripheral compartment non-active in glucose removal (µU) 

𝑅𝐺 𝑡  is the glucose systemic appearance rate (mg/ml.min) 

𝑅𝐼 𝑡  is the insulin systemic appearance rate (µU/min) 

𝑎1- 𝑎6 are the fractional transfer rates of the 3-compartment model of insulin kinetics: [𝑎1, 

𝑎3, 𝑎5, 𝑎6] = min
-l
, [𝑎2] = min

-2
 µU, and [𝑎4] = µU/min

-2
 

Equations (2.1-1 to 2.1-4) illustrates the variations in plasma glucose according to the 

principle of mass conservation. The term  𝑘𝑜 + 𝑘 𝑡  𝐺 𝑡  accounts for glucose removal 
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while the term 𝑅𝐺 𝑡  represents both the endogenous and the exogenous glucose input. A 

single compartment description is appropriate since in the euglycemic control situation, 𝐺  

will be minimized. The fractional removal rate of glucose consists of a constant 

component 𝑘𝑜 , added to an insulin dependent term 𝑘 𝑡 . 

The insulin-dependent component of the fractional removal rate of glucose 𝑘 𝑡 , has been 

shown to be directly proportional to the presence of insulin in a compartment remote from 

plasma. The latter is thus assumed directly proportional to the insulin mass in a peripheral 

compartment of a multi-compartment model of insulin kinetics. The two-compartment 

description is generally considered to be minimal.  

𝑘 𝑡  appears explicitly in the Equations (2.1-2) to (2.1-4) rather than the insulin mass in 

the compartment acting on glucose removal. The coefficient of proportionality between 

these two variables is simply lumped together with the fractional rates of transfer between 

plasma insulin and this pool. 𝑅𝐼 𝑡  represents the entry of both the endogenous and the 

exogenous insulin into the systemic circulation. Similarly, 𝑅𝐺 𝑡  accounts for the rate of 

appearance of glucose in the systemic circulation from both the endogenous and the 

exogenous sources. At steady state, prior to the onset of the insulin signal, the basal 

glucose removal simply equals the endogenous production but higher levels of circulating 

insulin would reduce the hepatic glucose production.  

This model predicts the time course of the insulin action for any insulin signal and thus 

allows certain flexibility in the regularity and frequency of the plasma glucose monitoring 

at a minimal cost in performance. 
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2-2-2 Bergman Minimal Model 

The standard Bergman model [32] is based on an Intravenous Glucose Tolerance Test 

(IVGTT), where glucose and insulin concentrations in plasma are sampled after an IV 

glucose injection [33]. Bergman minimal model was the base for many researchers to 

control the glucose behavior for type-1 diabetic patients. There are now approximately 50 

major studies published per year and more than 500 can be found in the literature, 

according to the same author, which involve the minimal model [34]. 

The glucose and insulin kinetics are described by two components, where the parameters 

traditionally have been estimated separately within each component. The glucose-insulin 

system is an integrated system and coupling of the components to obtain a unified model 

seems appropriate.  

In an IVGTT study, a dose of glucose (usually 0.3 gram of glucose per kg body weight) is 

injected intravenously over a 60 seconds period to overnight fasted person, and 

subsequently the glucose and insulin concentrations in plasma are frequently sampled and 

evaluated (usually 30 times) over a period of 180 minutes. 

 
Figure 2.1: Bergman‟s Minimal Model describing the glucose and insulin kinetics in an IVGTT 

study. 
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The IV glucose dose immediately elevates the glucose concentration in plasma forcing the 

pancreatic β-cells to secrete insulin. The insulin in plasma is hereby increased, and the 

glucose uptake in muscles, liver and tissue is raised by the remote insulin in action. This 

lowers the glucose concentration in plasma, implying the β-cells to secrete less insulin, 

from which a feedback effect arises. This integrated glucose-insulin system is illustrated 

by the compartment model in Figure 2.1. Based on the measurements of the glucose level 

in the SC layer, a modified version of Bergman‟s Minimal model is used. This modified 

version of Bergman‟s Minimal Model [7, 23] can be represented by the following, five 

state, ODEs: 

𝑥 =

 
 
 
 
 

𝐺
𝑋𝑟

𝐼
𝐺𝑠𝑐

𝐷𝑚  
 
 
 
 

  𝑥 =

 
 
 
 
 
 

𝐺 

𝑋𝑟
 

𝐼  

𝐺𝑠𝑐
 

𝐷𝑚
  
 
 
 
 
 

  (2.2) 

Where the system states are: 

𝐺 = −𝑃1 𝐺(𝑡) + 𝐺𝑏 − 𝑋𝑟(𝑡)𝐺(𝑡) + 𝐷𝑚  𝑡   (2.2-1) 

𝑋𝑟
 = −𝑃2𝑋𝑟(𝑡) + 𝑃3 𝐼(𝑡) − 𝐼𝑏   (2.2-2) 

𝐼 = −𝑛𝐼(𝑡) +
𝑈(𝑡)

𝑉𝐼
  (2.2-3) 

𝐺𝑠𝑐
 =

𝐺−𝐺𝑏𝑠𝑐

5
− 𝑅𝑢𝑡𝑖𝑛   (2.2-4) 

𝐷𝑚
 = −𝛼𝐷𝑚 (𝑡)  (2.2-5) 

and the system state variables are: 

𝐺(𝑡) is the Blood plasma glucose concentration above basal value (mg/dL). 

𝑋𝑟(𝑡) is the Insulin in the remote compartment (mU/L). 
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𝐼(𝑡) is the Plasma insulin concentration above basal value (mU/L). 

𝐺𝑠𝑐(𝑡) is the Glucose concentration on the SC layer (mg/dL). This state approximates 

G(t), and is the one which is measurable. 

𝐷𝑚 (𝑡) is the Meal glucose disturbance (mg/dL/min). 

The input is the manipulated insulin infusion rate (𝑈 𝑡  : (mU/min)). The time variable 𝑡 

is measured in minutes. The standard parameters for the model can be found in Table 2.1. 

𝐺𝑏 ;  𝑋𝑏𝑟 ; 𝐼𝑏 ; 𝐺𝑏𝑠𝑐  and 𝐷𝑏𝑚  denote the basal values for the system.  

Hence, a steady-state point for the system can be represented by: 

𝑥𝑠 =

 
 
 
 
 

𝐺𝑏

𝑋𝑏𝑟

𝐼𝑏
𝐺𝑏𝑠𝑐

𝐷𝑏𝑚  
 
 
 
 

   (2.3-1) 

𝑢𝑠 = 𝑛𝐼𝑏𝑉𝐼  (2.3-2) 

𝑑𝑠 = 0 (2.3-3) 

Table 2.1: Bergman model parameter values. 

Variable Value Variable Value 

𝑃1 0.028735 min
-1

 𝐺𝑏  81.3 mg/dL 

𝑃2 0.028355 min
-1

 𝐼𝑏  15 mU/L 

𝑃3 5.035*10
-5

 mU/L 𝐺𝑠𝑐  𝐺𝑏 − 5𝑅𝑢𝑡𝑖𝑛  

𝑉𝐼 12 L 𝐷𝑏𝑚  0 

𝑅𝑢𝑡𝑖𝑛  0.7400 mg/dL/min 𝑋𝑏𝑟  0 

𝛼 0.05 𝑛 5/54  min
-1

 

Using the standard linearization technique, it's clear that this system of differential 

equations can be set up like this: 

𝑋 = 𝐴 𝑋 + 𝐵 𝑈 + 𝐸 𝐷 (2.4) 

where the deviation variables are: 

𝑋 = 𝑥 − 𝑥𝑠 is the state vector. 
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𝑈 = 𝑢 − 𝑢𝑠is the input variable for insulin injection. 

𝐷 = 𝑑 − 𝑑𝑠 is input variable for meal consumption. 

𝐴 , 𝐵  and 𝐸  are the partial derivatives of the model that produce the system matrices such 

that: 

𝐴 =  𝜕𝑓

𝜕𝑥
 

(𝑥𝑠 ,𝑢𝑠 ,𝑑𝑠)
=

 
 
 
 
 

 

−𝑃1 − 𝑋𝑏

0
0

0.2
0

   

−𝐺𝑏

−𝑃2

0
0
0

   

0
𝑃3

−𝑛
0
0

     

0
0
0

−0.2
0

     

1
0
0
0

−𝛼 
 
 
 
 

  (2.4-1) 

𝐵 =  𝜕𝑓

𝜕𝑢
 

(𝑥𝑠 ,𝑢𝑠 ,𝑑𝑠)
=   0   0   

1

𝑉𝐼
   0   0  

𝑇

 (2.4-2) 

𝐸 =  𝜕𝑓

𝜕𝑑
 

(𝑥𝑠 ,𝑢𝑠 ,𝑑𝑠)
=   1   0   0   0   − 𝛼  𝑇  (2.4-3) 

It is required to have boundaries for the measured output blood glucose level, 𝑧, to keep 

the plasma glucose level in the Normoglycemia wide-range, avoid the Hyperglycemia or 

Hypoglycemia. 

Moreover, input constraints that restrict the insulin injected volume and frequency to 

ensure that the system obeys physiological and physical limits such that: 

0 mU/min ≤ 𝑢  ≤ 100 mU/min 

−16.7 mU/min ≤ ∆𝑢 ≤ 16.7 mU/min 

We can summarize the limitations for this model as [32]: 

1. It is a highly ill-posed inverse problem and most often the reconstruction of the 

glucose kinetics has been done by deterministic iterative numerical algorithms.  

2. The model parameters have usually been estimated by a non-linear weighted least 

squares estimation technique in a two-step procedure, where the parameters in 𝐺  and 
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𝑋  are estimated using insulin as a forcing function and then the parameter in 𝐼  are 

estimated using glucose as a forcing function. However, the glucose-insulin system is 

an integrated system, and must be considered as a whole. 

3. The oscillations resulted from the interaction between the insulin and glucose was not 

considered in this model. Thus this model considered improper in qualitative 

behavior. 

2-2-3 Six-Dimensional model ODEs 

To determine whether the ultradian, or slow, oscillations could result from the interaction 

between insulin and glucose, a parsimonious nonlinear mathematical model consisting of 

the six-dimensional ODEs including the major mechanisms involved in glucose regulation 

[5]. The four negative feedback loops, shown in Figure 2.2, describe the relation between 

insulin and glucose such that: glucose stimulates pancreatic insulin secretion, insulin 

stimulates glucose uptake and inhibits hepatic glucose production, and glucose enhances 

its own uptake [5], [16]. Sturis et al. [20], developed his six-dimensional ODE model.  

Glucose

Production

Glucose 

Utilization

Insulin

Secretion

Insulin

Glucose

(-)(-)

(-) (-)

 

Figure 2.2: Physiological Insulin Glucose regulatory system. 
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This model has three main state variables in addition to three auxiliary variables [5]. The 

main state variables are:  

1- 𝐺 is the amount of glucose in the plasma and intercellular space. 

2- 𝐼𝑝  is the amount of insulin in the plasma. 

3- 𝐼𝑖  is the amount of insulin in the intercellular space.  

While the other auxiliary variables are 𝑥1, 𝑥2, and 𝑥3. The following terms are included in 

the system state space equations: 

1- 𝑉𝑝  is the plasma insulin distribution volume. 

2- 𝑉𝑖  is the effective volume of the intercellular space. 

3- 𝐸 is the diffusion transfer rate. 

4- 𝑡𝑝  is insulin degradation time constants in the plasma. 

5- 𝑡𝑖  is insulin degradation time constants in the intercellular space.  

6- 𝐺in  is the exogenous glucose supply rate to plasma (such as meal ingestion, oral 

glucose intake, continuous enteral nutrition or IV glucose infusion).  

We can now represent our system functions 𝑓1, 𝑓2, 𝑓3, 𝑓4, and 𝑓5 as [5]:  

𝑓1 𝐺  is the function modeling the pancreatic insulin production as controlled by the 

glucose concentration, and it is given by: 

𝑓1 𝐺(𝑡) =
𝑅𝑚

1+exp   𝐶1−
𝐺

𝑉𝑔
 /𝑎1 

 (2.5) 

𝑓2 𝐺(𝑡)  is the insulin-independent glucose consumption by the brain, nerve cells and 

others. 𝑓2 0 = 0, . 𝑓2 𝑥 > 0  and 𝑓2
  𝑥 > 0  are bounded for 𝑥 > 0. 

𝑓2 𝐺 = 𝑈𝑏  1 − exp  −
𝐺

𝐶2𝑉𝑔
   (2.6) 
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𝑓3 𝐺(𝑡)  is the function for glucose utilization by various body parts such as muscle and 

fat cells and others. 𝑓3 𝑥 = 𝑘3𝑥, where 𝑘3 > 0 is a constant: 

𝑓3 𝐺 =
𝐺

𝐶3𝑉𝑔
 (2.7) 

𝑓4 𝐼𝑖 𝑡   is the functions for insulin dependent utilization/uptake by various body parts 

such as muscle and fat cells and others. 𝑓4 0 > 0, for 𝑥 > 0, 𝑓4 𝑥 > 0  and 𝑓4
  𝑥 > 0 

are bounded: 

𝑓4 𝐼𝑖 = 𝑈𝑜 +
𝑈𝑚 −𝑈𝑜

1+exp  −𝛽 ln 
𝐼𝑖

𝐶4 
1
𝑉𝑖

+
1

𝐸𝑡 𝑖
 
  

 (2.8) 

𝑓5(𝑥3 𝑡 ) is a function modeling hepatic glucose production: 

𝑓5 𝑥 =
𝑅𝑔

1+exp  𝛼 
𝑥

𝑉𝑝
−𝐶5  

 (2.9) 

Thus, Sturis et al. [20] Six-Dimensional model ODE can be represented as: 

𝐺 =
𝑑𝐺(𝑡)

𝑑𝑡
= 𝐺in − 𝑓2 𝐺 𝑡  − 𝑓3 𝐺 𝑡  𝑓4 𝐼𝑖 𝑡  + 𝑓5(𝑥3 𝑡 )  (2.10-1) 

𝐼𝑝 =
𝑑𝐼𝑝 (𝑡)

𝑑𝑡
= 𝑓1 𝐺 𝑡  − 𝐸  

𝐼𝑝  𝑡 

𝑉𝑝
−

𝐼𝑖 𝑡 

𝑉𝑖
 −

𝐼𝑝 (𝑡)

𝑡𝑝
 (2.10-2) 

𝐼𝑖 =
𝑑𝐼𝑖(𝑡)

𝑑𝑡
= 𝐸  

𝐼𝑝  𝑡 

𝑉𝑝
−

𝐼𝑖 𝑡 

𝑉𝑖
 −

𝐼𝑝 (𝑡)

𝑡𝑖
 (2.10-3) 

𝑥1 =
𝑑𝑥1(𝑡)

𝑑𝑡
=

3

𝑡𝑑
 𝐼𝑝 𝑡 − 𝑥1(𝑡)  (2.10-4) 

𝑥2 =
𝑑𝑥2(𝑡)

𝑑𝑡
=

3

𝑡𝑑
 𝑥1 𝑡 − 𝑥2(𝑡)  (2.10-5) 

𝑥3 =
𝑑𝑥3(𝑡)

𝑑𝑡
=

3

𝑡𝑑
 𝑥2 𝑡 − 𝑥3(𝑡)  (2.10-6) 
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The parameter values for these functions that used in the Six-Dimensional model ODE are 

given in Table 2.2. The graphs of the above functions, 𝑓𝑖 , i = 1, 2, 4, and 5 are shown in 

Figure 2.3. The importance of these functions is in their shapes rather than in their forms.  

Table 2.2: The parameter values for both Six-dimensional ODE model and DDE models. 

Parameters Unit Values Parameters Unit Values 

𝑉𝑔  1 10 𝑈0 mg. min
-1

 40 

𝑅𝑚  μUmin
-1

 210 𝑈𝑚  mg. min
-1

 940 

𝑎1 mg.1
-1

 300 𝛽  1.77 

𝐶1 mg.1
-1

 2000 𝐶4 μU1
-1

 80 

𝑈𝑏  mg. min
-1

 72 𝑅𝑔  mg. min
-1

 180 

𝐶2 mg.1
-1

 144 𝛼 lμU1
-1

 0.29 

𝐶3 mg.1
-1

 1000 𝐶5 μU1
-1

 26 

𝑡𝑝  Min 6 𝐸 1min
-1

 0.2 

𝑡𝑖  Min 100 𝑡𝑑  Min 36 

𝑉𝑝  1 3 𝑉𝑖  1 11 

 
Figure 2.3: The DDEs model Functions 𝑓𝑖 , i= 1, 2, 4, and 5. 

2-3 Models in the form of Delay Differential Equations (DDEs) 

Several models were published based on the Six-Dimensional ODEs model (2.10) for 

ultradian insulin secretion oscillation analysis. These models takes into consideration the 

effect of time delay in Insulin-Glucose system allowing them to mimic the real situation 

and make them more realistic than the previous models. Some models have glucose 

triggered insulin production delay is missing that have the single and two explicit time 

delay. The auxiliary variables may be assigned as third order delay state time delay 
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because they are representing the delay between insulin in plasma and its effect on the 

hepatic glucose production with total time 𝑡𝑑 .  

2-3-1 Single explicit time delay DDEs model 

Engelborghs et al [35] replaced the auxiliary variables (𝑥1, 𝑥2, and 𝑥3) and introduced a 

single time delay, 𝜏, in the negative feedback loop model and proposed following DDE 

model. With the above notations: the Single explicit time delay DDE model takes the 

form of: 

𝐺  𝑡 =
𝑑𝐺(𝑡)

𝑑𝑡
= 𝐸g − 𝑓2 𝐺 𝑡  − 𝑓3 𝐺 𝑡  𝑓4 𝐼 𝑡  + 𝑓5(𝐼 𝑡 − 𝜏 )  (2.11-1) 

𝐼  𝑡 =
𝑑𝐼(𝑡)

𝑑𝑡
= 𝑓1 𝐺 𝑡  −

𝐼 𝑡 

𝑡𝑖
 (2.11-2) 

where: 

𝑓1, 𝑓2, 𝑓3, and 𝑓4 are the same as that in the six dimensional ODE model, while  

𝑓5 𝐼 =
𝑅𝑔

1 + exp  𝛼  
𝐼
𝑉𝑝

− 𝐶5  

 

 (2.12) 

𝐸g  stands for the glucose infusion rate. 

1/𝑡1 is the insulin degradation rate.  

The positive constant delay 𝜏 (5-15 min) mimics the hepatic glucose production delay. On 

the other hand, this model ignores the second time delay that represents the glucose 

stimulating insulin secretion time delay. Due to the complex chemical reactions on the β-

cells, the insulin secretion occurs a few minutes after the plasma glucose concentration 

rises. This significant time delay is not negligible in physiology [5]. 
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2-3-2 Two explicit time delay DDEs models 

This system contains two significant delays. The first delay, 𝜏1, (5-15 minutes) is related 

to the fact that the physiological action of insulin on the utilization of glucose is correlated 

with the concentration of insulin in a slowly equilibrating intercellular compartment rather 

than with the concentration of insulin in the plasma [31, 36]. The second delay, 𝜏2, (25-50 

minutes) is associated with the time lag between the appearance of insulin in the plasma 

and its inhibitory effect on the hepatic glucose production  [37, 38].  

The two explicit time delay DDE insulin–glucose regulatory model is shown in Figure 2.4  

[5]. The purpose of this model is to provide a possible mechanism for the origin of 

ultradian oscillations in pancreatic insulin secretion with appropriate analysis and 

numerical simulations with suitable software packages. 

The following indicators should memorize to have better understanding of this diagram: 

1- The insulin inhibits hepatic glucose production with time delay is indicated by the 

dash-dot-dot lines. 

2- The insulin secretion from the β-cells stimulated by elevated glucose concentration 

level indicated by dash-dot lines. 

3- The insulin caused acceleration of glucose utilization in cells with time delay 

indicated by the short dashed line. 

4- The low glucose concentration level triggering α-cells in the pancreas to release 

glucagon indicated by dashed lines.  
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Figure 2.4: Two explicit time delay glucose–insulin regulatory system model. 

These models comprised of two major negative feedback loops describing the effects of 

insulin on glucose utilization and glucose production, respectively, and both loops include 

the stimulatory effect of glucose on insulin secretion.  

Observing the time delay of glucose triggered insulin production recently applied time 

delay in the insulin response to the glucose stimulation and presented the following model 

called two time delay model. 
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Several research papers have deal with this two explicit time DDEs models. Now, we will 

present some of these models:  

Engelborghs et al. [35] try to model the exogenous insulin infusion by assuming that the 

exogenous insulin infusion function takes the same form as internal insulin production, 

which was too artificial. There new model takes the form of: 

𝐺  𝑡 = 𝐺in − 𝑓2 𝐺 𝑡  − 𝑓3 𝐺 𝑡  𝑓4 𝐼 𝑡  + 𝑓5(𝐼 𝑡 − 𝜏2 )  (2.13-1) 

𝐼  𝑡 = 𝛼𝑓1 𝐺 𝑡  −
𝐼 𝑡 

𝑡1
+ (1 − 𝛼)𝑓1 𝐺 𝑡 − 𝜏1   (2.13-2) 

Later on, Li et al [39] have proposed his model based on the mass conservation law. This 

model was used for better understanding the self constrained regulatory mechanism of the 

system. With the explicit delays, the model is more accurate to depict the glucose-insulin 

endocrine metabolic dynamics. The model is given as follows. 

𝐺  𝑡 = 𝐺in − 𝑓2 𝐺 𝑡  − 𝑓3 𝐺 𝑡  𝑓4 𝐼 𝑡  + 𝑓5(𝐼 𝑡 − 𝜏2 )  (2.14-1) 

𝐼  𝑡 = 𝑓1 𝐺 𝑡 − 𝜏1  − 𝑑𝑖𝐼 𝑡  (2.14-2) 

where 

𝑓1 𝐺 𝑡 − 𝜏1   stands for insulin secretion from the pancreas. The delay is due to the 

complex electric processes inside of the islet. 

𝑓5(𝐼 𝑡 − 𝜏2 )  indicates for hepatic glucose production that is dependent on insulin in the 

plasma with time delay 𝜏2 > 0. The time delay 𝜏2 > 0 reflects that the liver does not 

convert the stored glucose and glycogen into glucose immediate when the insulin 

concentration level decreases. When insulin concentration level increases, the liver 

converts glucagon and glycogen to glucose decreasingly.  

𝑑𝑖  is the degradation rate constant, and 𝑑𝑖𝐼 𝑡  is the insulin degradation. 
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2-3-3 Alternative explicit time delay DDEs models 

Li et al [39] and Bennett et al. [40] try to develop some alternative explicit time delay 

DDE models. In this subsection, we will show these models. 

In 2004, Bennett et al. [40] have modified model 2.10 by removing the three auxiliary 

linear chain equations and their associated artificial parameters and introducing one time 

delay, 𝜏, into the model explicitly. Again, this time delay stands for the hepatic glucose 

production and is the same as that in model 2.11. On the other hand, Bennett et al. [40] 

kept Sturis et al. [20] and Tolic et al. [41] ideas, given in model (2.10), of breaking the 

insulin into two compartments to simulate the delayed insulin-dependent glucose uptake. 

This alternative DDE model takes the following form: 

𝐺  𝑡 = 𝐺in − 𝑓2 𝐺 𝑡  − 𝑓3 𝐺 𝑡  𝑓4 𝐼𝑖 𝑡  + 𝑓5(𝐼𝑝 𝑡 − 𝜏 )  (2.15-1) 

𝐼𝑝  𝑡 = 𝑓1 𝐺 𝑡  − 𝐸  
𝐼𝑝  𝑡 

𝑉𝑝
−

𝐼𝑖 𝑡 

𝑉𝑖
 −

𝐼𝑝  𝑡 

𝑡𝑝
 (2.15-2) 

𝐼𝑖  𝑡 = 𝐸  
𝐼𝑝  𝑡 

𝑉𝑝
−

𝐼𝑖 𝑡 

𝑉𝑖
 −

𝐼𝑖 𝑡 

𝑡𝑖
 (2.15-3) 

In 2006, Li et al [39] have develop two alternative approaches, based on their previous 

model 2.14, for modeling the glucose–insulin regulatory system in the form of there first 

explicit time delay DDEs. These approaches are:  

1. First explicit time delay 𝜏1 is keep, but mimic the hepatic glucose production time 

delay by variable chain as in 2.10 model. This alternative model is expressed by: 

𝐺  𝑡 = 𝐺in − 𝑓2 𝐺 𝑡  − 𝑓3 𝐺 𝑡  𝑓4 𝐼𝑖 𝑡  + 𝑓5(𝑥3 𝑡 ) (2.16-1) 

𝐼  𝑡 =
𝑑𝐼(𝑡)

𝑑𝑡
= 𝑓1 𝐺 𝑡 − 𝜏1  − 𝑑𝑖𝐼 𝑡  (2.16-2) 
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𝑥1  𝑡 =
𝑑𝑥1(𝑡)

𝑑𝑡
=

3

𝑡𝑑
 𝐼 𝑡 − 𝑥1(𝑡)  (2.16-3) 

𝑥2  𝑡 =
𝑑𝑥2(𝑡)

𝑑𝑡
=

3

𝑡𝑑
 𝑥1 𝑡 − 𝑥2(𝑡)  (2.16-4) 

𝑥3  𝑡 =
𝑑𝑥3(𝑡)

𝑑𝑡
=

3

𝑡𝑑
 𝑥2 𝑡 − 𝑥3(𝑡)  (2.16-5) 

2. The effect of the first time delay 𝜏1 in glucose utilization was modeled by 

𝑓3 𝐺 𝑡  𝑓4 𝐼𝑖 𝑡 − 𝜏1  . Thus, the new alternative model is represented by: 

𝐺  𝑡 = 𝐺in − 𝑓2 𝐺 𝑡  − 𝑓3 𝐺 𝑡  𝑓4 𝐼𝑖 𝑡 − 𝜏1  + 𝑓5(𝑥3 𝑡 − 𝜏2 )  (2.17-1) 

𝐼  𝑡 = 𝑓1 𝐺 𝑡  − 𝑑𝑖𝐼 𝑡  (2.17-2) 

2-4 Models in the form of Integral Differential Equations (IDEs) 

Bergman minimal model (2.2) is considered improper in qualitative behavior since it 

requires the parameter 𝑏5 to equal the basal glucose level 𝐺𝑏 . Thus it was required to 

introduce IDEs models. In 2000, De Gaetano et al. [42] developed there, so called 

dynamic, model by performing proper mathematical analysis on model 2.2 and 

established a more realistic delay integral differential equation model: 

𝐺  𝑡 =
𝑑𝐺(𝑡)

𝑑𝑡
= −𝑏1𝐺 𝑡 − 𝑏4𝐼 𝑡 𝐺 𝑡 + 𝑏7 (2.18-1) 

𝐼  𝑡 =
𝑑𝐼(𝑡)

𝑑𝑡
= −𝑏2𝐼 𝑡 +

𝑏6

𝑏5
 𝐺 𝑠 𝑑𝑠

𝑡

𝑡−𝑏5
 (2.18-2) 

where: 

𝑡 is time [min]. 

𝐺 is the  glucose plasma concentration [mg/dl]. 

𝐺𝑏  is the basal, pre-injection, plasma glucose concentration [mg/dl]. 
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𝐼 is the insulin plasma concentration [μU/ml] 

𝐼𝑏  is the basal, pre-injection, insulin plasma concentration [pM]. 

𝑏0 is the theoretical increase in plasma concentration over basal glucose concentration at 

time zero after instantaneous administration and redistribution of the I.V. glucose 

bolus [mg/dl]. 

𝑏1 is the spontaneous glucose first order disappearance rate constant [min
-1

]. 

𝑏2 is the apparent "1st-order disappearance rate constant for insulin [min
-1

]. 

𝑏3 is the 1
st 

phase insulin concentration increase per (mg/dl) increase in the concentration 

of glucose at time zero due to the injected bolus [pM/(mg/dl)]. 

𝑏4 is the constant amount of insulin-dependent glucose disappearance rate constant per 

pM of plasma insulin concentration [min
-1

 pM
-1

]. 

𝑏5 is the length of the past period whose plasma glucose concentrations influence the 

current pancreatic insulin secretion [min] 

𝑏6 is the constant amount of second-phase insulin release rate per (mg/dl) of average 

plasma glucose concentration throughout the previous 𝑏5 minutes [min
-1

 pM/(mg/dl)]. 

𝑏7 is the constant increase in plasma glucose concentration due to constant baseline liver 

glucose release [(mg/dl) min1]. 

𝐺 𝑡 = 𝐺𝑏 𝑡 , 𝑡 ∈ [−𝑏5, 0], 𝐺 0 = 𝐺𝑏 + 𝑏0, 𝐼 0 = 𝐼𝑏 + 𝑏3𝑏0 

This model describes how the glucose concentration changes in blood based on 

spontaneous, insulin-independent net glucose tissue uptake, on insulin-dependent net 

glucose tissue uptake and on constant baseline liver glucose production. The term net 

glucose uptake indicates that the changes in tissue glucose uptake and liver glucose 
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delivery are considered together. Due to insulin catabolism, Insulin plasma concentration 

changes are considered to depend on spontaneous constant rate decay, and pancreatic 

insulin secretion. The delay term, 𝐼  𝑡 , refers to the pancreatic secretion of insulin: 

effective pancreatic secretion at time 𝑡 is considered to be proportional to the average 

value of glucose concentration in the 𝑏5 preceding time 𝑡.  

This model is considered the closest to real representation of the insulin-glucose system. 

Li et al [43] introduced their more generic model in 2001. Their model was in the form: 

𝐺  𝑡 = −𝑓 𝐺 𝑡  − 𝑔 𝐺 𝑡 , 𝐼 𝑡  + 𝑏7 (2.19-1) 

𝐼  𝑡 = −𝑝 𝐼 𝑡  + 𝑞 𝐿(𝐺𝑡)  (2.19-2) 

where 

𝐺 𝑡 = 𝐺𝑏 𝑡 , 𝑡 ∈ [−𝑏5, 0], 

𝐺 0 = 𝐺𝑏 + 𝑏0, 𝐼 0 = 𝐼𝑏 + 𝑏3𝑏0,  

𝐺𝑡 𝜃 = 𝐺𝑡 𝑡 + 𝜃 , 𝑡 > 0,  𝜃 ∈ [−𝑏5, 0]  

This model (2.19) is considered as general form, thus the following two special cases for 

𝐿(𝐺𝑡) can be considered. The models in these two special cases are as follows: 

Case1: when  𝐿 𝐺𝑡 = 𝐺 𝑡 − 𝑏5 , the model for this special case is: 

𝐺  𝑡 = −𝑏1𝐺 𝑡 −
𝑏4𝐼 𝑡 𝐺 𝑡 

𝛼𝐺 𝑡 +1
+ 𝑏7 (2.20-1) 

𝐼  𝑡 = −𝑏2𝐼 𝑡 + 𝑏6𝐺 𝑡 − 𝑏5   (2.20-2) 

Case2: when 𝐿 𝐺𝑡 =
1

𝑏5
 𝐺 𝑡 + 𝜃 𝑑𝜃

0

−𝑏5
, the model for this special case is: 

𝐺  𝑡 = −𝑏1𝐺 𝑡 −
𝑏4𝐼 𝑡 𝐺 𝑡 

𝛼𝐺 𝑡 +1
+ 𝑏7 (2.21-1) 

𝐼  𝑡 = −𝑏2𝐼 𝑡 +
𝑏6

𝑏5
 𝐺 𝑡 + 𝜃 𝑑𝜃

0

−𝑏5
 (2.21-2) 
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Limitation: The reason for assuming that the insulin-dependent glucose uptake has a unit 

of time, a unit of insulin can only process a limited amount of glucose. The mass action 

law in this situation is not quite realistic. 

Later on, Mukhopadhyay et al. [43] develop the following model (for IVGGT) in 2004. 

This model can be assumed as a subfamily of Li et al model (2.19): 

𝐺  𝑡 = −𝑏1𝐺 𝑡 − 𝑏4𝐼 𝑡 𝐺 𝑡 + 𝑏7 (2.22-1) 

𝐼  𝑡 = −𝑏2𝐼 𝑡 + 𝑏6  𝑤(𝑠)𝐺 𝑡 − 𝑠 𝑑𝑠
∞

0
 (2.22-2) 

where  

𝐺 𝑡 = 𝐺𝑏 , 𝑡 ∈  −∞, 0 ,  

𝐺 0 = 𝐺𝑏 + 𝑏0,  

𝐼 0 = 𝐼𝑏 + 𝑏3𝑏0 

𝑤 𝑠 = 𝛼2𝑠 𝑒−𝛼𝑠  

2-5 Models in the form of Partial Differential Equations (PDEs) 

Models in the form of partial differential equations (PDE) were introduced to address the 

oscillatory nature of the in vitro insulin secretion by the β-cells. Searching the Literatures, 

many models in the form of PDEs were found. Some of the papers that presents these 

models are: Bertram et al. [17], Boutayeb et al. (2002) [44], Boutayeb et al (2004) [45], 

Aslanidi et al. [46], Wach et al. [47], and Keener [48]. We will selected some literatures 

for discussion.   

Wach et al. model [47] assumed that injected soluble insulin is present in the SC tissue in 

hexametric and diametric form. Only diametric molecules can penetrate the capillary 

membrane: 
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𝜕

𝜕𝑡
= 𝑃 𝑄𝑑3 −  + 𝐷𝛻2 (2.23-1) 

𝜕𝑑

𝜕𝑡
= −𝑃 𝑄𝑑3 −  + 𝐷𝛻2 − 𝐵𝑑 (2.23-2) 

where 

 is the concentration of hexametric insulin, 𝑃 is a rate constant, 

𝑑 is the concentrations of diametric insulin, 𝐷 is a diffusion constant,  

𝑄 is a chemical equilibrium constant, 𝐵 is an absorption rate constant.  

This model has been solved numerically by dividing the SC region into spherical shells 

for the space discretization. Moreover, the authors for this model have extended this 

model to be used with monomeric insulin. 

Other example is that what Keener [48] has done. In his first model, the situation of a one-

dimensional reactor was assumed based on the assumption that a mechanism of insulin 

secretion identical to that assumed by Maki et al. [49]. Later, it was shown that for certain 

large values of the ratio of the flow rate to the volume of the reaction islet bed, there are 

no oscillations. In the second model diffusion was introduced. The model predicts that 

oscillations occur if there is sufficient diffusion to create adequate concentrations mixing 

in the reacting layers of the cells. With insufficient such mixing, the oscillations are 

inhibited. An „unsolved dilemma‟ having to do with difficulty to produce large enough δ 

values (𝛿 >  0.1) from experimental values of the scaling parameters 𝑉, 𝐿𝑏𝑒𝑑 , where 𝐿𝑏𝑒𝑑  

is the length of the islet bed and 𝑉 is the velocity of the steady flow of the solution along 

the 1-dimensional reactor, and large physical diffusion (large 𝐷𝐼 coefficient) which is 

needed for the model to predict oscillations.  
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Chapter 3 CONTROLLERS  

CONTROLLERS 

3-1 Introduction 

The traditional type-1 diabetic patients‟ therapy allows substantial fluctuations in the 

blood glucose levels. Since such injections can be accumulated and lead to different 

complications of diabetes, there is an opportunity to reduce this effect by improving the 

control of the blood glucose.  

Early diabetes control papers in the 1960s involved clinical studies using both glucose and 

insulin infusions that were calculated using on-off control or special nonlinear control 

algorithms (e.g., the “Biostator” algorithm). The nonlinear control algorithms can be 

interpreted as Nonlinear Proportional-Derivative controllers that are related to standard 

gain scheduling technique. Later on, many diabetes control papers have been concerned 

with automated insulin infusion using standard or modified PID control algorithms. These 

feedback control strategies are often enhanced by feed-forward control action based on a 

known meal challenge: an insulin bolus is calculated assuming that the meal time and 

content are known. 

The challenge of automating insulin delivery for diabetic patients using implantable 

pumps and glucose sensors has received considerable attention over the last 10-20 years. 

Almost all type-1 diabetic patients live with a traditional or intensified insulin therapy 
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regimen such that the insulin is injected subcutaneously three to four times a day. The 

injected insulin dose must be adjusted based on three to seven capillary blood glucose 

concentration measurements. The use of SC route for insulin delivery is superior to that of 

IV route. The management and safety of SC route make it ideal for insulin control. 

Recent surveys and tutorials provide excellent overviews of diabetes control strategies 

from a control engineering perspectives. We will start this chapter with the general form 

of a Partially Closed-Loop and Closed-Loop control schemes to have better understanding 

of the controller. Later on, the most important control schemes will be discussed such as 

Run to Run (R2R) or Iterative Learning Control, Standard Proportional Integral 

Derivative (PID) Controller, Biostator & Nonlinear PID, Dynamic Neural Networks State 

Observer, Pole Placement Strategy, Optimal Control, H∞ Robust Control, Bayesian 

Approach, Model Predictive Control, Adaptive Control, and Self-Tuning Adaptive 

Control. 

3-2 Control Strategies 

Control strategies of diabetes therapy can be classified as open loop control, semi closed-

loop, and closed-loop control. 

The current treatment involves open loop control in which physicians inject a 

predetermined dose of insulin subcutaneously based on three or four time daily glucose 

measurements, usually by an invasive method of finger prick. This method not only is 

painful and inconvenient, but also unreliable because of approximation involved in type 

and the amount of insulin delivered.  
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The classical form for the insulin therapy regimen, shown in Figure 3.1, can be presented 

as a partially closed-loop scheme such that the insulin infusion rate is adjusted according 

to intermittent blood glucose readings [24]. The feed-forward control, defined by the 

physician according to the patient‟s lifestyle (activity level, meals, and occasional self-

administered serum glucose tests), is coupled with a feedback control action to utilize the 

available plasma glucose measurements. The partially closed loop strategy found to be not 

capable of optimally controlling the blood glucose profile, but can lead to acceptable 

results from a clinical point of view [50].  

The limitations of using partially closed loop strategy are:  

1. The lack of appropriated sensors. 

2. The absence of any appropriate control algorithm. 

3. Suffering from long sampling time problem that lead to miss fast or inter-sample 

disturbances. 

 

Figure 3.1: The partially closed-loop control strategy of conventional and intensified insulin 

therapy. 

However, the closed-loop control method [51, 52, 53], shown in Figure 3.2, acts as an 

artificial pancreas is the most effective way of diabetes treatment and could improve the 

quality of life and life expectancy of patients.  
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The closed-loop realizations elect the SC route for insulin delivery, with glucose 

concentration being continuously monitored by an implanted glucose sensor. An 

implantable blood glucose sensor is definitely the ideal solution for blood glucose 

measurement [26]. Given this situation, the closed-loop scheme based on an implanted SC 

glucose sensor becomes widely used [51, 54]. 

 

Figure 3.2: The closed-loop control strategy with SC glucose measurement and SC insulin 

injection. 

On the other hand, it is not easy to obtain a satisfactory insulin-glucose control by SC 

insulin infusion, even in a closed-loop configuration, because of the time delay in 

absorption by this route. This difficulty is even more distinct in a partially closed-loop 

configuration where, in addition to regular insulin, an insulin preparation with a delayed 

action is needed to cope with the basal requirement of the diabetic patient. The recent 

introduction of the monomeric insulin analogs, such as Lispro insulin, which is absorbed 

two to three times faster after SC injection than regular insulin [55], has significantly 

improved the quality of control obtainable through this route. 

Some of closed-loop strategies, called model-based systems, deal with the therapy 

selection problem by combining a set of heuristics for the reduction of the search space 

with a mathematical model of the glucose-insulin system for the choice of optimal dose. 

Other approaches, called algorithmic-based systems, only exploit heuristic algorithms for 
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the therapy definition. Here, we will review some model-based approaches that have been 

presented in the insulin-glucose control papers. Almost all the systems discussed below 

were designed before the advent of Lispro insulin. There is no doubt that updating these 

systems with the new short- and intermediate-acting analogs will improve their usability 

and performance. 

3-3 Run to Run (R2R) or Iterative Learning Control (ILC) 

Run to Run control (R2R) or iterative learning control (ILC) is a methodology for dealing 

with engineering systems that exhibit a cyclic behavior [56]. This control strategies have 

been successfully used to provide improved control based on experience with one or more 

recent industrial processes batches. The key idea is that certain disturbances are persistent 

across repeated “cycles” in a process. R2R have been developed for diabetes control, by 

considering glucose data for a meal response or an entire day to be the “batch” of interest 

[11].  

Instead of repeatedly correcting for the persistence disturbance from an initial (incorrect) 

conditions, this algorithmic approach formulates an update on a time scale of the entire 

cycle, one correction allowed at the end of the batch, which minimizes the effect of the 

persistent disturbance. Viewed from another perspective, the R2R algorithm starts on a 

cycle that is poorly controlled, and refines to the control action over the course of multiple 

cycles until a nearly perfect controlled cycle is obtained [56]. 

Unlike other techniques; the R2R control strategy is measurements based and its 

independent variable of the control loop is the batch number, while other control 
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strategies are model based. Srinivasan et al. [56] and Zisser et al. [57] reported an 

experimental R2R application. We can now summarize the R2R algorithm as follow [58, 

59]: 

1. The input profile is parameterize for 𝑘  𝑟𝑢𝑛, 𝑢𝑘(𝑡), as 𝑈 𝑡, 𝑣𝑘 . by considering the 

𝜓𝑘   as a sample version of the measured output 𝑦𝑘(𝑡) such that both input 

parameter vector 𝑣𝑘  and sample output 𝜓𝑘  (controlled variable). 

𝜓𝑘 = 𝐹(𝑣𝑘)  

2. Choose an initial random estimate for 𝑣𝑘 , k = 1 

3. Complete the run using the  𝑢𝑘(𝑡) corresponding to  𝑣𝑘 .  

4. Determine 𝜓𝑘  from the measurement 𝑦𝑘(𝑡). 

5. Input parameters are updated using the following formula  

𝑣𝑘+1 = 𝑣𝑘 + 𝐾(𝜓𝛤 − 𝜓𝑘)                                                                                    

(3.1) 

where: 

𝐾: is appropriate gain matrix. 

𝜓𝑘 : is the reference value. 

6. Set k = k + 1 and repeat the steps 3-5 until the algorithm converge. 

Thus a solution is implemented as an open-loop strategy for each batch (24 hour cycle), 

and the feedback allows refinement over successive batches (or days) [58, 59].  The 

Advantage of this technique is that it is almost independent because it translates the 

limited information about glucose level in the patient into any time of particular interest. 

In the present context, the limited measurement information of the patient's blood glucose 
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level is translated into quality measurements (max/min glucose) and resultant quality 

variables are of the same type of variables that are used to evaluate the effectiveness of a 

particular insulin regimen. 

The results Zisser et al. [57] experiment shows that the glucose control was improved 

significantly over a two week period based on infrequent glucose measurements (60 and 

90 minutes) after the start of a meal.  

The clinical trial results of Zisser et al. [58] showed that most of the patients responded 

positively to the algorithm, and the algorithm‟s predictions were in line with the medical 

doctors‟ recommendations. 

3-4 PD and PID Controllers 

As stated in the introduction of this chapter, several control algorithms were used since 

1960 in medical treatment by injecting both glucose and insulin to control glucose level in 

the diabetes patient [11].  

For most of the Proportional Integral Derivative (PID) control papers, the proposed 

controllers were evaluated in simulation studies of post-prandial responses. Few 

experimental applications were evaluated on dogs or humans in different experimental 

conditions (IV vs. SC sensors and pumps, different types of insulin and insulin analogs, 

etc.).  

The limitation for PID controllers is that the direct comparisons of latter papers can be 

difficult due to differences in the experimental conditions. Insulin injection were 

considered in the algorithms using standard or modified PID control with some 
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enhancement to the feedback control such feed forward action to compensate for the meal 

disturbance. Assuming that the meal time and content are known, the calculations were 

performed [11].   

During and after meals, Integral control action can lead to insulin overdosing, wind up, 

and subsequent hypoglycemia; hence, Proportional Derivative (PD) controllers have 

received considerable attention and being preferred over the standard PID controller.  

The limitation for PD controller is that the potential problem can be overcome reduced by 

judicious use of “anti-reset windup” with the integral control action [11].  

3-5 Biostator & Nonlinear PID Controllers 

Early diabetes regulation Biostator works to the Glucose Controlled Insulin Infusion 

System (GCIIS) [60] and later to the On-off control and Biostator algorithm [11] and 

device of Clemens [52, 61]. The Biostator algorithm feedback controller uses a low-

volume continuous-flow blood glucose sampling mechanism with a dual infusion system 

(insulin and glucose) to maintain blood glucose concentration at a user-defined value. The 

control algorithm structure was Nonlinear PD type; using a five-point moving average of 

glucose measurements to minimize noise effects. This control type was excellent for the 

hospital indoor, bedside, implementation.  

The limitation of this controller is the difficulty of implantation due to the additional size 

associated with the dual-reservoir system necessary for a device of this type. Patient 

specificity was also an issue, as the algorithm would require individualization prior to its 

use [60]. 
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3-6 Dynamic Neural Networks (DNN) Controller with State Observer 

Alejandro et al. [62] have analyzed Bergman model using the modern observability theory 

and derived the observability conditions. The glucose concentration measurements in 

plasma or any of it's combinations with the others components are shown to provide the 

observability property: they contain the complete information about the considered state 

space dynamic model. The Dynamic Neural Networks (DNN) state observer is suggested 

to obtain immeasurable state estimates, since this model has several unknown parameters 

and the measurable data may have noises. The significant advantage of the DNN with 

respect to the traditional control used in the normal insulin infusion pumps is the present 

opportunity to avoid any active patient actions [63]. 

The corresponding numerical simulations show that the suggested technique can be 

successfully used to realize the insulin doses administration in infusion pumps [62].  

Developed the observability analysis for this system have been done. Three output 

structures turn out to be observable and can be considered in the practical experiments. 

This means that the glucose concentration as well as its linear combination with any other 

state contains enough information to realize the adequate on-line control process [62]. 

3-7 Pole Placement Controller 

The pole placement strategy requires the plasma insulin concentration of the diabetic 

subject follows the same dynamics of the normal subject. Based on SC measurements 

obtained through a needle-type glucose sensor and on an insulin pump with SC access; the 
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relationship between plasma insulin and blood glucose concentration in a normal subject 

during an oral glucose load has been described by a proportional derivative control law 

[51, 64]: 

𝐼 𝑡 =  𝑎𝐺 𝑡 + 𝑏
𝑑𝐺 (𝑡)

𝑑𝑡
+ 𝑐 (3.2) 

where 

𝐼 denotes plasma insulin concentration;  

G is the blood glucose concentration;  

a, b, and c are the parameters responsible for insulin secretion.  

 

Figure 3.3: The compartmental model of SC insulin absorption and kinetics for pole placement 

strategy. 

Hashiguchi et al. [65] have estimated the parameter values by nonlinear least squares. The 

pharmacokinetics of SC-injected insulin is described by the three-compartment linearized 

model of Figure 3.3:  

𝑋 =
𝑑𝑋 (𝑡)

𝑑𝑡
= 𝐼𝐼𝑅 𝑡 − 𝑙𝑋 𝑡  (3.3) 

𝑌 =
𝑑𝑌(𝑡)

𝑑𝑡
= 𝑙𝑋 𝑡 −  𝑝 + 𝑜 𝑌(𝑡)  (3.4) 

𝑍 =
𝑑𝑍(𝑡)

𝑑𝑡
= 𝑝𝑌 𝑡 − 𝑛𝑍 𝑡  (3.5) 

𝐼 𝑡 =
𝑍(𝑡)

𝑉
 (3.6) 
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where  

𝐼𝐼𝑅 is the insulin infusion rate. 

𝑋, 𝑌, and 𝑍 are the insulin masses in the two SC compartments and in plasma, 

respectively. 

V is plasma volume.  

The model parameters have been estimated by nonlinear least squares from data obtained 

in ten diabetic subjects treated with both regular and Lispro insulin. The pole-assignment 

strategy requires that the plasma insulin concentration of the diabetic subject follows the 

same dynamics of the normal subject; i.e., the control law is obtained by substituting 

equation (3.3) into equation (3.4), and neglecting higher-order derivatives: 

𝐼𝐼𝑅 𝑡 = 𝐾𝑝𝐺 𝑡 + 𝐾𝑑
𝑑𝐺 𝑡 

𝑑𝑡
+ 𝐾𝑐  (3.7) 

where  

𝐾𝑝 =
𝑎𝑚𝑛𝑉

𝑝
 

𝐾𝑑

𝐾𝑝
=

1

𝑙
+

1

𝑚
+

1

𝑛
+

𝑏

𝑎
 

𝐾𝑐 = 𝑑 +
𝑐

𝑎
𝐾𝑝  

𝑚 = 𝑜 + 𝑝,  

𝑑 accounts for the IV basal infusion rate.  

This system has been tested in venous input venous output (vivo) on ten hospitalized 

insulin-dependent diabetic patients both in response to a 75g oral glucose load and to a 

standard meal. Three therapeutic regimens were employed: regular insulin-injected SC, 
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Lispro-injected SC, and regular insulin- injected IV. The results obtained with SC Lispro 

were similar to those achieved with IV regular insulin, with the only statistical difference 

being plasma insulin concentration values between 100-180 minutes (which were higher 

in the SC case). On the other hand, the results obtained by injecting SC regular insulin 

were significantly worse than by IV: the total dose of insulin was significantly higher and 

plasma insulin concentrations were lower at 30 minutes and higher from 90 to 300 

minutes, with consequent presence of hyperglycemic peaks followed by hypoglycemic 

episodes.  

Limitations of this controller are:  

1. It is not very robust. 

2. It is requires a repeated assessment of the model parameters, which is usually 

difficult in clinical practice. 

3-8 Optimal Control 

Kikuchi et al. [66, 67] solved the glucose control problem for the optimal insulin infusion 

rate using an approximate solution to the Riccati equation. Swan [68] has solved the 

glucose control problem for the optimal insulin infusion rate, using a linear diabetic 

patient model and a quadratic performance criterion:  

𝐽1 =   𝑥1
2 𝑡 + 𝑝𝑢2 𝑡  𝑑𝑡

∞

0
 (3.8) 

This approach uses optimal control theory and solution of a nonlinear algebraic Riccati 

equation and it improves the results of Kikuchi et al. [66, 67]. The insulin delivery rate is 

a function of both the current insulin and glucose concentrations. Assuming that no 
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glucose-dependent endogenous insulin release, the insulin state can be removed to yield a 

solution only in terms of the glucose concentration. The limitation of this control was that 

it focused on the initially hyperglycemic diabetic patient, so meal disturbance attenuation 

was not treated.  

Later on, Fisher et al. [69] have studied the Normalization of patient blood glucose in 

response to both meal consumption and initial hyperglycemia. Thus, the performance 

criterion is: 

𝐽 =  𝑥1
2𝑇

0
 𝑑𝑡  (3.9) 

where T = 240 minutes. 

Various infusion protocols were tested to minimize the sum-squared glucose tracking 

error. Impulse control was found to provide superior control in both cases, with perfect 

reference tracking achievable if a good estimate of the meal was available (under certain 

assumptions regarding the shape of the meal disturbance and insulin effects). This 

impulse control (a single injection at time = 0 minute) is given by: 

𝑢 𝑡 =  

𝑢0

𝑡𝑏
     

𝑖𝑓  0 ≤ 𝑡 ≤ 𝑡𝑏

0 𝑖𝑓  𝑡 > 𝑡𝑏

  (3.10) 

where 

 𝑡𝑏  is the time taken for the injection. 

𝑢0 is the total amount of insulin injected. 

This trial showed superior control in both cases, with perfect reference tracking 

achievable if a good estimate of the meal was available under the assumption that the 

glucose injection rate into the blood 𝑝 𝑡  takes the following form: 
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𝑝 𝑡 =  
𝐵 𝑖𝑓 0 < 𝑡 < 𝑡𝑎

𝐵 𝑒𝑥𝑝 −𝛽 𝑡 − 𝑡𝑎  𝑖𝑓 𝑡 ≥ 𝑡𝑎

  (3.11) 

 where 𝐵 , 𝛽, 𝑡𝑎  are constant. 

The limitation of this control was that this form was not practical because 𝑝 𝑡  differ from 

patient to patient.  

To overcome this problem Lim et al. [41] studied impulse control for the same situations, 

but in the presence of fuzzy model parameters (patient uncertainty). The results of this 

method found to be robust and numerically stable for the chosen uncertainty set, and 

again under assumptions about the dynamic behavior of meals and insulin injection.  

Application of the optimal control theory to Bergman model (2.2) was undertaken in two 

studies using Integral Squared Error (ISE) cost function: 

1- Ollerto [70] utilized his cost function based on deviation from the desired glucose 

value. He evaluates the system using (10 and 180) minutes sampling times. The 

results of using 180 minutes sampling time shows that the system was less 

sensitive to noise about the basal state, but it had a longer rise time and could also 

miss significant disturbances that occurred within the inter-sample window. On 

the other hand, using 10 minutes sampling time on discrete Bergman system 

shows that the controller was sensitive to glucose profile oscillation around the 

basal state, and it resulted in physiologically unrealistic profiles characterized by 

high amplitude sustained oscillations. An insensitive model was introduced, based 

on a type of dead-band control, but no method for its development was discussed.  

2- Fisher [71] utilized his cost function based on two objectives: the deviations in 

glucose concentration from a reference value, and the amount of insulin to perform 
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the corrective action. Three insulin infusion profiles were evaluated: determining 

that an initial injection plus optimal hourly infusion minimized the cost function 

for an initially hyperglycemic patient. The limitation of this algorithm was that it 

is not robust to patient uncertainty, and suffered from the long sampling time 

problem of missing fast or inter-sample important disturbances. 

3-9 H∞ Robust Control 

Kienitz et al. [72] was evaluated the robust control using the H∞ control methodology for 

model 2.2 such that the model containing patient-dependent parameters was governing the 

glucose and insulin dynamics. The design of this controller was based on two 

assumptions:  

1. Nominal patient model 

2. Set of frequency-dependent weighting functions. The frequency-dependent 

weighting functions were tuned to capture the entire expected patient population 

(parameter variations).  

Since the H∞ controllers bound worst-case performance, this controller can manage the 

patient glucose level within the assigned range of variation and sustain meal disturbance 

for the nominal patients. Compared to the previous controllers, this is a very good 

improvement.  

The limitation of this controller using Bergman model that was robust to a small range of 

variation and required to be retuning outside this range. 
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3-10 Adaptive Control 

Adaptive control was developed to overcome the limitations of the pole-placement 

strategy. Several adaptive control literatures were developed and tested based on SC 

Lispro injections and SC measurements using closed-loop strategies such as Candas et al. 

[31], Shimoda et al. [51], Fabietti et al. [60], Brunetti et al. [61], Hovorka et al. [73], and 

Fisher et al. [74]. Simplified adaptive control block diagram is illustrated in Figure 3.4. 

 

Figure 3.4: The self-tuning adaptive control scheme. 

Candas et al. [31] have developed an adaptive controller based on the nonlinear model 

(2.1) such that the prediction of the insulin-dependent glucose-removal will be more 

reliable and hence provide better control over a wide spectrum of insulin signals such as 

IV and SC injections. The performance of the controller is presented for various IV or SC 

rapid injections and staircase infusions of insulin. The controller reacts promptly to large 

and rapid variations in insulin action. Although control improves with the number of 

glucose measurements, the prediction of glucose removal allows for some flexibility in 

the monitoring of the plasma glucose. Sampling frequency varied from a 2 minutes 

interval during transient periods to 7 minutes as steady states were reached. 
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Hovorka et al. [73] has published a detailed review of adaptive control strategies for both 

diabetes types. Strategies for the following types of situations were considered:  

1- Infrequent glucose measurements are available (e.g., four to seven measurements 

per day).  

2- Frequent glucose measurements are available (e.g., every five minutes). This 

survey paper contains an extensive bibliography. 

The work of Shimoda et al. [51] is an important example of a successful use of the SC 

route for the closed loop control of insulin-dependent diabetic patients. The reason is 

mainly due to the use of Lispro insulin, which is better suited for SC closed-loop control 

than regular insulin since it behaves like IV-injected insulin.  

The following discrete-time model 𝑀 describe the glucose-insulin system: 

𝐺𝑘 = 𝑀(𝐺𝑘−1, … , 𝐺𝑘− , 𝐼𝐷𝑘−1, 𝐼𝐷𝑘−𝑝 , Θ)  (3.12) 

where 

𝐺𝑘  is blood glucose concentration at time 𝑘, 

𝐼𝐷𝑘  is insulin dose at time 𝑘,  

Θ is a set of unknown parameters,  

 and 𝑝 known time delays.  

The parameter set is recursively estimated at each time 𝑘, on the basis of 𝐺𝑘  

measurement, which allows one to obtain a one-step-ahead prediction, 𝐺𝑘+1, which is 

used in the on-line regulator design. In fact, the choice of the next dose, 𝐼𝐷𝑘+1, is done so 

as to minimize a suitable cost function, 𝐽, which in the case of a minimum variance 

controller is: 
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𝐽𝑘 = (𝐺𝑘+1 − 𝐺𝑏)2 − 𝑟𝐼𝐷𝑘+1
2  (3.13) 

where  

𝐺𝑏  is the set point  

𝑟 is a weighting factor that penalizes insulin dosage 

Thus compromising between amount of infused insulin and hyper/hypoglycemia is 

performed. One can assume that 𝑀 is linear, so that both the recursive estimation and the 

minimization problem can be solved in closed form. Given the adaptive capability of the 

algorithm, the choice of a linear model with time-varying parameters seems appropriate. 

These strategies do not require periodical re-evaluation of the patient parameters, and they 

have been shown to be at least as good, if not superior, to a pole-placement strategy with 

repeated estimations.  

3-11 Model Predictive Control (MPC) 

Recently, model-based control strategies have been proposed for the diabetes control, 

with Model Predictive Control (MPC) receiving considerable attention [15, 75, 76]. Since 

MPC strategies been successful in the process industries for many reasons, they become 

attractive for diabetes control: 

1. The ability to control both linear and nonlinear processes. 

2. Inherent handling of inequality constraints. 

3. Prediction of future behavior. 

4. Ease of model parameter updating. 
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The availability of a dynamic model that is reasonably accurate for the current patient 

conditions is required.  

MPC evaluations for diabetes control problems showed improvement in glucose control 

compare with conventional PID control strategies. Most of these evaluations were 

simulation studies only. However, European consortium has reported successful clinical 

applications based on a nonlinear compartmental model [73]. The basic idea for the 

Linear MPC will now be introduced as illustrated in Figure 3.5 such that:   

𝑧, 𝑦, 𝑢, 𝑟 and 𝑑 are the actual output, the measured output, the controller input, the set 

point and the meal disturbance respectively. 

 

Figure 3.5: The basic Linear MPC. 

This approach is developed based on a chain of control actions that minimizes a certain 

cost function, 𝐽, over a selected time horizon such that the difference between the output, 

𝑧𝑘 , and the reference, 𝑟𝑘 , be minimal using a least squares problem [24]. At each sampling 

time, the control policy is revised by moving the time window used for the cost function 

calculation. Thus, the cost function, 𝐽, can be represented as follow: 

𝐽 =  (𝑟𝑘+𝑖
𝑃
𝑖=1 − 𝑦 𝑘+𝑖)

2 + 𝜆  Δ𝑢𝑘+𝑖−1
2𝑀

𝑖=1                                                                 (3.14) 

where: 
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𝑘, 𝑃, 𝑟, 𝑦 , 𝜆, 𝑀 and Δ𝑢 are the sample time index, the prediction horizon, the desired set-

point, the predicted output, the weight on the manipulated input, the control horizon, and 

the manipulated input increment respectively. 

Parker et al. [77] were the first to publish MPC approach for the management of glucose 

levels in type-1 diabetic patients. Their research was a simulation study that employed the 

Sorensen [13] model as the “virtual patient”. The following approaches were used in the 

model development:  

1. Direct identification from patient data using rich signals. 

2. Reduced order numerical models that were derived from the original compartmental 

model.  

3. Linearized versions of the compartmental model coupled with a state estimator.  

The state estimator was used to identify the unmeasured meal disturbance, providing a 

form of feed-forward control without the need for direct knowledge of the meal [77]. 

Kalman filter was used estimate the key physiologic parameters on-line. Thus, the MPC 

with state estimation approach show the following results: 

1. The meals disturbance can be compensated without the direct knowledge of meal 

contents and/or its timing.  

2. The blood glucose levels were controlled well within Normoglycemia. 

3. The estimation of key patient parameters was managed and tested for measurement 

noise and patient (parametric) uncertainty 

The limitation of the MPC algorithm is that: 
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1. It requires a good model that almost matches the real process in all the patients which 

is difficult. This is because the model parameters depend on many factors, as stated in 

the first chapter, such as patient age, weight, and health. These parameters are 

different form patient to patient and also affected by secondary conditions such as 

patient anger, sleep, sport which is reflected on glucose level in the blood.   

2. It wasn‟t tested in detailed clinical trials involving multiple meals. Thus, the physical 

system, including the pump and controller, should be evaluated for each case. Hence, 

the controller and model parameters should be tuned for each patient. 

3-12 Nonlinear Predictive Control 

Several simulation trials for using the Nonlinear Predictive Control strategy for the 

closed-loop control with the SC route, for Lispro insulin delivery and glucose 

measurement, have been proposed by Trajanoski et al. [52, 53]. The scheme of the 

predictive controller proposed is similar to the adaptive control, shown in Figure 3.4, with 

the model parameter estimation block being substituted for by the nonlinear predictor. 

This MPC approach runs as follow: 

1. Minimizing a certain cost function over a selected time horizon by chain of control 

actions. 

2. The cost function is independent on the chain of control actions that predict the 

controlled variable, but is used to utilize an appropriate model for prediction purpose. 

3. The control policy, at each sampling time, is corrected by moving the time window 

used to calculate the cost function.  
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Comparing with adaptive control, this control strategy is the same but have following 

main differences: 

1. The model parameters for adaptive control may not change for the selected time 

window.  

2. Since the optimization problem to be solved changes in dependence with the 

progressive shifts of the time window, thus the control policy requires to be 

recalculated.  

The model used for the prediction of the future blood glucose levels is a Nonlinear Auto-

Regressive Model (NARX) such that: 

𝐺𝑘 = 𝑓 𝑥𝑘 + 𝑒𝑘  (3.15) 

where  

𝑥𝑘 =  𝐺𝑘−1, … , 𝐺𝑘−𝑛𝑦
, 𝐼𝐷𝑘−1, … , 𝐼𝐷𝑘−𝑛𝑢

 
𝑇

 (3.16) 

𝐺𝑘  is the blood glucose concentration at time 𝑘 

𝐼𝐷𝑘  is the insulin dose at time 𝑘 

𝑛𝑦  is the maximum lags for 𝐺𝑘  

𝑛𝑢  is the maximum lags for 𝐼𝐷𝑘  

Hovorka et al. [73] have developed a nonlinear model predictive controller with parameter 

estimator to maintain Normoglycemia in subjects with type-1 diabetes during fasting 

conditions  such that the output trajectory 𝑦(𝑡 +  𝑘 𝑡), 𝑘 = 1, … , 𝑁 is estimated for any 

given control sequence 𝑢(𝑡 +  𝑘 𝑡) over a prediction horizon 𝑁. The controller employs a 

compartment model, which represents the glucose control system and includes sub-

models representing absorption of SC administered short-acting insulin Lispro and gut 
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absorption. The controller uses Bayesian parameter estimation to determine the time-

varying model parameters. Moving target trajectory facilitates slow, controlled 

normalization of elevated glucose levels and faster normalization of low glucose values. 

The model primary use is to determine the optimum control sequence, which results in a 

desired trajectory. In this strategy, the following steps were used: 

1. Linearization around the operating point.  

2. The full model was retained.  

3. The following components were kept in the controller:  

a. Parameter optimizer. 

b. Target projector. 

c. Dose optimizer  

d. Safety schemes.  

As we have shown in Chapter 2, the parameters of the Insulin-Glucose system differ 

considerably between subjects and exhibit diurnal variations, although exact 

quantification of the variation (amplitude and frequency) within a subject is yet to be 

determined. In recognition of the variation between and within subjects, the controller 

adapts itself to the changing environment. This is carried out by: 

1. Re-estimating parameters at each control step.  

2. The parameter optimizer estimates model parameters employing glucose 

measurements from a „learning window‟ or time period immediately proceeding the 

control time. Three lengths of the learning window are predefined, short, medium, 

and long, to be able to deal with both a time-invariant underlying system. 



62 

 

In conclusion, adaptive nonlinear model predictive control is promising for the control of 

glucose concentration during fasting conditions in subjects with type-1 diabetes. Its major 

advantages, which make it an appealing alternative to adaptive control approaches, are:  

1. Its capability of handling constraints in the control space. 

2. The possibility of ensuring stability to the controlled system.  

3-13 Nonlinear Neural Networks 

The nonlinear function 𝑓 𝑥 𝑡   has been selected from among a class of neural networks 

with one layer of hidden units, called regularization networks. In particular, a Radial Basis 

Function (RBF) network was selected: 

𝑓 𝑥 𝑡  =  𝑤𝑖𝐻( 𝑥 − 𝑥𝑖
0 )𝑛

𝑖=1  (3.17) 

where 

𝐻 is a continuous function from 𝑅𝑛𝑦 +𝑛𝑢 → 𝑅, 

   is the Euclidean norm,  

𝑥𝑖
0 are the n-centers of the RBFs.  

Fabietti et al. [60] have selected 𝐻 such that: 

𝐻  𝑥 − 𝑥𝑖
0  =

1

 (𝑥−𝑥𝑖
0)2+𝛽 

2 (3.18) 

where 𝛽 is a dispersion parameter. 

If 𝛽 and 𝑥𝑖
0 are known, the estimation of

 𝑓 𝑥 𝑡   becomes a linear estimation problem
 
of 

the unknown weights 𝑤𝑖 . The RBF functions are known to possess a number of desirable 
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properties, such as the universal approximation property and the best approximation
 

property in the case of linear
 
estimation (𝛽 and 𝑥𝑖

0 known).  

According to Trajanoski et al. [53], the RBF has been identified using
 
simulated data 

obtained by a model of
 
insulin-dependent diabetes that accounts

 
for SC insulin absorption, 

glucose/insulin
 
interactions, and SC glucose dynamics.

 
The identification of RBF weights 

and centers was done using the method of Regularized Orthogonal Least Squares
 
(ROLS). 

Thanks to ROLS, it is possible to
 
take the minimum number of RBFS, so

 
that 𝑓 𝑥 𝑡   is 

able to fit the data under some regularity constraints.  

Once the RBF predictor has been identified, the nonlinear predictive controller was 

synthesized through the moving horizon approach. At each step, the control input (i.e., the 

SC insulin infusion rate) corresponds to the solution of the minimization problem: 

arg min𝐼𝐷 𝐽 =    𝑒𝑗
𝑇Γ𝑒𝑗

 
𝑁𝑝

𝑗=𝑁1
+  ∆𝐼𝐷𝑇 𝑡 + 𝑗 Γ𝑢∆𝐼𝐷𝑇 𝑡 + 𝑗 

𝑁𝑐−1
𝑗 =0   (3.19) 

where 

𝐼𝐷 =  𝐼𝐷𝑘 , 𝐼𝐷𝑘−1, … , 𝐼𝐷𝑘−𝑁𝑐−1
 
𝑇
 

𝑁𝑐 , 𝑁𝑝 , 𝑁1, Γ𝑒 , and Γ𝑢  are tuning parameters of the controller, selected by trial and error.  

The data for testing the controller have been obtained by simulating an OGTT of 15 and 

75 g in different pathophysiological conditions, by using the same model employed for 

RBF identification as illustrated in Figure 3.6. The controller was able to maintain blood 

glucose levels within normal range for the 15 g OGTT (a small perturbation), but not for 

the 75 g. The authors suggested a combined strategy consisting of adding to the controller 

a fixed increase in injected insulin dose that would regulate glucose effects corresponding 

to a meal.  
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This study has some interesting aspects:  

1. The predictive control scheme seems flexible enough to deal with blood glucose 

control, even in presence of disturbances and pathophysiological variations (i.e., 

variations in the time constants of the system). 

2. The proposed controller may be easily modified to be used in real time. 

Unfortunately, the results are not completely satisfactory; in particular, in the 

presence of meals, and the lack of in vivo validation hampers a complete appraisal of 

this control scheme.  

 
Figure 3.6: The setting used to test the neural predictive control scheme. 

3-14 Stochastic Control 

Hejlesen et al. [78] have suggested the insulin dosages on the basis of predictions of a 

discrete-time finite-state stochastic control of the glucose-insulin system. This can be 

done by optimizing the insulin dosages on the basis of blood glucose measurements, meal 

intakes, and past insulin injections. Thus, the decision space is limited to the sub-problem 
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of assessing dosages in a scheme that is fixed in terms of number and type of insulin 

injections. The state variables (X) are: 

1. The blood glucose concentration. 

2. The Carbohydrate content of the gut. 

3. The insulin action in a compartment remote from plasma.  

The output variable (Y) is the blood glucose,  

The inputs are: 

1. The insulin dosages. 

2. Meal intakes (equivalent carbohydrates).  

The model has two unknown parameters:  

1. Insulin sensitivity  

2. Peak time of NPH insulin.  

The system dynamics are described through a Markovian process, characterized by 

transition probabilities  

𝑃(  𝑋𝑘+1 𝑋𝑘 , 𝑈𝑘 , 𝛩)  (3.20) 

where 

𝛩 is the parameter vector 

 𝑃(  𝑌𝑘+1 𝑋𝑘+1) is the distribution. 

Given a set of observations 𝐷 = 𝑌1, 𝑌2, … , 𝑌𝑘  

This strategy forms a Bayesian estimate of the posterior probability distribution of the 

unknown parameters 𝑃(  𝛩 𝐷), and then uses this estimate to find the predictive 

distribution of blood glucose concentration: 𝑃(  𝑌𝑘+1 𝑈, 𝐷). Since probability calculations 
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in a Bayesian framework are not straightforward, and particularly so the transition 

probability matrix, stochastic control has been built by resorting to a Bayesian network 

[79].  

A Bayesian network is a directed acyclic graph in which every node is a stochastic 

variable, and the arcs express the conditional dependencies among variables. Such 

conditional dependencies are quantified through the conditional probability distributions 

of the nodes, given their parents. Moreover, finite-state Bayesian networks possess 

powerful algorithms for the calculation of posterior estimates. The sampling time is taken 

equal to one hour. A single time transition is shown in Figure 3.7. 

 
Figure 3.7: A single time transition Bayesian network. 

The transition probabilities are implicitly expressed by a series of local conditional 

models. The blood glucose concentration (node BG) is only indirectly dependent on the 

quantity of carbohydrates present in the gut (node Gut-Abs), since the relationship is 

mediated by the balance between insulin-dependent and insulin-independent glucose 

utilization (node Basal-Bal). The probability distributions needed to specify the network 
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have been derived from data in the literature. Once 𝑃  𝑌𝑘+1 𝑈, 𝐷  has been derived, the 

optimal dosages is calculated by minimizing the Expected Value (𝐸𝑉) of a cost function 

𝐶(𝑌): 

𝐸𝑉 =   𝑃 𝑌𝑗 =  𝑦𝑖 𝑈, 𝐷 𝐶(𝑌𝑖)
𝑛
𝑖=1

𝑘+𝑇
𝑗 =𝑘+1   (3.21) 

where 

𝑌1, … , 𝑌𝑛  are the 𝑛-states in which the blood glucose levels have been discretized (n = 8) 

𝑇 is the time horizon of interest.  

In brief, this strategy has limited predictive capability for the system but appear to be safe 

and able to both stabilize blood glucose levels and limit the risk of hypoglycemia. The 

advantages related to the use of this control are: 

1. Its ability to account for intra-individual variability of patients.  

2. The particular shape of the cost function naturally minimizes the hypoglycemic risks.  

The limitations of this control strategy are: 

1. The number of conditionals used in the model seems unnecessarily high considering 

the rather low accuracy of predictions.  

2. It requires the precise quantification of meal intakes in terms of carbohydrate 

equivalents, which can be somewhat difficult during home monitoring of diabetic 

patients. 

3-15 Fuzzy Control 

Zadeh [80, 81] was the one who introduced the Fuzzy logic that is simply a conclusion 

reached by a computer program which considered as an extension of conventional logic 
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that models the uncertainties of natural language, handling the concept of partial truth that 

is the true value between “completely true” and “completely false”. Since the fuzzy 

control did not require any mathematical model to follow, we can classify this type of 

control as non model base, or model-free, type. Thus, fuzzy control can be used to 

monitor biological systems that would be difficult or impossible to model with simple, 

linear mathematics. Neural network, software that simulates human neural processing 

capabilities, has been used to apply fuzzy logic theoretical principles and to extrapolate 

rules (neuro-fuzzy control system).  

Blood Glucose control using fuzzy logic control was attractive for many research groups 

and received high attention on the recent century. Selective literatures, which were 

published in the 2000s, will be presented in this review. 

In 2001, Davide D. et al. [82] have applied fuzzy logic principles and neural network 

techniques to modify IV insulin administration rates during glucose infusion. Forty 

critically ill, fasted diabetic subjects submitted to glucose and potassium infusion entered 

the study. They were randomly assigned to two treatment groups:  

A. Insulin infusion rates were adjusted, every 4 hours at (0 ± 1.5) U/h step size, 

according to a neuro-fuzzy nomogram. 

B.  Insulin infusion rates were modified according to a conventional algorithm.  

In group A, Blood Glucose was lowered below 10 mmol/l faster than in group B. Mean 

Blood Glucose was (7.8 ± 0.2) mmol/l in group A and (10.6 ± 0.3) mmol/l in group B. 

Blood Glucose values below 4.4 mmol/l were: A= 5.8% and B = 10.2%. Blood Glucose 

values lower than 2.5 mmol/l had never been observed.  
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The advantages of this control strategy is that it was found to be effective and safe in 

improving the Blood Glucose control in critically ill diabetic patients without increasing 

either the number of Blood Glucose determinations or the risk of hypoglycemia. 

In 2006, Campos et al. [83] have developed a fuzzy based advisory/control algorithm for 

type-1 diabetes patients based on multiple daily insulin injections regimen. A Mamdani-

type fuzzy logic controller was used to regulate the blood glucose level. This algorithm 

does not rely on a direct glucose prediction or estimation to evaluate the insulin 

adjustments. The overall control strategy was based on a two-loop feedback strategy, as 

shown in Figure 3.8, to overcome the variability in the glucose-insulin dynamics from 

patient to patient and to add robustness to the overall control scheme: 

1- An inner-loop provides the amount of both rapid/short and intermediate/long acting 

insulin formulations that are programmed on a three-shots daily basis before meals. 

The combined preparation is then injected by the patient through a SC route.  

2- The outer-loop controller aims to work as a supervisor of the inner-loop controller 

such that it adjusts the maximum amounts of insulin provided to the patient in a time-

scale of days.  

Extensive closed-loop simulations are illustrated, using a detailed compartmental model 

of the insulin-glucose dynamics in a type 1-diabetic patient with meal intake. 

Also Ibbini [84] demonstrated, in 2006, how a fuzzy PI controller was constructed using a 

simplified design scheme and then subjected to simulations of the two common diabetes 

disturbances: sudden glucose meal and system parameter variations, such as metabolic 
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stress. The performance of the proposed fuzzy PI controller was compared to that of the 

conventional PID and optimal techniques and was shown to be superior to both of them. 

 

Figure 3.8: Control diagram for blood glucose regulation in Type-1 diabetes patients by 

subcutaneous route. 

The advantage of using fuzzy PI controller is that it was more effective than previously 

proposed fuzzy logic controllers, especially with respect to the overshoot and settling 

time. 

Recently in 2008, Yasini et al. [85] have developed a closed-loop control algorithm for 

blood glucose regulation in type-1 diabetes mellitus patients based on Bergman minimal 

model. The control technique incorporates expert knowledge about treatment of disease 

by using Mamdani-type fuzzy logic controller with two input linguistic variables and one 

output variable to stabilize the blood glucose concentration to the Normoglycaemic level. 

Controller performance is assessed in terms of its ability to reject the multiple meal 

disturbances resulting from food intake, on an averaged nonlinear patient model. 
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Robustness of the controller is tested over three patients with model parameter varying 

considerably from the average model.  

The advantage of this controller is that it provides the possibility of more accurate control 

of blood glucose level in the patient in spite of uncertainty in model and measurement 

noise. Simulation results show the superiority of the proposed scheme in terms of 

robustness to uncertainty in comparison with other approaches. 

Thus we can summarize the advantages of the Fuzzy logic control as follows: 

1- It provides a simple and dynamic approach to sensitive, safety-critical problems by 

means of monitoring a patient‟s vital signs; discrete adjustments are made to reach a 

desired output based on straightforward linguistic rules. 

2- It could serve as a valuable tool for teaching diabetic patients about how their body 

responds to insulin, as a clinical research platform for the study of drug interactions. 

3- It offers a fast, efficient and safe mechanism for supporting anaesthetized patients 

peri-operatively. 

4- It has the ability to learn and adapt, giving it far more potential than fixed Boolean 

computer algorithms 

While the limitations of the fuzzy control can be summarized by: 

1. Inadequate programming when the fuzzy logic systems do not match standard human 

performance.  

2. It lacks innate intuition; humans are still good at acting beyond set rules. However, 

failures of Fuzzy logic systems are rare and they remain as good as their programmed 

goals.   
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Chapter 4 LMI-BASED CONTROL DEVELOPMENT 

LMI-BASED CONTROL DEVELOPMENT 

4-1 Introduction 

Based on the understanding of the previous chapters, it is clear that we have to design a 

controller that is able to deal with nonlinear time-delay systems. The designed controller 

should be robust to uncertainty in model parameters and meal disturbances because of the 

parameter variations in the glucose-insulin models vary from patient to patient. 

In this chapter, we will start with introduction about the time-delay systems. Then, the 

LMI control performance of both H2 and H∞ will be shown briefly. Later on, further 

development of robust stability and feedback stabilization methods of the Nominally 

Linear Time Delay (NLTD) systems will be carried out in the following sequence:  

1- Design LMI to check the delay effects on the system stability for “type 1-diabetic 

patient” model with single time delay. 

2- Mathematical development of two feedback stabilization controller schemes starting 

with state-feedback controller then subsequently turn to dynamic output feedback 

controller using linear state delay LMI technique. 

The parameter uncertainties are convex-bounded and the unknown nonlinearities are time-

varying perturbations satisfying Lipschitz conditions in the state and delayed-state. An 
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appropriate Lyapunov functional is constructed to exhibit the delay-independent 

dependent nonlinear dynamics.  

4-2 Symbols and their definitions 

Important notes that will be used in the analysis and design during this chapter: 

 The Euclidean norm is used for vectors.  

 𝑊𝑡  denotes the transpose of any matrix 𝑊 

 𝑊−1 denotes the inverse of any square matrix 𝑊.  

 𝑊 > 0 (≥, <, ≤ 0) denotes a symmetric strictly positive definite (positive 

semidefinite, strictly negative define, negative semidefinite) matrix 𝑊  

 𝐼 denotes the 𝑛 × 𝑛 identity matrix.  

 ℜ+ denotes the set of non-negative real numbers. 

 ℕ denotes the finite set of integers {1; … ; 𝑁}. 

 Symbol (•) used in some matrix expressions to induce a symmetric structure, that is 

if given matrices 𝐿 = 𝐿𝑡  and 𝑅 = 𝑅𝑡  of appropriate dimensions, then 

 
𝐿 𝑁
𝑁𝑡 𝑅

 =  
𝐿 𝑁
• 𝑅

  

 Schur Complement  

𝐿 + 𝑁𝑅−1𝑁𝑡 < 0 
𝐿 𝑁
𝑁𝑡 𝑅

 < 0 

Sometimes, the arguments of a function will be omitted when no confusion can arise. 
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4-3, H2 and H∞ Controllers Performance 

Given a general state-space realization of the plant [86] 

𝑥 = 𝐴𝑥 + 𝐵1𝑤 + 𝐵2𝑢 (4.1-1)  

𝑧∞ = 𝐶1𝑥 + 𝐷11𝑤 + 𝐷12𝑢 (4.1-2) 

𝑧2 = 𝐶2𝑥 + 𝐷22𝑢 (4.1-3) 

where 

𝑥, 𝑧, 𝑢, 𝑤, 𝐴, 𝐵, 𝐶, and 𝐷 are the state vector, the controlled output vector, the control 

input vector, the disturbance input vector, the states matrix, the inputs matrix, the matrix 

that relates the states to the outputs, and the matrix relates the inputs to the controlled 

outputs respectively. 

The closed-loop system is given in state-space form by 

𝑥 = (𝐴 + 𝐵2𝐾)𝑥 + 𝐵1𝑤 (4.2-1) 

𝑧∞ = (𝐶1 + 𝐷12𝐾)𝑥 + 𝐷11𝑤 (4.2-2) 

𝑧2 = (𝐶2 + 𝐷22𝐾)𝑥 (4.2-3) 

where 

𝑥, 𝑧, 𝑢, 𝑤, 𝐾, 𝐴, 𝐵, 𝐶, and 𝐷 are the state vector, the controlled output vector, the control 

input vector, the disturbance input vector, the close-loop control gain, the states matrix, 

the inputs matrix, the matrix that relates the states to the outputs, and the matrix relates the 

inputs to the controlled outputs respectively. 

Taken separately, our design objectives have the following LMI formulation: 

H∞ performance: the closed-loop RMS gain from 𝑤 to 𝑧∞ does not exceed γ if and only 

if there exists a symmetric matrix 𝑋∞ such that [87] 
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 𝐴 + 𝐵2𝐾 𝑋∞ + 𝑋∞ 𝐴 + 𝐵2𝐾 𝑇 𝐵1 𝑋∞ 𝐶1 + 𝐷12𝐾 𝑇

𝐵1
𝑇 −𝐼 𝐷11

𝑇

 𝐶1 + 𝐷12𝐾 𝑋∞ 𝐷11 −𝛾2𝐼

 < 0 (4.3-1) 

𝑋∞ > 0 (4.3-2) 

H2 performance: the closed-loop H2 norm of T2 (the closed-loop transfer functions from 

𝑤 to 𝑧2) does not exceed 𝜈 if there exist two symmetric matrices 𝑋2 and 𝑄 such that: 

 
 𝐴 + 𝐵2𝐾 𝑋2 + 𝑋2 𝐴 + 𝐵2𝐾 𝑇 𝐵1

𝐵1
𝑇 −𝐼

 < 0 (4.4-1) 

 
𝑄  𝐶2 + 𝐷22𝐾 𝑋2

𝑋2 𝐶2 + 𝐷22𝐾 𝑇 𝑋2
 > 0 (4.4-2) 

𝑇𝑟𝑎𝑐𝑒  𝑄 < 𝜈2 (4.4-3) 

These sets of conditions add up to the nonconvex optimization problem with variables 𝑄, 

𝐾, 𝑋∞, and 𝑋2. For tractability in the LMI framework, Matlab seeks a single Lyapunov 

matrix  

𝑋 ∶= 𝑋∞ ∶= 𝑋2 (4.5) 

that enforces all the objectives. With the change of variable  

𝑌 ∶= 𝐾𝑋 (4.6) 

This leads to the following suboptimal LMI formulation of our multi-objective state-

feedback synthesis problem. Minimize 𝛼 𝛾2 + 𝛽 𝑇𝑟𝑎𝑐𝑒(𝑄) over 𝑌, 𝑋, 𝑄, and 𝛾2 

satisfying the following [88-90]: 

 

𝐴𝑋 + 𝑋𝐴𝑇 + 𝐵2𝑌 + 𝑌𝑇𝐵2
𝑇 𝐵1 𝑋𝐶1

𝑇 + 𝑌𝑇𝐷12
𝑇

𝐵1
𝑇 −𝐼 𝐷11

𝑇

𝐶1𝑋 + 𝐷12𝑌 𝐷11 −𝛾2𝐼

 < 0 (4.7-1) 

 
𝑄 𝐶2𝑋 + 𝐷22𝑌

𝑋𝐶2
𝑇 + 𝑌𝑇𝐷22

𝑇 𝑋
 > 0 (4.7-2) 
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 𝜆𝑖𝑗 + 𝜇𝑖𝑗  𝐴𝑋 + 𝐵2𝑌 𝑋𝑝𝑜𝑙 + 𝜇𝑖𝑗  𝑋𝐴𝑇 + 𝑌𝑇𝐵2
𝑇  

1≤𝑖𝑗≤𝑚
< 0 (4.7-3) 

𝑇𝑟𝑎𝑐𝑒  𝑄 < 𝜈𝑜
2 (4.7-4) 

𝛾2 < 𝛾𝑜
2 (4.7-5) 

Denoting the optimal solution by (𝑋∗, 𝑌∗, 𝑄∗, 𝛾∗), the corresponding state-feedback gain 

is given by 

𝐾∗ = 𝑌∗ 𝑋∗ −1 (4.8) 

and this gain guarantees the worst-case performances: 

 𝑇∞ ∞ ≤ 𝛾∗,  𝑇2 2 ≤  𝑇𝑟𝑎𝑐𝑒(𝑄∗)  (4.9) 

Note that 𝐾∗ does not yield the globally optimal trade-off in general due to the 

conservatism of assumption 𝑋 ∶= 𝑋∞ ∶= 𝑋2. 

4-4 H∞ Control Problem 

Almost all practical systems are subject to the external disturbances that can in some 

situations degrade system performance if their effects are not considered during the design 

phase. There are many ways to reduce the effect of the external disturbances. One of them 

is the H∞ control technique. It consists of designing a suboptimal control that minimizes 

the effect of the disturbances on the output. In other words, the problem can be explained 

as follows: given a dynamical time delay system with exogenous input that belongs 

to ℒ2[0, ∞], design a controller that minimize the H∞-norm of the transfer function 

between the controlled output and the external disturbance, or at least guarantees that H∞-

norm will not exceed a given level γ > 0 (γ is the disturbance rejection ratio level). All 
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the design algorithms in this chapter are based on LMI formalism which makes them 

more useful: 

 
 z(t) 2

2

 w(t) 2
2 < γ2 (4.10) 

Our goal in addressing the H∞ Control problem consists of: 

1- Developing sufficient conditions under which the unforced NLTD system, that is 

𝑢 (𝑡)  ≡  0, will be stable and will guarantee γ > 0. 

2- Designing controller schemes that stabilize the class of system with time delay and 

guarantee γ > 0.   

4-5 Nominally Linear Time Delay (NLTD) System 

4-5-1 Theoretical Background 

A system whose future state values depend on both the present and the history of the 

system can be called time-delay system [86]. Nonlinear time-delay systems are frequently 

encountered to describe propagation, transport phenomena and population dynamics in 

various engineering and biological applications such as glucose response to insulin 

injection for type-1 diabetic patients. Presence of time delay complicates the system 

analysis and, in some cases, may affect the system behavior and performance. It turns out 

that delays are, perhaps, the main causes of instability and poor performance in dynamic 

systems [91, 92]. 
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Many papers, example [89, 93], have discussed the stability analysis and control design of 

time-delay systems. We can classify the stability criteria for linear state-delay systems 

into two main categories: 

1- Delay-independent: which are applicable to delays of arbitrary size [94, 95]. 

2- Delay-dependent: which include information on the size of the delay [92, 94-99]. 

The contemporary research activities can be classified two main methods: 

1- The choice of an appropriate Lyapunov-Krasovskii Functional (LKF) for stability and 

performance analysis within the framework of linear matrix inequalities [100]. 

General LKF forms might lead to a complicated system of inequalities [99] and the 

selection of new and effective LKF forms is becoming crucial for deriving less-

conservative stability criteria.  

2- The introduction of additional parameters for developing improved sufficient stability 

conditions by importing some basic system identities [94, 96-99, 101-111].  

A fundamental problem arises when estimating the upper bound of cross product terms 

when dealing with time-varying delays. Algebraic inequalities [112] and majorization 

procedures [91] have been used. This introduces a source of overdesign conservatism. 

There have been different approaches to reduce the level of conservatism such as: 

1- Full-size quadratic functions [107] 

2- Discretized LKF [103] 

3- Free-weighting matrices techniques [97-99, 104-115]. In particular, the significance 

of bypassing extra conservatism introduced after enlarged integration time-span in 

some LKF terms was pointed out in [99]. 
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From the published results, it appears that further reduction of design conservatism can be 

achieved with: 

1. Appropriate LKF with moderate number of terms. 

2. Avoiding bounding methods. 

3. Effective use of parameterized relations and variables to avoid redundancy. 

Recently, control theory and techniques for nonlinear time-delay systems were developed 

and different methods generalizing some aspects of the, so-called, differential geometric 

approach have been made [116]. These include back-stepping, adaptive, observer-based 

and state-predictors for controlling nonlinear time-delay systems can be found in [117-

123]. 

New and less conservative solutions to the stability and stabilization problems in terms of 

feasibility-testing of new parameterized linear matrix inequalities (LMIs) will be 

developed. We consider the time-delay factor as a fixed time-varying function and derive 

the solution criteria for nominal and poly-topic models. All the developed results are 

expressed in terms of convex optimization over LMIs.  

The development of solutions to the stability and feedback stabilization problems are the 

main objectives of the next sections. 

4-5-2 Mathematical formulation 

The original general class of Nominally Linear Time Delay (NLTD) system is in this 

form: 

𝑥  𝑡 = 𝑓(𝑥 𝑡 , 𝑥 𝑡 − 𝜏 , 𝑢 𝑡 ) + 𝛤𝑜𝑤 𝑡   
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 = 𝑓 𝑥 𝑡 , 𝑥 𝑡 − 𝜏 , 𝑢 𝑡  + 𝐴𝑜𝑥 𝑡 − 𝐴𝑜𝑥 𝑡 + 𝐴𝑑𝑜 𝑥 𝑡 − 𝜏 − 𝐴𝑑𝑜 𝑥 𝑡 − 𝜏 + 𝛤𝑜𝑤 𝑡   

 = 𝐴𝑜𝑥 𝑡 + 𝐴𝑑𝑜 𝑥 𝑡 − 𝜏 + 𝐵𝑜𝑢 𝑡 + 𝑓𝑜(𝑥 𝑡 , 𝑡) + 𝑜(𝑥 𝑡 − 𝜏 , 𝑡) + 𝛤𝑜𝑤 𝑡 

 (4.11-1) 

𝑦 𝑡 = 𝐶𝑜𝑥 𝑡 + 𝐶𝑑𝑜 𝑥 𝑡 − 𝜏 + 𝐹𝑜𝑢 𝑡 + 𝜓𝑜𝑤 𝑡  (4.11-2) 

𝑧 𝑡 = 𝐺𝑜𝑥 𝑡 + 𝐺𝑑𝑜 𝑥 𝑡 − 𝜏 + 𝐷𝑜𝑢 𝑡 + 𝛷𝑜𝑤 𝑡  (4.11-3) 

where 

𝑥 𝑡 ∈ ℜ𝑛  is the state vector, 

𝑢 𝑡 ∈ ℜ𝑚  is the control input, 

𝑤 𝑡 ∈ ℜ𝑞  is the disturbance input which belongs to ℒ2 [0,∞), 

𝑦 𝑡 ∈ ℜ𝑝  is the measured output,  

𝑧 𝑡 ∈ ℜ𝑞  is the controlled output.  

The initial condition 𝑤 𝜙  is a differentiable vector-valued function on [−𝜏, 0] where 

𝜏 > 0 is a time delay factor. 

The matrices 𝐴𝑜 ∈ ℜ𝑛×𝑛 , 𝐵𝑜 ∈ ℜ𝑛×𝑚 , 𝐶𝑜 ∈ ℜ𝑝×𝑛 , 𝐷𝑜 ∈ ℜ𝑞×𝑚 , 𝐹𝑜 ∈ ℜ𝑝×𝑚 ,𝐺𝑜 ∈ ℜ𝑞×𝑛 , 

𝐴𝑑𝑜 ∈ ℜ𝑛×𝑛 , 𝐶𝑑𝑜 ∈ ℜ𝑝×𝑛 , 𝐺𝑑𝑜 ∈ ℜ𝑞×𝑛 , 𝛤𝑜 ∈ ℜ𝑛×𝑞 , 𝜓𝑜 ∈ ℜ𝑝×𝑞 , 𝛷𝑜 ∈ ℜ𝑞×𝑞  are real and 

known constant matrices. 

For our model (2.11), we will consider 𝜏(𝑡) to be a constant time delay, then 𝜏 𝑡 = 𝜏 

where 0 < 𝜏 ≤ 𝜚; (𝜚 is constant scalar (5-15 minutes)) 

The unknown functions 𝑓𝑜 = 𝑓𝑜(𝑥 𝑡 , 𝑡) ∈ ℜ𝑛  and 𝑜 = 𝑜(𝑥 𝑡 − 𝜏 , 𝑡) ∈ ℜ𝑛  are vector-

valued time-varying nonlinear perturbations with 𝑓𝑜 0, 𝑡 = 0, 𝑜 0, 𝑡 = 0∀𝑡 and satisfy 

for the following Lipschitz conditions for all  𝑥, 𝑡 , (𝑥 , 𝑡) ∈ 𝑅𝑛 × 𝑅: 

 𝑓𝑜 𝑥 𝑡 , 𝑡 − 𝑓𝑜(𝑥  𝑡 , 𝑡) ≤ 𝛼 𝐹 𝑥(𝑡) − 𝑥 (𝑡)   (4.12) 
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 𝑜 𝑥 𝑡 − 𝜏 , 𝑡 − 𝑜(𝑥  𝑡 − 𝜏 , 𝑡) ≤ 𝛽 𝐻 𝑥(𝑡 − 𝜏) − 𝑥 (𝑡 − 𝜏)   (4.13) 

where 

𝐹 ∈ 𝑅𝑛 × 𝑅𝑛  the upper bounds constant matrices of 𝑓𝑜  . 

𝐻 ∈ 𝑅𝑛 × 𝑅𝑛  the upper bounds constant matrices of 𝑜 . 

𝛼 and 𝛽 are scalars > 0 

Then from the properties of the Euclidean norms, it follows  𝑓𝑜 ≤ 𝛼 𝐹𝑥(𝑡) , and hence 

 𝑓𝑜
𝑡  𝑓𝑜 − 𝛼2𝑥𝑡 𝑡 𝐹𝑡𝐹𝑥(𝑡) ≤ 0 (4.14) 

and in the same way  𝑜 ≤ 𝛽 𝐻𝑥(𝑡 − 𝜏) , and  

 𝑜
𝑡  𝑜 − 𝛽2𝑥𝑡 𝑡 − 𝜏 𝐻𝑡𝐻𝑥(𝑡 − 𝜏) ≤ 0 (4.15) 

4-6 𝓛𝟐 Gain Analysis 

New criteria for LMI-based characterization of delay-dependent asymptotic stability and 

ℒ2 gain analysis will be proposed in this section. The criterion includes some parameter 

matrices which aim at expanding the range of applicability of the developed conditions. 

The following theorem establishes the main result for the NLTD system (4.11): 

Theorem 1: 

Given 𝜚 > 0,  The NLTD system (4.11) with 𝑢 .  ≡ 0 is delay-independent (𝜏 𝑡 = 𝜏) 

asymptotically stable with ℒ2 performance bound γ if there exist symmetric positive 

define weighting matrices 𝑃, 𝑊, 𝑄; appropriate relaxation parameter matrices injected to 

facilitate the delay dependence analysis 𝛩 ∈ ℜ𝑛×𝑛 , 𝛶 ∈ ℜ𝑛×𝑛 ; and scalars 𝛾 > 0, 𝜎 >

0, 𝜅 > 0  that satisfy the following LMI: 
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𝛯 =

 
 
 
 
 
 
 
 
 𝛯11

•
•
•
•
•
•
•

    

𝛯12

𝛯22

•
•
•
•
•
•

    

−𝜏𝛩
−𝜏𝛶
−𝜏𝑊

•
•
•
•
•

    

𝑃
0
0

−𝜎𝐼
•
•
•
•

    

𝑃
0
0
0

−𝜅𝐼
•
•
•

    

𝑃𝛤𝑜

0
0
0
0

−𝛾2𝐼
•
•

    

𝐺𝑜
𝑡

𝐺𝑑𝑜
𝑡

0
0
0

𝛷𝑜
𝑡

−𝐼
•

    

−𝜚𝐴𝑜
𝑡𝑊

−𝜚𝐴𝑑𝑜
𝑡𝑊

0
−𝑊
−𝑊

−𝜚𝛤𝑜
𝑡𝑊

0
−𝜚𝑊  

 
 
 
 
 
 
 
 

< 0 (4.16-1) 

where  

𝛯11 = 𝑃𝐴𝑜 + 𝐴𝑜
𝑡𝑃𝑡 + 𝛩 + 𝛩𝑡 + 𝑄 + 𝜎𝛼2𝐹𝑡𝐹 (4.16-2) 

= 𝑃𝐴𝑜 + 𝐴𝑜
𝑡𝑃 + 𝛩 + 𝛩𝑡 + 𝑄 + 𝜎𝛼2𝐹𝑡𝐹 (4.16-3) 

𝛯12 = 𝑃𝐴𝑑𝑜 − 𝛩 + 𝛶𝑡  (4.16-4) 

𝛯22 = −𝛶 − 𝛶𝑡 − 𝑄 + 𝜅𝛽2𝐻𝑡𝐻 (4.16-5) 

Proof: 

Consider the Lyapunov-Krasovskii Function: 

𝑉 𝑡 = 𝑉𝑜 𝑡 + 𝑉𝑎 𝑡 + 𝑉𝑚 𝑡  (4.17-1) 

𝑉𝑜 𝑡 = 𝑥𝑡 𝑡 𝛲𝑥(𝑡)  (4.17-2) 

𝑉𝑎 𝑡 =   𝑥 𝑡 𝛼 𝑊𝑥 
𝑡

𝑡+𝑠
 𝛼 𝑑𝛼

𝑡

𝑡−𝜚
𝑑𝑠 (4.17-3) 

𝑉𝑚 𝑡 =  𝑥𝑡 𝑠 𝑄𝑥 𝑠 
𝑡

𝑡+𝜏 𝑡 
𝑑𝑠 =  𝑥𝑡 𝑠 𝑄𝑥 𝑠 

𝑡

𝑡−𝜏
𝑑𝑠 (4.17-4) 

where 

𝑉𝑜 𝑡  is standard to the delayless nominal system  

𝑉𝑎 𝑡  and 𝑉𝑚 𝑡   correspond to the delay-dependent conditions.  

A straightforward computation gives the time-derivative of 𝑉 𝑡  along the solutions of the 

NLTD with 𝑤 𝑡 = 0 as: 

𝑉  𝑡 = 𝑉𝑜
  𝑡 + 𝑉𝑎

  𝑡 + 𝑉𝑚
  𝑡  (4.18) 
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𝑉𝑜
  𝑡 = 𝑥 𝑡 𝑡 𝛲𝑥 𝑡 + 𝑥𝑡 𝑡 𝛲𝑥  𝑡 = 2𝑥𝑡 𝑡 𝛲𝑥 (𝑡) 

= 2𝑥𝑡 𝑡 𝑃 𝐴𝑜𝑥 𝑡 + 𝐴𝑑𝑜 𝑥 𝑡 − 𝜏 + 𝑓𝑜 + 𝑜   

= 2𝑥𝑡 𝑡 𝑃 𝐴𝑜𝑥 𝑡 + 𝐴𝑑𝑜 𝑥 𝑡 − 𝜏  + 2𝑥𝑡 𝑡 𝑃𝑓𝑜 + 2𝑥𝑡 𝑡 𝑃𝑜  

+2𝑥𝑡 𝑡 𝛩  𝑥  𝑠 

𝑡

𝑡−𝜏

𝑑𝑠 + 2𝑥𝑡 𝑡 − 𝜏 𝛶  𝑥  𝑠 

𝑡

𝑡−𝜏

𝑑𝑠 

−  2𝑥𝑡 𝑡 𝛩  𝑥  𝑠 

𝑡

𝑡−𝜏

𝑑𝑠 + 2𝑥𝑡 𝑡 − 𝜏 𝛶  𝑥  𝑠 

𝑡

𝑡−𝜏

𝑑𝑠  

= 2𝑥𝑡 𝑡 𝑃 𝐴𝑜𝑥 𝑡 + 𝐴𝑑𝑜 𝑥 𝑡 − 𝜏  + 2𝑥𝑡 𝑡 𝑃𝑓𝑜 + 2𝑥𝑡 𝑡 𝑃𝑜  

+2𝑥𝑡 𝑡 𝛩 𝑥 𝑡 − 𝑥 𝑡 − 𝜏  + 2𝑥𝑡 𝑡 − 𝜏 𝛶 𝑥 𝑡 − 𝑥 𝑡 − 𝜏   

−  2𝑥𝑡 𝑡 𝛩  𝑥  𝑠 

𝑡

𝑡−𝜏

𝑑𝑠 + 2𝑥𝑡 𝑡 − 𝜏 𝛶  𝑥  𝑠 

𝑡

𝑡−𝜏

𝑑𝑠  

= 2𝑥𝑡 𝑡  𝑃𝐴𝑜 + 𝛩 𝑥 𝑡 + 2𝑥𝑡 𝑡  𝑃𝐴𝑑𝑜 − 𝛩 + 𝛶𝑡 𝑥 𝑡 − 𝜏  

+2𝑥𝑡 𝑡 − 𝜏  −𝛶 𝑥 𝑡 − 𝜏 − 2𝑥𝑡 𝑡 𝛩  𝑥  𝑠 

𝑡

𝑡−𝜏

𝑑𝑠 − 2𝑥𝑡 𝑡 − 𝜏 𝛶  𝑥  𝑠 

𝑡

𝑡−𝜏

𝑑𝑠 

+2𝑥𝑡 𝑡 𝑃𝑓𝑜 + 2𝑥𝑡 𝑡 𝑃𝑜  

𝑉𝑜
  𝑡 = 𝑥𝑡 𝑡 𝑃𝐴𝑜𝑥 𝑡 + 𝑥𝑡 𝑡 𝐴𝑜

𝑡𝑃𝑡𝑥 𝑡 + 𝑥𝑡 𝑡 𝛩𝑥 𝑡 + 𝑥𝑡 𝑡 𝛩𝑡𝑥 𝑡 

+ 2𝑥𝑡 𝑡  𝑃𝐴𝑑𝑜 − 𝛩 + 𝛶𝑡 𝑥 𝑡 − 𝜏 + 2𝑥𝑡 𝑡 − 𝜏  −𝛶 𝑥 𝑡 − 𝜏 

− 2𝑥𝑡 𝑡 𝛩  𝑥  𝑠 

𝑡

𝑡−𝜏

𝑑𝑠 − 2𝑥𝑡 𝑡 − 𝜏 𝛶  𝑥  𝑠 

𝑡

𝑡−𝜏

𝑑𝑠 + 2𝑥𝑡 𝑡 𝑃𝑓𝑜

+ 2𝑥𝑡 𝑡 𝑃𝑜  
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𝑉𝑜
  𝑡 =

1

𝜏
  𝑥𝑡 𝑡 𝑃𝐴𝑜𝑥 𝑡 + 𝑥𝑡 𝑡 𝐴𝑜

𝑡𝑃𝑡𝑥 𝑡 + 𝑥𝑡 𝑡 𝛩𝑥 𝑡 + 𝑥𝑡 𝑡 𝛩𝑡𝑥 𝑡 

𝑡

𝑡−𝜏

+ 2𝑥𝑡 𝑡  𝑃𝐴𝑑𝑜 − 𝛩 + 𝛶𝑡 𝑥 𝑡 − 𝜏 − 2𝑥𝑡 𝑡 − 𝜏 𝛶𝑥 𝑡 − 𝜏 

− 2𝑥𝑡 𝑡 𝜏𝛩𝑥  𝑠 − 2𝑥𝑡 𝑡 − 𝜏 𝜏𝛶𝑥  𝑠 + 2𝑥𝑡 𝑡 𝑃𝑓𝑜 + 2𝑥𝑡 𝑡 𝑃𝑜 𝑑𝑠 

  (4.19) 

𝑉𝑎 𝑡 =   𝑥 𝑡 𝛼 𝑊𝑥 

𝑡

𝑡+𝑠

𝑡

𝑡−𝜚

 𝛼 𝑑𝛼𝑑𝑠 

Using Leibniz Rule: 

𝐹 𝑥 =  𝑓(𝑥, 𝑠)𝑑𝑠

𝜙2(𝑥)

𝜙1(𝑥)

 

𝐹  𝑥 =
𝑑𝐹(𝑥)

𝑑𝑥
=  

𝑑𝑓(𝑥, 𝑠)

𝑑𝑥
𝑑𝑠

𝜙2(𝑥)

𝜙1(𝑥)

+
𝑑𝜙2 𝑥 

𝑑𝑥
𝑓 𝑥, 𝜙2 𝑥  −

𝑑𝜙1 𝑥 

𝑑𝑥
𝑓 𝑥, 𝜙1 𝑥   

Yields to: 

𝑉𝑎
  𝑡 =  

𝑑

𝑑𝑡
  𝑥 𝑡 𝛼 𝑊𝑥  𝛼 𝑑𝛼

𝑡

𝑡+𝑠

 𝑑𝑠

𝑡

𝑡−𝜚

 

=   𝑥 𝑡 𝑡 𝑊𝑥  𝑡 − 𝑥 𝑡 𝑡 + 𝑠 𝑊𝑥  𝑡 + 𝑠  𝑑𝑠

𝑡

𝑡−𝜚

 

= 𝜚𝑥 𝑡 𝑡 𝑊𝑥  𝑡 −   𝑥 𝑡 𝑡 + 𝑠 𝑊𝑥  𝑡 + 𝑠  𝑑𝑠

0

−𝜚

 

Using integration by part, and let 𝑡 + 𝑠 = 𝛼 then 𝑑𝑠 = 𝑑𝛼. when 𝑠 = −𝜚 then 𝛼 = 𝑡 − 𝜚, 

and when 𝑠 = 0 then 𝛼 = 𝑡. Thus: 
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𝑉𝑎
  𝑡 =   𝜚𝑥 𝑡 𝑡 𝑊𝑥  𝑡 − 𝑥 𝑡 𝑠 𝑊𝑥  𝑠  𝑑𝑠

0

−𝜚

 

=
1

𝜏
  𝜚𝑥 𝑡 𝑡 𝑊𝑥  𝑡 − 𝜏𝑥 𝑡 𝑠 𝑊𝑥  𝑠  𝑑𝑠

𝑡

𝑡−𝜏

 

 (4.23) 

𝑉𝑚
  𝑡 = 𝑥𝑡 𝑡 𝑄𝑥 𝑡 − 𝑥𝑡 𝑡 − 𝜏 𝑄𝑥 𝑡 − 𝜏  

 =
1

𝜏
  𝑥𝑡 𝑡 𝑄𝑥 𝑡 − 𝑥𝑡 𝑡 − 𝜏 𝑄𝑥 𝑡 − 𝜏  𝑑𝑠

𝑡

𝑡−𝜏

 

 (4.24) 

where  

𝑃, 𝑄, 𝑊 are symmetric weighting matrices such that 0 < 𝑃, 0 < 𝑊, 0 < 𝑄, 

𝜚 = 𝜏 > 0  is the time delay, 

𝛩 ∈ ℜ𝑛×𝑛 , and 𝛶 ∈ ℜ𝑛×𝑛   are appropriate relaxation parameter matrices injected to 

facilitate the delay dependence analysis 

Combing (4.19) – (4.24) and appending (4.14) – (4.15) through scalars 𝜅 > 0, 𝜎 > 0 we 

arrive at: 

𝜒 𝑡, 𝑠 =  𝑥𝑡 𝑡    𝑥𝑡 𝑡 − 𝜏    𝑥 𝑡 𝑠    𝑓𝑜
𝑡    𝑜

𝑡 
𝑡
 (4.25) 

 𝑉  𝑡  
(2)

≤  
1

𝜏
  𝜒𝑡 𝑡, 𝑠 𝛯𝜒 𝑡, 𝑠  𝑑𝑠

𝑡

𝑡−𝜏

< 0 

 (4.25) 

where  𝑉  𝑡  
(2)

defines the Lyapunov derivative along the solutions of our LNDT system 

along with 𝛩 𝑊 = 𝛩, and 𝛶 𝑊 = 𝛶  
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𝛯 =

 
 
 
 
 
𝛯11

•
•
•
•

      

𝛯12

𝛯22

•
•
•

      

𝛯13

𝛯23

𝛯33

•
•

      

𝛯14

𝛯24

𝛯34

𝛯44

•

      

𝛯15

𝛯25

𝛯35

𝛯45

𝛯55 
 
 
 
 

< 0 (4.26) 

From (4.18), (4.22), (4.23), and (4.24) we can conclude: 

𝛯 =

 
 
 
 
 
𝛯11

•
•
•
•

      

𝛯12

𝛯22

•
•
•

    

−𝜏𝛩
−𝜏𝛶
−𝜏𝑊

•
•

      

𝑃
0
0

−𝜎𝐼
•

      

𝑃
0
0
0

−𝜅𝐼 
 
 
 
 

< 0 (4.27-1) 

where 

𝛯11 = 𝑃𝐴𝑜 + 𝐴𝑜
𝑡𝑃 + 𝛩 + 𝛩𝑡 + 𝑄 + 𝜎𝛼2𝐹𝑡𝐹 (4.27-2) 

𝛯12 = 𝑃𝐴𝑑𝑜 − 𝛩 + 𝛶𝑡  (4.27-3) 

𝛯22 = −𝛶 − 𝛶𝑡 − 𝑄 + 𝜅𝛽2𝐻𝑡𝐻 (4.27-4) 

but the following term (𝜚𝑥 𝑡 𝑡 𝑊𝑥  𝑡 ) was not included in the 𝛯  LMI (4.27-1), and since 

𝑥  𝑡  = 𝐴𝑜𝑥 𝑡 + 𝐴𝑑𝑜 𝑥 𝑡 − 𝜏 + 𝑓𝑜 + 𝑜 , we can rewrite 𝑥  𝑡  in the matrix form: 

𝑥  𝑡 =  𝐴𝑜      𝐴𝑑𝑜      0     1     1 

 
 
 
 
 

𝑥 𝑡 

𝑥 𝑡 − 𝜏 

𝑥  𝑠 
𝑓𝑜
𝑜  

 
 
 
 

 (4.28-1) 

= 𝐴 𝜒 𝑡, 𝑠 ≜ 𝐴 𝜒 (4.28-2) 

Then 

 𝜚𝑥 𝑡 𝑡 𝑊𝑥  𝑡 =  𝜚𝜒𝑡𝐴 𝑡𝑊𝐴 𝜒 (4.29) 

Thus: 

𝑉  𝑡 =
1

𝜏
  𝜒 𝛯𝜒 + 𝜚𝜒𝑡𝐴 𝑡𝑊𝐴 𝜒 𝑑𝑠

𝑡

𝑡−𝜏

=
1

𝜏
  𝜒  𝛯 + 𝜚𝐴 𝑡𝑊𝐴  𝜒 𝑑𝑠

𝑡

𝑡−𝜏
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=
1

𝜏
  𝜒  𝛯 + 𝜚𝐴 𝑡𝑊𝑊−1𝑊𝐴  𝜒 𝑑𝑠

𝑡

𝑡−𝜏

 

=
1

𝜏
  𝜒  𝛯 + 𝜚𝐴 𝑡𝑊𝜚−1𝑊−1𝑊𝐴 𝜚 𝜒 𝑑𝑠

𝑡

𝑡−𝜏

< 0 

 (4.30-1) 

or 

𝑉  𝑡 <
1

𝜏
  𝜒 𝛯𝜒 𝑑𝑠

𝑡

𝑡−𝜏

< 0 

 (4.30-2) 

Using the Schur Complement yield to transform the LMI from the equation form into the 

matrix form yield to: 

 
𝛯 𝜚𝐴 𝑡𝑊

𝜚𝑊𝐴 𝜚𝑊
 < 0 (4.31) 

But 𝛯 < 0, hence 

𝛯 =

 
 
 
 
 
 
 
 
𝛯11

•
•
•
•
•
•
•

    

𝛯12

𝛯22

•
•
•
•
•
•

    

𝛯13

𝛯23

𝛯33

•
•
•
•
•

    

𝛯14

𝛯24

𝛯34

𝛯44

•
•
•
•

    

𝛯15

𝛯25

𝛯35

𝛯45

𝛯55

•
•
•

    

𝛯16

𝛯26

𝛯36

𝛯46

𝛯56

𝛯66

•
•

    

𝛯17

𝛯27

𝛯37

𝛯47

𝛯57

𝛯67

𝛯77

•

    

𝛯18

𝛯28

𝛯38

𝛯48

𝛯58

𝛯68

𝛯78

𝛯88 
 
 
 
 
 
 
 

< 0 (4.32) 

 𝑉  𝑡  
 2 

<
1

𝜏
  𝜒𝑡 𝑡, 𝑠 𝛯𝜒 𝑡, 𝑠  𝑑𝑠

𝑡

𝑡−𝜏

= −𝜔 𝑥 𝑡  2 < 0 

 (4.33) 

We can rewrite the LMI as 
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𝛯 =

 
 
 
 
 
 
 
 
 𝛯11

•
•
•
•
•
•
•

    

𝛯12

𝛯22

•
•
•
•
•
•

    

−𝜏𝛩
−𝜏𝛶
−𝜏𝑊

•
•
•
•
•

    

𝑃
0
0

−𝜎𝐼
•
•
•
•

    

𝑃
0
0
0

−𝜅𝐼
•
•
•

    

𝑃𝛤𝑜

0
0
0
0

−𝛾2𝐼
•
•

    

𝐺𝑜
𝑡

𝐺𝑑𝑜
𝑡

0
0
0

𝛷𝑜
𝑡

−𝐼
•

    

−𝜚𝐴𝑜
𝑡𝑊

−𝜚𝐴𝑑𝑜
𝑡𝑊

0
−𝑊
−𝑊

−𝜚𝛤𝑜
𝑡𝑊

0
−𝜚𝑊  

 
 
 
 
 
 
 
 

< 0 

where  

𝛯11 = 𝑃𝐴𝑜 + 𝐴𝑜
𝑡𝑃𝑡 + 𝛩 + 𝛩𝑡 + 𝑄 + 𝜎𝛼2𝐹𝑡𝐹 

= 𝑃𝐴𝑜 + 𝐴𝑜
𝑡𝑃 + 𝛩 + 𝛩𝑡 + 𝑄 + 𝜎𝛼2𝐹𝑡𝐹 

𝛯12 = 𝑃𝐴𝑑𝑜 − 𝛩 + 𝛶𝑡  

𝛯22 = −𝛶 − 𝛶𝑡 − 𝑄 + 𝜅𝛽2𝐻𝑡𝐻 

Thus the internal asymptotic stability has been established and the first part of the proof of 

LMI (4.16) is done. 

Now, consider the performance measure: 

𝐽 =   𝑧𝑡 𝑠 𝑧 𝑠 − 𝛾2𝑤𝑡 𝑠 𝑤 𝑠  𝑑𝑠
∞

0

 

 (4.34) 

For any 𝑤 𝑡 ∈ ℒ2 [0,∞) ≠ 0 and zero initial condition 𝑥 𝑡 = 0, then we can rewrite the 

performance measure as follow: 

𝐽 =   𝑧𝑡 𝑠 𝑧 𝑠 − 𝛾2𝑤𝑡 𝑠 𝑤 𝑠 +  𝑉  𝑥  
 2 

−  𝑉  𝑥  
 2 

 𝑑𝑠
∞

0

≤   𝑧𝑡 𝑠 𝑧 𝑠 − 𝛾2𝑤𝑡 𝑠 𝑤 𝑠 +  𝑉  𝑥  
(2)

 𝑑𝑠
∞

0

 

  (4.35) 

Using the same development as before, we can easily find that 

𝑧𝑡 𝑠 𝑧 𝑠 − 𝛾2𝑤𝑡 𝑠 𝑤 𝑠 +  𝑉  𝑥  
(2)

= 𝜒 𝑡 𝑡, 𝑠 𝛯 𝜒  𝑡, 𝑠  (4.36-1) 
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where 

𝜒  𝑡, 𝑠 =  𝑥𝑡 𝑡    𝑥𝑡 𝑡 − 𝜏    𝑥 𝑡 𝑠    𝑓𝑜
𝑡    𝑜

𝑡    𝑤𝑡(𝑠) 
𝑡
 (4.36-2) 

and 𝛯  correspond to 𝛯 by Schur Complement. 

For any arbitrary 𝑠 ∈  𝑡,∞ , which implies for any 𝑤 𝑡 ∈ ℒ2 [0,∞) ≠ 0 that 𝐽 < 0 

leading to equation (4.10):  𝑧(𝑡) 2 < 𝛾 𝑤(𝑡) 2 or 
 𝑧(𝑡) 2

2

 𝑤(𝑡) 2
2 < γ2  

This complete the proof of (4.16) 

4-7 State Feedback Control Scheme 

Applying the state-feedback control 𝑢 𝑡 = 𝐾𝑠𝑥(𝑡) to the NLTD (4.11), and define 

𝐴𝑠 = 𝐴𝑜 + 𝐵𝑜𝐾𝑠 and 𝐺𝑠 = 𝐺𝑜 + 𝐷𝑜𝐾𝑠 (4.37) 

It then follows from the previous analysis (theorem 1) that the resulting closed-loop 

system is delay-independent asymptotically stable with ℒ2 performance bound 𝛾, if there 

exist symmetric positive define weighting matrices 𝑃; 𝑄; 𝑊; appropriate relaxation 

parameter matrices injected to facilitate the delay dependence analysis 𝛩 ∈ ℜ𝑛×𝑛 , 

𝛶 ∈ ℜ𝑛×𝑛 ; and scalars 𝛾 > 0, 𝜎 > 0, 𝜅 > 0  that satisfy the following LMI: 

𝛯𝜚 =

 
 
 
 
 
 
 
 
 𝛯𝜚11

•
•
•
•
•
•
•

    

𝛯𝜚12

𝛯𝜚22

•
•
•
•
•
•

    

−𝜚𝛩
−𝜚𝛶
−𝜚𝑊

•
•
•
•
•

    

𝑃
0
0

−𝜎𝐼
•
•
•
•

    

𝑃
0
0
0

−𝜅𝐼
•
•
•

    

𝑃𝛤𝑜

0
0
0
0

−𝛾2𝐼
•
•

    

𝐺𝑠
𝑡

𝐺𝑑𝑜
𝑡

0
0
0

𝛷𝑜
𝑡

−𝐼
•

    

−𝜚𝐴𝑠
𝑡𝑊

−𝜚𝐴𝑑𝑜
𝑡𝑊

0
−𝑊
−𝑊

−𝜚𝛤𝑜
𝑡𝑊

0
−𝜚𝑊  

 
 
 
 
 
 
 
 

< 0 (4.38-1) 

where 

𝛯𝜚11 = 𝑃𝐴𝑠 + 𝐴𝑠
𝑡𝑃 + 𝛩 + 𝛩𝑡 + 𝑄 + 𝜎𝛼2𝐹𝑡𝐹 (4.38-2) 
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𝛯𝜚12 = 𝑃𝐴𝑑𝑜 − 𝛩 + 𝛶𝑡  (4.38-3) 

𝛯𝜚22 = −𝛶 − 𝛶𝑡 − 𝑄 + 𝜅𝛽2𝐻𝑡𝐻 (4.38-4) 

The main state-feedback design results are established by the following theorem: 

Theorem 2: 

Given scalar 𝜚 and matrix 𝑊 > 0,  the LNDT System (4.11) with the state-feedback 

control 𝑢(𝑡) = 𝐾𝑠𝑥(𝑡) is delay independent asymptotically stable with ℒ2 performance 

bound 𝛾 if there exist symmetric positive define weighting matrices 𝑋, 𝒴, 𝑄1, 𝑆𝑥1, 𝑆𝑥2; 

and parameter matrices 𝛩1, 𝛶1; and scalars  𝜎 > 0, 𝜅 > 0, 𝛾 > 0, 휀 > 0 satisfying the 

following LMI: 

𝛯3 =

 
 
 
 
 
 
 
 
 
 
𝛯𝑠311

•
•
•
•
•
•
•
•
•

  

𝛯𝑠312

𝛯𝑠322

•
•
•
•
•
•
•
•

 

−𝜚𝛩1

−𝜚𝛶1

−𝜚휀𝑋
•
•
•
•
•
•
•

 

𝑆𝑥1

0
0

−𝜎𝐼
•
•
•
•
•
•

 

0
𝑆𝑥2

0
0

−𝜅𝐼
•
•
•
•
•

 

𝐼
0
0
0
0

−𝜅𝐼
•
•
•
•

 

𝐼
0
0
0
0
0

−𝜎𝐼
•
•
•

 

𝛤𝑜

0
0
0
0
0
0

−𝛾2𝐼
•
•

𝑋𝐺𝑜
𝑡 + 𝒴𝑡𝐷𝑜

𝑡

𝑋𝐺𝑑𝑜
𝑡

0
0
0
0
0

𝛷𝑜
𝑡

−𝐼
•

 

−𝜚𝑋𝐴𝑜
𝑡 − 𝜚𝒴𝑡𝐵𝑜

𝑡

−𝜚𝑋𝐴𝑑𝑜
𝑡

0
0
0
−𝐼
−𝐼

−𝜚𝛤𝑜
𝑡

0
−𝜚휀−1𝑋  

 
 
 
 
 
 
 
 
 
 

< 0

 (4.39-1) 

where  

𝒴 = 𝐾𝑠𝑋  (4.39-2) 

𝛩1 = 𝑋𝛩𝑐𝑋 (4.39-3) 

𝑄1 = 𝑋𝑄𝑋 (4.39-4) 

𝛶1 = 𝑋𝛶𝑐𝑋  (4.39-5) 

𝛯𝑠311 = 𝐴𝑜𝑋 + 𝐵𝑜𝒴 + 𝑋𝐴𝑜
𝑡 + 𝒴𝑡𝐵𝑜

𝑡 + 𝛩1 + 𝛩1
𝑡 + 𝑄1 (4.39-6) 

𝛯𝑠312 = 𝐴𝑑𝑜 𝑋 − 𝛩1 + 𝛶1
𝑡
 (4.39-7) 
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𝛯𝑠322 = −𝛶1 − 𝛶1
𝑡 − 𝑄1 (4.39-8) 

𝑆𝑥1 = 𝑋𝑆1  (4.39-9) 

𝑆𝑥2 = 𝑋𝑆2  (4.39-10) 

Proof:  

𝛯𝑠 =

 
 
 
 
 
 
 
 
 
 
 𝛯𝑠11

•
•
•
•
•
•
•
•
•

   

𝛯𝑠12

𝛯𝑠22

•
•
•
•
•
•
•
•

   

−𝜏𝛩𝑐

−𝜏𝛶𝑐

−𝜏𝑊
•
•
•
•
•
•
•

  

𝑆1

0
0

−𝜎𝐼
•
•
•
•
•
•

  

0
𝑆2

0
0

 −𝜅𝐼
•
•
•
•
•

  

𝑃
0
0
0
0

 −𝜅𝐼
•
•
•
•

   

𝑃
0
0
0
0
0

−𝜎𝐼
•
•
•

   

𝑃𝛤𝑜

0
0
0
0
0
0

−𝛾2𝐼
•
•

    

𝐺𝑠
𝑡

𝐺𝑑𝑜
𝑡

0
0
0
0
0

𝛷𝑜
𝑡

−𝐼
•

  

−𝜚𝐴𝑠
𝑡𝑊

−𝜚𝐴𝑑𝑜
𝑡𝑊

0
0
0

−𝑊
−𝑊

−𝜚𝛤𝑜
𝑡𝑊

0
−𝜚𝑊  

 
 
 
 
 
 
 
 
 
 

< 0 (4.40-1) 

where  

𝛯𝑠11 = 𝑃𝐴𝑠 + 𝐴𝑠
𝑡𝑃 + 𝛩 + 𝛩𝑡 + 𝑄 (4.40-2) 

𝛯𝑠12 = 𝑃𝐴𝑑𝑜 − 𝛩 + 𝛶𝑡  (4.40-3) 

𝛯𝑠22 = −𝛶 − 𝛶𝑡 − 𝑄 (4.40-4) 

𝑆1 = 𝜎𝛼𝐹𝑡  (4.40-5) 

𝑆2 = 𝜅𝛽𝐻𝑡  (4.40-6) 

Since 𝐴𝑠 = 𝐴𝑜 + 𝐵𝑜𝐾𝑠 and the time delay in our system is fixed and equal to (𝜚 = 𝜏), 

then: 
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𝛯𝑠 =

 
 
 
 
 
 
 
 
 
 
𝛯𝑠11

•
•
•
•
•
•
•
•
•

  

𝛯𝑠12

𝛯𝑠22

•
•
•
•
•
•
•
•

 

−𝜚𝛩𝑐

−𝜚𝛶𝑐

−𝜚𝑊
•
•
•
•
•
•
•

  

𝑆1

0
0

−𝜎𝐼
•
•
•
•
•
•

 

0
𝑆2

0
0

−𝜅𝐼
•
•
•
•
•

 

𝑃
0
0
0
0

−𝜅𝐼
•
•
•
•

  

𝑃
0
0
0
0
0

−𝜎𝐼
•
•
•

  

𝑃𝛤𝑜

0
0
0
0
0
0

−𝛾2𝐼
•
•

  

(𝐺𝑜 + 𝐷𝑜𝐾𝑠)𝑡

𝐺𝑑𝑜
𝑡

0
0
0
0
0

𝛷𝑜
𝑡

−𝐼
•

 

−𝜚(𝐴𝑜 + 𝐵𝑜𝐾𝑠)𝑡𝑊

−𝜚𝐴𝑑𝑜
𝑡𝑊

0
0
0

−𝑊
−𝑊

−𝜚𝛤𝑜
𝑡𝑊

0
−𝜚𝑊  

 
 
 
 
 
 
 
 
 
 

< 0 

𝛯𝑠 =

 
 
 
 
 
 
 
 
 
 
𝛯𝑠11

•
•
•
•
•
•
•
•
•

  

𝛯𝑠12

𝛯𝑠22

•
•
•
•
•
•
•
•

 

−𝜚𝛩𝑐

−𝜚𝛶𝑐

−𝜚𝑊
•
•
•
•
•
•
•

 

𝑆1

0
0

−𝜎𝐼
•
•
•
•
•
•

 

0
𝑆2

0
0

−𝜅𝐼
•
•
•
•
•

  

𝑃
0
0
0
0

−𝜅𝐼
•
•
•
•

 

𝑃
0
0
0
0
0

−𝜎𝐼
•
•
•

   

𝑃𝛤𝑜

0
0
0
0
0
0

−𝛾2𝐼
•
•

 

(𝐺𝑜 + 𝐷𝑜𝐾𝑠)𝑡

𝐺𝑑𝑜
𝑡

0
0
0
0
0

𝛷𝑜
𝑡

−𝐼
•

 

(−𝜚𝐴𝑜 − 𝜚𝐵𝑜𝐾𝑠)𝑡𝑊

−𝜚𝐴𝑑𝑜
𝑡𝑊

0
0
0

−𝑊
−𝑊

−𝜚𝛤𝑜
𝑡𝑊

0
−𝜚𝑊  

 
 
 
 
 
 
 
 
 
 

< 0 

𝛯𝑠 =

 
 
 
 
 
 
 
 
 
 
𝛯𝑠11

•
•
•
•
•
•
•
•
•

 

𝛯𝑠12

𝛯𝑠22

•
•
•
•
•
•
•
•

  

−𝜚𝛩𝑐

−𝜚𝛶𝑐

−𝜚𝑊
•
•
•
•
•
•
•

𝑆1

0
0

−𝜎𝐼
•
•
•
•
•
•

 

0
𝑆2

0
0

−𝜅𝐼
•
•
•
•
•

  

𝑃
0
0
0
0

−𝜅𝐼
•
•
•
•

  

𝑃
0
0
0
0
0

−𝜎𝐼
•
•
•

 

𝑃𝛤𝑜

0
0
0
0
0
0

−𝛾2𝐼
•
•

𝐺𝑜
𝑡 + 𝐾𝑠

𝑡𝐷𝑜
𝑡

𝐺𝑑𝑜
𝑡

0
0
0
0
0

𝛷𝑜
𝑡

−𝐼
•

 

−𝜚𝐴𝑜
𝑡𝑊−𝜚𝐾𝑠

𝑡𝐵𝑜
𝑡𝑊

−𝜚𝐴𝑑𝑜
𝑡𝑊

0
0
0

−𝑊
−𝑊

−𝜚𝛤𝑜
𝑡𝑊

0
−𝜚𝑊  

 
 
 
 
 
 
 
 
 
 

< 0

 (4.41) 
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Since the Matlab LMI solver cannot solve any element that has two variables, we should 

eliminate 𝑊 from our analysis. Thus 𝛯𝑠 (4.41) can be re-written as: 

𝛯𝑠1 =  𝐼   𝐼   𝐼   𝐼   𝐼   𝐼   𝐼   𝐼   𝐼    𝑊−1 𝛯𝑠 𝐼   𝐼   𝐼   𝐼   𝐼   𝐼   𝐼   𝐼   𝐼    𝑊−1 𝑡  

=

 
 
 
 
 
 
 
 
 
 
𝛯𝑠11

•
•
•
•
•
•
•
•
•

 

𝛯𝑠12

𝛯𝑠22

•
•
•
•
•
•
•
•

 

−𝜚𝛩𝑐

−𝜚𝛶𝑐

−𝜚𝑊
•
•
•
•
•
•
•

  

𝑆1

0
0

−𝜎𝐼
•
•
•
•
•
•

 

0
𝑆2

0
0

−𝜅𝐼
•
•
•
•
•

  

𝑃
0
0
0
0

−𝜅𝐼
•
•
•
•

  

𝑃
0
0
0
0
0

−𝜎𝐼
•
•
•

   

𝑃𝛤𝑜

0
0
0
0
0
0

−𝛾2𝐼
•
•

  

𝐺𝑜
𝑡 + 𝐾𝑠

𝑡𝐷𝑜
𝑡

𝐺𝑑𝑜
𝑡

0
0
0
0
0

𝛷𝑜
𝑡

−𝐼
•

   

−𝜚𝐴𝑜
𝑡−𝜚𝐾𝑠

𝑡𝐵𝑜
𝑡

−𝜚𝐴𝑑𝑜
𝑡

0
0
0
−𝐼
−𝐼

−𝜚𝛤𝑜
𝑡

0
−𝜚𝑊−1  

 
 
 
 
 
 
 
 
 
 

< 0

 (4.42) 

Applying the congruent transformation to the 𝛯𝑠1and defining 𝑃 = 𝑋−1 produce: 

𝛯2 =  𝑋   𝑋   𝑋   𝐼   𝐼   𝐼   𝐼   𝐼   𝐼   𝐼 𝛯𝑠1 𝑋   𝑋   𝑋   𝐼   𝐼   𝐼   𝐼   𝐼   𝐼   𝐼 𝑡  

=

 
 
 
 
 
 
 
 
 
 
𝑋𝛯𝑠11𝑋

•
•
•
•
•
•
•
•
•

    

𝑋𝛯𝑠12𝑋
𝑋𝛯𝑠22𝑋

•
•
•
•
•
•
•
•

    

−𝜚𝑋𝛩𝑐𝑋
−𝜚𝑋𝛶𝑐𝑋
−𝜚𝑋𝑊𝑋

•
•
•
•
•
•
•

    

𝑋𝑆1

0
0

−𝜎𝐼
•
•
•
•
•
•

   

0
𝑋𝑆2

0
0

−𝜅𝐼
•
•
•
•
•

   

𝐼
0
0
0
0

−𝜅𝐼
•
•
•
•

    

𝐼
0
0
0
0
0

−𝜎𝐼
•
•
•

        

 

𝛤𝑜

0
0
0
0
0
0

−𝛾2𝐼
•
•

    

𝑋(𝐺𝑜
𝑡 + 𝐾𝑠

𝑡𝐷𝑜
𝑡)

𝑋𝐺𝑑𝑜
𝑡

0
0
0
0
0

𝛷𝑜
𝑡

−𝐼
•

    

𝑋(−𝜚𝐴𝑜
𝑡−𝜚𝐾𝑠

𝑡𝐵𝑜
𝑡)

−𝜚𝑋𝐴𝑑𝑜
𝑡

0
0
0
−𝐼
−𝐼

−𝜚𝛤𝑜
𝑡

0
−𝜚𝑊−1  

 
 
 
 
 
 
 
 
 
 

< 0 
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𝛯2 =

 
 
 
 
 
 
 
 
 
 
𝑋𝛯𝑠11𝑋

•
•
•
•
•
•
•
•
•

    

𝑋𝛯𝑠12𝑋
𝑋𝛯𝑠22𝑋

•
•
•
•
•
•
•
•

    

−𝜚𝑋𝛩𝑐𝑋
−𝜚𝑋𝛶𝑐𝑋
−𝜚𝑋𝑊𝑋

•
•
•
•
•
•
•

    

𝑋𝑆1

0
0

−𝜎𝐼
•
•
•
•
•
•

   

0
𝑋𝑆2

0
0

−𝜅𝐼
•
•
•
•
•

     

𝐼
0
0
0
0

−𝜅𝐼
•
•
•
•

    

𝐼
0
0
0
0
0

−𝜎𝐼
•
•
•

     

 

𝛤𝑜

0
0
0
0
0
0

−𝛾2𝐼
•
•

    

𝑋𝐺𝑜
𝑡 + 𝑋𝐾𝑠

𝑡𝐷𝑜
𝑡

𝑋𝐺𝑑𝑜
𝑡

0
0
0
0
0

𝛷𝑜
𝑡

−𝐼
•

    

−𝜚𝑋𝐴𝑜
𝑡−𝜚𝑋𝐾𝑠

𝑡𝐵𝑜
𝑡

−𝜚𝑋𝐴𝑑𝑜
𝑡

0
0
0
−𝐼
−𝐼

−𝜚𝛤𝑜
𝑡

0
−𝜚𝑊−1  

 
 
 
 
 
 
 
 
 
 

< 0 

𝛯2 =

 
 
 
 
 
 
 
 
 
 
𝑋𝛯𝑠11𝑋

•
•
•
•
•
•
•
•
•

    

𝑋𝛯𝑠12𝑋
𝑋𝛯𝑠22𝑋

•
•
•
•
•
•
•
•

    

−𝜚𝑋𝛩𝑐𝑋
−𝜚𝑋𝛶𝑐𝑋
−𝜚𝑋𝑊𝑋

•
•
•
•
•
•
•

    

𝑋𝑆1

0
0

−𝜎𝐼
•
•
•
•
•
•

   

0
𝑋𝑆2

0
0

−𝜅𝐼
•
•
•
•
•

    

𝐼
0
0
0
0

−𝜅𝐼
•
•
•
•

    

𝐼
0
0
0
0
0

−𝜎𝐼
•
•
•

      

 

𝛤𝑜

0
0
0
0
0
0

−𝛾2𝐼
•
•

    

𝑋𝐺𝑜
𝑡 + 𝒴𝑡𝐷𝑜

𝑡

𝑋𝐺𝑑𝑜
𝑡

0
0
0
0
0

𝛷𝑜
𝑡

−𝐼
•

    

−𝜚𝑋𝐴𝑜
𝑡 − 𝜚𝒴𝑡𝐵𝑜

𝑡

−𝜚𝑋𝐴𝑑𝑜
𝑡

0
0
0
−𝐼
−𝐼

−𝜚𝛤𝑜
𝑡

0
−𝜚𝑊−1  

 
 
 
 
 
 
 
 
 
 

< 0 (4.43-1) 
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where  

𝒴𝑡 = 𝐾𝑠
𝑡𝑋𝑡 = 𝐾𝑠

𝑡𝑋 (4.43-2) 

Define 𝑊 = 휀𝑋−1 (or 𝑊−1 = 휀−1𝑋), 𝛯2 in LMI (4.43) can be renamed as 𝛯3 and rewrite 

as  follow: 

𝛯3 =

 
 
 
 
 
 
 
 
 
 
𝛯𝑠311

•
•
•
•
•
•
•
•
•

    

𝛯𝑠312

𝛯𝑠322

•
•
•
•
•
•
•
•

    

−𝜚𝑋𝛩𝑐𝑋
−𝜚𝑋𝛶𝑐𝑋
−𝜚휀𝑋

•
•
•
•
•
•
•

    

𝑋𝑆1

0
0

−𝜎𝐼
•
•
•
•
•
•

   

0
𝑋𝑆2

0
0

−𝜅𝐼
•
•
•
•
•

     

𝐼
0
0
0
0

−𝜅𝐼
•
•
•
•

    

𝐼
0
0
0
0
0

−𝜎𝐼
•
•
•

     

 

𝛤𝑜

0
0
0
0
0
0

−𝛾2𝐼
•
•

    

𝑋𝐺𝑜
𝑡 + 𝒴𝑡𝐷𝑜

𝑡

𝑋𝐺𝑑𝑜
𝑡

0
0
0
0
0

𝛷𝑜
𝑡

−𝐼
•

    

−𝜚𝑋𝐴𝑜
𝑡 − 𝜚𝒴𝑡𝐵𝑜

𝑡

−𝜚𝑋𝐴𝑑𝑜
𝑡

0
0
0
−𝐼
−𝐼

−𝜚𝛤𝑜
𝑡

0
−𝜚휀−1𝑋  

 
 
 
 
 
 
 
 
 
 

< 0 (4.44-1) 

where 

𝛯𝑠311 = 𝑋𝛯𝑠11𝑋 = 𝑋 𝑃𝐴𝑠 + 𝐴𝑠
𝑡𝑃𝑡 + 𝛩𝑐 + 𝛩𝑐

𝑡 + 𝑄 𝑋 

= 𝐴𝑠𝑋 + 𝑋𝐴𝑠
𝑡 + 𝑋𝛩𝑐𝑋 + 𝑋𝛩𝑐

𝑡𝑋 + 𝑋𝑄𝑋 (4.44-2) 

𝛯𝑠312 = 𝑋𝛯𝑠12𝑋 = 𝑋 𝑃𝐴𝑑𝑜 − 𝛩 + 𝛶𝑡 𝑋 = 𝐴𝑑𝑜 𝑋 − 𝑋𝛩𝑐𝑋 + 𝑋𝛶𝑐
𝑡𝑋 (4.44-3) 

𝛯𝑠322 = 𝑋𝛯𝑠22𝑋 = 𝑋 −𝛶𝑐 − 𝛶𝑐
𝑡 − 𝑄 𝑋 = −𝑋𝛶𝑐𝑋 − 𝑋𝛶𝑐

𝑡𝑋 − 𝑋𝑄𝑋 (4.44-4) 

Since 𝐴𝑠 = 𝐴𝑜 + 𝐵𝑜𝐾𝑠 and 𝐺𝑠  =  𝐺𝑜  +  𝐷𝑜𝐾𝑠 

Then 𝐴𝑠𝑋 = 𝐴𝑜𝑋 + 𝐵𝑜𝐾𝑠𝑋 = 𝐴𝑜𝑋 + 𝐵𝑜𝒴 
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Let  

𝛩1 = 𝑋𝛩𝑐𝑋 

𝑄1 = 𝑋𝑄𝑋 

𝛶1 = 𝑋𝛶𝑐𝑋  

Then  

𝛯𝑠311 = 𝐴𝑠𝑋 + 𝑋𝐴𝑠
𝑡 + 𝛩1 + 𝛩1

𝑡 + 𝑄1 = 𝐴𝑜𝑋 + 𝐵𝑜𝒴 + 𝑋𝐴𝑜
𝑡 + 𝒴𝑡𝐵𝑜

𝑡 + 𝛩1 + 𝛩1
𝑡 + 𝑄1 

𝛯𝑠312 = 𝐴𝑑𝑜 𝑋 − 𝛩1 + 𝛶1
𝑡
 

𝛯𝑠322 = −𝛶1 − 𝛶1
𝑡 − 𝑄1 

Let 𝑆𝑥1 = 𝑋𝑆1 and  𝑆𝑥2 = 𝑋𝑆2  

Then the LMI can be rewritten as follows: 

𝛯3 =

 
 
 
 
 
 
 
 
 
 
𝛯𝑠311

•
•
•
•
•
•
•
•
•

    

𝛯𝑠312

𝛯𝑠322

•
•
•
•
•
•
•
•

    

−𝜚𝛩1

−𝜚𝛶1

−𝜚휀𝑋
•
•
•
•
•
•
•

    

𝑆𝑥1

0
0

−𝜎𝐼
•
•
•
•
•
•

   

0
𝑆𝑥2

0
0

−𝜅𝐼
•
•
•
•
•

    

𝐼
0
0
0
0

−𝜅𝐼
•
•
•
•

    

𝐼
0
0
0
0
0

−𝜎𝐼
•
•
•

   

 

𝛤𝑜

0
0
0
0
0
0

−𝛾2𝐼
•
•

    

𝑋𝐺𝑜 + 𝒴𝑡𝐷𝑜
𝑡

𝑋𝐺𝑑𝑜
𝑡

0
0
0
0
0

𝛷𝑜
𝑡

−𝐼
•

    

−𝜚𝑋𝐴𝑜
𝑡 − 𝜚𝒴𝑡𝐵𝑜

𝑡

−𝜚𝑋𝐴𝑑𝑜
𝑡

0
0
0
−𝐼
−𝐼

−𝜚𝛤𝑜
𝑡

0
−𝜚휀−1𝑋  

 
 
 
 
 
 
 
 
 
 

< 0 

This completes the proof. 
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4-8 Dynamic Output Feedback Control Scheme 

To continue our design of the stabilizing scheme using the dynamic output feedback for 

the NLTD system (4.11), we will consider the following theorem: 

Theorem 3: 

Given scalar 𝜚 and matrix 𝑊 > 0,  the LNDT system with the dynamic output control 

𝑢 𝑡 = 𝐾𝑐𝑥𝑒 𝑡  is delay independent asymptotically stable with ℒ2 performance bound 𝛾 

if there exist symmetric positive define weighting matrices 𝑃, 𝑄, 𝑆, 𝑊; appropriate 

relaxation parameter matrices injected to facilitate the delay dependence analysis 𝛩 ∈

ℜ𝑛×𝑛 , 𝛶 ∈ ℜ𝑛×𝑛 ;  and scalars  𝜎 > 0, 𝜅 > 0, 𝛾 > 0 satisfying the following LMI: 

𝛯𝑑𝑜𝑓 =

 
 
 
 
 
 
 
 
 
𝛯11

•
•
•
•
•
•
•
•

    

𝛯12

𝛯22

•
•
•
•
•
•
•

    

−𝑃𝐵𝐾𝑐

𝐴𝑑𝑜
𝑡𝑆 − 𝐶𝑑𝑜

𝑡𝑉𝑡

𝑆𝐴𝑜 + 𝐴𝑜
𝑡𝑆 − 𝑉𝐶𝑜 − 𝐶𝑜

𝑡𝑉𝑡

•
•
•
•
•
•

     

−𝜚𝛩
−𝜚𝛶

0
−𝜚𝑊

•
•
•
•
•

    

𝑃
0
0
0

−𝜎𝐼
•
•
•
•

      

  

𝑃
0
0
0
0

−𝜅𝐼
•
•
•

     

𝑃𝛤𝑜

0
𝑆𝛤𝑜 − 𝑉𝜓𝑜

0
0
0

−𝛾2𝐼
•
•

    

𝐺𝑜
𝑡 + 𝐾𝑐

𝑡𝐷𝑡

𝐺𝑑𝑜
𝑡

−𝐾𝑐
𝑡𝐷𝑡

0
0
0

𝛷𝑜
𝑡

−𝐼
•

    

−𝜚𝐴𝑜
𝑡𝑊 − 𝜚𝐾𝑐

𝑡𝐵𝑡𝑊

−𝜚𝐴𝑑𝑜
𝑡𝑊

𝜚𝐾𝑐
𝑡𝐵𝑡𝑊
0

−𝑊
−𝑊

−𝜚𝛤𝑜
𝑡𝑊

0
−𝜚𝑊  

 
 
 
 
 
 
 
 
 

< 0 (4.45-1) 

where  

𝛯11 = 𝑃𝐴𝑜 + 𝐴𝑜
𝑡𝑃 + 𝛩 + 𝛩𝑡 + 𝑄 + 𝜎𝛼2𝐹𝑡𝐹 + 𝑃𝐵𝐾𝑐 + 𝐾𝑐

𝑡𝐵𝑡𝑃 (4.45-2) 

𝛯12 = 𝑃𝐴𝑑𝑜 − 𝛩 + 𝛶𝑡  (4.45-3) 
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𝛯22 = −𝛶 − 𝛶𝑡 − 𝑄 + 𝜅𝛽2𝐻𝑡𝐻  (4.45-4) 

𝑉 = 𝑆𝐾𝑜  (4.45-5) 

Proof: 

As considered before for the NLTD system (4.11): 

𝑥  𝑡 = 𝐴𝑜𝑥 𝑡 + 𝐴𝑑𝑜 𝑥 𝑡 − 𝜏 + 𝐵𝑜𝑢 𝑡 + 𝑓𝑜(𝑥 𝑡 , 𝑡) + 𝑜(𝑥 𝑡 − 𝜏 , 𝑡) + 𝛤𝑜𝑤 𝑡  

𝑦 𝑡 = 𝐶𝑜𝑥 𝑡 + 𝐶𝑑𝑜 𝑥 𝑡 − 𝜏 + 𝐹𝑜𝑢 𝑡 + 𝜓𝑜𝑤 𝑡  

𝑧 𝑡 = 𝐺𝑜𝑥 𝑡 + 𝐺𝑑𝑜 𝑥 𝑡 − 𝜏 + 𝐷𝑜𝑢 𝑡 + 𝛷𝑜𝑤 𝑡  

When the input-output have no relation and not linked to each other, 𝐹𝑜 = 0, then we can 

rewrite the output equation as follow: 

𝑦 𝑡 = 𝐶𝑜𝑥 𝑡 + 𝐶𝑑𝑜 𝑥 𝑡 − 𝜏 + 𝜓𝑜𝑤 𝑡  (4.46) 

We have to design an observer such that the state equations will be: 

𝑥 𝑒 𝑡 = 𝐴𝑥𝑒 𝑡 + 𝐵𝑢 𝑡 + 𝐾𝑜(𝑦 𝑡 − 𝐶𝑜𝑥𝑒 𝑡 )  (4.47) 

while the controller will have the following equation: 

𝑢 𝑡 = 𝐾𝑐𝑥𝑒 𝑡  (4.48) 

Hence, from (4.11), (4.46), (4.47), and (4.48), the state equation of the system with the 

observer will be: 

𝑥 𝑒 𝑡 = 𝐴𝑥𝑒 𝑡 + 𝐵𝐾𝑐𝑥𝑒 𝑡 − 𝐾𝑜𝐶𝑜𝑥𝑒 𝑡 + 𝐾𝑜𝐶𝑜𝑥 𝑡 + 𝐾𝑜𝐶𝑑𝑜 𝑥 𝑡 − 𝜏 + 𝐾𝑜𝜓𝑜𝑤 𝑡  

= (𝐴 + 𝐵𝐾𝑐 − 𝐾𝑜𝐶𝑜)𝑥𝑒 𝑡 + 𝐾𝑜𝐶𝑜𝑥 𝑡 + 𝐾𝑜𝐶𝑑𝑜𝑥 𝑡 − 𝜏 + 𝐾𝑜𝜓𝑜𝑤 𝑡  (4.49) 

Note that we will ignore 𝑓𝑜(𝑥 𝑡 , 𝑡) and 𝑜(𝑥 𝑡 − 𝜏 , 𝑡) during the development of our 

analysis to simplify the derivations. Let us now start some system augmentation such that: 

𝑥  𝑡 =  
𝑥 𝑡 

𝑥𝑒 𝑡 
  (4.50-1) 

𝑥   𝑡 =𝐴 𝑥  𝑡 + 𝐴 
𝑑𝑥  𝑡 − 𝜏 + 𝛤 𝑜𝑤 𝑡  (4.50-2) 
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𝑧 𝑡 = 𝐺 𝑥  𝑡 + 𝐺 
𝑑𝑥  𝑡 − 𝜏 + 𝛷 𝑜𝑤 𝑡  (4.50-3) 

 

where  

𝐴 =  
𝐴 𝐵𝐾𝑐

𝐾𝑜𝐶𝑜 𝐴 + 𝐵𝐾𝑐 − 𝐾𝑜𝐶𝑜
  (4.50-4) 

𝐴 
𝑑 =  

𝐴𝑑𝑜 0
𝐾𝑜𝐶𝑑𝑜 0

  (4.50-5) 

𝛤 𝑜 =  
𝛤𝑜

𝐾𝑜𝜓𝑜
  (4.50-6) 

𝐺 =  𝐺𝑜 𝐷𝑜𝐾𝑐  (4.50-7) 

𝐺 
𝑑 =  𝐺𝑑𝑜 0  (4.50-8) 

Suppose that we have the following state augmented equation for the system with the 

observer: 

𝑋 (𝑡) =  
𝑥(𝑡)

𝑥 𝑡 − 𝑥𝑒(𝑡)
 =  

𝑥(𝑡)
𝑒(𝑡)

 = 𝑇  
𝑥(𝑡)
𝑥𝑒(𝑡)

  (4.51) 

where  

𝑒(𝑡) is the state estimation error 

𝑇 is transformation matrix such that 𝑇 = 𝑇−1 =  
𝐼 0
𝐼 −𝐼

  

To get 𝑋 (𝑡) from (4.51): 

𝑥   𝑡 = 𝐴 𝑥  𝑡 + 𝐴 
𝑑𝑥  𝑡 − 𝜏 + 𝛤 𝑜𝑤 𝑡  

 = 𝐴 𝑇−1𝑇𝑥  𝑡 + 𝐴 
𝑑𝑇−1𝑇𝑥  𝑡 − 𝜏 + 𝛤 𝑜𝑤 𝑡  (4.52) 

We have to multiply 𝑥   𝑡  by 𝑇 

𝑇𝑥   𝑡 = 𝑇𝐴 𝑇−1𝑇𝑥  𝑡 + 𝑇𝐴 
𝑑𝑇−1𝑇𝑥  𝑡 − 𝜏 + 𝑇𝛤 𝑜𝑤 𝑡  

𝑋   𝑡 = 𝑇𝐴 𝑇−1𝑋  𝑡 + 𝑇𝐴 
𝑑𝑇−1𝑋  𝑡 − 𝜏 + 𝑇𝛤 𝑜𝑤 𝑡  
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  = 𝐴 𝑋  𝑡 + 𝐴 𝑑𝑋  𝑡 − 𝜏 + 𝛤 𝑜𝑤 𝑡  (4.53-1) 

 

where  

𝐴 = 𝑇𝐴 𝑇−1 =  
𝐼 0
𝐼 −𝐼

  
𝐴 𝐵𝐾𝑐

𝐾𝑜𝐶𝑜 𝐴 + 𝐵𝐾𝑐 − 𝐾𝑜𝐶𝑜
  

𝐼 0
𝐼 −𝐼

  

=  
𝐼 0
𝐼 −𝐼

  
𝐴 + 𝐵𝐾𝑐 −𝐵𝐾𝑐

𝐴 + 𝐵𝐾𝑐 −𝐴 − 𝐵𝐾𝑐 + 𝐾𝑜𝐶𝑜
 =  

𝐴 + 𝐵𝐾𝑐 −𝐵𝐾𝑐

0 𝐴 − 𝐾𝑜𝐶𝑜
  (4.53-2) 

𝐴 𝑑 = 𝑇𝐴 
𝑑𝑇−1 =  

𝐼 0
𝐼 −𝐼

  
𝐴𝑑 0

𝐾𝑜𝐶𝑑𝑜 0
  

𝐼 0
𝐼 −𝐼

 =  
𝐼 0
𝐼 −𝐼

  
𝐴𝑑 0

𝐾𝑜𝐶𝑑𝑜 0
  

  =  
𝐴𝑑 0

𝐴𝑑 − 𝐾𝑜𝐶𝑑𝑜 0
  (4.53-3) 

𝛤 𝑜 = 𝑇𝛤 𝑜 =  
𝐼 0
𝐼 −𝐼

  
𝛤𝑜

𝐾𝑜𝜓𝑜
 =  

𝛤𝑜

𝛤𝑜 − 𝐾𝑜𝜓𝑜
  (4.53-4) 

We will apply the same methodology to get the controlled output equation, thus: 

𝑧 𝑡 = 𝐺 𝑥  𝑡 + 𝐺 
𝑑𝑥  𝑡 − 𝜏 + 𝛷 𝑜𝑤 𝑡  

= 𝐺 𝑇−1𝑇𝑥  𝑡 + 𝐺 
𝑑𝑇−1𝑇𝑥  𝑡 − 𝜏 + 𝛷 𝑜𝑤 𝑡  

= 𝐺 𝑇−1𝑋  𝑡 + 𝐺 
𝑑𝑇−1𝑋  𝑡 − 𝜏 + 𝛷 𝑜𝑤 𝑡  

= 𝐺 𝑋  𝑡 + 𝐺 𝑑𝑄−1𝑋  𝑡 − 𝜏 + 𝛷 𝑜𝑤 𝑡  (4.54-1) 

where  

𝐺 = 𝐺 𝑇−1 =  𝐺𝑜 𝐷𝑜𝐾𝑐  
𝐼 0
𝐼 −𝐼

 =  𝐺𝑜 + 𝐷𝑜𝐾𝑐 −𝐷𝑜𝐾𝑐  (4.54-2) 

𝐺 𝑑 = 𝐺 
𝑑𝑇−1 =  𝐺𝑑𝑜 0  

𝐼 0
𝐼 −𝐼

 =  𝐺𝑑𝑜 0  (4.54-3) 

In summary, the new system can be represented as: 

𝑋   𝑡 = 𝐴 𝑋  𝑡 + 𝐴 𝑑𝑋  𝑡 − 𝜏 + 𝛤 𝑜𝑤 𝑡  (4.55-1) 

𝑧 𝑡 = 𝐺 𝑋  𝑡 + 𝐺 𝑑𝑄−1𝑋  𝑡 − 𝜏 + 𝛷 𝑜𝑤 𝑡  (4.55-2) 
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𝑥  𝑡 =  𝐴 + 𝐵𝐾𝑐 𝑥 𝑡 − 𝐵𝐾𝑐𝑒 𝑡 + 𝐴𝑑𝑜 𝑥 𝑡 − 𝜏 + 𝛤𝑜𝑤 𝑡 + 𝑓𝑜 + 𝑜  (4.56-1) 

𝑒  𝑡 =  𝐴 − 𝐾𝑜𝐶𝑜 𝑒 𝑡 +  𝐴𝑑𝑜 − 𝐾𝑜𝐶𝑑𝑜  𝑥 𝑡 − 𝜏 + (𝛤𝑜 − 𝐾𝑜𝛷𝑜)𝑤 𝑡  (4.56-2) 

Using the same development technique that has been used before for stability analysis:  

𝑉 
2 𝑡 = 𝑉𝑜2

  𝑡 + 𝑉𝑎2
  𝑡 + 𝑉𝑚2

  𝑡  (4.57-1) 

𝑉 
𝑜2 𝑡 = 𝑥 𝑡 𝑡 𝛲𝑥 𝑡 + 𝑥𝑡 𝑡 𝛲𝑥  𝑡 = 2𝑥𝑡 𝑡 𝛲𝑥 (𝑡) 

= 2𝑥𝑡 𝑡 𝑃  𝐴 + 𝐵𝐾𝑐 𝑥 𝑡 − 𝐵𝐾𝑐𝑒 𝑡 + 𝐴𝑑𝑜 𝑥 𝑡 − 𝜏 + 𝛤𝑜𝑤 𝑡 + 𝑓𝑜 + 𝑜  

 (4.57-2) 

It is clear that this result is the same as that have shown before for 𝑉 
𝑜 𝑡  while equation 

(4.19) development, with new extra term −2𝛼𝛲𝐵𝐾𝑐𝑒 𝑡  

𝑉𝑎2
  𝑡 = 𝜚𝑥 𝑡 𝑡 𝑊𝑥  𝑡 −   𝑥 𝑡 𝑠 𝑊𝑥  𝑠  𝑑𝑠

𝑡

𝑡−𝜚

 

 (4.57-3) 

𝑉𝑚2
  𝑡 = 𝑥𝑡 𝑡 𝑄𝑥 𝑡 − 𝑥𝑡 𝑡 − 𝜏 𝑄𝑥 𝑡 − 𝜏  (4.57-4) 

Again, consider the NLTD System with 𝑢(. ) ≡ 0, and let 

𝜒2 𝑡, 𝑠 =  𝑥𝑡 𝑡    𝑥𝑡 𝑡 − 𝜏    𝑒𝑡 𝑡    𝑥 𝑡 𝑠    𝑓𝑜
𝑡    𝑜

𝑡 
𝑡
 (4.58-1) 

𝑉2
  𝑡 ≤  𝜒2

𝑡 𝑡, 𝑠 𝛯2𝜒2 𝑡, 𝑠 < 0 (4.58-2) 

then 

𝛯2 =

 
 
 
 
 
𝛯211

•
•
•
•

      

𝛯212

𝛯222

•
•
•

      

−𝑃𝐵𝐾𝑐

0
0
0
•

       

𝑃
0
0

−𝜎𝐼
•

      

𝑃
0
0
0

−𝜅𝐼 
 
 
 
 

< 0 (4.59-1) 

where  

𝛯211 = 𝑃𝐴𝑜 + 𝐴𝑜
𝑡𝑃 + 𝛩 + 𝛩𝑡 + 𝑄 + 𝜎𝛼2𝐹𝑡𝐹 + 𝑃𝐵𝐾𝑐 + 𝐾𝑐

𝑡𝐵𝑡𝑃 (4.59-2) 
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𝛯212 = 𝑃𝐴𝑑𝑜 − 𝛩 + 𝛶𝑡  (4.59-3) 

𝛯222 = −𝛶 − 𝛶𝑡 − 𝑄 + 𝜅𝛽2𝐻𝑡𝐻 (4.59-4) 

but the following term (𝜚𝑥 𝑡 𝑡 𝑊𝑥  𝑡 ) was not included in 𝛯2 (4.58). We can represent 

the state equation from the original system (4.11) and the control low definitions as: 

𝑥  𝑡  =  𝐴 + 𝐵𝐾𝑐 𝑥 𝑡 + 𝐴𝑑𝑜 𝑥 𝑡 − 𝜏 − 𝐵𝐾𝑐𝑒 𝑡 + 𝛤𝑜𝑤 𝑡 + 𝑓𝑜 + 𝑜  

=  𝐴 + 𝐵𝐾𝑐      𝐴𝑑𝑜     − 𝐵𝐾𝑐     0     1     1 

 
 
 
 
 
 

𝑥 𝑡 

𝑥 𝑡 − 𝜏 

𝑒 𝑡 

𝑥  𝑠 
𝑓𝑜
𝑜  

 
 
 
 
 

 

= 𝐴 𝜒2 𝑡, 𝑠 ≜ 𝐴 𝜒2 (4.60-1) 

The controlled output is found to be: 

𝑧 𝑡 =  𝐺𝑜 + 𝐷𝑜𝐾𝑐 𝑥 𝑡 − 𝐷𝑜𝐾𝑐𝑒 𝑡 + 𝐴𝑑𝑥 𝑡 − 𝜏 + 𝛷𝑜𝑤 𝑡  (4.60-2) 

Note that, again, the term −𝐷𝑜𝐾𝑐𝑒 𝑡  was not included in 𝑉 
2 𝑡  (4.58), thus have to 

include new term (𝑉𝑒
  𝑡 ) into the stability LKF equation such that 

𝑉 
2𝑛𝑒𝑤  𝑡 = 𝑉𝑜2

  𝑡 + 𝑉𝑎2
  𝑡 + 𝑉𝑚2

  𝑡 + 𝑉𝑒
  𝑡  (4.61-1) 

where  

𝑉𝑒 𝑡 = 𝑒𝑡 𝑡 𝑆𝑒(𝑡)  (4.61-2) 

𝑉𝑒
  𝑡 = 𝑒 𝑡 𝑡 𝑆𝑒 𝑡 + 𝑒𝑡 𝑡 𝑆𝑒  𝑡 = 2𝑒𝑡 𝑡 𝑆𝑒  𝑡  

= 2𝑒𝑡 𝑡 𝑆( 𝐴 − 𝐾𝑜𝐶𝑜 𝑒 𝑡 +  𝐴𝑑𝑜 − 𝐾𝑜𝐶𝑑𝑜  𝑥 𝑡 − 𝜏 + (𝛤𝑜 − 𝐾𝑜𝛷𝑜)𝑤 𝑡 ) 

= 𝑒𝑡 𝑡  𝑆𝐴 + 𝐴𝑡𝑆 − 𝑆𝐾𝑜𝐶𝑜 − 𝐶𝑜
𝑡𝐾𝑜

𝑡𝑆 𝑒 𝑡  

+2𝑒𝑡 𝑡  𝑆𝐴𝑑𝑜 − 𝑆𝐾𝑜𝐶𝑑𝑜  𝑥 𝑡 − 𝜏  + 2𝑒𝑡 𝑡 (𝑆𝛤𝑜 − 𝑆𝐾𝑜𝛷𝑜)𝑤 𝑡 )  (4.61-3) 

Thus, using the same development procedure used in ℒ 2 gain analysis produces: 
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𝑉 
2𝑛𝑒𝑤  𝑡 < 𝜒2 𝛯𝑑𝑜𝑓 𝜒2 < 0 (4.62) 

Using the Schur Complement yield 

 
𝛯2 𝜚𝐴 𝑡𝑊

𝜚𝑊𝐴 𝜚𝑊
 < 0 (4.63) 

Since we have to find Ξdof < 0,  then 

𝛯𝑑𝑜𝑓 =

 
 
 
 
 
 
 
 
 
𝛯11

•
•
•
•
•
•
•
•

    

𝛯12

𝛯22

•
•
•
•
•
•
•

    

−𝑃𝐵𝐾𝑐

𝐴𝑑𝑜
𝑡𝑆 − 𝐶𝑑𝑜

𝑡𝐾𝑜
𝑡𝑆

𝑆𝐴𝑜 + 𝐴𝑜
𝑡𝑆 − 𝑆𝐾𝑜𝐶𝑜 − 𝐶𝑜

𝑡𝐾𝑜
𝑡𝑆

•
•
•
•
•
•

     

−𝜏𝛩
−𝜏𝛶

0
−𝜏𝑊

•
•
•
•
•

    

𝑃
0
0
0

−𝜎𝐼
•
•
•
•

     

  

𝑃
0
0
0
0

−𝜅𝐼
•
•
•

    

𝑃𝛤𝑜

0
𝑆𝛤𝑜 − 𝑆𝐾𝑜𝜓𝑜

0
0
0

−𝛾2𝐼
•
•

    

𝐺𝑜
𝑡 + 𝐾𝑐

𝑡𝐷𝑡

𝐺𝑑𝑜
𝑡

−𝐾𝑐
𝑡𝐷𝑡

0
0
0

𝛷𝑜
𝑡

−𝐼
•

    

−𝜚𝐴𝑜
𝑡𝑊 − 𝜚𝐾𝑐

𝑡𝐵𝑡𝑊

−𝜚𝐴𝑑𝑜
𝑡𝑊

𝜚𝐾𝑐
𝑡𝐵𝑡𝑊
0

−𝑊
−𝑊

−𝜚𝛤𝑜
𝑡𝑊

0
−𝜚𝑊  

 
 
 
 
 
 
 
 
 

< 0 (4.64) 

Since the Matlab LMI solver will be used to find the observer gain 𝐾𝑜 , and our 𝛯𝑑𝑜𝑓  have 

two unknown variables (𝑆 and 𝐾𝑜) multiplied by each other; we have to simplify our 𝛯𝑑𝑜𝑓  

such that it can be solved directly by the Matlab LMI solver, then we have to define new 

variable 𝑉 such that 

𝑉 = 𝑆𝐾𝑜   

   𝐾𝑜 = 𝑆−1𝑉 

and 
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𝜚 = 𝜏 

We can now rewrite (4.64) as follow: 

𝛯𝑑𝑜𝑓 =

 
 
 
 
 
 
 
 
 
𝛯11

•
•
•
•
•
•
•
•

    

𝛯12

𝛯22

•
•
•
•
•
•
•

    

−𝑃𝐵𝐾𝑐

𝐴𝑑𝑜
𝑡𝑆 − 𝐶𝑑𝑜

𝑡𝑉𝑡

𝑆𝐴𝑜 + 𝐴𝑜
𝑡𝑆 − 𝑉𝐶𝑜 − 𝐶𝑜

𝑡𝑉𝑡

•
•
•
•
•
•

     

−𝜚𝛩
−𝜚𝛶

0
−𝜚𝑊

•
•
•
•
•

    

𝑃
0
0
0

−𝜎𝐼
•
•
•
•

      

  

𝑃
0
0
0
0

−𝜅𝐼
•
•
•

     

𝑃𝛤𝑜

0
𝑆𝛤𝑜 − 𝑉𝜓𝑜

0
0
0

−𝛾2𝐼
•
•

    

𝐺𝑜
𝑡 + 𝐾𝑐

𝑡𝐷𝑡

𝐺𝑑𝑜
𝑡

−𝐾𝑐
𝑡𝐷𝑡

0
0
0

𝛷𝑜
𝑡

−𝐼
•

    

−𝜚𝐴𝑜
𝑡𝑊 − 𝜚𝐾𝑐

𝑡𝐵𝑡𝑊

−𝜚𝐴𝑑𝑜
𝑡𝑊

𝜚𝐾𝑐
𝑡𝐵𝑡𝑊
0

−𝑊
−𝑊

−𝜚𝛤𝑜
𝑡𝑊

0
−𝜚𝑊  

 
 
 
 
 
 
 
 
 

< 0 

where  

𝛯11 = 𝑃𝐴𝑜 + 𝐴𝑜
𝑡𝑃 + 𝛩 + 𝛩𝑡 + 𝑄 + 𝜎𝛼2𝐹𝑡𝐹 + 𝑃𝐵𝐾𝑐 + 𝐾𝑐

𝑡𝐵𝑡𝑃 

𝛯12 = 𝑃𝐴𝑑𝑜 − 𝛩 + 𝛶𝑡  

𝛯22 = −𝛶 − 𝛶𝑡 − 𝑄 + 𝜅𝛽2𝐻𝑡𝐻  

This completes the proof. 
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Chapter 5 RESULTS AND CONCLUSIONS 

RESULTS AND CONCLUSIONS 

5-1 Introduction 

It is now well understood that the insulin-glucose regulation is one of the most 

complicated control topics since the system is nonlinear with time delay. We will start this 

chapter with patient data simulation using special software to show how the partial 

closed-loop controls for such kind of systems have many complications and should be 

used with a lot of cautions. Then, we will simulate Bergman model using MPC strategy. 

Later on, the following steps will be done in order to reach the thesis goal: 

1. Simulate and check the ℒ2 delay effects on the system stability for “type 1-diabetic 

patient” model with single time delay (2.11) for the LNDT system using Matlab LMI 

Solver. 

2. State Feedback controller and Dynamic Output Controller theorem evaluation using 

Matlab LMI Solver. Then check the performance of each controller by conducting 

numerical simulations for the original model, model with noise, model with 

parameter variation, and model with meal disturbance. 

3. Compare the results for both controllers. 

Finally, we will draw the conclusions and suggest the future research topic. 
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5-2 Patient Data Simulation using AIDA Software 

Simulation for real patient data was performed using AIDA freeware diabetes software 

blood glucose simulator program [124]. Figure 5.1 shows the AIDA data entry screen 

where details of the current case scenario regimen are displayed. Information about the 

dietary intake, insulin dosage regimen and blood glucose measurements are recorded in 

the same figure.  

 

Figure 5.1: AIDA data entry screen. 

As a result, two graphs will be shown, Figure 5.2, on the graphical simulator display. The 

upper graph will show the "observed" blood glucose readings (o) recorded via the data 

entry screen (blue and black lines), while the lower graph will provide a composite 

display of information regarding insulin and carbohydrate intake. It is clear that increasing 

the dose of the short- and intermediate-acting insulin injected before breakfast 

significantly improves this case blood glucose profile later in the day. Note that the blue 

plot in the Blood Glucose Level graph stands for the blood glucose before the insulin 

adjusts, while the black one is for after insulin adjust. Moreover, 1 mmol/l is equivalent to 

18 mg/dl. 
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Figure 5.2: AIDA graphical simulator display:  blue glucose graph before insulin increase, and the 

black is after. 

It is clear now that any small variation of the insulin (type, dose, or time and number of 

injection), and carbohydrate (intake dose, intake time, or number of meals) will affect the 

blood glucose level. Thus we have to be careful when we use the partially close-loop 

control since it is easy not to maintain the blood glucose level in the Normoglycemia.  

5-3 MPC Simulation for Bergman Model 

Based on Bergman model (2.2) and its corresponding parameters Table 2.1, the system 

matrices can be easily calculated as follows: 

𝐴 =

 
 
 
 
 
0.8670   − 352.0000   − 0.0467         0          4.6700

0               0.8680           0.0002        0             0
0               0                      0.6290        0             0

0.5620   − 132.0000   − 0.0128    0.3390    1.7100
       0                0                        0               0           1.0000 
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𝐵 =

 
 
 
 
 
−0.0069      0
   0.0001      0
   0.3340      0
−0.0015      0
         0            1 

 
 
 
 

 

𝐶 =  0          0           0          1           0 , 𝐷 =  0          0  

The MPC simulation of Bergman model using Matlab Simulink are shown in Figure 5.3.  

 
Figure 5.3: MPC Response for Bergman Model. 

Thus, it is clear that the base insulin secretion level of 26.1μU/ml will maintain the blood 

glucose level at 95mg/dl. The glucose takes about 60 seconds to reach the 

Normoglycemia lower level (70 mg/dl). 

5-4 New Stabilizing Methodology Results 

We will start this section with the system matrices calculations for the single explicit time 

delay model (2.11). Note that, for simplicity and to avoid conflict, we will rename the 

following model parameters 𝐸g , 1/t1, α, and 𝛽 as 𝐺in , di , 𝛼1, and 𝛽1 respectively. Thus 

we can rewrite our model equation as: 
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𝐺  𝑡 =
𝑑𝐺(𝑡)

𝑑𝑡
= 𝐺in − 𝑓2 𝐺 𝑡  − 𝑓3 𝐺 𝑡  𝑓4 𝐼 𝑡  + 𝑓5(𝐼 𝑡 − 𝜏 )  (5.1-1) 

𝐼  𝑡 =
𝑑𝐼(𝑡)

𝑑𝑡
= 𝑓1 𝐺 𝑡  − 𝑑𝑖𝐼 𝑡  (5.1-2) 

where 

𝑓1 𝐺 𝑡  =
𝑅𝑚

1 + exp  
 𝐶1 −

𝐺
𝑉𝑔

 

𝑎1
 

 

𝑓2 𝐺 = 𝑈𝑏  1 − exp  −
𝐺

𝐶2𝑉𝑔
   

𝑓3 𝐺 =
𝐺

𝐶3𝑉𝑔
 

𝑓4 𝐼 = 𝑈𝑜 +
𝑈𝑚 − 𝑈𝑜

1 + exp

 

 
 

−𝛽1 ∗ ln  
𝐼

𝐶4  
1
𝑉𝑖

+
1

𝐸𝑡𝑖
 
 

 

 
 

 

𝑓5 𝐼 =
𝑅𝑔

1 + exp  𝛼1 ∗  
𝐼
𝑉𝑝

− 𝐶5  

 

Thus using the standard linearization technique to add and subtract the linear parts, as 

illustrated in chapter 4, we will get the following: 

At the operating point 𝐺  𝑡 = 0, hence we can calculate 𝐺in  as follow: 

𝐺in = 𝑓2 𝐺 𝑡  + 𝑓3 𝐺 𝑡  𝑓4 𝐼 𝑡  − 𝑓5 𝐼 𝑡 − 𝜏  = 7.71 
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𝑓1
  𝐺 𝑡  =

𝑅𝑚

𝑉𝑔𝑎1

exp  
 𝐶1 −

𝐺
𝑉𝑔

 

𝑎1
 

 1 + exp  
 𝐶1 −

𝐺
𝑉𝑔

 

𝑎1
  

2 

𝑓2
  𝐺 =

𝑈𝑏

𝐶2𝑉𝑔
exp  −

𝐺

𝐶2𝑉𝑔
  

𝑓3
  𝐺 =

1

𝐶3𝑉𝑔
 

𝑓4
  𝐼 =

(𝑈𝑜 − 𝑈𝑚 )𝛽1

𝐼 ln  
𝐼𝑖

𝐶4  
1
𝑉𝑖

+
1

𝐸𝑡𝑖
 
 

 

  
 

1 + exp

 

 
 

−𝛽1 ∗ ln  
𝐼

𝐶4  
1
𝑉𝑖

+
1

𝐸𝑡𝑖
 
 

 

 
 

 

  
 

2 

𝑓5
  𝐼 =

𝑅𝑔𝛼1

𝑉𝑝
exp  𝛼1 ∗  

𝐼
𝑉𝑝

− 𝐶5  

 1 + exp  𝛼1 ∗  
𝐼
𝑉𝑝

− 𝐶5   

2 

We can rewrite the system matrices as follow: 

𝐴𝑜 =  
−𝑓2

  𝐺 − 𝑓3
  𝐺 𝑓4(𝐼) −𝑓3 𝐺 𝑓4

 (𝐼)

𝑓1
  𝐺 −𝑑𝑖

 ,  𝐴𝑑𝑜 =  0 𝑓5
 (𝐼)

0 0
  

Thus the system matrices, based on Table 2.2 and 𝜚 = 𝜏 = 6 minutes= 360 seconds, 

parameters found to be: 

𝐴𝑜 =  
−0.0917 0.4221
0.0017 −0.06

 ,   𝐴𝑑𝑜 =  
0 3.6462
0 0
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The remaining matrices and scalars have been selected such that the stability is satisfied 

and the system is feasible: 

𝐺𝑜 =  0.0001 0.0001 , 𝐺𝑑𝑜 =  0.1 0.1 , 𝐶𝑜 =  10 10  

𝛤𝑜 =  
0.0001
0.0001

 , 𝐵𝑜 =  
10
10

 , 𝐹 =  
1
1
 , 𝐻 =  

1
1
  

𝛼 = 0.001, 𝛽 = 0.001, 𝛷𝑜 = 0.4, 𝐷𝑜 = 1 

The simulation time window was selected to be about six times the delay time such that 

the system response controllability can be checked. The system open-loop simulation, 

Figure 5.4, due to initial conditions, 92 mg/dl glucose and 23.74 µU/ml insulin, shows 

that the system is uncontrolled since the peak of the output is endlessly increasing. We 

can see the effect of the time delay at 𝑡 = 360 seconds.  

 

Figure 5.4: System open loop simulation with time delay at 𝑡 = 360 𝑠𝑒𝑐 
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We will discuss the ℒ2 gain analysis on the system stability, the State-Feedback, and the 

Dynamic Output Feedback results in the following sub-sections. 

5-4-1 Stability Results based on 𝓛𝟐 Gain Analysis 

Using the Matlab LMI solver to test the system performance based on Theorem 1 found 

that the internal asymptotic stability for the open-loop system has been established and the 

system is feasible. Table 5.1 shows the results. Note that the disturbance rejection ratio 

level found here is comes from the LMI simulation not from the system itself. 

Table 5.1: The time delay effect on the internal asymptotic stability parameters. 

𝝉 𝟓 𝒎𝒊𝒏(𝟑𝟎𝟎𝐬𝐞𝐜) 𝟔 𝒎𝒊𝒏(𝟑𝟔𝟎𝐬𝐞𝐜) 𝟏𝟓 𝒎𝒊𝒏(𝟗𝟎𝟎𝐬𝐞𝐜) 

𝑷  
0.5986     − 1.0013
−1.0013     21.6331

   
0.8230 −1.1061
−1.1061 25.5422

   
182.6   − 115.7
−115.7    3377.5

  

𝑾  
0.9418       1.8932
1.8932  392.9406

   
1.1191 3.1504
3.1504 510.5266

   
114    1268

1268    76844
  

𝑸  
0.0316   − 0.2849
−0.2849   13.1526

   
0.0332 −0.2808

−0.2808 14.9815
   

2.0523     − 3.6632
−3.6632     837.109

  

𝜣  
−0.1882     − 0.3910
−0.3725  − 77.5641

   
−0.1864 −0.5382
−0.5185 −84.4236

   
−7.6     − 84.2

−84.4   − 5116.6
  

𝜰  
0.1865    0.6223
0.3709   77.2630

   
0.1848 0.6674
0.5168 84.1729

   
7.4        80.9

84.2    5102.4
  

𝝈 92.9773 100.9121 8036.5 

𝜿 42496 62254 16228000 

𝜸 85.891 104.0986 1622.6 

Where, as stated in Theorem 1: 

 𝑃, 𝑊, 𝑄 are symmetric positive define weighting matrices, 

𝛩 ∈ ℜ𝑛×𝑛 , 𝛶 ∈ ℜ𝑛×𝑛  are appropriate relaxation parameter matrices injected to facilitate 

the delay dependence analysis, 

𝛾 > 0, 𝜎 > 0, 𝜅 > 0 scalars  that satisfy the stability LMI. 
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5-4-2 State-Feedback Results 

Based on Theorem 2 to test the State-feedback scheme using the Matlab LMI solver, the 

system is feasible. Table 5.2 shows the results. Note that the disturbance rejection ratio 

level found here is comes from the LMI simulation not from the system itself. 

Table 5.2: The time delay effect on the State feedback system parameters. 

𝝉 𝟓 𝒎𝒊𝒏(𝟑𝟎𝟎𝐬𝐞𝐜) 𝟔 𝒎𝒊𝒏(𝟑𝟔𝟎𝐬𝐞𝐜) 𝟏𝟓 𝒎𝒊𝒏(𝟗𝟎𝟎𝐬𝐞𝐜) 

𝑿  
10.8117    0.3914
0.3914    0.4337

   
6.5244 0.4422
0.4422 0.4703

   
6.7867    0.1946
0.1946    0.2286

  

𝓨  −0.6032   − 0.6091   −0.6649 −0.6709   −0.1437   − 0.1432  

𝑸𝟏  
6.1464    4.9830
4.9830    5.2130

   
5.7650 5.4804
5.4804 5.7373

   
1.6196    1.1448
1.1448    1.2449

  

𝑺𝒙𝟏  
0 0
0 0

   
0 0
0 0

   
0 0
0 0

  

𝑺𝒙𝟐  
0 0
0 0

   
0 0
0 0

   
0 0
0 0

  

𝜣𝟏  
−0.0212   − 0.0002
−0.0007   − 0.0001

   
−0.0109 −0.0005
−0.0007 −0.0010

   
−0.0044   − 0.0001
−0.0001   − 0.0000

  

𝜰𝟏  
0.0213    0.0008
0.0009    0.0000

   
−0.0109 −0.0003
−0.0009 −0.0000

   
0.0044    0.0001
0.0001    0.0000

  

𝝈 3536.8 592.6953 1203.8 

𝜿 37051 26181 1016.3 

𝜸 2.6078 2.5930 2.5938 

𝜺 0.01 0.01 0.01 

𝑲𝒔  −0.0051   − 1.3998   −0.0056 −1.4212   −0.0033   − 0.6236  

𝑨𝒔  
−0.1428     − 13.5763
−0.0494     − 14.0584

   
−0.1476 −13.7895
−0.0542 −14.2716

   
−0.1246   − 5.8140
−0.0312   − 6.2961

  

𝑮𝒔  −0.0050      − 1.3997   −0.0055 −1.4211   −0.0032   − 0.6235  

5-4-3 Dynamic Output Feedback Results 

While evaluating the Dynamic Output Feedback scheme on various time delays, Theorem 

3, using the Matlab LMI solver found the system is feasible and have the results that are 

shown in Table 5.3. The following system matrices were calculated based on 6 minutes 

(360 seconds) time delay. Note that the disturbance rejection ratio level found here is 

comes from the LMI simulation not from the system itself. 
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𝐴 =  

−0.1476  − 13.7895       0.0559     14.2116
−0.0542  − 14.2716       0.0559      14.2116
        0                   0         − 4.9371  − 4.4232
        0                   0              0.0131  − 0.0486

  

𝐴 𝑑 =  

−0.1476  − 13.7895       0.0559     14.2116
−0.0542  − 14.2716       0.0559      14.2116
        0                   0         − 4.9371  − 4.4232
        0                   0              0.0131  − 0.0486

  

𝛤 𝑜 =  

0.0001
0.0001

−0.0484
0.0002

 ,  𝐵 =  

1
1
1
1

  

𝐺 =  −0.0055   − 1.4211    0.0056    1.4212  

  𝐺 𝑑 =  0.1000    0.1000         0         0  

𝐶𝑑𝑜 =  1     1      1      1  

 𝐷 = 10 

 𝜓𝑜 = 0.1 

Table 5.3: The time delay effect on the dynamic output feedback system parameters. 

𝝉 𝟓 𝐦𝐢𝐧(𝟑𝟎𝟎𝐬𝐞𝐜) 𝟔 𝐦𝐢𝐧(𝟑𝟔𝟎𝐬𝐞𝐜) 𝟏𝟓 𝐦𝐢𝐧(𝟗𝟎𝟎𝐬𝐞𝐜) 

𝑷  
321 −102

−102 17637
   

272 −63
−63 15628

   
6.6809 −11.6335

−11.6335 446.4482
  

𝑺 105 ∗  
0.0020 0.0225
0.0225 8.3568

  106 ∗  
0.0001 0.0049
0.0049 1.8053

  106 ∗  
0.0000 −0.0002

−0.0002 2.3695
  

𝑸  
30 −11

−11 25706
   

19 28
28 23897

   
0.7725 −2.2940

−2.2940 370.7177
  

𝑾  
350.3 −707.2

−707.2 2747
   

275 −834.3
−834.3 3866.2

   
2.3 −7.3

−7.3 5385.9
  

𝜣  
−83.9680 169.8482
83.6831 −431.8009

   
−55.9847 169.8319
96.1857 −526.5172

   
−0.2437 6.6349
1.0928 −422.8641

  

𝜰  
38.3040 −76.5804

178.0400 −105.8813
   

24.7507 −78.3129
108.8353 −189.1842

   
0.0761 −0.0609
2.1468 77.8972

  

𝝈 34558 25511 986 

𝜿 37051 26181 1016 

𝜸 0.8551 0.8882 1.2909 

𝑲𝒄  −0.0051   − 1.3998   −0.0056 −1.4212   −0.0033   − 0.6236  

𝑲𝒐  
0.5561

−0.0012
   

0.4845
−0.0011

   
0.9702
0.0001

  

𝑽  
110.1045
272.7860

   
27.2542

306.6631
   

15.7583
−44.3827
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5-5 New Stabilizing Method Simulation Results 

In this section, we will show the State Feedback and the Dynamic Output Feedback 

simulation response for the following cases:  

1- Response to reference value without disturbance: 92 mg/dl glucose and 23.74 

µU/ml insulin. 

2- Response to initial conditions without disturbance: 100 mg/dl glucose and 25.74 

µU/ml insulin. 

3- Response to initial conditions with added white noise disturbance through 𝛤𝑜 . 

Table 5.4 shows the effect of the simulation sampling times on the system output level for 

the both control schemes. We have chosen the sampling time to be 0.1 second since the 

results were acceptable and comparable. Practically, we can use 0.1 second while 

implementing the realistic controller because of the availability of real-time glucose-

monitor. 

Table 5.4: The effect of sampling time on the system output for the State Feedback and the 

Dynamic Output Feedback. 

Sampling time State Feedback Dynamic Output Feedback 

0.01 second Output level is controlled Output level is controlled 

0.1 second Output level is controlled Output level is controlled 

0.2 second Output level is uncontrolled Output level is controlled 

0.3 second Output level is uncontrolled Output level is uncontrolled 

0.4 second Output level is uncontrolled Output level is uncontrolled 

Moreover, the results of evaluating both control schemes for effect of the minimum and 

the maximum time delay, 𝜏 = 5 minutes (300seconds) and 𝜏 = 15 minutes (900seconds), 

show that using any of these two controllers will give satisfactory results. Thus, all the 

simulation results shown hereunder are based on 𝜏 = 6 minutes (360seconds)   
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Figure 5.5 shows the system simulation response to reference value without disturbance. 

While Figure 5.6 shows the system simulation response to initial conditions without 

disturbance. The response for the system simulation to initial conditions with added, 

random, noise through 𝛤𝑜  is shown in Figure 5.7. The comparative of State Feedback 

response for all the previous cases is shown in Figure 5.8. On the other hand, Figure 5.9 

shows the comparative simulation response for the Dynamic Output Feedback. Finally, 

the response for all the above cases (𝜏 = 5 minutes , 6 minutes, and 15 minutes) are 

shown in Figure 5.10. 
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Figure 5.5: Response to reference value without disturbance. 
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Figure 5.6: Response to initial conditions without disturbance. 
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Figure 5.7: Response to initial conditions with added disturbance through 𝛤𝑜  
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Figure 5.8: State feedback Response for the three cases. 

 
Figure 5.9: Dynamic Output feedback Response for the three cases. 
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Figure 5.10: Response for all the cases. 
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5-6 Control Schemes Robustness and Sensitivity Analysis 

Positive and negative meal disturbance signals, shown in Figure 5.11, were used to test 

the robustness of the system due to initial conditions. The positive disturbance consist of 

pluses of (100, 50, 20, and 10 mg/dl), while the negative one has only one pulse of 25 

mg/dl. Each of the signals start at t = 0 seconds, and the pulse width is 5 seconds each. 

The system parameters have been varied by ±50%, ±25% of the parameters value. The 

results of this sensitivity analysis and robustness test are shown in Table 5.5 and their 

corresponding figures. 
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Figure 5.11: Meal disturbance signals. 
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Table 5.5: Sensitivity analysis and robustness test. 

Variable 
Effect on 

function 

State Feedback Dynamic Output Feedback 

Parameter 

Variation 

Meal 

Disturbance 

Parameter 

Variation 

Meal 

Disturbance 

𝑽𝒈 
𝑓1 𝐺 , 𝑓2 𝐺 , 

𝑓3 𝐺  
Figure 5.12 Figure 5.13 Figure 5.14 Figure 5.15 

𝑹𝒎 𝑓1 𝐺  Negligible effects Negligible effects Negligible effects Negligible effects 

𝒂𝟏 𝑓1 𝐺  Negligible effects Negligible effects Negligible effects Negligible effects 

𝑪𝟏 𝑓1 𝐺  Minor Effects Minor Effects Minor Effects Minor Effects 

𝑪𝟐 𝑓2 𝐺  No effect No effect No effect No effect 

𝑼𝒃 𝑓2 𝐺  No effect No effect No effect No effect 

𝑪𝟑 𝑓3 𝐺  Figure 5.16 Figure 5.17 Figure 5.18 Figure 5.19 

𝑽𝒑 𝑓5 𝐼  Figure 5.20 Figure 5.21 Figure 5.22 Figure 5.23 

𝑽𝒊 𝑓4 𝐼  No effect Negligible effects Figure 5.24 Figure 5.25 

𝑬 𝑓4 𝐼  No effect Negligible effects Figure 5.26 Figure 5.27 

𝑼𝟎 𝑓4 𝐼  No effect Negligible effects Negligible effects Negligible effects 

𝑼𝒎 𝑓4 𝐼  Figure 5.28 Figure 5.29 Figure 5.30 Figure 5.31 

𝜷𝟏 𝑓4 𝐼  Negligible effects Negligible effects Figure 5.32 Figure 5.33 

𝑪𝟒 𝑓4 𝐼  No effect Negligible effects Figure 5.34 Figure 5.35 

𝑹𝒈 𝑓5 𝐼  Figure 5.36 Figure 5.37 Figure 5.38 Figure 5.39 

𝜶𝟏 𝑓5 𝐼  Negligible effects Negligible effects Figure 5.40 Figure 5.41 

𝑪𝟓 𝑓5 𝐼  Figure 5.42 Figure 5.43 Figure 5.44 Figure 5.45 

𝒕𝒊 𝑓4 𝐼  No effect Negligible effects Figure 5.46 Figure 5.47 
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Figure 5.12: State feedback with 𝑉𝑔  variation. 
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Figure 5.13: State feedback with 𝑉𝑔  variation and meal disturbance. 
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Figure 5.14: Dynamic Output feedback with 𝑉𝑔  variation. 
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Figure 5.15: Dynamic output feedback with 𝑉𝑔  variation and meal disturbance. 
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Figure 5.16: State feedback with 𝐶3 variation. 
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Figure 5.17: State feedback with 𝐶3 variation and meal disturbance. 
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Figure 5.18: Dynamic Output feedback with 𝐶3 variation. 
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Figure 5.19: Dynamic output feedback with 𝐶3 variation and meal disturbance. 
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Figure 5.20: State feedback with 𝑉𝑝  variation. 
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Figure 5.21: State feedback with 𝑉𝑝  variation and meal disturbance. 
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Figure 5.22: Dynamic Output feedback with 𝑉𝑝  variation. 
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Figure 5.23: Dynamic output feedback with 𝑉𝑝  variation and meal disturbance. 
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Figure 5.24: Dynamic Output feedback with 𝑉𝑖  variation. 
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Figure 5.25: Dynamic output feedback with 𝑉𝑖  variation and meal disturbance. 
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Figure 5.26: Dynamic Output feedback with 𝐸 variation. 
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Figure 5.27: Dynamic output feedback with 𝐸 variation and meal disturbance. 



132 

 

 
Figure 5.28: State feedback with 𝑈𝑚  variation. 
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Figure 5.29: State feedback with 𝑈𝑚  variation and meal disturbance. 
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Figure 5.30: Dynamic Output feedback with 𝑈𝑚  variation. 
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Figure 5.31: Dynamic output feedback with 𝑈𝑚  variation and meal disturbance. 
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Figure 5.32: Dynamic Output feedback with 𝛽1 variation. 
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Figure 5.33: Dynamic output feedback with 𝛽1 variation and meal disturbance. 
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Figure 5.34: Dynamic Output feedback with 𝐶4 variation. 
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Figure 5.35: Dynamic output feedback with 𝐶4 variation and meal disturbance. 
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Figure 5.36: State feedback with 𝑅𝑔  variation. 
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Figure 5.37: State feedback with 𝑅𝑔  variation and meal disturbance. 
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Figure 5.38: Dynamic Output feedback with 𝑅𝑔  variation. 
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Figure 5.39: Dynamic output feedback with 𝑅𝑔  variation and meal disturbance. 
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Figure 5.40: Dynamic Output feedback with 𝛼1 variation. 
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Figure 5.41: Dynamic output feedback with 𝛼1 variation and meal disturbance. 
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Figure 5.42: State feedback with 𝐶5 variation. 
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Figure 5.43: State feedback with 𝐶5 variation and meal disturbance. 
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Figure 5.44: Dynamic Output feedback with 𝐶5 variation. 
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Figure 5.45: Dynamic output feedback with 𝐶5 variation and meal disturbance. 
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Figure 5.46: Dynamic Output feedback with 𝑡𝑖  variation. 
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Figure 5.47: Dynamic output feedback with 𝑡𝑖  variation and meal disturbance. 
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5-7 Discussion and Conclusions 

It is not easy to use the partially close-loop strategy to control the blood glucose level for 

type 1 diabetic patient, since it is not easy to maintain the blood glucose level in the 

Normoglycemia range. Any small variation of the insulin (type, dose, time of injection), 

and/or carbohydrate (intake dose, intake time) will affect the blood glucose level.  

Using Bergman model to control the blood glucose level using MPC technique can do the 

task. The basal insulin of 26.1μU/ml is higher than the nominal value (22μU/ml), but still 

acceptable. The problem of such model is the lake of the delay effect. Moreover, the MPC 

need for online model identification process that will make the system more complicated, 

and need to have more memory. 

The new developed method for gain stabilizing shows that the internal asymptotic 

stability has been established and gives satisfactory results and the system found to be 

feasible for all time delays (𝜏 = 5 − 15 minutes).  

The open-loop simulation for the system shows that the system output level is 

uncontrolled. Hence we have introduced new feedback strategies: State Feedback and the 

Dynamic Output Feedback. Both control strategies found to be feasible using 0.1 second 

sampling time for all time delays.  

Using 6 minutes delay time we found that the disturbance rejection ratio level (γ) for the 

State Feedback is higher than 1 (𝛾𝑆𝐹 = 2.5930). Hence we have used Dynamic Output 

Feedback to this rejection ratio level (𝛾𝐷𝑂𝐹 = 0.8882). Note that the disturbance rejection 

ratio level found here is comes from the LMI simulation not from the system itself. 
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The State Feedback control gain (𝐾𝑠), and the Dynamic Output Feedback control gains 

(𝐾𝑐  and 𝐾𝑜) found to have reasonable values. As conclusion: the use of any developed 

controller can stabilize the blood glucose level into the Normoglycemia range.  

The insulin, input state, response for the State Feedback found to be much better than that 

for the Dynamic Output Feedback. The basal insulin of 21.71μU/ml is very close to the 

nominal value (22μU/ml).  

Robustness test for the system for parameter variation and external disturbance have 

shown excellent results. The State Feedback control strategy has shown superior results 

over that of the Dynamic Output Feedback control. For this reason we have considered 

the worst case using the Dynamic Output Feedback strategy: the maximum output, blood 

glucose level, for the system under parameters 𝑈𝑚 , 𝑅𝑔 , (𝑉𝑔  or 𝐶3) variation and positive 

disturbance was (140, 138, 132) mg/dl respectively, while the minimum output under the 

parameters 𝑈𝑚 , 𝑅𝑔 , (𝑉𝑔  or 𝐶3) variation and negative disturbance was (62, 61, 66) mg/dl 

respectively.  

To explain why the output was high, low, or no change due to some parameters variation, 

we have to consider the parameter itself and what it is the functional effect. This can be 

summarizes as:  

1- 𝑅𝑚 , 𝑎1, and 𝐶1 are 𝑓1 𝐺  parameters. 𝑓1 𝐺  is pancreatic insulin production as 

controlled by the glucose concentration. Since Type-1 diabetic patient have 

problems with the pancreatic insulin production, thus the effect of 𝑓1 𝐺  

parameters variation have negligible and minor effects. 
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2- 𝐶2 and  𝑈𝑏  are 𝑓2 𝐺  parameters. 𝑓2 𝐺  is the insulin independent glucose 

consumption by the brain, nerve cells and others. This consumption is very much 

smaller than that due to glucose consumption by muscles during exercises or 

normal day work. Thus changing of these parameters have no effects on the blood 

glucose level. 

3- 𝑉𝑖 , 𝛽1, 𝐸, 𝐶3, 𝐶4, 𝑡𝑖 , 𝑈𝑚 , and 𝑉𝑔  are 𝑓3 𝐺  and 𝑓4 𝐼  parameters. 𝑓3 𝐺 𝑓4 𝐼  is a 

nonlinear term that stands for the relation of insulin-dependent glucose-utilization 

by muscle, fat cells and others. Since these functions are delay independent, any 

variation of these parameters has a direct effect on the glucose concentration at the 

transient time before the start of the delay. The system response after the delay 

have minor effects. 

4- 𝛼1, 𝑅𝑔 , 𝐶5, and 𝑉𝑝  are 𝑓5 𝐼  parameters. 𝑓5 𝐼  characterize the hepatic glucose 

production. Changing any of these parameters will affect the conversion process of 

the stored sugar and fat into glucose. Afterward, the produced glucose will be sent 

to the blood which, in turn, affects blood glucose level. Since 𝑓5 𝐼 − 𝜏  is delay 

dependent function, it is clear from the figures that the effect of all these 

parameters is clear after the delay. The system response under parameters 

variation was identical for all the cases before the delay.  

For all the cases, the input was able to control the output and keep it in the normal range 

during positive or negative disturbance. Consequently, varying the glucose concentration 

due to parameter variations will force the insulin concentration to vary in the same 

direction to compensate for these variations. 
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5-8 Future research topics 

To improve the quality of this work and increase the blood glucose controller efficiency, 

State Feedback controller and/or Dynamic Output controller are suggested to be 

developed and tested for model with two time delays. Research and development of MPC 

for the models with time delay (one and/or two) is recommended. 

This work was evaluated based on computer simulation only and not tested on any 

patient. For this reason, I suggest to start the cooperation between control people, diabetic 

research centers, pilot hospitals, Health care information technology centers, and 

voluntaries or patients. Public institutes and society organizations should provide the 

logistic support for such researches. 

Diabetic research centers and mathematical research groups must work together such that 

they will be able to develop new models which are more accurate representing the real 

patient.  

Control people have to do the following:  

1- Develop new models using Identification techniques. 

2- Design stable and robust controller for this new models.  

Information technology will play important role to contributing to these activities by 

providing the real patient data and make it available for the above to research groups. 

The functions of the pilot hospitals are: 

1- Provide the clinical care for the patients under test. 

2-  Evaluate the controller results, stability, robustness, and accuracy. 
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NOMENCLATURE 

𝑥 𝑡 : the state vector (∈ ℜ𝑛 ) 

𝑦 𝑡  the measured output vector(∈ ℜ𝑝 ) 

𝑢 𝑡 : the control input vector (∈ ℜ𝑚 ) 

𝑤 𝑡 : the disturbance input vector (∈ ℜ𝑞 ) which belongs to ℒ2  [0,∞)  

𝑤 𝜙 :the initial conditions (∈ ℜ𝑞) 

𝑧 𝑡 : the controlled output vector (∈ ℜ𝑞 ) 

𝑡: time 

𝜏: the fixed time-delay factor 

𝜙: a differentiable vector-valued function on [−𝜏, 0] 

𝐴𝑜 : the System matrix (∈ ℜ𝑛×𝑛 ) 

𝐴𝑑𝑜 : the delayed states matrix (∈ ℜ𝑛×𝑛 ) 

𝐵𝑜 : the inputs matrix (∈ ℜ𝑛×𝑚 ) 

𝐺𝑜 : the disturbance matrix (∈ ℜ𝑞×𝑛 ) 

𝐷𝑜 : the matrix relates the inputs to the controlled outputs (∈ ℜ𝑞×𝑚 ) 

𝛷𝑜 : the matrix that relates the disturbances to the controlled outputs (∈ ℜ𝑞×𝑞 ) 

𝛤𝑜 : the matrix that relates the states to the controlled outputs (∈ ℜ𝑛×𝑞 ) 

𝐶𝑜 : the matrix that relates the states to the outputs (∈ ℜ𝑝×𝑛) 

𝐶𝑑𝑜 : the matrix that relates the delayed states to the outputs (∈ ℜ𝑝×𝑛) 

𝐹𝑜 : the matrix that relates the inputs to the outputs (∈ ℜ𝑝×𝑚 ) 

𝜓𝑜 : the matrix that relates the disturbances to the outputs (∈ ℜ𝑝×𝑞)  
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