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Chapter 1

Introduction

One example of a digital signal processing system is called �ltering. Filtering is a signal

processing operation whose objective is to process a signal in order to manipulate the

information contained in the signal. In other words, a �lter is a device that maps

its input signal to another output signal facilitating the extraction of the desired

information contained in the input signal. In case of a time-invariant �lter the internal

parameters and the structure of the �lter are �xed, and if the �lter is linear the output

signal is a linear function of the input signal.

1.1 Adaptive �lters

Adaptive systems are playing a vital role in the development of modern communica-

tions. The concept of adaptive �ltering constitutes an important part of the statistical

signal processing. Whenever there is a requirement to process signals that result from
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an unknown statistics of an environment, the use of an adative �lter o¤ers an attractive

solution to the problem.

An adaptive �lter is required when either the �xed speci�cations are unknown

or the speci�cations cannot be satis�ed by time-invariant �lters. To be speci�c, an

adaptive �lter is a nonlinear �lter since its characteristics are dependent on the input

signal and consequently the homogeneity and additivity conditions are not satis�ed.

In our case, however, the adaptive �lter will be considered linear in the sense that its

output signal is a linear function of its input signal.

Adaptive
Algorithm

Σ
e(i)

y(i)ui
­

Adaptive
filter

d(i)

Figure 1.1: General adaptive �lter con�guration.

The complete speci�cation of an adaptive system, as shown in Fig. 1.1, consists

of two items:

1.1.1 Adaptive Filter Structure

The adaptive �lter can be implemented in a number of di¤erent structures or re-

alizations. The choice of the structure can in�uence the computational complexity

(amount of airthmetic operations per iteration) of the process and also the necessary
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number of iterations to achive a desired performance level. Basically, there are two

major classes of adaptive digital �lter realizations, distinguished by the form of the

impulse response, namely the �nite duration impulse response (FIR) �lter and the

in�nite-duration impulse response (IIR) �lters. FIR �lters are usually implemented

with nonrecursive structures, whereas IIR �lters utilize recursive realizations.

1.1.2 Algorithm

The algorithm is the procedure used to adjust the adaptive �lter coe¢ cients in order

to minimize a prescribed criterion. The algorithm is determined by de�ning the search

method (or minimization algorithm), the objective function, and the error signal na-

ture. The choice of the algorithm determines several crucial aspects of the overall

adaptive process, such as existance of sub-optimal solutions, biased optimal solution,

and computational complexity.

1.2 Application

The type of application is de�ned by the choice of the signals acquired from the

environment to be the input and desired output signals. The number of di¤erent

applications in which adaptive techniques are being successfully used has increased

enormously during the last decade. In the ensuing, some very common examples are

discussed [3]:
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1.2.1 System Identi�cation

System Identi�cation is the experimental approach to the modelling of a process or

a plant. It involves the following steps: experimental planning, the selection of a

model structure, parameter estimation and model validation. The procedure of system

identi�cation, as persued in practice, is iterative in nature in that we have to go back

and fourth in these steps until a satisfactory model is built. The system to be identi�ed

is unknown which can be stationary or time varying. Figure 1.1.1 depicts a system

identi�cation scenario.

Unknown
system

Adaptive
Algorithm

Σ
e(i)

Σ

n(i)

d(i)ui
­

Adaptive
filter

Figure 1.2: System identi�cation scenario.

1.2.2 Inverse Modelling or Equalization

In this application, the adaptive �lter is used to represent the best �t of an unknown

noisy plant. Thus, at convergence, the inverse of the transfer function of the unknown

system is approximated by the adaptive �lter. A delay is introduced into the desired

4



response path, as shown in Figure 1.1.2, so as to ensure that the input to the adaptive

�lter is minimum phase and suitable for equalization.

The primary use of the inverse modelling is to reduce inter-symbol interference

(ISI) in digital receivers. This is achieved through the use of channel equalization in

­ Σ
e(i)

d(i)

ui

Delay

Unknown
system

Adaptive
filter

Figure 1.3: Equalization scenario.

digital communications [4].

1.2.3 Noise Cancellation

In this class of application, the adaptive �lter is used to cancel unknown interference

contained in a primary signal, as shown in Figure 1.1.3. The primary signal serves as

the desired response of the adaptive �lter. This type of application is used in adaptive

beamforming or in adaptive noise cancellation [5].

1.2.4 Prediction

Finally, in this application, the adaptive �lter is used to provide the best prediction of

the present value of the input signal from its previous values. The desired signal, d(i),

5



Adaptive
Algorithm

Σ
e(i)

ui Adaptive
filter

d(i)

Primary Signal

­

Figure 1.4: Noise Cancellation Scenario.

is the instantaneous value and the input of the adaptive �lter is a delayed version of

the same signal. This application is used in linear prediction coding (LPC) of speech

[6] and in adaptive di¤erential pulse-code modulation (DPCM) [7].

1.3 Adaptive Filtering Algorithms

As mentioned above, an adaptive algorithm refers to the criteria by which a �lter is

adapted in response to the outside environment. Let wi be a vector of length L whose

elements represent a time-varying �nite impulse response of the adaptive �lter. A

general form for the algorithm that adapts the �lter coe¢ cient vector wi is given by:

wi = wi�1 + �g (e(i))ui; (1.1)

where fuig is the input sequence, e(i) is the adaptive error, g (e(i)) is a function of

the error and � denotes the positive step-size which may be time varying. Some of

the well known algorithms are discussed below.
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1.3.1 Least Mean Squares (LMS) Algorithm

The above equation represents the method of Steepest Descent [14] that can be de-

scribed as

wi = wi�1 + � (�rwJ (wi�1)) : (1.2)

The next weight vector, wi+1, equals the present weight vector, wi, plus a change

which is proportional to the negative gradient. The proportionality constant is �, and

this is a design parameter that controls stability and rate of convergence. The LMS

algorithm is obtained from the equation (1:1) and using the error signal

e(i) = d(i)� y(i); (1.3)

as

wi = wi�1 + 2�e(i)ui; (1.4)

e(i) = d(i)� uTi wi�1: (1.5)

The gradient of each iteration is instantaneous and is given by �2e(i)ui.

When using the steepest descent to �nd the minimum of a quadratic function of

the weights, the weights progress geometrically towards the Wiener solution [14]. It

has been shown [8] that there are as many distinct time constants as there are distinct

eigenvalues of the input vector autocorrelation matrix Ru. These time constants

7



depend on the eigenvalues of Ru and corresponds to natural modes of the adaptive

algorithm. The relative amplitude of the modes are di¤erent from one weight to

another and depend on the initial conditions of the weight vector, i.e., its initial value.

Since one rarely has a priori knowledge of the orientation of the initial weight vector

setting with respect to the eigenvectors of Ru, it is di¢ cult to predict the relative

amplitudes of the modes and therefore di¢ cult to predict the rate of convergence of

the LMS algorithm. Inspite of this drawback, the LMS algorithm is very widely used.

Newton�s Algorithm

A more predictable algorithm is Newton�s method,

wi = wi�1 + �
�
r2
wJ (wi�1)

��1
(�rwJ (wi�1)) : (1.6)

The second derivative of the cost function is a Hessian matrix which, in the case of the

Mean-square-error criteria, is the input vector autocorrelation matrix Ru. Assuming

that Ru is not singular, the LMS-Newton algorithm can be written as

wi = wi�1 + 2�R
�1
u e(i)ui: (1.7)

With Newton�s method, there is only one natural mode, corresponding to one time

constant. The learning rate of Newton�s method is independent of the weight vector�s

initial condition.

8



The rate of convergence of the LMS-Newton is predictable and does not depend

on initial conditions. The drawback lies in that one cannot implement this algorithm

in practice because R�1
u is generally unknown. LMS, based on steepest descent, has

disadvantages, but it is simple and easy to implement. It performs equivalently to

LMS-Newton under many important conditions [14].

1.3.2 Least Mean Fourth (LMF) Algorithm

Adaptive algorithms based on higher order moments of the error signal have been

shown to perform better mean square estimation than the well known Least Mean

Square (LMS) algorithm in some important applications. The Least Mean Fourth

(LMF) is one of such algorithms [8]. It seeks to minimize the mean fourth error,

which is a convex function of the adaptive weight vector [2].The power of the LMF

algorithm lies in its faster initial convergence and lower steady-state error relative to

the LMS algorithm under sub-Gaussian noise environment [8]-[11],[13],[17].

It has been mentioned in [11] that the LMF algorithm can outperform LMS for non-

Gaussian additive noise. In such a case, the LMF algorithm can lead to considerably

smaller excess mean square error (MSE) for the same convergence speed. According to

LMF algorithm, the �lter coe¢ cients are adapted according to the following recursion:

wi = wi�1 + �e
3(i)ui; (1.8)

9



where fuig is the input sequence, e(i) is the adaptive error, and � is a positive constant

called the step-size which is used to control the size of the incremental correction

applied to the tap weights as it proceeds from one iteration to the next.

It has been shown in [25] that the LMF algorithm is never stable in the mean-

square sense for gaussian regressors. Nevertheless, results based on standard mean-

square stability analysis are useful for practical design purposes. This is because the

probability of divergence as a function of the step-size value tends to rise abruptly

only when it moves past a given threshold. Before that, the probability of divergence

tends to be su¢ ciently small to grant the practical applicability of the LMF algorithm

(in practical applications it may be of interest to include a re-initialization scheme

in case, for instance, the error signal tends to increase without bound). Moreover,

signal amplitudes are necessarily limited in practical applications, which contributes

to reducing the probability of divergence for small step sizes smaller than the threshold

mentioned above [25].

Another relevent aspect of the LMF algorithm behavior is its steady-state stabil-

ity. Depending on the step-size and on the initial condition, the LMF probability of

divergence may increase considerably with the number of iterations. However, if the

algorithm is initialized close to the optimum solution and one chooses a large step-size,

it may have a signi�cant probability of divergence also after initial convergence [25].
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1.4 Thesis Objectives and Organization

In this thesis work, Newton�s method based least mean fourth adaptive algorithm

namely Quasi-Newton Least Mean Fourth (QNLMF) is proposed. The basic update

recursion for QNLMF is as follows

wi = wi�1 � �
�
52
wJ (wi�1)

��1
[5wJ (wi�1)]

T : (1.9)

The main objective of this thesis are: First, to derive the basic algorithm, namely

the QNLMF algorithm from the Newton�s method. Second, to analyze the steady-

state performance of the proposed algorithm and to derive the expression for the excess

mean-square error. Third, to examine the convergence properties of the proposed

algorithm. Fourth, to analyze the tracking performance of the proposed algorithm

and to derive a mathematical expression for the tracking excess mean-square error.

Fifth, to analyze the transient-state performance of the proposed algorithm and to

derive a mathematical expression for mean-square error and mean-square deviation

during the transient phase. Finally, to present simulation scenarios to support the

analytical analysis.

This thesis is organised so as to achive all the above mentioned objectives. In

Chapter 2, the proposed algorithm is derived using the concept of energy conservation

[2]. This technique is used extensively to carry out the di¤erent analyses. In Chapter

3, the steady-state analysis is performed and expressions for excess mean-square error

11



of the proposed algorithm is derived. A comparison of steady-state excess mean square

error is carried out between the proposed algorithm and that of the conventional LMF.

The tracking analysis of the proposed algorithms in a non-stationary enviornment is

presented in Chapter 4 and the mathematical expression is derived for the tracking

excess steady-state error for the algorithm. In Chapter 5, a complex mathematical

model for the transient analysis of the algorithm is derived.

In support of the mathematical analysis listed above, the simulation scenario in

di¤erent noise enviornments and the analytical results when compared with the ex-

perimental ones are presented in Chapter 6. Finally, thesis conclusions, contributions

and recommendations for future work are presented in Chapter 7.
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Chapter 2

Proposed Adaptive Algorithm

2.1 Introduction

There is a range of techniques available for trained (and decision directed) identi�ca-

tion of linear FIR channels with additive white Gaussian noise (AWGN), which are

broadly classi�ed into two classes: adaptive and model-based. The adaptive algo-

rithms do not explicitly use a model for the channel coe¢ cients or noise and these

include least mean squares (LMS) [1], recursive least squares (RLS) [1], and their

derivatives. The model-based algorithms, however, use various type of models for

the channel coe¢ cients (e.g., random walk, autoregressive, or constant) and noise,

where the model parameters are either known or jointly estimated with the channel.

Many adaptive algorithms can be interpreted in a model based framework with data-

dependent choice of model parameters. Also, some adaptive algorithms implicitly
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use model parameters to set the algorithm parameters, e.g., step-size and forgetting

factors require partial knowledge of input statistics to guarantee stable behavior.

Iterative algorithms, in general, follow the basic update recursion,

wi = wi�1 + �p; (2.1)

where, wi is the adaptive weight vector which after convergence, in a system identi-

�cation/channel estimation model, represents the unknown system, � is the step-size

which is responsible for the stability of the system and helps the system to gradually

reach a minimum, and p, is the direction vector that varies for varying adaptive algo-

rithms. It is the main factor which is responsible for the algorithm to reach a global

minimum, i.e., as i �! 1 it guarantees wi �! wo where, wo represents the weights

of the unknown system/channel. Convergence, in general, can be mathematically de-

scribed as the condition when the last term on the right side of (2:1) becomes zero i.e.,

wi = wi�1, hence, the adaptive system has completely adapted the unknown system.

2.2 Proposed Algorithm

To develop the proposed algorithm a time invariant channel model is considered such

that:

d(i) =
N�1P
j=0

u(j)wo(i� j) + n(i) = uTi wo + n(i); i = 0; 1; 2; 3:::; (2.2)
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where fu(j)g is a stationary input process with mean zero and variance �2u; fn(i)g is

a stationary noise process with mean zero and variance �2n, and w
o corresponds to a

channel/impulse response with N taps.

Under the above model, minimizing the mean fourth error,

J(wi) = E
�
e4(i)

�
; (2.3)

J(wi) = E
�
d(i)� uTi wi

�4
; (2.4)

over w gives the optimal weight value wi = wo. Also, it should be noted that J(wo) =

E [n4(i)].

The update direction vector p in equation (1:8), as derived in [2], can be written

as follows,

p = �B [5wJ(wi�1)]
T : (2.5)

The special choice B = I is very common and it corresponds to the update direction

p = � [5wJ(wi�1)]
T ; (2.6)

which leads us to the famous steepest-descent method

wi = wi�1 � � [5wJ(wi�1)]
T ; i � 0; w�1 = initial guess, (2.7)

in which, the successive weight vectors fwig are obtained by descending along a path
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of decreasing cost values.

In this work, B = f52
wJ(wi�1)g

�1, the inverse of the Hessian matrix, leads to the

well known Newton�s recursive update:

wi = wi�1 � �
�
52
wJ(wi�1)

��1
[5wJ(wi�1)]

T ; i � 0; w�1 = initial guess. (2.8)

2.2.1 Quasi-Newton Least Mean Fourth (QNLMF)

In this work, the update recursion for the LMF will be derived using Newton�s method.

In order to achieve our desired relation we �rst need to evaluate the gradient vector

and the Hessian matrix of the cost function (2:1), derived in the App. I and are,

respectivly, given by

5wJ(wi�1) = �4E
�
e3(i)uTi

�
; (2.9)

and

52
wJ(wi�1) = 12E

�
e2(i)uiu

T
i

�
: (2.10)

These relations are extracted from the expanded Kronecker�s form of the cost function

(2:1), which can be shown to be set up as:

E
�
e4(i)

�
= E[d4(i)]� 4E[d3(i)uTi ]w+6wTE[d2(i)uiu

T
i ]w (2.11)

�4E
�
d(i)uTi 
 uTi 
 uTi

�
w 
w 
w

+wTE
�
uiu

T
i 
 uTi 
 uTi

�
w 
w 
w;
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where 
 denotes the Kronecker�s product and is de�ned as:

A
B =

26666664
a11B � � � a1nB

...
. . .

...

am1B � � � amnB

37777775
Now, using the results from (2:9) and (2:10),we can rewrite (2:8) as,

wi = wi�1 + �
h
�(i)I+ R̂i

i�1 �
e3(i)uTi

�T
; i � 0; w�1 = initial guess, (2.12)

where, �(i) is a small positive scalar that will prevent the Hessian matrix from be-

coming singular and R̂i is the approximation for the actual Hessian which, is given

as,

R̂i = �
iP
j=0

(1� �)i�j e2(j)ujuTj : (2.13)

Let �i be

�i , �(i)I+ R̂i; (2.14)

with �(i) = (1� �)(i+1) � and � a small positive scalar.

After some algebric manipulation we can show that �i recursively follows the

following recursion:

�i�1 = (1� �)i �I+ �
i�1P
j=0

(1� �)i�j�1 e2(j)ujuTj : (2.15)
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Multiplying both sides of (2:15) by (1� �), one obtains

(1� �)�i�1 = (1� �)(i+1) �I+ �
i�1P
j=0

(1� �)i�j e2(j)ujuTj : (2.16)

Finally, �i in its recursion format:

�i = (1� �)�i�1 + �e
2(i)uiu

T
i : (2.17)

The next step involves �nding out the inverse of the Hessian matrix which will be

evaluated using the matrix inversion lemma [1] on (2:17). This formula is a very

useful matrix theory result. The result states that for arbitrary matrices fA;B;C;Dg

of compatible dimensions, if A and C are invertible, then

(A+BCD)�1 = A�1 � A�1B
�
C�1 +DA�1B

��1
DA�1: (2.18)

Using the matrix inversion lemma, the inverse of (2:17), that is ��1i , is evaluated next.

First, ��1
i looks like

��1
i =

�
(1� �)�i�1 + �e2(i)uiuTi

	�1
(2.19)
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Applying the matrix inversion lemma, one gets:

��1i = f(1� �)�i�1g�1 (2.20)

�f(1� �)�i�1g�1 ui
h�
�e2(i)

��1
+ uTi f(1� �)�i�1g

�1 ui

i�1
uTi f(1� �)�i�1g�1 ;

where, we have used the following in the derivation: A = (1� �)�i�1, B = ui,

C = �e2(i) and D = uTi .

Eventually, after some arrangements one can set up ��1
i in the following format:

��1
i =

1

(1� �)

"
��1
i�1 �

��1i�1uiu
T
i �

�1
i�1

(1��)
�e2(i)

+ uTi �
�1
i�1ui

#
: (2.21)

Finally, substituting Pi for ��1i , (2:21) looks like the following:

Pi =
1

(1� �)

"
Pi�1 �

Pi�1uiu
T
i Pi�1

(1��)
�e2(i)

+ uTi Pi�1ui

#
: (2.22)

Ultimately, the �nal update recursion of QNLMF algorithm can be written as

wi = wi�1 + �Pie
3(i)ui; i � 0; w�1 = initial guess, (2.23)

which updates the adaptive weights wi, iteratively.

Before proceeding to the next stage of studying the convergence analysis of the pro-

posed algorithm, in the following section the concept of fundamental energy conser-
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vation is introduced [2]. This is very fundamental for this research as it leads very

trackable and easy analysis when compared to its counterpart derived through the

concept of ensemble averaging [1].

2.3 Fundamental Energy Conservation Method

The generic form of an adaptive �lter update is given by:

wi = wi�1 + �Pig [e(i)]ui; (2.24)

where ui is the input sequence, � is a positive constant called the step-size, and g [e(i)]

denotes some function of the error signal.

The above generic update recursion in terms of the weight-error vector can be

shown to be:

vi = vi�1 � �Pig [e(i)]ui: (2.25)

where vi = wo �wi represents the weight error vector.

Now, let us de�ne two kind of errors known as a-priori estimation error, ea(i), and

a-psteriori estimation error, ep(i), respectively, as follows:

ea(i) , uTi vi�1; (2.26)
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and

ep(i) , uTi vi: (2.27)

Both of these estimation errors ea(i) and ep(i) are related according to:

ep(i) = ea(i)� � kuik2Pi g [e(i)] : (2.28)

The above equation provides an alternative description of an adaptive �lter in terms

of the error quantities ea(i), ep(i), vi�1, vi and g [e(i)]. This description is useful as

we are often interested in questions related to the behavior of these errors, such as:

1. Steady-state behavior: which relates to determining the steady-state values

of E kvi�1k2, E
�
jea(i)j2

�
and E [je(i)j]2.

2. Stability, which relates to determining the range of values of the step-size over

which the variance E
�
jea(i)j2

�
and E kvi�1k2 remain bounded.

3. Transient behavior, which relates to studying the time evolution of the curves

E
�
jea(i)j2

�
, E [vi�1] and E kvi�1k2.

Now in order to answer the above questions, we look forward to an energy equality

[2] that relates all the squared norms of the errors. To derive the energy relation,

all the above equations are combined together to eliminate the error non-linearity

function g [�], this means that the resulting energy relation will hold irrespective of

the error nonlinearity. Hence, two cases will be considered:
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1. ui = 0. This is a degenerate situation. In this case, it is obvious from the above

equations that vi = vi�1 and ep(i) = ea(i) so that E kvik2 = E kvi�1k2 and

E jea(i)j2 = E jep(i)j2.

2. ui 6= 0. In this case, the relation between a-priori and a-posteriori have been

used to solve for g [e(i)],

g [e(i)] =
1

� kuik2Pi
[ea(i)� ep(i)] : (2.29)

Now the error non-linearity function g [�] is substituted in the weight-error vector

equation to obtain:

vi = vi�1 �
Piui

kuik2Pi
[ea(i)� ep(i)] : (2.30)

It is clear that the above relation involves the four errors vi�1, vi, ea(i), ep(i); it is

also observed that even the step-size parameter is not present. Rearranging the above

equation we get:

vi +
Piui

kuik2Pi
ea(i) = vi�1 +

Piui

kuik2Pi
ep(i): (2.31)

By evaluating the energies (i.e., the squared-weighted Euclidean norms) of both sides

and after some straight forward calculation, it was found that the following energy

equality holds:

kvik2P�1i +
1

kuik2Pi
jea(i)j2 = kvi�1k2P�1i +

1

kuik2Pi
jep(i)j2 : (2.32)
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This result has proven very useful in the study of the performance of adaptive �lters

[2].

2.4 Summary

In this chapter we described the basic development of the QNLMF algorithm by

explaining all the steps clearly. We also introduced the method, the fundamental

energy conservation method, using which we will analyze the proposed algorithm.
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Chapter 3

Steady-State Analysis of the

proposed QNLMF Adaptive

Algorithm

3.1 Introduction

In this Chapter, the steady-state analysis of the proposed algorithm is carried out.

The following assumptions [2] were used during the analysis of the proposed algorithm:

A1 The input process fuig is a sequence of independent and identically distributed

(i.i.d) Gaussian random vectors with zero-mean and auto-correlation matrixRu.

Moreover, ui and uj are uncorrelated for i 6= j.

A2 The noise process fn(i)g is a zero-mean independent and identically distributed
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(i.i.d) random process with variance �2n, and is independent of the input process.

A1 is not true in practice but it is very common in literature and a large number

of work has shown that the analytical results obtained under this assumption agree

closely with the simulation results under general conditions. A2 is very common in

literature and is termed as the independence assumption [1] which can also be justi�ed

in several practical instances. The gaussian assumption is used to simplify the analysis

and simulation results show that analytical results derived based on this assumption

are well matched.

3.2 Mean Square Analysis of QNLMF

The proposed algorithm (QNLMF) update recursion obtained in Chapter 2 can be

written as:

wi = wi�1 + �Pie
3(i)ui; i � 0; w�1 = initial guess, (3.1)

Pi =
1

(1� �)

"
Pi�1 �

Pi�1uiu
T
i Pi�1

(1��)
�e2(i)

+ uTi Pi�1ui

#
; 0 < � � 0:1; P�1 = �

�1I: (3.2)

The weight error vector is de�ned as vi = wo �wi. Therefore, equation (3:1) can be

expressed in terms of weight-error vector as:

vi = vi�1 � �Pie3(i)ui (3.3)
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Now, we can easily derive equations for the evolution of the weight-error mean vector,

�vi = E [vi] and the step-size �. Considering the above mentioned assumptions, we

can write:

�vi =
n
I� 3�

�
�2eRu + 2Ru�vi�1�v

T
i�1Ru

��1
�2eRu

o
�vi�1: (3.4)

When we multiply (3:3) by uTi from the left, we get a new equation employing

a-priori and a-posteriori estimation error as:

ep(i) = ea(i)� � kuik2Pi e
3(i); (3.5)

where, kuik2Pi = u
T
i Piui is the weighted-squared Euclidean norm. Using this result,

(3:3) can be written as:

vi = vi�1 � ��(i)ui [ea(i)� ep(i)] : (3.6)

where ��(i) = 1
kuik2Pi

.

Evaluating the energies of both sides of the equation results in what is known as the

energy relation:

kvik2P�1i + ��(i) jea(i)j2 = kvi�1k2P�1i + ��(i) jep(i)j2 : (3.7)

This important fundamental energy relation will now be used to evaluate the steady-

state relation for the Excess Mean-Sqaure Error (EMSE) of the proposed QNLMF
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algorithm at steady state. As we know, an adaptive �lter is said to operate in steady

state i¤:

lim
i!1

E [vi] = lim
i!1

E [vi�1] ; (3.8)

and

E
h
kvik2P�1i

i
= E

h
kvi�1k2P�1i

i
= c <1 as i!1: (3.9)

Now, we take expectation of the fundamental energy relation (3:7) just derived above

and also apply this condition i!1, to get:

E
�
��(i) jea(i)j2

�
= E

"
��(i)

����ea(i)� �

��(i)
e3(i)

����2
#
: (3.10)

Since, e(i) = ea(i) + n(i), then substituting this in the above equation results in:

E

"
jea(i)j2

kuik2Pi

#
= E

"
jea(i)j2

kuik2Pi

#
�2�E

�
jea(i)j [ea(i) + n(i)]3

�
+�2E

�
kuik2Pi [ea(i) + n(i)]

6� ;
(3.11)

or equivalently:

�E
�
kuik2Pi [ea(i) + n(i)]

6� = 2E �jea(i)j [ea(i) + n(i)]3� : (3.12)

To be able to proceed further we need to expand e6(i) and e3(i) (we are omitting the
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time index i):

e3 = e3a + 3e
2
an+ 3ean

2 + n3 (3.13)

e6 = e6a + 6e
5
an+ 6ean

5 + 15e4an
2 + 15e2an

4 + 20e3an
3 + n6 (3.14)

A3 Assume that the a-priori estimation error ea(i) and ui are independent of the

noise process n(i).

Using A3 and ignoring third and higher-order terms in ea(i), since at steady-state

these terms become small enough, we now evaluate each side of (3:12) separately and

are given by

E
�
kuik2Pi [ea(i) + n(i)]

6� = 15�4nE
�
kuik2Pi

�
e2a(i) + 6�

5
nE
�
kuik2Pi

�
ea(i)

+�6nE
�
kuik2Pi

�
; (3.15)

E
�
jea(i)j [ea(i) + n(i)]3

�
= 3�2nE

�
e2a(i)

�
: (3.16)

Let E [nm(i)] = �mn and using the above expanded forms, (3:12) looks like the following:

15��4nE
�
kuik2Pi e

2
a(i)

�
+6��5nE

�
kuik2Pi ea(i)

�
+��6nE

�
kuik2Pi

�
= 6�2nE

�
e2a(i)

�
: (3.17)

To be able to proceed further the following assumption is used:
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A4 Assume that at steady state kuik2Pi is independent of e
2
a(i)

This assumption will provide us the power to solve (3:17) and get a relation for

Excess Mean-Square Error at steady state,

EMSE = lim
i!1

E
��e2a(i)�� = &� (3.18)

After some straight forward calculations we arrive at the following relation

&(i) =
��6nE

�
kuik2Pi

�
6�2n � 15��4nE

�
kuik2Pi

� ; (3.19)

and which, for smaller values of � can be written as

&(i) =
��6nE

�
kuik2Pi

�
6�2n

: (3.20)

3.2.1 Steady-State Approximation

To begin with, note that (2:10) can be setup to look like the following:

P�1i = (1� �)(i+1) �I (3.21)

+�
�
e2(i)uiu

T
i + (1� �)e2(i� 1)ui�1uTi�1 + � � �+ (1� �)ie2(0)u0uT0

�
;

29



so that, as i!1, and since � < 1, the steady-state mean value of P�1i is given by

lim
i!1

E
�
P�1i

�
= lim

i!1

�E
�
e2(i)uiu

T
i

�
1� (1� �) ; (3.22)

= lim
i!1

E
�
e2(i)uiu

T
i

�
: (3.23)

Applying the Gaussian moment factoring theorem, in (3:23), we obtain:

lim
i!1

E
�
P�1i

�
= lim

i!1
E
�
e2(i)

�
E
�
uiu

T
i

�
+ 2 lim

i!1
E [e(i)ui]E

�
e(i)uTi

�
; (3.24)

= �2eRu

=
�
�2n + &�

�
Ru � P�1:

We denote the result by P�1. The mean value of Pi, on the other hand, is considerably

harder to evaluate. So we shall satisfy ourselves with the approximation

E (Pi) �
�
E
�
P�1i

���1
=

R�1
u

(�2n + &�)
� P; as i!1: (3.25)

This is an approximation, of course, because even though Pi and P�1i are the inverses

of one another, it does not hold that their expected values will have the same inverse

relation. Still, approximation (3:25) is reasonable for Gaussian regressors.
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Now, as i!1,

lim
i!1

&(i) = &�

=
��6nE

�
kuik2Pi

�
6�2n � 15��4nE

�
kuik2Pi

� ; (3.26)

=
��6nTr (RuP)

6�2n � 15��4nTr (RuP)
;

with E kuik2P = E
�
uTi Piui

�
= Tr (RuP) by using the independence assumption.

Now, with the E (Pi) solved we can write a new relation for Tr (RuP) at steady

state as

Tr (RuP) = Tr

�
RuR

�1
u

�2n + &�

�
(3.27)

=
Tr (I)

�2n + &�
(3.28)

=
M

�2n + &�
(3.29)

Finally, after evaluation we come across a 2nd equation for the Excess MSE &� of the

form:

A&2� +B&� + C = 0 (3.30)
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where,

A = 6�2n (3.31)

B = 6�4n � �15�4nM (3.32)

C = ���6nM (3.33)

Ignoring higher powers of &� we can rewrite (3:30) as follows:

B&� + C � 0 (3.34)

Hence, an asymptotic approximation for the excess MSE of QNLMF can be written

as:

&QNLMF � �
C

B
(3.35)

&QNLMF = &� �
��6nM

6�4n � �15�4nM
(3.36)

and for smaller values of � it can be further approximated to

&QNLMF = &� �
��6nM

6�4n
(3.37)

The value of �2n varies according to the chosen noise. Therefore, we can conclude that
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for Gaussian noise the EMSE of the QNLMF is given by:

&QNLMF = &� �
15��6nM

6�4n
(3.38)

From the above expression, one can see that the EMSE does not dependent on the

input statistics, e.g. the input autocorrelation matrix; however, they depend upon the

length of the FIR �lter M .

3.3 Mean Convergence of the Step-Size

Proposition 1 :

From (2:8), under the assumption that convergence has taken place, � can be

approximated as

0 < � <
2

3
(3.39)

Proof.

Subtracting (2:8) from wo and taking expected value on both sides, we come across

E (vi) = E (vi�1) + �
�
E
�
e2(i)uiu

T
i

�	�1
E
�
e3(i)ui

�
(3.40)

We can show that the expectation term E
�
e2(i)uiu

T
i

�
can be expanded as

E
�
e2(i)uiu

T
i

�
= E

�
n2(i)uiu

T
i

�
+ 2E

�
n(i)ea(i)uiu

T
i

�
+ E

�
e2a(i)uiu

T
i

�
; (3.41)
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which, at steady-state, can be approximated to

E
�
e2(i)uiu

T
i

�
� �2e(i)Ru (3.42)

Also, from [13], it can be shown that

E
�
e3(i)ui

�
= �3�2e(i)RuE (vi�1) (3.43)

Therefore, (3:40) becomes

E (vi) = E (vi�1)� 3�
�
�2e(i)Ru

	�1
�2e(i)RuE (vi�1) ; (3.44)

E (vi) = [1� 3�]E (vi�1) : (3.45)

From the above equation it is easy to show that the mean behavior of the weight error

vector E (vi�1) converges to the zero vector if the convergence parameter � is selected

to be (3:39).

3.4 Adaptation Time Constants and Comparisons

If the unknown channel is time invariant, the usual way to compare the performance

of di¤erent algorithms is to set the parameters such that all algorithms under test

have the same misadjustment and then compare their convergence rates.
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Recall that the (steady-state) misadjustment is de�ned as:

Madj =
excess MSE
minimum MSE

=
&�
�2n

(3.46)

In our case, suitable choise of the parameter � is responsible for the variable time

constants but keeping � constant for a certain misadjustment will give us the same

time constant everytime, since, EMSE is not dependent on the eigenvalue spread of

the input autocorrelation matrix. Hence, from (3:39), the time constant relation for

the QNLMF algorithm can be shown to be:

�QNLMF �
1

6�
(3.47)

3.5 Computational Cost

Each step of the algorithm requires a handful of straightforward computations. Below

are tables that explains and compares the computations of QNLMF with RLS for real

data.
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3.6 Summary

In this chapter, a thorough steady-state analysis is carried out. The relation for the

steady-state EMSE is derived. Expressions for mean convergence of the step-size,

adaptation time constant are also derived. Finally, the computational cost of the

proposed algorithm is compared with the well known RLS algorithm.

36



RLS Algorithm
Term � + =
uiwi�1 M M � 1

d (i)�uiwi�1 1

��1ui M

Pi�1
�
��1ui

�
M2 M(M � 1)

uTi Pi�1
�
��1ui

�
M M � 1

1+uTi Pi�1
�
��1ui

�
1

1=
�
1 + uTi Pi�1

�
��1ui

��
1�

��1uTi Pi�1ui
�
� 1

1+uTi Pi�1(��1ui)
1�

��1Pi�1ui
�
� ��1uTi Pi�1ui

1+uTi Pi�1(��1ui)
M

Piui M
Piui [d(i)� uiwi�1] M

wi M
TOTAL per iteration M2+5M + 1 M2+3M 1

Table 3.1: Computational cost of RLS

QNLMF Algorithm
Term � + =
uiwi�1 M M � 1

d(i)�uiwi�1 1
Pi�1ui M2 M(M � 1)
uTi Pi�1ui M M � 1
�e2(i) 2
1��
�e2(i)

1 1
1��
�e2(i)

+uTi Pi�1ui 1

1=
h
1��
�e2(i)

+ uTi Pi�1ui

i
1�

uTi Pi�1ui
�
� 1

1��
�e2(i)

+uTi Pi�1ui
1

(Pi�1ui)� uTi Pi�1ui
1��
�e2(i)

+uTi Pi�1ui
M

1
1�� � (Pi�1ui)�

uTi Pi�1ui
1��
�e2(i)

+uTi Pi�1ui
1

�Piui M M

Piui [d(i)� uiwi�1]
3 M + 1

wi M
TOTAL per iteration M2+5M + 4 M2+3M + 1 3

Table 3.2: Computational cost of QNLMF
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Chapter 4

Tracking Analysis of the Proposed

QNLMF Adaptive Algorithm

4.1 Introduction

The main aim of tracking analysis of an adaptive �lter is to quantify its ability to track

time variations in the channel. In this Chapter, the tracking analysis of the proposed

QNLMF algorithms are carried out. We have considered Random Walk model and

Rayleigh fading model (both single and multiple path) to model the time varying

channels and the analysis is carried out using the energy relation in the same way as

described in [2].
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4.2 Random Walk Model

The model that is widely used in the adaptive �ltering literature is a �rst order

Random-Walk model. The model assumes that wo
i undergoes random variations of

the form

wo
i = w

o
i�1 + qi (4.1)

with qi denoting some random perturbation that is independent of fuj; n(j)g for all

i; j. Here, wo
i is a random variable now due to the presence of the random quantity

qi. The sequence fqig is assumed to be i.i.d., zero-mean, with covariance matrix

E
�
qiq

T
i

�
= Q (4.2)

It is easy to see from (4:1) that

E (wo
i ) = E

�
wo
i�1
�

(4.3)

so that the fwo
i g have a constant mean, which we shall denote by �wo,

E (wo
i ) , �wo (4.4)

The initial condition for model (4:1) is modeled as a random variable wo
�1, with mean

�wo and independent of all other variables, fqi; n(i);uig for all i.
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It has been observed in [2], that the covariance matrix of wo
i :

wo
i � �wo = wo

i�1 � �wo + qi (4.5)

given by,

E
h
(wo

i � �wo) (wo
i � �wo)T

i
= E

h�
wo
i�1 � �wo

� �
wo
i�1 � �wo

�Ti
+Q (4.6)

grows unbounded, which means that at each time instant i, a nonnegative-de�nite

matrix Q is added to the covariance matrix of wo
i�1 in order to obtain a covariance

matrix of wo
i . So, as time progresses the covariance matrix of w

o
i becomes unbounded.

A more practical model can be developed by replacing (4:5) by:

wo
i � �wo = 


�
wo
i�1 � �wo

�
+ qi (4.7)

for some scalar j
j < 1. In this case the covariance matrix of wo
i would tend to a �nite

steady-state value given by:

lim
i!1

E
h
(wo

i � �wo) (wo
i � �wo)T

i
=

Q

1� j
j2
(4.8)

But the tracking analysis for this kind of model is very demanding. As mentioned

in [2], it was found that in the literature it is customary to assume the value of 
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is su¢ ciently close to one and use the model described by (4:5) which simpli�es our

analysis tremendously. For this reason, we have used the random walk model described

by (4:1) for the tracking analysis of the proposed algorithms.

The algorithms�update recursion obtained in Chapter 2 can be written as:

wi = wi�1 + �Pie
3(i)ui; i � 0; w�1 = initial guess (4.9)

Pi =
1

(1� �)

"
Pi�1 �

Pi�1uiu
T
i Pi�1

(1��)
�e2(i)

+ uTi Pi�1ui

#
; 0 < � � 0:1; P�1 = ��1I (4.10)

The update recursion can be written in terms of weight error vector vi = wo
i � wi,

a-priori estimation error ea(i) = uTi (w
o
i �wi�1), and a-posteriori estimation error

ep(i) = u
T
i (w

o
i �wi) as:

ep(i) = ea(i)� � kuik2Pi e
3(i) (4.11)

Equation (4:11) has the same form as (3:5) in the previous Chapter. Therefore, fol-

lowing the same exact arguments that we presented in that section, we arrive at the

following energy relation:

kwo
i �wik

2
P�1i

+ ��(i) jea(i)j2 = kwo
i �wi�1k2P�1i + ��(i) jep(i)j2 (4.12)

where ��(i) = 1
kuik2Pi

. Now, the �rst term on the left hand side of the above equation is

the weight-error vector vi but same cannot be said for the �rst term on the right hand
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side. Now we take expectation on both sides of (4:12) and use all the assumptions of

Chapter 3 and the following assumption,

A5 fqig is a zero-mean stationary random process with a positive de�nite covariance

matrixQ and is statistically independent of both the input regressor vector fuig

and the noise sequence fn(i)g,

to conclude that:

E
h
kvik2P�1i

i
+ E��(i) jea(i)j2 = E

h
kvi�1k2P�1i

i
+ Tr

�
QP�1i

�
+ E��(i) jep(i)j2 (4.13)

Comparing the above equation with its counterpart (3:7), we notice that the only

di¤erence is the extra term Tr
�
QP�1i

�
on the right hand side of the above. Hence,

following the same arguments that were presented in Chapter 3, we notice that :

6�2n&� = �
�1Tr

�
QP�1

�
+ �Tr (RuP)

�
15�4n&� + ��

6
n

�
(4.14)

where,

Tr
�
QP�1

�
=
�
�2n + &�

�
Tr (QRu) (4.15)

Now, all the above terms have been de�ned in Chapter 3 and holds good here also,

upon following the similar procedure, tracking steady-state EMSE for the proposed
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QNLMF is given by:

&QNLMF = &� �
��6nM + ��1�4nTr (QRu)

6�4n � 2��1�2nTr (QRu)
(4.16)

The value of �2n varies depending upon the di¤erent noise enviornments. Under the

assumption that the random non-stationarity fqig is i.i.d., and further assuming that

the noise is Gaussian, the above equation becomes:

&� �
15��6nM + ��1�4nTr (QRu)

6�4n � 2��1�2nTr (QRu)
(4.17)

Remark 2 It is clear from the above expression that a time varying channel results

in an increse in the EMSE of the proposed QNLMF algorithm as compared to the

stationary model. The additional terms re�ects the e¤ect of non-stationarity on the

�lter performance. Observe in particular that Tr (QRu) is multipled by �
�1, so that

the larger the step-size the smaller the e¤ect of non-stationarity on the EMSE. This

behavior is intuitive since a larger step-size (usually) signi�es faster adaptation [2],

in which case our proposed QNLMF willl have a better chance at �learning� and at

�following�the data statistics. A small step-size, on the other hand, leads to a smaller

EMSE under stationary conditions, but it may also lead to poor tracking performance.

So, there must be an optimum choice for the step-size, which is obtained by minimizing

(4:16) with respect to �. Taking the derivative of (4:16) and equating it to zero gives:
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�opt =
Tr (QRu)

3�2n
�

q
�6nMTr (QRu)

�
36�8n + 4�

6
nMTr (QRu)

	
6�2n�

6
nM

(4.18)

Substituting the above optimal value for � into (4:16) we get the minimum EMSE.

4.3 Rayleigh Fading Channel

As we know in a wireless communication enviornment, signal su¤ers from multiple

re�ections while travelling from the transmitter to the receiver so that the receiver

ends up getting several (almost simultaneous) replicas of the transmitted signal. The

re�ections are received with di¤erent amplitude and phase distortions , and the overall

received signal is the resultant of all these re�ections. Based on the relative phases of

the re�ections, the signal may add up constructively or destructively at the receiver.

Furthermore, if the transmitter is moving with respect to the receiver, then these

interferences will vary with time. This phenomenon is known as channel fading [7].

The impulse response of a single tap (i.e., single path) fading channel can be

described as:

h(i) = #x(i)�(i� io) (4.19)

where fx(i)g is a time-variant complex sequence that models the time-variations in

the channel, and io is the channel delay. The sequence fx(i)g is assumed to have

unit variance , and the scalar # is then used to model the actual path loss that is
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introduced by the channel. That is, #2 is equal to the power attenuation that a signal

will undergo when it travels through the channel.

Several mathematical models can be used to characterize the fading properties

of fx(i)g, and consequently those of the channel. A widely used model is known as

Rayleigh fading model. In this case, for each i, the amplitude jx(i)j is assumed to

have a rayleigh distribution, i.e.,

fjx(i)j (jx(i)j) = jx(i)j e�jx(i)j
2=2; jx(i)j � 0 (4.20)

while the phase \x(i) is assumed to be uniformly distributed within [��; �]:

f (\x(i)) = 1

2�
; �� � \x(i) � � (4.21)

Zeroth-order Bessel function of the �rst kind has been widely used in the lierature to

model the auto-correlation function of the sequence fx(i)g. It is based on the fact

that all the scatterers are uniformly distributed circularly around the receiver, so that

its power spectral density has a U-shaped spectrum. This function is de�ned as:

r(i) �= E [x(j)x(j � i)] = =o (2�fDTsn) ; n = � � � ;�1; 0; 1; � � � (4.22)

where Ts is the sampling period, fD is called the maximum Doppler frequency of the
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rayleigh fading channel, and the function =o is de�ned by:

=o(y) �=
1

�

R �
0
cos(y sin �)d� (4.23)

The Doppler frequency fD is related to the speed of the mobile user, �, and to the

carrier frequency, fc, as follows:

fD =
�fc
c
; (4.24)

where c is speed of the light, c = 3 � 108m=s. Therefore, the weight vector that we

wish to estimate looks like: �
0 0 x2(i) 0 0

�
(4.25)

When we dig more in to the fading phenomenon it was mentioned in [2] that

in some instance the re�ections might have originated from a far away object like a

mountain or tall buildings. These re�ections arrive at the receiver with longer delay

than the �rst group of re�ections. In this case, a single-path Rayleigh channel is

not su¢ cient, therefore a multi-path model is preferred which is governed by this

�nite-impulse response:

h(i) =
M�1P
j=1

#jxj(i)�(i� j + 1) (4.26)

where f#jg and fxj(i)g are, respectively, the path loss and fading sequence of the

i� th cluster of re�ectors. In our analysis we have considered a wireless channel with
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two Rayleigh fading rays; furthermore, both rays are assumed to fade at the same

Doppler frequency. The channel impulse response sequence consists of an initial delay

of two samples, followed by a Rayleigh fading ray, then another zero sample, which

is �nally followed by another Rayleigh fading ray; so the 5-tap weight-vector that we

wish to be estimated looks like:

�
0 0 x2(i) 0 x4(i)

�
(4.27)

As mentioned in [2], we came to know that a �rst-order approximation for the variation

of a Rayleigh fading coe¢ cient fxj(i)g is to assume that fxj(i)g varies according too

the auto-regressive model:

x(i) = r(1)x(i� 1) +
q
1� jr(1)j2�(i); (4.28)

where r(1) = =o(2�fDTs) and �(i) denotes a white noise process with unit-variance.

Now, since the multi-path rays of the channel (4:27) are assumed to fade at the same

rate, the above approximation indicates that the variations in the channel weight

vector could be approximated as:

wo
i = �w

o
i�1 + qi (4.29)

where the covariance matrix of fqig is Q = (1� � 2) I with � = r(1). It is clear, that
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the value of � depends upon the doppler frequency and if the value of � is chose to

be approximated equal to one then the results of analysis that we have done in the

previous section for Random Walk model is applicable in this case also.

4.4 Summary

In this chapter we studied and analyzed the e¤ect of time variation of the enviorn-

ment over the tracking ability of the adaptive �lter. Variations in the environment

were introduced using the Random Walk model and the Rayleigh fading model. Con-

sequently, the tracking ability of the �lter is hampered more as the variation in the

environment increases.
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Chapter 5

Transient Analysis of the Proposed

QNLMF Algorithm

5.1 Introduction

Adaptive �lters are time-variant and non-linear stochastic systems with inherent learn-

ing and tracking abilities.The transient analysis of adaptive algorithms is very impor-

tant because the success of their learning mechanism depends on how fast and how

stable they adapt to changes in the signal statistics. Transient performance is con-

cerned with the stability and convergence rate of an adaptive scheme.

In the previous chapters we focused on the steady-state performance of adaptive

�lters. In this chapter we turn our attention to the transient performance of adaptive

�lters. In this section we have used the methodology of [30] (where a uni�ed approach
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to the transient analysis of adaptive �lters with error non-linearities is discussed) to

carry out transient analysis of QNLMF. This approach is also described in [26]-[30]

does not restrict the regression data to be Gaussian and avoids the need for explicit

recursions for the covariance matrix of the weight-error vector. Before we start we

will specify a data model which will be for the stationary environment.

A1 There exists a vector wo such that d(i) = uiwo + n(i).

A2 The noise sequence fn(i)g is i.i.d. with variance �2n = E jn(i)j
2

A3 The sequence n(i) is independent of uj for all i,j.

A4 The initial condition w�1 is independent of all fd(j);uj; n(j)g.

A5 The regressor covariance matrix is Ru = Euiu
T
i > 0

A6 The random variables fd(i);ui; n(i)g have zero means.

5.2 Transient Analysis of the QNLMF

The upadte recursion obtained in Chapter 2 can be written as:

wi = wi�1 + �Pie
3(i)ui; i � 0; w�1 = initial guess (5.1)

Pi =
1

(1� �)

"
Pi�1 �

Pi�1uiu
T
i Pi�1

(1��)
�e2(i)

+ uTi Pi�1ui

#
; 0 < � � 0:1; P�1 = �

�1I (5.2)
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The weight error vector is de�ned as vi = wo � wi. Therefore, the above equation

can be expressed in terms of weight-error vector as:

vi = vi�1 � �Pie3(i)ui (5.3)

Now, we will de�ne two kinds of weighted errors known as weighted a priori and a

posteriori error signals.

ePi�a (i) = uTi Pi�vi�1; ePi�p (i) = uTi Pi�vi (5.4)

If we multiply both sides of (5:3) by uTi Pi� from the left we �nd that the a priori and

a posteriori estimation errors
�
ePi�a (i); ePi�p (i)

	
are related via

ePi�p (i) = ePi�a (i)� � kuik2Pi�Pi e
3(i) (5.5)

The above equation provides an alternative description of an adaptive �lter in terms

of error quantities, ePi�a (i); ePi�p (i);vi�1;vi and e3(i). Now, by substituting above

equation in (5:3) we get:

vi +
Piuie

Pi�
a (i)

kuik2Pi�Pi
= vi�1 +

Piuie
Pi�
p (i)

kuik2Pi�Pi
(5.6)

51



On each side of this identity we have a combination of a priori and a posteriori errors.

By equating the above weighted Euclidean norms of both sides of the equation, i.e.,

by setting 




vi + PiuiePi�a (i)

kuik2Pi�Pi







2

�

=






vi�1 + PiuiePi�p (i)

kuik2Pi�Pi







2

�

(5.7)

we �nd, after a straight forward calculation, that the following energy equality holds:

kuik2Pi�Pi � kvik
2
� + e

Pi�
a (i)2 = kuik2Pi�Pi � kvi�1k

2
� + e

Pi�
p (i)2 (5.8)

Observe that the equality simply amounts to adding the weighted energies of the

individual terms of (5:6); the cross-terms cancel out. It has been shown that di¤erent

choices of � allow us to evaluate di¤erent performance measures of an adaptive �lter

[2]. In our analysis two measures of performance indices are used: The steady-state

EMSE and steady-state MSD. The steady state MSE is de�ned as follows:

MSE = lim
i!1

E
�
e2(i)

�
; (5.9)

lim
i!1

E
h�
uTi vi�1 + n(i)

�2i
(5.10)
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Using assumptions A2-A3, the MSE reduces to :

MSE = �2n + lim
i!1

E
h�
uTi vi�1

�2i
; (5.11)

= �2n + lim
i!1

Tr fRuK(i)g ; (5.12)

= �2n + lim
i!1

E
�
e2a(i)

�
; (5.13)

= �2n + &� (5.14)

while, the steady-state MSD is the steady-state value of the weight-error variance, i.e.,

MSD = lim
i!1

E kvik2 (5.15)

Thus returning to (5:8), and replacing ePi�p (i) by its equivalent expression (5:5) in

terms of ePi�a (i) and e(i) we get

kuik2Pi�Pi � kvik
2
� + e

Pi�
a (i)2 = kuik2Pi�Pi � kvi�1k

2
� +

�
ePi�a (i)� � kuik2Pi�Pi e

3(i)
�2

(5.16)

Furthermore, upon expanding the rightmost term in the above equation and using the

fact that the event kuik2Pi�Pi = 0 has probability zero, we can eliminate it and then

after taking the expectation on both sides, leads to:

E kvik2� = E kvi�1k
2
� + �

2E
�
kuik2Pi�Pi e

6(i)
�
� 2�E

�
ePi�a (i)e3(i)

�
(5.17)
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We shall now proceed by evaluating the expectations

E
�
kuik2Pi�Pi e

6(i)
�

and E
�
ePi�a (i)e3(i)

�
(5.18)

in terms of a weighted norm of vi�1. These expectations are hard to compute. In-

order to facilitate their evaluation, we shall rely on the following assumption on the

distribution of the a priori estimation errors [2].

A7 The a priori estimation errors
�
ea(i); e

Pi�
a (i)

	
are jointly Gaussian.

A8 We also assume that a priori estimation error ea(i) and the noise process fn(i)g

are independent.

We will also rely on one very important assumption [35] in order to simplify our

expectations and that is

R̂i � �
i�1P
j=0

(1� �)i�j e2(j)ujuTj ; (5.19)

ignoring the term

�e2(i)uiu
T
i ; (5.20)

by noticing that

�e2(i)� �
i�1P
j=0

(1� �)i�j e2(j): (5.21)
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This approximation may be not good for initial iterations but will be applicable as i

increases, so, P̂i = �(i)I+ R̂i.

These assumptions are resonable for long adaptive �lters, for instance, that since

ea(i) = uivi�1, it can be regarded as the sum of (M � 1) random variables. As its

length increases its distribution can be approximated by a Gaussian distribution in

view of central limit theorem [31]-[32]. A similar remark hold for
n
eP̂i�a (i)

o
.

Hence, we can simplify the expectation E
h
eP̂i�a (i)e3(i)

i
using the Price�s theorem

[33], A2 and the fact that e(i) = ea(i) + n(i), we get

Exg(y + z) =
Exy

Ey2
EyTg(y + z) (5.22)

E
h
eP̂i�a (i)e3(i)

i
= E

h
eP̂i�a (i)ea(i)

i
�
�
E [ea(i)e

3(i)]

E [e2a(i)]

�
(5.23)

The point now is that in view of the Gaussian A7, the expectation E
h
eP̂i�a (i)e3(i)

i
depends on ea(i) only through its second moment, E [e2a(i)]. It is also well known from

[32] that the expectation of a function of a Gaussian random variable will only depend

on the variance of this variable and not on higher-order moments of it. Consequently,

along with equality (5:23), we can introduce the following function of E [e2a(i)],

HG =
E [ea(i)e

3(i)]

E [e2a(i)]
(5.24)
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Now in the case of our algorithm, QNLMF, after some straight forward calculation

the value of hg for real data was found to be:

HG = 3
�
E
�
e2a(i)

�
+ �2n

�
(5.25)

So, therefore, the expectation E
h
eP̂i�a (i)e3(i)

i
can then be expressed as:

E
h
eP̂i�a (i)e3(i)

i
= HG � E

h
eP̂i�a (i)ea(i)

i
. (5.26)

The left over expectation termE
�
kuik2P̂i�P̂i e

6(i)
�
, from (5:17), which is still to be eval-

uated in order to facilitate the study of transient analysis of our algorithm, QNLMF,

will be dealt as follows. In order to do that we shall rely on the below assumption

and it is also assumed that the �lter is long enough,

A9 The weighted norm of input kuik2P̂i�P̂i is independent of e(i).

The A9 allows us to split this above expectation as:

E
�
kuik2P̂i�P̂i e

6(i)
�
= E

�
kuik2P̂i�P̂i

�
� E
�
e6(i)

�
(5.27)

Now, gaining knowledge from the logic that since ea(i) is Gaussian and independent

of the noise, it is worth to argue that E [e6(i)] depends on ea(i) through its second
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moment only, so, another term that can come up as de�ned in [2]:

HU = E
�
e6(i)

�
(5.28)

Now in the case of our algorithm, QNLMF i.e. in the real case, after some straight

forward calculation the value of HU was found to be:

HU = 15
�
E
�
e2a(i)

��3
+ 45�2n

�
E
�
e2a(i)

��2
+ 15�4nE

�
e2a(i)

�
+ �6n (5.29)

Hence, the expectation E
�
kuik2P̂i�P̂i e

6(i)
�
can then be expressed as:

E
�
kuik2P̂i�P̂i e

6(i)
�
= HU � TrE

�
uTi P̂i�P̂iui

�
(5.30)

By substituting (5:25) and (5:29) in (5:17), we come up to this version of the weighted-

variance relation as follows:

E kvik2� = E kvi�1k
2
� + �

2HUETr
�
uTi P̂i�P̂iui

�
� 2�HGE

h
eP̂i�a (i)ea(i)

i
: (5.31)

Due to the dependency among regressors fuig evaluation of the expectation term

E
h
ea(i)e

P̂i�
a (i)

i
is made di¢ cult, so, in order to make the transient analysis more

tractable we shall rely on the assumption below.

A10 The sequence of vectors fuig are i.i.d., i.e. independent and identically distrib-
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uted.

This above assumption helped us to modify the above weighted-variance relation

as follows:

E kvik2� = E kvi�1k
2
� + �

2HUTr
h
RuE

�
P̂i�P̂i

�i
� 2�HGE kvi�1k2RuE(P̂i)� : (5.32)

Thus, we conclude that by evaluating HG; HU and by following the resulting vari-

ance relation, the transient behavior of our QNLMF algorithm can be studied. Now,

depending upon the correlation of the input we can divide the analysis further.

5.2.1 Transient Analysis of the QNLMF forWhite Input Data

We start with the case that the input data is white for which the individual entries

of fuig are i.i.d. i.e. Ru is diagonal. Lets say Ru = �
2
uI and E [e

2
a(i)] = �

2
uE kvik

2.

Hence, when � = I, the variance relation in (5:32) becomes:

E kvik2 = E kvi�1k2 + �2HU�2uTr
h
E
�
P̂2i

�i
� 2��2uHGE kvi�1k

2
E(P̂i) (5.33)

where HG and HU are also functions of E
�
kvi�1k2

�
. Here, in order to evaluate the

second moment of Pi, we will use some experimental results. Over a large simulation

run we found out that

Tr
h
E
�
P̂2i

�i
> Tr

�
E
�
P̂i

�2�
: (5.34)
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Using this information and for smaller step-sizes we can write equation (5:33) as

E kvik2 � E kvi�1k2 + �2HU�2uTr
�
P̂2
�
� 2��2uHGE kvi�1k

2
P̂ ; (5.35)

where P̂ = E
�
P̂i

�
. To simplify further, we will resort to the steady state assumption

i.e.,

E
�
P̂i

�
�
h
E
�
P̂�1i

�i�1
=
�
E
�
e2(i)uiu

T
i

�	�1
; (5.36)

and with the help of App. II, we can �nally write the variance relation for white input

after some algebra as,

E kvik2 � fE kvi�1k2 + 5�2
�
�2u
��1

HGM; (5.37)

where

f = 1� 6� (5.38)

and M is the �lter length.

Mean-square Stability

Observe that we can write the relation (5:33), for MSD as

E kvik2 = E kvi�1k2 + �2HUTr
h
RuE

�
P̂2i

�i
� 2�HGE kvi�1k2RuE(P̂i) (5.39)
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from which it follows that E kvik2 converges for step-sizes satisfying

�2HUTr
�
RuE

�
P̂2i

��
� 2�HGE kvi�1k2RuE(P̂i) < 0 (5.40)

or, equivalently,

0 < � <
2HGE kvi�1k2RuE(P̂i)

HUTr
�
R2
uE
�
P̂2i

�� (5.41)

where

HG = 3
�
E
�
e2a(i)

�
+ �2n

�
(5.42)

HU = 15
�
E
�
e2a(i)

��3
+ 45�2n

�
E
�
e2a(i)

��2
+ 15�4nE

�
e2a(i)

�
+ �6n (5.43)

The step-size � can be further bounded [34] by applying time independent lower

and upper bounds on E [e2a(i)] as,

� � E
�
e2a
�
� 1

4
Tr(Ru)E kv0k2 (5.44)

where � represents the Cramer-Rao bound and E kv0k2 represents the mean weight-

error vector for i = 0.

In sum, in this chapter we have carried out transient analysis of our proposed

QNLMF algorithm under white input. The analytical results obtained are further

compared with the experimental ones and the results obtained are presented in Chap-

ter 6.
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5.3 Summary

In this chapter we studied the time evolution of the Mean-Square Deviation (MSD)

and MSE for White input. Derivation has been carried out for the relations governing

the time evolution. Also, relation for the mean-square stability has been derived.

61



Chapter 6

Performance Analysis of the

Proposed Algorithm

In this chapter the performance of the proposed algorithm (QNLMF) using computer

simulations is presented. QNLMF is compared with the traditional LMF algorithm in

an unknown system identi�cation problem. A number of simulations are carried out

to corroborate the theoretical �ndings and, as expected, better results are obtained

over the traditional LMF algorithm.

The objective of designing QNLMF algorithm is to expand the area of research

involving Newton�s method based adaptive algorithms that is still unexplored par-

ticularly in the case of LMF. The performance analysis has been divided into three

sections. The �rst section deals with the mean-square analysis of the proposed algo-

rithms in stationary enviornment, the second section deals with the tracking analysis
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of the proposed algorithm under non-stationary enviornment and the �nal section

presents a clearer picture about the transient analysis of the two proposed algorithms.

6.1 Mean-Square Performance Analysis of the Pro-

posed Algorithm

In order to compare the convergence rates of the proposed algorithms in the pres-

ence of di¤erent noise enviornments, the usual way is to set the parameters such

that algorithms under observation have same misadjustments and then compare their

convergence rates. We know that the steady-state misadjustment is de�ned by the

ratio:

~M =
excess MSE
minimum MSE

=
&�
�2n

(6.1)

In order to do a fare comparison we �rst �nd the step-size of the LMF �LMF to obtain

a speci�ed misadjustment (say, MLMF ), then we set the step-size of the QNLMF

algorithm such that:

MLMF�MQNLMF (6.2)

The simulations reported here are based on the FIR channel estimation/system iden-

ti�cation. Furthermore, we have considered the following channel:

wo =

�
0:227 0:460 0:688 0:460 0:227

�T
(6.3)
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The input vector fuig is a BPSK f�1g signal. Three di¤erent noise enviornments have

been considered namely Gaussian, Uniform and Laplacian. The variance of the noise

is initially chosen as 1, leading to SNR of 0 dB, and the experiments are repeated for

SNRs of 10 and 20 dB. The length of the adaptive �lter is chosen equal to the length

of the unknown system and the results obtained are averaged over 1000 independent

runs. This section has been further categorized into two parts.

� Comparison of the LMF algorithm with the proposed QNLMF algorithm.

1. Comparison of the learning curves of MSE and third tap in the presence of

Gaussian noise for SNR 0 dB, 10 dB and 20 dB.

2. Comparison of the learning curves of MSE and third tap when there is a

sudden burst in the AWGN channel for SNR 20 dB.

3. Comparison of the learning curves of MSE and third tap in the presence of

Uniform noise for SNR 0 dB, 10 dB and 20 dB.

4. Comparison of the learning curves of MSE and third tap in the presence of

Laplacian noise for SNR 0 dB, 10 dB and 20 dB.

5. Comparison of the learning curves of MSE for LMF and QNLMF in the

presence of all three noise processes namely Gaussian, Uniform and Lapla-

cian with SNR 20 dB.

6. Sensitivity analysis of �i, the approximation of the inverse of the Hessian

matrix by variation in �.
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6.1.1 Comparison of the LMF Algorithm with the Proposed

QNLMF Algorithm

In this section the LMF algorithm and the proposed Quasi-Newton Least Mean Fourth

(QNLMF) algorithm are compared in terms of the convergence time. It has been

shown that the proposed QNLMF algorithm has achieved the same noise �oor in

a much lesser number of iterations as compared to the traditional LMF algorithm.

It is observed that in Figure 6:2, 6:4 and 6:6 for gaussian noise with SNR 0 dB,

10 dB and 20 dB the proposed QNLMF algorithm achieved the same steady-state

in approximately 5500, 6500 and 8500 iterations earlier than the traditional LMF

algorithm, respectively. Also, the behavior of learning curves in Figure 6:3, 6:5 and

6:7 for the third-tap of QNLMF is better than that of LMF for SNR 0 dB, 10 dB and 20

dB in Gaussian noise enviornment. The behavior of the proposed QNLMF algorithm

was also observed when there is a sudden burst in the enviornment in Figures 6:8, 6:9

we came to a conclusion that the convergence speed and the third tap behavior of the

proposed QNLMF algorithm does not degrade.

In the case of uniform noise, it is also observed in Figure 6:10, 6:12 and 6:14

that the proposed QNLMF algorithm for SNR 0 dB, 10 dB and 20 dB achieved the

same steady-state in approximately 5500, 7500 and 10500 iterations earlier than the

traditional LMF algorithm.

When the noise is Laplacian, it is observed in Figure 6:16, 6:18 and 6:20 that the

proposed QNLMF algorithm for SNR 0 dB, 10 dB and 20 dB achieved the same steady-
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state in approximately 3500, 4500 and 11000 iterations earlier than the traditional

LMF algorithm.

Also, the behavior of learning curves for SNR 0 dB, 10 dB and 20 dB in Figure

6:11, 6:13, 6:15, 6:17, 6:19 and 6:21 for the third-tap of QNLMF algorithm is better

than that of LMF in Uniform as well as Laplacian noise enviornments. In addition,

in Figure 6:22 we have also shown the learning curve of MSE for QNLMF algorithm

in the presence of all three enviornments with SNR 10 dB.
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Figure 6.1: Sensitivity analysis of �i by varying � of the proposed QNLMF in an
AWGN environment.
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Figure 6.2: Comparison of the convergence speed of the LMF and the proposed
QNLMF in AWGN environment with SNR = 0 dB.
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Figure 6.3: Comparison of the learning curves for the third-tap of the LMF and the
proposed QNLMF in AWGN environment with SNR = 0 dB.
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Figure 6.4: Comparison of the convergence speed of the LMF and the proposed
QNLMF in AWGN environment with SNR = 10 dB.
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Figure 6.5: Comparison of the learning curves for the third-tap of the LMF and the
proposed QNLMF in AWGN environment with SNR = 10 dB.
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Figure 6.6: Comparison of the convergence speed of the LMF and the proposed
QNLMF in AWGN environment with SNR = 20 dB.
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Figure 6.7: Comparison of the learning curves for the third-tap of the LMF and the
proposed QNLMF in AWGN environment with SNR = 20 dB.
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Figure 6.8: Comparison of the convergence speed of the LMF and the proposed
QNLMF when there is a sudden burst in AWGN environment with SNR = 20 dB.
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Figure 6.9: Comparison of the learning curves for the third-tap of the LMF and the
proposed QNLMF when there is a sudden burst in AWGN environment with SNR =
20 dB.
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Figure 6.10: Comparison of the convergence speed of the LMF and the proposed
QNLMF in Uniform noise environment with SNR = 0 dB.
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Figure 6.11: Comparison of the learning curves for the third-tap of the LMF and the
proposed QNLMF in Uniform noise environment with SNR = 0 dB.
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Figure 6.12: Comparison of the convergence speed of the LMF and the proposed
QNLMF in Uniform noise environment with SNR = 10 dB.
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Figure 6.13: Comparison of the learning curves for the third-tap of the LMF and the
proposed QNLMF in Uniform noise environment with SNR = 10 dB.
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Figure 6.14: Comparison of the convergence speed of the LMF and the proposed
QNLMF in Uniform noise environment with SNR = 20 dB.
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Figure 6.15: Comparison of the learning curves for the third-tap of the LMF and the
proposed QNLMF in Uniform noise environment with SNR = 20 dB.
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Figure 6.16: Comparison of the convergence speed of the LMF and the proposed
QNLMF in Laplacian noise environment with SNR = 0 dB.
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Figure 6.17: Comparison of the learning curves for the third-tap of the LMF and the
proposed QNLMF in Laplacian noise environment with SNR = 0 dB.
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Figure 6.18: Comparison of the convergence speed of the LMF and the proposed
QNLMF in Laplacian noise environment with SNR = 10 dB.
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Figure 6.19: Comparison of the convergence speed of the LMF and the proposed
QNLMF in Laplacian noise environment with SNR = 10 dB.
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Figure 6.20: Comparison of the convergence speed of the LMF and the proposed
QNLMF in Laplacian noise environment with SNR = 20 dB.

86



0 2000 4000 6000 8000 10000 12000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

 Iterations

 T
hi

rd
 T

ap
 W

ei
gh

t

LMF
QNLMF

Figure 6.21: Comparison of the learning curves for the third-tap of the LMF and the
proposed QNLMF in Laplacian noise environment with SNR = 20 dB.
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Figure 6.22: Zoomed image of the Convergence behavior of the QNLMF algorithm
in presence of Gaussian, Uniform and Laplacian environment with SNR = 10 dB.
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Figure 6.23: Comparison of Analytical and Experimental MSE of QNLMF in station-
ary environment for di¤erent step-sizes.
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6.2 Tracking Performance Analysis of the Proposed

Algorithms

In this section we investigate the QNLMF algorithm in tracking a constantly varying

channel. Two models for the channel coe¢ cient variation are considered here: namely

Random Walk and Rayleigh Fading (both single-path and multi-path). The input

vector fuig is a BPSK f�1g signal, and the variance of the additive Gaussian noise

is set to achieve an SNR of 20 dB.

6.2.1 Random Walk Model

The random walk model for the channel coe¢ cients is,

wo
i = w

o
i�1 + qi (6.4)

where qi is a white Gaussian vector sequence, whose components are uncorrelated

and have zero mean and variance �2q = 10
�7. The channel used for the mean-square

analysis is used here as the initial channel coe¢ cients. The values for di¤erent variables

have been selected in the same way as was done for mean-square analysis. The results

from Figure 6.25 and 6.26 shows the experimental and analytical behavior of EMSE

for QNLMF algorithm for varying step-sizes. As it is clear from the results that

initially there is some variation between experimental and analytical behavior but as
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the stepsize is increased a close agreement between theory and simulation results is

obtained. Moreover, unlike in the stationary case, the tracking steady-state MSE is a

less increasing function of the step-size �.
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Figure 6.24: Comparison of Analytical and Experimental MSE of QNLMF for Random
Walk Channel for di¤erent step-sizes.
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6.2.2 Rayleigh Fading Model

For the case of single-path and multi-path , the weight-vectors that we wish to estimate

looks like: �
0 0 x2(i) 0 0

�
(6.5)

�
0 0 x2(i) 0 x4(i)

�
(6.6)

where x2(i) and x4(i) represents absolute values of the Rayleigh fading coe¢ cient.

The carrier frequency and the doppler frequency was chosen to be 900 MHz and 66:67

Hz which corresponds to a vehicle moving at a speed of 80 kmph. The sampling

period is Ts = 1 ms. The values for di¤erent variables have been selected in the

same way as was done for Random Walk model in the previous section. The results

from Figure 6.27 and 6.28 shows the experimental and analytical behavior of MSE for

QNLMF algorithm for varying step-sizes under single and multi-path scenario. As can

be seen from these �gures, a close agreement between theory and simulation results

are obtained and like in Random Walk case, tracking steady-state MSE is a lesser

increasing function of the step-size �.
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Figure 6.25: Comparison of Analytical and Experimental MSE of QNLMF for single-
path Rayleigh fading Channel for di¤erent step-sizes.
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Figure 6.26: Comparison of Analytical and Experimental MSE of QNLMF for multi-
path Rayleigh fading Channel for di¤erent step-sizes.
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6.3 Transient Performance Analysis of the Proposed

Algorithm

The transient analysis have been carried out for the uncorrelated input signal where

the eigen-value spread of the covariance matrix Ru was chosen to be 5 and the vari-

ance of the additive Gaussian noise was kept at 10�5. The experiment was run over

105 iterations and furthermore the results were averaged over 30 iterations. Plots con-

cerning the MSD (mean-square deviation) vs time and MSE (mean-square error) vs

time were obtained for LMF, proposed QNLMF algorithm; the results obtained were

compared with the theory. As can be seen from the Figures 6.29, 6.30, 6.31 and 6.32,

a close agreement between theory and simulation results are obtained for white input

as well as for the correlated input.
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Figure 6.27: Transient Analysis of LMF adaptive algorithm MSD and MSE for White
Input Data.
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Figure 6.28: Transient Analysis of LMF adaptive algorithm MSD and MSE for Input
Data with eigenvalue spread = 5.
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Figure 6.29: Transient Analysis of QNLMF adaptive algorithm MSD and MSE for
White Input Data.
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6.4 Comparison of QNLMF and RLS

When steady-state EMSE relations for both the RLS and QNLMF were evaluated,

we found out that RLS performed better for all the noise enviornments. Moreover,

for the same steady-state value of both the algorithms, RLS converges slightly faster

then the QNLMF. So, it can be stated that the RLS algorithm performs better then

the proposed QNLMF algorithm. Following is the table comparing EMSE of RLS and

QNLMF over di¤erent SNR for Uniform noise environment,
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EMSE in Uniform noise environment
SNR 0dB 10dB 20dB
RLS 0.0125 0.00125 0.000125

QNLMF 0.0375 0.0032143 0.000321
Table 6.1: Theoretical steady-state EMSE of QNLMF and RLS
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Figure 6.30: Comparison between the proposed QNLMF algorithm and the RLS al-
gorithm.
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Chapter 7

Thesis Contributions, Conclusions

and Recommendations for Future

Work

7.1 Thesis Contributions

This work has successfully presented a Newton�s method based LMF adaptive algo-

rithm, namely QNLMF (Quasi-Newton LMF) algorithm. This algorithm is analyzed

in terms of convergence properties, steady-state performances, tracking performances

and the transient behavior. The performance of the proposed algorithm have been

supported by presenting the simulation scenarios. The major contribution of this

thesis work are the following:
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1. A novel Newton�s method based LMF adaptive algorithm is proposed.

2. The convergence analysis of the proposed (QNLMF) algorithm is carried out in

terms of mean square sense and the expression for the excess mean-square error

is also derived using the fundamental energy relation.

3. Tracking ability of (QNLMF) algorithm is analyzed. The expression for tracking

excess mean-square error is also derived.

4. The transient-state behavior of (QNLMF) is also analyzed. A mathematical

model was developed to investigate the performance of the proposed algorithm.

5. Finally, the analytical results were then compared with the experimental results

which supports the analysis.

7.2 Conclusions

In this thesis, we have proposed a novel Newton�s method based LMF algorithm

namely QNLMF for wireless environments and studies their performance both ana-

lytically and by simulations. Our study included a thorough comparison of the pro-

posed algorithm with the well-established LMF algorithm and showed that, overall,

the QNLMF enjoys a much faster convergence performance in the steady-state regime

for di¤erent noise environments. Since, Newton�s method based algorithms are a

benchmark, the superior performance was achieved with computational complexity

of the scale of RLS.
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One important aspect is the stability issue of the proposed algorithm, it has been

mentioned in [2] that since the recursions of LMF and LMF-related algorithms em-

ploy power of the error signal fe(i)g, and sometimes this error signal tends to assume

relatively larger values during the initial stages of adaptation; therefore for imple-

mentation perspective it is sometimes advisable to implement LMF and LMF-related

algorithms as follows:

If at a particular iteration it holds that je(i)j > 1;

use the LMS update

else

use the LMF and LMF-related algorithm�s update.

Usually, as time progresses, the error signal becomes smaller and, therefore, the

steady-state performance of such an implementation would be ultimately dictated by

the LMF and LMF-related algorithms and not by the LMS update. Although the

above explanation seems resonable but it has not been used for any of the simulations

presented in this thesis.

Comparing the computational complexity with the time it takes for an algorithm to

reach the steady-state, it can be safely concluded that if the computational complexity

is of paramount importance, then the method of steepest descent is the prefered itera-

tive method for computing the tap-weight vector of adaptive traversal �lter operating

in a wide-sense stationary environment. If, on the other hand, the rate of conver-

gence is the issue of interest, then Newton�s method is the prefered approach. Hence,
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the computational complexity and the rate of convergence for an adaptive �lter are

usually two con�icting parameters, only one of them is usually satis�ed and therefore

the choice of them depends on which is of paramount importance to the application

in hand.

7.3 Future Work

There are few suggestions regarding future work. In this thesis, convergence, track-

ing and transient analysis of the proposed algorithm is carried out under Gaussian,

Uniform and Laplace distributed noise environments. It can be extended to more

types of disturbances as well. As QNLMF works with a constant step-size, it can be

extended to accomodate the analysis under variable step-size. These suggestions can

be incorporated to augment the performane of QNLMF adaptive algorithm.
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Appendix I.

Derivation of the cost function E
�
e(i)4

�
e(i) = d(i)� uTi wi

E
�
e(i)4

�
= E

�
di � uTi wi

�4
E
�
e(i)4

�
= E(d4i )� 4E(d3iuTi wi) + 6E(d2iuTi wiwT

i ui)

�4E(diuTi wiw
T
i uiu

T
i wi)+E(u

T
i wiw

T
i uiu

T
i wiw

T
i ui)

E
�
e(i)4

�
= E(d4i )� 4E(d3iuTi )wi + 6w

T
i E(d

2
iuiu

T
i )wi

�4E(diuTi wiwT
i uiu

T
i wi)+E(u

T
i wiw

T
i uiu

T
i wiw

T
i ui)

106



Gradient vector

@E (e(i)4)

@wi

= 4E

�
e(i)3

@e(i)

@wi

�
@E (e(i)4)

@wi

= 4E

(
e(i)3

@
�
d(i)� uTi wi

�
@wi

)
@E (e(i)4)

@wi

= �4E
�
e(i)3uTi

	

Hessian matrix

@2E (e(i)4)

@w2
i

= �12E
�
e(i)2

@e(i)

@wi
uTi

�
@2E (e(i)4)

@w2
i

= 12E
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Appendix II.

Expansion of the term E [�i]

E [�i] = E
�
e2(i)uiu

T
i

�
= E

�
e2a(i)uiu

T
i

�
+ 2E

�
ea(i)n(i)uiu

T
i

�
+ E

�
n2(i)uiu

T
i

�
= E

�
uie

2
a(i)u

T
i

�
+ E

�
n2(i)

�
E
�
uiu

T
i

�
= E

�
ui
�
~wT
i�1uiu

T
i ~wi�1

�
uTi
�
+ �2nRu:

Now, assuming that the regressors ui are IID, we can proceed as follows:

E [�i] = E
�
ui ~w

T
i�1E

�
uiu

T
i j~wi�1

�
~wi�1u

T
i

�
+ �2nRu
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�
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~wT
i�1Ru ~wi�1

�
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= E
�
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uiu
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�
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since, ~wi�1 is independent of ui as a consequence of the previous assumption, so,

E [�i] = E k~wi�1k2Ru
Ru + �

2
nRu

=
�
E k~wi�1k2Ru

+ �2n
�
Ru:
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