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THESIS ABSTRACT

NAME: MOHAMMED A. MOHAMMED AL-OSTA

TITLE: OPTIMIZATION OF CONTINUOUS POST-
TENSIONED CONCRETE BRIDGE GIRDERS WITH
VARIABLE DEPTH.

DEPARTMENT: CIVIL ENGINEERING

DATE: April, 2009

Post-tensioned single-cell concrete box girders of variable depth are used in
continuous bridges to achieve both economy and aesthetics. To determine the minimum
prestressing for a given bridge deck profile, the minimum cost design of a continuous
single box girder of non-uniform depth is achieved through a constrained optimization
procedure. This study considers both two and three span continuous bridge girders
subjected to American Association of State Highway and Transportation Officials
(AASHTO-96) HS Bridge loading. Both short and long tendons are used in order to
obtain the optimum prestressing force. The nonlinear problem is solved by transforming
it into a linear one by using a new design variable, which proportions long and short

tendons.

A computer code (PCPCBGND) is developed by using a standard FORTRAN for
analysis and optimum structural design of bridge girders where a gradient search
technique is used to solve iteratively the optimization problem. The design variables
include: interior to exterior span ratio for three-span, the depth profile of the cross-

section, tendon eccentricities, and prestressing force. The total cost of the member

X1



considered is the cost of structural materials (concrete and prestressing steel), excluding
the formwork. The design constraints are the prescribed limits of working stresses, the
strength, and serviceability requirements. Several examples are solved by using the
design required by the American Institute (ACI-343R-95) to demonstrate applications
and some important findings. The study shows that optimum prestressing is attained only
at an optimum proportion of long and short tension. Furthermore, for an economical
design, the ratio of interior to exterior span for a three-span continuous girder should be

from 1.30 to 1.40.
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CHAPTER ONE

INTRODUCTION

1.1 General

Prestressed concrete is used widely in concrete construction due to its economy,
reliable structural resistance, ductility and durability. The technique of prestressed
concrete is now widely used in all types of structures and structural components. These
can range from simple beams and floor slabs to large oil platform structures and

innovative bridge forms (Hulse and Mosley, 1987).

Prestressed concrete, particularly box girder construction which is often used in
bridges, allows the use of architectural treatments, such as curved surfaces and finishes
that enhance the appearance of the structure. Box girders, moreover, provide one
excellent method of concealment for unsightly utilities. Post-tensioning in the box girders
extends the usefulness and versatility of concrete by allowing longer spans, fewer and
thinner columns, and better proportioned sections, enhancing the overall appearance of

the structure (Western Concrete Reinforcing Steel Institute, 1971).

Box girder construction also affords many advantages in terms of safety,
appearance, maintenance, and economy. Long spans may be constructed economically,
thereby reducing the number of piers and eliminating shoulder obstacles at overpasses.
Obstacle elimination greatly enhances the recovery area for out-of-control vehicles. Box

girders may consist of a single cell for a two-lane roadway, multiple cells for multiple-



lane roadways, or single or multiple cells with cantilever arms on both sides to provide
the necessary roadway width, and to reduce the substructure cost and minimize right-of-
way requirements. For box girders in general, the longer spans have been cast-in-place
because of the need for greater and variable depths, while the shorter spans lend

themselves to constant depth precast units (ACI-343R-95).

Modern structural engineering tends to progress toward more economical
structures by using numerical mathematics for optimization. Optimization is a branch of
numerical mathematics which is used to identify optimal settings of elements' parameters,
properties, time-variant processes, etc., while simultaneously considering constraints.
Optimization is becoming more important and useful for designing more economical

structures in terms of cost (Arora, 2004).

Optimization involves minimizing or maximizing an objective function, subject to
a set of applicable constraints. For a bridge section the objective function can be:
minimum production costs, minimum life cycle costs, minimum weight, and maximum
stiffness. The list of constraints for a feasible design can be: choice of material,

admissible stresses, admissible displacements (deformations), load cases, and supports.

1.2 Significance of the Study

The design of a continuous prestressed concrete bridge is a time-consuming
process if the bridge girders are of variable depth. As numerous safe designs are possible,
it is of interest to seek an optimal solution based on minimum material cost. In the

present study, an optimization procedure is prescribed for adoption in practical design.



The prescribed approach will enable designers to achieve low-cost design of a continuous

non-uniform bridge girder having a prescribed length.

1.3 Scope and Objectives

The scope of this study is to optimize the design of continuous post-tensioned
concrete bridge girders having two or three spans subject to the HS Bridge loading of the
American Association of State Highway and Transportation Officials (AASHTO). The
system will be capable of analyzing and designing an economical prestressed concrete
single cell continuous box-girder (Figure 1.1). These girders are symmetric about the
transverse center line, as is common in bridges. This implies equal spans for a two-span
continuous bridge girder and an equal exterior span for a three-span girder. The total cost
of structural materials (concrete and prestressing steel) will be taken as the objective
function. The constraints include: prescribed limits of working stresses, ultimate shear
and ultimate moment capacities, severability, cross-sectional dimensions, and tendons
profile to ensure that the minimum concrete cover to tendons is maintained throughout

the whole bridge girder.
The primary objectives of this study are as follows:

I- Develop a generalized computer program to find an optimum design of
continuous post-tensioned concrete bridge girders with variable depth having

two or three spans.

2- Provide informative data about the optimum span ratio in a three-span

continuous bridge girder, which would assist an engineer to choose the spans



close to the optimum value.

3- Provide informative data about the optimum depth ratios relative to the total

length of the bridge.

4- Highlight the optimum tendon arrangement of short and long tendons.

1.4 Limitations

This study is limited to the following conditions:

The two or three-span continuous post-tensioned prestressed bridge girders

have parabolically varying depth.

The only cross-sectional dimensions variable for the single cell of box-girder
is the depth /4, which varies along the length. All other dimensions (Figure 1.1)

are assumed to be prescribed.

The tendon profile consists of parabolic segments.
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Figure 1.1 Typical Cross-Section of the Box Girder

1.5 Research Methodology

To accomplish the above objectives, this research will use a methodology
comprising the following phases (Figure 1.2):
1. Literature Review
e Optimum design of prestressed concrete bridge girders.
e Numerical methods for optimization of prestressed concrete.

e Linear and nonlinear optimization in conjunction with the ‘gradient

technique’.
2. Analysis of Prestressed Concrete:
e Identification of prestress loss in prestressed concrete.

e Identification of secondary moment due to prestressing at the transfer

and service stages.



Identification of design requirements in prestressed concrete elements.

3. Formulation of the Optimum Design:

Definition of the design variables (optimization variables).
Identification of optimization criteria.

Identification of the inequality, equality constraints and upper and lower
bounds on design variables.

Provide an optimization procedure.

4. Computer Code for Optimization

5.

Development of a subroutine to analyse the system for uniform load.
Development of a subroutine to analyse the system for AASHTO HS
Bridge loading.

Development of a subroutine to calculate the maximum and the
minimum design forces at each of the ten division stations along a span.
Development of a subroutine to calculate the tendon eccentricities of
prestressed concrete at each of the ten division stations along a span.
Development of a subroutine to calculate the frictional loss of
prestressed concrete at each of the ten division stations along a span.
Development of a subroutine to calculate the secondary moment due to
prestressing at the transfer and service stages.

Development of a subroutine to calculate the stresses at the transfer and
service stages for each of the ten division stations along a span.

Development of a subroutine to optimize the system.

Applications, Results and Discussion



Solution of example bridge girders for different lengths to obtain the
optimum values of the design variables of these examples.
Investigations on the influence of span ratio on the total cost of
structural materials (concrete and prestressing steel) for three-span
bridge girders.

Investigations on the influence of tendon arrangement (short or long) on
the cost of prestressing steel for bridge girders.

Investigations on the influence of depth on the total cost of structural

materials (concrete and prestressing steel) for bridge girders.
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CHAPTER TWO

LITERATURE REVIEW

A considerable amount of literature is available on the optimum prestress design
for a bridge girder. Many optimization criteria have been introduced, such as minimum
weight, initial camber and recently minimum cost. This chapter reviews some recent and
previous works of the optimal design of prestressed concrete bridge girders and slab
decks of simply supported and continuous beams, with pre-tensioned or post-tensioned

members.

A method was developed for the optimum design of prestressed indeterminate
beams with uniform cross-section. The design variables were prestressing force, tendon
configuration and cross-sectional dimensions. A transformation of variables was
employed to reduce the optimization to a solution of a linear programming problem. The

total cost of the system was the cost of concrete and prestressing steel (Kirsch, 1972).

An interactive design and analysis algorithm for simply supported prestressed
concrete girders was devised by using linear programming to arrive at the optimum girder
cross-section and prestressing strand design. The path of the strands by specifying the
strand hold-down points and associated strand centroid eccentricity can be determined by

using the kern boundaries (Johnson, 1972).

A computer program using the direct search method was developed to calculate

optimum geometric configurations of prestressed concrete box girders of uniform depth
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along the span length: (a) with nonlinear constraint conditions involving stresses and
deflections; (b) with specified inputs on loading, unit costs and overall size; and (c) with
checks on buckling, shear and ultimate section strength. The system was composed of
identical simple spans, each of length /, placed end to end, together with their supporting

piers (Touma and Wilson, 1972).

An optimal design of indeterminate prestressed concrete systems was developed
in a nonlinear programming form. The design variables were the concrete dimensions,
tendon coordinates, and prestressing force. The constraints were related to various
behavior and design requirements, and the objective function represented the overall cost.
The total cost included the concrete and prestressing steel. The problem was formulated
on a two-level optimization, where the concrete dimensions were optimized in the second
level, and the tendon variables prestressing force and tendon coordinates were determined

in the first level (Kirsch, 1985).

An application of generalized geometric programming was presented for the
optimal design of a prestressed concrete box bridge girder for a balanced cantilever
bridge. The actual costs of construction (consisting of prestressing, formwork and
concrete) were minimized. The design problem was formulated in accordance with the
British Code of practice CP-110. The constraints variables were bending and shear

stresses, and geometric criteria (Yu et al, 1986).

An optimization procedure for the design of structures was developed. This work
was based on the work done by Barr, using an algorithm called GALL based on the

geometric programming theory to solve large engineering design-related optimization
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problems. The optimization procedure was applied successfully to solve optimally
structural design problems in large reinforced concrete and prestressed concrete
structures and to determine the sensitivity of the design to parameter values (Barr et al,

1986).

The design of three-span continuous prestressed concrete girders was formulated
as a mathematical programming problem with the possibility of parabolically varying
depth in each span. The design variables were prestressing force, seven geometrical
concrete section dimensions, and tendon eccentricities at the supports and mid-spans. The
total cost of the system was the cost of concrete and prestressing steel. Long cables
running throughout the whole length of beam were used, which was neither practical nor

economical (Hussain and Bhatti, 1986).

An algorithm to minimize prestressing steel in concrete slabs was presented.
This was based on elastic theory, and it used the finite element method. The influence-
line method and the equivalent-load approach were reviewed, and the latter was
employed to compute the effects of prestressing. Non-uniform tendon layouts were used
to minimize cable weight of concrete slabs, but this problem required iteration, since the
moments and the prestressing force of a section depend on the tendon layout (Kuyucular,

1991).

A method was presented for optimization of prestressed concrete bridge decks for
a given fixed geometry. The design variables included the sizes of the prestressing cables
and the cable profile. A simple procedure of linear optimization was used to obtain the

‘best’ cable profile, by combining a series of feasible cable profiles. A non-linear
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programming for optimization, namely ‘the steepest gradient method’ was used to solve
this problem. This problem was to find the sizes and geometries of the prestressing cables

as well as the longitudinal variation of the concrete section (Quiroga and Arroyo, 1991).

An optimum design of prestressed concrete beams was presented for simply
supported beams having three different sections. Minimum weight and minimum cost
optimization formulations were used to solve the problem. The minimum cost of the
problem included the costs of concrete, steel and forming. In the minimum weight
problem, the weights of concrete and steel were considered. The design variables
included the prestressing force and the width of the cross-section (rectangular sections),
or the width of the web (flanged sections). The constraints were the working stresses,
deflections, ultimate strength, buckling, and section adequacy requirements (Erbatur et al,

1992).

An approach was presented for the optimization of prestressed concrete structures
with two or more (possibly conflicting) objectives which must simultaneously be
satisfied. The most relevant objective function was adopted as the primary criterion, and
the other objective functions were transformed into constraints by imposing some lower
and upper bounds on them. The projected Lagrangian algorithm was then used to solve
the single-objective optimization problem. The results show that increasing the
prestressing force and decreasing the slab depth made successive improvements of the
minimum cost, but the opposite trend occur on improving the minimum initial camber

(Lounis and Cohn, 1993).

A practical approach was presented for nonlinear design for continuous
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prestressed concrete structures and to identify its potential benefits. The conflict was
demonstrated between desirable plastic redistribution (at ultimate limit state) and zero or
limited cracking (at serviceability limit state) for fully prestressed concrete structures.
The problem was solved by using the Lagrangian algorithm. The design problem was
simplified by adopting the maximum practical eccentricities at all critical sections for the

tendon layout (Cohn and Lounis, 1993).

An optimum design was presented for the optimization of simply supported
partially prestressed un-symmetric I-shaped concrete girders. The design variables
included prestressing steel, non-prestressing steel and spacing between shear
reinforcements. Both cracked and uncracked sections were assumed. The constraints
variables were flexural stresses, fatigue stresses, crack width, ductility, initial camber,
deflection due to both dead and live loads, ultimate moment capacity of the section with
respect to cracking moment and factored loads, and the ultimate shear strength (Khaleel

and Itani, 1993).

Three levels of optimization were applied for superstructure design of short- and
medium-span highway bridge systems: (1) level 1 - component optimization; (2) level 2 -
structural configuration optimization; and (3) level 3 - overall system optimization.
Levels 1 and 2 identified the best solutions for specific components (precast I-girders,
voided and solid slabs, single- and two-cell box girders) and layouts (for precast I-girder:
one, two, and three; simple or continuous spans). Level 3 selected the overall best system
for given bridge lengths, widths, and traffic loadings. Only single-span, cast-in-place
prestressed concrete box girders with one or two cells and with constant depth were

investigated (Cohn and Lounis, 1994).
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An effective formulation was developed for optimum design of two-span
continuous partially prestressed concrete beams. The design variables were prestressing
forces along the tendon profile, which may be jacked from one end or both ends with
flexibility in the overlapping range and location, and the induced secondary effects. The
imposed constraints variables were the flexural stresses, ultimate flexural strength,
cracking moment, ultimate shear strength, reinforcement, limits cross-section dimensions,

and cable profile geometries (Al-Gahtani et al, 1995).

A method for automatic design of continuous post-tensioned bridge decks with
two equal spans, constant depth, a straight platform and cast in place monolithically in
only one construction phase was presented by using two steps. In the first step, the
optimal prestressed force for feasible prestressed layout was obtained by means of linear
programming techniques. In the second step, the prestress geometry and minimum force
were automatically found by steepest descent optimization techniques (Utrilla and

Samartin, 1997).

A two-level design procedure was developed for indeterminate structure
prestressed concrete structures. In the first level, the prestressing force and the tendon
coordinates were optimized. In the second level, the concrete dimensions were selected.
The first-level problem was solved by using a linear programming form, but the
minimum concrete dimensions were determined by solving a simple explicit nonlinear

programming problem (Kirsch, 1997).

An approach was presented for multicriteria fuzzy optimization of a prestressed

concrete bridge system considering cost and aesthetic feeling. For discrete sets of span
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ratio and girder height at the intermediate support of the superstructure, the minimum
total construction costs were obtained by solving the minimum construction cost
problems of the superstructure and substructure for given span ratio and girder height. A
long cable along the whole span, and very short cable only at maximum positive and
negative moments, were used in this system. The design variables of superstructure
included the parabolic prestressing force, the linear partial prestressing forces, the
thickness of the bottom slab of the box section and the tendon eccentricities of parabolic
prestressing cable. The constraints variables of superstructure (box girder) were stress
and cracking constraints in the serviceability limit state and the flexural-strength and

ductility constraints in the ultimate limit state (Ohkubo et al, 1998).

A computer program was developed to find the optimum design of three-span
continuous post-tensioned beams of a prescribed total length for pseudo slab-type decks
with constant depth. The design variables included cable layout, which would yield
minimum prestressing steel and span ratio. The problem of optimization was solved by
using linear programming in conjunction with the ‘gradient technique’. The two types of
tendons, full length and short length, were used to find the best tendon arrangement. The
constraints variables were the limits of permissible stresses both at the initial stage of
prestressing and at the final stage, which must be satisfied at all sections throughout the

beam (Azad and Qureshi, 1999).

Deterministic design was presented for simply supported prestressed concrete
girder bridges. A set of geometrical dimensions, girders spacing, amount of prestressing
loses and tendon profile were optimized. The constraints variables were flexural stresses

at initial and final stages, crack width, initial camber, deflection due to both dead and live
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load, total loses, ultimate moment capacity with respect to the factored loads and

cracking moment, and the ultimate shear strength (Barakat et al, 2002).

A general approach was presented for the single objective reliability-based
optimum (SORBO) design of simply supported prestressed concrete beams (PCB).
Several limit states were considered, such as permissible tensile and compressive stresses
at both initial and final stages, prestressing losses, ultimate shear strength, ultimate
flexural strength, cracking moment, crack width, and the immediate deflection and the
final long-term deflection. The design variables included six geometrical dimensions that
shape the PCB cross-section and one that represents the amount of prestressing steel

(Barakat et al, 2003).

A method for the total cost optimization of precast prestressed concrete I-beam
bridge systems was presented by taking into account the costs of the prestressed concrete,
deck concrete, prestressing steel of I-beam, deck reinforcing steel, and formwork. The
problem was formulated as a mixed integer-discrete nonlinear programming problem,
and it was solved using the robust neural dynamics model of Adeli and Park. The total
cost of the system included the cost of the concrete, reinforcement prestressed and non-
prestressed, concrete deck formwork, and fabrication of the prestressed I-beams. The
design variables were the number of beams, the cross-sectional area of the precast
prestressed [-beams, the area of the prestressing steel slab thickness, the cross-sectional

area of the deck steel, and the surface area of the formwork (Sirca and Adeli, 2005).

Review of the literature implies that many researchers have been working in this

direction to find the optimum prestress design for a bridge girder but most of them did
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not consider the variation of the prestressing force along the tendon profile and the
resulting secondary moments due to prestressing. Almost no research has yet been done
on optimization of the design of post-tensioned continuous bridge girders of prescribed
total length and with variable depth. Ohkubo et al. (1998) use multicriteria fuzzy
optimization of only a three-span continuous prestressed concrete bridge system
considering cost and aesthetic feeling. The prestressing loss was assumed to be 15% and
the design involved the use of long parabolic cable along the whole span and very short
linear partial cable only at maximum positive and negative moments. This system was
neither practical nor economical, because it needs more anchorages and the prestressing
is more difficult. In other words, the assumed prestressing arrangement is not very

practical for routine design.



CHAPTER THREE
ANALYSIS OF PRESTRESSED CONCRETE

3.1 General

In this chapter, a brief introduction to analysis of prestressed concrete elements is

given.

The prestressing force applied to a post-tensioned member varies not only with
time but also along the length of the member due to loss of prestressing force from

various factors.

3.2 Loss of Prestressing

Loss of prestress in general is defined as the difference between the initial
prestress in the prestressing steel and the effective prestress in the member. This
definition of prestress loss includes both immediate loss at transfer stage and time-
dependent loss at service stage. The loss of prestressing force can be divided into two

categories (Figure 3.1):

e Immediate elastic loss during the fabrication or construction process,
due to elastic shortening of the member, anchorage losses, and

frictional losses:

Instantaneous loss at a section = PJ —E
e Time-dependent losses such as creep, shrinkage, and those due to

18
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temperature effects and steel relaxation:

Time-dependent loss = P-P

1 e

where

P; = prestressing force at the jacking end.

P =

; = initial prestressing force in prestressing tendon after transfer at a particular section.

P, =final prestressing force in prestressing tendon after all losses.

Immediate Losses Time-Dependent
Losses

P, ) P — P

Prestressing Force
Immediately after
Transfer

Jacking Force Final or Effective

Prestressing Force
Figure 3.1 Loss of Prestressing Force
Immediate Elastic Loss (at Transfer Stage)
These losses occur at the transfer stage, and they include (Qureshi, 1995):

e the friction loss due to curvature and wobble effects,

e the elastic shortening loss,

e the anchorage seating loss due to tendon slippage during anchoring.
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3.2.1 Loss due to Friction

Loss due to friction occurs in a post-tensioning member due to friction between
the tendons and the surrounding concrete ducts. It is affected by the global tendon profile

(curvature effect), and local deviation (wobble effect).

The loss due to curvature, APC , at a location is
AP. =P,(1-e ") (3.1)
and the loss due to wobble, AP w18

AP =P (1-e*") (3.2)

wi

Thus, the total loss due to friction, AP, , at any location along the tendon is given by
AP, =P (1—¢ "0 (33)
where

P; = prestressing force at the jacking end.

‘91‘ = the change in angle between the tangents of tendon from the jacking end to the

location i, where the friction loss is calculated.

u = coefficient of friction between the tendon and the duct.
K= coefficient of friction between the tendon and the surrounding concrete.
[; = the projected length of the tendon from the jacking end to the location i, where the

friction loss is calculated.
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So the prestressing force at any station i after friction loss becomes:

F =P, -AP. (3.4)

3.2.2 Loss due to Elastic Shortening of Concrete

For post-tensioned members with one tendon or with two or more tendons
stressed simultaneously, the elastic deformation of the concrete occurs during the
stressing operation before the tendons are anchored. In this case, elastic shortening losses
are zero. In a member containing more than one tendon, and where the tendons are
stressed sequentially, the elastic deformation losses vary from one tendon to another, and

are a maximum in the tendon stressed first and a minimum (zero) in the tendon stressed
last. Immediately after transfer, the change in strain in the prestressing steel Aé'p caused
by elastic shortening of the concrete is equal to the strain in the concrete at the steel level,

€., , which can be expressed mathematically as follows:

g =22 Ay — 8% (3.5)

Therefore the loss of stress in post-tensioned member is equal to

E
Post-tensioned: AP, =—=0c,, x4, x0.5 (3.6)
E.
P ep2 B e.M,
in which O, = 4 - I + I (3.7)

where
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AP = losses of prestressing force due to elastic shortening in post-tensioned member.

E. E » — elastic modulus of concrete and steel, respectively.
P= APS.G i — initial prestressing force at transfer.
€., = strain in concrete at prestressing steel level due to elastic shortening.

O, = stress in concrete at the centroid of tendons at station.

A.,4 ps — gross area of concrete section and prestressing steel , respectively.

I . — moment of inertia of concrete section at station.

€, = the distance from the centroidal axis of the section to the tendon profile at the

being considered station.

It is clear that the loss due to elastic shortening varies along the tendon profile because it
is affected by many factors such as prestressing steel, cross-sectional dimensions, and

bending moment due to self-weight.

3.2.3 Loss due to Anchorage Seating

In post-tensioned members, when the prestressing force is transferred from the
jack to the anchorage, some slip occurs. This results in loss of prestress. The amount of
slip depends on the type of anchorage, and it is usually specified by the manufacturer of
the anchorage. Generally, the magnitude of the anchorage seating loss ranges between 1/4
of inch and 3/8 of inch for two-piece wedges (Abul-Feilat, 1991). The loss of prestress
force due to slip has more effect on a short prestressed concrete member than on a long

one, and it should not be ignored in the design. This can be expressed as follows:
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A
AP, = E, Tsx 4, (3.8)

where

AP, = loss of prestressing force due to anchorage seating.

Ep = elastic modulus of prestressing steel.

A ps — gross area of prestressing steel at the relevant station.

L = the length of tendon.

Time-Dependent Loss (at Service Stage)
These losses occur at the service stage, and they include (Qureshi, 1995):
e the loss due to creep of concrete,
e the loss due to relaxation of prestressing steel,

e the loss due to shrinkage of concrete.

3.2.4 Loss due to Concrete Creep

The deformation in the concrete at the level of the tendon is called creep. This
creep strain depends on the stress in the concrete at that level. It is a function of the
magnitude of the applied load, its duration, the properties of concrete including its

mixture proportions, curing conditions, the age of the element at first loading, and

environmental conditions.

The loss of prestressing force due to concrete creep can be represented as

xo, xA, (3.9
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It can be observed that the loss of prestressing force due to concrete creep depends on the

creep coefficient at time ¢, C; and stress in concrete at the centroid of tendons, G,

The creep coefficient at time ¢, Ct is given by:
C, = ———C, (3.10)

The relationship between creep strain €.y and elastic strain €y is called creep

coefficient Cu and it is given by:

c =fa 3.11)

The stress in concrete at the centroid of tendons O, is defined as

2
P e P e M
O ==~ pI + p[ t (3.12)

c c c

where

P =RP. =4 05O pe = effective prestressing force at service stage.

R,

R = factor representing the total loss of prestressing force, p - £
P

i

M, = bending moment due to total load at that station.
Other variables are as defined before.

3.2.5 Loss due to Steel Stress Relaxation

If a tendon is stretched and held at a constant length (constant strain), the

development of creep strain in the steel is exhibited as a loss of elastic strain, and hence a
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loss of stress. This loss of stress in a specimen subjected to constant strain is known as
relaxation. Relaxation in steel is dependent on the stress level, and it increases as the
stress level increases. Relaxation losses depend on the quality of the steel, and they can

vary in the range from 3% to 8% (Caprani, 2006/7).

The loss increment due to steel stress relaxation at any stage can be expressed as

ap, = prdogt=logt) Ju g5 (3.13)
CR fpy

where

];i = the initial stress of tendon steel.

fpy = the yield strength of tendon steel.

Cr = Coefficient depends on type of tendon steel, where
Cr =10 and Cy = 45 for stress-relieved and low-relaxation tendons, respectively.
t;, t, = the time at the beginning and end of that time interval from jacking to the time

when loss is being considered.

3.2.6 Loss due to Concrete Shrinkage

Shrinkage is affected by many factors, such as mixture proportions, type of
aggregate, type of cement, curing time, time between the end of external curing and
application of prestressing, and size and shape. The average value of nominal ultimate
shrinkage strain is (&), = 820 x 10 in/in as stipulated by the Prestressed Concrete
Institute. For post-tensioned members, the loss in prestressing due to shrinkage is less
than the loss in pre-tensioned members since some shrinkage has already taken place

before post-tensioning members. The PCI gives a general expression for loss due to
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shrinkage as follows:

Af,y =8.2x10°K E, (1-0.06 %)(100 —RH) (3.14)
where RH = relative humidity, ¥ = volume-surface ratio, and K; = factor depending
S

on time from end of moist curing to application of prestress. See Table 3.1 (Nawy, 2006).

Table 3.1 Value of K,;, for Post-Tensioned Members

from end of moist
curing to application of
prestress, days 1 3 5 7 10 20 30 60

K 092 085 08 077 073 0.64 0.58 045

Adjustment of shrinkage losses for standard conditions as a function of time 7 in
days, after 7 days for moist curing and 3 days for steam curing, can be expressed

mathematically as follows:

e Moist curing, after 7 days
t
= 3.15
(gsh )t 35 +f (gsh )u ( )
where (&), 1s the ultimate shrinkage strain, and ¢ = time in days after shrinkage is

considered.

e Steam curing, after 1 to 3 days

t
=— 3.16
(gsh )t 55 1 (gsh)u ( )

3.2.7 Lump-Sum Estimates of Losses

Many thousands of successful prestressed structures have been built on the basis

of lump-sum estimates of losses. This approach is suitable where member sizes, span,
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materials, construction procedures, amount of prestress force and environmental
conditions are not out of the ordinary. For such conditions, the American Association of
State Highway and Transportation Officials has recommended the lump-sum estimates of
losses for fully prestressed post-tensioned box girder as 25 Ksi with an average value of
23 Ksi. The loss due to friction is excluded, and so it should be computed and added to

the previous value to get the total loss of the prestressed concrete member (Nilson, 2004).

The total loss of the prestressed concrete member, excluding loss due to friction,

can be taken as 19% (Gail, 2000).

3.3 Tendon Arrangement

3.3.1 Tendon Profile

The profile of tendons in general varies along the bridge to follow the bending
moment, and this variation affects the indeterminate moments. In a continuous span with
variable depth, the bending moment along the span varies considerably, due to the
changing moment of inertia, resulting in a significant difference between maximum
positive and negative moments. The optimum tendon profile will have to follow this
trend to counter the stresses due to bending moments. The tendon profiles for exterior

and interior spans are shown in Figures 3.2 and 3.3.

In this study, the girder profile along the length is assumed to have parabolic
depth variation, and the tendon geometry is also assumed to have a parabolic profile
which consists of small segments whose coordinates can be represented mathematically

by using the following expressions taking into account the variation of the depth as



28

shown in Figures 3.2 and 3.3 (Khachaturian and Gurfinkel, 1969).

a) Typical endspan:

x =01t x=al,:
ey = - BB 2 2L =PI gyt (v (x) - vy (3.17)
(al)) al,
x =al to x =1 - «a,)l :
e(x) = (1+ Bi)e, 2x2_ 2a(l+ B))e, ¥
(I-a)l-a-a))l (I-a)l-a-a)l (3.18)
a2(1+ﬁ1)eb _ _
A-a)l-a _al)x ey T (Vt(x)—y,)
x = 10-a,)!, to x =1,:
- _ A+ e, - 20+ Be,  (1+ B)e, _ (3.19)
) e Taean, T a-a) )
b) Typical symmetrical interior span:
/ 1
xz—zzto x:—(z—az)lzz
e(x) = — 2(1 + ﬂ;)eb x? _ 2(1 + ﬂz)eb x — (1+ ﬂz)eb + e, + (yt(x) - yd) (320)
a,l, a,l, 2a,
x——(l—a ), to x—(l—a ), -
- 2 2/%2 - 2 27%2
e(x) = ZLELDG g (i () - v ) (3-21)
(5 - 0‘2)122
2
1 1
X = (?—0:2)12 to x = 512 :
e(x): _2(1+ﬂ22)eb XZ + 2(1+ﬁ2)eh x — (1+ﬂ2)eb x+eb+ (yt(x)— yd) (3.22)
a,l, a,l, 2a,
where

yt (x), yq are the distance from the centroidal axis to the top fibre of the section at

distance x and at exterior support, respectively. The symbols ) to f, are eccentricity



29

factors and a to a; are the length factors for tendon geometry. e(x) is the distance from the

centroidal axis of tendon to the centroidal axis of cross-section at distance x.

3.3.2 Long and Short Tendons

In a continuous span, the maximum negative moment at the interior support is
generally greater than the maximum positive moment near the midspan. The demand of
required prestressing steel at the interior support is greater than the area of prestressing
steel at the maximum positive moment location. Thus the use of the same area of the
prestressing steel (same number of tendons) throughout the whole bridge is not
economical. The problem is solved by using variable depth and a combination of long
tendons running throughout the whole length (L) and short tendons running to a specified
length of the bridge girder (Ls). The layouts of long and short tendons in two and three

span are shown in Figures 3.4 and 3.5, respectively.

The total prestressing force at the jacking end is denoted by P; in long tendons and
by P, in short tendons. Hence the total of prestressing force at the jacking end will be

denoted as P;
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3.4 Secondary Moment

In continuous beams, an additional moment results from the prestress force itself
and this moment is often referred to as the secondary moment, and the support reaction
due to prestressing force must be included in the overall analysis of the beam. The term
“‘secondary” is somewhat misleading, since sometimes the moments are not secondary in
magnitude but play a most important part in the stresses and strength of the beam. The

value of secondary moment is dependent upon the tendon geometry and prestressing.

This value could be positive or negative. If the positive moment exists, it will
increase the positive moment in the midspan and decrease the negative moment at the
interior support, and vice versa. The secondary moment has to be evaluated at the transfer

and service stages of loading to be considered in the design of the member.

3.4.1 Analysis to Determine Secondary Moment

The calculation of the secondary moment M, can be done in several ways. Due to
the complication of tendon profile, and the variability of prestress force along the tendon
and depth of cross-section, the appropriate method to determine M is the unit load

method of structural analysis.

The secondary moment and the net prestressing moment can be calculated as

follows:

1- First, each span is divided into ten equal divisions. The primary prestressing

moment M, from the chosen tendon profile is calculated at each station.
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2- The primary prestressing moment is used to determine the secondary moment by

using the unit load method. For a numerical integration, Simpson’s rule is used.

3- From the support moments, the net prestressing moment at a station can be

computed as

M, .=M,—M, (3.23)

pnet

3.4.2 Unit Load Method

Two-Spans Continuous Bridge Girder

The redundant support moments M » due to primary prestressing moment M »

can be calculated from the condition that the slope at the interior support b is zero due to

symmetry. This is the unit load method (Figure 3.6.a):

Equating Slope at'b "

L, 2

M h
I mebx ax + M/)J mhx ax =0 (3.24)
EI EI

0 0

The integral can be calculated by using Simpson’s rule.
Three-Spans Continuous Bridge Girder:

In three-span continuous girders, the redundant support moments M » and M ¢

due to the primary prestressing moment M » can be calculated by solving two

simultaneous equations. These equations can be written by equating slopes at'»'and ' ¢
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and by using the unit load method (Figure 3.6.b). However, as only symmetric three
spans are considered, M, = M,. This leads to the solution of only one equation (Azad,

2006).

Equating Slope at'b "

6,+6, =0 (3.25)
L, M L, L, M
I =l 8x+Mmehx ox + [ 2 gxy
) EI ) EI ) El
L, m 2 L, m m

M BOx+ M, | —2—=<0x=0 3.25.1

’ ! EI ‘ ! EI ( )
where

A/lpx= primary moment at x on the span.
nm, = moment at x due to unit moment at b .

m_.. = moment at x due to unit moment at c .

Evaluation of the integral can be accomplished as before by using Simpson’s rule as

[ red =2 ) +4 E 1) +2 3 )+ f(x,) (.26

i=odd i=even
where f(xy) = value of f(x) at the first station, numbred zero and f{x;) = value of f(x) at

station i (i = 1,....,10)
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3.5 Design Requirements for Prestressed Concrete Members

In the design of prestressed concrete members, the main considerations are
1. normal stresses due axial and flexure force under service load,
2. flexural capacity under ultimate load,
3. shear strength capacity,

4. serviceability requirements (camber and deflection).
3.5.1 Normal Stresses Due to Axial and Flexure Force

Sign Convention of Normal Stresses:

The positive sign will be considered for tensile stresses and allowable tensile
stresses, whereas the negative sign will be considered for compressive stresses and

allowable compressive stresses.

Normal stresses in a concrete section are due to the applied loads (live and dead)
and to the prestressing force. These stresses are maximum at the extreme fiber of the
cross-section (at top and bottom of cross-section). These stresses have to be considered in
the design of prestressed concrete at two stages of loading. The first stage is the transfer
stage or initial conditions, where the initial prestressing force and the secondary moment
after the immediate losses are acting with the self-weight of the member. The second
stage is called the service stage, at which the effective prestressing force (with secondary
moment) after all losses are acting with the self-weight of member and the superimposed

dead and live load.
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a) At Transfer Stage:

fibz_i+(ﬂ’ieiMoiMsi) (3.27)
Ac Sb
fit B (EReEMytMy) (3.28)

Ac St

b) At Service Stage:

tP,ext M, =+ M
fsb _ _ie +( e€ ST se) (329)
¢ b
fsz:_j_e_(ipeeiA;TiMse) (3.30)
C

¢
where

t b . . .

f i f ; are top and bottom stresses in cross-section at transfer stage, respectively.
t b . . . .

f s s f s are top and bottom stresses in cross-section at service stage, respectively.

P., P, are initial and effective total prestressing force at transfer and services stages,

respectively.

S Py S p are section modulus at top and bottom of cross-section, respectively.

Ac is the area of the concrete cross-section.

e 1s the distance from the centroidal axis of the section to the tendon profile.

M,-,Me are initial and effective secondary prestressing moments at transfer and services

stages , respectively.
j\/[o,A/[T are bending moments due to self-weight and total load, respectively.

These stresses vary along the beam due to variation in prestressing force, cross-

section and the applied moment from the loads. Thus, these stresses have to be calculated
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at each station, and checked to ensure that they are less than the allowable stresses.

3.5.2 Ultimate Flexural Strength

The ultimate flexural strength of prestress concrete member requires calculating
the value of prestressing steel stress at failure f ps - This stress can be determined either

by using the ACI-318-05 approximate formulae or by using the more accurate method

called strain compatibility analysis.

The ACI-318-05 recommends the use of the following formula for bonded

prestressing tendons, in lieu of the more exact method,

e I ou 3.31
Tps = pu {1_ p{p s L(w - w')]} ( )
p

This equation may be used, provided that f isnotless than0.5 f .

In this thesis, strain compatibility was adopted. This method provides a more
accurate value of f ps than the value specified in ACI-318-05’s approximate formulae,

and it requires the stress-strain curve of the prestressing steel. Since computer code is
implemented as in this thesis, mathematical equations can be used to represent the stress-
strain curve of the prestressing steel. These mathematical equations can be written for the
idealized stress-strain diagram or can be obtained from other references, such as (PCI,

2004).

Strain Compatibility Method

As the stress-strain for prestressing steel is nonlinear after proportional limit, the
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exact value of f ps 18 not known at failure, unlike ordinary reinforced concrete RC. The

failure condition is assumed when the strain in concrete reaches €, :

Nz,

CGC

Figure 3.7 Strain during Loading Stages
Successive iterations are used to solve this problem as follows:

1) The initial strain of steel due to prestress alone is calculated by

- (3.32)

2) The strain in the tendon when concrete reaches cracking (decompressed) is

e = _te 4 Cr T (3.33)

3) The steel stress, 1, , at failure is assumed so that s =~ < f .

4) The depth of the stress block at failure ' @ ' can be calculated from the
equilibrium of the tensile and compressive forces acting on the section, as

follows:

T,=C, (3.34)



41

in which C, is the compressive force acting on concrete segments which are expressed in

terms of the stress block depth 'a' and T, is the tensile force acting on prestressing steel.

Depending on the assumed value of f »s and the sign of bending moment (top or

bottom flange in compression) this value will be calculated and checked to find out
whether the neutral axis lies within the top or bottom flange or the web. Then, the depth

of the neutral axis ¢ can be obtained from:

c=— (3.35)

gps} = gcu (3.36)
C
6) The total strain at failure is
gps = gpsl + gpsZ + gps3 (337)

7) The actual stress of prestressing f| ps 1s calculated, depending on €, and
checked with the trial value. If close agreement is observed, the actual
stress of prestressing f ps 18 used to calculate the ultimate flexural
strength. Otherwise the steps from (3) to (7) will be repeated until the

desired accuracy is reached. Then the last value for f ps Will be used.

8) The ultimate flexural strength of the section M, is calculated by the

moment equilibrium of the tensile and compressive forces acting on the
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section.

3.5.3 Shear Strength Capacity

Generally cracking of prestressing concrete as well as reinforced concrete

members can arise from two causes:
e Flexure-shear cracking
e Web-shear cracking
Both these crackings are essentially diagonal. During the design process, these
two types of shear strength criteria have to be verified.
Flexure-shear cracking

For a member in bending, the flexural cracking first develops at the maximum
moment region, and it propagates vertically. This crack becomes inclined in the
combined stress region with an increase in the load. The presence of shear stress causes

the cracks to be inclined. When the cracks develop to a sufficient height, the member

may fail in shear-compression failure. The total shear force VC,» that would produce

flexure-shear failure according to ACI-318-05 is:

V, =065 fcb,d +V, + ZM e (3.38)

max

But V', need not be taken as less than

1.7 fc'b, d (3.39)

where

M,0x = maximum factored moment at section due to externally applied loads, in-/b
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V: = factored shear force at section due to externally applied loads occurring

simultaneously with M., [b

M., = moment causing flexural cracking at section due to externally applied loads, which

is given by

Mep= Wy )6 1+ fpe—fy) (3.40)

where
Jpe = compressive stress in concrete due to effective prestress forces only (after allowance
for all prestress losses) at extreme fiber of section where tensile stress is caused by

externally applied loads in psi

Pe e
fpe :A_(1+yt_2)
c r

(3.41)

fa= stress due to unfactored self-weight, at extreme fiber of section where tensile stress is

caused by externally applied loads in psi

7 =2t00 (3.42)

M, = moment due to unfactored self-weight at section
vy, = distance from centroidal axis to extreme fiber in tension in inches.

1. = moment of inertia of concrete cross-section in inches.
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Web-shear cracking

This type of cracking may occur in a thin web member of a heavily prestressed
member, especially near the support. If the principal tensile stress in the web is large
enough, cracks will develop in the web and will propagate diagonally, causing the failure

of the member.

The nominal shear strength provided by concrete when diagonal cracking results

from excessive principal tensile stress in web is V,,. This shear strength is increased by

the vertical component of the effective prestressing force, V » »andis given by
V =P siné (3.43)
P e

where

P, = the effective prestress force acting at that section, and

6 = the angle between the slop of the tangent to the tendon profile and the horizontal

C.G.C line at that station.

Therefore, VCW as recommended by ACI-318-05 is

Vew= BSYfe' + 0.3fpe)byd + V) (3.44)
where

Jfpe = compressive stress in concrete (after allowance for all prestress losses) at the
centroid of the cross-section resisting externally applied loads, or at the junction of web

and flange when the centroid lies within the flange, which is given as
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e (3.45)

The shear strength provided by the concrete V', is assumed equal to the lesser of

V.adV,, .

Cl

The ACI-318-05 stipulates shear strength V' shall not be taken as greater than
8 \/fc'by,d , or else the cross-sectional dimensions must be modified to satisfy this

condition
where

Vs = nominal shear strength provided by shear reinforcement and is given by

y =-u_c (3.46)

V', = maximum factored shear force at section due to externally applied loads

¢ = strength reduction factor.

3.5.4 Serviceability Requirements

Control of deflections

Deflection calculations shall consider dead load, live load, prestressing, erection

loads, concrete creep and shrinkage, and steel relaxation.

The AASHTO specification recommends that, for a superstructure member
having simple or continuous spans deflection, the deflection due to service live load plus

impact shall not exceed 1/800 of the span (AASHTO, 1996).
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The ACI-343R-95 stipulates minimum recommended thicknesses for
superstructure prestressed members, unless computation of deflection indicates that a
lesser thickness can be used without any effects. Table 3.2 (ACI-343R-95)

Table 3.2 Recommended Minimum Thickness for Constant Depth Members*

Superstructure type Minimum depth **
ft m
Bridge slabs with main reinforcement L + 10 L +3
30 30

parallel or perpendicular to traffic

But not less than 0.542(0.164)

T-girders L+9 L+ 2.75
18 18

Box girders L + 10 L +3
20 20

* When variable depth members are used, table values may be adjusted to

account for change in relative stiffness of positive and negative moment sections.

** Recommended values for continuous spans. Simple spans should have

about a 10 percent greater depth.
L = Span length of member in ft (m).

e Computation of immediate deflections which occur immediately on
application of load should be computed by the usual methods or formulas

for elastic deflections, and by using the moment of inertia of the gross
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concrete section for uncracked sections.

e Additional long-time deflection should be computed, taking into account
the stresses in the concrete and steel under the sustained load, including
the effects of creep and shrinkage of the concrete and relaxation of the

steel.

In calculating the deflection, the ACI Committee 435-R suggests the equation of
ACI-318-05 to calculate the modulus of elasticity of concrete £, when there no test is

available (ACI-435-R-95):
E_ =57000 fe (3.47)

where

fc' = specified concrete strength of concrete in psi

Camber

Camber is dependent on many factors: the profile of prestressing tendons and
force, initial losses due to elastic shortening, anchorage seating, relaxation of the
prestressing tendons, time-dependent effects of creep, shrinkage, and the constant
sustained applied loading of the girder self-weight. Because of the complex nature of
these factors, it is satisfactory to use an approach that calculates the time-dependent

change in the effective prestressing force over many discrete time steps (Hinkle, 2006).

Several “multiplier methods” are currently available to predict camber growth in
prestressed concrete girders. These methods are very simplistic in that the instantaneous

elastic deflection or various components of deflection are increased by multipliers. The
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AASHTO-LRFD Design Specification includes a recommended method, in addition to
the PCI Bridge Design Manual, which includes two recommended methods. The first
method described by the PCI Bridge Design Manual is based on previous work by Martin
(1977) Table 3.3 (PCI, 2004). The second is a more detailed method developed by Tadros
et al (1985). It allows for using a creep coefficient specific to the concrete mix, as well as
using a prestress loss component of deflection based on calculated values (Hinkle, 2006).

Table 3.3 PCI Manual Multiplier Method - based on Martin (1977)

Without With

Composite  Composite

Topping Topping

At erection:

1. Deflection (downward) component-apply to the elastic 1.85 1.85
deflection due to the member weight at release of
prestress.

2. Camber (upward) component-apply to the elastic 1.80 1.80
camber due to prestress at the time of release of
prestress.

Final:

3. Deflection (downward) component-apply to the elastic
deflection due to the member weight at release of 2.7 24
prestress.

4. Camber (upward) component-apply to the -elastic 245 29
camber due to prestress at the time of release of ’ ’
prestress.

5. Deflection (downward)-apply to elastic deflection due 3.0 3.0

to superimposed dead load only.

6. Deflection (downward)-apply to elastic deflection
caused by the composite topping. - 2.3




49
3.6 Geometrical Dimensions Requirements

AASHTO Standard Specifications for Highway Bridges recommends minimum

dimensions of box girders as follows (AASHTO, 1996).

3.6.1 Top Flange

AASHTO recommends the minimum dimension of the top flange thickness as
1/30 of the clear distance between fillets or webs, but not less than 6 inches, except that
the minimum thickness may be reduced to 5.5 inches for factory-produced precast pre-

tensioned elements.

3.6.2 Bottom Flange

AASHTO recommends that the minimum thickness of the bottom flange shall be
1/30 of the clear distance between fillets or webs but not less than 5.5 inches, except that
the minimum thickness may be reduced to 5 inches for factory-produced precast pre-

tensioned elements.

3.6.3 Width of Bridge

The recommended roadway width for freeway overpasses is as follows (Barker
and Puckett, 2007):
Table 3.4 Typical Roadway Width for Freeway Overpasses

Roadway Width (ft) Width (m)
Lane width 12.0 3.6
Right shoulder width
Four lanes 10.0 3.0
Six and eight lanes 10.0 3.0
Left shoulder width
Four lanes 4.0 1.2
Six and eight lanes 10.0 3.0




50

3.7 Range of application of bridge

Table 3.5 Range of Application of Bridge Type by Span Length
(Barker and Puckett, 2007)

Span, ft (m) Bridge Type
0-150 (0-45) Precast pre-tensioned [-beam conventional
100-300 (30-90) Cast-in-place post-tensioned box-girder conventional
100-300 (30-90) Precast balanced cantilever segmental, constant depth
200-600 (60-180) Precast balanced cantilever segmental, variable depth
200-1000 (60-300) Cast-in-place cantilever segmental
800-1500 (240-450) Cable-stay with balanced cantilever segmental




CHAPTER FOUR

FORMULATION OF THE OPTIMUM DESIGN

4.1 General

The problem under consideration deals with the optimum design of a cast-in-
place, post-tensioned, two or three-span continuous and fully prestressed concrete bridge
girder with variable depth. The general formulation of the optimum design problem

involves three steps, as follows:

I- Definition of the  design variables (optimization  variables)

e ]= P Xy X x| (4.1)

2
2- Identification of a criterion to be optimized F(x)

3- Identification of the inequality/equality constraints and the upper and lower

bounds on design variables.

g (X) 20, k=1,...,j (4.2)

hk (X)=0, k=1,..,m (4.3)
[ u

X <X<Xx (4.4)

51
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where

[x ]= vector representing the design variables, which minimize the objective function.

n = the total number of design variables.

th

x ! - the lowest bound for the i * design variables.

x ¥ = the highest bound for the i ” design variables.

j = the total number of inequality highest constraints.

m = the total number of equality highest constraints .

For any system, there can be many feasible designs, and some are better than
others. To compare different designs, we must have a criterion. The criterion must be a
scalar function whose numerical value can be obtained once a design is specified, i.e. it
must be a function of the design variable (vector X) and influenced directly or indirectly

by the variables of the design problem (Arora, 2004).

4.2 Design Variables

The design variables are the set of variables that describe the system. In general,
they are referred to as optimization variables. They are considered as free because any
value can be assigned to them. Different values for the variables produce different
designs. In this thesis, the term “design variables” will be used to indicate all unknowns
of the optimization problem, and they will be represented in the vector X. In the problem

under investigation, there are four design variables as follows:
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4.2.1 Structural Configuration

The girders are symmetric about the transverse center line, as is common in
bridges. In the two-span continuous bridge girder, the optimum design would have both
spans equal. For the three-span girder, many choices exist for the length of the interior

span, depending on the ratio of interior span to exterior span.

X; = the length of the external span, L;, Figure 4.2.

X> = the length of the internal span (for three-span girder), L, , Figure 4.2.

X3 = the ratio of interior span to exterior span in three-span girder, ¢ .

4.2.2 Geometrical Dimensions

The width of the bridge girder depends on the number of lanes to be provided. In
this study, the length and thickness of overhangs, the thickness of the web, and the
thickness of the bottom and top slab, are all assumed to be known. Therefore, the
variables in the cross-sectional dimensions are the depths of the section, which are

variable along the length of the bridge. The variation in depth is assumed to be parabolic.

X, = the depth of the section at the jacking end, /;, Figures 4.1 and 4.2.

Xs = the depth of the section at interior support, 4, Figures 4.1 and 4.2.

Xs = the depth of the section at the midspan of the interior span (for a three-span bridge) ,

hs Figure.4.2.
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4.2.3 Tendon Arrangement

For economical prestressing, the prestressing tendons consist of long (full-length)

and short tendons.

X7 = the total prestress force at the jacking end in long tendons running throughout the

whole span, Pl

Xs = the total prestress force at the jacking end in short tendons running to specified

distance of the span, PS

Xo= the proportion of prestressing forces at the jacking end in short and long tendons, 4

4.2.4 Profile of Prestressing Tendon

The profile used is a parabolically varying tendons profile configuration which
consists of small segments whose coordinates can be represented mathematically as

explained in chapter 5.

The design variables of this profile are as illustrated in Figures 4.3 and 4.4 and as

follows:

Xjo = the distance from the centroidal axis of the section to the tendon profile at the

jacking end, foep.

X;; = the distance from the jacking end to the maximum deflected point in the tendon

layout, aL;
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X, = the distance from the centroidal axis of the section at the jacking to the tendon

profile at the maximum deflected point of exterior span, 5;es

X3 = the distance from the interior support to the point of tangent to both the parabolas

on the left side, a;L;

X4 = the distance from the centroidal axis of the section at the jacking to the tendon

profile at the interior support, e,

X5 = the distance from the interior support to the point of tangent to both the parabolas

on the right side, a,L;

X6 = the distance from the centroidal axis of the section at the jacking to the tendon

profile at the maximum deflected point of interior span, fe;
The whole set of the design variables can be expressed in vector form as:
X =4{X X yory X oy X (4.5)

where

X = vector of design variables.
X; = i" design variable.

n = total number of design variables, which is 16 in this study.
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4.3 Optimization Criteria

Such a criterion is usually called the objective function of the optimum design
problem, which needs to be minimized or maximized depending on the problem
requirements. In this research, the criterion (objective function) that will be minimized is
the total cost of structural materials, prestressing steel and structural concrete. Costs

related to formwork and anchorages of tendons are not included in this work.

Since the cost of prestressing steel depends on the volume of prestressing steel
(V), which is proportional to the prestressing force of tendons, the cost objective

function F can be written as:
F=CV.+C, (4.6)

in which F is the total cost of material for the bridge girder (objective function), C, is the
cost of concrete per unit volume, C,, is the cost of prestressing steel per unit weight, and y
is the unit weight of the prestressing steel. The costs of prestressing steel and concrete are
taken from the reference (Sirca and Adeli, 2005). V. and V), are the total volume of

concrete and prestressing steel, respectively.

If P, and P, are the total prestressing force in the long tendons and short tendons
respectively, the total volume of prestressing steel is given in terms of the prestressing

force as:
Vp = Z(PIL + 2PSLS) 4.7)

where z is given by As/P;* As = the area of one tendon, P,* = prestressing force at the
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jacking end of one tendon, and L = length of a long tendon . The length of a short tendon
Ly is determined from a practical consideration of anchorage. L, is assumed to have the

prescribed value shown in Figures 3.4 and 3.5 as:

for two-span L; = 0.6L

for three-span 7 = L (e +1.2)
S (e+2)

where ¢ = ratio of L,/L;
A nondimensional variable A is introduced as:

2P
A=1+ PS (4.8)

The variable A is always > 1, which is a key parameter that assigns the proportion of
prestressing forces of short and long tendons. 4 = 1 indicates that all tendons are long
with no short one, and A4 > 1 indicates both long and short tendons.

Eq. 4.7 takes the form:

L

V,=zP L(1+ Ls (A -1) (4.9)
Eq. 4.6 becomes:
F=C,D> (A,0)+C,yPz{L+ (A -1)L} (4.10)

for two-span

F=C,) (A,1,)+ C,yPzL{0.4+ 0.6} (4.10.a)

cll
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for three-span

(e +1.2)

o1 2) } (4.10.b)

F=C.Y (A,)+ C,yPzL{l + (A -1)

A 1s the area of concrete cross-section at considering station, and /; is the length of

division at the relevant station.

The total prestressing force at the jacking end is

P, =P +P (4.11)

From Egs. 4.8 and 4.11,

P =P 2 p —p 42D 4.12
1= G s T G (4.12)

For a given A4, Eq. 4.12 prescribes the distribution of forces in the long and short tendons.

Equation 4.10 shows that when A = 1 all tendons are long with no short one (P, =
0). The use of A transforms the objective function (Eq.4.10) into a linear function of two

variables, the depth of cross-section and P; for a chosen A

4.4 Constraints

The design of any structural problem must have many functional constraints such
as limits of working stresses, strength, and serviceability requirements as well as code
requirements. In this thesis, the constraints include: prescribed limits of working stresses,
ultimate shear and ultimate moment capacities, serviceability, cross-sectional dimensions
constraints and tendons profile constraints, to ensure that the minimum concrete cove to

tendons is maintained throughout the bridge girder.
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4.4.1 Geometrical Constrains

This type of constraints consists of two sub-types as follows:
Tendon Profile for Continuous Span

These constraints ensure that the profile is within the top and bottom concrete

boundaries of the cross-section. This can be expressed mathematically as:

e(x) <Y ~d (4.13)

C
where

e (x) 1s the distance from the centroidal axis of the section to the tendon profile at

distance x.

y . is the distance of top or bottom fibre from the centroidal axis of the section.
d . 1s the minimum concrete cover.

Cross-sectional dimensions

This requires that the depth of cross-section #4; is not less or greater than the lower

and upper limits respectively. This can be expressed mathematically as:

nl < n < pt (4.14)
where

h ! is the lowest bound for the depth.



h" s the highest bound for the depth .

4.4.2 Flexural Stresses in Concrete Section

60

The flexural stresses at the top and bottom of the cross-section at the transfer and

service stages must not be greater than the prescribed limits of working stresses. This can

be expressed mathematically as:

i) At Transfer Stage

i Ac S = Jci/ti
b
P. (xtPext M, M .)
t _ i i o SI
Ji == 7 < Jeir i

Ac St

ii) At Service Stage

P, (£Ppext M £t M)

b _ T —
Ss —_ZJF Sb < Ses o S

Po  (EPect My + M)

Is =20 s,

< fCS ’ftS

where

t b . .
f,- 5 f, are top and bottom stresses in cross-section at transfer stage .

t b . . .
fs s f s are top and bottom stresses in cross-section at service stage .

(4.15)

(4.16)

(4.17)

(4.18)

f i ® f,,- are allowable compressive and tensile stresses in concrete at transfer stage.

fcs > fts are allowable compressive and tensile stresses in concrete at service stage .

p,, p, are initial and effective total prestressing force at transfer and service stages.
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S ‘9 S p are section modulus at top and bottom of cross-section .

Ac s the area of the concrete cross-section.
e is the distance from the centroidal axis of the section to the tendon profile .

M ;, M, are initial and effective secondary prestressing moments at the transfer and

service stages.

M, , M ; are bending moments due to self-weight and total load.

4.4.3 Ultimate Flexural Strength Constraint

The ACI-318-05 requires that the ultimate moment due to load plus secondary
moment due to prestressing force must be less or at least equal to ultimate moment

capacity of the prestressing member. This can be expressed mathematically as:

M +M <M (4.19)
where

M , is the effective secondary prestressing moment at the service stage.

M , is the ultimate bending moment due to the total load.

¢M , 1s the ultimate capacity of the resisting moment provided by the cross-section.

Constraint on the Minimum Amount of Flexural Reinforcement

To ensure that a reserve of strength exists after initial cracking, the girders should

contain sufficient flexural reinforcement at the critical sections. If the girders do not
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contain enough reinforcement, they may fail abruptly with rupturing of the reinforcement
immediately after cracking. According to ACI-318-05, the minimum amount of flexural

reinforcement in steel reinforced members should be controlled by:

M >12M (4.192)

where

M., = moment causing flexural cracking at section due to externally applied loads, which

is given by:

Mep = (I )(15 1"+ fpe —f ) (4.19b)

The requirement given by Equation 4.19a can be waived when the factored moment of

resistance, @M, is at least 33 percent greater than the moment due to factored loads,

(M, +M,,) .i.e. when

M, Z133M +M ) (4.19¢)

The other variables are as defined before.
4.4.4 Ultimate Shear Strength Constraint

The shear strength to be carried by stirrups must not exceed the maximum value

in ACI-318-05. This can be expressed mathematically as:

oVs < (8 fc'b_d) (4.20)

where
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¢ Vs 1s the ultimate shear strength provided by stirrups .

fc'is the specified concrete strength of concrete in psi.

b, 1s the width of the web .

d is the depth from the centroidal of prestressing steel to extreme compression fiber but

not less than 0.84.

4.4.5 Deflection Constraint

The deflection constraints are defined by the following equations:

e Maximum deflection constraint at prestressing transfer is

/ /
__<5 < —

800 transfer 800 (4.21)

e Maximum deflection constraint at prestressing service is
-——<96 S — (4.22)
e Maximum deflection constraint due service live plus impact is
-——<0,;, <— (4.23)
where /= is the span length, in fz.

4.5 Problem Formulation

The optimization problem is to minimize the cost function ¥ (Eq. 4.10), subject to
specified constraints for geometry, stresses, ultimate flexure and shear capacities and

deflection. These constraints are nonlinear functions of 4, P;and e, and so the problem is
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a constrained nonlinear one, and it can be solved by transforming it to a linear one in the

following manner.

By assigning a trial feasible cross-section, the first term of the objective function
Eq.4.10, [C.2'4.l;] , becomes a constant, and /" becomes a function of C, y P;z{ L+ (4-1)
L}, which means that only the minimum prestressing force P; and the proportion of long
and short tendons A have to be found. For an assumed value of A, the problem becomes

the finding of minimum P; and the corresponding layout shown in Figures 4.3 and 4.4.

As the search for the optimum solution begins with an initial feasible tendon
profile, the eccentricity e at each station is known. Consequently, the constrained
equations of working stresses become linear in P; and a linear program can be easily used

to find P; satisfying all constraints.

The optimization procedure begins with a feasible design, and it progressively
updates the design variables through the use of a gradient vector to minimize the
objective function Eq. 4.10, subject to the conditions of strength and serviceability. The

search procedure is as follows.

Reducing the problem to a linear one is useful in the building of a repetitive

program (algorithm) to search for the optimum solution.

4.5.1 Optimization Procedure

(1) The process begins with a feasible design by assigning initial values to all

Varlables {hl’hZ’hS’eh’ﬁO’ﬂl’IBZ’a’al’QZ’ﬂ”g} ‘
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in which {h;, hy, hs, ey, Po, B1, P2 @, oy and a,} are shown in Figures 4.1, 4.2, 4.3 and 4.4,
and ¢ is the ratio of interior span to exterior span for a three-span bridge deck. The
symbols /; to h; are the depth of the box girder, ) to /5, are the eccentricity factors, and a

to a; are the length factors for the tendon geometry.

(2) The span ratio ¢1is taken initially as 1.0 (this implies equal spans).

(3) Each span is divided into ten equal divisions, and the maximum and minimum
values of design forces at each station are calculated from a structural analysis

by using applicable service loads.

(4) The initially chosen cross-section is first checked for its adequacy by the

following equations:

M,—-RM,
ts ci
M, —RM
St ZW (425)

where Sj, S; = the section modulus at bottom and top; M, M, = the bending moment due
to total load and self-weight; f;;, f;s = allowable tensile stress in concrete during initial and

service stages; f.; ,fcs = allowable compressive stress in concrete during initial and service

stages; and R = factor representing the total loss of prestressing force , p -

—<

i

(5) The initial value of A is taken as 1.0 (this indicates that all tendons are long

with no short one).
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(6) Based on the chosen tendon geometry, the minimum value of the prestressing
force P; at the jacking end is determined by using linear programming

satisfying all constraints.

(7) For the chosen cross-section and for the selected A, the profile of the tendon is
then modified to a new one by recalculating the new geometry of the tendons
by using the gradient search method until the optimum value of prestressing
force P,, is found satisfying all constraints. The new geometry of the tendon

Xy, at (n+1) step is calculated from
X =x"+ CAP™ (4.26)

in which ¢ = maximum incremental step permitted and AP" is the gradient vector at

the step n.

(8) The entire steps 6-7 are repeated for small incremental values of A until a
value of A and corresponding values of P; and the geometry of the tendons,

and the optimum value of F' (Eq 4.10) are obtained satisfying all constraints.

(9) The depths of cross-section (4;, 4, and h;) are then gradually modified to new
ones by recalculating the depths of cross-section by using the gradient method
of the search, and the entire steps 1-9 are repeated until a value of /# and the
minimum F are obtained satisfying all constraints. The new vector of design

variables /; at (i+1) step is calculated from

R =D +yAF© (4.27)

J
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in which ¥ = maximum incremental step permitted and AF” is the gradient vector at

the step i.

Finally, to find the optimum span ratio &, the entire steps (1) to (9) are repeated
for incremental values of span ratio, until a value of ¢ and the global minimum F' are

obtained satisfying all constraints.

4.5.2 Gradient Method of Optimization

Steepest Descent is a well-known iterative minimization method. This method is
applied to find the optimum prestressing force of long tendons at the jacking end P, the

corresponding optimum tendon profile, and the optimum depth as follows:

(1) For the given tendon profile, the variables of tendon profile are divided

into categories, where { g} relates to the eccentricities and {¢ |, }

relates to the tendon’s segment length. At the iteration i, the prestressing

force (P;); can be found by linear programming.

(2) Then, the derivatives of P; with respect to the variables { g } and

{a ,} are calculated by the finite difference method.

P ()= B (B, A)ﬁ— b(p,) (4.28)
Pia,y=B@ =A@ (4.29)

Aa,

where, at iteration i, E'(Oln) and E(,Bn) are calculated by a given small fixed
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incremental value for the variables { g} and {« ,} .

(3) This step is applied to each variable {p _ ,2,.. N } and

ta, 52 N} and the gradients of P; with respect to these

variables are obtained as follows:

P (B)= _ARL AR _ AP (4.30)

’ AB,T AB, Y

P (a)= —A—P/,—A—P’I, ............... - AR 4.31)
Aal Aaz AO{N

(4) The new value of each variable is calculated from the given equation:

i _ i . AR : AP/
X, =p +§mA—ﬁ'1, ........... X =By E AﬂlN (4.32)
X gty B x o0 e AL 4.33)
Aa, Aa,
where fﬁ >0 is obtained from the following expression:
A .
£, < B ,- (4.34)
AP,
max ,
AB,
and &, >0 is obtained from the following expression:
£, <— 0% (4.35)

max

n

n

(5) This procedure is repeated until AP, is less than the admissible error for

all the variables and the optimum value of P; is obtained satisfying all
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constrains.

(6) To find the optimum depth and corresponding optimum of cost function,
the derivatives of F' (objective function) with respect to the depth {4,} are
calculated by the finite difference method.

F(B,"H-F(h,)
Ah

n

F'(h)= (4.36)

where, at iteration /", F' (h,) are calculated by a given small fixed incremental value for

the variables{ 1, } .

(7) This step is applied to each variable { 4, and 4;},and the gradients of F

with respect to these variables are obtained as follows:

F'(h) = {— AP AR } (4.37)
Ah, " Ah,

The new value of each variable is calculated from the given equation:

. ; AF' " ; i
B =h+y,, S Iy =hy iy, = — (4.38)
2

where y,, >0 is obtained from the following expression:

Ah (4.39)

i

Ah,

l//hn <

max,

(8) This procedure is repeated until AF 'is less than the admissible error for
all the variables and the optimum value of F' is obtained satisfying all

constrains.
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Figure 4.1 Design Variables in Cross-Sectional Dimensions and Structural Configuration of Two-Span Continuous Bridge girders
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Figure 4.2 Design Variables in Cross-Sectional Dimensions and Structural Configuration of Three-Span Continuous Bridge girders
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Figure 4.3 Design Variables in Exterior Span of Continuous Bridge girders
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Figure 4.4 Design Variables in Interior Span of Continuous Bridge girders
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CHAPTER FIVE

COMPUTER CODE FOR ANALYSIS AND

OPTIMIZATION

5.1 General

Many tools for optimization are easy and ready to use, such as the MATLAB
Optimization toolbox which implements several methods. However, MATLAB code is
not as efficient as compiled C or FORTRAN code, and it is appropriate for small to
medium scale problems only (Karim, 2003). Therefore a standard FORTRAN is chosen
in the present study to develop a computer code for optimization where the criterion to be

optimized is an indirect function of some design variables.

5.2 FORTRAN Program

For optimization of the problem under investigation, a computer code has been
developed by using a standard FORTRAN, and it is called PCPCBGND (Program for
Continuous Post-tensioned Concrete Bridge Girder of Non-uniform Depth). This program
can handle both two- and three-span continuous bridge girders having a single-cell box
cross-section subject to the AASHTO-HS Bridge loading. The cross-section may have
uniform or variable depth. It is important to point out that PCPCBGND is sensitive to the
initial value of design variables that are entered by the user for the first design cycle.

Where the initial values are away from the optimum solution, a longer time will be taken
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to reach the optimum solution, but a good starting value will reduce this time.

The problem begins with an initial feasible point in the design space by assigning
initial values to all design variables through the subroutine DATA. Then, a gradient

search technique is used to solve the optimization problem iteratively.

The first part of the program is to prepare the analysis module which predicts and
demonstrates the behavior and response of the structure under subjected load. This
module analyzes the structure for the initial value of all variables, and it generates all the
necessary information that will be used in other subroutines of cost function and
constraints. For this purpose, a general bridge analysis routine called BRDANA is used
for linear elastic analysis of the bridge girder. The program was first checked by
comparing results with the STAAD Pro package. Sample results are shown in Appendix
A to show that this program is fairly accurate. For the initial value of all variables, the
bridge is idealized as (n) straight elements, the linear analysis is conducted, and the
member end forces for each element are calculated. The maximum and minimum values
of shear force, bending moment and deflection, {Via, Muax, Muin, Omax, Omin} are

obtained.

Then, the subroutine PRESTD is developed to calculate eccentricities, frictional
and other losses, secondary moment, initial and final working stresses, bearing capacities
for moment and shear, and initial and final deflections at each station along the bridge

girder .

After that, the required data for optimization are available. Finally, the subroutine

ALLOPT is used to find the optimum value of the objective function as follows:
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1. For the initial values of the proportion of prestressing forces in short and long
tendons, 4 = 1.0 (all tendons long with no short tendons), depth #4,,h,,h;3, initial
tendon profile and span ratio, £ = 1.0, the program carries on iteration till the
optimum profile of prestressing tendon and the corresponding minimum of

prestressing force at the jacking end P; are obtained satisfying all constraints.

2. Then, the program changes A to a new value and it continuous the iteration till
the optimum profile of prestressing tendon and the corresponding minimum of
prestressing force at the jacking end P; are obtained satisfying all constraints .
This step and subroutine PRESTD are repeated till the optimum value of A and
the corresponding optimum profile of prestressing tendon and the optimum of

prestressing force P; are obtained.

3. The depths of cross-section (4;, h, and h;) are then gradually changed to new
depths by recalculating the depths of the cross-section by using the gradient
method of the search. The previous steps and the subroutine BRDANA are
repeated till the optimum values of 4;, A, and h; are obtained satisfying all

constraints.

4. Finally, the span ratio ¢ is changed to a new one, and all subroutines are

repeated, till the optimum value of ¢ is obtained.

5.2.1 Flow Chart

The program consists of subroutines as illustrated by the flow-chart shown in

Figures 5.1, 5.2, 5.3, 5.4, 5.6 and 5.7. These routines are as follows:
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1. SDATA: reads and writes the data of the design variables and the data of bridge

girder spans, loads, geometry, material properties and unit cost of material.

2. BRDANA: calculates the minimum and maximum of shear force, bending moment

and deflection by calling the following subroutines:

e SEPROES: calculates the geometrical properties of the concrete cross-section at

each station.

e STIFF: calculates the stiffness matrix for each member.

e BANFAC: calculates the section properties at each station.

e DELOAD: calculates the end action due to self-weight and superimposed dead
load. Then, it calculates the shear force, bending moment and deflection by calling

the routines: XDIS, LOADS, BANSOL and RESUTS.

e LLLOAD: calculates the end action due to live load. Then, it calculates the
minimum and maximum of shear force, bending moment and deflection by calling
the routines: XDIS, LOADS, BANSOL, RESUTS, MAXULL, MXRESU and

FINBM.

3. PRESTD: calculates the prestressing force corresponding to the profile by calling

e ECCENT: calculates the eccentricities of the tendon profile at each station.

e FRLOSS: calculates the slope of the tangents to the tendon profile and the frictional

losses at all stations.

e OTHLOS: calculates the total prestressing loss at all stations.
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e PRIMPS: calculates the primary prestressing moment, at the transfer and service

stages at all stations.

e SECMO: calculates the secondary prestressing moment, at the transfer and service

stages at all stations where it calculates numerically by using Simpson’s rule.

e CHFEAS: calculates the minimum of the top and bottom modulus for section S iin

and $° min Of the cross-section, and checks the adequacy of chosen initial depth.

e STRESS: calculates the stresses at the top and bottom of the cross-section at the

transfer and service stages due to net prestressing moment and load.

e MOMCAP: calculates the stresses of prestressing steel f,, by using strain
compatibility, and then calculates the ultimate flexural strength of a section and the

cracking moment at each station.

SHECAP: calculates the shear strength of the concrete cross-section at each station.

DEFLEC: calculates the maximum deflection due to live load, camber due to

prestressing force, and initial and final total deflection at each station.

4. ALLOPT: depending on the number of spans, this routine calls. If span equal to two

then it calls routine OPDTWO but otherwise it calls SPANRT.

e OPDTWO: calculates the gradient of the objective function, the new value of design
variables, and finally finds the optimum profile of tendon, the optimum
arrangement of long and short tendon, the optimum prestressing force P;, the

optimum depth at interior support, and the optimum depth ratios:

e OPDINT: for the initial constant depth, this routine calculates the minimum object
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function, which is the first value of the object function, by calling the routines:

BRDANA and OPLEMDI.

e OPLEMDI: calculates the optimum profile of tendon, the optimum arrangement of

long and short tendons, and the optimum prestressing force PI, by calling OPPRSSI.

e OPPOFII: calculates the optimum profile of tendon and the corresponding optimum

prestressing force PI by calling BRDANA and MINPRF.

e MINPREF: calculates the prestressing force corresponding to the profile that satisfies

the constraints.

e SPANRT: calculates the optimum profile of tendon, the optimum arrangement of
long and short tendon, the optimum prestressing force, the optimum depth at
support, the optimum depth ratios and the optimum span ratio by calling OPDINT,

OPLEMD1, and OPPRSS2.

5.3 Design Optimization Software (Excel Solver)

Microsoft Excel Solver incorporates a nonlinear optimization code based on the
Generalized Reduced Gradient (GRG) technique. This tool is easy and ready to use, but
the whole problem under consideration is difficult to model in Excel Solver because the
maximum and minimum values of shear force, bending moment and deflection, {V,y,
M yax, Miyin, Omax, Omin} have to be calculated many times during optimization. Thus for a
given cross-section, it is employed only to find the minimum prestressing force at the
jacking end P; and the corresponding layout satisfying all constraints. The problem of

using Excel Solver is to find the maximum and minimum values of shear force, bending
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moment and deflection, {Vyau, Muax, Mmin, Omax, Omin} for the given cross-section. This is

solved by using the symbolic software Mathematic as follow:

The governing differential equation for deflection of the beam

4

d
EI dxi} =q(x) O0<x<L, (5.1)

where

ET = flexural rigidity;

y = the deflection;

q(x) = the distributed load;
L;= span length.

The shear force V(x), bending moment M(x) and the deflection y(x) are equal

V(x) = [ q(x)dx (5.2)
M(x)= j V(x)dx (5.3)
v = [[ (5.4)

The above equations are subjected to boundary conditions and solved by using the

1
software Mathematic. As the term g7 is a function of the depth 4 which is variable, it is

1
better to integrate the above equations symbolically by replacing g with a simple

polynomial function of the form:
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P(x) :é =k, +k1x2 +k2x4 +k3x(’ +k4x8 (5.5)

in which &y to k, are factors.

Therefore, the shear force V(x), bending moment M(x) and the deflection y(x) are

functional in these factors which are calculated by using Excel Solver as follows:
1) Each span is divided into ten equal divisions.

2) For a given cross-section, the value !  and other section properties are
El

known at each distance x.

3) By assigning initial values to all factors K to K4, the polynomial function

P(x) is calculated at each distance x.

4) The square difference (_L_-P(x))*is calculated at each distance x.
EI

5) The sum of these differences is calculated and the Excel Solver is used to find
the factors Ky to K, that minimize the sum of the difference and the maximum
and minimum values of design forces at each station are calculated by using

the above equations.

After constructing the module in Excel and for a given 4, the Excel Solver is used to find
the minimum prestressing force at the jacking end P; and the corresponding layout
satisfying all constraints. The comparison of the minimum prestressing force P; using

Excel Solver and PCPCBGND is shown in Appendix A.
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CHAPTER SIX

APPLICATION, RESULTS AND DISCUSSION

6.1 General

The PCPCBGND program is used in solving several problems, to show the
capabilities of the code in handling analysis, and to obtain the optimum design. For given
information about allowable stresses, deflection, strength of concrete, initial value of
design variables and other variables, the optimum values are obtained for A, interior to
exterior span ratio for three-span, the depths of the cross-section, tendon eccentricities,
and prestressing force P;. The total cost of the member considered is the cost of structural

materials (concrete and prestressing steel), excluding the formwork.

Several examples are considered for two and three spans to establish the
reliability and performance of the present computational method in optimizing the design
of bridge girders with variable depth for which the optimal solution is obtained
analytically. Five cases are studied: four cases with 4 > 1 (both short and long tendons)
and one case with 4 = 1.0 (all long tendons). These cases are selected to provide
information on the influence of the design variables on optimization. The design
variables are studied under the variation of total bridge length, the unit cost of material

and proportioning of long and short tendons.

&9
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6.2 Two-Span Continuous Girder

6.2.1 Example

General Design Data

The design data and parameters are as follows:
Total length of the bridge L =400 ft (121.6 m)
Each span is equal to L;= 200 ft (60.8 m)

Loading: the dead load includes: self-weight of the girder, and superimposed load = 500

Ib/ft. Live load: AASHTO HS-20

Cross-section: single box girder with dimensions is shown in Figure 6.1.
Tendons profile: parabolic

Material Properties

Concrete

fu =2062 psi,  f., =2000 psi

No tensile stress is assumed for concrete

7. =150 pcf

Unit cost of concrete, C. =$ 5.75 /e
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Prestressing steel

fon =270 Ksi

fj = 0‘7fpu
E, =28x10°Ksi

Curvature coefficient of friction ¢ =0.25
Wobble coefficient of friction K = 0.0015 per ft

The loss of prestressing excluding friction is taken as 20%
Unit cost of prestressing steel, C, =$ 3.5 /lb

The cost ratio, CR = C./C, = 1.64

(a) Case 1: All Long tendons (A =1.0)

In order to study the impact of using a combination of long and short tendons and
using all long tendons to reduce the total material cost, this example is solved with 4 =1
(all long tendons) and A > 1 (both short and long tendons). Each span of the bridge girder
is divided into 10 equal divisions. The program starts with a feasible design with initial

values of the variables (g, 8,.a ,a,,¢e,,h,, h,} and A =1.0. The optimum design

b °
is searched iteratively, by using the gradient method of the search explained earlier in this

study, until the optimum value of each variable is obtained.

The optimum design of this example is attained at depth 4; = 8.95 f# and depth 4,
= 14.77 ft, with depth ratio of 4x/h; = 1.65. The optimum tendon profile for this case is

plotted in Figure 6.3. It has been observed that the optimum tendon profile is obtained in
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this example when the values of design variables are at their upper limits. The variation
of the objective function which is the total cost of material (concrete and prestressing
steel) with the depth ratio /./h; is plotted for three values of 4; (h; = 8.95 f#, 10.95ft and
11.95ft ) in Figure 6.2 to show the effect of incremental values of h; on cost. The total
cost of material is nondimensionalized as C;/C,,, where C; is the total cost at hy/h;=
(h2)ilh; (the " step of iteration for (4,)/h;) and C,, is the total cost at #; = 8.95 ft with
hy/h;=1.65. The plots show that the cost parameter for material decreases rapidly with
increases in the depth ratio 4/h; up to about h>/h; = 1.65, and then the total cost increases
as hy/h; increases. The plots in Figure 6.2 also show the total cost increases as /;
increases and a minimum material cost is attained when 4, is kept as small as practicable.
The results indicate that for these values of /;, the optimum 4./h; ratio appears to lie in

the close proximity of 1.65.
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(b) Case 2: Both Long and Short Tendons (4> 1)

The previous example is solved again for A > 1 using three values of 4;. 8.95 fi,
10.95 f# and 11.95 f¢. The optimum design of this example is achieved at depth 4; = 8.95
ft and depth 4, = 13.07 ft, with depth ratio of /4,/h; = 1.46. The change of the total cost of
material with the depth ratio 4,/h; is plotted for each 4, in Figure 6.4. The total cost of
material is nondimensionalized as before. Figure 6.4 shows that the cost parameter for
material gradually decreases with increases in the depth ratio 4/, up to about hy/h; =
1.46, thereafter the total cost gradually increases as /»/h; increases. The plots in Figure
6.4 also show that for these values of 4;, the optimum /,/h; ratio appears to lie in the
close proximity of 1.46. As there is only a small reduction in the material cost by about
3%, it is apparent that for a reasonable non-optimal value of /,, an economical design can

be obtained with an optimum value of A for the optimum /,/A;.

A comparison of Figures 6.2 and 6.4 shows that for a given 4, the optimum ratio
hy/h; is lesser with £>1.0 than with A=1.0. The calculated minimum total material cost for
the bridge with 4 = 1.0 is $ 265,188 at optimum value of /; = 8.95 ft and h, = 14.77 ft
with depth ratio //h; = 1.65. The total material cost for the same bridge reduces to $
227,123 by using both long and short tendons (A = 14.0) for 4#; = 8.95 ft and h, = 13.07 ft

(ho/h; = 1. 46). This reduction of about 15% achieved due entirely to the use of both long

and short tendons.

At optimum value of 4; = 8.95 ft and h, = 13.07 ft, with depth ratio of hx/h; = 1.

46, the cost of prestressing steel versus A is plotted in Figure 6.5, by nondimensionalizing
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the steel cost as C,/Cps1, Where Cg; 1s the cost of prestressing steel at A = 4; (the i step
of iteration for 4) and C,, is the steel cost at A=1.0 to show the influence of A on cost. It
is found that the cost of prestressing steel rapidly decreases as 4 increases up to about 4 =
9.0, after which the cost slowly decreases with increases in A till it becomes flat beyond
A >13. The required prestressing force at the jacking end versus A is plotted in Figure
6.6. The force of prestressing steel is nondimensionalized as P;/P,;;, where Pj; is the
prestressing force at 4 = 4; (the i" step of iteration for 4) and Pj; is the force at 4 = 1.0.
The plot is noticed to have a similar trend as expected, with force parameter decreasing

with increasing A until it becomes flat beyond A = 14.0.

From Figures 6.5 and 6.6, it is clear that the prestressing force P, and the cost of
prestressing steel decrease slowly with value of A4 > 9.0. As a higher value of 4 would
increase the cost of anchorage, practically it is preferred to keep A at a reasonable value.
Thus from a practical viewpoint, an economical design can be attained with 4> 9.0, in

this case.

From the results presented, it can be concluded that for two-span continuous
girders, the use of all full length tendons for prestressing is not an economical

arrangement.

6.2.2 Variation in Total Bridge Length

In order to study the effect of total length of bridge on the optimum depth ratio
hy/h; and optimum depth at interior support 4., several designs were performed with
different total length of bridge L from 250 ft to 400 f¢. The optimum value of 4, and h»/h,

versus the bridge total length L subjected to AASHTO HS-20 loading is plotted in Figure
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6.7. It is observed that the optimum depth ratio 4,/h; and 4, increase almost linearly as L
increases. The required prestressing force at the jacking end P; versus A is plotted in
Figures 6.8, which shows that the required prestressing force P; decreases slowly with
higher value of 4 > 9.0 for all spans. It can be concluded that, for bridge, a low-cost

design can be attained for the chosen section with 4> 9.0 for any value of L.

6.2.3 Effect of Unit Costs on Optimum Solution

To study the effect of unit cost on the optimum values of A, 4,/h; and depth at
interior support 4, for two-span continuous bridge girder, several designs were performed
for a bridge of total length L = 300 ft with different cost ratio CR from 1.37 to 2.05, in
which CR is the ratio of the unit cost of concrete per volume to the unit cost of

prestressing steel per weight.

The change in the dimensions 4, and depth ratio 4,/h; resulting from change in the
cost ratio CR are shown in Figure 6.9. Although the optimum values of 4, and hy/h;
change with CR, as seen from Figure 6.9, the changes can be considered as small. The
variation of prestressing force at the jacking end P; with A is shown in Figure 6.10 for
different CR shows that the required prestressing force P; decreases slowly with higher
value of 4 > 9.0. Hence, it can be concluded that regardless of the assumed value of CR,
from a practical viewpoint, a low-cost solution can be attained with 4> 9.0 for two-span

symmetrical single box girder.
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6.3 Three-Span Continuous Girder

6.3.1 Example

All design data including the girder cross-section are same as used in the two-

span bridge girder except that the total length of the bridge now equals 500 f# (152 m).

The optimum design of this example is achieved at values of ¢=1.34, h; = 7.1 ft,
h, = 17.27 ft and h; = 4.59 ft, with depth ratio of hxh; = 2.43 and h;/h; = 1.55. The
optimum tendon profile for is plotted in Figure 6.17. It has been observed that the
optimum tendon profile is obtained when the values of design variables are at their upper

limits, expect that at an interior span the design variables are below the upper limits.

The plot of the total material cost versus span ratio ¢is shown in Figure 6.11, by
nondimensionalizing the total material cost as Cj; /C;;, where C;; is the cost at £ = & (the
i" step of iteration for ¢) and C;; is the cost at £ =1.0 (equal spans). Figure 6.11 shows
that the cost decreases rapidly with increase in & up to about € = 1.34, but thereafter the
cost increases again with increase in &, showing the influence of this important parameter

on the cost.

The total cost of material versus the depth ratio 4,/h; is plotted in Figure 6.12, for
three cases of /h;, h; = 7.1 ft, 9.1 ft and h; = 11.1 ft. The cost is nondimensionalized C,/
C,, where Cy; is the total cost of material at s./4;= (h2)/h; (the i step of iteration (/2)i/h;)
and Cj, is the cost at the optimum values of #; = 7.1 ft with depth ratio hy/h; = 2.43. It can
seen that the total cost of material decreases initially with increases in the depth ratio

hy/h; up to a certain value and thereafter the total cost increases with further increases in
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hy/h;. The minimum total cost of the bridge girder is achieved at a value of h; = 7.1 ft
with depth ratio 4,/h; = 2.43. The change of the total cost of material versus the depth
ratio h;/h;s is plotted in Figure 6.13, for the three values of /,;, by nondimensionalizing the
total cost as C;/C;,, where Cj; is the cost at h;/hz= h;/(h3); (the i step of iteration /,/(h3);)
and C,, is the cost at the optimum values of 4;, 4, and 4;. Both Figure 6.12 and Figure
6.13 show similar trend, revealing that /./h; and h,/h; ratios change with different chosen
value of 4, unlike two-span bridge girders, when the ratio /,/h; varied only marginally
with chosen 4;. The plots also indicate that use of higher value of /4, (higher than the

optimum /;) will lead to higher total cost.

For the optimum value of = 1. 34, h; =7.1 ft, h, = 17.27 ft and h; = 4.59 ft (ho/h,
=2.43 and h,/h; = 1.55), the change of prestressing steel cost with A4 is plotted in Figure
6.14, to show the influence of A on cost. The steel cost is nondimensionalized as Cy;
/Cps1, Where C is the cost of prestressing steel at A=4,; (the i step of iteration for 1) and
Cys1 1s the cost of prestressing steel at A=1.0. The plot has shown that the cost of
prestressing steel decreases rapidly as A increases up to about 4 = 9.0, but thereafter the
decrease is almost negligible as the C,-4 plot becomes essentially flat. The plot of the
change of required prestressing force at the jacking end P; versus A is shown in Figure
6.15. The force of prestressing steel is nondimensionalized as before. The plot shows a

similar trend as the steel cost C,; /Cp; decreases.

From Figures 6.14 and 6.15, it can be noticed that while the force parameter of
steel decreases slowly with value of 4 > 9.0, the cost parameter of prestressing steel

Cysi/Cps1 becomes essentially flat with higher A. Thus, an economical design can be
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The variation of steel cost with span ratio ¢ is plotted in Figure 6.16, at the
optimum values of /;, h; and h;. The steel cost is nondimensionalied as C,i/Cys;, Where
Cpsi 1s the steel cost at ¢ = & (the i step of iteration for &) and Cps1is the steel cost at &
=1.0. It can be observed that the minimum steel cost is attained at a value of span ratio &

= 1.34. The steel cost increases rapidly with £> 1.35 and &< 1.30.

Thus, it can be concluded that for three-span continuous structures of total length

equal to 500 ft subjected to AASHTO HS-20 Bridge loading, the optimum total material
cost can be achieved when ¢ lies within 1.3 to 1.4, and a combination of short and long
tendons with 4> 9.0 is used. Figures 6.11 and 6.16 clearly highlight the significance of ¢
on the cost, signaling that the value of ¢ must be carefully chosen to seek an economical

design.
6.3.2 Variation in Total Bridge Length

In order to study the influence of total length of bridge on the optimum span ratio,
the optimum depth ratios and the optimum depth at interior support, several designs were
made with different total length of bridge L from 300 f# to 600 f. Optimum depth at
interior support 4, and depth ratios /./h; and hy/h; versus the total length of bridge for
HS-20 are plotted in Figures 6.18 and 6.19. Figures 6.20 and 6.21 show the change of
total material cost versus ¢ of different bridge length L, by nondimensionalizing total
material cost as before. It is clear that for a symmetrical three-span bridge girder of a

given total length, the optimum value of the total cost of material is attained when ¢ lies
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within 1.30 to 1.40. The required prestressing force at the jacking end P; versus A is
plotted in Figure 6.22 for different total length of bridge L. It can be seen that the
required prestressing force P; declines slowly with higher value of 4> 9.0. For all spans,
it can be concluded that, a low-cost design can be attained with A4 > 9.0, a value that is

seen also to be valid for two-span continuous girders.

6.3.3 Effect of Unit Costs on Optimum Solution

To study the effect of unit cost on the optimum values of &, A, hy/h;, hy/hs and
depth at interior support h;, for three-span continuous bridge girder, several designs were
performed for a bridge of total length L = 500 f# with different cost ratio CR from 1.37 to
2.05, in which CR is the ratio of the unit cost of concrete per volume to the unit cost of

prestressing steel per weight.

The variation in the dimensions 4, and depth ratios /./h; and hy/h; resulting from
change in the cost ratio CR are shown in Figures 6.23 and 6.24. The plots show that /,/h;,
hy/hs and h, change with different value of CR, unlike two-span bridge girders, where the
ratio hy/h; and h; varied marginally with CR (Figure 6.9). Figure 6.25 shows the change
of total material cost versus span ratio € for different values of CR, by
nondimensionalizing the total cost. As seen from Figure 6.25, the optimum value of ¢ is
range-bound within 1.30 to 1.35, regardless of the assumed value of CR. The variation of
prestressing force at the jacking end P; with A is shown in Figure 6.26 for different values
of CR. The plots in Figure 6.26 show that the required prestressing force P, is lower with
lower CR value and decreases slowly with higher value of 4 > 9.0. The variation of

prestressing force Py with A shows similar trend as noted for the total cost (Figure 6.25).
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Figure 6.18 Plot of Optimum Value of Depth Ratio hy/h; and Depth hyversus Total

Length of Bridge Girder (3-Span AASHTO HS-20 loads)
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Figure 6.26 Plot of Required Prestressing P; versus A for Different CR(C./C,) (3-Span of
Total Length (500 ft) and AASHTO HS-20 loads)
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6.4 General Observations

Based on the previous results presented for two and three-span continuous bridge

girders, some observations that would help designers are made here:

1)

2)

3)

4)

5)

The optimum value of ¢ for three-span continuous bridge girder lies within 1.30
to 1.4 regardless of the value of CR and total length of bridge girder L.

For a two-span continuous bridge girder, an economical design can be achieved
with a right combination of long and short tendons even for non-optimum values
of cross-sectional depths /; and /.

It has been observed that the optimum depth values are relatively insensitive to
unit cost of prestressing steel and concrete for two-span continuous bridge decks.
However, that would not be the case for three-span continuous bridge decks, for
which optimum values of depths would depend on CR.

Lower prestressing steel cost can be attained with 4 > 9.0 for both two-span and
three-span continuous bridges, regardless of the value of CR and total length of
bridge girder L.

The use of all full length tendons does not lead to economical design, and so a

suitable combination of both long and short tendons (4 >1.0) must be used.



CHAPTER SEVEN

CONCLUSIONS AND RECOMMENDATIONS

7.1 Conclusions

A generalized computer program PCPCBGND has been developed to readily
determine the minimum cost design of non-uniform single-cell box girder bridge decks
for two-span or three-span continuous bridges. The constrained non-linear optimization
problem is solved iteratively by using a gradient search method to achieve a total solution
which determines the deck profile along the length, the proportion of the long and short

tendons, the required prestressing force and the tendon layout.

Based on this study, the following conclusions are made in order to achieve both
economy and aesthetics of designing variable depth having single- cell box girders:

6) A generalized computer program PCPCBGND is developed to readily find the
optimum design of a two-span or three-span of bridge girders of variable depth.
The program automatically determines the optimum girder profile and the tendon
layout with a combination of long and short tendons.

1) The combination of short and long tendons for either a two-span or a three-span
bridge girder is always necessary to achieve economical design. When compared
with all long tendons, an economical proportion of long and short tendons would
always result in lower prestressing cost.

2) For a symmetrical three-span bridge girder of a given length, the minimum value

of the total cost of material is achieved when ¢ lies within 1.3 to 1.4.
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3) The optimum value of span ratio ¢ for three-span girder and A are relatively

insensitive to the ratio of unit costs of concrete and prestressing steel, CR.

4) As the results show that the cost of prestressing steel is insensitive beyond a value
of A > 9.0, an economical design can be attained with A > 9.0 for all values of L
considered in this study regardless of the value of unit cost ratio CR.

5) For three-span continuous bridge girders, the optimum values of %;, 4, and h; are
sensitive to the change in the unit cost ratio CR of concrete and prestressing steel.
However, for two-span continuous bridge girders, the optimum values of /; and

h, are marginally impacted by CR value.

7.2 Recommendations for Future Research

The following recommendations can be made for further research in this area

1) In this research, only the material cost was considered in the objective function.
Future work may include other costs in addition to material cost, such as the cost
of prestressing steel anchorage, formwork and ordinary steel reinforcement.

2) Multi-cells box girders can also be studied for wider bridge decks.

3) This study can be extended to other cross-section types, such as solid and voided

slab-type bridge decks.
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APPENDIX A: Program Verification
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Table A.1 Minimum Prestressing force Py for Two-Span of Total Length 400 ft Using

Excel Solver

Value of P; Obtained From

Ratio | pCPCBGND | Excel Solver | gatio ( PCPCBGND/Solver)
A
P; P;
Kips x 10° Kips x 10°

1 6.463 6.490 0.99584
L1 6.281 6.279 1.000319
1.2 6.128 6.126 1.000326
13 6.005 6.006 0.999833
14 5.904 5.898 1.001017
15 5816 5.805 1.001895
1.6 5.729 5.712 1.002976
17 5.653 5.629 1.004264
1.8 5.583 5.554 1.005221
1.9 5.520 5.488 1.005831
2 5.463 5.432 1.005707
3 5.106 5.083 1.004525
4 4911 4.883 1.005734
5 4786 4753 1.006943
6 4.700 4.661 1.008367
7 4.639 4597 1.009136
8 4.591 4.554 1.008125
9 4.554 4521 1.007299
11 4.498 4.479 1.004242
13 4.458 4.451 1.001573
15 4.435 4.430 1.001129
17 4.413 4.414 0.999773
19 4.398 4.402 0.999091
21 4386 4388 0.999544
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Table A.2 Bending Moment for Two-Span of Total Length 400 ft Using Staad-Pro

Package

Value of B.M.F Obtained From

STATIO
N PCPCBGND Staad-Pro
Kip.ft Kip.ft

No. Min.LL | Max.LL Self wt. Min.LL Max.LL Self wt.
1 0.0 0.0 0.0 0.00 0.00 0.00

2 -137.226 1177.501 8252.356 -137.22 1177.44 8252.40
3 -274.448 | 2003.995 13965.52 -274.45 2003.95 13965.60
4 -411.668 | 2500.714 17139.43 -411.67 2500.69 17139.60
5 -548.894 | 2713.135 17774.18 -548.90 2713.12 17774.40
6 -686.118 | 2662.615 15869.78 -686.12 2662.61 15870.00
7 -823.349 | 2386.445 11426.19 -823.34 2386.44 11426.40
8 -960.578 1898.042 4443.403 -960.57 1898.02 4443.60
9 -1097.81 1252.031 -5078.512 -1097.81 1252.00 -5078.40
10 -1235.04 | 511.7026 -17139.65 -1235.01 511.67 -17139.60
11 -1372.27 0.0 -31740.01 -1372.24 0.00 -31740.00
12 -1235.04 | 511.7026 -17139.65 -1235.01 511.67 -17139.60
13 -1097.81 1252.031 -5078.512 -1097.81 1252.00 -5078.40
14 -960.578 1898.042 4443 403 -960.57 1898.02 4443 .60
15 -823.349 | 2386.445 11426.19 -823.34 2386.44 11426.40
16 -686.118 | 2662.615 15869.78 -686.12 2662.61 15870.00
17 -548.894 | 2713.135 17774.18 -548.90 2713.12 17774.40
18 -411.668 | 2500.714 17139.43 -411.67 2500.69 17139.60
19 -274.448 | 2003.995 13965.52 -274 .45 2003.95 13965.60
20 -137.226 | 1177.501 8252.356 -137.22 1177.44 8252.40
21 0.0 0.0 0.0 0.00 0.00 0.00
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Table A.3 Computed Flexural Stresses for Two-Span (L= 400 ft, A =25, h; = 8.95 ft and

h, = 13.0 ft)
Station Flexural Stress, f (Psi)
Bottom | Top
Initial Stage (Self-Weight Bending Moment +Prestressing Force)
1 -640.8995 -846.0278
2 -703.5483 -729.437
3 -704.845 -667.5983
4 -669.7285 -637.7239
5 -618.3036 -618.3773
6 -528.9006 -630.2209
7 -374.8642 -705.9083
8 -207.512 -808.515
9 -193.1864 -1485.066
10 -318.2923 -1301.142
11 -761.7043 -798.139
Final Stage (Max. Bending Moment +Prestressing Force)
1 -512.7196 -676.8223
2 -312.7807 -826.0346
3 -148.1304 -937.4014
4 -40.15674 -991.3176
5 2.44E-04 -975.3138
6 -0.3719482 -915.3726
7 -6.782959 -850.1688
8 -45.78683 -764.0422
9 -222.7255 -1121.484
10 -512.5251 -788.7589
11 -1260.993 -0.5142822
Final Stage (Min. Bending Moment +Prestressing Force)
1 -512.7196 -676.8223
2 -434.8928 -707.6206
3 -359.8041 -732.0527
4 -307.6393 -731.6538
5 -291.0704 -692.4998
6 -286.4944 -637.0691
7 -264.5041 -599.1882
8 -257.3388 -557.7562
9 -389.4524 -958.6883
10 -680.702 -624.323
11 -1260.993 -0.5142822
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Table A.4 Computed Flexural Stresses for Two-Span (L= 400 ft, A =25, h; = 10.95 ft
and h, = 15.90 ft)

Station Flexural Stress, f (Psi)
Bottom | Top
Initial Stage (Self-Weight Bending Moment +Prestressing Force)
1 -506.1884 -715.2472
2 -560.2944 -614.1479
3 -560.1973 -561.6698
4 -528.0643 -537.5235
5 -482.0065 -522.5867
6 -411.1202 -526.9332
7 -298.57 -572.7827
8 -182.5658 -634.3641
9 -148.087 -1182.284
10 -230.7604 -1047.832
11 -595.9606 -629.2662
Final Stage (Max. Bending Moment +Prestressing Force)
1 -404.9507 -572.1978
2 -252.9057 -681.818
3 -123.5569 -766.0171
4 -35.79614 -807.4462
5 -0.3017578 -794.4496
6 -0.6032715 -742.5157
7 -12.93542 -679.3234
8 -56.48276 -595.2414
9 -177.9536 -887.4877
10 -394.8144 -631.8754
11 -988.9254 0.00E+00
Final Stage (Min. Bending Moment +Prestressing Force)
1 -404.9507 -572.1978
2 -343.6553 -593.3126
3 -280.8564 -612.5555
4 -234.5497 -613.436
5 -216.5449 -583.2145
6 -213.1087 -534.751
7 -204.266 -492.0777
8 -213.4462 -441.467
9 -301.6173 -766.2037
10 -519.5293 -509.4245
11 -988.9254 0.00E+00
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