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and Uncertainty in Pattern Classification of Bioinformatics Datasets 
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Date of Degree : January, 2009 

   
 Classification in the emerging field of Bioinformatics is a challenging task because 

the information about different diseases is either insufficient or lacking in authenticity as 

data is collected from different types of medical equipment. Also the limitation of human 

expertise in manual diagnoses leads to incorrect diagnoses. Moreover, the information 

gathered from various sources is subject to imprecision and uncertainty. Researchers 

utilized Artificial Neural Networks, Support Vector Machine and Bayesian Networks to 

achieve better classification, but the developed models are bedeviled by several 

limitations especially in uncertain situations. Recently, Type-1 and Type-2 Fuzzy Logic 

Systems (FLS) have been introduced as novel computational intelligence approaches for 

both prediction and classification. However Type-2 and other FLS have not been fully 

utilized in the bioinformatics and medical science. This thesis presents a Type-2 FLS-

based classification framework for multivariate data to diagnose different types of 

diseases, which is capable of handling imprecision and uncertainty. As expected, this new 

computational intelligence approach overcomes the weaknesses of existing classifiers, 

particularly in the ability to handle data in uncertain situations such as uncertainty due to 

the existence of various types of noise, inconsistent expert opinions, ignorance and 

laziness. The classification accuracy and performance of the proposed framework are 

measured by using University of California, Irvine (UCI) well known medical datasets. 

The classification is performed on the basis of the nature of the inputs (e.g., singleton or 

non-singleton) and on whether uncertainty is present or absent. Empirical results have 

shown that the proposed FLS classification framework outperforms earlier implemented 

models with better classification accuracy among all existing classifiers. In addition, we 

conducted empirical studies on this classifier regarding the impact of various parameters 

of the proposed framework such as training algorithms and defuzzification methods. 
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: زي هاشم رشيد      الإسم  
   إطار عمل باستخدام المنطق الغائم المكيف لمعالجة عدم الدقة وعدم    
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إن مشكلة التصنيف في مجال البيوانفورماتيك هي مهمة صعبة آون المعلومات حول الأمراض المختلفة هي إما غير 

بشرية في تشخيص إن محدودية الخبرة ال. آافية أو غير موثوقة بسبب تجميع البيانات باستخدام أدوات طبية مختلفة

علاوة على ذلك المعلومات المجموعة من مصادر . المرض يدوياً تؤدي الى تصنيف خاطىء في المجال الطبي

قدمت هذه الرسالة إطار عمل تصنيفي معتمد عى المنطق الغائم من النوع . مختلفة قد تكون غير دقيقة أو غير مؤآدة

إن . تلفة من الأمراض وهو قادر على معالجة عدم الدقة  وعدم التأآدالثاني للبيانات المتغيرة لتشخيص الأنماط المخ

 وهي مجموعات بيانات طبية معروفة وتمت مقارنة UCIدقة التصنيف وأداء إطار العمل الجديدتم قياسها باستخدام 

ز التصنيف على لقد تم إنجا. النتائج بمعظم  المصنفات الشائعة في الأعمال المنشورة  في علوم الحاسب والاحصائيات

إن النتائج .  وفيما إذا آان عدم التأآد موجوداً في النظام أو لاnon-singleton أو singletonأساس طبيعة الدخل آـ 

.  يتفوق على النماذج المحققة السابقة وله دقة تصنيف أعلى من جميعهاFLS التجريبية أظهرت أن اطار العمل المقدم 

 مثل خوارزميات FLSمن الدراسات التجريبية المتعلقة بتأثير البارامترات المختلفة لـ بالإضافة لذلك، تم اجراء عدد 

 . وخوارزميات التدريبdefuzzificationالتدريب، و أساليب  الـ 
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CHAPTER 1 

INTRODUCTION 

 The automatic diagnosis of cancer and other endemic diseases is an important, real-

world medical problem. A major class of problems in medical science involves the 

diagnosis of disease, based upon various tests performed upon the patient. When several 

tests are involved, the ultimate diagnoses may be difficult to obtain, even for a medical 

expert. Over the past few decades, this has given rise to computerized diagnostic tools, 

intended to aid the physician in making sense of the confusing data in presence of 

imprecision and uncertainty [1]. These machine learning computerized tools and 

techniques have been employed by many disciplines to automate complex decision 

making and problem solving tasks. This field of research is immensely diverse, with 

applications in medicine, mathematics, computer science, chemistry, economics, business 

management and many other fields [2]. The majority of these tasks are concerned with 

pattern recognition problems. Pattern recognition is the act of taking in raw data and 

taking an action based on the “category” or the pattern [5]. In machine learning, the 

solution of pattern recognition problems lies within the field of supervised learning. The 

task is to learn (induce) the relationship between the dependent attributes (input) and the 

designated attribute (output) from a set of examples, i.e. generalize information collected 

from given data to unseen data. For example, given a set of training data consisting of the 

measurements of certain features (or variables) from examples of two categories (e.g. 

patients with malignant tumors and those with benign tumors), a learning system is 
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required to determine the combination of features that is sufficient to distinguish one 

category (malignant) from the other (benign). 

 Data mining is defined as identifying valid, novel, potentially useful, and ultimately 

understandable patterns in data. In order to uncover these regularities, several techniques 

can be used, such as machine learning, statistical analysis, modeling techniques, database 

technology or human computer interaction [44]. These data mining methods originate in 

the field of Artificial Intelligence (AI) and machine learning [45]. 

 Although data mining is quite a young discipline (about 25 years old), it is popular 

due to successful applications in telecommunications, marketing and tourism [46]. In 

recent years, its usefulness has also been proven in medicine [47]. Data mining aims to 

describe specific patterns (dependencies, interrelations, various regularities) which may 

be present in historical data. These patterns may be used to support future decisions in the 

diagnosis of new cases [46]. Such knowledge may also have an enormous value for 

decisions in treatment planning, risk analysis and other predictions. Prior to the mining 

process, it is essential to gain sufficient data [10]. This may require integrating data from 

multiple heterogeneous information sources and transforming it into a form specific to a 

target decision support application [48]. Afterwards the data has to be prepared for 

knowledge extraction by selecting the proper records and attributes. 

1.1. Importance of Machine Learning in Medical Diagnosis 

 Human beings are always prone to make mistakes because of their limitations, and 

so correct diagnosis depends on the expertise of the doctor. Most physicians are 

confronted with the problem of deducing certain diseases or formulating a treatment 
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based on more or less specified observations and knowledge [3]. Experience, which is the 

basis for a valid diagnosis, is obtained by the physician only after analyzing a sufficient 

number of cases. This expertise is reached only in the middle of a physician’s career. 

This is especially true for rare or new diseases, where experienced physicians are in the 

same situation as newcomers. Principally, humans do not resemble statistical computers, 

but pattern recognition systems. Humans can recognize patterns or objects very easily but 

they fail when probabilities have to be assigned to observations [4]. A study was 

conducted to show that machine learning can help in making correct diagnoses [3]. The 

results of the study indicates that even the most experienced physician can diagnose 

correctly around 79% but diagnoses made with the help of machine learning are around 

91% correct. From this result, one can conclude that computers make fewer errors than 

humans in making adhoc analyses of complex data. 

 A diagnosis is always based on symptoms identified in a patient’s body and 

analyzed by a physician. There are four possible situations during this process [50]. First, 

True Positive (TP) means that the patient is correctly diagnosed as ill. True Negative 

(TN) means that the patient is correctly diagnosed as healthy. Those two situations are 

desired because they deliver correct predictions. On the other hand, there are situations 

when an ill patient is diagnosed as healthy (False Negative, FN) or when a healthy patient 

is diagnosed as ill (False Positive, FP). This concerns only two-class (binary) problems: 

sick-healthy, deceased-alive, etc. In the real world, however, a physician often has to 

decide which of many diseases a patient suffers from. The situation can get even more 

complicated if the patient suffers from several illnesses at once. The costs of FP and FN 

differ, especially in medicine. When an ill patient is classified as healthy, she would get 
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no treatment and the unpredictable effects may include deterioration of the illness or even 

death. On the other hand, when a healthy patient is classified as ill, she would be treated 

in a wrong or inadequate way, which may cause health problems. Thus the real-world 

diagnosing process must be reflected in the data mining in the most appropriate way. 

1.2. Imprecision and Uncertainty 

 The success of any classification framework that makes use of one or more sources 

of information is based on the availability of good historical data and experts’ opinions. 

A framework that incorporates these things has two inherent problems: imprecision and 

uncertainty. Imprecision arises when an expert uses some quantitative criteria to 

differentiate between two or more classes. This is because an expert is a human being 

whose knowledge is imprecise due to the representation of knowledge in words. 

Moreover, the criteria defined are based on his past experience and may not be 100% 

precise. Therefore historical data is used by computers to make the boundaries between 

the classes precise.  

 Uncertainty comes into play when the device or instrument introduces noise while 

measuring the desired quantity. This can happen when different devices compute the 

same quantity (e.g., blood pressure or heart beat) but produces different outcomes due to 

different underlying understandings of the problem. The consequence of this is that the 

uncertainty in the internal attributes gives rise to uncertainty in the corresponding 

external attributes. Moreover, other factors that contribute to measure uncertainty are 

laziness/ignorance and to some extent the accuracy of the particular instrument. In 

general, uncertainty occurs mainly due to three reasons: 
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i. Laziness: There is too much work in listing all the antecedents and consequences 

in the problem domain. 

ii. Theoretical Ignorance: We usually do not know enough about the domain to list 

every consideration. 

iii. Practical Ignorance: Perhaps we do not have all the tests to run, or we do not want 

to run all the tests. 

1.3. Problem Statement 

 A detailed literature review of the existing classifiers in bioinformatics reveals that 

there is no well defined classification framework which can handle imprecision and 

uncertainty in datasets. With respect to the various possible sources of uncertainties 

which we identified, our aim is to propose a new classification framework that can 

perform better than existing classifiers even in the presence of such uncertainties. In order 

to accomplish this, we need to design an adaptive Fuzzy Logic based framework that can 

deal with imprecision and uncertainties and will achieve promising classification 

accuracy. This work will also investigate the different parameters of the Fuzzy Logic 

System (FLS) and observe the impact on classification accuracy. These parameters 

include membership functions, nature of the training algorithms and defuzzification 

methods. The implementation of the proposed framework will be investigated with 

respect to different parameters. Classification accuracy will be evaluated on real time 

datasets and comparison will be carried out with the existing classifiers. 
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1.4. Thesis Organization 

 This thesis is organized as follows. The first chapter explains the motivation and 

significance of the proposed work, together with a general introduction and a problem 

statement. Chapter two reviews the relevant research literature. Chapter three gives a 

detailed overview of Fuzzy Logic Systems. Chapter four presents the proposed Fuzzy 

Logic based classification framework for handling imprecision and uncertainty. Chapter 

five discusses the impacts of algorithms and parameters on the performance of the 

proposed framework, and these parameters include membership functions, training 

algorithms, and defuzzification methods. The experimental setups, results and 

discussions, the conclusion and future work are presented in Chapter six. 
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CHAPTER 2 

LITERATURE REVIEW 

 In the recent past, many classifiers were developed to explore various fields with 

the help of computer science. In fact, most of the research in the literature on disease 

classification used either statistical models or Artificial Neural Networks [6, 7, 8]. 

Statistical pattern recognition contributed greatly to the understanding of such 

classification problems. Widely used statistical methods included linear discriminant 

analysis, generalized linear regression, logistic regression, and nearest neighbor 

classification [5, 9]. 

 In a health-care unit, a physician diagnosis a patient’s condition based on the given 

symptoms. This information may be stored either in the medical unit’s system or in the 

patient’s files. This data may contain non-trivial dependencies [51], which may turn out 

to be valuable. Many methods and algorithms were used to mine data for hidden 

information. They included Artificial Neural Networks, Decision Trees, Fuzzy Logic 

systems, Naive Bayes, Support Vector Machines, Clusterization, Logistic Regression, 

and so on. The most frequently used algorithms for the medical support systems were the 

Decisions Trees (C4.5 algorithm), Artificial Neural Networks and the Naive Bayes [51, 

52, 53]. These algorithms were able to reduce the time spent for processing symptoms 

and producing diagnoses, making them more precise at the same time. However, most of 

the research studies assessed the algorithms on a narrow set of medical databases (no 

more than three) [54, 55]. 
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2.1. Earlier work on Artificial Neural Networks 

 Artificial Neural Networks (ANNs) are networks of units, called neurons, that 

exchange information in the form of numerical values via synaptic interconnections, 

inspired by the biological neural networks of the human brain. ANNs provided very 

powerful and flexible approaches to function approximation [10]. ANNs are mainly the 

Feed Forward Networks, such as multilayer perceptrons and radial basis function Neural 

Networks, which are widely used to develop diagnostic models [8].  

 Past studies sought ways of capitalizing the use of Neural Networks in medical 

diagnosis of breast cancer. To improve the results of breast cancer screenings, Gurcan et 

al. (2002), evaluated the performance of a back-propagation ANN to predict an outcome 

(cancer/not cancer) to be used as classifier [11]. ANN was trained on data from the 

family history of cancer, and socio-demographic, gyneco-obstetric and dietary variables. 

A complete method was proposed for fast detection of circumscribed mass in 

mammograms by employing Radial Basis Function Neural Networks (RBFNN) in which 

each neuron output is a nonlinear transformation of a distance measure of the neuron 

weights and its input vector [12]. The study in [13] indicated that oncologists can be 

helped when the result is obtained by different types of network, such as the desired Feed 

Forward Neural Network rule extraction algorithm or the Radial Basis Function, or the 

General Regression Neural Network, or the Probabilistic Neural Network. 

 The problem with Neural Networks is that they usually adopt gradient-based 

learning methods which are susceptible to local minima and long training times [6] 

especially when the number of classes/categories is high. For example, the Subsequent 
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Artificial Neural Network (SANN) in [7] had one ANN and up to 91 SANNs to be 

trained for each experiment. For each network, there are five modules, each consisting of 

10 hidden nodes. This means that, for each experiment, up to 4,600 hidden nodes are 

needed for the training process. Conversely the Extreme Learning Machine technique 

required less than 50 hidden nodes [6, 7, 14, 18]. So ANNs usually produce less 

classification accuracy, and they need considerable training time while updating the input 

output weights. 

 The study in [59] introduces Artificial Neural Networks with back propagation for 

classification of heart disease cases. This solution was implemented in a medical system 

to support the classification of the Doppler signals in cardiology. The predictions yielded 

by [59] were more accurate than those presented in [60]. The authors of the article [61] 

claimed that the Multilayer Perceptron is one of the most frequently employed neural 

network algorithms in modern medical diagnosis systems. They discussed applications of 

this algorithm to classification of different cancers (hepatic, lung and breast cancers) and 

other diseases. The study in [62] presented two different Neural Network techniques are 

presented. NeuroRule and NeuroLinear were applied to diagnosis of hepatobiliary 

disorders. The Neural Networks’ major disadvantage is complexity [62], which makes 

the classification process difficult to interpret. Nevertheless, the authors proved that they 

produced effective classifications in case of medical data. The medical application of 

Neural Networks was also presented in [63] and [64]. 
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2.2. Earlier work on Bayesian Belief Networks 

 Some recent work was done with other artificial intelligence techniques, such as 

Bayesian Belief Networks (BBN) [15]. This statistical and graphical modeling approach 

is based upon direct application of Bayes Theorem, and it works on the assumption that 

the attributes are statistically independent from each other [5, 10]. Some optimization 

techniques were also used, such as the Hill Climbing Bayesian Network, Laplace 

smoothing, Decision Trees or C4.5L to improve the ranking of classifiers [16]. An 

application of Bayes’ law in medical analyses was first proposed in 1959 [51] in an 

article about theoretical possibilities of applying this solution in physicians’ everyday 

work. This idea was realized in 1972 by an implementation of a medical system to 

support the diagnosis of abdominal pain by using the Naive Bayes algorithm. This 

classifier assumes that all attributes are independent. For many years, scientists and 

medical staff tried to develop a suitable diagnosis system using the Bayesian theorem. 

Several studies on this problem were presented in [52] and [66]. Simplicity, learning 

speed and classification speed are the main advantages of the Bayesian classifier [67]. On 

the other hand, one of the most serious drawbacks is its ad-hoc restrictions placed on the 

graph, making the classifications hard to understand [51]. This method must be 

implemented with care, as diagnoses must be thoroughly understandable. 

2.3. Earlier work on Decision Trees 

 Besides the Neural Network, Decision Trees are also utilized in medical knowledge 

extraction [47, 53]. Decision tree algorithms recursively partition the data, and they give 
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rise to a tree-like structure [10]. The decisions are usually simple attribute tests, using one 

attribute at a time to discriminate the data. New data can be classified by following the 

conditions at the nodes down into a leaf. Decision trees have been used extensively in 

work from both machine learning and statistics. Their main advantage is simplicity and 

the easy-to-comprehend structure of the generated models [50]. Several algorithms 

generate trees. Vlahou et al. [53] and Duch et al. [47] applied Decision Trees 

classification for diagnosis of an ovarian cancer and a Melanoma skin cancer, 

respectively. Decision trees are applicable also in other fields of medicine. The authors of 

[65] compared the accuracy of Decision Tree with a Bayesian Network in diagnosis of 

female urinary incontinence. The obtained classifications were better in the Decision 

Tree, but the difference was small. 

2.4. Earlier work on Support Vector Machines 

 Support Vector Machine (SVM) has been proposed as a very effective method for 

pattern recognition, machine learning and data mining [17]. The general idea is to map 

non-linearly D-dimensional input space into a high dimensional feature space. A linear 

classifier (separating hyper plane) is constructed in this high dimensional space to 

classify the data. The use of the kernel trick allows the classifier to be constructed 

without explicit knowledge of the feature space. SVM is considered to be a good method 

because of its high generalization performance. Intuitively given a set of points which 

belong to either one of the two classes, a SVM can find a hyper plane having the largest 

possible fraction of points of the same class on the same plane. This hyper plane is called 

the Optimal Separating Hyper plane (OSH) and it can minimize the risk of misclassifying 
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examples of the test set. When the One-Versus-All (OVA) approach is used to make 

binary classifiers applicable to multi category problems, the number of classes increase as 

the complexity of the overall classifier also increases. So the system becomes more 

complex, and it requires extra computations [18]. 

2.5. Earlier work on Extreme Learning Machine 

 Huang et al. [19, 20, 21] proposed a new learning algorithm called the Extreme 

Learning Machine (ELM) for Single Hidden Layered Feed Forward Neural Networks 

(SLFNs). In ELM, one may randomly choose (according to any continuous sampling 

distribution) and fix all the hidden node parameters and then analytically determine the 

output weights of SLFNs [19]. After the hidden nodes parameters are chosen randomly, 

SLFN can be considered as a linear system, and the output weights can be analytically 

determined through a generalized inverse operation of the hidden layer output matrices. 

Studies have shown [19, 22] that ELM has good generalization performance for 

classification and can be implemented easily. Many nonlinear activation functions can be 

used in ELM such as sigmoid, algebraic sigmoid, sine, hard limit, and radial basis 

functions [20, 21], and complex activation functions [15]. 

2.6. Earlier work on Fuzzy Rule Based Systems 

 In the past fuzzy rule-based systems were applied mainly to control problems, but 

recently they are also applied to pattern classification problems. Various methods were 

proposed for the automatic generation of fuzzy if-then rules from numerical data for 
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pattern classification [23, 24, 25] and they were shown to work well on a variety of 

problem domains. Several Artificial Intelligence (AI) techniques including Neural 

Networks and Fuzzy Logic [26, 27] were successfully applied to a wide variety of 

decisions in medical diagnosis [28, 29]. 

 The authors of [56], [57] and [58] worked on medical rules induction. The article 

[56] presented study on unsupervised fuzzy clustering algorithms and rule based systems, 

which are useful in the labeling of tomography images. The presented methods turned out 

to be computationally efficient for one class of problems, as proven by the results of the 

studies. However in other applications their effectiveness was much lower. In some 

applications the generated rules are claimed to be easy to construct and modify. 

Furthermore, their independency allows for changing one rule without affecting the 

others. 

 In the paper [57] the rules extraction was achieved with the use of an Artificial 

Neural Network Multilayer Perceptron. The authors proposed an algorithm C-MLP2LN. 

It generates additional nodes, deletes the connections among them, and optimizes the 

rules. Such a solution leads to simpler and more accurate rules. The authors of [58] 

presented a study on the generation of rules which describe associations among attributes. 

The experiments were conducted on real medical data and their correctness is verified by 

statistical measures and physicians evaluations. This article analyzed of real data from St. 

Thomas’ Hospital in London, and it described all the steps performed: from 

preprocessing, through data mining experiments, to verification of accuracy of the results. 

In research on the analysis of stock prices, a Type-2 Fuzzy Rule Based Expert 

System was developed. The model applied the technical and fundamental indexes as the 
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input variables, and it produced very encouraging results. Dongrui and Mendel [30] 

proposed a Vector Similarity Measure (VSM) for Interval Type-2 Fuzzy Sets, whose two 

elements measure the similarity in shape and proximity for a linguistic approximation 

problem, and they reported a bright performance. Li et al. [31] presented a model of the 

redundant structure in ecosystems by using a Type-2 Fuzzy Logic System to demonstrate 

quantitatively the communications between organisms and the environment. The result of 

the experiment showed the performance of the model in determining the community with 

higher reliability that has stronger fitness while the environment changes. Castillo et al. 

[32] used the Fuzzy Lyapunov Synthesis as proposed by Margaliot [33] to build a 

Lyapunov Stable Type-1 Fuzzy Logic Control System, and they made an extension from 

Type-1 to Type-2 to ensure the stability on the control system and to prove the robustness 

of the corresponding fuzzy controller. Research based on hybridization of Support Vector 

Machines (SVMs) and Type-2 FLS was performed by Chen et al. [34] to better handle 

the uncertainties existing in real classification data and in the Membership Functions 

(MFs) in the traditional Type-1 FLS. This was achieved by using type-2 fusion 

architecture to incorporate the classification results from individual SVM classifiers and 

to generate the combined classification decision as the output. 

2.7. Uncertainty Handling Problems in Existing Classifiers 

 As a result of the above survey, we can see that there is a significant need for a 

classification framework that can handle the uncertainty in datasets. For this purpose, we 

investigated some deficiencies present in the earlier classifiers. For example, the 

Bayesian Network is based on probabilistic interactions of observations, and some of the 
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observed values may not be correct. While some explanations highlight erroneous values 

as conflicting findings, no existing method can explain how errors may be compensated 

during inference. Similarly, current methods do not explain how the missing values along 

the influence paths to the target node are derived. Secondly, they require an exponential 

number of analyses for all the possible subsets of evidence variables. They are limited to 

analyzing findings individually, and are computationally intractable for reflecting 

variable interactions. 

 As far as Neural Networks are concerned, the influence of the noisy inputs on the 

output variable together with the transfer functions, implicit in the values of the weights. 

Hence an unattractive feature of such networks is that the number of weights and 

complexity increase greatly as the network grows. Also the weights may not always be 

easy to interpret if the data is imprecise and uncertain, which leads to the problem of 

under fitting or over fitting, and the problem becomes difficult to visualize from an 

examination of the weights. 

 In SVM classifiers, problems with corrupted inputs are more difficult than 

problems with no input uncertainty. Even if there is a large margin separator for the 

original uncorrupted inputs, the observed noisy data may become non-separable. For 

example, by using a kernel function in SVM, the input vector is mapped on to a usually 

high dimensional feature space, and the uncertainty in the input data introduces 

uncertainties in the feature space. To overcome this problem, researchers used total least 

square regression methods with SVM, but they could not achieve promising results. 

 



 

 16

CHAPTER 3 

FUZZY LOGIC SYSTEMS 

3.1. Fuzzy Logic 

 Fuzzy Logic was first proposed by Lotfi A. Zadeh, Professor of Systems Theory at 

the University of California, Berkeley, USA, in a publication in 1965 [35]. Fuzzy Logic 

was his term for a system of mathematics developed to model the human brain's curious 

way of processing and selecting words. The main motivation behind fuzzy logic was the 

imprecision in the measurement process, where by precise statements lose meaning and 

meaningful statements lose precision as the complexity rises [36].  

3.2. Fuzzy Logic Systems 

 Fuzzy Logic System (FLS) is the name for the system which has a direct 

relationship between fuzzy logic and fuzzy concepts (fuzzy sets, linguistic variables, and 

so on). The most popular FLS in the literature may be classified into three types, namely 

Pure Fuzzy Logic Systems, Takagi and Sugeno’s Fuzzy System, and Fuzzy Logic System 

with fuzzifier and defuzzifier. As engineering applications mostly produce crisp data as 

output and expect crisp data as input, the last type is the most widely used [37]. Figure 3-

1 shows the basic configuration of a FLS with fuzzifier and defuzzifier.  
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Figure 3-1: Fuzzy logic system with fuzzifier and defuzzifier 

 

This type of FLS was first proposed by Mamdani [38]. It was successfully applied to a 

variety of industrial processes and consumer products. The main four components’ 

functions are as follows.  

Fuzzifier: Does a mapping from crisp input to a fuzzy set. 

Fuzzy Rule Base: Fuzzy Logic Systems use fuzzy IF-THEN rules. A fuzzy IF THEN 

rule is of the form "IF X1 = A1 and X2 = A2 ... and Xn = An THEN Y = B” where Xi 

and Y are linguistic variables and Ai and B are linguistic terms. The IF part is the 

antecedent or premise, while the THEN part is the consequence or conclusion. In a FLS, 

the collection of fuzzy IF-THEN rules is stored in the fuzzy rule base, which is referred 

to by the inference engine when processing inputs. 

Fuzzy Inference Engine: After all the crisp input values have been fuzzified into their 

respective linguistic values, the inference engine will access the fuzzy rule base of the 

fuzzy expert system to derive linguistic values for the intermediate as well as the output 

linguistic variables. The two main steps in the inference process are aggregation and 
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composition. Aggregation is the process of computing for the values of the IF 

(antecedent) part of the rules. Composition is the process of computing for the values of 

the THEN (conclusion) part of the rules. 

Defuzzifier: Does a mapping from the fuzzy output to the crisp output.  

3.3. Adaptive Fuzzy Logic Systems 

 The definition of Adaptive Fuzzy System given by Wang in [37] is easy to 

understand – “An Adaptive Fuzzy System is defined as a Fuzzy Logic System 

equipped with a training algorithm, where the fuzzy logic system is constructed 

from a set of fuzzy IF-THEN rules using fuzzy logic principles, and the training 

algorithms adjust the parameters of the Fuzzy Logic System based on numerical 

information”. Here parameters, e.g. position and mean or standard deviation, are the 

necessary values to construct the membership functions. Membership functions are 

adjusted by a set of input-output pairs. This is adaptive in the sense that the necessary 

changes are made only locally to the affecting membership functions, whereas trainable 

neural networks globally adjust all the weights. So, Adaptive Fuzzy Logic is a nice way 

of combining linguistic and numerical information, which can be done in two ways [37]: 

i. Use linguistic information (experts’ knowledge) to construct an initial FLS, and 

then adjust the parameters of the initial FLS based on numerical information. 

ii. Use numerical information and linguistic information to construct two separate 

FLSs, and then average them to obtain the final FLS. 
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In the first case components of the FLS are based on the expert’s opinion. These 

components include the number of rules, the shape and position of the membership 

functions, and the shape and position of the consequents. Historical data is then used to 

further tune the parameters of the FLS. The second way to make an adaptive FLS is 

straightforward in the sense that after the parameters of the individual systems are 

available, one can average these parameters to produce a final FLS.   

 The above discussion shows that in a FLS, the experts are the source of information 

for establishing rules. The rules are then treated by using the historical data. But the 

problem with the classical FLS (also known as Type-1 after the advent of Type-2 as 

discussed below) is that it handles only the imprecision and not the uncertainty. To 

handle both the uncertainty and imprecision, one needs to establish a Type-2 system, 

which is supposed to handle all sources of uncertainty [39]. 

3.4. Uncertainty in Fuzzy Logic Systems 

 Mendel [39] noted that uncertainty exists while building and using typical Fuzzy 

Logic Systems. He described four sources of uncertainty. Those are summarized here. 

i. Uncertainty about the meanings of the words that are used in a rule. This 

uncertainty affects the membership functions, because these membership 

functions represent words in a FLS. It can be both antecedents and consequents. 

ii. Uncertainty about the consequent that is used in a rule. This uncertainty affects 

the rule itself. A rule in FLS describes the impact of the antecedents on the 

consequent. Experts may vary in their opinions about the nature of this impact. 
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iii. Uncertainty about the measurements that activate the FLS. This uncertainty 

affects the crisp input values or measurements that activate the FLS systems. 

These measurements may be noisy or corrupted. This noise can again be in a 

certain range or totally uncertain meaning (stationary or non-stationary). 

iv. Uncertainty about the data that are used to tune the parameters of a FLS. This 

uncertainty affects the measurements again. But these measurements are used to 

train the FLS whereas the measurements of (iii) are used to activate the FLS. 

3.5. Uncertainty and Type-2 Fuzzy Logic Systems 

 Mendel has proposed Type-2 fuzzy sets and Type-2 FLS to deal with four types of 

uncertainties discussed in the previous section. Type-2 fuzzy sets were first proposed by 

Zadeh [40] in 1975, but they were first characterized in 1999 by Mendel and Liang [41]. 

Actually Type-2 fuzzy sets are the three-dimensional, whereas Type-1 is two-

dimensional. This extra dimension allows uncertainty to be handled by Type- 2 fuzzy 

sets.  

 We will now see the definition of Type-2 fuzzy sets and how they can help to 

model uncertainty. We use the definition and figures from Mendel’s book [39]. Type-2 

fuzzy sets help us to deal with the first source of uncertainty, i.e. uncertainty about the 

meaning of the words. Type-1 fuzzy sets cannot deal with this type of uncertainty, 

because the degree of membership is considered as certain in Type-1 fuzzy sets. On the 

other hand, the blurred area, i.e. the second dimension in a Type-2 fuzzy set adapts the 

concept of uncertainty. Mendel calls this blurred area a footprint of uncertainty (FOU). 

Here the concept is to consider different degrees of membership for each of the values in 



 

 21

the universe of discourse. Fuzzy sets are used to represent words or linguistic variables, 

and people differ in how to interpret a particular word. So, the concept of a second 

dimension in type-2 fuzzy set provides this flexibility to incorporate different persons’ 

views in a fuzzy set. We will discuss this issue further in the later part of this thesis. 

 

Figure 3-2: A Type-1 triangular membership function 

Let us imagine blurring the Type-1 membership function depicted in Figure 3-2 by 

shifting the points on the triangle either leftwards or rightwards and not necessarily by the 

same amounts, as in Figure 3-3. Then, at a specific value of x, say x´, there is no longer a 

single value for the membership function. Instead, the membership function takes on 

values wherever the vertical line intersects the blur. 
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Figure 3-3: Blurred triangular membership function 

Those values need not all be weighted the same. Hence, we can assign an amplitude 

distribution to all of those points. Doing this for all Xx∈ , we create a three-dimensional 

membership function (a Type-2 membership function) that characterizes a Type-2 fuzzy 

set. Type-2 membership functions have the same constraint as Type-1 membership 

functions. The degree of membership along the second dimension is always in the 

interval [0, 1]. The amplitude distribution i.e. the values along the 3rd dimension, also lie 

between the interval [0, 1]. So it is clear that, if the blur disappears, then a Type-2 

membership function must reduce to a Type-1 membership function. 

 

Figure 3-4: Type-1 Fuzzy sets 
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Figure 3-5: FOUs for membership functions of Figure 3-4 

Figure 3-4 shows some triangular membership functions, and Figure 3-5 shows FOUs for 

those membership functions [39]. The shaded or blurred area is our FOU, i.e. the second 

dimension that helps to deal with uncertainty. We see in the figure that this FOU is 

uniformly shaded. It means that, at each point in the FOU, the membership degree is one. 

Membership functions of this type are called interval Type-2 membership functions. 

Imposing this constraint helps to build the Fuzzy Logic System, but it also poses some 

limitation. Now, let us see some examples of Type-2 Gaussian membership functions. 

Let us consider the case of a Gaussian membership function having a fixed standard 

deviation, σ, and an uncertain mean that takes on values in [m1, m2]. Figure 3-6 is an 

example. 

 

Figure 3-6: FOU for Gaussian membership function with uncertain mean 
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Similarly, let us consider a Gaussian membership function having a fixed mean, m, and 

an uncertain standard deviation that takes on values in [σ1, σ2]. Figure 3-7 is an example. 

 

Figure 3-7: FOU for Gaussian membership function with uncertain standard 

deviation 

It is easy to see here that both Gaussian membership functions are interval Type-2, as the 

shading is uniform. 

3.6. Fuzzification in Type-2 Fuzzy Logic Systems 

 A Fuzzy Logic System is considered to be Type-2 as long as any one of its 

antecedent or consequent sets is Type-2. All the components of Figure 3-8 were 

discussed in detail by Mendel [39]. Fuzzifier is one of the most important components 

from the aspect of uncertainty. Here we shall discuss fuzzification, because it helps to 

deal with uncertainty. 
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Figure 3-8: Type-2 FLS 

 Fuzzification can be done in two main ways (singleton and non-singleton). 

Singleton fuzzification considers the measurement that activates the FLS to be certain 

and noise free. Non-singleton considers the input crisp measurement to be uncertain. In 

singleton, the result of fuzzification is a fuzzy singleton, i.e. only at the input 

measurement the membership function has a value of 1. On the other hand, conceptually, 

a non-singleton fuzzifier implies that the given input value is the most likely to be correct 

from all the values in its immediate neighborhood. However, because the input is 

corrupted by noise, neighboring points are also likely to be the correct value, but to a 

lesser degree. So, fuzzy membership function is used for fuzzification where this function 

is centered at the measurement value. This non-singleton fuzzification can also be done in 

two ways (Type-1 and Type-2) based on the type of fuzzy sets used for fuzzification. 

When the noise is stationary, we can use the Type-1 non-singleton fuzzification. When 

the noise is non-stationary, we can use Type-2 non-singleton. Based on different types of 

fuzzification and different types of antecedent fuzzy sets, Mendel developed 5 different 

Fuzzy Logic Systems: 
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i. Singleton Type-1 

ii. Non-singleton Type-1 

iii. Singleton Type-2 

iv. Non-singleton Type-2 with Type-1 inputs 

v. Non-singleton Type-2 with Type-2 inputs 

Figure 3-9 shows a pictorial description of these 5 different fuzzy logic systems [22]. 

 

Figure 3-9: Different types of FLS – (a) singleton Type-1, (b) non-singleton Type-1, 

(c) singleton Type-2, (d) non-singleton Type-2 with type-1 inputs, (e) non-singleton 

Type-2 with Type-2 inputs 
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Mendel has shown which type of noise i.e. uncertainty can be handled by which FLS. See 

Table 3-1. 

 

Table 3-1: Different Fuzzy Logic Systems to handle different types of noise 

Type of FLS Measurement 
Noise 

Training and 
Testing Data 

Measurements that 
is used after 

building the FLS 

Singleton Type-1 None Noise Free Noise Free 

Non-singleton 
Type-1 Stationary Noisy Noisy 

Singleton Type-2 Stationary Noisy Noise Free 

Type-1 non-
singleton Type-2 Stationary Noisy Noisy 

Type-2 non-
singleton Type-2 Non-stationary Noisy Noisy 
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CHAPTER 4 

 HANDLING UNCERTAINTY IN THE PROPOSED FLS BASED 

CLASSIFICATION FRAMEWORK 

 As a result of our survey, we can see that there is significant need for a framework 

that can handle the uncertainty surrounding the classification process. This chapter 

provides solutions for handling various sources of uncertainty when performing 

classification. In order to counter the impact of uncertainty on the classification 

framework, we incorporate the concept of a Type-2 fuzzy logic system in our framework. 

The experimental results obtained by using Type-1 and Type-2 systems strengthened our 

intuition that Type-2 outperforms Type-1. 

4.1. Major Components of Fuzzy System 

 The general architecture of a Type-2 FLS was already discussed in Chapter 3. In 

the following sections, we will look at the major components regarding fuzzification and 

rule base formulation by considering uncertainty issues. 

4.1.1. Antecedent Fuzzy Sets  

 In building an FLS, we divide the whole range of all the internal and external 

attributes into several fuzzy sets. This fuzzy set classification can be obtained by the 

experts or by the analysis of numerical data sets. As we have already said, different 
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experts may provide a different assessment, based on their past experience, regarding a 

particular fuzzy set range (e.g., LOW) of the internal attributes. Different experts can 

have different ranges. This causes an uncertainty as to which definition is reliable, when 

one wants to define antecedents while developing an FLS. This situation seems 

problematic, but at the same time it is interesting and advantageous, as Mendel himself 

says [39]: 

“Uncertainty is good in that it lets people make decisions (albeit conservative 

ones).” 

This observation led Mendel to the idea of Type-2 fuzzy sets, which enable us to model 

uncertainty, caused by different experts’ opinions as just discussed, in the FLS by 

blurring the antecedents’ boundaries and defining the footprint of uncertainty (FOU). 

Similarly, obtaining fuzzy set classification through analysis of numerical data can cause 

uncertainty, if the data contains more than one metric value for a particular internal 

attribute. This uncertainty should be reflected in the antecedents by using Type-2 fuzzy 

sets, so that the impact of uncertainty can be propagated to the outputs through the FLS 

inference engine. 

4.1.2. Consequent Fuzzy Sets 

 Uncertainty in consequent arises when two or more experts, based on their 

experience, relate the impact of the same antecedent fuzzy set on more than one 

consequent fuzzy set using fuzzy rules. In order to handle this situation Mendel proposed 

three possibilities: 

i. Keep the response chosen by the largest number of experts. 
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ii. Find a weighted average of rule consequents for each rule. 

iii. Preserve the distributions of the expert responses for each rule. 

Mendel opted for the second solution, and he derived the defuzzification method which 

accomplishes this task. 

4.1.3. Training FLS 

 After setting up the antecedents and the consequent fuzzy sets by incorporating the 

uncertainty through Type-2 representation, there is a need to train the parameters if one is 

employing an adaptive FLS, such as the one described in Section 3.3. In order to 

accomplish this, we need historical data having input attributes as well as output attribute 

as classes. Also, for the case where noisy input which gives rise to uncertainty, the 

situation can be handled if one uses non-singleton fuzzification by properly defining the 

parameters of the input membership functions [39]. 

4.1.4. Activating FLS 

 Finally, we need data to activate the FLS. This data may be testing data to validate 

the performance of the FLS, since the noise has already been taken care of during training 

and the parameters are already tuned. 

4.2. Proposed Framework 

 The proposed framework is given in Figure 4-1. This framework is different from 

classical frameworks for two reasons. First, the training algorithms are adaptive, and they 
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continuously adjust the parameters of the FLS based on numerical information. Second, 

the proposed framework has a Modified Height defuzzifier which takes care of all the 

deficiencies present in an ordinary Height defuzzifier. The basic idea and mathematical 

derivation of this Modified Height defizzifier are stated in section 5.2.2. 

 

Figure 4-10:Proposed Adaptive FLS Classification Framework 

 For the initialization of the framework, we consider our antecedents and consequent 

membership functions with uncertain mean. After defining the type of membership 

functions, we need to classify antecedents and consequents into a suitable number of 

fuzzy sets. After that, we need to initialize the parameters of membership functions, i.e. 

means and standard deviations. Due to the adaptive nature of the training algorithm, the 

parameters of the antecedents can be initialized by running experiments and looking at 

the behavior of training, because here we assume imprecision and uncertainty due to 

laziness, and that is why we cannot compute means and standard deviations for only one 

time. Therefore, one can initialize the consequents by analyzing the training data or by 

running experiments and noticing the behavior of training. In developing the above 
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framework, we consider (i) Initializing the Framework, (ii) Training the Framework, and 

(iii) Testing or Validating the Framework. 

4.2.1. Initializing the Framework 

  For initializing the framework, we need to define some components. Initializing a 

FLS means initialization of its antecedents, consequents and the fuzzy rules. These 

components of an FLS can be initialized either from the numerical dataset or from the 

expert opinion. In this study, we initialized the FLS from the numerical dataset. In this 

model, we have: the antecedents and consequents; internal attributes or input fields as 

antecedents; and external attributes or class categories as consequents. Our framework 

will support one external attribute based on several internal attributes. If-Then rules will 

form the rule base by using these internal and external attributes.  

To initialize from numerical data, we make use of a training data set taken from 

the available measurement data. For this, we need to define and initialize the various 

components of the Type-2 FLS developed by Mendel [39]. In this context we consider 

our antecedent and consequent to be Type-2 Gaussian with uncertain mean. The input 

membership functions will be Type-1 Gaussian. The Type-2 FLS expects that we shall 

have one or more measurements available in the dataset for each internal or external 

attribute. Our model will define the initial fuzzy sets for both antecedents and the 

consequent from the dataset. It should be noted at this point that we are using the FLS 

developed by Mendel [39], which tries to completely specify the FLS by using the 

training data, which can be interpreted as a collection of IF-THEN rules. Each rule is of 
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the form shown below, where i
jF  are fuzzy sets described by the following Gaussian 

membership function, i.e.  
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where i=1….n, and j =1…p, with n and p representing the number of samples and 

number of attributes respectively.  

Let us suppose that we need to initialize F fuzzy sets for the attribute A. Each attribute 

has m measurements. In the training dataset, we have attribute measurements for n 

samples. Table 4-1 shows the structure of the training dataset for one attribute. 

 

Table 4-2: Structure of the training dataset 

Sample # Measure 
1 

Measure 
2 

… Measure 
m 

Mean of 
Measure 

Standard 
Deviation of 

Measure 

1 X11 X 12 … X 1m 1μ  1σ  

2 X 21 X 22 … X 2m 2μ  2σ  

… … ... … … … … 

n X n1 X n2 … X nm nμ  nσ  

 

Now, we have to calculate the following: 

M1 = Minimum ( μ1, μ2….. μn ) 

M2 = Maximum ( μ1, μ2….. μn ) 
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M = Mean ( μ1, μ2….. μn ) 

S = Standard Deviation ( μ1, μ2….. μn )  

R1 = Minimum ( σ1, σ2 ... σn ) 

R2 = Maximum ( σ1, σ2... σn ) 

R = Mean (σ1, σ2... σn) 

T = (M2-M1) /(F-1) 

Now, if Ui1 and Ui2 are the uncertain means for ith fuzzy set, they are defined as follows: 

Ui1 = Mi – α R 

Ui2 = Mi + α R 

α = β R 

where i = 1….F and F are the number of fuzzy sets. 

In this framework, the consequents are computed by combining all the possibilities of 

fuzzy sets in the antecedents by using these formulas. Moreover the Type-2 FLS derived 

by Mendel [39] provides control over the consequents which represent the interval of 

confidence, and it can be initialized by using past experience or by observing the training 

behavior.  

4.2.2. Training the Model with Type-2 Learning Procedures 

 After initializing the FLS, our model goes into the training step. For this purpose, 

the dataset contains the independent (input variables) and dependent (class variable) 

attributes. We have discussed in the previous section how this data should be organized 
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and used to initialize the FLS. The same dataset will be used as training data. The 

objective of the training algorithm is to minimize the error function for E training 

Epochs.  

E(t) = 
2

)(

)()( )(
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
t

tt

y
yxf  t = 1, …, N 

The steps are as follows: 

i. Initialize all the parameters. 

ii. Set the counter of the training epoch, starting from zero. 

iii. Apply the means of the internal attribute measurements with their corresponding 

standard deviation to the Type-1 non-singleton Type-2 FLS. 

iv. Use the modified height defuzzification in a defuzzifier. 

v. Tune the uncertain means of the antecedent membership functions and the 

consequents by using the Steepest Descent or Heuristic based algorithm for the 

error function. 

vi. Calculate error function. If e = Threshold then Stop. Otherwise start a new epoch 

4.2.3. Testing or Validating the Model 

Validation or testing is a very important requirement to show that any newly 

proposed framework really works. For validating the framework, we used 30% of the 

available data set, divided by using the stratifying sampling approach. The validation 

helps to determine whether our framework training works successfully. That is, with a 

numerical dataset the framework can train well to achieve a lower value of error function. 
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The validation also helps in assessing the performance of our framework in comparison 

to the other existing approaches. 

4.3. Evaluation of Effectiveness and Accuracy 

  Nowadays scientists devote much time and effort to empirical studies which aim to 

determine the performance of data mining solutions. Some methods may yield better 

results for one type of problems, while others may be suitable for different ones. That is 

why it is important to find the pros and cons of each of them. This may help to avoid 

making a mistake resulting from an application of an unsuitable algorithm. The systems 

which implement data mining solutions may be usable in miscellaneous areas of life, 

such as banking, medicine or telecommunication. Such systems are expected to support 

decision making in a very reliable way, as a single mistake may cause irreversible 

consequences or even lead to someone’s death (as it may be the case in medical systems). 

While estimating the performance of a method one can come across different problems 

such as a limited sample of data, or a difficulty in evaluating a hypothesis’s performance 

for unseen instances, or a dilemma about and finally how to use an available dataset for 

training and testing. 

 To compare the performance and accuracy of our models with other models, we 

used two most common quality measures, viz. Classification Rate, Root Mean Squared 

Error (RMSE), Receiver Operating Characteristic curve (ROC), Precision, Recall and 

Area Under Curve (AUC). While comparing solutions, it is also crucial to consider costs 

of misclassifications. Making a correct decision is very important, and so the costs should 

be calculated. One way to show the errors of classification is to introduce a Confusion 
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Matrix [51]. Such a matrix, for a Boolean problem, consists of four fields (numbers): 

True Positive, True Negative, False Positive and False Negative, which are needed to 

generate the ROC curve. They all show the dependencies between the actual classes of 

instances and those delivered by a model. By using these values the overall success rate 

can be calculated. 

 The comparison of different machine learning solutions may also be done with the 

use of the ROC (Receiver Operating Characteristic) curves that are a graphical method 

for evaluating classifiers. ROC graphs are very useful in organizing classifiers and 

visualizing their performance. Based on the ROC curves and lift charts, it is possible to 

introduce two parameters: Recall and Precision. They are commonly used in information 

retrieval [51]. Recall is understood as the ratio of retrieved relevant documents to the 

total number of relevant documents. Precision is defined as the ratio between the total 

number of documents that are retrieved and the number of documents retrieved that are 

relevant. The author of [68] applies the ROC and AUC curves to evaluate the 

performance of a data mining model. The model was used to predict the cases of the 

corpus luteum deficiency in women with recurrent miscarriage. The ROC and AUC 

curves turned out to be valuable in comparing two or more data mining methods. 

4.4. Dataset Description 

 In our experiments, we used eight types of datasets selected from the machine 

learning repository at the University of California Irvine (UCI) [43]. A brief description 

of these datasets is in Table 4-2 
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Table 4-3: Description of Datasets 

Dataset Size # of Att Missing Classes 

Wisconsin Breast Cancer 699 9 Yes 2 

Hepatitis 155 19 Yes 2 

Heart Statlog 270 13 Yes 2 

Pima Diabetes 768 8 Yes 2 

Mamographic Mass 961 6 Yes 2 

Hypothyroid 3772 30 Yes 3 

Lymphography 148 19 Yes 4 

Heart Disease 303 14 Yes 5 

 

 For these datasets, Size represents the number of instances/entries in a dataset, # of 

Attributes represents the length of one instance representing how many values is 

contained in one instance, Missing shows whether there is any incomplete entry, and 

Class represents the number of categories to be classified in a dataset. For example, the 

Wisconsin Breast Cancer dataset has input attributes for each cell nucleus such as radius, 

texture, smoothness, compactness and symmetry. The patient’s problem is then 

diagnosed as either benign or malignant. In the Hepatitis dataset, the input attributes are 

steroid, fatigue, liver big, liver firm, and so on. The patient is then classified as live or 

dies. The Heart Statlog dataset has the input attributes of chest pain type, resting blood 

pressure, blood sugar and heart rate. The data is then classified as absence or presence of 

heart disease. Likewise, the Pima Diabetes dataset has such input attributes as glucose 

concentration, blood pressure, serum insulin and body mass index. The problem is then 

classified as diabetes present or diabetes absent. In the Mamographic dataset, the input 
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attributes consist of age, shape, margin, density and severity. The problem is then 

diagnosed as benign or malign. For the datasets having more than two classes, such as 

Hypothyroid datasets, the input attributes include thyroxine, thyroid surgery, pregnancy, 

sickness and tumor. The problem is then diagnosed as normal, hyper-thyroid or hypo-

thyroid. In the Lymphograpy dataset, the input attributes consist of blockage, bypass, 

change in lymph and dislocation. The data is then classified as normal, meta states, 

malign lymph and fibrosis. Likewise, the Heart disease dataset has attributes such as age, 

sex, cholesterol value, fasting blood sugar and so on. The five output classes are 

categorized as absence, typical angina, atypical angina, non-anginal pain and 

asymptomatic. 

 We conducted our experiments on Matlab R2007a. The datasets are stored in MS 

Excel documents and can be read directly from Matlab. All the graphs are generated by 

using the same Matlab R2007a.  
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CHAPTER 5 

IMPACT OF ALGORITHMS AND PARAMETERS ON THE 

PERFORMANCE OF THE PROPOSED FLS BASED CLASSIFICATION 

FRAMEWORK 

 The nature of the training algorithm and parameters play a vital role in an FLS 

based model [30]. Many different parameters can be combined in different ways in order 

to build an FLS. In addition, an FLS can be trained or tuned to optimize the developed 

fuzzy inference engine by using different algorithms e.g. Steepest Descent approach [37] 

and Heuristic based approach [42]. In our proposed study, we investigated the impact of 

various combinations and the nature of training algorithms to identify the algorithm that 

can provide better results in the context of classification models. 

5.1. Training Algorithms 

 Our proposed study concerns the back propagation algorithm in the context of 

adapting an FLS. In the back propagation algorithm, none of the antecedents or 

consequents parameters are fixed ahead of time. They can be all tuned by using the 

following two most common approaches in the FLS community: 

i. Steepest  Descent Approach  

ii. Heuristic Based Approach 
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5.1.1. Steepest Descent Approach 

Consider an FLS with singleton fuzzification, max-product composition, product 

implication, height defuzzification and Gaussian membership functions. It is given by the 

equation: 

)( )(ixy  = )( )(i
s xf  = 

( )( )
( )

( )( )
( ) ⎥

⎥

⎦

⎤

⎢
⎢

⎣

⎡ −
−

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡ −
−

∏∑

∏∑

==

==

2

2

11

2

2

11

2
exp

2
exp

l
k

l
k

l
k

l
k

F

F
i

k
p

k

M

l

F

F
i

kp

k

lM

l

mx

mx
y

σ

σ
 Ni ,...,1=  (5-1) 

where:  

M is number of rules, p is number of antecedents and N is number of data points 

Given an input-output training pair ( ( ) )(: ii yx ) also known as data point, we wish to 

design an FLS so that the error function is minimized. The Steepest Descent approach 

can be applied to obtain the following recursions to update all the design parameters of 

this FLS in order to minimize the error function. 
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Now, the back propagation algorithm can be applied as follows: 
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Algorithm 5-1: Back propagation algorithm for FLS 
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1. Initialize the parameters of all the membership functions for all the 

rules, )0(l
kF

m , )0(
l

y and )0(l
kF

σ . 

2. Set an end criterion to achieve convergence. 

3. Repeat 

i.    for all data points ( ( ) )(: ii yx ) Ni ,...,1=  

a) Propagate the next data point through the FLS. 

b) Compute error. 

c) Update the parameters of the membership functions using (5-2), 

(5-3) and (5-4). 

ii. end for (*end for each input-output pair*) 

iii. Compute the root mean square relative error (RMSRE) as (5-5). 

iv. Test the end criterion. If satisfied break. 

 Until (*end for each epoch*) 
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5.1.2. Heuristic Based Approach 

 Like the Steepest Descent approach, the Heuristic based algorithm propagates a 

data point in each loop, determines the output of the FLS, and computes the output error. 

The main information derived from the error value is whether the contribution of a fuzzy 

rule to the overall output values should be increased or decreased. The updated 

parameters of antecedents and consequent membership functions (MFs) are then 

determined by using the error value based on some heuristics. The consequent of the FLS 

is modified by using heuristics that take defuzzification procedure into consideration. The 

aim is to move the output of the FLS closer to the target value. This is achieved by 

shifting the support of the consequent fuzzy set such that the center of the fuzzy set 

moves closer to the target value. 

 The important point to note here is that in the Steepest Descent approach, all the 

rules are usually modified on the basis of computed error, whenever a data point is 

propagated through the FLS. Moreover, different rules do not share the same MFs, i.e. 

the instances of an MF of a particular fuzzy set across various rules are independent of 

each other. But in the Heuristic based approach, various rules share the same instance of 

a particular fuzzy set. Finally, the rule which contributes to the output value is modified. 

5.2. System Parameters 

 We also investigated the impact of some systems’ parameters that can affect the 

behavior of our proposed classification framework. 
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The parameters that can affect the behavior of the FLS are as follows. We wish to 

investigate the impact of the following on the proposed classification framework: 

i. Height defuzzification versus Modified Height defuzzification. 

ii. Triangular membership functions versus Gaussian membership functions. 

5.2.1. Height Defuzzifier 

 The Height defuzzifier is also known as the center average defuzzifier. Here, each 

rule output fuzzy set is replaced by a singleton at the point having the maximum 

membership in that output set.  The centroid of the Type-1 set, composed of these 

singletons, is then calculated. The output of a Height defuzzifier is given as: 
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where 
l

y  is the point having the maximum membership in the thl output set, and its 

membership grade in the thl output set is )(
l

B ylμ . The problem with the Height 

defuzzifier is that it uses only the center of the support,
l

y , of the consequent membership 

function. It does not take into consideration the shape of the consequent membership 

function, whether or not the membership function is narrow. If it is known, it can be 

interpreted as an indication of a very strong belief in that rule. If it is very broad, it can be 

interpreted as an indication of much less belief in that rule. The height defuzzifier 

produces the same result [39].   
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5.2.2. Modified Height Defuzzification 

 The Modified Height defuzzifier takes care of the deficiency of the conventional 

Height defuzzifier. It is very similar, except that in the Modified Height defuzzifier 

each )(
l

B ylμ  is scaled by the inverse of the spread of the
thl consequent set. This is our 

main contribution for this study work. After solving the problem of the simple Height 

defuzzifier, the output is given as: 
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where lδ  is a measure of the spread of the
thl consequent set, 

l
y  and )(

l

B ylμ  have the 

same meaning as in (5-6). Now, consider an FLS with singleton fuzzification, max-

product composition, product implication, Modified Height defuzzification and Gaussian 

membership functions. It is given by the equation: 
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The training algorithm is then applied to obtain the following recursions, in order to 

update all the design parameters of this FLS, and thus to minimize the error function. 



 

 46

)1( +im l
kF

 = l

l

F

F
i

ki
s

l

M

l
l

l

ii
s

mF

z
i

imx
xfiy

z

yxfim
l

k

l
k

l
k δσ

δ

α
)(

)]([
)]()([)(2)( 2

)(
)(

1

)()( −
×−

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛
−

−

∑
=

(5-9) 

 

)1( +iy
l

 = 
∑
=

−− M

l

ll

ll
ii

sy

l

z

zyxfiy

1

)()( ])([)(
δ

δα    (5-10) 

and 

)1( +il
kFσ = l

l

F

F
i

ki
s

l

M

l
l

l

ii
s

F

z
i

imx
xfiy

z

yxfi
l

k

l
k

l
k δσ

δ

ασ σ )(

)]([
)]()([)(2)( 3

2)(
)(

1

)()( −
×−

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛
−

−

∑
=

(5-11) 

)1( +ilσ  = 
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

−−+

∑
=

M

l
l

ll

l
i

s

lii
s

l

zi
zxfiyyxfi

1

2
)()()( 1

)(
)]()(][)([)(

δ
δ

αδ δ  (5-12) 

where 

lz  = 
( )( )
( ) ⎥

⎥

⎦

⎤

⎢
⎢

⎣

⎡ −
−∏

=
2

2

1 2
exp

l
k

l
k

F

F
i

kp

k

mx

σ
   (5-13) 

Now, the back propagation algorithm can be applied as explained above. Thus the 

Modified Height defuzzification in a defuzzifier first combines the output sets 

corresponding to the highest membership value, to obtain a single output set. Then it 

finds a crisp number that is representative of this combined output set. 
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5.2.3. Gaussian and Triangular Membership Functions 

 Besides other MFs, Gaussian and triangular MFs can be used to define antecedents 

or consequent fuzzy sets. In this research, we investigated the impact of these MFs on the 

adaptive FLS classification framework by using the Steepest Descent approach. 

 

Figure 5-11: Gaussian and triangular Membership Functions 

A triangular MF is a three point function, defined by minimum (a), maximum (c) and 

modal (b) values i.e., TMF (a,b,c), where ( cba ≤≤ ). The membership value at any input 

x can be calculated as follows: 
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Now, consider a FLS with singleton fuzzification, max-product composition, product 

implication, Height Defuzzification and Triangular MFs. It is given by the equation: 
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The training algorithm is then applied to obtain the following recursions to update all the 

design parameters of this FLS in order to minimize error function. 
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Now, the back propagation algorithm can be applied as explained above. The only 

difference is that, while modifying the parameters, we must make sure that the condition 

( cba ≤≤ ) holds.  
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CHAPTER 6 

EXPERIMENTS AND RESULTS 

6.1 Experiment 1: Uncertainty Handling in the Fuzzy Logic 

Based Classification Framework 

 In this experiment, we used eight different datasets. These datasets cover all the 

variations, such as small number of instances, large number of instances, number of 

attributes and so on, which are required for good experiments.  As this is our first 

experiment, we excluded all the missing values in the datasets and we assumed that all 

the datasets are in original form and noise free. 

6.1.1. Training and Testing 

 We conducted this experiment with eight datasets. In each experiment, we 

employed the Type-2 FLS algorithm as described above, and we compared the results 

with the corresponding Type-1 FLS. It is important to note here that the performance of 

Type-1 and Type-2 training algorithms cannot be compared on the same step size, 

because the Type-1 training algorithm requires a smaller value for the step size than 

Type-2. Thus, in all the experiments, we provided the suitable step size values to both the 

FLS types, so that the parameters are converged on the same number of epochs. Upon the 

completion of each training epoch, the RMSRE values on both training and testing 

datasets were computed. 
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6.1.2. Results and Discussion 

 It is evident from Table 6-1 and 6-2 that none of the Type-1 or Type-2 fuzzy logic 

systems has preference over one another. For some datasets Type-1 has shown better 

performance, whereas for others Type-2 has got some edge over the Type-1 FLS based 

classification framework. The reason is that, for small and simple datasets, Type-1 has 

better generalization property as it keeps the overall process simple. However if we look 

at the RMSRE and ROC graphs, we can say that Type-2 FLS outclassed the Type-1 FLS. 

Therefore our intuition for handling the uncertainty in a classification framework by 

using Type-2 FLS is justified. 
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Figure 6-12: Average RMSRE graph during testing of Type-1 and Type-2 FLS on 

Wisconsin Breast Cancer Dataset 

 

Figure 6-13: ROC Curve during testing of Type-1 and Type-2 FLS on Wisconsin 

Breast Cancer Dataset 



 

 53

 

Figure 6-14: Average RMSRE graph during testing of Type-1 and Type-2 FLS on 

Pima Diabetes Dataset 

 

Figure 6-15: ROC Curve during testing of Type-1 and Type-2 FLS on Pima 

Diabetes Dataset 
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Table 6-4: Summary of Classification Accuracy of eight different datasets on 

training and testing data 

 

Type-1 Fuzzy Logic System Type-2 Fuzzy Logic System  

 

Dataset 

 

 

Classification 

Accuracy on Train 

Data 

 

Classification 

Accuracy on Test 

Data 

 

Classification 

Accuracy on Train 

Data 

 

Classification 

Accuracy on Test 

Data 

Wisconsin Breast Cancer 98.66 % 97.90 % 99.68 % 99.28 % 

Hepatitis 91.30 % 89.95 % 91.80 % 90.15 % 

Heart Statlog 90.83 % 90.45 % 90.10 % 89. 67 % 

Pima Diabetes 81.55 % 79.89 % 83.65 % 83.19 % 

Mamographic Mass 88.42 % 87.25 % 91.72 % 90.56 % 

Hypothyroid 96.50 % 94.25 % 97.50 % 95.30 % 

Lymphography 89.35 % 87.60 % 90.35 % 88.67 % 

Heart Disease 87.13 % 86.48 % 89.13 % 88.24 % 
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Table 6-5: Summary of Precision, Recall and Area under Curve (AUC) on training 

and testing data 

 

Type-1 Fuzzy Logic System Type-2 Fuzzy Logic System  

 

Dataset 

 

Precision 

(%) 

Recall 

(%) 

AUC 

 

Precision 

(%) 

Recall 

(%) 

AUC 

 

Wisconsin Breast 

Cancer 
97.6 / 98.4 98.2 / 98.6  0.93 98.3 / 98.5 99.3 / 98.9 0.94 

Hepatitis 88.5 / 89.1 90.1 / 90.7  0.81 89.4 / 91.1 90.3 / 90.5  0.83 

Heart Statlog 89.3 / 90.4 89.8 / 90.6 0.83 89.3 / 89.7 89.8 / 90.6 0.83 

Pima Diabetes 79.6 / 80.8 80.2 / 80.3 0.78 83.6 / 82.8 84.2 / 83.3 0.80 

Mamographic Mass 87.9 / 86.6 88.3 / 87.8 0.85 92.2 / 91.6 91.3 / 92.8 0.88 

Hypothyroid 93.2 / 94.8 94.5 / 94.2 0.92 95.3 / 94.8 95.2 / 96.3 0.94 

Lymphography 85.4 / 86.7  86.9 / 87.1 0.84 87.4 / 88.6 86.7 / 87.4 0.86 

Heart Disease 86.6 / 85.1 85.8 / 86.3 0.85 88.2 / 87.9 88.9 / 88.3 0.87 
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6.2 Experiment 2: Uncertainty Handling in Fuzzy Logic Based 

Classification Framework when Dataset is taken as a Non-

Singleton Input 

 For the dataset to be taken as non-singleton, we need to generate Gaussian 

membership functions that represent size as non-singleton input. 

 

Algorithm 6-1: Generate datasets that represent uncertainty by using Gaussian 

membership function. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Take a mean value of all the values in each of the input attributes. 

2. For each mean size, compute the random standard deviation so that the 

Gaussian membership function spans R to Q percent of the mean value 

on both sides of the mean.   

3. For each mean value, generate noise up to at most R percent, and add that 

noise to the corresponding input values. 

4. Partition the generated dataset into training and testing datasets. The 

training dataset consists of 70 percent of the entire dataset, whereas the 

remaining 30 percent is left for testing. 



 

 57

6.2.1. Training and Testing 

  We conducted this experiment in two parts with eight different datasets. In the first 

part these datasets were assumed to have at most 15 percent uncertainty in their 

respective values, and in the second part the uncertainty was scaled up to 25 percent. In 

all the experiments, we have generated Gaussian input noise such that they spanned 

around 15 and 25 percent of the mean value on both sides of the mean. The rest of the 

details are the same as we have discussed in experiment 1. 

6.2.2. Results and Discussion 

 It is evident from Tables 6-3 and 6-4 that Type-2 FLS is better than Type-1 FLS on 

the basis of Classification accuracy, Precision, Recall and Area Under Curve. This is 

because Type-2 is more immune to noise and can perform better in presence of 

uncertainties. Here in all the experiments Type-2 FLS was better than Type-1. The 

RMSRE and ROC graphs show that Type-2 FLS outclassed the Type-1 FLS. Therefore 

our intuition for handling uncertainty in classification frameworks by using Type-2 FLS 

is justified. 

While investigating the results of Tables 6-5 and 6-6 when the uncertainty scale is 

increased to 25 percent, we can see that Type-2 is still performing better than Type-1. 

Also the results of Type-1 at 25 percent uncertainty show a drastic decrease in prediction 

accuracy as compared to 15 percent uncertainty, while Type-2 fuzzy is more immune to 

noise and uncertainties. 
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Figure 6-16: Average RMSRE graph during testing of Type-1 and Type-2 FLS on 

Wisconsin Breast Cancer Dataset as a non-singleton input 

 

Figure 6-17: ROC Curve during testing of Type-1 and Type-2 FLS on Wisconsin 

Breast Cancer Dataset 
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Figure 6-18: Average RMSRE graph during testing of Type-1 and Type-2 FLS on 

Pima Diabetes Dataset 

 

Figure 6-19: ROC Curve during testing of Type-1 and Type-2 FLS on Pima 

Diabetes Dataset 
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Table 6-6: Summary of Classification Accuracy for eight different datasets on 

training and testing data when uncertainty is scaled to 15 percent 

Type-1 Fuzzy Logic System Type-2 Fuzzy Logic System  

 

Dataset 

 

 

Classification 

Accuracy on Train 

Data 

 

Classification 

Accuracy on Test 

Data 

 

Classification 

Accuracy on Train 

Data 

 

Classification 

Accuracy on Test 

 Data 

Wisconsin Breast 

Cancer 
92.06 % 91.50 % 96.63 % 96.26 % 

Hepatitis 87.65 % 86.15 % 89.84 % 88.45 % 

Heart Statlog 88.13 % 87.55 % 90.92 % 90. 05 % 

Pima Diabetes 76.58 % 76.15 % 80.45 % 79.85 % 

Mamographic Mass 84.18 % 83.54 % 89.76 % 89.62 % 

Hypothyroid 94.30 % 93.28 % 96.25 % 95.30 % 

Lymphography 87.56 % 85.63 % 89.35 % 86.24 % 

Heart Disease 85.33 % 83.18 % 87.18 % 85.89 % 
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Table 6-7: Summary of Precision, Recall and Area under Curve (AUC) on training 

and testing data when uncertainty is scaled to 15 percent 

Type-1 Fuzzy Logic System Type-2 Fuzzy Logic System  

 

Dataset 

 

Precision 

(%) 

Recall 

(%) 

AUC 

 

Precision 

(%) 

Recall 

(%) 

AUC 

 

Wisconsin Breast 

Cancer 
92.5 / 91.2 91.8 / 92.2  0.89 96.4 / 96.3 96.6 / 97.1 0.93 

Hepatitis 85.7 / 86.9 85.3 / 85.1  0.81 89.4 / 89.1 88.3 / 89.5  0.84 

Heart Statlog 87.3 / 86.8 87.4 / 87.5 0.83 90.3 / 89.7 90.8 / 90.4 0.88 

Pima Diabetes 77.4 / 76.9 76.2 / 77.3 0.72 80.6 / 79.8 80.6 / 79.3 0.74 

Mamographic Mass 83.1 / 83.4 84.3 / 83.5 0.79 89.2 / 88.6 89.3 / 89.7 0.87 

Hypothyroid 92.1 / 93.2 94.5 / 94.2 0.90 94.3 / 93.5 94.2 / 95.3 0.93 

Lymphography 84.2 / 85.3  85.9 / 86.2 0.82 86.4 / 87.6 85.7 / 86.4 0.85 

Heart Disease 85.6 / 86.6 84.4 / 85.3 0.83 87.2 / 86.7 87.9 / 86.9 0.86 
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Table 6-8: Summary of Classification Accuracy for eight different datasets on 

training and testing data when uncertainty is scaled to 25 percent 

Type-1 Fuzzy Logic System Type-2 Fuzzy Logic System  

 

Dataset 

 

 

Classification 

Accuracy on Train 

Data 

 

Classification 

Accuracy on Test 

Data 

 

Classification 

Accuracy on Train 

Data 

 

Classification 

Accuracy on Test 

 Data 

Wisconsin Breast 

Cancer 
89.23 % 88.90 % 95.30 % 95.38 % 

Hepatitis 84.45 % 83.68 % 87.12 % 86.45 % 

Heart Statlog 84.89 % 84.25 % 89.56 % 88. 90 % 

Pima Diabetes 72.18 % 71.50 % 78.35 % 78.36 % 

Mamographic Mass 80.20 % 79.85 % 88.46 % 87.55 % 

Hypothyroid 91.35 % 90.29 % 94.75 % 93.10 % 

Lymphography 84.62 % 82.53 % 88.35 % 86.24 % 

Heart Disease 82.38 % 80.18 % 86.48 % 85.59 % 
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Table 6-9: Summary of Precision, Recall and Area under Curve (AUC) on training 

and testing data when uncertainty is scaled to 25 percent 

Type-1 Fuzzy Logic System Type-2 Fuzzy Logic System  

 

Dataset 

 

Precision 

(%) 

Recall 

(%) 

AUC 

 

Precision 

(%) 

Recall 

(%) 

AUC 

 

Wisconsin Breast 

Cancer 
88.7 / 87.4 88.2 / 86.9  0.83 95.3 / 94.7 95.2 / 96.5 0.91 

Hepatitis 83.8 / 84.5 82.3 / 84.1  0.75 86.9 / 87.8 86.3 / 87.2  0.82 

Heart Statlog 83.8 / 84.1 83.6 / 83.9 0.76 89.4 / 88.6 89.2 / 89.1 0.86 

Pima Diabetes 74.6 / 73.6 74.2 / 73.2 0.67 78.6 / 79.5 77.9 / 78.6 0.73 

Mamographic Mass 80.1 / 80.2 79.5 / 79.1 0.72 88.4 / 87.2 87.5 / 86.3 0.86 

Hypothyroid 90.1 / 89.7 89.5 / 90.3 0.87 93.4 / 92.9 93.2 / 94.3 0.91 

Lymphography 82.2 / 81.3  82.9 / 82.2 0.80 85.4 / 85.6 86.7 / 85.4 0.84 

Heart Disease 83.6 / 84.2 82.8 / 83.5 0.81 86.2 / 85.5 86.9 / 85.9 0.85 
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6.3 Experiment 3: Uncertainty Handling in Fuzzy Logic System 

Based Classification Framework due to Laziness / Ignorance 

Uncertainty 

 The logic of imposing laziness and ignorance in the dataset is very simple. We 

introduced some missing values, and we slightly changed some input values, so as to 

make the dataset uncertain. The rest of the details are the same as in experiment 1. 

6.3.1. Training and Testing 

 We conducted this experiment with eight datasets. Each dataset was divided into 

70% of training and 30% of testing data points. 

6.3.2. Results and Discussion  

 It is evident from Table 6-7 and Table 6-8 that Type-2 FLS is preferable to Type-1 

when dealing with laziness/ignorance in the input data. The same conclusion can be 

drawn from RMSRE ad ROC graphs, where Type-2 FLS has outclassed the Type-1 FLS. 

Therefore our intuition for handling laziness/ignorance in classification frameworks by 

using Type-2 FLS is justified. 
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Figure 6-20: Average RMSRE graph during testing of Type-1 and Type-2 FLS on 

Wisconsin Breast Cancer Dataset 

 

Figure 6-21: ROC Curve during testing of Type-1 and Type-2 FLS on Wisconsin 

Breast Cancer Dataset 
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Figure 6-22: Average RMSRE graph during testing of Type-1 and Type-2 FLS on 

Pima Diabetes Dataset 

 

Figure 6-23: ROC Curve during testing of Type-1 and Type-2 FLS on Pima 

Diabetes Dataset 
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Table 6-10: Summary of Classification Accuracy for eight different datasets on 

training and testing data 

 

Type-1 Fuzzy Logic System Type-2 Fuzzy Logic System  

 

Dataset 

 

 

Classification 

Accuracy on Train 

Data 

 

Classification 

Accuracy on Test 

Data 

 

Classification 

Accuracy on Train 

Data 

 

Classification 

Accuracy on Test 

 Data 

Wisconsin Breast 

Cancer 
85.34 % 85.20 % 91.25 % 91.16 % 

Hepatitis 80.67 % 79.55 % 87.36 % 86.40 % 

Heart Statlog 82.14 % 81.35 % 88.72 % 88. 25 % 

Pima Diabetes 70.82 % 70.15 % 77.90 % 76.80 % 

Mamographic Mass 79.48 % 79.10 % 84.46 % 84.72 % 

Hypothyroid 89.30 % 88.18 % 93.25 % 92.80 % 

Lymphography 82.67 % 80.63 % 86.35 % 85.28 % 

Heart Disease 81.43 % 80.18 % 85.45 % 85.95 % 
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Table 6-11: Summary of Precision, Recall and Area under Curve (AUC) on training 

and testing data 

Type-1 Fuzzy Logic System Type-2 Fuzzy Logic System  

 

Dataset 

 

Precision 

(%) 

Recall 

(%) 

AUC 

 

Precision 

(%) 

Recall 

(%) 

AUC 

 

Wisconsin Breast 

Cancer 
86.2 / 85.4 85.4 / 87.2  0.81 91.2 / 91.6 92.3 / 91.5 0.88 

Hepatitis 80.6 / 79.4 81.2 / 80.7  0.77 86.4 / 87.4 87.3 / 86.7  0.83 

Heart Statlog 81.8 / 81.9 82.2 / 82.6 0.79 87.9 / 88.4 88.6 / 87.5 0.84 

Pima Diabetes 70.8 / 70.9 71.2 / 70.3 0.69 77.2 / 77.8 76.4 / 76.3 0.73 

Mamographic Mass 78.2 / 79.6 79.1 / 80.2 0.75 84.8 / 84.2 84.3 / 83.9 0.79 

Hypothyroid 88.1 / 87.2 88.5 / 87.2 0.86 92.3 / 93.5 92.2 / 93.3 0.90 

Lymphography 80.7 / 81.3  81.9 / 80.2 0.78 86.4 / 85.6 86.7 / 85.4 0.84 

Heart Disease 80.6 / 80.2 80.6 / 81.3 0.78 85.2 / 84.9 85.9 / 84.2 0.84 
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6.4 Experiment 4: Investing the Effects of Parameters on 

Proposed FLS Classification Framework 

 We conducted this experiment with eight different datasets for each study. Each 

dataset consisted of 70% for training and 30% for testing data points. 

6.4.1. Comparing Height and Modified Height Defuzzification 

 

Figure 6-24: Average RMSRE graph during testing of FLS on Wisconsin Breast 

Cancer Dataset with Height and Modified Height Defuzzification 
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Figure 6-25: Average RMSRE graph during testing of FLS on Pima Diabetes 

Dataset with Height and Modified Height Defuzzification 
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Table 6-12: Summary of Classification Accuracy using Height and Modified Height 

Defuzzification methods on eight different datasets 

Height Defuzzification Modified Height Defuzzification  

 

Dataset 

 

 

Classification 

Accuracy on Train 

Data 

 

Classification 

Accuracy on Test 

Data 

 

Classification 

Accuracy on Train 

Data 

 

Classification 

Accuracy on Test 

 Data 

Wisconsin Breast 

Cancer 
98.66 % 97.90 % 98.80 % 98.45 % 

Hepatitis 91.30 % 89.95 % 93.34 % 92.48 % 

Heart Statlog 90.83 % 90.45 % 92.12 % 91. 95 % 

Pima Diabetes 81.55 % 79.89 % 81.90 % 81.20 % 

Mamographic Mass 88.42 % 87.25 % 89.36 % 88.74 % 

Hypothyroid 96.50 % 94.25 % 97.50 % 95.30 % 

Lymphography 89.35 % 87.60 % 90.35 % 88.67 % 

Heart Disease 87.13 % 86.48 % 89.13 % 88.24 % 
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6.4.2. Comparing Gaussian and Triangular Membership Functions 

 

Figure 6-26: Average RMSRE graph during testing of FLS on Wisconsin Breast 

Cancer Dataset with Gaussian and Triangular Membership Functions 

 

Figure 6-27: Average RMSRE graph during testing of FLS on Pima Diabetes 

Dataset with Gaussian and Triangular Membership Functions 
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Table 6-13: Summary of Classification Accuracy using Gaussian and Triangular 

Membership Functions 

 

Gaussian Membership Function Triangular Membership Function  

 

Dataset 

 

 

Classification 

Accuracy on Train 

Data 

 

Classification 

Accuracy on Test 

Data 

 

Classification 

Accuracy on Train 

Data 

 

Classification 

Accuracy on Test Data 

Wisconsin Breast 

Cancer 
98.26 % 96.90 % 98.90 % 97.45 % 

Hepatitis 91.30 % 89.95 % 91.90 % 90.18 % 

Heart Statlog 90.83 % 90.45 % 91. 28 % 91.05 % 

Pima Diabetes 81.55 % 79.89 % 83.45 % 82.70 % 

Mamographic Mass 88.42 % 87.25 % 89.60 % 89.15 % 

Hypothyroid 95.50 % 94.25 % 96.50 % 96.20 % 

Lymphography 88.35 % 87.60 % 89.35 % 88.67 % 

Heart Disease 87.13 % 86.48 % 89.13 % 88.24 % 
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6.4.3. Results and Discussion  

 After analyzing Tables 6-9, 6-10 and the corresponding RMSRE graphs, we have 

come to the following conclusion: 

i. Modified Height defuzzification has superiority over Height defuzzification. The 

reason is that, unlike Height defuzzification, Modified Height defuzzification 

method considers the spread of consequent membership function. This spread 

portrays a better picture of the contribution of a particular fuzzified input to the 

corresponding consequent.   

ii. Triangular membership function has better classification accuracy than Gaussian 

membership function in the FLS based classification framework. This is because 

triangular MF provides a better local control over the shape, i.e. spread, of the 

membership function. Whether an input is fuzzified to the left or to the right of 

the mean for Gaussian MF, a modification to the spread of MF is applied equally 

to both the sides of the mean. On the other hand in the case of triangular MF, a 

modification to the spread of MF is applied only to the side which was fuzzified 

with the input. Although this modification disturbs the other side to some extent, 

it is still far less than in Gaussian MF. 
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6.5 Experiment 5: Effect of Training Algorithm on Proposed 

Classification Framework 

 We conducted this experiment with eight datasets for each study. Each dataset 

consist of 70% for training and 30% for testing data points. 

 

 

Figure 6-28: Average RMSRE graph during testing of FLS on Wisconsin Breast 

Cancer Dataset with Steepest Descent and Heuristics approaches 
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Figure 6-29: Average RMSRE graph during testing of FLS on Pima Diabetes 

Dataset with Steepest Descent and Heuristics approaches 
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Table 6-14: Summary of Classification Accuracy using Steepest Descent and 

Heuristic based approaches 

 

Steepest Descent Heuristic  

 

Dataset 

 

 

Classification 

Accuracy on Train 

Data 

 

Classification 

Accuracy on Test 

Data 

 

Classification 

Accuracy on Train 

Data 

 

Classification 

Accuracy on Test 

 Data 

Wisconsin Breast 

Cancer 
98.66 % 97.90 % 95.95 % 95.20 % 

Hepatitis 91.30 % 89.95 % 89.74 % 89.15 % 

Heart Statlog 90.83 % 90.45 % 89. 48 % 88.94 % 

Pima Diabetes 81.55 % 79.89 % 79.76 % 78.50 % 

Mamographic Mass 88.42 % 87.25 % 86.60 % 85.24 % 

Hypothyroid 96.50 % 94.25 % 95.20 % 94.30 % 

Lymphography 89.35 % 87.60 % 88.35 % 86.87 % 

Heart Disease 87.13 % 86.48 % 85.13 % 84.94 % 
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6.5.1. Results and Discussion  

 It is evident from Table 6-11 and RMSRE graphs that the performance of the 

training algorithm is better with the Steepest Descent approach than with the Heuristic 

based approach in the FLS classification framework. We believe the reason is that the 

Steepest Descent Approach allows the separate training of each rule. Each rule gets its 

own copy of membership functions, and the modification to the membership functions in 

a rule is applied locally. In the heuristic based approach, by contrast, the membership 

functions are modified rather than the rules. If a modification to any rule is needed, it is 

applied to the same copy of the membership functions. Thus Steepest Descent training 

converges better than the heuristic based approach, and it provides better results during 

activation or testing. 
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6.6 Experiment 6: Comparing Proposed FLS Classification 

Framework with other Classification Frameworks 

 In this experiment, we compared our proposed FLS based classification framework 

with other frameworks in the literature. We employed the algorithms for generating 

datasets as discussed earlier. We have conducted our experiments with eight different 

datasets to cover all the variations, such as small number of instances, large number of 

instances, number of attributes and number of classes, which are required for good 

experiments. Each dataset consisted of 70% for training and 30% for testing data points. 

The comparison was made on the basis of classification accuracy. 
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Table 6-15: Summary of Classification Accuracy Refer to Experiment 1 for eight 

different datasets 

 

Dataset 

Proposed 

FLS 
ELM F.Nets SVM FBNC C.4.5 L 

Wisconsin Breast 

Cancer 
99.68 % 98.95 % 98.78 % 95.95 % 97.25 % 91.86 % 

Hepatitis 91.80 % 91.10 % 90.65 % 80.86 % 86.90 % 81.50 % 

Heart Statlog 90.10 % 88.74 % 88.24 % 82.48 % 83.81 % 79.85 % 

Pima Diabetes 83.65 % 80.28 % 81.05 % 74.43 % 74.85 % 73.88 % 

Mamographic Mass 91.72 % 89.36 % 87.90 % 86.05 % 87.30 % 85.68 % 

Hypothyroid 97.50 % 94.39% 95.80 % 93.48% 93.16% 93.24% 

Lymphography 90.35 % 87.29% 86.15 % 83.64% 85.20% 78.21% 

Heart Disease 89.18 % 84.24% 84.45 % 82.57% 83.34% 79.61% 
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Table 6-16: Summary of Classification Accuracy Refer to Experiment 2 for eight 

different datasets 

 

Dataset 

Proposed 

FLS 
ELM F.Nets SVM FBNC C.4.5 L 

Wisconsin Breast 

Cancer 
94.06 % 91.15 % 90.25 % 90.05 % 89.75 % 89.06 % 

Hepatitis 88.65 % 87.34 % 87.50 % 86.16 % 83.90 % 82.36 % 

Heart Statlog 89.13 % 87.67 % 86.90 % 84.80 % 82.81 % 80.42 % 

Pima Diabetes 79.58 % 75.22 % 74.45 % 74.13 % 72.85 % 71.38 % 

Mamographic Mass 87.18 % 83.10 % 83.24 % 81.25 % 79.45 % 78.18 % 

Hypothyroid 95.85 % 91.39% 92.20 % 88.45% 86.10% 85.75 % 

Lymphography 88.40 % 84.50% 83.34 % 81.64% 82.20% 76.21% 

Heart Disease 88.26 % 85.14% 83.45 % 82.57% 83.34% 79.61% 
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Table 6-17: Summary of Classification Accuracy Refer to Experiment 3 for eight 

different datasets 

 

 It is evident from Tables 6-12, 6-13 and 6-14 that our proposed FLS has better 

preference than other machine learning techniques in all the experiments carried out in 

this research. Also, in the results of hypothyroid data set which has the largest data 

points, all the existing techniques showed a drastic decrease in prediction accuracy 

whereas our proposed FLS showed a very small change. Therefore we can conclude that 

our proposed FLS is capable of manipulating large datasets with promising results. Hence 

our intuition for handling laziness/ignorance in classification frameworks by using the 

proposed FLS is justified.  

 

Dataset 

Proposed 

FLS 
ELM F.Nets SVM FBNC C.4.5 L 

Wisconsin Breast 

Cancer 
91.34 % 86.10 % 86.45 % 84.35 % 83.25 % 82.86 % 

Hepatitis 86.67 % 80.42 % 81.10 % 79.84 % 78.90 % 76.50 % 

Heart Statlog 87.14 % 82.36 % 82.90 % 80.48 % 79.90 % 78.42 % 

Pima Diabetes 77.82 % 72.61 % 73.55 % 71.43 % 70.05 % 70.88 % 

Mamographic Mass 85.48 % 80.95 % 81.14 % 79.62 % 78.87 % 76.98 % 

Hypothyroid 94.68 % 85.39 % 86.38 % 86.45 % 84.10 % 82.75 % 

Lymphography 87.40 % 81.50 % 80.42 % 79.64 % 78.52 % 77.25 % 

Heart Disease 86.96 % 80.75 % 80.15 % 78.38 % 77.20 % 75.58 % 
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7. Conclusion and Future Work 

The work resulted in the following contributions: 

i. An extensive critical survey of some of the existing machine learning 

classification techniques was presented. Sources of uncertainty were discovered 

and well examined. 

ii. Several types of FLS were classified and examined. This classification was 

performed on the basis of the nature of the inputs e.g., singleton or non-singleton; 

and on whether uncertainty is present in the system or not. 

iii. A novel framework for handling imprecision and uncertainty by using Type-2 

FLS was presented. The uncertainty due to various types of noise, inconsistent 

experts’ opinion, ignorance and laziness etc. is encountered. We introduced about 

25% uncertainty level in the datasets, and we proved that our proposed framework 

is much more robust than other techniques. We found that Type-2 FLS handles 

uncertainty better than Type-1 FLS. 

iv. Impact of various FLS parameters on FLS based classification framework was 

studied empirically. The parameters studied were the defuzzification method and 

the shape of membership functions. 

v. The impact of the nature of the training algorithm on the FLS based classification 

framework was investigated empirically. The approaches studied were Steepest 

Descent and Heuristic based. 

vi. RMSE and ROC graphs showed that the proposed framework has better 

classification performance than Type-1 FLS. The experimental results showed 
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that our proposed adaptive FLS based classification framework outperforms other 

existing classifiers in terms of classification accuracy. 

vii. Some future work can be directed towards this framework to make it more robust, 

as other membership functions are yet to be introduced. Also more research can 

be done with the aim of validating this framework by using expert data which is 

usually obtained through surveys. It is hoped that more work can be carried out on 

using parallel computing to speed up the operation of Type-2 FLS, so that a Type-

2 FLS can be run in about the same time as it takes to run a Type-l FLS. 
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