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Biometric systems have gradually become an accepted mean for person identification and
verification. Recently, person identification using iris features has received a lot of
attention in both research and industry communities. This is mainly due to the unique
characteristics and texture found in iris images. Most proposed iris recognition techniques
are based on gray-level representations. The aim of this research is to develop and
investigate novel methods for the automatic recognition and matching of color iris images
based on hypercomplex (Quaternion) representations. The performance of Quaternion
image representation is compared with that of other representations, and a study of the
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is extended to the color domain. Furthermore, in the present research, hypercomplex

processing and filtering of color iris images are defined.
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CHAPTER ONE

INTRODUCTION

1.1. Introduction

Technology has become dominant in the daily life routines. People use technology to
facilitate communication, automate processes, and enforce security. Technology can be
found in many forms and almost everywhere. For instance, cell phones, laptops, and
ATM machines are using different forms of technologies. Several of the existing
technologies require a mean for user authentication and identification. There are many
existing forms of identification mechanisms to ensure each person's identity. Some of the
commonly-used methods are usernames, passwords, electronic cards, and smart cards.
Although these methods are effective, they suffer from serious drawbacks. First, they can
be used by others for identity fraud. This can be achieved, for example, by using the
username and password of another person. Such methods occur very much in Internet
applications that require username and password. Also, the electronic or smart card of the
intended person can be stolen, or else lost or forgotten. Furthermore, in almost every
form requiring a username and password, there is a link to enable users to request
password re-setting or retrieval if forgotten.

To solve these problems, the use of the human body’s parts or behavior was considered.

Systems based on these personal traits are called biometric systems. These systems were,



and still continue to be, the focus of active research and developmental efforts.
Furthermore, they have received wide acceptance in access-control applications. Several
biometric/personal traits such as fingerprints, face, iris, ear, voice, palmprint, hand
geometry and gait are used for their uniqueness as characterizing features. In this way, it
is provably asserted that the subject under authentication/recognition is the intended
person because of the unique traits. This effective person discrimination is contrasted
with systems relying on usernames, passwords or electronic cards, which can be

forgotten, lost, or stolen.

1.2. Biometric Systems

As briefly stated earlier, biometric systems are those systems that use characteristics of
the human’s physical body or behavior as means of identification of different people.
Thus, biometrics is considered more efficient and is more reliable for person
identification. Biometric systems can be used in various ways, depending on the field of
application and security level. They can be used in the process of authorization for the
access to restricted areas or machines. Also, many companies and organizations
nowadays are using biometric systems to take attendance of their staff. Another area of
usage is in forensic science as a means of investigating crime scenes. Moreover,
biometrics is used in border-control systems in many countries, mostly by using

fingerprints or the iris as the means of identification.



Two types of traits can be used in biometric systems:

Physiological: Parts of the body are used as unique characteristics. Examples of this type
are fingerprints, face, ear, hand geometry, hand veins, iris, and Deoxyribonucleic Acid
(DNA).

Behavioral: The behavioral characteristics are taken as the means of identification. For

instance, keystrokes, signature, and gait are used in this type of biometrics.

In general, in order to use biometrics, there should be a way of capturing the chosen
unique characteristic. Then, some preprocessing is applied in order to enhance the input.
After that, the most discriminating features are extracted, and then encoded in a
convenient representation template for storage and processing. Query inputs are

compared with stored templates to decide the identity of the subject under investigation.

Some biometric systems have gained wide acceptance in various applications. The most
common of these are fingerprints and these are used almost everywhere from
authorization and attendance systems to a means of computer access. Other biometrics,
such as the iris, are gradually gaining acceptance because of their high performance,

efficiency, and ease of use.

1.3. Process of Iris Recognition

In order to use the eye’s iris as a means of identification, some processing should be

carried out on the image of the eye to extract useful information that will be further used



for discrimination. In the literature, there is a general consensus among researchers on the
main steps that should be applied on the image to extract useful information and match
between different images. They are as follows [1]:

1. Image preprocessing

Acquired iris images contain some unnecessary information such as sclera, eyelids
and pupil [1]. The main target is the iris region itself. So, there are methods to locate
and extract the iris from the image, and then to convert it into an appropriate format
to extract needed features. The main preprocessing steps are given below [1]:

a. Segmentation and localization

The iris is extracted from the eye image, by detecting the iris circle and the
pupil circle and then excluding the pupil circle. Also, the intersection of the
eyelids with the iris is excluded, as are the eyelashes and reflections. Figure
1.1 shows a segmented iris part where the eyelashes and reflections are
removed.

b. Normalization

After the iris region is extracted, it is transformed into a format that will
compare different iris regions consistently and efficiently. There are several
sources of inconsistency, such as varying imaging distance, camera rotation,
and head tilt [1]. One of the most famous methods consists of converting the
Cartesian coordinate system into a polar coordinate system as suggested by

Daugman [2]. This process is illustrated in Figure 1.2.



Figure 1.1: Iris segmentation and localization. [1] Figure 1.2: Normalization to polar coordinate. [1]

2. Features extraction and encoding

In this step, features, important for discrimination between different iris images, are
extracted. These features are unique for each iris image [1]. The major difference
between the various methods of iris recognition systems, proposed in the literature,
lies in the features extraction and encoding step. After extracting the features, they are

encoded in a way that is efficient for both storage and matching.

3. Matching

Comparisons between input iris images and stored iris images in the database are
carried out in this step. For person identification, the iris of the person is
photographed, and the previous steps are applied in order to get the iris code. Then,
the input iris code is compared with iris codes in the database by using one of the

methods of comparison outlined later in this Thesis.



1.4. Problem Statement

It had been proven that iris texture is a very efficient means for person identification. In
the literature, most proposed approaches are dealing with grayscale iris images. This is
due to adoption from fingerprint recognition techniques, which achieved very accurate
results. Fingerprints are naturally grayscale images, and so grayscale image processing
will achieve nearly optimal results. In iris images, colors carry a lot of information that
will be lost if colors are discarded. According to the “information preserving rule” [3],
information should be preserved until the final stage of classification. Thus, the
performance of iris-based recognition systems should be increased if the color

information is incorporated in the process of identification.

1.5. Proposed Research

The aim of the proposed research is to develop and investigate novel methods for the
automatic recognition and matching of color iris images based on hypercomplex
representations. Gray-level iris recognition systems, based on the well-known IrisCode
patterns, developed by John Daugmann [2], have been widely accepted and deployed in
most commercial iris recognition systems and products. In this Thesis, we intend to
extend the concept of the IrisCode pattern to the color domain where a new formulation
based on Clifford algebra is developed. This formulation will provide the mathematical
background for hypercomplex representations, transforms and multi-resolution analysis

(MRA). Hypercomplex Gabor wavelets will be developed to provide pattern feature



vectors which will be labeled as color IrisCodes. Furthermore, hypercomplex processing

and filtering of color iris images will be defined.

Existing systems for recognizing and matching iris images against a database of known
iris images (CASIA Databases and others) have been limited to the gray-level space, and
hence they reduce the recognition efficiency due to the loss of color information which is

an important component from an information-theoretic point of view.

Problems with the current approaches are not only the loss of color information but also
related to the lighting-invariance property which can hinder the recognition accuracy.

Unlike the previous attempts to integrate color in iris recognition systems, our approach
is novel. Firstly, it will aim to seamlessly integrate the color information into the
recognition/matching system by letting the recognition process operate in the
hypercomplex domain (based on Clifford Algebra). Secondly, we will not merely
implement the proposed framework by separating the color components and operating in
three (or reduced-color) independent spaces; rather we will use hypercomplex transforms
which will encode color iris pattern features into a color-based IrisCode derived from
Quaternionic Gabor wavelets representations which operate in a hypercomplex multi-
resolution (MRA) space, exploiting the color/rotation/scale/lighting invariance properties
of the hypercompelx Gabor wavelets. Our novel approach also has greater potential for
addressing the problems of background noise and artifacts in color iris images by

exploiting efficient hypercomplex edge-detection algorithms (spatial/transform/MRA) for



better color iris image segmentation which would allow better matching and recognition

performance than their gray-based counterparts.

1.6. Research Objectives and Contributions

Almost all iris recognition methods, proposed in the literature, use gray-level images and
process them to get the unique features of the iris. The objective of this research is to
investigate the use of colors in the process of iris feature generation. We will use
Hypercomplex image representation to represent the color images in a holistic manner,
and we develop Quaternion Gabor Wavelets to process and represent color images. The
results of the experiments will be compared with Daugman and other methods which will

form a common benchmark.

The major research contributions are as follows:

e Propose an efficient means of color iris representation and processing. The
processing is performed in a holistic manner.

e Study the effect of different types of noise on color iris images by using the
proposed representation and comparing the results with other representations.

e Investigate the effect of low-pass filtering on the performance of the proposed
representation and other representations against different types of noise.

e Compare the correlation performance of different color iris images between the

proposed representation method and other representations.



e Study the effect of low-pass filtering on the correlations of different
representations.

e Extend the well known Daugman algorithm to use color iris images based on the
proposed representation, with filtering performed by using hypercomplex

(quaternion) Log-Gabor filters.

1.7. Organization of Thesis

The rest of this Thesis is organized as follows. A review of existing methods is conducted
in Chapter 2. In Chapter 3, Hypercomplex (Quaternion) representation is described with
an explanation of Quaternion Fourier Transforms and convolution. Then, Gabor wavelets
are described in Chapter 4, followed by the outline of the proposed method to extend it to
the Quaternion domain. In Chapter 5, the methodology of the research and datasets used
are presented along with a description of the techniques used in performance evaluation
of the methodology, and this performance evaluation is given in detail. In conclusion,
Chapter 6 points out the findings of this research, and it offers suggestions for possible

future work.



CHAPTER TWO

LITERATURE REVIEW

2.1. Introduction

Iris-based person identification attracted many researchers to investigate and propose
novel methods. Consequently, a lot of approaches for iris recognition were proposed in
the literature. These include preprocessing iris images, extracting representative features,
constructing and encoding the most convenient representation of the features, and various

methods of matching depending on the extracted features.

The majority of the available techniques, including ours, concentrate on the process of
feature extraction and encoding. A detailed review of the five most popular approaches
will be given. Then, a brief description of the other techniques is given, in chronological
order, where we restrict our attention to the processes of feature extraction, encoding, and

matching.

2.2. The Five Most Popular Methods

2.2.1. Daugman Algorithm [2] [4] [5]:

Daugman was the first to propose an efficient algorithm to verify people by iris patterns.

Most commercial products are based on this technique, such as the products of British
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Telecom, Sandia Labs, U.K. National Physical Lab, Panasonic, LG, Oki, EyeTicket,
Sensar, Sarnoff, IBM, SchipholGroup, Siemens, Sagem, IrisScan, and Iridian.

In order to apply the encoding algorithm, the portion of the iris should be extracted from
the eye image. Iris extraction is carried out by locating the inner and outer boundaries of
the iris. For this purpose, a coarse-to-fine strategy, terminating in single-pixel precision,
is used to estimate the center coordinates and radius of both the iris and the pupil. The

following integro-differential operator is suggested to estimate the triple parameters

(xy.0) [2]:

G, (r) * < &) s @.1)

max(r’xo’v()) ar “T.Xo,Vo 2mr

where I(x,y) is the image of eye, (Xo, yo) are the center coordinates, r is the radius, and
G,(r) is a smoothing function such as the Gaussian function. The purpose of the operator
is to detect circular edges in the image. After the center coordinates and the radius are
found, a similar approach is implemented in order to detect the upper and lower eyelid
boundaries.

After the iris region is extracted from the eye image, it is normalized by projecting it
from the Cartesian coordinate system to the Polar coordinate system. This transformation

is based on [2]:

I(x(r,0), y(r,0)) =2 1(r,0) (2.2)

x(r,0)= (1-r)x,(0) +rx4(0) (2.3)
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y(r,0)= (1-r)y,(0)+rys(6) 2.4)

where x,, y, are points on the pupil’s boundary and x,, ys are points on the sclera
boundary. This normalization provides invariance to the iris position and size, and to the

dilation of the pupil within the iris.

Then, in order to encode the iris pattern, the normalized image is demodulated to extract
its phase information by using quadrature 2-D Gabor wavelets. This is performed by a
patch-wise phase quantization of the iris pattern where each bit, in the iris code, is a
coordinate of one of the vertices of a logical unit square in the complex plane. Figure 2.1
shows the phase demodulation process. This coordinate is obtained by projecting a given
part of the iris onto complex-valued 2-D Gabor wavelets and by evaluating the sign of
both the real and imaginary parts of the resulting complex number by the following
equations [2]:

_@o=p?  _(00=0)?

hge = 1ifRe fp J, e WO DT " e 6 (p, @)pdpd @ =0 (2.5)
. _(ro=p)2  _(80-9)

hge = 0 if Re fp J, e WO D™ " e B 1(p, @)pdpd B <0 (2.6)
: _rg-p)?  _(80-0)°

hy, = 1ifIm fp Iy e wWB—0e™ ez " B2 [(p,@)pdpd @ =0 2.7)

_(ro=p)? _(80=9)?

hy, = 0if Im fp Jy e Wo=De™ ez " e B 1(p,@)pdpd @ <0 (2.8)
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[0, O] [1,0]

Figure 2.1: The phase demodulation process used to encode iris patterns. [5]

The resulting iris code is a 2048 bits code which is equal to 256 bytes.
In the process of matching, Daugman used Hamming Distance (HD) as a measure of

statistical independence between two iris codes. HD is computed as follows [5]:

__ |l(codeA®codeB)nmaskAnmaskB)||
- |lmaskAnmaskB||

HD

(2.9)

where & is the Boolean XOR operator, codeA and codeB are iris codes, maskA and
maskB are used to remove noises such as eyelashes and reflections from the iris codes.
HD is used as a measure of dissimilarity such that “0” would indicate a perfect match.

Figure 2.2 illustrates the process of Daugman algorithm.
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Figure 2.2: Process of Daugman algorithm.

2.2.2. Wildes Algorithm [6]:

The Wildes algorithm for iris-based personal verification can be considered as one of the
earliest algorithms in this field. As with the Daugman method for iris localization, Wildes
[6] used the first derivative of the image intensity to locate the boundaries of the iris. The
contour fitting is performed in two steps. First, a binary edge-map is obtained from the
image intensity information by using a gradient-based edge detection. Then, the Hough
transform is utilized in order to choose the contour of interest. Given a set of recovered

edge points (x;, y;), j=1,...,n, the Hough transform can be defined as:

H(X¢, Yo 1) = Xjtq h(X, ¥jy Xe, Yoo ) (2.10)
where
(s ¥y e vert) = { e ¥y o Yorr) = 0 (2.11)
0, otherwise
and
g(xj,y]-,xc, Yor) = X —x)*+ (¥ —yo)? —1r? (2.12)
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Based on Equation (2.11), the contour having a parameter triple (X.,y..r) is selected as the
best contour that maximizes the H quantity. Therefore, this contour will have the largest
number of edge points. For normalization, Wildes used an image-registration technique
by aligning the test and stored images. Thus, both images will have the same scale and
orientation. For the process of feature extraction, isotropic band-pass decomposition is
performed by using Laplacian of Gaussian (LoG) filters. Such filters are defined as [6]:

— L (- e et 2.13)
where o is the standard deviation of the Gaussian and p is the radial distance of a point
from the filter’s center, respectively. The result of this decomposition is a Laplacian
pyramid of four levels. Then, a normalized correlation between the acquired and stored
representations is estimated for matching. Figure 2.3 shows the processes involved in the

Wildes algorithm.

P . [T Emmtsire Eybrocdio o
SEEnETiLaLion Wi TG ZaLion

=First derivative of +Imageregistration *Laplacian of
! the image intensity | 1§ Gaussian filters
-Hough transform

Figure 2.3: Process of Wildes algorithm.
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2.2.3. Boles and Boashash Algorithm [7]:

Boles and Boashash used a fine-to-coarse approximation at different resolution levels
based on zero-crossing representation of the wavelet transform [7]. When comparing two
images, one is considered as a reference and its maximum diameter is calculated. After
that, the ratio of the maximum diameter of the reference image to that of the other image
is calculated. Using this ratio, the dimensions of the irises of the two images are scaled to
have the same diameter. Additionally, the extracted irises are normalized to have the
same number of pixels. Then, the normalized iris is used to generate a zero-crossing
representation. This is achieved by decomposing a signal into a set of signals at different
resolution levels using a dyadic wavelet transform [7]. From these resolution levels, only
a few low-resolution levels are chosen in order to reduce the effect of noise on the zero-

crossing representation. Figure 2.4 shows a zero-crossing representation of an iris.

15
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Figure 2.4: Zero-crossing representation of an iris. [7]
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The query iris image for matching is compared with the stored models in the database,
and the degree of dissimilarity is computed. The image with the smallest dissimilarity
represents a possible match. Many dissimilarity functions can be used. Boles and

Boashash [7] used the following dissimilarity functions:
N
' 2
DP(fg) = mn‘1“2|zjf(n) —TZgn+m)|>, me[0,N—1] (2.14)
n=1

R.
min Zr2, {1 ©] [o; O] ~Tlwj(r+m)]g[pj(r+m)] g}
R.
m L] Lo o]l el

d?(f,g) = me[0O,R —1] (2.15)

where g is the query image, f is the candidate model, j is resolution level, I' is a scale

factor, Z;f and Z;g are zero crossing representations of signatures f and g, respectively.
[uj] ; and [pj] ;are the real and imaginary parts of the representation Z;f. Figure 2.5 shows

the process of the Boles and Boashash algorithm.

17



|

P’!
'E
!
g,
;
a
g
|
|
|

!,
f

4! ;i.

5 I
I

[ 2 N ' ] L L . b} | f
F d | sbdgedetecion | *3caling the two || -Dyadcwavelet | | *Iero-Crossing
I q _ | ‘echniqueinot | __| imagesto have I | wansiorm | | representation
L | mentioned) | the same size i
TSR | | |
[ = Ca e S | | |

Figure 2.5: Process of Boles and Boashash algorithm.

2.2.4. Ma Algorithm [8]:

Beginning with iris localization, Ma [8] first roughly estimates the position of the pupil
region and then accurately calculates the parameters of the two circles of the pupil and
iris by using edge detection and the Hough transform. Then, the center of the pupil is
approximately estimated by projecting the image in the vertical and horizontal directions.
After determining the center of the pupil, the parameters of the pupil’s and iris’s circles
are calculated by using the edge detection technique (Canny operator) and the Hough
transform [8].

In order to normalize the extracted portion, the iris is unwrapped, in a counter-clockwise
direction, into a rectangular texture block with a fixed size. Then, to enhance the texture
details, the iris illumination is carried out. Local sharp variations are used as features to
distinguish between two irises. These local variations are captured by constructing a set
of 1-D intensity signals from the iris image. The set of signals is obtained by
decomposing the normalized image into several signals. This is performed by having a

defined number of rows to form a signal. This signal consists of the top 78% section of
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the normalized image. For each signal, a dyadic wavelet transform is applied in order to
locate the position of local sharp variations. Features from the signal are formed by
concatenating the position sequence of two consecutive scales. Then, features from all
signals are concatenated to form the feature vector. For the matching purpose, the feature
vector is converted into a binary feature vector. Then, an exclusive OR operation is used
to calculate the similarity between two binary vectors (which represent two iris images).

The similarity equation is given by [8]:

N 2
1 1
— 1 2
b= NZ ﬁZ(Ef@,j) ® Ef§ ) (2.16)
1= =

where Ef' and Ef® are two binary feature vectors, ® is the exclusive OR operator, L is
the length of the binary sequence at one scale, and N is the total number of intensity

signals, respectively. Figure 2.6 illustrates the process of the Ma algorithm.
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illumination scales
~_ @@ v

Figure 2.6: Process of Ma algorithm.
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2.2.4. Miyazawa Algorithm [9] [10]:

Miyazawa proposed a system that uses phase-based correlation. Phase-based image
matching was used for image alignment and the calculation of matching score. This
process is carried out by using the Phase-Only Correlation (POC) function. POC is the 2-
D inverse Discrete Fourier Transform of the cross-phase spectrum. The POC function of
two similar images will give a sharp peak, but the peak will drastically drop if there is no
similarity, and so the height of the peak was used as a similarity measure. The translation
displacement between two images can be seen by the location of the peak. Because the
most meaningful phase information lies in a certain frequency band, a Band-Limited
Phase-Only Correlation (BLPOC) function was used. So, in order to match two images,
first the translational displacement is aligned between the iris regions, and then the
BLPOC function is calculated, and the matching score is considered to be the maximum

correlation peak value.

Phase-Only Correlation (POC)

In order to calculate the similarity between two images, Phase-Only Correlation (POC),
described by Miyasawa et al. [10], is used. Given two images, one can find POC by first
performing the 2D Discrete Fourier Transform on both images. In the frequency domain,

the two images can be described as [11]:

F(u,v) = Ap(u, v)el®rv) (2.17)
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and

G(u,v) = Ag(u,v)el®e@v (2.18)

where Ag(u,v) and Ag(u, v) are amplitude components and 8z (u, v) and 6¢(u, v) are the

phase components, respectively.

Then, the cross-phase spectrum is performed as [11]:

F(u,v)G(u,v)

[FuGuw)| (2.19)

Reg(u,v) =

where G(u, v) is the complex conjugate of G(u, v).

Equation (2.19) represents the phase correlation in the frequency domain. It is given by
[11]:

eI{OF(UV) 06 (uv)} (2.20)

Finally, the POC function is calculated by performing the 2D Inverse DFT. The resulting
POC function gives a distinct sharp peak if the two images are similar but a low peak

otherwise. The peak values are normalized between 0 and 1 (see Figures 2.7- 2.9).
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Figure 2.8: Correlation between different iris images of the same person.
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Figure 2.9: Correlation between different iris images of different persons.

Band-Limited Phase-Only Correlation (BLPOC)

Ito et al. [12] proposed the Band-Limited POC where only the portion of spectrum that
has the most meaningful information is used in the POC calculation. The portion of each

image can be calculated as follows:

1. Perform the 2D Discrete Fourier Transform on the image.

2.Compute the projection of both u-axis and v-axis.

3. Compute the mean values of the two projections.

4.Determine the maximum point that is greater than the mean and find the opposite

point. This is done in both u-axis and v-axis.
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This procedure is described in Figure 2.10 and the resulting portion is shown in Figure
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Figure 2.10: (a) u-axis projection. (b) v-axis projection.
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(a) (b)

Figure 2.11: (a) Image and its spectrum. (b) Filtered image and the selected portion that

contains the most information.

2.3. Other methods used in the literature

Using the fact that a monochrome image can be expressed as a superposition of basis
functions and feature coefficients which are independent, Huang et al. [13] proposed the
use of independent component analysis (ICA) to estimate the feature coefficients. This
was performed by first calculating independent components on small windows NxN for
the normalized iris image and then estimating the ICA coefficients for these windows.
Then, the ICA coefficients were quantized in order to reduce their size. To estimate the
center of each class (which represents a person), a competitive learning mechanism was

used. Average Euclidean Distance (AED) was used in the process of the matching
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between two given iris images. Ma et al. [14] defined a new spatial filter to capture local
textures of the normalized iris image. The new filter is a Gaussian modulated by a
circularly-symmetric sinusoidal function, which differentiates it from Gabor filters that
are modulated by orientated sinusoidal functions. Features were extracted from the region
having the most discriminating features, known as the region of interest (ROI). Because
the most useful information, in an iris image, is distributed in a specific frequency range,
the defined filters were used in two different channels. The two filtered images were
divided in small blocks, and from each block the mean and the average absolute deviation
were calculated and used as features. Features from all blocks are arranged in a 1-D
feature vector. To reduce the dimensionality of the feature vector, Fisher Linear
Discriminant (FLD) was used. The nearest center classifier was used for the purpose of
matching [14].

Son et al. [15] proposed a method to extract features by applying the 2-D Daubechies
wavelet transform to decompose the image into four sub-images. The low frequency sub-
image is decomposed recursively, and the process is terminated by reaching a lowest
frequency sub-image that can be used for discrimination. The authors used three-level
decomposition. However, if the image size is higher, then higher decomposition levels
are needed. After getting the feature vector of the iris, the dimension of the vector is
reduced by using Direct Linear Discriminant Analysis (DLDA). This step aims to
decrease the dimensionality and increase the efficiency. Support Vector Machines
(SMVs) were utilized in matching different iris images. Gaussian kernels were used in

the proposed architecture.
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Zhang et al. [16] introduced an approach that used feature fusion of global and local
features of the iris image. Global features are known to be insensitive to shift changes and
noise, easy to compute, and have a small intra-class variance and a large inter-class
variance. The local features are variant in intra-class and have no effects on the inter-
class. To extract the global features, the Log-Gabor wavelet was used. From the
transformed image, the statistical values of the amplitude are used as global features.
These statistical values represent the mean and average absolute deviations and they are
taken with four orientations and frequency levels. Global features are classified by using
the weighted Euclidean distance. For the extraction of local features, the Log-Gabor
wavelet filter was applied and the features were extracted from the intermediate
frequency levels. This is performed by taking the filtered image and encoding its
amplitude into a binary form. Hamming distance was used for the classification of local
features. The process of fusion begins with the global features. If the weighted Euclidean
distance gives a value not between the two thresholds (t,, ty), then local features will not
be considered. Otherwise, local features will be processed as discussed above.

Khan et al. [17] used Haar wavelets in the process of extracting the features from the
normalized iris image. Khan et al. preferred the use of Haar wavelets over Gabor
wavelets because the former have a slightly better recognition rate. Furthermore,
computing Haar wavelets is faster and simpler than computing Gabor wavelets. For the
comparison of two iris images, Hamming distance was used.

Ives et al. [18] proposed an iris identification using histogram analysis. First, the

histogram of the segmented iris image was calculated. A 5-tap averaging filter was used
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to reduce noise. All histograms were normalized to make their peak value equal to 1.
Finally, the peak was shifted to a grayscale value of 128 in order to adjust the differences
of illumination between different images. The Du measure was used to compare two
images [18]. Du measure yields an integer that represents the closeness of two vectors
(which are iris’s features in this case). Two vectors are said to be close, when the Du
measure yields small values.

Ko et al. [19] introduced a method that utilize cumulative sum for analyzing changes in
the gray values of the normalized iris image. First, the normalized image was divided into
a number of cells of dimensions mxn, and for each cell the average gray value is
calculated. These gray values were used in turn to calculate the cumulative sum by
grouping the cells horizontally and vertically and calculating the cumulative sum over
each group. Then, the iris codes were generated by analyzing the changes of gray values
in the iris patterns. For the process of matching two iris images, the Hamming distance
was used.

Conti et al. [20] suggested a technique of iris recognition that uses micro-features of the
iris. Such micro-features are nucleus, collarette, valleys, and radius [20], Figure 2.12
illustrates them. The nucleus is extracted from the zone inside the contour of the pupil
that does not respect a circular symmetry. The distance of horizontal, vertical and
diagonal direction was calculated by using the Bresenham’s algorithm. The collarette was
extracted from the zone between the contours of the pupil and the iris. In order to detect
the collarette, a contrast variation was applied to highlight the different intensities.

Applying a sigmoid using the maximum and minimum values of the image intensity
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yields the contrast variation. Image regions having the same gray level were labeled.
Considering all regions, if the boundary intensity level was less than a specific threshold,
then they were considered to belong to the collarette. The valley was extracted from the
region over the zone specified by the collarette. The zones with different intensities were
detected by applying a contrast variation to the circular crown of the iris. If a zone has
greater intensity than the base threshold, then it should be individualized. Zones, having
the same intensity, are labeled. The positions, in the Cartesian system, of the specified
points were considered as the micro-feature of the valley. Radius micro-feature can be
considered as the intensity variation toward the white color in comparison to the iris
background. It can be extracted from the zone between the collarette and the edge
between the iris and the sclera. After the four micro-features are extracted, a translation
between template models and input models is performed. The matching is done by

calculating the number of corresponding micro-features between the two iris images.
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Figure 2.12: Illustration of the micro-features of the iris. [20]

Narote et al. [21] proposed a technique for iris identification based on the Dual Tree
Complex Wavelet Transform (DTCWT). DTCWT is a redundant complex wavelet
transform that was designed by Kingsbury [22]. Complex wavelets are better than
standard discrete wavelet transform in terms of shift sensitivity, directionality and phase
information. Two parallel trees were used with odd-length filters in one tree and even-
length in the other. A four level DTCWT was applied to the normalized iris image in
order to extract the features of the iris. Two linear phase biorthogonal filter sets, with odd
and even lengths, were used alternately for the dual filter tree. The coefficients of the
filtered images were used to construct the iris code. For the purpose of matching between

two iris images, Hamming distance was used.
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Anna et al. [23] utilized both wavelet transform and neural network for iris recognition.
They used Wavelet Probabilistic Neural Network (WPNN), which combines wavelet
neural network and probabilistic neural network. The WPNN consisted of four layers, the
feature layer, the wavelet layer, the Gaussian layer, and the decision layer. In order to
extract feature, vertical projection of the normalized iris image was performed to obtain a
1-D energy signal. Each node in the wavelet layer is equivalent to a multidimensional
wavelet. Boosting was chosen as the learning algorithm to train the WPNN and adjust its
parameters in order to get the best accuracy for the classifier.

Sudha et al. [24] proposed a method for iris recognition based on edge maps and
Hausdorff distance measure. The Hausdorff distance is the distance between two sets of
points. It gives a measure of the dissimilarity between the sets’ points. Pixel sets that
represent the coordinates of feature pixels are considered as the point sets when the
Hausdorff distance is measured between images. To compare closely matching portions
of the image effectively, a modified measure called Partial Hausdorff Distance (PHD)
was used. First, the linear patterns of the iris are captured by using the Canny edge
detection technique. Then, the images are divided into non-overlapping blocks of the
same size. The Partial Hausdorff Distance is computed between the significant blocks
(where all pixel values are not zero) of the same position in the two images. The result is
a value that determines the dissimilarity between the two images.

Szewczyk [25] proposed a method for iris identification based on the use of reverse
biorthogonal wavelets in the phase of feature extraction. After reverse biorthogonal

wavelets were applied to decompose the image, the median of the resultant coefficient
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was computed. In order to get the iris code, coefficients that are less than the median
were set to 0 while others were set to 1. Hamming distance was used for the purpose of
matching.

Krichen et al. [26] utilized the color information in order to classify iris images that were
acquired under normal light illumination. First, the number of colors of the normalized
iris reference image was reduced by using the minimum variance quantization. The
corresponding color map of the compressed image was obtained. Query iris image was
processed by using the color map obtained from the reference image. This was done by
assigning each color in the map into nearest color in the query image using RGB color
space. Then, the distribution of the corresponding pixel positions were compared by

using the modified Hausdorff Distance [26].
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CHAPTER THREE

HYPERCOMPLEX (QUATERNION)
REPRESENTATION

3.1. Quaternion Numbers

Quaternion numbers were first proposed by Sir William Hamilton in 1843. They have
several applications, such as mechanics in 3D space and 3D rotations. One of their
appealing applications is their use to represent and process color images in a holistic
manner rather than each color separately. Quaternion numbers are extensions of the
regular complex numbers to higher dimensions. Complex numbers are also extensions of

the real numbers, and they take the following form:
c=a+bi (3.1)

where i is an imaginary number and defined by

P =-1 (3.2)

Definition [27]: A quaternion is defined as follows:
g=a+bi+c+dk (3.3)
where i, j, and k are imaginary numbers, and a, b, ¢, and d are real numbers. Another

possible representation is given as follows:

Q={a+bi+cj+dk|ab,cdeR} (3.4
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where Q is Quaternion space, and R is real numbers. Hence,
RcCcQ (3.5)

where C is complex numbers.

3.2. Properties of Quaternion Numbers

Quaternions have several properties. Some of these properties, of interest to our proposed
work, are covered in this section.

Given a quaternion number q:

g=a+bi+c+dk (3.6)

Property 1:
jk=i’=/7=k=-1 (3.7)

Property 2:
Jjk=1i, kj=-i (3.8)
ki=j, ik=-j (3.9)
ij=k, ji=-k (3.10)

From Equations (3.8)-(3.10), it is clear that the multiplication is not commutative in

Quaternions. This is an important property that will affect the design of the Quaternion
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Fourier Transform (QFT) and the Quaternion convolution (QC) as will be shown in the

next sections.

Property 3: A quaternion with a zero real part is called a pure quaternion:

q=0-+bi+cj+dk (3.11)

Property 4: The conjugate of a quaternion is defined by negating its imaginary parts':

q=a+bi+c+dk=a—-bi—c—dk (3.12)

Property 5: The modulus or magnitude of a quaternion is defined by:

lq| = Va2 + b2 + ¢2 + d? (3.13)

! Note that the conjugate of Quaternions can be in many forms. These forms consist of different
combinations of negative imaginary numbers. In this definition, all are negatives.
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3.3. 2-D Quaternion Fourier Transform

3.3.1. Regular 2-D Quaternion Fourier Transform

The regular 2D Fourier Transform is defined as [11]:

I(u,v)=J. f I(x,y)e ™ e~X dxdy (3.14)

where I(x, y) is the spatial-domain representation of the image, x and y are the spatial
coordinates, I(u, v) is the frequency-domain representation of the image, and u and v are
the frequency coordinates. Because complex numbers are commutative in multiplication,

Equation (3.14) has the following equivalent representations:

I(u,v)zf f e WX e=WX ] (x y)dxdy (3.15)

I(u,v)=J. f e WX [(x,y)e ¥ dxdy (3.16)

3.3.2. Types of 2-D Quaternion Fourier Transform

Due to the fact that Quaternion numbers are not commutative in multiplication, there are
different types of Quaternion Fourier Transforms (QFT). Pei et al. [28] defined three
QFT types. These are two-side, left-side and right-side QFTs, respectively.

The two-side QFT (Type 1) is defined by [28]:
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H(ql)(u,v)=f J e M h(x,y).e 2" . dxdy (3.17)

where h(x,y) is the input Quaternion image, #; and u, are two pure unit Quaternions,
orthogonal to each other, and w and v are the spatial frequencies in x and y directions,

respectively.

Similarly, the left-side QFT (Type 2) is defined by [28]:

Hen(w,v) = f_o:o fj:oe‘“l(“x*””. h(x,y).dxdy (3.18)
Also, the right-side QFT (Type 3) is defined by [28]:

Hegn(wv) = _I;O:o f_c:h(x, y). e TH(UX+VY) dydy (3.19)

Pei et al. [28] also defined the inverse representations of these QFTs as follows:

1 oo o
h(x,y) = Ef f e M Hegqy(u, v). e 2%, dudv (3.20)

1 oo co
h(x,y) = f j e M) g0y (w, v). dudv (3.21)
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1 co ©o
h(x,y) = Ej j Hga)(u, v). e T H0040Y) gy (3.22)

Similarly, the discrete two-side (Type 1) Quaternion Fourier Transform (DQFT) is

defined by [28]:

M-1
y

Hgn(u, v) G h(x y).e ~uz2n(y) (3.23)

0

Z

-1

=0

=
<
Il

where M and N are the size of the image.

Left-side DQFT (Type 2) is defined by:

M-1

Higz) (. v) e 27 () (W) h(x, ) (324)

0

2

-1

x=0

<
Il

Right-side DQFT (Type 3) is defined by:

(x, ). e~ra2n (G (5 (3.25)

||[\42

M-
H(q3) (u U Z
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It is well known that the efficient algorithm for computing the Fourier Transform (called
Fast Fourier Transform FFT) of an MxN image has a complexity of [28]:

MN.log,MN (3.26)

QFT can use two FFTs in its implementation. Thus complexity of three types of QFT is:

2MN.log,MN (3.27)

Thus, both FFT and QFT have complexity equal to:

O(MN.log,MN) (3.28)

3.3.3. Implementation of 2-D Discrete Quaternion Fourier Transform

Ell and Sangwine [29] proposed a method to calculate the 2-D Discrete Quaternion
Fourier Transform by using regular FFTs. This is achieved by decomposing the
quaternion representation into two perpendicular planes in a four-dimensional space,
which intersect only at the origin. This decomposition, called symplectic form, is based
on the Cayley-Dickson form. In this form, a quaternion is defined recursively as a
generalized complex number whose “real” and “imaginary” components are themselves
complex numbers. So, any quaternion:

qg=a+bi+c¢+dk (3.29)

can be rewritten in the Cayley-Dickson form as [29]:

q=A+Bj (3.30)
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where 4 = a + bi and B = ¢ + di. In this symplectic form, 4 is called the simplex part and
B is called the perplex part, respectively.

Ell and Sangwine [29] described the steps to implement a quaternion Fourier transform.
Let p; and p, be two pure unit Quaternions, orthogonal to each other. Then the
implementation of the 2-D Discrete Quaternion Fourier Transform is carried out as
follows [29]:

1. First, the image f(x,y) is decomposed into its symplectic components as:

where each f; € (1, ;) plane.

2.Then, each symplectic component is expanded as:

filx,y) = 116, y) + 1206,y (3.32)

where each 7; ;(x, ) is an image of scalars.

3. After that, equivalent complex images are constructed as :

flGoy) = ria(x,y) + 1p(x, )i (3.33)

4.Next, two 2-D complex FFTs of f',(n, m) are performed to obtain:

F'i[u,v] = R';1[u,v] + R';,[u, v]i (3.34)

5.Then, simplex and perplex parts are constructed as:

Filu,v] = R’i,l[u' v] + R’i,z[u: V] (3.35)
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6.Finally, the full quaternion in symplectic form is constructed as:

Flu,v] = Fi[u,v] + F[u,v]u, (3.36)

Figure 3.1 shows an image and its spectrum in the frequency domain, using the three

types of 2D DQFT.
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Figure 3.1: Spectrum of transformed Quaternion image. (a) Input image. (b) 2-side QFT.

(c) Left-side QFT. (d) Right-side QFT.
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3.4. Quaternion Convolution

Because Quaternion numbers are not commutative in multiplication, there are two types
of Quaternion convolution (QCV), namely: one-side and two-side convolution. The one-

side Quaternion convolution is defined by [28]:
960 = ) g hGy) = [ [ fGe= oy =n). (o). drdy (337)

where f(x,y) is the input image and h(x,y) is the filter.

The two-side quaternion convolution is defined by [28]:

gx,y) = f(x,y) *q {h1(x,y), ho(x, ¥)}

- f f Ryt G = T,y = ). by (5, 1). drdy (338)

where h2(x,y) is the second filter applied, along with filer h1(x,y), to the image f(x,y). A
common and fast method of convolution for real and complex images is to perform
Fourier Transform (FT) on the image and the filter. Then, scalar multiplication is
performed in the frequency domain, followed by the inverse FT of the product. This fast

implementation is written as [11]:

ImConv = IFT(FT(Image).FT(Filter)) (3.39)
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Pie et al. [28] utilized the QFT implementation described in Section 3.3, to implement
two types of Quaternionic convolutions: one-side and two-side. The relationships
between different types of QFT and quaternion convolutions were provided therein [28]
as shown in Table 3.1. From the Table 3.1, it can be seen that achieving one-side QCV
requires the use of three QFTs, while two-side QCV requires six QFTs. Thus, the
complexity of one-side QCV is

6MN.log,MN (3.40)

And the complexity of two-side QCV is

12MN.log,MN (3.41)

Hence, both FFT and QFT have complexity equal to:

O(MN.log,MN) (3.42)
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:{el;t":’“ QC‘\?WZZE Gian(¥) = Fygn ()07 [H (A ‘“')]"' Foqn (w—v)0* (H {qh) (“""’}]*

-side

QFT-1 F b(.gn(“’s""]j QM{H m-l)(_ wp‘")}"‘ F b{ql](w! v)jO* (H @n (‘ W, V))’
where f5(x, ) = flx, ) +filx v folx ) =S, ¥) + i, Y

Relation oc belweez G(qz;{“’" ") = F::{qz)(“"* "’)H n (W, ")"' F b(qz)(w-' ‘-’)‘ JH (qza(‘ w=v),

1-side V an

QFT-2 where f,(x, ¥) = filx, ) + filx, )i, folx, ¥) =S, p) + filx, y)i

Rel’;tion Qc:;etweez G{qu (w,v) =F (W: V)H a(g3) (W,V) + F‘(q}){_ W>_")' JH digh (w, "'}s

I-side an

QFT-3 where q(x, ¥) = hy(x, y) + (e, )i, ha(x, ) = hy(x, p) — e, p)i.

l;e]‘a:lon Qc:r)etweel; Gz ("" V) =F (w, V)H 3(g2) (w, V) +F ooy (‘ w:‘”)jH 4(q2) (w, ")

-side an

QFT-2 Fy ﬂ}(w, v)jH. Sq2) (- w,—v)+ Fyun (—w—v)jH, 6{(;2)-(_ wy=v),

where fo(x, ¥) = flx, ) + filx, W folx, ¥) = fix, ¥) + filx, v,
}'3(;':: y}s }‘4(-"'9 }’}, f!s{.‘{’, J’}s hﬁ(xr yL are defined as (68)

Table 3.1: Relationships between different types of QFT and QCV. [28]
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3.5. Quaternion Representation of Images

A pure quaternion is used to represent an image in a holistic manner by using the
quaternion form. Decomposing the color components of the image and assigning each of
them to an imaginary part of the quaternion would yield such holistic representation. In
this research, the Red-Green-Blue (RGB) color space is used. Figure 3.2 illustrates the

approach adopted to represent RGB color image by using the quaternion form.

<6 k:.
J Il!
i
iR

Figure 3.2: Quaternion representation of an image.

3.6. Spatio-Chromatic Representation

McCabe et al. [30] proposed a method to capture spatio-chromatic information of images.
The chromatic information consists of the hue and saturation components. Figure 3.3

illustrates the hue and saturation components. The hue component represents the
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variation in colors, and it varies along the outer circumference of the cone in Figure 3.3.
The saturation component defines the saturation of the hue component, and saturation is

represented by the distance from the center of a circular cross-section of the cone.

Saturation
- .

Brightness

Figure 3.3: Hue and saturation components.

The method proposed by McCabe et al., based on one regular complex FT, can be

described as follows [30]:

1. Transform the color space into CIE 1976 chromaticity ttv space [31]. This is done

by first transforming the image into XYZ.

2. Rotate v values by n/30 radian in order to align the ¢ axis with the red-green
orientation and the ¥ axis with the yellow-blue orientation.

3. Perform the regular 2D Fourier Transform as:
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U(u,v) +jV(u,v)
N/2 N/2

= > ) [y +i6Gy]exp [<2m(ux+vy)/N]  (343)

N N
X——7+1 y= —7+1

where NxN is the size of the image, and [U(x,y) + V(x,y)] is the complex

chromaticity coordinates at the spatial point (x,y).
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CHAPTER FOUR

GABOR WAVELETS

4.1. Introduction

A well-known shortcoming of signal analysis in the frequency domain using the FT
representation is the inability to simultaneously capture the time and frequency
information of signals. Only information about the spectral component of the signal is
provided. This is shown in Figure 4.1(b). It is clear that at any frequency point, space
(time) components cannot be defined. By duality, this holds true for the space domain,
where the temporal location of the signal can be found, while the information of the
frequency is not provided. Figure 4.1(a) illustrates this effect. To remedy this problem,
Gabor [32] applied a method, rooted in quantum physics and called the Heisenberg
uncertainty principle, to analyze signals in both time and frequency domains. He
proposed a solution by multiplying a sinusoid with a Gaussian envelope. The basic Gabor

function is defined as [32]:

Y(r) = e~ % (t-to)?gimho+d) (4.1)

Figures 4.1(c) and 4.1(d) show the result of using a Gabor function with a fixed Gaussian
envelope and different Gaussians, respectively. It is clear that for any frequency point the

information of space is available, and vice-versa.
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Figure 4.1: Transformations between frequency and space domains. (a) Signal in space
domain. (b) Signal in frequency domain. (c) and (d) space-frequency analysis using

Gabor functions.

To enable the use of Gabor wavelets in image processing, it was extended into two

dimensions. This extension allowed 2D signals to be analyzed in different orientations

and frequencies.

In the literature, Gabor filters have been used in image processing for three tasks [33]:

e Texture information analysis.
e Nearly periodic features enhancement such as fingerprint ridges.

e Feature analysis and extraction.
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4.2. Gabor Filters

It is important to achieve representations of the iris that are invariant for scale, rotation,
and size. In this way, the effect of a slight tilt of the face or the camera, or variation of
distances from the camera, will be minimized. This can be achieved by decomposing the
image into different frequency and orientation channels. Such multi-resolution
decomposition can be realized effectively by using filter-banks that are constructed with
Gabor wavelets. Gabor filters are multi-resolution band-pass filters capable of achieving
optimum joint spatial/frequency localization. In addition, they can imitate the behavior of
simple cells in the visual cortex in the human and mammalian visual system.

In its essence, a Gabor wavelet is a Gaussian that is modulated by a complex sinusoid. A

2D Gabor can be defined as follows:

1 1[x% y2 _
gx,y) = 20,0, exp —3 0_,2( + 0_}2, exp{j2m(ux + uy)} (4.2)

where o, and oy are the space constants of the Gaussian envelope along the x and y axes.

They also characterize the bandwidth of the filter. The frequency term can be found by:
F =+vu? +v2 (4.3)

This can be represented in the frequency domain as:
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1
G(u,v) = exp {E [(ox[u—UD? + (oy[v - V])z]} (4.4)

It was found that the choice oy = o, = 0 is sufficient for most applications [34]. Thus,

Equation (4.2) is reduced to:

1 1[x? + y? _
7oz P15 |52 exp{j2n(Ux + Vy)} (4.5)

g(xy) =

Three parameters should be chosen carefully in order to achieve the best performance.
These are frequency, size, and orientation, respectively.

Figure 4.2 shows a set of Gabor functions in the spatial domain with six orientations and
two sizes. Each row has six orientations, incremented by 30 degrees from the previous
one. Figure 4.3 shows the results of convolving an image with the Gabor functions shown
in Figure 4.2. The effect of different sizes can be clearly seen on each row. Furthermore,
the different angles of the filter have the effect of selecting edges oriented at a specific

direction.

51



..
..

Figure 4.2: Set of Gabor functions with 8 orientations and 2 sizes.

Figure 4.3: Results of convolving the image on the top with the filters in Figure 4.2.
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4.3. Log-Gabor Filters

Gabor filters face a limitation in their bandwidth coverage; they can cover one octave at
most. Furthermore, it is impossible to construct Gabor filters that cover wide bandwidth
and have small DC values at the same time. Thus, optimal results cannot be achieved if
high bandwidth information is required. In his study on the statistics of natural images,
Field [35] found that the use of Gaussian transfer functions in logarithmic frequency
scale in constructing filters yields better results. Consequently, he proposed Log-Gabor
filters as an alternative to Gabor filters. Log-Gabor filters can be constructed with
arbitrary bandwidth and zero DC component. The Log-Gabor function is defined in the

frequency domain as [35]:

(4.6)

where fj is the center frequency of the filter, and o is scaling factor of the bandwidth.
The three-octave Log-Gabor function is approximately equal to the one-octave Gabor
function [36]. Figure 4.4 shows a comparison between the responses of Gabor and Log-
Gabor functions. It can be noticed that Gabor functions over-represent the low frequency
components, leading to correlated and redundant information in the low frequency
regions. On the other hand, the use of Log-Gabor functions results in equally spread

information.
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Figure 4.4: Comparison between Gabor and Log-Gabor functions responses. [35]

4.4. Quaternion Gabor Filters

There were very few attempts in the literature to extend the complex Gabor filter into the
Quaternion domain. One of the early attempts was proposed by Bulow and Sommer [37].
Because complex Gabor filters are Gaussian modulated by a complex sinusoidal, they
suggested implementing the Quaternion Gabor Filters by performing the Quaternion
Fourier Transform. Thus, the 2D Gabor filter, given in Equation (4.2), can be extended to

the Quaternion Gabor filter as:
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1 1[x? y?
g(x,y) = Zroy0, exp {— 3 IG—)% + Z_f,l} exp{i2m(ux + uy)}. exp{j2m(ux + uy)} 4.7)

Jones [33] explored several methods for extending the Gabor filter to Quaternion. He
found that geometrical interpretation of the product gives the best interpretation of colors.
This is based on the fact that multiplying two pure Quaternions will result in a real part
equal to the negative of their dot product and a quaternion part as a vector equal to the
cross product of these two vectors. Thus, the Gabor filter can be defined as a pure
quaternion where its color component is as described in Section 3.5 and pointing to a
particular direction in the 3D color space. A unit quaternion p, pointing to an interesting
direction in the 3D color space, is multiplied with the previously defined Gabor filter in
order to get the Quaternion Gabor Filter. The resulting filter can be used to extract the
intensity and hue information. By this method, the 2D Gabor filter, defined by Equation
(4.2), is extended to the Quaternion Gabor filter by multiplying the unit quaternion p with

the real part of the filter as:

1 1[x?  y?
g(x,y) = Z0s0, expy—5 oz + 0—32/ cos{2m(ux + uy)} (4.8)

Figures 4.5 shows the real and imaginary parts of a Gabor filter. In comparison, Figure

4.6 shows the real and the three imaginary parts of a Quaternion Gabor filter.
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Figure 4.5: Complex 2D Gabor filter. (a) Real part. (b) Imaginary part. [37]
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(a)

Figure 4.6: Quaternion 2D Gabor filter. (a) Real part. (b) Imaginary part (i-term). (c)

Imaginary part (j-term). (d) Imaginary part(k-term). [37]
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CHAPTER FIVE

METHODOLOGY AND EXPERIMENT DESIGN

5.1. Research Methodology

In this chapter, we will present several experiments to measure the performance of

different methods proposed in this Thesis.

During the performance evaluation experiments, three representations are considered:

1. Grayscale representation of each color separately: The common complex Fourier
Transform (FT) is used in the analysis.

2. Spatio-chromatic representation: The complex Fourier Transform will be used
again. A description of the spatio-chromatic color representation is provided in
Section 3.6.

3. Quaternion representation: Three types of Quaternion Fourier Transform are used,
which are: the two-side, left-side and right-side transforms, respectively. Sections

3.3 and 3.5 give a detailed description.

In order to characterize the performance of these different representations, two types of
performance evaluation are considered. The first type is to determine the performance

when different noise statistics are introduced. Five types of noise are used in the
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experiments. The second type is to determine the correlation measure between different
images. This is carried out by using different performance measurements. An
implementation of the Daugman algorithm is proposed for the sake of comparison. This
requires a modification of the original algorithm in order to work with quaternion

representations. A comparison will be performed by using color components separately.

5.2. Iris Image Database

UBIRISv1 database, provided by the University of Beira Interior in Portugal, was used in
our experiments [38]. UBIRISv1 contains 1877 color images that were taken from 241
different persons in two distinct sessions. Images in the database have different kinds of
noise in order to simulate the capturing with minimum collaboration from subjects. In
session one, noise is reduced by taking pictures in a dark room. So, reflections,
luminosity and contrast were reduced in this session. On the other hand, pictures in
session two were taken in natural illumination which introduces the mentioned noises.

The database is provided in three different formats:

a) 800 x 600 - 24 bit color
b) 200 x 150 - 24 bit color

¢) 200 x 150 — Grayscale

Images are classified using three parameters: focus, reflection, and visible iris. Each of

these parameters can have the following values: Good, Average, and Bad. Figure 5.1
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illustrates some images in each category. The result of such classification is presented in

Table 5.1.
Parameter Good Average Bad
Focus 73.83% 17.53% 8.63%
Reflections 58.87% 36.78% 4.34%
Visible Iris 36.73% 47.83% 15.44%

Table 5.1: Classification of images in UBIRISv1 database.

(a)

Figure 5.1: Classification of UBIRISv1 iris images. (a) Focus. (b) Reflection. (¢) Visible

iris.
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5.3. Types of Errors

Two common types of errors in biometric systems can be used in the performance

assessment of iris-based systems:

False Match: The error of considering two iris images from different persons to belong

to one person. The False Match Rate (FMR) is the probability of false match error.

False Non-Match: False non-match error occurs when two iris images from the same
person are considered to belong to different persons. False Non-Match Rate (FNMR) is

the probability of false non-match error.

A trade-off between these two types of errors can be made, depending on the type of
system being designed or deployed. For positive recognition systems, such as access
control systems, false match represents accepting an imposter user, while false non-match
would mean rejecting a genuine user. For negative recognition systems, such as banking
systems, genuine attempts are rejected when having a false match, while imposter

attempts are falsely accepted when having a false non-match [39].
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5.4. Performance Evaluation of Hypercomplex Representation

5.4.1. Correlation Performance for Different Types of Noise

We conduct five experiments in order to see the performance of each representation
against different types of noises. The following noises are tested: Gaussian noise,

rotation, average filtering, median filtering, and compression using JPEG.

Gaussian noise: A noise of Gaussian distribution is added by using variances ranging
from 0 to 1000 and a mean equal to zero. Figure 5.3 shows a comparison of using
different color representations for POC performance evaluation. It is clear that the three
types of QFT achieved much better results than regular FT and spatio-chromatic. On the
other hand, spatio-chromatic representation had the worst results. In Figure 5.4, the same
comparison was done by using BLPOC. For all representations, the results are much

better than using POC only, and the three types of Quaternion still obtain the best results.

Rotation: Iris images are rotated through angles from 0 to 30° in increments of 1°. The
correlation is considered as the performance measure. Figure 5.5 shows the performance
results from POC-based techniques. As indicated, quaternion representations yielded the
best performance. The inclusion of band-limited filtering (BLPOC) significantly
improved the system performance as reported in Figure 5.6. The same performance
superiority of the Quaternion representations is obtained. Moreover, the regular and

spatio-chromatic representations slightly improved in performance.
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Average Filtering’: Spatial average filtering is used with varying window sizes NxN
with 3 <N < 11. Figure 5.7 summarizes the performance of the systems being compared.
Similar to the results given in Figures 5.5-5.6, the Quaternion representations achieved
the best performance. This superiority in performance is due to the ability of these
representations to efficiently capture the color information in the iris images (unlike, for
instance, the case with their counterparts based on the spatio-chromatic transform). By
ignoring the luminance component in the iris images, the latter representations clearly fail
to meet the requirements of the “information-preserving rule” principle. Aiming to let the
systems under investigation concentrate their retrieval capabilities on the most important
features present in the iris images, band-limited filtering (BLPOC) is incorporated to
investigate the efficiency of these systems when fed with band-limited iris information.
Figure 5.8 gives a summary of the performance measures in this case. It can be safely
stated, in the present case also, that the Quaternion representations successfully and
efficiently captured the color information which enabled them to achieve the improved

performance.

Median Filtering’: Figure 5.9 illustrates the performance of the systems in the presence

of spatial median filtering. Varying window sizes NxN with 3 < N < 11 are applied.

% Average filtering is considered to represent the loss of focus when capturing iris images.
3 The effect of motion blurring is simulated by the incorporation of median filtering during the conducted
experiments to assess the systems’ performance.
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Based on the analysis presented in average filtering, Quaternion-based transforms lead to
the best performance due to the afore-mentioned properties. Furthermore, similar
performance improvement is achieved when considering band-limited filtering of the iris

images before conducting the experiments as evidenced by Figure 5.10.

JPEG Compression: Though there is no clear indication in the literature about the effect
of image compression on the performance of existing iris-based recognition systems, it is
quite interesting to investigate this effect for the sake of completeness. Figures 5.11-5.12
report the performance of the different systems under JPEG4 compression. Different
image compression rates are considered. The compression rates are related to the quality
factor ranging from 0 to 100. A quality factor of 100 means a perfect image coding where
only a minor compression is achieved. On the other hand, a quality factor of 0 means full
image compression. Figure 5.2 shows an iris image compressed using two quality factors

(Figure 5.2 (b) Quality factor = 100 and Figure 5.2 (c¢) Quality factor = 0).

It is a well-known fact that JPEG compression is achieved by first removing the high
frequency components of the images. This effect is similar to high pass filtering.
However, to achieve high compression, JPEG compression attempts to remove parts of
the low-frequency components. Therefore, JPEG compression can be viewed as a
combined low-pass and high-pass filtering when a low quality factor is applied during

compression. Therefore, the same performance behavior is expected in the presence of

* IPGEG: Joint Photographic Expert Group Standard for Image Coding.
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JPEG compression. This would mean that the Quaternion-based transforms will result in
the best achieved performance. The expected performance results are given in Figure
5.11. Finally, by using band-limited filtering of the iris images, all systems under
investigation yield the same level of performance improvement as illustrated in Figure

5.12.
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Figure 5.2: (a) Iris image. (b) Same image compressed using quality factor = 100. (c)

Same image compressed using quality factor = 0.



Performance Comparison With Gaussian Noise
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Figure 5.3: System performance against Gaussian noise.
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Figure 5.4: System performance against Gaussian noise using band-limited POC.

65



Performance Comparison With Rotation
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Figure 5.5: System performance against rotation.
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Figure 5.6: System performance against rotation using band-limited POC.
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Performance Comparison With Average Filter
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Figure 5.7: System performance against average filtering.
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Figure 5.8: System performance against average filtering using band-limited POC.
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Performance Comparison With Median Filter

07 T T T T T T T
¥ 2-sides OFFT
Left-side QFFT
Right-side QFFT
06 —o—FFT
1 —— SC-FFT
e
0.5F T 4
w_
s o
go4r ~_ .
5 T —
5 — L
@ =
£o03 4
s}
0.2
= T —
~fe . T . .
—— " ———
—— — 1
0 1 1 L L 1 1 L
3 4 5 ] 7 8 9 10 11
Window (M x N)

Figure 5.9: System performance against median filtering.
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Figure 5.10: System performance against median filtering using band-limited POC.
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Performance Comparison With Different JPEG Cualities
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Figure 5.11: System performance against JPEG compression.
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Figure 5.12: System performance against JPEG compression using band-limited POC.
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5.4.2. System Performance Statistics

5.4.2.1. Genuine versus Imposter Distribution

To estimate the genuine distribution, iris images belonging to the same person are
compared against each other. It should be noted that if a comparison between sample 1
and sample j is performed, the inverse comparison is omitted since it will give the same
result. The purpose of this procedure is to measure the similarity between iris images
belonging to the same person. Moreover, to estimate the imposter distribution,
comparisons between iris images belonging to different persons are performed. In this
case, the i™ sample of each person is compared to the i™ sample of all the remaining
persons. Since the correlation is an asymmetric process, if a comparison is carried out
between samples 1 of two persons, the inverse comparison is omitted. The aim of
imposter distribution is to measure the difference between iris images belonging to

different persons.

Figure 5.13 illustrates a sample of genuine and imposter distributions. The more
separated are the genuine and imposter distributions, the better is the matching process.
The area of intersection between the two distributions represents errors in the system
performance. FMR is the region of imposter distribution that is considered to belong to
the genuine distribution. On the other hand, FNMR is the portion of genuine distribution
that is considered as part of the Imposter distribution. The selection of a specific

threshold provides a trade-off between the FNMR and FMR probabilities, which depends
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on the application of the biometric system. For instance, in forensic applications for
criminal identification, FMR is selected to be large in order not to miss the criminal. In
highly secure access control systems, FNMR is chosen to be large to ensure that only

genuine users will gain access.

Impostor
P distribution
p(s|Ho=true) Genui
Threshold (7) SEIIENS
\ distribution

p(s|Hy=true)

FMR
P(Dy|Hy=true)

FNMR
P(DolHi=true)

.
F

0 Matching score (s) 1

Figure 5.13: Genuine versus imposter distributions, and illustration of FNMR and FMR

errors suing a threshold t. [39]

Better results are achieved if the two distributions are well separated. Thus, the separation

between the mean of the two distributions gives a hint about the system’s performance.

This separation is called the “decidability index”. The decidability index, d, is calculated

as follows [4]:

d = |ug — (5.1)

where pg and p; are the means of the genuine and imposter distributions, respectively.
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Table 5.2 shows the decidability index for the different representations. Large values for
the decidability index do not necessarily mean that the performance is better. In some
cases, the errors too can be large and should be taken into account. To illustrate this

concept, errors regions are highlighted in Figures 5.14 and 5.15.

Fourier Transform Method Decidability Index
FFT 0.0926
FFT-BL 0.0559
QFT two-side 0.1239
QFT two-side BL 0.3302
QFT left-side 0.1921
QFT left-side BL 0.2128
QFT right-side 0.2826
QFT right-side BL 0.2267
Spatio-chromatic FT 0.0535
Spatio-chromatic FT BL 0.3578

Table 5.2: Decidability indices for the different representations.

Figure 5.14 shows the genuine and imposter distributions using the POC algorithm and
the regular FFT. Vertical lines illustrate the means of the two distributions, and the
shaded region indicates the errors resulting from their intersection. Band-Limited filtering
(BLPOC) yields distributions illustrated in Figure 5.15. It can be noted that BLPOC

achieved better separation between genuine and imposter distributions, but with far more
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errors. The error region is shown as the shaded portion. In Figure 5.16, the distributions
of using two-side QFT representation for the POC-based technique are shown. The
separation of genuine and imposter is better than that achieved by using the regular FFT.
As shown in Figure 5.17, the use of Band-Limited filtering (BLPOC) yields more
separation, but also far more errors. This finding is in agreement with the result of regular
FFT. The distributions using left-side QFT representation and POC technique are shown
in Figure 5.18. The separation is slightly better than what is achieved by two-side QFT.
In the case of BLPOC, the distributions are presented in Figure 5.19. As in the two-side
QFT, the separation between the two distributions is greater, but also the errors increase
rapidly. In Figure 5.20, the distributions using right-side QFT representation are
illustrated. It can be noticed that the separation between genuine and imposter
distributions is far greater than that of left-side QFT. The result of inclusion of Band-
Limited filtering is shown in Figure 5.21. This result agrees with the previous
representations in that more separation is achieved, but with more errors. The
distributions of spatio-chromatic FT using POC-based algorithm are shown in Figure
5.22. It can be inferred from this figure that spatio-chromatic FT achieved less separation
than the three types of QFT, but more than FFT. The use of BLPOC resulted in more
widely separated distributions, but with more errors, which are presented in Figure 5.23.
It is clear that the use of Band-Limited filtering (BLPOC) contributed to the improvement

in the system performance. However, this observation is violated in the right-side QFT.
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Figure 5.14: Genuine versus imposter distributions using regular FFT and POC.
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Figure 5.15: Genuine versus imposter distributions using regular FFT and band-limited POC.
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Figure 5.16: Genuine versus imposter distributions using two-side QFT and POC.

Genuine vs Imposter Distributions (BL-2-side Quaternion)
7 T T T T T I
Genuine
Imposter
6 | -
. )
/ \ r[( ‘\\
3 [
I 1
3r [ T
-
I 1
|
I
4+ | -
[ |
| |
I |
| |
3 / |
Jll |
X |
1
|
2 I .l
i g 5
o |
1 \
!
s A
P - \
0 — b= L 1 1 T C T AN
0.4 0.5 08 0.7 0.8 0.9 1 11
thresholdit)

Figure 5.17: Genuine versus imposter distributions using two-side QFT and band-limited

POC.
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Figure 5.18: Genuine versus imposter distributions using left-side QFT and POC.
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Figure 5.19: Genuine versus imposter distributions using left-side QFT and band-limited

POC.
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Genuine vs Imposter Distributions (right-side Quaternion)
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Figure 5.20: Genuine versus imposter distributions using right-side QFT and POC.
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Genuine vs Imposter Distributions (Spatio-Chromatic)
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Figure 5.22: Genuine versus imposter distributions using spatio-chromatic FT and POC.
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Figure 5.23: Genuine versus imposter distributions using spatio-chromatic FT and band-

limited POC.
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5.4.2.2. FMR and FNMR

The FMR and FNMR curves can be calculated from the genuine and imposter
distributions by using a threshold t that ranges from 0 to 1. Thus, the FMR(t) and
FNMR(t) are functions of #, where FMR(t) is the percentage of imposters greater than or
equal to the threshold, and FNMR(t) is the percentage of genuine less than the threshold

[39].

The following information can be inferred from the FMR and FNMR curves as illustrated

in Figure 5.24 [39]:

Equal-Error Rate (EER): It is the error rate where FMR(t) = FNMR(t). Lower EER

values indicate less errors. EER for the different representations is provided in Table 3.3.
ZeroFNMR: 1t is the lowest FMR where no FNM occur.

ZeroFMR: It is the lowest FNMR where no FM occurs.

A

E \FMR(t) FNMR(1) /
ZeroFNMR ZeroFMR

¥

Figure 5.24: FMR and FNMR curves. [39]
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Fourier Transform Method EER
FFT 0.04

FFT-BL 0.18

QFT 2-sides 0.32

QFT 2-sides BL 0.73
QFT left-side 0.26

QFT left-side BL 0.86
QFT right-side 0.27
QFT right-side BL 0.83
Spatio-chromatic FT 0.03
Spatio-chromatic FT BL 0.25

Table 5.3: EER for the different representations.

Figure 5.25 shows the FMR and FNMR curves when using the regular FFT and POC. It
can be noted that EER is small, and consequently errors are low. Figure 5.26 illustrates
the curves when introducing Band-Limited filtering (BLPOC). The EER value is greater
than the one achieved with POC, and thus BLPOC generate more errors. This observation
confirms the results obtained from the genuine and imposter distributions. Figure 5.27
shows the curves using two-side QFT representation and POC. The EER value is greater
than that obtained by using regular FFT. This indicates that two-side QFT representation
has more errors. Figure 5.28 shows the curves when using BLPOC. It is clear that EER is
far greater than the one obtained by using POC. Consequently there are far more errors.
The curves using the left-side QFT and POC-based technique are shown in Figure 5.29.

The value of EER is less than that obtained by using two-sides QFT. On the other hand,
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the curves of left-side QFT using Band-Limited filtering (BLPOC) achieved greater EER
compared with BLPOC of two-sides QFT. These curves are presented in Figure 5.30. In
Figure 5.31, the curves using right-side QFT representation and POC are shown. A very
similar EER value to left-side QFT can be observed. Similarly, Figure 5.32 shows the
curves of right-side QFT using BLPOC and is very similar to that of left-side QFT. The
curves of spatio-chromatic FT representation and POC are shown in Figure 5.33. The
lowest EER value is obtained, which indicates that the lowest error rate is achieved by
spatio-chromatic FT representation. The curves of spatio-chromatic FT using BLPOC

give far greater EER value. These curves are presented in Figure 5.34.
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Figure 5.25: FMR and FNMR using regular FFT and POC.
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Figure 5.26: FMR and FNMR using regular FFT and band-limited POC.
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FMR and FNMR {2-side Cuaternion)
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Figure 5.27: FMR and FNMR using 2-sides QFT and POC.
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Figure 5.28: FMR and FNMR using 2-sides QFT and band-limited POC.
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FMR and FNMR (left-side Quaternion)
100 T T T T T T T

\ T FMRI(t)
% | p FNMR(t)

o

70+ [
60

50

30
20 ||

10+ !

o- I T T 1 L 1 1
a 01 0.2 03 0.4 05 0.6 0.7 08 0.9 1
thresholdit)

Figure 5.29: FMR and FNMR using left side QFT and POC.
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Figure 5.30: FMR and FNMR using left side QFT and band-limited POC.
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FMR and FNMR (right-side Quaternion)
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Figure 5.31: FMR and FNMR using right side QFT and POC.
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Figure 5.32: FMR and FNMR using right side QFT and band-limited POC.
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Figure 5.33: FMR and FNMR using Spatio-Chromatic FT and POC.
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Figure 5.34: FMR and FNMR using Spatio-Chromatic FT and band-limited POC.
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5.4.2.3. Receiver Operating Characteristic (ROC) Curve

ROC curves show the system performance at all thresholds, and so the whole picture of
the system performance can be seen. ROC curves can be achieved by plotting the FNMR
as a function of FMR [39]. In the implementation, the plot is scaled by using log-log
scales in order to make it clearer. From ROC curves, the relationship between FMR and
FNMR can be observed. As FMR is increased, FNMR is decreased, and vice versa. The
best curve is a straight horizontal line with zero FNMR, which means that EER is equal

to zero.

Figure 5.35 shows the ROC curve when using the regular FFT and POC-based technique.
The relationship between FMR and FNMR can be observed clearly. As FMR is
increased, FNMR is decreased, and vice versa. Figure 5.36 illustrates the curve when
using Band-Limited filtering (BLPOC). Compared with the POC curve, the result of
BLPOC is a higher curve, which indicates higher EER values and errors. In Figure 5.37,
the curve using two-side QFT representation and POC is illustrated. It can be observed
that the curve is higher than the one obtained using regular FFT, and thus two-side QFT
yields more errors. This confirms the finding from genuine and imposter distributions and
FMR and FNMR curves. Figure 5.38 shows the result when introducing Band-Limited
filtering (BLPOC). It is clear that by using BLPOC, more errors are achieved. The curve
using left-side QFT and POC is shown in Figure 5.39. It can be inferred from this curve
that left-side QFT achieved results with fewer errors compared with two-side QFT.
Introducing Band-Limited filtering (BLPOC) increases the number of errors as illustrated

in the curve of Figure 5.40. In Figure 5.41, the curve for using right-side QFT
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representation and POC-based technique is presented. It can be noticed that the curve is
slightly lower than the curve achieved in left-side QFT, and thus fewer errors are
produced by right-side QFT. As all previous results, Band-Limited filtering (BLPOC)
increases the number of errors, and this is obvious in the curve in Figure 5.42. The curve
of spatio-chromatic FT representation and POC is shown in Figure 5.43. Among all
curves, its curve is the lowest. Consequently, spatio-chromatic representation yields the
lowest error rate among all representations. This confirms the result found by using the
FMR and FNMR curves. The introduction of Band-Limited filtering (BLPOC) produced

a higher curve, which indicates more errors. This curve is presented in Figure 5.44.
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Figure 5.35: ROC curve using regular FFT and POC.
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Figure 5.36: ROC curve using regular FFT and band-limited POC.
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Figure 5.37: ROC curve using 2-sides QFT and POC.
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ROC Curve (left-side Quaternion)
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Figure 5.39: ROC curve using left side QFT and POC.
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Figure 5.40: ROC curve using left side QFT and band-limited POC.
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Figure 5.42: ROC curve using right side QFT and band-limited POC.
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ROC Curve (Spatio-Chromatic)
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Figure 5.43: ROC curve using Spatio-Chromatic FT and POC.
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Figure 5.44: ROC curve using Spatio-Chromatic FT and band-limited POC.
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5.4.2.4. Precision versus Recall Measure
Precision and recall are well known accuracy measurements for information retrieval
systems. By using precision versus recall, the accuracy of getting n% of the models can

be measured [40]. They can be calculated as follows [40]:

retrieved in class

Recall = (5.2)

total in class

. . retrieved in class
Precision = —————— (5.3)
total retrieved

where ‘retrieved in class’ is the number of items retrieved in certain class, ‘total in class’
is total number of items in that class, and ‘total retrieved’ is the number of items

retrieved.

In order to evaluate the whole system, several precision and recall curves are generated
from different queries, and their average is taken. Because there are 11 recall points
between 0 and 1, an interpolation is performed on precision values. Curves that approach

the upper-right corner achieve better results.

Figure 5.47 illustrates a comparison of precision versus recall curves of different color
representation techniques using POC. It is clear that spatio-chromatic representation
achieved the best performance in retrieval, due to the fact that it has the smallest amount

of errors as observed before. Regular FFT achieved a little less performance than spatio-
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chromatic FFT, but better than the three representations of QFT. The three types of QFT
obtained the highest error rate among the tested representations. Consequently, their
retrieval performance affected and achieved the worse retrieval performance, especially
two-side QFT. In Figure 5.48 shows a comparison of precision-versus-recall curves of
different color representations when introducing Band-Limited filtering (BLPOC). As the
result of high error rates for all representations when using BLPOC, their retrieval
performance is degraded. The best retrieval was achieved by regular FFT, and then by
spatio-chromatic representation. The three types of QFT obtained the worst retrieval,

especially left-side and right-side QFTs.
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Precision vs Recall Comparison
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Figure 5.45: Precision versus recall comparison using POC.
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Figure 5.46: Precision versus recall comparison using Band-Limited POC.
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5.5. Modified Daugman Method

The Daugman algorithm is used in order to test the performance of Quaternion color
representation. Also, the Daugman algorithm is applied separately on each color, and

then results are combined for comparison.

A Matlab implementation, provided by Masek [41], which implements the Daugman
algorithm, is used in the experiment. Masek [41] used the 1D log-Gabor filter in the
implementation. In this Thesis, the above-mentioned implementation is modified to use
the 2D log-Gabor filter as proposed by Kovesi [42]. Also, the segmentation parameters

are modified to work on the UBIRIS dataset.

5.5.1. Daugman Method for Separate RGB Colors

In order to use the Daugman method with regular 2D Log-Gabor filters, the color
components of the input image are processed separately. Figure 5.47 shows how the

algorithm works.

E Segmentation an\! nive 0100011011
___{ Red & - 1110101011
I Il Normalization & encode 1010011011
Segmentation Convolve 0100011011
Green & & encod 1110101011
| Normalization encode 1010011011
Segmentation Convoive 0100011011
aal Blue & 1110101011
Ll | & encade
{ Normalization T 1010011011
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Figure 5.47: Illustration of Daugman algorithm for separate RGB colors.

Note that at the system output, there are three IrisCodes which will be combined to yield
a single IrisCode signature. In order to achieve this fusion, two methods are used to
merge the resulting IrisCodes signatures. The first method is implemented by calculating
the Hamming distance separately for each color, and then taking the average of the three
Hamming distances. The second technique is carried out by performing the Boolean
XOR operation on the resulting IrisCodes signatures to obtain a single IrisCode signature

which will then be used in the calculation of the Hamming distance.

Figure 5.48 shows genuine versus imposter distributions by the averaging method. It can
be inferred from the figure that there are many errors in the result. This is because the
performance measures are carried out on a very noisy iris database which resulted in
many errors in the segmentation stage. These errors are propagated to the final result
because many features are not captured. In Figure 5.49, FMR and FNMR of the result of
using averaging technique are presented. It is clear that EER value is high. Furthermore,
the ROC curve of averaging method results is very high, which strengthens the previous

observation. The ROC curve is shown in Figure 5.50.

The genuine versus imposter distributions, based on the XOR operation, are shown in
Figure 5.51. It can be clearly observed that the results indicate a poor performance. In
Figure 5.52, the FMR and FNMR, based on using the XOR method, are presented. The
EER value is high, which is consistent with the result obtained from genuine versus

imposter distributions about the large number of errors. In addition, the ROC curve of the
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XOR technique result is very high, which supports the previous observation. The ROC

curve is shown in Figure 5.53.

Table 5.4 shows the decidability indices for the two fusion methods on the result of
applying the Daugman method for separate RGB Colors. The XOR method achieved
abetter decidability index, which means that its distributions are more separate than the
average method. Also, the EER values of the two methods are almost identical. Thus, in

general, the use of the XOR operation yielded better performance results.

Fusion Method Decidability Index EER
Average 0.2318 0.38
XOR 0.2776 0.39

Table 5.4: Decidability indices and EER for the two fusion methods.
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Figure 5.48: Genuine versus imposter distributions for Daugman method using separate

RGB colors and averaging.
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Figure 5.49: FMR and FNMR for Daugman method using separate RGB colors and

averaging.
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Figure 5.50: ROC curve for Daugman method using separate RGB colors and averaging.
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Figure 5.51: Genuine versus imposter distributions for Daugman method using separate

RGB colors and performing XOR operation.
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Figure 5.52: FMR and FNMR for Daugman method using separate RGB colors and
performing XOR operation.
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Figure 5.53: ROC curve for Daugman method using separate RGB colors and performing

XOR operation.
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5.5.2. Daugman Method for Quaternion Representation

The procedure of segmentation and normalization is the same as the one for processing
RGB colors separately. After each color is normalized, they are combined into one
Quaternion representation as described in section 3.5. Then, the quaternion image is
convolved with the Quaternion 2D Log-Gabor filter, and the IrisCode is generated. This

process is illustrated in Figure 5.54.

| Red
o
0100011011
Green 1110101011
1010011011
. ni. .o
2 Blus

Figure 5.54: Illustration of Daugman algorithm for Quaternion representation.

As described in Section 2.1.1, Daugman quantized the result of convolution by setting 1
to real or imaginary parts if they are greater than 0, or 0 otherwise. But this is not
applicable with the result of Quaternion convolution. This is because, by multiplying a
pure unit Quaternion with the 2D Log-Gabor filter, the result is always a positive real part

and 3 negative imaginary parts. Thus, Daugman quantization will not work.
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In order to solve this problem, different ways of quantizing the results are tried. The first
method is performed by calculating the average of each of the imaginary parts and use
them as the decision boundary. Several images are used to determine the average of each
imaginary part. The second method of quantization is done by dividing the Quaternion

image with the magnitude and adding 0.5 to distribute the values above and below zero.

Figure 5.55 shows genuine versus imposter distributions by the average method. The
large intersection area indicates many errors in the result. This is due to the fact that the
used iris database contains many noisy images which make the result of feature
extraction contain a lot of errors. In Figure 5.56, the FMR and FNMR of the result of the
average technique are presented. Although EER has a slightly high value, it is less than
the previous method for separate RGB colors. This indicates that the errors are reduced
by using the average Quaternion method. The ROC curve of the averaging method is
shown in Figure 5.57. Because of the high number of errors, the curve is very high in the

Figure.

Genuine versus imposter distributions given by the divide-by-magnitude technique are
illustrated in Figure 5.58. As with the average method, the resulting errors are large
because of the problems of segmentation and feature extraction of the noisy iris images.
This is supported with FMR and FNMR curves as shown in Figure 5.59. The achieved
EER value is the same as the one achieved by the average Quaternion technique. The
ROC curve of the result by the divide-by-magnitude method is shown in Figure 5.60. The

height of the curve supports the previous observation about the number of errors.
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Table 5.5 shows the decidability indices for the two quantization methods used in the
experiments. It is clear that the average technique achieved the best separation between
genuine and imposter distributions. In addition, the EER values are the same for both

techniques. Thus, the average quantization method yields better results.

Quantization Method Decidability Index EER
Average 0.2849 0.23
Divide-by-magnitude 0.1737 0.23

Table 5.5: Decidability indices and EER for the two quantization methods.
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Figure 5.55: Genuine versus imposter distributions for Daugman method using Quaternion representation with average

quantization.
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Figure 5.56: FMR and FNMR for Daugman method using Quaternion representation with average quantization.
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Figure 5.57: ROC curve for Daugman method using Quaternion representation with

average quantization.
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Figure 5.58: Genuine versus imposter distributions for Daugman method using

Quaternion representation with divide-by-magnitude quantization.
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Figure 5.59: FMR and FNMR for Daugman method using Quaternion representation with

divide-by-magnitude quantization.
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Figure 5.60: ROC curve for Daugman method using Quaternion representation with

divide-by-magnitude quantization.
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5.5.3. POC on Segmented and Normalized Color Iris Images

The Phase Only Correlation (POC) algorithm is performed on the segmented and
normalized color iris images. Each color component is segmented and normalized as in
the previous two sections. The maximum correlation of the three color components is
taken as the correlation of the color image. The process of performing POC on two iris

images is illustrated in Figure 5.61.
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Figure 5.61: Process of performing POC on two segmented and normalized irises.

Figure 5.62 illustrates the genuine and imposter distributions of performing POC on two

normalized color iris images. It is clear that the separation between the two distributions
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is very small. Also, the intersection area between genuine and imposter distributions

indicates that many errors occur. As mentioned before, this is due to the use of noisy

database. In Figure 5.63, the FMR and FNMR curves are presented. EER has a lower

value compared with the previous two techniques base on the Daugman algorithm. This

indicates that fewer errors are obtained. This observation is consistent with the shape of

the ROC curve which is a little lower than the previous two methods. The ROC curve is

shown in Figure 5.64. Table 5.6 shows the decidability index and EER value for the

discussed method.

Correlation Method

Decidability Index

EER

POC on segmented and

normalized color iris image

0.0178

0.1

Table 5.6: Decidability indices and EER for the two quantization methods.
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Figure 5.62: Genuine versus imposter distributions for POC on normalized images.
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Figure 5.63: FMR and FNMR curves for POC on normalized images.
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Figure 5.64: ROC curve for POC on normalized images.
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CHAPTER SIX

CONCLUSION

6.1. Introduction

This Chapter summarizes of the research and findings, and it presents the limitations of

this research. Finally, it offers suggestions for future improvements.

6.2. Summary and Findings

This research investigated the use of colors in the process of iris identification. An
explanation of hypercomplex (Quaternion) numbers was provided, and then the
Quaternion Fourier Transform (QFT) was derived. Also, Gabor filters and Log-Gabor
filters were explained, and Quaternion Gabor filters that extend Gabor filters were
introduced. Comparisons of the performance of the three types of QFT, regular FFT, and
spatio-chromatic FT were performed. The used performance measures were Phase-Only
Correlation (POC) and Band-Limited Phase-Only Correlation (BLPOC). Two types of

experiments were conducted:

1. Measuring the performance against different types of noise. The tested noises
were: Gaussian noise, rotations, average filtering, median filtering, and
compression using JPEG. For all types of noises, it was found that the three types

of QFT performed much better than the other two methods. Also, Band-Limited
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filtering (BLPOC) yields better results than POC. This is due to the removal of
high frequencies which contain most of the noise.

2. Measuring the performance against different images. Genuine and imposter
distributions, FMR and FNMR curves, the ROC curve, and the precision-versus-
recall curve were used to assess the performance against different images. It was
found that the three types of QFT achieved the best separation between genuine
and imposter distributions, but with the cost of more errors than the other
representations. These errors affect the retrieval performance of the three types of
QFT, which was less than the other representations. Also, it was found that
BLPOC yields worse results than POC. This is because the most discriminating
information, such as edges, is in the high frequencies which are discarded in the

filtering process.

The Daugman algorithm for iris identification was extended to use color images in a
holistic manner. This was done by representing color iris images in Quaternion
representation and by using Quaternion Log-Gabor filters for the filtering and feature
extraction. Two techniques of quantization were used: calculating averages of imaginary
parts, and dividing by magnitude. The averaging method achieved better performance

than dividing by magnitude.

For comparison, the Daugman method was performed separately on each color
component of the input image. For the fusion of the result, two techniques were used. The

first was carried out by getting the Hamming distance of all the three color components
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and then calculating their average. The second technique was done by performing the
XOR operation on the three IrisCodes, and then calculating the Hamming distance of the
result. The XOR technique obtained the best result. By comparing the best results of the
Daugman algorithm using Quaternion representation and three separate colors, it was
concluded that the Quaternion representation achieved the best separation with the lowest

rate of errors.

Finally, POC was performed on separated segmented and normalized color components,
and then the results of them were combined. It was found that there was very little
separation between genuine and imposter distributions and fewer errors than with the

Quaternion Daugman algorithm.

6.3. Limitations

Some limitations were faced in this research:

1. Lack of clear definitions: The use of Quaternion numbers for representing and
processing color images did not receive a lot of attention in the literature. Thus,
contributions for this topic are very scarce. Furthermore, definitions of some
concepts can be interpreted in different ways. For example, the conjugate of
Quaternion numbers can be obtained in different ways. Also, there are several
attempts to derive Quaternion Gabor filters in the literature, each with a different

approach.
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2.

Interpretation of the results of the Quaternion and spatio-chromatic transforms are
not the same as the interpretation of the results of the regular Fourier Transform.
It is not clear how to interpret and visualize the results of them, and thus there is a
difficulty in comparing the results properly.

The concept of filtering and convolution are different among the three used
representations. Filtering and convolution in the regular Fourier domain are well
defined, but they are not fully studied in the Quaternion and spatio-chromatic
domains.

The used dataset is a very noisy dataset that contains images with different types
and degrees of noises. Consequently, it yields very bad results due to errors in

segmentation.

6.4. Future Work

The use of Quaternion numbers to represent and process color images is a complicated

task and did not receive a lot of attention in the research literature. Some of the suggested

future studies to enhance the present research are:

1.

2.

Study the results of QFT and Quaternion Gabor filters, and provide interpretation
and visualization to better understand them.

Develop efficient Quaternion filters, study the mechanism of filtering in the
Quaternion domain, and try to find relationships with filtering in the Fourier

domain.
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Use a noise-free color iris database to verify the results of this research.

Develop a better quantization technique in order to enhance the performance of
the proposed system.

Investigate and develop a method for color iris segmentation by using the

Quaternion representation of images.
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