
In Proceedings of the IASTED International Conference on Software Engineering (SE’05), pp. 89-93, Innsbruck, Austria, Feb. 2005.

A CASE STUDY ON STRUCTURAL CHARACTERISTICS OF OBJECT-
ORIENTED DESIGN AND ITS STABILITY

Mahmoud O. Elish
Department of Computer Science

George Mason University
Fairfax, VA 22030-4400, USA

melish@gmu.edu

ABSTRACT
Design structural stability refers to the extent to which the
structure of a design is preserved throughout the
evolution of the software from one release to the next.
This paper investigates whether there are some structural
characteristics (metrics) of object-oriented design that are
indicators of its structural stability. Investigated metrics
are related to size, inheritance, cohesion, and coupling.
Design structural stability was assessed from each
software release to the next using two metrics: a class-
based metric and a relationship-based metric. As a case
study, measures were collected from 13 successive
releases of Apache Ant.

KEY WORDS
Design structural stability, software evolution, software
metrics, object-oriented designs.

1. Introduction

Software maintenance is inevitable if software
systems need to remain useful in their environments.
Changes are necessary to continue increasing or
sustaining the value of software as it evolves over time. A
well designed software system should be able to
accommodate these changes without requiring changes to
its structure as much as possible.

Design structural stability refers to the extent to
which the structure of a design is preserved throughout
the evolution of the software from one release to the next.
In object-oriented software, classes and relationships
between them define the design structure, which is
depicted by class diagrams.

The availability of adequate metrics as indicators of
design structural stability can give software managers
early insight into trends in software evolution, and thus
assist them in managing and controlling long-lived
software systems. According to DeMarco’s principle [4]:
“you cannot control what you cannot measure.”

Pervious research includes the following studies.
Jazayeri [8] applied retrospective analyses to successive
releases of a large telecommunication software system to
evaluate its architectural stability with simple size

measures, coupling measures, and color visualization to
observe phenomena about the evolution of the software
across releases. Bansiya [1] proposed a methodology to
assess the stability of framework architectures over
successive versions by determining the extent-of-change
in the structural characteristics between versions. Grosser
et al. [5, 6] proposed a case-based reasoning approach for
predicting stability of Java classes. None of the pervious
research studies investigated indicators of the structural
stability of object-oriented designs.

The objective of this paper is to investigate whether
there are some structural characteristics (metrics) of
object-oriented design that are indicators of its structural
stability. In other words, the paper aims to test for
existence of significant correlations between measures of
some object-oriented design metrics and measures of two
design structural stability metrics over successive releases
of a case study system.

The rest of this paper is organized as follows. Section
2 describes the metrics used to assess design structural
stability. Section 3 defines the investigated object-
oriented design structural characteristics. Section 4 states
the hypotheses. Section 5 discusses the case study and its
results. Section 6 concludes the paper and gives directions
for future work.

2. Measuring Design Structural Stability

Classes and relationships between them are the two
most fundamental building blocks of object-oriented
designs. Classes are the units of modularity, and
relationships between them define the architectural
structure of a design.

Different kinds of relationships may exist between
classes: generalization, aggregation, dependency, and
association. A generalization is a relationship between a
more general class (superclass) and more specific class
(subclass). This relationship can be further classified into
implementation inheritance and interface inheritance
(a.k.a. realization). An aggregation relationship exists
between two classes if one is part of the other, i.e. if one
is the type of an attribute of the other. A dependency
relationship exists between two classes if one is the return
type of a method of the other or the type of a parameter of

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by King Fahd University of Petroleum and Minerals

https://core.ac.uk/display/266102029?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

a method of the other. An association relationship exists
between two classes if one invokes one or more methods
of the other, and/or references one or more attributes of
the other.

Design structural stability in this paper is assessed
from each software release to the next. The classes and
relationships between them in release i are compared with
the classes and relationships in release i+1 (following
release) to determine the percentage of classes and
relationships that remained stable from one release to the
next.

Two design structural stability metrics are used to
quantify stability from one release to the next: class-based
metric, and relationship-based metric.

2.1. Class-based Metric

The class-based design structural stability (CDSS)
metric calculates the percentage of classes that were not
added, deleted or modified from one release to the next. A
class is considered modified if at least one of its lines of
code (excluding comment and blank lines) is deleted or
modified, or at least one new line of code is added to it.
Formally, the CDSS metric is calculated from release i to
release i+1 (following release) as follows:

1

1111
1

)*2()(

+

+→+→+→+
+→ +

++−+
=

ii

iiiiiiii
ii NN

MCDCACNN
CDSS

Where,
Ni is the number of classes in release i
Ni+1 is the number of classes in release i+1
ACi→i+1 is the number of added classes between

release i and release i+1
DCi→i+1 is the number of deleted classes

between release i and release i+1
MCi→i+1 is the number of modified classes

between release i and release i+1

The number of modified classes, unlike the numbers

of added and deleted classes, in the above formula is
multiplied by two because modified classes exist in both
releases not just in one of them.

2.2. Relationship-based Metric

The relationship-based design structural stability
(RDSS) metric calculates the percentage of class
relationships, including all kinds of relationships, that
were not added nor deleted from one release to the next.
Formally, the RDSS metric is calculated from release i to
release i+1 (following release) as follows:

1

111
1

)()(

+

+→+→+
+→ +

+−+
=

ii

iiiiii
ii RR

DRARRR
RDSS

Where,
Ri is the number of class relationships in

release i
Ri+1 is the number of class relationships in

release i+1
ARi→i+1 is the number of added relationships

between release i and release i+1
DRi→i+1 is the number of deleted relationships

between release i and release i+1

Both CDSS and RDSS metrics have a range from zero

(maximum instability) to one (maximum stability).

3. Design Structural Characteristics

This paper adapts 14 object-oriented design metrics
that are believed to capture some important dimensions of
design structural characteristics as candidate indicators of
its stability. These metrics are based on existing measures
in the software metrics literature, such as [2, 3, 7]. The
metrics are categorized into four groups: size, inheritance,
cohesion, and coupling.

3.1. Size Metrics

• Number of classes (NC) – The total number of
classes defined in a design.

• Public classes ratio (PCR) – The number of
public classes to the total number of classes
defined in a design.

• Average number of methods per class (ANM) –
The average number of methods defined in a
class.

• Average number of attributes per class (ANA) –
The average number of attributes defined in a
class.

• Average weighted methods per class (AWMC) –
The average sum of the cyclomatic complexities
of all methods in a class.

• Average response for a class (ARFC) – The
average number of methods in the set of all
methods that can be invoked in response to a
message sent to an object of a class.

3.2. Inheritance Metrics

• Abstractness (ABS) – The number of abstract
classes to the total number of classes defined in a
design.

• Reuse ratio (RR) – The number of superclasses
to the total number of classes defined in a
design.

• Specialization ratio (SR) – The number of
subclasses to the total number of superclasses
defined in a design.

• Average depth of inheritance tree per class
(ADIT) – The average depth of a class within its
inheritance hierarchy.

• Average number of children per class (ANOC) –
The average number of direct subclasses of a
class.

3.3. Cohesion Metrics

• Average lack of cohesion in methods per class
(ALCOM) – The average number of different
methods within a class that reference a given
instance variable.

3.4. Coupling Metrics

• Average class coupling (ACC) – The average
number of classes that a class is related to
through any kind of relationship.

• Coupling factor (CF) – The number of class
couplings in a design to the maximum number of
possible class couplings in a design.

4. Hypotheses

The hypotheses that are examined in this paper are
listed in Table 1. For each one of the 14 design metrics
described in the pervious section, the hypothesis is that
there is a significant correlation between the measure of
that design metric in release i and the design structural
stability from release i to release i+1 (following release)
measured by both CDSS and RDSS metrics.

Table 1. Hypotheses

H1a Significant correlation between NCi and CDSSi→i+1
H1b Significant correlation between NCi and RDSSi→i+1
H2a Significant correlation between PCRi and CDSSi→i+1
H2b Significant correlation between PCRi and RDSSi→i+1
H3a Significant correlation between ANMi and CDSSi→i+1
H3b Significant correlation between ANMi and RDSSi→i+1
H4a Significant correlation between ANAi and CDSSi→i+1
H4b Significant correlation between ANAi and RDSSi→i+1
H5a Significant correlation between AWMCi and CDSSi→i+1
H5b Significant correlation between AWMCi and RDSSi→i+1
H6a Significant correlation between ARFCi and CDSSi→i+1
H6b Significant correlation between ARFCi and RDSSi→i+1
H7a Significant correlation between ABSi and CDSSi→i+1
H7b Significant correlation between ABSi and RDSSi→i+1
H8a Significant correlation between RRi and CDSSi→i+1
H8b Significant correlation between RRi and RDSSi→i+1
H9a Significant correlation between SRi and CDSSi→i+1
H9b Significant correlation between SRi and RDSSi→i+1
H10a Significant correlation between ADITi and CDSSi→i+1
H10b Significant correlation between ADITi and RDSSi→i+1

H11a Significant correlation between ANOCi and CDSSi→i+1
H11b Significant correlation between ANOCi and RDSSi→i+1
H12a Significant correlation between ALCOMi and CDSSi→i+1
H12b Significant correlation between ALCOMi and RDSSi→i+1
H13a Significant correlation between ACCi and CDSSi→i+1
H13b Significant correlation between ACCi and RDSSi→i+1
H14a Significant correlation between CFi and CDSSi→i+1
H14b Significant correlation between CFi and RDSSi→i+1

5. Case Study

Apache Ant [9] is the case study system, which is an
open source Java-based build tool. Apache Ant software
project is more than four years old. Its most recent release
(1.6.2) has more than 200K lines of code, and more than
1200 classes.

In order to test the hypotheses, 13 successive releases
of Apache Ant were analyzed, from its first release (1.1)
to its most recent release (1.6.2). Precisely, the releases
are 1.1, 1.2, 1.3, 1.4, 1.4.1, 1.5, 1.5.1, 1.5.2, 1.5.3, 1.5.4,
1.6, 1.6.1, and 1.6.2.

Three tools were used for data collection: JStyle [10]
metrics tool, ExamDiff Pro [11] file comparison tool, and
a prototype metrics tool that has been developed as part of
this research. JStyle was used to collect measures of the
14 design metrics under investigation from each release
of Apache Ant. ExamDiff Pro was used to calculate the
CDSS stability metric from each release to the next by
comparing classes between releases. Comment and blank
lines were excluded in class comparison. A class was
considered modified if at least one of its lines of code was
deleted or changed, or at lease one new line of code was
added to it. The RDSS stability metric was calculated with
the developed prototype metrics tool.

5.1. Results

Tables 2 and 3 provide descriptive statistics for the
measures of the two stability metrics and the 14 design
metrics that were collected from the releases of Apache
Ant respectively. Wide variation in the CDSS metric
measures throughout the evolution of Apache Ant can be
observed. In general, class relationships were more stable
than classes over the releases of Apache Ant. This can be
observed by comparing the measurement results of the
CDSS metric with the RDSS metric.

Table 2. Descriptive statistics of the measures of the two

stability metrics

 Minimum Maximum Average Std. Dev.
CDSS 0.0841 0.9819 0.6149 0.3580
RDSS 0.6265 0.9975 0.8683 0.1582

Table 3. Descriptive statistics of the measures of the 14
design metrics

 Minimum Maximum Average Std. Dev.
NC 117 1204 745.08 349.44
PCR 0.7692 0.8630 0.8365 0.0296
ANM 6.74 8.25 7.64 0.36
ANA 2.52 3.59 2.83 0.32
AWMC 12.02 16.18 14.28 1.02
ARFC 19.06 23.34 20.73 1.00
ABS 0.0317 0.0536 0.0474 0.0078
RR 0.0684 0.1064 0.0982 0.0115
SR 7.9789 13.1250 8.8666 1.5269
ADIT 1.70 2.02 1.93 0.09
ANOC 0.85 1.04 0.98 0.07
ALCOM 31.14 47.16 41.03 3.93
ACC 8.74 9.53 8.97 0.28
CF 0.0073 0.0815 0.0198 0.0218

Figure 1 plots the cumulative measures of CDSS and
RDSS stability metrics over the successive releases of
Apache Ant. Segments of these line plots with steep slope
represent periods of stability throughout the evolution of
Apache Ant. The closer the measure of a stability metric
to 1.0 between two successive releases the steeper the
slope of the line plot segment between these two releases
for this measure. For example, a steep slope for the CDSS
metric measures can be observed between every two
successive releases from release 1.5 to release 1.5.4
indicating a period of stability according to the CDSS
metric. In contrast, periods of instability can be easily
observed from release 1.4.1 to release 1.5 and from
release 1.5.4 to release 1.6 according to the CDSS metric.

0

2

4

6

8

10

12

1.1 1.2 1.3 1.4
1.4.1 1.5

1.5.1
1.5.2

1.5.3
1.5.4 1.6

1.6.1
1.6.2

Release

C
um

ul
at

iv
e

S
ta

bi
lit

y
M

ea
su

re
s RDSS

CDSS

Figure 1. Cumulative measures of CDSS and RDSS stability

metrics over the successive releases of Apache Ant

5.2. Correlation analysis

Correlation analysis was performed at 0.05 level of
significance (95% confidence level) to test for existence
of significance correlations between measures of each one
of the 14 design metrics and measures of both CDSS and
RDSS metrics. Most of the collected measures have
skewed distribution, and accordingly Spearman’s rank
correlation analysis method was used to compute
correlation coefficients.

Table 4 reports the correlation coefficients between
measures of each one of the 14 design metrics and
measures of the CDSS metric. Only 7 out of the 14 design
metrics (NC, PCR, ABS, ADIT, ANOC, ACC, and CF)
were found to have significant correlations with the CDSS
metric.

Table 4 Spearman’s correlation coefficients between each of

the 14 design metric and the CDSS metric

Candidate
Indicator

Correlation
coefficient Hypothesis Conclusion

NC 0.511* H1a Accepted
PCR 0.567* H2a Accepted
ANM 0.126 H3a Rejected
ANA -0.322 H4a Rejected
AWMC -0.273 H5a Rejected
ARFC -0.210 H6a Rejected
ABS 0.616* H7a Accepted
RR 0.231 H8a Rejected
SR -0.371 H9a Rejected
ADIT 0.588* H10a Accepted
ANOC 0.525* H11a Accepted
ALCOM 0.175 H12a Rejected
ACC -0.510* H13a Accepted
CF -0.545* H14a Accepted
* Correlation is significant at the 0.05 level (1-tailed).

Table 5 reports the correlation coefficients between

measures of each one of the 14 design metrics and
measures of the RDSS metric. Only 6 out of the 14 design
metrics (NC, PCR, ABS, ADIT, ACC, and CF) were found
to have significant correlations with the RDSS metric. The
ANOC metric is only significantly correlated with the
CDSS metric, and not with the RDSS metric.

Table 5. Spearman’s correlation coefficients between each of

the 14 design metric and the RDSS metric

Candidate
Indicator

Correlation
coefficient Hypothesis Conclusion

NC 0.497* H1b Accepted
PCR 0.574* H2b Accepted
ANM -0.070 H3b Rejected
ANA -0.217 H4b Rejected
AWMC -0.378 H5b Rejected
ARFC -0.294 H6b Rejected
ABS 0.630* H7b Accepted
RR 0.154 H8b Rejected
SR -0.336 H9b Rejected
ADIT 0.497* H10b Accepted
ANOC 0.455 H11b Rejected
ALCOM 0.007 H12b Rejected
ACC -0.524* H13b Accepted
CF -0.524* H14b Accepted
* Correlation is significant at the 0.05 level (1-tailed).

In the set of design metrics that were found having

significant correlations with the stability metrics, the
coupling metrics (ACC and CF) are the only design
metrics that are negatively correlated with design
structural stability, whereas the others are positively
correlated.

Cohesion is the only design metric category that was
not found to be significantly correlated with any of the

two stability metrics. Additional metrics of cohesion will
be investigated in future research.

5.3. Analysis of Results

Further analysis of the obtain results from this case
study reveals a number of interesting observations. The
significant positive correlations between the NC metric
and both CDSS and RDSS stability metrics suggest that as
the design size increases in terms of the number of classes
its structural stability increases.

In addition, all coupling metrics (ACC and CF) were
found to have significant negative correlations with both
stability metrics. This result suggests that low coupling
between design classes sustains the structural stability of
the design.

Moreover, the significant positive correlations
between inheritance metrics (ABS, ADIT, and ANOC) and
the stability metric(s) suggest that high, and presumable
appropriate, utilization of inheritance mechanism leads to
more structurally stable design.

6. Conclusions

Structural stability of object-oriented designs refers
to the extent to which the structure of a design is
preserved throughout the evolution of the software from
one release to the next. Classes and relationships between
them define the design structure. This paper has
investigated 14 object-oriented design metrics related to
size, inheritance, cohesion, and coupling as candidate
indicators of design structural stability. Stability was
assessed from each software release to the next using two
metrics: a class-based metric that calculates the
percentage of classes that remained stable between two
releases, and a relationship-based metric that calculates
the percentage of class relationships that remained stable
between two releases.

 The major results of this case study can be
summarized as follows. Only 6 out of the 14 investigated
design metrics (NC, PCR, ABS, ADIT, ACC, and CF)
were found to have significant correlations with both
stability metrics (CDSS and RDSS). This means that these
six design metrics represent good indicators of design
structural stability. Releases of Apache Ant whose
designs highly utilize the mechanism of inheritance were
more structurally stable than those with less utilization of

inheritance. In addition, releases whose designs have low
class couplings were found to be more structurally stable
than those with high class couplings.

As future work, additional case studies are needed to
further support the findings of this paper. Confirmed
results can then be used to develop predictive models for
design structural stability. Another research direction is to
utilize the results to develop guidelines for building
structurally stable designs.

References

[1] J. Bansiya, "Evaluating Framework Architecture
Structural Stability," ACM Computing Surveys, vol. 32,
2000.

[2] L. Briand, J. Daly, and J. Wust, "A Unified Framework
for Coupling Measurement in Object-Oriented Systems,"
IEEE Transactions on Software Engineering, vol. 25,
no. 1, pp. 91-121, Jan/Feb 1999.

[3] S. Chidamber and C. Kemerer, "A Metrics Suite for
Object Oriented Design," IEEE Transactions on
Software Engineering, vol. 20, no. 6, pp. 476-493, June
1994.

[4] T. DeMarco, Controlling Software Projects:
Management, Measurement & Estimation, Prentice-Hall,
1982.

[5] D. Grosser, H. Sahraoui, and P. Valtchev, "Predicting
Software Stability Using Case-Based Reasoning," Proc.
17th IEEE International Conference on Automated
Software Engineering, pp. 295-298, 2002.

[6] D. Grosser, H. Sahraoui, and P. Valtchev, "An analogy-
based approach for predicting design stability of Java
classes," Proc. 9th International Software Metrics
Symposium, pp. 252-262, 2003.

[7] R. Harrison, S. Counsell, and R. Nithi, "An Evaluation
of the MOOD Set of Object-Oriented Software Metrics,"
IEEE Transactions on Software Engineering, vol. 24,
no. 6, pp. 491-496, June 1998.

[8] M. Jazayeri, "On Architectural Stability and Evolution,"
Lecture Notes in Computer Science, Springer-Verlag,
pp. 13-23, 2002.

[9] Apache Ant Website, http://ant.apache.org/

[10] JStyle Website, http://www.mmsindia.com/jstyle.html

[11] ExamDiff Pro Website, http://www.prestosoft.com/
ps.asp?page=edp_examdiffpro

