
TWO ALGORITHMS FOR THE SUM OF DIAMETERS PROBLEM AND A

RELATED PROBLEM

MUHAMMAD H. ALSUWAIYEL

Department of Information and Computer Science

King Fahd University of Petroleum and Minerals

Dhahran 31261, Saudi Arabia

e-mail: facp079@saupm00.bitnet

ABSTRACT

Given a set S of points in the plane, we consider the problem of partitioning S into two

subsets such that the sum of their diameters is minimized. We present two algorithms with time

complexities O(n log2 n/ log log n) and O(n log n/(1 − ε)), where ε, 0 < ε < 1, is a real number

that is dependent on the density of the point set. In almost all practical instances, the second

algorithm runs in optimal O(n log n) time, improving all previous results in the case of nonsparse

point sets. These bounds follow immediately from two corresponding algorithms with the same

time complexities for the following problem: given a set of points S = {p1, p2, . . . , pn} in the plane

sorted in increasing distance from p1, compute the sequence of diameters d1, d2, . . . , dn, where

di = Diam{p1, . . . , pi} is the diameter of the first i points, 1 ≤ i ≤ n.

1 Introduction

Let S be a set of n points in the plane. We consider the problem of partitioning S into two disjoint

subsets whose sum of diameters is minimum. More precisely, given a set S = {p1, p2, . . . , pn} of n

points in the plane, we are concerned with the problem of finding a bipartition {S1, S2} of S such

that Diam(S1) + Diam(S2) is minimum among all possible bipartitions. In general, the problems

of partitioning a point set into k partitions, or covering a point set with k convex objects, e.g. disks,

are intractable. When the number of partitions or convex objects is restricted to two, a number of

algorithms have been developed in order to meet a given criterion. For the case when the problem is

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by King Fahd University of Petroleum and Minerals

https://core.ac.uk/display/266101982?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

partitioning into two partitions and the criterion is to minimize the sum of their diameters, Monma

and Suri [6] gave an O(n2) time algorithm to solve this problem. A subquadratic algorithm was first

given by Hershberger [4] who proposed an algorithm to solve this problem in O(n log2 n/ log log n)

time. He has also shown that if the ratio between the diameter and the minimum inter-point

distance is polynomial in n, then a refinement of the algorithm improves the bound to O(n log n).

Equivalently, the refined algorithm finds an approximate solution to within a factor of (1+O(n−c))

in O(n log n) time.

In this paper, we propose two algorithms to solve this problem. The first algorithm is a simple

divide-and-conquer algorithm that runs in time O(n log2 n/ log log n). Although, as stated above,

an algorithm for this problem with the same time complexity has been given in[4], the merit of

this algorithm is its simplicity and parallelizability. Next, we develop another algorithm that runs

in time O(n log n/(1 − ε)) for some ε, 0 < ε < 1, that is characteristic of the density of the point

set. In almost all practical instances, the value of ε is reasonably small so that the time complexity

reduces to O(n log n). In both algorithms, the problem is divided into a number of subproblems

(� log n� subproblems in the first algorithm and �nc log n� subproblems in the second algorithm, for

some constant c, 0 < c < 1, that is dependent on the density of the point set).

These two bounds follow immediately from two corresponding bounds for the following problem,

which we will refer to as the sequence of diameters problem: given a set of points S = {p1, p2, . . . , pn}
in the plane sorted in increasing distance from p1, compute the sequence of diameters d1, d2, . . . , dn,

where di = Diam{p1, . . . , pi} is the diameter of the first i points, 1 ≤ i ≤ n. As will be shown

later, the problem of minimizing the sum of diameters trivially reduces to the sequence of diameters

problem (in O(n log n) time). However, it turns out that the latter is interesting in its own right and

may be used as a subroutine in other clustering algorithms. The rest of the paper is organized as

follows. Section 2 has the preliminaries. Section 3 is devoted for the sequence of diameters problem.

In Section 4, we apply the main results of Section 3 to obtain a revised version of Hershberger’s

algorithm[4]. Finally, Section 5 concludes with some discussions and remarks.

2 Preliminaries

Let S be a set of points in the plane. The Euclidean distance between any two points u, v ∈ S is

denoted by d(u, v). The diameter of S, denoted by Diam(S), is the maximum distance realized by

any two points in S. Two points u, v ∈ S are called diametral if d(u, v) = Diam(S).

For any set of points S, CH(S) is the set of points on the convex hull of S and FVD(S) will

denote the farthest-point Voronoi diagram of S. The algorithms presented in this work rely heavily

2

on the fact that two Voronoi diagrams can be merged in linear time. We present here the very

basic lemma due to Kirkpatric[5]

Lemma 1 If S1 and S2 are arbitrary planar point sets, then FVD(S1∪S2) can be constructed from

FVD(S1) and FVD(S2) in O(|S1|+ |S2|) time.

An important implication of Lemma 1 is that S1 and S2 do not have to be separable. Let

S = {p1, p2, . . . , pn} be an ordered set of points in the plane sorted in increasing distance from p1.

For any point pi ∈ S and any subset T ⊆ S, define f(pi, T) as follows:

f(pi, T) =




p1 for i = 1

the farthest neighbor of p in T ∩ {p1, p2, . . . , pi−1} for 2 ≤ i ≤ n.

It will be appropriate if we call f(p, S) the restricted farthest point (or neighbor) of p.

3 Computing the sequence of diameters

In this section, we confine our attention to the sequence of diameters problem. We describe two

algorithms for solving this problem; the first algorithm, which we will refer to as SEQD1, is a

straightforward divide-and-conquer algorithm that runs in time O(n log2 n/ log log n). Next, we

present Algorithm SEQD2 which is a refinement of SEQD1 in which we exploit the fact that

in almost every point set of size n, the number of its hull vertices is no more than nε for some

reasonably small ε, 0 < ε < 1. This is supported by the well-known result that if a set of n points

are chosen uniformly and independently in the plane from a convex r-gon, then as n approaches∞,

the expected number of points on their convex hull is (2r/3)(γ + loge n) + O(1), where γ is Euler’s

constant[8].

3.1 The first algorithm

In this subsection, we describe the first algorithm, SEQD1. It is a simple divide-and-conquer

algorithm: the point set S is partitioned into k ≥ 2 groups of approximately �|S|/k� points each,

which give rise to k subproblems that are recursively solved. The merge step consists of a sweep

over the k subsets S1, S2, . . . , Sk, in which point locations and merging of farthest-point Voronoi

diagrams are performed in their order of increasing indices.

First, assuming that FVD(Sj) and f(p, Sj) for each point p ∈ Sj , 1 ≤ j ≤ k, have all been

computed as a result of k previous calls to SEQD1, we do an interleaved sequence of point locations

and merging of farthest-point Voronoi diagrams as follows. For each point p ∈ S2, we compute

3

q = f(p, S1). If d(p, q) > d(p, f(p, S2)), then we set f(p, S) = q; otherwise we set f(p, S) = f(p, S2).

Next FVD(S1∪S2) is constructed by merging FVD(S1) and FVD(S2). In general, in the jth step,

2 ≤ j ≤ k, we do a point location on FVD(S1 ∪S2, . . . ,∪Sj−1) to find q = f(p, S1 ∪S2, . . . ,∪Sj−1)

for each point p ∈ Sj . If d(p, q) > d(p, f(p, Sj)), then we set f(p, S) = q; otherwise we set

f(p, S) = f(p, Sj). This is immediately followed by merging FVD(S1∪S2, . . . ,∪Sj−1) and FVD(Sj)

to produce FVD(S1 ∪ S2, . . . ,∪Sj).

Procedure SEQD1 below finds f(p, S) for each point p ∈ S. After this procedure terminates,

a scan over the set of sorted points in S together with their respective restricted farthest neighbors

gives the desired sequence of diameters d1, d2, . . . , dn. Specifically, d1 = 0 and for each j, 1 < j ≤
n, dj = max{dj−1, d(pj , f(pj , S))}. The value of k used to partition the given point set is to be

determined later.

procedure SEQD1(S)

1. If |S| < k, then use a straightforward method to find f(p, S) for each point p ∈ S. Construct

FVD(S). Return f(p, S) for each p ∈ S, and FVD(S).

2. Divide S into k subsets S1, S2, . . . , Sk of �|S|/k� points each (except possibly Sk).

3. For each j, 1 ≤ j ≤ k, recursively call SEQD1(Sj) to obtain FVD(Sj) and f(p, Sj) for each

point p ∈ Sj .

4. Let FVD1 = FVD(S1). For j = 2, 3, . . . k, do the following:

(a) For each point p ∈ Sj do a point location on FVDj−1 to compute q = f(p, S1 ∪ S2 ∪
. . . ∪ Sj−1). If d(p, q) > d(p, f(p, Sj)), then set f(p, S) = q, else set f(p, S) = f(p, Sj).

(b) Merge FVDj−1 with FVD(Sj) to obtain FVDj .

5. Set FVD(S) = FVDk. Return FVD(S) and f(p, S), for each point p ∈ S.

end SEQD1

Clearly, the above procedure computes f(p, S) for each point p ∈ S. This is immediate from

the fact that for each pair of points pi and pj , 1 ≤ i < j ≤ n, pi is tested for the possibility of being

the restricted farthest point of pj . Specifically, for each pair of points pi and pj , 1 ≤ i < j ≤ n, if

f(pj , S) = pi, then there is a subset T ⊆ {p1, p2, . . . , pj−1} such that pi ∈ T and a point location is

performed on FVD(T) to find the farthest neighbor of pj in T . The running time of the algorithm

is computed as follows. Steps 1 and 2 take O(n) time. Step 3 takes O(kT (n/k)) time. In Step 4.a,

4

exactly n point locations are performed for a total cost of O(n log n). By Lemma1, the cost of

Step 4.b, the time needed to compute all FVDj ’s, 2 ≤ j ≤ k, is proportional to

2�|S|/k�+ 3�|S|/k�+ . . . + k�|S|/k� = O(k2|S|/k)

= O(k|S|)

= O(kn).

Finally, Step 5 takes O(1) time. If we assume for simplicity that n is a multiple of k, then

T (n) = kT (n/k) + O(n log n) + O(kn).

If we choose k = 2, we obtain T (n) = Θ(n log2 n). If we choose k = � log n�, we obtain T (n) =

Θ(n log2 n/ log log n). Increasing the value of k beyond � log n� does not lead to any reduction in

the asymptotic running time of the algorithm, since doing so increases the cost of merging the

farthest-point Voronoi diagrams. This proves the following lemma.

Lemma 2 The sequence of diameters corresponding to a set of n points in the plane can be com-

puted in time O(n log2 n/ log log n) in the worst case.

3.2 The second algorithm

In Algorithm SEQD1 above, if we let k = � log n�, then as many as � log� log n� n� = Θ(log n/ log log n)

point locations are performed in order to compute f(p, S) for each point p ∈ S. Consequently, the

total number of point locations performed by the algorithm is O(n log n/ log log n). In what fol-

lows, we show that the number of point locations can be reduced drastically in almost all practical

instances.

Since for any point set S,FVD(S) = FVD(CH(S))[8], then by Lemma 1, the cost of merging

two farthest-point Voronoi diagrams FVD(S1) and FVD(S2) of two point sets S1 and S2 is pro-

portional to |CH(S1)|+ |CH(S2)|. In the following, we exploit this fact to improve the worst case

running time to O(n log n/(1− ε)) for some ε, 0 < ε < 1.

Let γ = 1/
√

log n. Suppose that the number of hull vertices of any subset T ⊆ S of size nγ or

more is at most �|T |ε� for some ε, 0 < ε < 1. Then, a worst case bound of O(n log n/(1 − ε)) can

be achieved by partitioning the point set into α = �n(1−ε)/(2−ε)� disjoint subsets and proceeding as

in Algorithm SEQD1. Algorithm SEQD1′ below implements this idea.

procedure SEQD1′(S)

5

1. If |S| ≤ �nγ� then call SEQD1(S) and halt; otherwise continue.

2. Divide S into α subsets S1, S2, . . . , Sα. Each subset(except possibly Sα) consists of �n/α� =

�n/�n(1−ε)/(2−ε)�� ≤ �n1/(2−ε)� points.

3. For each j, 1 ≤ j ≤ α, recursively call SEQD1′(Sj) to obtain FVD(Sj) and f(p, Sj) for each

point p ∈ Sj .

4. Let FVD1 = FVD(S1). For j = 2, 3, . . . , α do the following

(a) For each point p ∈ Sj use FVDj−1 to compute q = f(p, S1 ∪ S2 ∪ . . . ∪ Sj−1). If

d(p, q) > d(p, f(p, Sj)), then set f(p, S) = q, else set f(p, S) = f(p, Sj).

(b) Merge FVDj−1 with FVD(Sj) to obtain FVDj .

5. Set FVD(S) = FVDα. Return FVD(S) and f(p, S), for each point p ∈ S.

end SEQD1′

Let T (n) be the worst case running time of Algorithm SEQD1′. By Lemma 2, each call of

procedure SEQD1 in Step 1 costs

O(�nγ� log2 �nγ�/ log log �nγ�) = O(γ2nγ log2 n/ log log nγ)

= O(γ2nγ log2 n/ log(γ log n)

= O((1/
√

log n)2nγ log2 n/ log(
√

log n))

= O(nγ log n/ log log n).

Hence, the overall time taken by this step is O(n log n/ log log n). Step 2 takes O(n) time. In

Step 4.a, the time needed for point locations is O(n log n). Since the size of a farthest-point Voronoi

diagram of a set Sj is proportional to |CH(Sj)| ≤ |Sj |ε, the time needed to compute all FVDj ’s,

2 ≤ j ≤ α, in Step 4.b is proportional to

2�n1/(2−ε)�ε + 3�n1/(2−ε)�ε + . . . + α�n1/(2−ε)�ε = O(α2�n1/(2−ε)�ε)

= O(�n(1−ε)/(2−ε)�2�n1/(2−ε)�ε))

= O(n2(1−ε)/(2−ε)nε/(2−ε)))

= O(n(2−2ε)/(2−ε)+ε/(2−ε))

= O(n).

6

Let c denote the recursion depth. Then

c ≤ � logα n�

= � log�n(1−ε)/(2−ε)� n�

≤ � logn(1−ε)/(2−ε) n�

= �2− ε

1− ε
�.

It follows that T (n) = O(cn log n) = O(n log n/(1 − ε)). This result is summarized in the

following lemma.

Lemma 3 If for each subset T ⊆ S with |T | ≥ n1/
√

log n the number of points on the convex hull

of T is at most �T ε� for some ε, 0 < ε < 1, then the sequence of diameters corresponding to S can

be computed in time O(n log n/(1− ε)).

The above lemma is not constructive in the sense that only the existence of an O(n log n/(1−ε))

algorithm is shown. In what follows, we show how to calculate a value of ε which works well for

nonsparse point sets. Suppose that the points in S are sorted in increasing distance from p1.

Suppose also that for any subset T of �nγ� consecutive points, the number of points on the convex

hull of T is at most ��nγ�ε� = �nεγ�. Let T ′ be any subset whose size is a multiple of �nγ�, say k�nγ�
for some k ≥ 2. Then, it is also the case that the number of hull vertices in T ′ is upperbounded

by k�nεγ�. This suggests that if we restrict the size of each subset in Algorithm SEQD1′ to be a

multiple of �nγ�, then in order to guarantee an O(n log n/(1 − ε)) upper bound, it suffices to find

some ε, 0 < ε < 1, such that any consecutive �nγ� points in S have at most �nεγ� hull vertices.

A straightforward approach for calculating ε is by scanning the points in their sorted order. We

maintain a queue Q of size �nγ�. We start by pushing all the first �nγ� points into the queue and

find their convex hull. Next, by scanning the remaining points in their sorted order, each time a

point is pushed into Q and another one is deleted. At the same time, the convex hull of the current

�nγ� points is updated. This procedure, however, does not lead to an efficient algorithm if, for

instance, the distribution of the point set is irregular; it may happen that, although S is dense,

there is a subset T of �nγ� consecutive points whose convex hull is T itself. This suggests that a

better computation of ε must apply not only to uniformly distributed point sets, but also to those

sets that are highly irregular. To achieve this, we choose to calculate such an ε in the following

way. We partition S into a number of subsets constructed as follows. To construct subset Sj , we

keep adding points to it until either the size of its convex hull becomes �nγ� or its size reaches some

predefined limit. Thus, in both cases the number of hull vertices of Sj is at most �nγ�. Specifically,

we partition S into k1 subsets, S1, S2, . . . , Sk1 , having the following two properties:

7

1. For each j, 1 ≤ j ≤ k1, |CH(Sj)| ≤ �nγ�.

2. Each subset Sj , 1 ≤ j ≤ k1, consists of at most �nmγ� consecutive points, where p1 ∈ S1

and pn ∈ Sk1 . Here, m ≥ 2 is a positive integer constant. However, m can be as large as

�2 +
√

log log n� (see the proof of Lemma 5).

Finally, to determine ε, we solve the equation h = nε for ε, where h =
∑k1

j=1 |CH(Sj)|.

For brevity, let us call each one of the subsets S1, S2, . . . , Sk1 a γ-subset. Before we give the

second algorithm, which we will call SEQD2, we first dispose of the problem of partitioning S

into γ-subsets satisfying the abovementioned two properties. This is outlined in the following

preprocessing step.

Preprocessing step. Starting from an empty convex hull, scan the points in S in their

sorted order of increasing distance from p1 to build the first γ-subset, S1. Each time a point is

encountered, the convex hull and its size are updated. Let r be the minimum index between 1 and

�nmγ� such that either |CH({p1, p2, . . . , pr})| = �nγ� or |{p1, p2, . . . , pr}| = �nmγ� or r = n. Set

S1 = {p1, p2, . . . , pr}. Now, if r < n, then starting at point pr+1, repeat the same procedure to

compute the second γ-subset S2. We continue this procedure of partitioning S until Sk1 , which

contains pn, is finally computed. Note that the size of the convex hull of each γ-subset will never

exceed �nγ� as the insertion of one point increases the size of the current convex hull by at most

one. Clearly, this preprocessing step involves the use of a convex hull maintenance algorithm that

supports insertions and deletions in logarithmic time, and hence its overall time complexity is

O(n log n)[8].

At this point, it will be appropriate if we make precise the notion of a “dense point set”. The

following definition is good enough for the sake of analyzing the algorithm.

Definition 1 A point set is said to be dense if for some ε, 0 < ε < 1, that is sufficiently small,

h = O(nε), where h =
∑k1

j=1 |CH(Sj)|. Here Sj , 1 ≤ j ≤ k1, are the γ-subsets constructed by

partitioning the point set S as described in the preprocessing step.

After computing the γ-subsets, Algorithm SEQD2 proceeds by processing each γ−subset for

“local” restricted farthest points in time O(nmγ log2 nmγ/ log log nmγ) = O(nmγ log n/ log log n)

(as will be shown later) using procedure SEQD1(recall that γ = 1/
√

log n). The algorithm then

proceeds by merging each α (a number to be determined later) γ-subsets into a new larger subset.

This process of merging and building larger subsets continues until there is only one subset left,

namely S. We note that this procedure is inherently iterative and is best implemented using a

8

queue to store (pointers to) the current subsets. Thus, the algorithm proceeds in stages with the

merging of all subsets of the same size indicating the end of a stage and the beginning of the next.

The number α is chosen so that it satisfies the following two conditions:

1. The time taken to merge the farthest-point Voronoi diagrams of all subsets in one stage is

O(n log n).

2. At least � log n� subsets are used in each merge.

The first condition ensures that the algorithm will take O(n log n) in the case of dense point

sets, whereas the second condition guarantees that the overall running time is O(n log2 n/ log log n)

in the extreme case when h ≈ n, where, as stated before, h is the total number of hull vertices of

the γ-subsets. In the latter case, the performance of Algorithm SEQD2 almost reduces to that of

SEQD1.

Given the preprocessing step outlined above, the following is a description of Algorithm SEQD2.

procedure SEQD2

1. Let m = �2 +
√

log log n� and do the preprocessing step to partition S into k1 γ-subsets

S1, S2, . . . , Sk1 .

2. For j = 1, 2, . . . , k1, call SEQD1(Sj) to find f(p, Sj) for all points p ∈ Sj . Algorithm

SEQD1 will also compute FVD(Sj), the farthest-point Voronoi diagram of subset Sj , for

each j, 1 ≤ j ≤ k1.

3. Let h =
∑k1

j=1 |CH(Sj)|. Set ε = logn h and α = � n1−ε log n�. Label each γ-subset Sj with

λ(Sj) = 1, 1 ≤ j ≤ k1. Push all γ-subsets into an empty queue Q. Set k = k1.

4. While Q contains more than one item do the following steps.

(a) Let Ti be the subset at the front of Q. Let m be the number of subsets in Q whose label

is λ(Ti) and l = min{α, m}. Pop Ti from the front of Q. Set k = k + 1, Tk = Ti and

FVD(Tk) = FVD(Ti).

(b) For j = i + 1, i + 2, . . . , i + l − 1, do the following:

i. Pop Tj from the front of Q.

ii. For each point p ∈ Tj use FVD(Tk) to compute q = f(p, Tk). If d(p, q) > d(p, f(p, (Tj))),

then set f(p, Tk) = q, else set f(p, Tk) = f(p, Tj).

iii. Set Tk = Tk ∪ Tj and update FVD(Tk) by merging FVD(Tk) with FVD(Tj).

9

(c) At this point, Tk = Ti∪Ti+1∪ . . .∪Ti+l−1 and FVD(Tk) = FVD(Ti∪Ti+1∪ . . .∪Ti+l−1).

Set λ(Tk) = λ(Ti) + 1 and enter Tk at the back of Q.

end SEQD2

It is not hard to see that Algorithm SEQD2 correctly computes f(p, S) for each p ∈ S. We

observe that the labels of subsets in the queue are ordered in increasing order with the lowest being

of the subset in the front of the queue. We also observe that Q cannot have 3 subsets of pairwise

different labels. These observations are direct consequence of how the algorithm operates. To this

end, let stage i denote the time period in which the queue has more than one subset and one or

more subsets in the queue have label i. The following lemma bounds the number of stages.

Lemma 4 The number of stages in Algorithm SEQD2 is at most �1/(1− ε + log log n/ log n)�.

Proof. Clearly, an upper bound (that is achievable) for k1 is �n/�nγ�� ≤ �n1−γ�.
Hence, the number of stages is

c ≤ � logα k1�

= � log�n1−ε log n� k1�

≤ � log�n1−ε log n� �n
1−γ��

= � log�n1−ε log n� n
1−γ�

≤ � log(n1−ε log n) n1−γ�

= � log n1−γ

log(n1−ε log n)
�

= � (1− γ) log n

(1− ε) log n + log log n
�

= � 1− γ

1− ε + log log n/ log n
�

< � 1
1− ε + log log n/ log n

�.

Corollary 1 The number of stages in Algorithm SEQD2 is at most �1/(1− ε)�.

Lemma 5 The time complexity of Algorithm SEQD2 is O(n log n/(1− ε)).

Proof. Step 1, the preprocessing step, takes O(n log n) time[8]. The time taken by Step 2 is

computed as follows. The cost of each call SEQD1(Sj) when |Sj | is largest, i.e., when |Sj | = nmγ =

10

n�2+
√

log log n�γ , is at most

O(|Sj | log2 |Sj |/ log log |Sj |)

= O(nmγ log2 nmγ/ log log nmγ)

= O(m2γ2 nmγ log2 n/ log(mγ log n)

= O(m2nmγ log n/ log(m
√

log n)

= O(m2nmγ log n/ log log n)

= O(�2 +
√

log log n�2nmγ log n/ log log n)

= O(nmγ log n).

It follows that the time taken by each call SEQD1(Sj) is O(|Sj | log n), and hence the overall

time taken by Step 2 is at most
∑k1

j=1 O(|Sj | log n) = O(n log n). Step 4.a takes a total of O(n)

time. Now we compute the time taken by Step 4.b.ii to construct the Voronoi diagrams in the first

stage. Let hj , 1 ≤ j ≤ k1, denote |CH(Sj)| ≤ nγ and w = �k1/α�. There are w Voronoi diagrams

to be constructed in the first stage, namely FVD(Tk1+1),FVD(Tk1+2), . . . ,FVD(Tk1+w). The total

cost of computing these Voronoi diagrams is proportional to

(h1 + h2) + (h1 + h2 + h3) + . . . + (h1 + h2 + . . . + hα)

+ (hα+1 + hα+2) + (hα+1 + hα+2 + hα+3) + . . . + (hα+1 + hα+2 + . . . + h2α)
...

+ (h(w−1)α+1 + h(w−1)α+2) + (h(w−1)α+1 + h(w−1)α+2 + h(w−1)α+3) + . . .

+(h(w−1)α+1 + h(w−1)α+2 + . . . + hk1)

< α
k1∑

j=1

hj = αh

= �n1−ε log n�nε

= O(n log n).

Clearly, the cost of computing the Voronoi diagrams in the ith stage, i > 1, is no more that

their computation in the first stage as the number of subsets decreases monotonically when going

from one stage to the next higher stage. Consequently, the overall time taken by Step 4.b.ii to

compute the Voronoi diagrams is O(cn log n), where c is the number of stages. The cost of point

locations is O(n log h) = O(εn log n) per stage for a total of O(cεn log n). Finally, The overall time

taken by Step 4.c is clearly O(n). By Corollary 1, it follows that the running time of the entire

algorithm is O(cn log n) = O(n log n/(1− ε)).

11

By Lemma 5, the running time of Algorithm SEQD2 is optimal in the case of dense point sets.

Figure 1 shows an extreme instance in which h = n or , equivalently, ε = 1. Applying Algorithm

SEQD2 to this instance results in a running time of Θ(n log2 n/ log log n) since, by Lemma 4, the

number of stages in Algorithm SEQD2 is at most �1/(1− ε+log log n/ log n)� = � log n/ log log n�.
This exemplifies our remark before that the performance of Algorithm SEQD2 reduces to that

of SEQD1 in the worst case. In this instance, for each point pi in S − {p1, pn}, f(pi, S) = pi−1.

Thus, the behavior of the algorithm may degrade when applied to sparse point sets, i.e., sets in

which h (as computed by the algorithm) and n are comparable in magnitude. However, this is

never the case in almost all practical instances in which the existence of a reasonably small ε is very

natural. In the bound given by Lemma 4, we observe that the larger the value of n the smaller the

ratio log log n/ log n. However, naturally, as n increases the value of ε decreases. As a result, for

sufficiently large n, the bound on the number of stages given by Corollary 1 becomes very small in

almost all practical instances, which implies that the algorithm runs in optimal O(n log n) time.

As to the work space needed, Algorithm SEQD2 clearly uses no more than O(n) space. The fol-

lowing theorem summarizes our main result regarding the computation of the sequence of diameters

of a given point set.

Theorem 1 The sequence of diameters of a set of n points in the plane can be computed in

O(n log2 n/ log log n) time and O(n) space. If for some ε, 0 < ε < 1, h = O(nε), where h is as

defined in Algorithm SEQD2, then the time complexity is O(n log n/(1− ε)). Thus, if ε is reason-

ably small, the algorithm runs in optimal O(n log n) time.

Proof. Direct from Lemma 5 and the discussion following Lemma 5.

4 The sum of diameters problem

We now turn our attention to the sum of diameters problem. The algorithm presented in this section

is basically a refinement of the basic algorithm of Hershberger[4] that runs in O(n log2 n/ log log n).

Let S be a set of n points in the plane and p and q a diametral pair in S. A bipartition {S1, S2}
of S will be referred to as feasible if Diam(S1) + Diam(S2) ≤ d(p, q).

The following Lemma, which is due to Hershberger[4], provides the basis for an efficient algo-

rithm.

Lemma 6 Let p and q be a diametral pair of S. In any feasible bipartition of S, the subsets are

contained in two disjoint disks centered on p and q.

12

�p1

�p2

�p3

�p4

�p5

�p6

�p7

�p8

�p9

�p10

�p11

Figure 1: An extreme instance in which the running time is Ω(n log2 n/ log log n).

4.1 Review of Hershberger’s algorithm

Hershberger’s algorithm for computing an optimal bipartition {Sp, Sq} is summarized as follows.

First, two points p and q realizing the diameter of S are computed. Next, the points in S−{p, q} are

sorted into two lists Lp and Lq, one sorted by increasing distance from p and the other by increasing

distance from q. Lemma 6 implies that for any feasible bipartition {Sp, Sq}, the points in Sp must

form a prefix of Lp and a suffix of Lq. The algorithm identifies all prefixes of Lp whose elements

form a suffix of Lq by first marking each element of Lp with its rank in Lq and then, starting with

an empty array corresponding to the list Lp, the algorithm marches through the elements of Lp,

at each step marking the array entry given by the element’s rank in Lq. Whenever a suffix of the

array is marked, the algorithm detects it using the union-find algorithm. Finally, Using the farthest-

point Voronoi diagram as the basis for Bently and Saxe logarithmic method [1], the elements of

Lp(Lq) are inserted into Sp(Sq) in order, recording the diameter of Sp(Sq) as it changes. For each

prefix of Lp whose elements form a suffix of Lq, the two corresponding diameters are added and

a bipartition with a minimum diameter sum is chosen. This results in a total cost of O(n log2 n).

Using a general technique of Mehlhorn and Overmas [7] that allows amortized query and insertion

times of O(log2 n/ log log n), the bound is improved to O(n log2 n/ log log n). The remaining part

of the paper, which constitutes the bulk of it, is devoted to the refinement of the basic algorithm.

In this refinement, it is shown that if the ratio between the diameter and the minimum inter-point

distance is polynomial in n, then a bound of O(n log n) is achievable. Equivalently, the refined

13

algorithm finds an approximate solution to within a factor of (1 + O(n−c)) in O(n log n) time.

4.2 The revised algorithm

From the description of Hershberger’s algorithm, it is easy to see that if the two diameter sequences

corresponding to the two sorted lists Lp and Lq are computed a priori, then the minimum diameter

sum can be computed directly. In other words, finding the minimum diameter sum reduces (in

O(n log n) time) to the computation of two diameter sequences. Using Algorithm SEQD1 to

find these diameter sequences results in a simple algorithm that has a worst case running time of

O(n log2 n/ log log n) without the use of dynamic data structures. On the other hand, if Algorithm

SEQD2 is used instead, then the bound becomes optimal O(n log n) in almost all practical instances

as explained in the previous section. We also state a simple observation that eliminates the need

for the union-find algorithm. The revised algorithm is as follows.

Let p and q be a diametral pair in S. Let Lp = p1, p2, . . . , pn be the set of points in S sorted

in increasing distance from p. Let Lq = q1, q2, . . . , qn be the set of points in S sorted in decreasing

distance from q, where p1 = q1 = p and pn = qn = q. Let {Sp, Sq} be a feasible bipartition of S.

By Lemma 6, any feasible bipartition of S into Sp and Sq is such that Sp is a prefix of both Lp and

Lq. It follows that for some k, 1 ≤ k ≤ n− 1,

Sp = {p1, p2, . . . , pk} = {q1, q2, . . . , qk}

and

Sq = {pk+1, pk+2, . . . , pn} = {qk+1, qk+2, . . . , qn}.

To test for this set equality, we use the following simple observation:

Observation 1

{p1, p2, . . . , pk} = {q1, q2, . . . , qk} if and only if max{i | qj = pi, 1 ≤ j ≤ k} = k.

Therefore, it suffices to keep track of the maximum rank of the elements {q1, q2, . . . , qk} in Lp

instead of employing the union-find algorithm as in[4]. The revised algorithm, which we will call

SUMD, is described below:

procedure SUMD

1. Find a diametral pair p and q in S.

14

2. Let Lp = p1, p2, . . . , pn be the list of points in S sorted in increasing distance from p. Let

Lq = q1, q2, . . . , qn be the list of points in S sorted in decreasing distance from q, where

p1 = q1 = p and pn = qn = q. Let L′q = q′1, q
′
2, . . . , q

′
n be the reverse of list Lq,i.e., the list of

points in S sorted in increasing distance from q.

3. Compute the two diameter sequences d1, d2, . . . , dn and d′1, d
′
2, . . . , d

′
n corresponding to the

two sorted lists Lp and L′q, respectively.

4. For each j, 1 ≤ j ≤ n, find λ(qj) = i such that qj = pi. Here, λ(qj) is the rank of qj in Lp.

5. Set minSum = d′n−1, λmax = 1.

6. For each k, 2 ≤ k ≤ n− 1, do the following:

(a) Set λmax = max{λmax, λ(qk)}.

(b) If λmax = k, then set minSum = min{minSum, dk + d′n−k}.

7. Return minSum.

end SUMD

Step 4 computes the rank of each point qj in the sorted list Lp. Step 5 initializes the bipartition

to {{p1}, S − {p1}}. Step 6 scans the list Lp detecting ordered subsets of Lp that are prefixes of

both Lp and Lq. The maximum rank, λmax, is updated in each iteration. By Observation 1, if

λmax = k, then this is an indication that a prefix has been detected, in which case the minimum

sum of diameters is updated. Since the ordering of the points in Lq is the reverse of that in L′q, the

bipartition

{{p1, p2, . . . , pk}, {pk+1, pk+2, . . . , pn}}

can be rewritten as

{{p1, p2, . . . , pk}, {qk+1, qk+2, . . . , qn}}

or

{{p1, p2, . . . , pk}, {q′n−k, q
′
n−k, . . . , q1}}

which is

{{p1, p2, . . . , pk}, {q′1, q′2, . . . , q′n−k}}.

Therefore, the corresponding diameter sum for this bipartition is dk +d′n−k, which justifies Step 6.b.

The correctness of Algorithm SUMD follows directly from Lemmas 6, Observation 1 and the

above discussion. The running time of the algorithm is dominated by Step 3 of finding the two

15

diameter sequences, which is the bound given by Theorem 1. Consequently, a worst case bound

that is superior to O(n log2 n/ log log n) is achieved in almost all practical instances in which the

point set is not sparse. The only situation in which the algorithm runs in Ω(n log2 n/ log log n) is

in the very special case in which h ≈ n, where h is as computed in Algorithm SEQD2. If this is

not the case, then the time complexity is O(n log n/(1− ε)), 0 < ε < 1, with a bound of O(n log n)

being guaranteed for the case of dense point sets. As to the work space needed, the algorithm

clearly uses no more than O(n) space. To see that this problem is Ω(n log n), we note that the

problem of computing the diameter of a point set, which is Ω(n log n), trivially reduces to this

problem. Specifically, to find the diameter of a set of points S, we may apply the above algorithm

to the instance S ∪ {p}, where p is a point at infinity, in the obvious way. The following theorem

summarizes our main result regarding the bipartitioning of a point set to minimize the sum of their

diameters.

Theorem 2 The bipartition of a set of n points S in the plane into two subsets Sp and Sq such that

Diam(Sp)+Diam(Sq) is minimum can be computed in O(n log2 n/ log log n) and O(n) space. If for

some ε, 0 < ε < 1, h = O(nε), where h is as defined in Algorithm SEQD2, then the time complexity

is O(n log n/(1− ε)). Thus, if ε is reasonably small, the algorithm runs in optimal O(n log n) time.

5 Conclusion

We have given two algorithms, SEQD1 and SEQD2, for the sequence of diameters problem (SE-

QDP) that have running times of O(n log2 n/ log log n) and O(n log n/(1− ε)), respectively, in the

worst case. This implies two algorithms with the same time complexities for the sum of diameters

problem (SUMDP). The number ε, 0 < ε < 1, that appears in the time complexity of Algorithm

SEQD2 is a function of the density of the point set. In the extreme case, when ε ≈ 1, the bound

degenerates into O(n log2 n/ log log n). However, the bound is optimal O(n log n) in the case of

nonsparse point sets. It remains open whether these problems can be solved in O(n log n) time

regardless of the density of the point set. Hershberger’s O(n log n) time algorithm[4] gives a correct

solution to SUMDP only if the ratio between the diameter and the minimum inter-point distance

of the point set is polynomial in n. In other words, if this condition is not met, then it only

gives an approximation to the optimal solution. The inability of both this algorithm and ours to

achieve optimality regardless of the precision of the point coordinates and the density of the point

set indicates that, if an O(n log n) algorithm exists without restrictions, another totally different

approach may be inevitable. Since problem SUMDP reduces (in O(n log n) time) to SEQDP, an

16

O(n log n) algorithm for the latter implies an algorithm with the same time complexity for the for-

mer. However, it does not seem obvious how an O(n log n) algorithm for problem SEQDP without

restrictions can be achieved, if one exists. An interesting question is the following: given a set

S of n points in the plane together with FVD(S), the farthest-point Voronoi diagram of S, is it

possible to find a farthest neighbor for each point in S in O(n) time? This is a restricted version

of the points-in-regions problem[2] in which all regions are unbounded. If this is possible, then an

O(n log n) time complexity for problem SEQDP (and hence SUMDP) is straightforward. We leave

it as a conjecture that the sequence of diameters problem is Ω(n log2 n/ log log n) and this bound

is achievable (see Figure 1.)

References

[1] J. Bentley and J. Saxe, “Decomposable searching problems I. Static-to-dynamic transforma-

tion,” J. Alg., 1, 1980, 301-358.

[2] G. Blankenagel and R. H. Guting, “Internal and external algorithms for the points-in-regions

problem,” Lecture notes in computer science 333, Springer, Berlin, 1988.

[3] B. Chazelle, “ An optimal algorithm for intersecting three-dimensional convex polyhedra,”

Proceedings of the 30th Annual IEEE Symposium on Foundations of Computer Science, 1989,

586-591.

[4] J. Hershberger , “Minimizing the sum of diameters efficiently,” Computational Geometry:

Theory and Applications 2, 1992, 111-118.

[5] D. Kirkpatric, “Efficient computation of continuous skeleton,” Proceedings of the 20th Annual

IEEE Syposium on Foundations of Computer Science, 1979, 18-27.

[6] C. Monma and S. Suri , “Partitioning points and graphs to minimize the maximum or the

sum of diameters,” Proceedings of the Sixth International Conference on the Theory and Ap-

plications of Graphs (Wiley, New York, 1989).

[7] M. Overmas, “The design of dynamic data structures,” Lecture notes in computer science 156,

Springer, Berlin, 1983.

[8] F. P. Preparata and M. I. Shamos, “Computational Geometry - An Introduction ,” (Springer.

Berlin, 1985).

17

