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In recent years, demand of high data rates wireless communication systems is

exponentially increases where space-time (ST) codes have been introduced as one of

the efficient solutions for this problem. In this thesis ST coding system throughput

and reliability have been improved. There are two methods to improve throughput;

the first one is by using high-rate ST codes and the second method is based on

symbol puncturing, which is the main idea of this thesis. Design criteria of PST

codes over quasi-static and rapid fading channels are derived and five ST codes are

found. Simulation shows that the new codes have comparable performance with out

puncturing and superior performance under puncturing compared to some existing

codes. ST coding system reliability is improved by using hybrid forward error

correction and automatic repeat request (HARQ) schemes. There are six type-I

and type-II HARQ protocols that employ either ST, high-rate ST or PST codes.

Simulation shows that type-II protocols have better performance and throughput

efficiencies than type-I protocols employing the same coding scheme.
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CHAPTER 1

INTRODUCTION

1.1 GENERAL OVERVIEW

In the last few years, there has been a strong demand to achieve higher data

rates over wireless channels, in order to support high-speed data services. Such

applications and services include high audio quality, fast data transfer and video

applications such as online video conferencing. However, wireless communication

systems suffer from time varying characteristics of the communication channel and

fading phenomena. These cause in some cases substantial attenuations in the re-

ceived signal, which results in a dramatic degradation in the overall communication

system performance.

In 1998, space-time (ST) codes [1] were proposed for high data rate wireless

1
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communication systems. Space-time codes implement the idea of combining multi-

transmit antennas with trellis-coded modulation. This coding technique results in

a significant improvement on wireless communication systems performance. More-

over, it results in a very good tradeoff between data rate, diversity advantage and

trellis complexity.

A fundamental method of increasing the throughput of a wireless communi-

cation system is to use a higher signal constellation size. However, increasing

the constellation size reduces the Euclidean distance between the constellation

symbols, which increases the probability of error. Another way of increasing the

throughput especially for space-time codes is by increasing the rate of the channel

encoder and using the same signal constellation size. This would also increase the

probability of error but if a proper high-rate channel encoder is used the probabil-

ity of error due to increasing the code rate can be made small. Instead, puncturing

techniques could be used to increase the throughput of the communication system.

These techniques could also be used to produce variable rate codes [2]. Puncturing

methods could be combined with space-time codes to generate a new class of codes.

In this Chapter, the wireless communication channel models used are given

with a brief description of diversity. Then, a space-time coding system is studied

with detailed statement of performance criteria over quasi-static and rapid fading

channels. Simulation results for some of the existing QPSK ST codes are re-

produced in the same section. Next, an up to date literature survey is given.
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Finally, thesis contributions are stated.

1.2 CHANNEL MODEL

Wireless fading channels are classified (depending on the rate of change of the

channel gains) into fast fading (FF) and slow fading (SF) channels. In the fast

fading environments, channel gains change in a rate higher than the symbol rate.

While in the slow fading environments, channel gains change in a rate further

slower than the symbol rate. The additive white Gaussian noise (AWGN) exists

in both fading channels.

Slow fading channels could farther be classified into quasi-static and rapid fad-

ing channels. In the quasi-static channels, channel gains are assumed to remain

constants during frame transmission and change independently from one frame to

another. Whereas, rapid fading channel gains vary independently from one symbol

to another.

Channel models used throughout the thesis work are the quasi-static fading

channel and the rapid fading channel models. Both channels are statistically mod-

eled by a Rayleigh distribution. Therefore, the envelope of the channel samples

(|a|) has a probability density function (pdf) that is given by:

pa(|a|) =
|a|
σ2

exp

(
− |a|2
2σ2

)
a > 0 (1.1)
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where 2σ2 is the mean square average power of the fading samples and the phase is

uniformly distributed in [0, 2π]. If a direct path between the mobile and the base

station exists, the fade samples are modeled by Rician distribution.

The single most important way to reduce error probability and achieve reliable

communication with a Rayleigh fading channel is diversity [1]. Severe attenuation

of the transmitted signal due to deep-fade makes it impossible for the receiver to

determine the transmitted signal unless a less-attenuated replica is available.

Consequently, the idea of diversity is to supply the receiver with replicas of

the transmitted signal through different paths (links) using space, time and/or

frequency. These paths could be independently affected by multipath fade, which

increases the probability of receiving a less-attenuated replica of the transmitted

signal. The following are examples of diversity techniques:

• Time Diversity : Channel coding in conjunction with time interleaving is

used. Replicas of the transmitted signal are provided to the receiver in the

form of redundancy in the temporal domain.

• Frequency Diversity : The fact that waves transmitted on different frequencies

induce different multi-path structure in the propagation media is exploited.

Replicas of the transmitted signal are provided to the receiver in the form of

redundancy in the frequency domain.

• Space Diversity : Spatially separated antennas are used. The replicas of the

transmitted signal are provided to the receiver in the form of redundancy
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in spatial domain. This can be provided with no penalty in bandwidth

efficiency.

The mobile communication system should implement all possible diversity tech-

niques available. In space diversity, there is a variety of ways to combine diversity

information from the various antennas, but the most efficient one is called maximal

ratio combining (MRC) which gives the highest weight to the strongest signal.

1.3 SPACE-TIME CODES

It has long been known that antenna diversity is an effective technique to improve

the performance of wireless systems in fading channels. The greater the number of

diversity antennas, the better the chances that at least one of the antennas receives

a strong signal.

Recently, it has been shown that the use of space diversity (at the transmitter

side) combined with error-correction coding allows dramatic increase in data rates

achievable over wireless channels [1]. This combination of transmit diversity with

error-correction coding is called Space-Time Coding, and the system with multiple

transmit and receive antennas is called a Multiple-Input Multiple-Output (MIMO)

system. Space-time codes could be viewed as a multiple trellis coded modulation

(MTCM) but the branch transition symbols are transmitted in parallel.
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1.3.1 ENCODER/DECODER OF ST CODING SYSTEMS

A general block diagram of a space-time coding system is shown in Figure 1.1.

The k source bits are encoded using error-correction codes, and then the encoder

output bits are divided into N groups each with m bits. The m bits of each group

are mapped to a constellation point with 2m-constellation size. The generated

N symbols (ci
t, i = 1, 2, · · · , N) are modulated and transmitted each via one of

the N transmit antennas simultaneously with the same transmission period. It is

assumed that the points of the signal constellation are multiplied by a factor of

√
Es so that the average energy of the constellation is one.

As an example of space-time trellis code, the QPSK 4-state trellis code designed

in [1] is studied. The code trellis diagram is shown in Figure 1.2(b). This code is

designed for two transmit antennas. The encoder takes two input bits each time,

therefore, there are four branches diverging form each trellis state. The trellis

transition branch labels indicate the symbols to be transmitted, the first symbol

via the first transmit antenna and the second symbol via the second transmit

antenna. Depending on current trellis state and input bits, two QPSK symbols

are generated and transmitted simultaneously. For example, if the input bits are

(01) (11) (10) (00) (01), and the encoder is at initial state (00), the output symbols

are (3, 1) (2, 3) (0, 2) (1, 0) (0, 1). This code can also be viewed as delay diversity

where symbols transmitted over the second antenna at a given time slot will be

transmitted over the first antenna at the next time slot.
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Figure 1.1: General block diagram of ST coding system (a) Encoder (b) Decoder
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At the receiver, the received signal at each of the M receive antennas is a noisy

superposition of all transmitted signals from the N transmit antennas corrupted

by Rayleigh fading. The received signal at the j th receive antenna (Rx antenna)

is:

rj
t =

N∑

i=1

αi,j(t)c
i
t

√
Es + nj

t (1.2)

where nj
t are samples of independent zero-mean complex Gaussian random vari-

ables with variance N0/2 per dimension, and ci
t is the transmitted symbol from

transmit antenna (Tx antenna) i at time t. The coefficient αi,j(t) is the path gain

from transmit antenna i to receive antenna j at time t and it is modeled as in-

dependent samples of Gaussian random variable with zero mean and variance 0.5

per dimension.

The Viterbi decoder selects a cumulative branch metric, which is given for a

single branch by:

M∑

j=1

∣∣∣∣∣r
j
t −

N∑

i=1

αi,j (t) ci
t

∣∣∣∣∣

2

(1.3)

1.3.2 PERFORMANCE ANALYSIS AND DESIGN CRITERIA

Performance analysis of ST codes is mainly carried in the mean of the pairwise

error probability (PEP) expression approximations. The design criteria then are

derived from these approximations. In the design of ST trellis codes for fading

channels, parallel transitions must be avoided, because the parallel transitions

limit the minimum time diversity to one. So if a spectral efficiency of k b/s/Hz
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is targeted, there will be 2k branches diverging from and merging into each trellis

state. Thus, the encoder should have at least v = k memory elements (at least

2k trellis states) such that parallel transitions are avoided since there is only one

branch connecting each two trellis states.

Performance of ST trellis codes has been derived and studied by many re-

searchers for different wireless communication channel models. These studies lead

to the design of many ST codes. Following [1] and [3], performance analysis started

by stating the notations used. Considering a transmitted codeword denoted by c,

which is given by the codeword matrix:

c =




c1
1 c1

2 · · · c1
l

c2
1 c2

2 · · · c2
l

...
...

. . .
...

cN
1 cN

2 · · · cN
l




(1.4)

where the ith row ci = [ci
1, c

i
2, · · · , ci

l] is the encoder-mapper output sequence

transmitted via the ith transmit antenna (i = 1, 2, · · · , N), and the tth column

ct =
[
c1
t , c

2
t , · · · , cN

t

]T
is the transmitted space-time symbol at the tth transmission

time (t = 1, 2, · · · , l).

At the receiver, the received signal at the j th receive antenna (j = 1, 2, · · · , M)

is a noisy superposition of the N transmitted symbols corrupted by channel fading.



10

If r denotes the received signal sequence, where:

r =




r1
1 r1

2 · · · r1
l

r2
1 r2

2 · · · r2
l

...
...

. . .
...

rM
1 rM

2 · · · rM
l




(1.5)

and rt =
[
r1
t , r

2
t , · · · , rM

t

]T
is the received sequence at the M receive antennas at

the tth reception time (t = 1, 2, · · · , l), then the signal at the j th receive antenna

after the match filter is given by:

rj
t =

N∑

i=1

αi,j (t) ci
t + nj

t (1.6)

where nj
t is the noise component of the jth receive antenna at time t, and it

is modeled as independent complex Gaussian random variable with zero mean

and variance N0/2 per dimension. The fade coefficients αi,j (t), t = 1, 2, · · · , l

i = 1, 2, · · · , N j = 1, 2, · · · , M , are modeled as complex Gaussian random vari-

ables with zero mean and variance 1/2 per dimension. The fade coefficients vary

independently from one symbol interval to other in rapid fading channels and from

one frame interval to other in quasi-static fading channels. Moreover, the fade co-

efficients for paths from the N transmit antennas to the M receive antennas at

time t are uncorrelated. Hence, the received signals at time t can be written in
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terms of the transmitted ST symbol as:

rt = a (t) ct + nt (1.7)

where a (t) is the fading coefficients matrix at time t, which equals:

a (t) =




α1,1 (t) α2,1 (t) · · · αN,1 (t)

α1,2 (t) α2,2 (t) · · · αN,2 (t)

...
...

. . .
...

α1,M (t) α2,M (t) · · · αN,M (t)




(1.8)

and nt =
[
n1

t , n
2
t , · · · , nM

t

]T
is the noise vector at time t. The rows aj (t) of the

fade matrix are the channel path gains from the N transmit antennas to the j th

receive antenna at time t.

aj (t) = [α1,j (t) , α2,j (t) , · · · , αN,j (t)] (1.9)

The pairwise error probability P (c → e) is defined as the probability that

a maximum-likelihood decoder decides on the sequence e while the transmitted

sequence was in fact c. This event happens when:

l∑

t=1

M∑

j=1

∣∣∣∣∣r
j
t −

N∑

i=1

αi,j (t) ci
t

∣∣∣∣∣

2

≥
l∑

t=1

M∑

j=1

∣∣∣∣∣r
j
t −

N∑

i=1

αi,j (t) ei
t

∣∣∣∣∣

2

(1.10)
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Substituting (1.6) in (1.10) and simplifying the result leads to [3]:

l∑

t=1

M∑

j=1

2Re

(
nj

t

∗
N∑

i=1

αi,j (t)
(
ei

t − ci
t

))
≥

l∑

t=1

M∑

j=1

∣∣∣∣∣
N∑

i=1

αi,j (t)
(
ei

t − ci
t

)∣∣∣∣∣

2

= |e − c|

(1.11)

where Re (·) denotes the real part of a complex variable and (·)∗ denotes the

complex conjugate. The term on the right hand side of inequality (1.11) is a

constant, called square Euclidean distance (in [3] it is called modified Euclidean

distance) and it is denoted by d2 (c, e). This constant is a measure of how far the

two ST codewords c and e are from each other.

d2 (c, e) =
l∑

t=1

M∑

j=1

∣∣∣∣∣
N∑

i=1

αi,j (t)
(
ci
t − ei

t

)∣∣∣∣∣

2

(1.12)

The term on the left hand side of inequality (1.11) is a Gaussian random variable

with zero mean and variance 4σ2d2 (c, e). Thus, the conditioned pairwise error

probability is given by:

P (c → e|αi,j (t) , i, j, t) = Q



√

d2 (c, e)Es

2N0


 ≤ 1

2
exp

(
−d2 (c, e)

Es

4N0

)
(1.13)

where Q (x) is the complementary error function defined as:

Q (x) =
1√
2π

∫
∞

x
e

−t2

2 dt (1.14)
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The Q (x) is approximated by the following inequality:

Q (x) ≤ 1

2
e

−x2

2 x ≥ 0 (1.15)

Quasi-Static Rayleigh Fading Channels

As mentioned earlier, in quasi-static fading channels, the fade coefficients remain

constant during frame transmission time l and vary independently from one frame

to another. Therefore

αi,j (1) = αi,j (2) = · · · = αi,j (l) = αi,j

and the jth row of the coefficients matrix will be:

aj = [α1,j α2,j · · · αN,j] (1.16)

Let a codeword difference matrix B (c, e) be defined by [1]:

B (c, e) =




c1
1 − e1

1 c1
2 − e1

2 · · · c1
l − e1

l

c2
1 − e2

1 c2
2 − e2

2 · · · c2
l − e2

l

...
...

. . .
...

cN
1 − eN

1 cN
2 − eN

2 · · · cN
l − eN

l




(1.17)
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which is a square root of a distance matrix A (c, e) given by:

A (c, e) = B (c, e) · BH (c, e) (1.18)

where the superscript H denotes the Hermitian (transpose conjugate) of a matrix.

A (c, e) is a nonnegative definite Hermitian [1]. So, there is a unitary matrix V

such that:

VA (c, e)VH = D (1.19)

where D is a real diagonal matrix of the eigenvalues of A (c, e), with diagonal

elements λi, i = 1, 2, · · · , N counting multiplicity and λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0. The

rows [v1,v2, · · · ,vN ]T , (eigenvectors of A (c, e)) of V form a complete orthonormal

basis of the N -dimensional vector space.

Using the above results, and substituting (1.16) in the expression of d2 (c, e),

(1.12) will result in:

d2 (c, e) =
M∑

j=1

ajA (c, e) aH
j =

M∑

j=1

N∑

i=1

λi |βi,j|2 (1.20)

where βi,j = aj · vi, and the · is the inner complex vectors product. Substituting

(1.20) in (1.13) leads to:

P (c → e|αi,j, i, j) ≤
1

2
exp


−

M∑

j=1

N∑

i=1

λi |βi,j|2
Es

4N0


 (1.21)
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βi,j is independent complex Gaussian random variables with variance 1/2 per di-

mension and mean E [aj · vi], where E [·] denotes the expectation. Letting

Ki,j = |E [βi,j]|2 = |E [aj] · E [vi]|2 = |[E [a1,j] , E [a2,j ] , · · · , E [aN,j]] · vi|2 (1.22)

thus |βi,j| are independent Rician distributions [1] with probability density function

(pdf):

p (|βi,j|) = 2 |βi,j| exp
(
− |βi,j|2 − Ki,j

)
I0

(
2 |βi,j|

√
Ki,j

)
|βi,j| ≥ 0 (1.23)

where I0 (·) is the zero-order modified Bessel function of the first kind. There-

fore the unconditioned upper bound on the pairwise error probability is simply

computed by averaging the right hand side of inequality (1.21) with respect to

independent Rician distribution of |βi,j| to arrive at [1]:

P (c → e) ≤
M∏

j=1




N∏

i=1

1

1 + Es

4N0
λi

exp


−

Ki,j
ES

4N0
λi

1 + ES

4N0
λi




 (1.24)

A special case of Rayleigh fading where E [αi,j] = 0 and thus Ki,j = 0 results

in an upper bound on PEP given by:

P (c → e) ≤
(

N∏

i=1

(
1 + λi

Es

4N0

))−M

(1.25)

Let r denote the rank of A (c, e), then there are exactly r nonzero eigenvalues of
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A (c, e). Therefore, inequality (1.25) can be written as:

P (c → e) ≤
(

r∏

i=1

λi

)
−M (

Es

4N0

)−rM

(1.26)

From (1.26), a diversity advantage of rM and a coding advantage of (λ1λ1 · λr)
1/r

are achieved.

Inequality (1.26) is valid for small values of rM [3]. For large values of rM ,

since the |βi,j| in (1.21) follows a Rician distribution, there are rM noncentral Chi-

Square-distributed random variables |βi,j|2 with 2 degrees of freedom, noncentrality

parameter S = |E [βi,j]|2 = Ki,j, variance 1+2Ki,j, and mean value 1+Ki,j. Since

for a large values of rM , there are a large number of independent sub-channels

and according to the central limit theorem, the expression
∑M

j=1

∑N
i=1 λi |βi,j|2 ap-

proaches a Gaussian random variable with variance
∑M

j=1

∑N
i=1 λi (1 + 2Ki,j), and

mean value
∑M

j=1

∑N
i=1 λi (1 + Ki,j). For Rayleigh fading channels where E [aj] = 0

and thus Ki,j = 0, and following [3], the upper bound on the unconditional PEP

can be obtained by averaging (1.21) with respect to those random variables, to

get:

P (c → e) ≤ 1

2
exp

(
MEs

4N0

(
Es
∑r

i=1 λ2
i

8N0
−

r∑

i=1

λi

))
·

Q



√

M
(∑r

i=1 λ2
i − Es

4N0

∑r
i=1 λi

)

Es

4N0

√∑r
i=1 λ2

i


 (1.27)
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Using inequality (1.15), the expression (1.27) can be approximated by [3]:

P (c → e) ≤ exp

(
−MEs

4N0

r∑

i=1

λi

)
(1.28)

The above performance analysis of ST codes in quasi-static fading channels was

divided into two parts depending on the value of rM . The maximum value of rM is

NM . For small values of NM , where there is a small number of independent sub-

channels, the PEP is dominated by the rank and the product of nonzero eigenvalues

(determinant) of A (c, e), Inspection of inequality (1.26), leads to the following

design criteria for small values of NM .

Design Criteria Set I [1]

• The Rank Criterion: Maximize the minimum rank of the matrix A (c, e) for

all distinct codeword pairs.

• The Determinant Criterion: Maximize the minimum determinant of A (c, e)

corresponding to distinct codeword pairs with the minimum rank.

From the rank criterion, it is clearly seen that to achieve a full diversity advantage

of NM , the rank of A (c, e) must equal to N for all distinct codeword pairs c and

e. If the minimum rank of A (c, e) is r, then the achievable diversity advantage

equals rM . Since minimum determinant of A (c, e) is a measure of the coding

advantage [1], maximizing the minimum determinant maximize the coding advan-
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tage. The minimum determinant can be used to choose between codes with the

same minimum rank.

For large values of NM , which corresponds to a large number of independent

sub-channels, it is seen from (1.28) that PEP is determined by the minimum rank

and the summation of the nonzero eigenvalues of A (c, e). For square matrix, the

summation of the eigenvalues equals the summation of the main diagonal elements

and it is called the trace. For practical systems, which operate at high SNR such

that:

ES

4N0
≥
∑r

i=1 λi∑r
i=1 λ2

i

(1.29)

the design criteria mainly depends on the maximization of the minimum trace.

Design Criteria Set II [3]

• Maximize the minimum rank of the matrix A (c, e) for all distinct codeword

pairs such that rM ≥ 4.

• Maximize the minimum trace of A (c, e) for all distinct codeword pairs.

The first criterion indicates that a diversity advantage of four is enough and the

system performance is determined by the minimum trace. The trace of A (c, e) is

related to the squared Euclidean distance by:

tr (A (c, e)) =
l∑

t=1

N∑

i=1

∣∣∣ci
t − ei

t

∣∣∣
2

(1.30)
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Maximizing the minimum trace is equivalent to maximizing the minimum Eu-

clidean distance. Since for large NM the channel converges to Gaussian channel

and the main design criterion is maximization of the minimum Euclidean distance.

Rapid Rayleigh Fading Channels

In rapid fading channels, channel gains (αi,j (t)) vary independently form one sym-

bol interval to another. As in quasi-static fading channels, let F (ct, et) denotes a

ST symbols difference vector that is given by:

F (ct, et) =
[
c1
t − e1

t , c
2
t − e2

t , · · · , cN
t − eN

t

]T
(1.31)

Then, an N · N matrix C (ct, et) defined by [1]:

C (ct, et) = F (ct, et) · FH (ct, et) (1.32)

is a Hermitian matrix. So there exist a unitary matrix V (t) such that:

V (t)C (ct, et)VH (t) = D (t) (1.33)

where D (t) is a real diagonal matrix with diagonal elements Di,i (t), i = 1, 2, ·, N

are the eigenvalues of C (ct, et). The rows of V (t), [v1 (t) ,v2 (t) , · · · ,vN (t)]T

eigenvectors of C (ct, et) form a complete orthonormal basis of the N -dimensional



20

vector space.

If ct = et, then C (ct, et) has all its eigenvalues equal zero. Otherwise, when

ct 6= et, then there is only one nonzero eigenvalue of C (ct, et). Let this eigenvalue

be denoted by D1,1 (t) and let the eigenvector corresponding to D1,1 (t) be denoted

by v1 (t). The value of this nonzero element D1,1 (t) is the squared Euclidean

distance between ct and et.

D1,1 (t) = |ct − et|2 =
N∑

i=1

∣∣∣ci
t − ei

t

∣∣∣
2

(1.34)

The square Euclidean distance d2 (c, e) (1.12) could be expressed as:

d2 (c, e) =
l∑

t=1

M∑

j=1

N∑

i=1

|βi,j (t)|2 · Di,i (t) (1.35)

where βi,j (t) = aj (t) ·vi (t) are independent complex Gaussian variables with zero

mean and variance 1/2 per dimension, and aj (t) is given by (1.9). While there is

at most one nonzero eigenvalue D1,1 (t) at each time t, equation (1.35) will be:

d2 (c, e) =
∑

t∈γ(c,e)

M∑

j=1

|β1,j (t)|2 D1,1 (t) =
∑

t∈γ(c,e)

M∑

j=1

|β1,j (t)|2 |ct − et|2 (1.36)

where γ (c, e) represents the set of time instances where |ct − et| 6= 0 and δH (called

the ST symbol-wise Hamming distance) equals the number of elements on γ (c, e).

Substituting the value of d2 (c, e) from equation (1.36) into inequality (1.21), the
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conditional PEP upper bound will be:

P (c → e|αi,j (t) , i, j, t) ≤ 1

2
exp


−

∑

t∈γ(c,e)

M∑

j=1

|β1,j (t)|2 |ct − et|2
Es

4N0


 (1.37)

By noting that D1,1 (t) given by (1.34) is the only nonzero eigenvalue, and averaging

(1.37) with respect to the Rayleigh distribution of |β1,j (t)|, the unconditional PEP

upper bound will be [1]:

P (c → e) ≤
∏

t∈γ(c,e)

(
|ct − et|2

ES

4N0

)−M

=
∏

t∈γ(c,e)

|ct − et|−2M
(

ES

4N0

)−δHM

(1.38)

From this inequality, a diversity of δHM is achieved.

As in quasi-static fading channels, inequality (1.38) is valid for small values of

δHM [3]. For large values of δHM , and Rayleigh fading channels, inequality (1.13)

will be [3]:

P (c → e) ≤ 1

2
exp


MEs

4N0


Es

∑
t∈γ(c,e) |ct − et|4

8N0

−
∑

t∈γ(c,e)

|ct − et|2



 ·

Q



√

M
(∑

t∈γ(c,e) |ct − et|4 − ES

4N0

∑
t∈γ(c,e) |ct − et|2

)

ES

4N0

√∑
t∈γ(c,e) |ct − et|4


 (1.39)

Using inequality (1.15), the PEP upper bound in (1.39) can be approximated by

[3]:

P (c → e) ≤ exp


−MEs

4N0

∑

t∈γ(c,e)

|ct − et|2

 (1.40)
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The design criteria of space-time code in rapid Rayleigh fading channels are

also divided into two parts. For small values of δHM , the error performance is

upper bounded by (1.38). In this case the error probability is dominated by the

minimum ST symbol-wise Hamming distance and the product distance d2
p defined

as:

d2
p =

∑

t∈γ(c,e)

|ct − et|2 (1.41)

The design criteria for small values of δHM were derived in [1].

Design Criteria Set III [1]

• The Distance Criterion: Maximize the minimum ST symbol-wise Hamming

distance between all distinct codeword pairs.

• The Product Criterion: Maximize the product distance d2
p corresponding to

the path with minimum δH .

From the distance criterion, to achieve the most diversity advantage in a rapid

fading environment, the ST symbol-wise Hamming distance δH between any code-

word pair c and e must be maximized. Since the product distance is a measure of

coding advantage [1], the minimum product distance must be maximized between

all codeword pairs so that the coding advantage is maximized.

For large value of δHM , the PEP is upper bounded by (1.40). For practical
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systems, which operate at high SNR such that:

ES

4N0
≥
∑

t∈γ(c,e) |ct − et|2
∑

t∈γ(c,e) |ct − et|4
(1.42)

the design criteria were derived in [3].

Design Criteria Set IV [3]

• Maximize the minimum ST symbol-wise Hamming distance between all dis-

tinct codeword pairs such that δHM ≥ 4.

• Maximize the minimum Euclidean distance between all distinct codeword

pairs.

It is interesting to notice that design criteria set IV is similar to design criteria set

II. This indicates that for large number of independent sub-channels, the channel

model achieves the AWGN channel. Thus the design criterion used for AWGN

channels (maximization of Euclidean distance) is valid here.

The design criteria for other wireless channels are also derived in [1] (such as

correlated quasi-static flat Rayleigh fading channel, and Rican channels).

Some QPSK ST Codes

The derived design criteria were used to design ST trellis codes for transmission of 2

b/s/Hz and 3 b/s/Hz over quasi-static fading channels using two transmit antennas

with 4-PSK and 8-PSK constellations respectively. Figure 1.2(a) shows the QPSK
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signal constellation, and Figure 1.2(b), (e), and (h) show the trellis diagram of the

4-, 8-, and 16-state QPSK ST trellis codes designed in [1] respectively. These codes

are used as a reference codes since they are the first proposed ones. Three more

QPSK 4-, 8-, and 16-state ST codes design in [4] are shown in Figure 1.2(c), (f),

and (i) respectively, where these codes are claimed to be optimum (having optimum

coding gain) in quasi-static fading channels. The QPSK 4-, 8-, and 16-state ST

codes designed in [5] are also shown in Figure 1.2(d), (g), and (j) respectively,

where these codes are considered to be from the best codes found in the literature

for rapid fading channels, Performance of the 4-, 8-, and 16-state codes from [1] are

shown in Figure 1.3 in quasi-static fading channel and in Figure 1.7 in rapid fading

channel. From both figures, the 16-state code outperform the 4- and 8-state codes.

The QPSK 4-, 8-, and 16-state ST codes from Figure 1.2 are simulated using a

computer program in quasi-static and rapid fading channel models for one and two

receive antennas where the simulation results are given in Figure 1.4 to Figure 1.10.

1.4 LITERATURE SURVEY

The design criteria in [1] were set to design ST trellis codes with two transmit

antennas to achieve maximum diversity advantage. These design criteria were

derived from matrices of codeword pairs. In [6], binary design rules of ST codes

were found for any number of transmit antennas, any number of states, but only

for BPSK and QPSK signal constellations. These rules uniquely define the ST
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Figure 1.2: (a) QPSK signal constellation (b) 4-state ST code [1] (c) 4-state ST code [4] (d)
4-state ST code [5] (e) 8-state ST code [1] (f) 8-state ST code [4] (g) 8-state ST code [5]
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Figure 1.2: (continued) (h) 16-state ST code [1] (i) 16-state ST code [4] (j) 16-state ST code [5]
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Figure 1.3: Performance of 4-, 8-, and 16-state codes from [1] in quasi-static fading channel
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Figure 1.5: Performance of 8-state codes from Figure 1.2 in quasi-static fading channel
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Figure 1.6: Performance of 16-state codes from Figure 1.2 in quasi-static fading channel
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Figure 1.7: Performance of 4-, 8-, and 16-state codes from [1] in rapid fading channel
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Figure 1.8: Performance of 4-state codes from Figure 1.2 in rapid fading channel
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Figure 1.9: Performance of 8-state codes from Figure 1.2 in rapid fading channel
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Figure 1.10: Performance of 16-state codes from Figure 1.2 in rapid fading channel



31

code without leaving space for the improvement of coding advantage. The design

rules proposed in [6] have been reformulated and simplified in [7]. In [8], design

criteria for full spacial diversity for QAM ST codes are proposed. The full spacial

diversity is ensured by sufficient conditions on the codewords or generator matrices

instead of on every codeword pair.

An alternative systematic method of designing ST trellis codes for full spatial

diversity and any number of transmit antennas, any number of state and arbitrary

signal constellations, is proposed in [9]. This method was developed from observing

the group/subgroup of the state transitions on the code trellis and it leaves a space

for optimization of coding advantage. Optimum space-time convolutional codes

that provide maximum diversity and coding gains are presented in [4].

In [3], design criteria of ST codes have been proposed for high and low diversity

orders in both quasi-static and rapid fading channels. The design criteria found in

[3] for low diversity orders are the same design criteria found earlier in [1].

Tighter design criteria of ST codes ware derived in [10] for low and moder-

ate signal to noise ratio (SNR) ranges. They used these criteria, throw computer

search, to get new improved codes at low SNR ranges with two transmit antennas,

and even these codes outperform some of the existing codes at their designed SNR

ranges. The worst-case pairwise codeword error probability analysis under arbi-

trary quasi-static fading is presented in [11]. In [12], the code design criteria were

optimized for coding gain. Space-time code design for single carrier transmission
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over frequency selective fading channels has been studied in [13] and design criteria

for this wireless communication channel model have been derived.

In [14], orthogonal designs of space-time block codes has been proposed. Or-

thogonally constructed space-time codes have been proposed by many researchers

where in one of them [15] the proposed method simplifies the design of ST codes

for more than two transmit antennas and the symmetry found on the constructed

codes trellises simplifies the decoding. In [16], the use of multidimensional codes

is proposed for ST codes instead of TCM codes, namely spherical codes. This

technique had been tested on orthogonal frequency division multiplexing (OFDM)

and showed superior performance over the current IEEE 802.11a specifications for

24-Mbits/s data rate over slow fading and AWGN channels. In [17], unitary ST

modulation for multiple-antenna communications has been proposed and in [18]

differential ST modulation is proposed where both modulations use a set of unitary

code matrices.

In [19] and [20], turbo ST coded-modulation and recursive ST trellis codes for

turbo modulation were proposed respectively with design analysis, codes perfor-

mance and a designed example codes, while in [21], the performance of parallel

concatenated ST codes was studied.

In addition to the performance analysis of ST codes, error performance in the

mean of pairwise error probability (PEP), bit error rate (BER), and Frame Error

Rate (FER) are investigated in [22][3][23][24][25][26][27]. Some of these propose
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upper bounds on error rates such as [22] and [27], while others propose exact

forms for PEP and use these expressions to compute bit and/or frame error rates

[24][25][26][23]. Since computation of exact PEP expressions involve the calcu-

lation of the transfer function, the state reduction techniques of the error state

diagram could be utilized to simplify the calculations of the transfer function. The

error state diagram has 22v states which makes the computation difficult and time

consuming as the number of states increases. The reduced state diagram has the

same number of states as the code trellis. To use the reduction techniques, the

code must have some uniformity properties. In [25] it is stated that ST codes in

general are not geometrically uniform [28] as claimed in [1]. However, ST codes

satisfy encoder linearity and other conditions are proved to be quasi-regular codes

in [29]. This allows the use of the reduction techniques of the error diagram. Quasi-

regularity property allows the assumption that the transmitted codeword is the all

zero codeword and the other codewords are error events. The transfer function is

calculated by making the zero state as the input and the output of system.

The Chernoff bound was used for the calculation of the upper bound on PEP

in rapid fading environment in [1]. The same Chernoff bound approach with the

transfer function derived from the code error diagram was used in calculating

the upper bound on PEP in [27]. A tighter bound on the PEP and BER was

presented in [30]. However, these three bounds, including the tighter one [30], are

still upper bounds and not the exact expressions. The exact PEP proposed in [26]
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was derived using residues, while in [24] a numerical technique with any degree of

accuracy for the derivation of the exact PEP was proposed. The proposed method

uses the Gauss-Chebyshev quadrature and the moment generating function (MGF)

approach. Both of these methods are not in a product form, so that they can not

utilize the transfer function bounding techniques. A simpler exact PEP expression

is presented in [23] using Craig’s formula for the Gaussian Q-function. The PEP is

expressed in the form of a single finite-range integral where the integrand involves

the MGF of a nonnegative random variable.

Many performance improved ST codes designed for different environments are

proposed in [30],[31],[32],[5], [33], [34], [3], and others.

Joachim Hagenauer [2] proposed the concept of using punctured convolutional

codes to generate a family of rate compatible punctured convolutional (RCPC)

codes. A low rate 1/N convolutional code is punctured periodically with period

P to obtain a family of codes with rate P/(P + L) where L can vary from 1 to

(N − 1)P . The code rate could be changed depending on the channel state. These

codes generated from the same mother code use a trellis similar to that of the low

rate mother code, which reduces the decoding complexity of the obtained high-rate

codes with a comparable performance.

The concept of puncturing techniques was applied to trellis-coded modulation

(TCM) codes and analyzed in [35] and [36]. In both convolutional codes and TCM

codes, bits are punctured then the transmitted symbols are generated. In [37]
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puncturing was performed to bits and symbols for convolutional codes. A punc-

tured convolutional code was used with ST block codes to achieve higher data rates

[38]. Puncturing the convolutional code as an outer code and then applying space-

time block coded modulation for two transmit antennas could increase the data

rate by 50 or 100 percent, without increasing the transmitted power, depending

on the number of receive antennas used.

In [39] and [40] a special puncturing method is proposed for BPSK space-time

trellis codes with small frame length. A rate one ST code with constraint length

five and frame size 16 is punctured to achieve two diversity order with rates 4/3

and 8/7. The cost of rate improvement is performance degradation.

In [41], an MTCM hybrid automatic repeat request scheme employing symbol

puncturing was proposed. This scheme can adapt itself depending on the channel

state by a direct feedback from the receiver. A punctured multiplicity 2 MTCM

code was generated from a mother MTCM code with multiplicity 3. The code rate

varies between 1.67 of the mother code and 2.5 of the punctured code depending

on the redundancy needed by the receiver. In [42], performance of ST codes in

pure ARQ (ST-ARQ) protocol was studied and two ST hybrid ARQ protocols were

proposed. The first one is a ST hybrid ARQ (ST-HARQ) protocol and the other

is turbo ST hybrid ARQ (TST-HARQ) protocol. Another space-time hybrid ARQ

scheme has been proposed in [43] where different ST trellis codes are employed for

retransmissions. In [44], Maximum Likelihood (ML) detection and decoding of ST
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codes were analyzed and studied.

1.5 THESIS CONTRIBUTION AND ORGANIZATION

1.5.1 THESIS CONTRIBUTIONS

The main objective of this research is to improve the space-time coding systems

throughput and reliability. There are two methods presented in this work to im-

prove the system throughput. The first one is using higher rate channel encoder,

which has a rate grater than 1/2. Using the same signal constellation, more in-

formation bits are accepted by the encoder each time slot, which increases the

number of branches diverging from each trellis state. Consequently, the minimum

inter-branch Euclidean distance will decrease that in general results in a degrada-

tion in the communication system performance. However, applying design criteria

proposed in [1] and [3] in an exclusive search program implemented in C Language,

good performing high-rate ST code that satisfies both criteria is found. Simula-

tion results show that the designed code outperforms some of the existing normal

rate ST codes. Searching the literature, the use of such high-rate codes in a two

transmit antennas system is not pointed out.

The second method is based on puncturing, where a symbol puncturing tech-

nique is proposed for space-time codes. A lower transmitted power per source bit

and an increase in the system throughput is encountered but with a small degra-
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dation on the frame error rate performance. No general bit or symbol puncturing

technique for space-time trellis codes is found in the literature except the recently

proposed special method for BPSK ST codes with small frame size in [39] and [40].

The proposed technique in this research is a general one with normal frame size

and it can be applied to ST codes with any number of trellis states. On the new

technique, puncturing is performed to the space-time encoder output symbols be-

fore modulation and transmission. Design criteria to get good performing QSK ST

codes without and with symbol puncturing are derived for quasi-static and rapid

fading channels. The derived design criteria are implemented in an exhaustive

search C language program. Simulation results without puncturing show that the

new codes have comparable performance to the best codes in the literature. The

designed codes outperform the best known ST codes under symbol puncturing.

Since symbol puncturing on space-time trellis codes is not like symbol puncturing

on single antenna trellis codes, the transmitted ST symbols generally are differ-

ent from the encoder output ST symbols because of the symbol shifting at the

puncturing circuit. A decoding technique using maximum likelihood decoder with

modified puncturing patterns is presented for the decoder of punctured space-time

codes where it can also be used with the un-punctured space-time codes.

Punctured space-time codes can not be presented using normal trellis diagrams

since normal trellis diagrams describe only one transition at a time while punc-

turing is performed on P successive transitions. A P -transition trellis diagram
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representation of punctured space-time codes is presented. This representation is

also valid for un-punctured space-time codes.

System reliability is improved by using hybrid forward error correction and

automatic repeat request schemes. Three type-I and three type-II HAQR protocols

that use normal rate, high-rate and punctured space-time codes are proposed. Both

type-I and type-II HARQ schemes have the same reliability, however the type-

II HARQ protocols have better throughput performance than the corresponding

type-I HARQ. The presented protocols show good performance via simulation.

1.5.2 THESIS ORGANIZATION

This thesis is organized as follows. This Chapter is started with a general overview,

followed by description of the wireless communication channel models used in this

research. A detail review of ST coding systems performance and design criteria is

given and simulation of some of the existing codes are reproduced. This Chapter

is concluded with literature survey and thesis contributions.

In the next Chapter, the design criteria studied in detail in this Chapter are

used in exhaustive search approach to find high-rate space-time code. The designed

code is simulated and compared to some of the existing normal rate space-time

codes. In the same Chapter, the idea of symbol puncturing on space-time codes is

introduced. The symbol puncturing and the extraction of the modified puncturing

patterns from the original puncturing patterns are illustrated with some examples.
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The Chapter is concluded with the alternative representation of punctured space-

time codes. Performance analysis of symbol punctured space-time codes and the

design criteria are given in Chapter three. The derived design criteria are used

to design ST codes that have a good performance with and without puncturing.

The designed codes are tested via simulation and compared to some of the existing

codes.

Chapter four begins with an introduction followed by a review of pure and hy-

brid automatic repeat request schemes. The type-I and type-II HARQ protocols

used in this work are presented. The presented protocols are simulated and com-

pared to each other. A summary of main conclusions and extension of this work

is given in Chapter five.



CHAPTER 2

HIGH-RATE AND SYMBOL

PUNCTURED ST CODES

2.1 INTRODUCTION

As mentioned in Chapter one, there are two ways to improve the spectral efficiency

of ST codes; the first way is by using a high-rate channel encoder and the second

one is by puncturing. Each of these ways has its advantages and disadvantages.

These ways are studied in detail with some examples in this Chapter.

This Chapter is organized as follows. In the first section, the use of high-

rate encoder in ST coding systems is illustrated with a designed high-rate QPSK

ST code. The designed code is simulated and compared to the 4- and 8-state

QPSK ST codes from [1] in both quasi-static and rapid fading environments. In

40
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the second section and its subsections, encoder and decoder systems of the symbol

PST coding system are demonstrated. Then, effects of Puncturing Patterns (PP’s)

length (puncturing period) and structure on the coding system rate, frame length,

and decoding complexity are studied. The Chapter is concluded with an alternative

ST trellis cods representation that can be used to represent PST trellis codes.

2.2 HIGH RATE SPACE-TIME CODES

Since they first introduced by Trarokh [1] in 1998, space-time trellis codes normally

employ a rate 1/2 (2/4 and 3/6 with maximum spectral efficiency 2 b/s/Hz and

3 b/s/Hz for QPSK and 8PSK ST codes respectively) channel codes. No attempt

to use a higher rate channel codes, because it has been stated in [1] that it is not

possible to have a code that achieves full spacial diversity (full rank) and at the

same time has a higher spectral efficiency than 2 b/s/Hz (3 b/s/Hz) for QPSK

(8PSK) ST codes. That implies a traditional trade-off between diversity and rate.

So the most important question to answer is which is more significant on the system

performance a higher rate with lower diversity order or a lower rate with higher

diversity order? This question is mainly dependent on the application and the

operational SNR’s.

However, it had been shown in [45] that codes with higher rates and lower

diversity orders (at least 4) outperform codes with lower rates and higher diversity

orders at high SNR ranges. Similar results were found in [3] for high product (more



42

than or equals to 4) of the minimum rank by the number of receive antennas (r ·M)

and ST symbol-wise Hamming distance by the number of receive antennas (δH ·M)

for quasi-static and rapid fading channels respectively. Since for high products, the

number of independent sub channels is high so the channel converges to Gaussian

channel and thus the system performance is dominated by the minimum Euclidean

distance. It is observed in [3] that ST codes with lower rank (one) and higher trace

(ten) outperform codes with full rank (two) and lower trace (four) at reasonable

diversity advantages. This observation suggests the use of higher rate channel

encoders to improve the spectral efficiency of ST coding systems.

2.2.1 SEARCH CRITERIA

Fortunately, the analysis in Chapter one for normal rate ST codes is valid for high-

rate ST codes. Thus the same design criteria are used to design a high-rate QPSK

8-state ST code.

The design criteria sets I-IV in Chapter one were implemented using a C pro-

gram. In addition to the design criteria sets, the search program excludes codes

that do not satisfy the following conditions.

• The code must span all possible ST symbols for N transmit antennas, which

means it should contain all possible N QPSK symbols concatenations. Since

in this analysis there are two transmit antennas, the number of possible two

QPSK symbols concatenations (QPSK symbol pairs) equals 42 = 16. Codes
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does not satisfy this condition does not have full rank and maximum δH [1].

In addition, they have a lower distance between codewords which increase

probability of errors.

• No QPSK pair (ST symbol) appears more than once in the branches diverging

from or merging into the same state. Codes does not satisfy this conditions

does not have maximum δH .

• The encoder of the code must be linear, thus the encoder diagram contains

only memory elements and exclusive ors (modulo-2 adders). This research is

restricted to linear encoders only.

The search program procedure is:

• Code generation: ST codes are generated using generating matrix.

• Testing conditions: the above conditions are tested.

• Metric computations: the new code metrics such as rank, determinant and

product distance are calculated.

• Comparing and selecting: the generated code metrics are compared and the

code with best metric depending on the implemented design criterion is se-

lected.

These conditions are included in the search program to minimize the searching

time because condition testing does not take long time while metric computations
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take most of the searching time.

Fortunately, the search results for the 8-state high-rate ST code show that it

is possible to have 8-state high-rate ST codes that satisfy the four design criteria

sets and the above conditions. One of these codes is shown in Figure 2.1.

2.2.2 NUMERICAL RESULTS

New high-rate 8-state QPSK code metrics are given in Table 2.1. For the sake of

comparison, the metrics of the 4- and 8-state QPSK ST codes from [1] are also

given in the table. The new code does not have a full rank (two) as expected.

However, it has the same trace, δH , and minimum product distance as the 8-state

code from [1] and even better minimum Euclidean distance.

The performance of the obtained 8-state code from the search criteria is sim-

ulated in quasi-static and rapid fading environments. The new code is compared

with the QPSK 4- and 8-state ST codes designed in [1] in the mean of FER (frame

error rate) vs. transmitted power per information bit NEb/N0. Because of rate dif-

ference and for fair comparison between the codes, the computer simulations were

not performed in the mean of FER vs. SNR NES/N0. For existing QPSK ST

trellis codes, the SNR equals the transmitted power per information bit. Where

as for the designed high-rate QPSK ST trellis code the transmitted power per

information bit equals the SNR plus 1.7609 dB, since Eb = 2Es/3.

The simulation results are given in Figure 2.2 and 2.3 for quasi-static and rapid
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Figure 2.1: Search result for 8-state high-rate QPSK ST code

TABLE 2.1: New high-rate ST code metrics

Number Minimum Minimum
of Source Rank Determinant Trace δH product Euclidean

states distance distance

4 [1] 2 4 4 2 4 2.828427

8 [1] 2 12 8 2 16 4.000000
high-rate 1 4 8 2 16 4.828427
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fading channels respectively. From Figure 2.2, it is clearly seen that the 4-state

code from [1] outperforms the 8-state high-rate code in quasi-static environment for

one receive antenna. Where as for two receive antennas, the new code outperforms

the code from [1] for low and moderate NEb/N0 ranges while for high NEb/N0

the code from [1] has a better performance. It is expected that the new high-rate

code will not have good performance in quasi-static fading channel since the code

matrix does not have a full rank and there are few diversity antennas (r×M < 4).

However, the new 8-state high-rate code outperforms the 4-state code from [1] by

about one dB for one receive antenna and two dB’s for two receive antennas in

rapid fading environment, which is also expected since the new code has better

minimum product distance than the 4-state code from [1] and also for the new

code δH ×M ≥ 4 for two receive antennas. The 8-state code from [1] outperforms

the new high-rate code for both environments and receive antenna cases.

2.3 SYMBOL PUNCTURED ST CODES

Puncturing generally means deleting one or more bits (systematic or parity) before

transmission. It is usually used to increase the spectral efficiency of communica-

tion systems and reduce the high-rate codes decoding complexity. Puncturing is

performed periodically on the output bits of the encoder. The puncturing pattern

is represented by a N -row and P -column matrix with ones where no bits (symbols)

are punctured and zeros otherwise, where P is the puncturing period and N is the
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number of encoder output bits (symbols) at each time slot.

General symbol puncturing technique has not yet been used with ST trellis

codes (except the recently presented special puncturing method for BPSK ST

codes with small frame size [39][40]). Moreover, no puncturing technique has been

proposed for application on ST trellis codes in the literature. In this section the

idea of applying periodic symbol puncturing on QPSK ST trellis coded modulation

is introduced and studied.

2.3.1 ENCODER/DECODER

The encoder and decoder of the symbol PST coding system shown in Figure 2.4 are

generally similar to the encoder and decoder of the un-punctured ST coding system.

In fact, the encoder and decoder of the symbol PST coding system essentially can

be used with the un-punctured ST coding system. The differences between the

two systems are illustrated in the following subsections.

Encoder

The new symbol PST system encoder is shown in Figure 2.4(a). For QPSK signal-

ing, two (k = 2) input bits (y1
t and y2

t ) are passed to a channel encoder with rate

2/4 to generate four output bits n = 4, two groups N = 2 where each group con-

tains two encoder output bits m = 2. These four output bits are passed to a QPSK

signal constellation mapper (size 2m) to produce two QPSK symbols (x1
t and x2

t ).
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The main difference between the new ST encoder and the original (un-punctured)

one is the puncturing block, which consists of a puncturing pattern circuit and a

buffer. The output symbols of the puncturing block (c1
t and c2

t ) are modulated and

transmitted each via a transmit antenna simultaneously at the same transmission

time and frequency.

In the puncturing pattern circuit, the symbols that have to be punctured are

removed, while the remaining symbols are rearranged and then buffered for trans-

mission. In the buffer, the symbols, which had to be transmitted using the same

transmit antenna, following a punctured symbol are shifted up to fill the empty

position of the punctured symbol. Thus each of the N transmit antennas has a

symbol to transmit at all transmission time instances. If the puncturing pattern

circuit has no zeros, then this encoder operates exactly like the original ST encoder

system.

Decoder

The receivers of both the un-punctured and the punctured systems employ the

Viterbi soft decoding algorithm with maximal-ration combining method. The main

difference between the two receiver systems is that in the un-punctured receiver

systems, branch metrics are calculated and survivor paths are selected each recep-

tion time (each time the receiver receives a transmitted symbol). This metric is
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given for one transition by:

M∑

j=1

∣∣∣∣∣r
j
t −

N∑

i=1

αi,j (t) ci
t

∣∣∣∣∣

2

(2.1)

where rj
t is the received signal at the jth antenna at time t. The cumulative path

metric equals to:

l∑

t=1

M∑

j=1

∣∣∣∣∣r
j
t −

N∑

i=1

αi,j (t) ci
t

∣∣∣∣∣

2

(2.2)

where l is the un-punctured transmitted frame length. However, in the symbol

PST receiver systems, branch metrics are calculated and survivor paths are se-

lected periodically each (P − Nz/2) reception times such that a stage (P successive

transition on the code trellis) cumulative path metric is:

m(P−
Nz
2 )∑

t=(m−1)(P−
Nz
2 )+1

M∑

j=1

∣∣∣∣∣r
j
t −

N∑

i=1

αi,j (t) ci
t

∣∣∣∣∣

2

(2.3)

where P is the puncturing period, and Nz is the number of zero elements in the

PP as will be explained in the following section. The decoder applies the PP on

the code trellis and compares the resulting symbols with the received signals each

(P − Nz/2) times. The cumulative path metric calculated for each trellis state in

the punctured ST decoder is given by:

kp∑

m=1

m(P−
Nz
2 )∑

t=(m−1)(P−
Nz
2 )+1

M∑

j=1

∣∣∣∣∣r
j
t −

N∑

i=1

αi,j (t) ci
t

∣∣∣∣∣

2

=
lp∑

t=1

M∑

j=1

∣∣∣∣∣r
j
t −

N∑

i=1

αi,j (t) ci
t

∣∣∣∣∣

2

(2.4)
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where lp = kp (P − Nz/2) is the transmitted punctured frame length, and kp is

the number of periodic application of the PP on a single frame of encoder output

symbols (un-punctured frame) of length l. From equations (2.2) and (2.4), it is

easily seen that the normal ST decoder makes decision on survivor paths l times

while the PST decoder makes decision on survivor paths Kp times. The decoder

of the symbol PST coding system is shown in Figure 2.4(b).

2.3.2 PUNCTURING PATTERN, CODE RATE AND FRAME LENGTH

In this section the puncturing pattern is defined and the effects of the puncturing

period on the symbol PST code rate, transmitted frame length, and decoding

complexity are analyzed. PP’s of periods two, three four, five and six are studied

for illustration throughout this section.

Puncturing Pattern

In symbol PST coding system, a puncturing pattern is a N by P matrix (Fig-

ure 2.5), where N is the number of transmit antennas and P is the puncturing

period. Each row of the puncturing pattern corresponds to a transmit antenna

and the columns correspond to time instances. The puncturing pattern is period-

ically applied to the encoder-mapper output symbols. The PP elements are zeros

and ones, where a zero corresponds to a punctured symbol while a one corresponds

to a transmitted symbol. For puncturing patters with the same size, there could be
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many puncturing rates. These puncturing rates could start with the un-punctured

code where all the PP elements are ones (maximum redundancy) and end with a

punctured code where half the PP elements are zeros and half of PP elements are

ones (zero redundancy).

For puncturing period two, the PP’s are of size 2 by 2. In this case there is only

one possible puncturing rate in addition to the mother code. All possible PP’s of

period two are shown in Figure 2.6. In this case, PP-(1) in Figure 2.6(1) is the un-

punctured rate with maximum redundancy. PP-(2) and PP-(3) represent the only

possible puncturing rate with zero redundancy where two symbols are punctured

(one symbol is removed from encoder-mapper output symbols corresponding to

each transmit antenna each time the PP is applied) out of four symbols. Therefore

for a block of four input bits only two QPSK symbols are transmitted instead of

four QPSK symbols on the un-punctured codes. This puncturing rate is similar

to the un-coded system with the same diversity order. PP-(4) to PP-(7) are not

valid PP’s, because in the first two PP’s symbols are punctured from both transmit

antennas at the same time, which will result in a complete lose of a trellis transition,

while in the last two PP’s, symbols are punctured only from one of the transmit

antennas, which means only one of the transmit antennas has a symbol to transmit

while the other transmit antenna has no symbol to transmit. The equation of

the transmitted ST symbol in terms of the encoder output symbols is given in

Figure 2.7(a), and an example of applying PP-(2) to the encoder output symbols
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is shown in Figure 2.7(b). As can be seen from Figure 2.7 c1
1 is either x1

1 or x1
2, and

c2
1 is either x2

1 or x2
2.

For puncturing period three, the PP’s are of size 2 by 3. In this case there is

also one puncturing rate in addition to the un-punctured one. Each row of the PP’s

has a single zero element. Therefore only two columns contain a zero element while

the remaining column contains two one elements with no two zero elements at the

same column. All possible valid PP’s (except the un-punctured) of period three

are shown in Figure 2.8. In this case, PP-(1) throw PP-(6) represents the only

possible puncturing rate with some redundancy where two symbols are punctured

(one symbol is punctured from the output symbols corresponding to each transmit

antenna each time the PP is applied) out of six symbols. So for a block of six

input bits only four QPSK symbols are transmitted instead of six QPSK symbols

on the un-punctured codes. An example of applying PP-(5) to the encoder output

symbols is shown in Figure 2.9. There are more freedom in the selection of the

punctured symbols on PP’s of period there than that of period two. Therefor, it

is expected that code punctured with PP’s of period three would perform better

than that punctured with PP’s of period two, because in PP’s of period three there

is some redundancy available to the decoder while in PP’s of period two there is

no redundancy available to the decoder.

It is observed that c1
1 is either x1

1 or x1
2, c2

1 is either x2
1 or x2

2, c1
2 is either x1

2

or x1
3, and c2

2 is either x2
2 or x2

3. This observation suggests a modified (expanded)
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Figure 2.5: Puncturing pattern
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puncturing pattern (MPP) that could be used instead of the PP in the encoding

and decoding of symbol PST codes. The MPP has the same number of ones as the

original PP, the same number of rows but it has (P − Nz/2)(1 + Nz/2) columns

(Nz number of zero elements on PP). The use of MPP would simplify the decoding

of symbol PST codes. MPP’s for PP’s of period two are special case where MPP’s

and PP’s are exactly the same in elements and size. For PP’s of period three,

MPP’s are of size 2 by 4. Figure 2.10(a) shows how to extract the MPP’s from

the original PP’s of period three where P = NOT (P ). The equations of the two

transmitted ST symbols in terms of the encoder output symbols using MPP’s are

given in Figure 2.10(b).

For puncturing period four, the PP’s are of size 2 by 4. In this case there

are two puncturing rates that could be applied to the ST code. The first rate

(rate-one puncturing), where only two symbols out of eight are removed each time

the PP is applied. Each row of the PP’s has a single zero element. Therefore

only two columns contain a zero element while the other two columns contain

two one elements with no two zero elements at the same column. Thus only one

symbol is punctured from the output of the encoder corresponding to a transmit

antenna from a block of four symbols each time the PP is applied. Therefor, for a

block of eight input bits only six QPSK symbols are transmitted instead of eight

QPSK symbols on the un-punctured codes. In this puncturing rate there is more

redundancy available to the decoder than that available to the decoder with PP’s
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of periods two and three. So it is expected that codes punctured using rate-one

period four PP’s would outperform codes punctured using PP’s of period two or

three. All possible valid rate-one PP’s of period four and two transmit antennas

are shown in Figure 2.11. Figure 2.12 shows an example of applying period four

rate-one PP-(6) (shown in Figure 2.11(6)) on the encoder output symbols. The

MPP for this case are of size 2 by 6. As in period three, rate-one MPP’s could

be extracted from rate-one PP’s of period four as explained in Figure 2.13(a). In

Figure 2.13(b) equations of the three transmitted ST symbols for rate-one PST in

terms of the encoder output symbols using the MPP’s are given.

ST codes can be further punctured using PP’s of period four, but in this case

more symbols are punctured. This is the second rate (rate-two puncturing), where

four symbols are removed out of eight symbols each time the PP is applied. It is

clear that each row of the PP contains two zero elements, therefore each column

has a zero element with no two zero elements at the same column. In other words,

a symbol is punctured each time instance so that two transmissions occur for

each application of the PP. These (rate-two) PP’s are generated by replacing a

one element by a zero element in the columns containing two one elements of the

rate-one PP’s.

This puncturing rate removes all the available redundancy and it is like that of

period two PP’s with more freedom. Therefore for a block of eight input bits, four

QPSK symbols are transmitted instead of eight QPSK symbols in the un-punctured
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Figure 2.13: Symbol PST codes with period 4 rate-one (a) Extraction of MPP from PP (b)
Equation of the three transmitted ST symbols in terms of the encoder output symbols using the

MPP
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ST code. All possible valid rate-two PP of period four and two transmit antennas

are shown in Figure 2.14. Puncturing process is illustrated by an example in

Figure 2.15, where the rate-two PP(5) shown in 2.14(5) is used. Like in rate-one

puncturing, it is possible to generate the MPP’s for PP’s to simplify the decoding

process. Figure 2.16(a) illustrates how to extract the MPP from the original PP,

and Figure 2.16(b) gives the equations of the two transmitted ST symbols in terms

of the encoder output symbols using the MPP.

Symbol punctured ST codes are not like symbol punctured TCM codes since

puncturing in ST codes is not performed to the whole ST symbol as in TCM codes,

but at most one of its component constellation symbols is punctured at a time.

Thus the symbol shift process described above is required so that each transmit

antenna has a modulated constellation symbol to transmit at all transmission

times. The following example illustrate puncturing and shifting in ST codes using

different periods and puncturing rates.

Example 2.1 Consider the 4-state QPSK ST code designed in [1] shown in Fig-

ure 1.2(b). The un-punctured system encoder accepts 2 input bits each time in-

stance. The two encoder-mapper output symbols are modulated and transmitted

via the two transmit antennas. If this code is punctured using PP with period P ,

then due to 2P input bits each P successive time instances, the two encoder-mapper

output streams each with P symbols are passed to the puncturing circuit. In the

puncturing circuit, each row of the PP is applied to the corresponding stream such
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[
0 0 1 1
1 1 0 0

]

(1)

[
0 1 0 1
1 0 1 0

]

(2)

[
1 1 0 0
0 0 1 1

]

(3)

[
1 0 1 0
0 1 0 1

]

(4)

[
0 1 1 0
1 0 0 1

]

(5)

[
1 0 0 1
0 1 1 0

]

(6)

Figure 2.14: All possible valid rate-two 2 by 4 puncturing pattens
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Figure 2.15: Example of applying period 4 rate-one PP-(5) shown in Figure 2.14(5) on ST encoder
output
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Figure 2.16: Symbol PST codes with period 4 rate-two (a) Extraction of MPP from PP (b)
Equations of the two transmitted ST symbols in terms of the encoder output symbols using
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that each symbol in a stream is multiplied by one or zero. The remaining P −Nz/2

symbols in each stream are buffered in a buffer of size P −Nz/2. After filling both

buffer the stored symbol streams are modulated and transmitted via the two transmit

antennas in P − Nz/2 time instances. This process is illustrated in Table 2.2 for

five cases in addition to the original (un-punctured) system: period two PP-(1), pe-

riod two PP-(3), period three PP-(5), period four rate-one PP-(6), and period four

rate-two PP-(3) where these PP’s are shown in Figure 2.6(1), Figure 2.6(3), Fig-

ure 2.8(5), Figure 2.11(6), and Figure 2.14(3) respectively, and the input bits are

assumed to be (011111011010001110110110). In the table, P -S-PP is puncturing

period - puncturing rate - puncturing pattern, E-M stream i is the encoder/mapper

P symbols output stream corresponding to transmit antenna i, and P-B stream i

is the puncturing circuit/buffer P − Nz/2 symbols output stream corresponding to

transmit antenna i. The P-B P − Nz/2 symbols output stream i is given by

Pi,1 · xi
1 Pi,2 · xi

2 · · · Pi,P · xi
P (2.5)

where (xi
1 xi

2 · · · xi
P ) is the ith encoder-mapper P symbols output stream, and

[Pi,1 Pi,2 · · · Pi,P ] is the ith row of the PP. There are exactly Nz/2 symbols that

are deleted in 2.5. The tth transmitted ST symbol is the concatenation of the tth

symbols in the two P-B output streams where t = 1, 2, · · ·P − Nz/2. Period two

PP-(1) is given in the table to show that if the PP has no zero element, then the

system output is exactly like the un-punctured system output.
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For PP’s of period five, there are two puncturing rates. The first rate (rate-one)

where two symbols are punctured out of ten symbols, there are twenty possible

valid PP’s. The second rate (rate-two) where four symbols are punctured out of

ten symbols, there are thirty possible valid PP’s. While for PP’s of period six,

there are three puncturing rates. The first rate (rate-one) where two symbols are

punctured out of twelve symbols, there are thirty possible valid PP’s. The second

rate (rate-two) where four symbols are punctured out of twelve symbols, there

are ninety possible valid PP’s. The third rate (rate-three) where six symbols are

punctured out of twelve symbols, there are ninety possible valid PP’s. This last

puncturing rate is similar to that of period two and period four rate-two, where

all the available redundancy in the code is removed. Possible valid PP’s of period

five and six are not shown because of brevity of discussion.

As the puncturing period increases, the number of possible valid PP’s increases

and the number of possible puncturing rates increase. Moreover the freedom of

selecting the punctured symbols increase. Unfortunately, the decoder complexity

and decoding time increase too.

Code Rate

The rate (R) of the QPSK symbol PST code depends on the puncturing period (P )

and on the number of zero elements (Nz) in the PP (or equivalently the number
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TABLE 2.2: Example 2.1

P-R-pp output MSB (011111011010001110110110) LSB

input bits 10 01 11 10 11 00 10 10 01 11 11 01
current state 0 2 1 3 2 3 0 2 2 1 3 3
next state 2 1 3 2 3 0 2 2 1 3 3 1

E-M stream 1 0 2 1 3 2 3 0 2 2 1 3 3
Normal E-M stream 2 2 1 3 2 3 0 2 2 1 3 3 1

ST (c1
t c

2
t ) 02 21 13 32 23 30 02 22 21 13 33 31

E-M stream 1 0 2 1 3 2 3 0 2 2 1 3 3
P-B stream 1 0 2 1 3 2 3 0 2 2 1 3 3

2-un-1 E-M stream 2 2 1 3 2 3 0 2 2 1 3 3 1
P-B stream 2 2 1 3 2 3 0 2 2 1 3 3 1

ST (c1
t c

2
t ) 02 21 13 32 23 30 02 22 21 13 33 31

E-M stream 1 0 2 1 3 2 3 0 2 2 1 3 3
P-B stream 1 0 1 2 0 2 3

2-one-3 E-M stream 2 2 1 3 2 3 0 2 2 1 3 3 1
P-B stream 2 1 2 0 2 3 1

ST (c1
t c

2
t ) 01 12 20 02 23 31

E-M stream 1 0 2 1 3 2 3 0 2 2 1 3 3
P-B stream 1 0 2 3 2 0 2 1 3

3-one-5 E-M stream 2 2 1 3 2 3 0 2 2 1 3 3 1
P-B stream 2 1 3 3 0 2 1 3 1

ST (c1
t c

2
t ) 01 23 33 20 02 21 13 31

E-M stream 1 0 2 1 3 2 3 0 2 2 1 3 3
P-B stream 1 0 2 1 2 3 0 2 1 3

4-one-6 E-M stream 2 2 1 3 2 3 0 2 2 1 3 3 1
P-B stream 2 1 3 2 0 2 2 3 3 1

ST (c1
t c

2
t ) 01 23 12 20 32 02 23 13 31

E-M stream 1 0 2 1 3 2 3 0 2 2 1 3 3
P-B stream 1 0 2 2 3 2 1

4-two-3 E-M stream 2 2 1 3 2 3 0 2 2 1 3 3 1
P-B stream 2 3 2 2 2 3 1

ST (c1
t c

2
t ) 03 22 22 32 23 11
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of punctured symbols each application of the PP) as follows:

R =
4P

2P − Nz
(2.6)

This equation is also valid for the un-punctured QPSK ST codes decoded using the

P -stage decoder. The rates of QPSK symbol PST codes using different puncturing

periods and puncturing rates are listed in Table 2.3.

The symbol punctured QPSK ST codes have a lower transmitted power per

information bit than that of the un-punctured QPSK ST codes. Therefore, for a fair

comparison between the un-punctured and punctured QPSK ST codes from power

point of view, frame error rate (FER) vs. signal to noise ratio (SNR NEs/N0)

carve should be sifted to the left by a constant amount of dB’s to get FER vs.

transmitted power per information bit to noise ratio (BNR NEb/N0) carve. This

constant value (kc) depends on the code rate as shown in the following equation:

kc = −10 log
(

2

R

)
(2.7)

For example, the FER vs. SNR carves should be shifted to the left by zero dB

for the un-punctured QPSK ST code, 1.2494 dB for rate-one, and 3.0103 dB for

rate-two QPSK symbol PST codes with period four PP’s, to get the FER vs. BNR

carves.

If a ST code is punctured with a specific rate-one PP to get rate-one PST
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code and the same (mother) ST code is punctured with a rate-two PP, extracted

from that rate-one pattern, to get a rate-two PST code, then a family of the un-

punctured ST code and the two PST codes is produced with different rates depend-

ing on the signal constellation, puncturing period and number of zero elements on

the PP. For example if the rate-one PP-(6) of period four shown in Figure 2.11(6)

is used to puncture a QPSK ST code, and the same ST code is punctured using

rate-two period four PP extracted from rate-one PP-(6) (either period four rate-

two PP-(3) or PP-(4) shown in Figure 2.14(3) and 2.14(4) respectively) a family of

three codes is generated with rates 2, 2.667, and 4 b/s/Hz respectively. This family

of codes can be used in a variable rate ST codes application such as Automatic

Repeat Request (ARQ) protocols.

To generate families of QPSK symbol PST codes with members more than

three, the puncturing period must be an integer greater than five. If the puncturing

period is set to five, then a family of three codes is produced with rates 2, 2.5 and

3.333 b/s/Hz. However, if the puncturing period is set to six, then the resulting

families would have four members with rates 2, 2.4, 3, and 4 b/s/Hz.

As the puncturing period increases, the compatibility and flexibility of the

PST codes family’s increase. Which result in more adaptability and reliability in

the rates of codes family’s. However, as mention earlier the decoding time and

complexity increases significantly.
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Transmitted Frame Length

The normal (un-punctured) transmitted frames length l must be a multiple of the

puncturing period P . Because the puncturing periods used here are two, three

four, five and six, a frame length, which is a multiple of these periods, is selected

to be l = 120. The punctured transmitted frame length (lp) is a function of the

puncturing period as given by the following equation:

lp = l · (P − Nz/2)

P
= kp · P · 2

R
(2.8)

Where

kp =
l

P
=

lp
(P − Nz/2)

(2.9)

is a constant integer equals the number of applications of the PP on a single

encoder output symbols frame of length l. As it is shown above, R depends on

the puncturing period. It should be noticed here that the trellis should arrive

(terminate) to its initial zero state at the end of each frame, so that a specific

number of zeros is added (concatenated) to the input bits of the encoder. This

number of zeros depends on the number of input bits to the encoder k and the

number of encoder memory elements v. For example if the puncturing period

three is used to puncture a 4-state QPSK code, there are 238 source input bits

plus two zeros (padded zeros) passed to the encoder to form a frame of 120 ST

symbols containing 240 QPSK symbols (120 QPSK symbols corresponding to each
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transmit antenna) for the un-punctured system or a transmitted frame of 80 ST

symbols containing 160 QPSK symbols (80 QPSK symbols corresponding to each

transmit antenna) for the PST system. In this case kp equals 40 applications of

the PP on a single frame and kc = 1.7609 dB. The transmitted frame length, kc

and kp are listed in Table 2.3 for different puncturing periods.

2.4 ALTERNATIVE ST TRELLIS CODES

REPRESENTATION

An alternative representation of ST codes that is valid for high-rate, normal and

punctured ST codes is illustrated in this section. This representation is similar to

the representation of MTCM in the sense that the branch labels in both represen-

tations describe the transmitted symbols in more than one time instance. That

makes the similarities and deferences between PST codes and punctured MTCM

codes easily seen.

Consider a ST code, the code trellis shows all branches connecting state σg and

state σh where g, h ∈ {0, 1, · · · , 2v − 1} for one transition (one trellis stage). The

branch label si
g,h is the signal transmitted via transmit antenna i, i = 1, 2, · · · , N ,

when a transition from state σg to state σh g, h = 0, 1, · · · , 2v − 1 occurs. The code

trellis can represent P trellis transitions by concatenating P successive transitions.

If only the initial and the final states are considered, then there will be np =
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TABLE 2.3: Rate, frame length and power factor for PST codes with different puncturing period

Puncturing Puncturing Code Rate Transmitted kc kp

Period rate (b/s) frame length dB applications

uncoded 4 120 3.0103 -

un-punctured 2 120 0.0 -

two one 4 60 3.0103 60

three one 3 80 1.7609 40

four one 2.667 90 1.2494 30
two 4 60 3.0103 30

five one 2.5 96 0.9691 24
two 3.333 72 2.2185 24

six one 2.4 100 0.7918 20
two 3 80 1.7609 20
three 4 60 3.0103 20
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BP−1 paths connecting each initial and final state pair, and each path is formed

by P successive transitions, where B = 2k is the number of branches diverging

from each state in the original trellis diagram and k is the number of source bit

entering the encoder each time instance. In this case the intermediate transitions

forming the connecting paths could be represented by np parallel branches. The

new trellis diagram has the same number of states as the original one but with

parallel branches. Any state pair (σg,σh) is connected with np parallel branches

with branch label bundle Ag,h consists of np parallel branch labels, where Ag,h is

given by:

Ag,h =




(
x1

g,hx
2
g,h · · ·xN

g,h

)1

1

(
x1

g,hx
2
g,h · · ·xN

g,h

)1

2
· · ·

(
x1

g,hx
2
g,h · · ·xN

g,h

)1

P

(
x1

g,hx
2
g,h · · ·xN

g,h

)2

1

(
x1

g,hx
2
g,h · · ·xN

g,h

)2

2
· · ·

(
x1

g,hx
2
g,h · · ·xN

g,h

)2

P

...

(
x1

g,hx
2
g,h · · ·xN

g,h

)np

1

(
x1

g,hx
2
g,h · · ·xN

g,h

)np

2
· · ·

(
x1

g,hx
2
g,h · · ·xN

g,h

)np

P




(2.10)

where
(
xi

g,h

)m

t
is the transmitted channel symbol via transmit antenna i at time

instance t, t = 1, 2, · · · , P associated with the parallel branch m, m = 1, 2, · · · , np

when a transition from state σg to state σh occurs. This new representation accepts

k = kP input bits, where the last 2v input bits are used to select the parallel

branch label bundle within the current encoder state and the first kP − 2v input

bits are used to select parallel branch label within the bundle. The alternative

representation is equivalent to the MTCM code presentation with multiplicity P
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and N transmit antennas.

Example 2.2 Figure 2.17(a) shows the trellis diagram of a 4-state QPSK ST

code. There are two input bits to the encoder each time instance k = 2 and thus

there are B = 4 branches diverging from each state in the original trellis as shown

in Figure 2.17(a). This trellis diagram describes one transition only. If P such a

diagram are concatenated then the resulting trellis diagram will describe P succes-

sive transitions as in Figure 2.17(b). In other words the new trellis describes the

transmitted symbols for P successive time instances. There are 4P−1 paths con-

necting any initial and final state pairs (σg,σh) g, h ∈ {0, 1, 2, 3}. For illustration

the paths connecting initial state σ1 and final state σ2 are marked by dark lines

in Figure 2.17(b). Let P = 2 as shown in Figure 2.17(c), then there will be 4

paths connecting each initial and final state pairs, thus there are np = 4 parallel

branches in each bundle connecting each state pair of the 16 possible state pairs.

There are k = 4 input bits where the last two input bits are used to select a parallel

branch bundle out of the four bundles diverging from the current state and the firs

two input bits are used to select a parallel branch within the selected bundle. The

selected branch labels are the channel symbols that will be transmitted during two

successive time instances.

For this representation to be a true (valid) representation, the output channel

symbols must be identical to the same input bits, which is the case for the alter-

native representation. The next example proves that the transmitted symbols are
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Figure 2.17: Example of the alternative representation (a) Original QPSK 4-state ST trellis
diagram (b) Concatenated P stage trellis diagram (c) Two stage trellis diagram (d) Alternative

trellis diagram
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identical to the same input bits.

Example 2.3 Consider the 4-state ST code designed in [1] shown in Figure 1.2(b),

the two- and three-transition representations are shown in Figure 2.18(a) and Fig-

ure 2.18(b) respectively. For the normal representation, the system accepts 2 input

bits each time instance and the selected branch and the next system state are de-

pendent on these two input bits. Where as for the two-transition representation,

the system accepts four input bits each time instance, so that the next state is only

dependent on the most significant two bits and the selected parallel branch depends

on the least significant two input bits. The three-transition system accepts six input

bits each time instance such that the most significant two input bits are used to se-

lect the next state and the least significant four input bits are used to select between

the parallel branches connecting the current and the next states. Let the input bits

be (011111011010001110110110), the input to each of the three systems, the out-

put symbols from each system and the encoder states are shown in Table 2.4. The

input bits are organized such that the right most bit is the firs input bit entering

the system and it is the least significant one. From the rows of the output symbols

in the Table it is clearly seen that these three systems have identical output for the

same input bits.

Period P PP’s can be applied directly to the branch label of the P -transition

representation. The PST code is easily represented by this alternative trellis rep-
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Figure 2.18: New representation of the 4-state QPSK ST code designed in [1] (a) Two-transition
representation (b) Three-transition representation
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TABLE 2.4: Example 2.3

Rep MSB (011111011010001110110110) LSB

time 0 1 2 3 4 5 6 7 8 9 10 11
input 10 01 11 10 11 00 10 10 01 11 11 01

Normal current 0 2 1 3 2 3 0 2 2 1 3 3
next 2 1 3 2 3 0 2 2 1 3 3 1

output 02 21 13 32 23 30 02 22 21 13 33 31

time 0 1 2 3 4 5
input 0110 1011 0011 1010 1101 0111

Two current 0 1 2 0 2 3
next 1 2 0 2 3 1

output 02 21 13 32 23 30 02 22 21 13 33 31

time 0 1 2 3
input 110110 001110 011010 011111

Three current 0 3 0 1
next 3 0 1 1

output 02 21 13 32 23 30 02 22 21 13 33 31
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resentation, with parallel branch labels bundle given by:

Ag,h =




(
s1

g,hs
2
g,h · · · sN

g,h

)1

1

(
s1

g,hs
2
g,h · · · sN

g,h

)1

2
· · ·

(
s1

g,hs
2
g,h · · · sN

g,h

)1

P−
Nz
2

(
s1

g,hs
2
g,h · · · sN

g,h

)2

1

(
s1

g,hs
2
g,h · · · sN

g,h

)2

2
· · ·

(
s1

g,hs
2
g,h · · · sN

g,h

)2

P−
Nz
2

...

(
s1

g,hs
2
g,h · · · sN

g,h

)np

1

(
s1

g,hs
2
g,h · · · sN

g,h

)np

2
· · ·

(
s1

g,hs
2
g,h · · · sN

g,h

)np

P−
Nz
2




(2.11)

where
(
si

g,h

)m

t
is the transmitted channel symbol via transmit antenna i at time

instance t, t = 1, 2, · · · , P − Nz/2 associated with the parallel branch m, m =

1, 2, · · · , np when a transition from state σg to state σh occurs. For a given P ,

(
si

g,h

)m

t
can be expressed in terms of the MPP’s and un-punctured P -transition

representation such that:

(
si

g,h

)m

t
=

Nz
2

+1∑

n=1

pi,(Nz/2+1)(t−1)+n

(
xi

g,h

)m

(t−1)+n
(2.12)

where pi,n is the ith row nth column element of the MPP. There is only one non zero

product in the summation in equation (2.12). For the PST systems each branch

is labeled with only (P − Nz/2) ST symbols that are transmitted in (P − Nz/2)

time instances.

Example 2.4 Consider the two- and three-transition representation of the code

designed in [1] shown in Figure 2.18(a) and 2.18(b) respectively. If for example

period two PP(3) shown in Figure 2.6(3) is applied to the branches in the two-
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transition representation, the resulting PST code is shown in Figure 2.19(a). Ap-

plying period three PP(5) shown in Figure 2.8(5) to the three-transition representa-

tion of the punctured code will produce the trellis diagram shown in Figure 2.19(b).

The response of the PST systems with the two- and three-transition representations

to the input bits (011111011010001110110110) are given in Table 2.5. Comparing

the output ST symbols of the two-transition alternative punctured system represen-

tation with the corresponding period two punctured ST output symbols in Table 2.2,

the output of both representations is identical for the same input bits. Also com-

paring the output ST symbols of the three-transition alternative punctured system

representation with the corresponding period three punctured ST output symbols in

Table 2.2, both systems also has identical output for the same input bits. That

means the alternative P -transition representation is also valid for punctured ST

codes with period P .

From the alternative representation of the ST and the PST codes, it is noticed

that the complexity of the P -stage decoder of the PST is less than that of the ST

decoder using the same P -transition representation, since each branch in the PST

P -transition trellis consists of P − Nz/2 ST symbols while each branch in the ST

P -transition trellis consists of P ST symbols. This property was not clear in the

original trellis representation of ST codes. However, if the normal decoder of ST

codes is used, the PST decoder will be more complex as mentioned earlier.

This representation clearly demonstrates the rate-compatibility property of
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� ���� � ������ ���� � �	� ��� ���� � ������� ���� � �����
� �	� � � ����� �	� � � �� ��� �	� � � ������ ��� � � ����
� �	� � � � ���� �	� � � ��� ��� �	� � � � ����� ��� � � � ���
� �	� � � ������ �	� � � ��� ��� �	� � � ������� ��� � � �����
� �	� � � ������ �	� � � �	� ��� �	� � � ������� ��� � � �����
� ����� � ����� ����� � �� ��� ����� � ������ ����� � ����
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� ����� � ������ ����� � ��� ��� ����� � ������� ����� � �����
� ����� � ������ ����� � �	� ��� ����� � ������� ����� � �����
� ����� � ����� ����� � �� ��� ����� � ������ ����� � ����
� ����� � � ���� ����� � ��� ��� ����� � � ����� ����� � � ���
� ����� � ������ ����� � ��� ��� ����� � ������� ����� � �����
� ����� � ������ ����� � �	� ��� ����� � ������� ����� � �����

(b)

Figure 2.19: Alternative punctured code trellis representation of the 4-state QPSK ST code
designed in [1] (a) PST code by period 2 PP-(3) shown in Figure 2.6(3) (b) PST code by period

3 PP-(5) shown in Figure 2.8(5)

.
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TABLE 2.5: Example 2.4

Rep MSB (011111011010001110110110) LSB

time 0 1 2 3 4 5
input 0110 1011 0011 1010 1101 0111

Two current 0 1 2 0 2 3
next 1 2 0 2 3 1

output 02 21 13 32 23 30 02 22 21 13 33 31
pnc output 01 12 20 02 23 31

time 0 1 2 3
input 110110 001110 011010 011111

Three current 0 3 0 1
next 3 0 1 1

output 02 21 13 32 23 30 02 22 21 13 33 31
pnc output 01 23 33 20 02 21 13 31



83

PST codes family, since each member of a family of PST codes has the same

P -transition alternative trellis representation structure and essentially the same

decoder. However, rate-compatible ST (RC-ST) codes are unlike rate-compatible

trellis (RC-TCM) codes [46] because of the following reasons. In a RC-TCM codes

family, only the last P − mp symbols of the branch labels in the mother (un-

punctured) TCM code are deleted and the first mp symbols of the branch labels of

both the punctured and the mother TCM codes are the same where P and mp are

the multiplicities of the mother and the punctured TCM codes respectively. While

in a RC-ST codes family, the P − Nz/2 ST symbols of branch labels of the punc-

tured ST code and the first P − Nz/2 ST symbols of branch labels of the mother

ST code are deferent at least in one ST symbol depending on the PP structure.

This is because of the symbol shit process and the restriction on the columns of

the PP’s explained earlier, and the fact that a ST symbol is a concatenation of the

N constellation symbols where each symbol corresponds to one of the N transmit

antennas (st = s1
t s

2
t · · · sN

t ).



CHAPTER 3

PERFORMANCE ANALYSIS AND

DESIGN CRITERIA OF SYMBOL

PUNCTURED SPACE-TIME CODES

3.1 INTRODUCTION

Performance criteria of ST codes given in Chapter one have been implemented by

applying the performance criteria of MTCM codes in fading channels to multi-

ple transmit antennas. Unfortunately, performance criteria of symbol punctured

MTCM codes [46] are not applicable to symbol PST codes, because of the symbol

shifting process described in Chapter two. However, the performance criteria of

ST codes in fading channels studied in Chapter one can be applied to symbol PST

84
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codes but by taking the effects of puncturing in the computation of the PST code

metrics. From the resulting bounds on the PEP, design criteria of symbol PST

codes are obtained.

In this Chapter, performance of symbol PST coding systems are analyzed for

two fading channel models; quasi-static and rapid fading channels described in

Chapter one. The effects of puncturing on the code performance especially on the

PEP bounds and code metrics are studied. Then symbol PST codes design criteria

for both channel models are established. This Chapter is concluded with designed

codes and numerical results.

3.2 PERFORMANCE ANALYSIS AND DESIGN

CRITERIA

As in Chapter one, this analysis starts by stating notations. Let the encoder-

mapper output symbols matrix denoted by x be:

x =




x1
1 x1

2 · · · x1
l

x2
1 x2

2 · · · x2
l

...
...

. . .
...

xN
1 xN

2 · · · xN
l




(3.1)
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where l is the un-punctured frame length, the ith row xi = [xi
1, x

i
2, · · · , xi

l] is the

encoder-mapper output symbols sequence corresponding to the ith transmit an-

tenna (i = 1, 2, · · · , N), and the nth column xn =
[
x1

n, x2
n, · · · , xN

n

]T
is the N

encoder-mapper output symbols, due to the nth k-tuple input bits, that are passed

to the puncturing circuit (n = 1, 2, · · · , l). The transmitted codeword matrix c

after the puncturing circuit is given by:

c =




c1
1 c1

2 · · · c1
lp

c2
1 c2

2 · · · c2
lp

...
...

. . .
...

cN
1 cN

2 · · · cN
lp




(3.2)

where lp is the punctured transmitted frame length, the ith row ci =
[
ci
1, c

i
2, · · · , ci

lp

]

is the puncturing circuit output symbols sequence transmitted via the ith transmit

antenna (i = 1, 2, · · · , N), and the tth column ct =
[
c1
t , c

2
t , · · · , cN

t

]T
is the trans-

mitted ST symbol at time instance t (t = 1, 2, · · · , lp). In [1] ,[3], and others, each

column ct of the codeword matrix c is considered as a single ST symbol, while in

this analysis each element ci
t, t = 1, 2, · · · , lp i = 1, 2, · · · , N , of the codeword ma-

trix c is considered as a single symbol. So each ST symbol consists of N symbols

and when using the word symbol it refers to an element ci
t in the codeword matrix

c unless stated otherwise. The elements of the codeword matrix c are given in
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terms of the elements of the matrix x and the MPP as:

ci
t =

t+ Nz
2

+Nz
2

[
t−1

P−
Nz
2

]

∑

n=t+ Nz
2

[
t−1

P−
Nz
2

] pi,g · xi
n (3.3)

where [·] is integer (·), g is a function of t and n:

g =

(
n − 1 +

Nz

2

(
t −

[
t − 1

P − Nz

2

]
− 1

))
modulo −

((
P − Nz

2

)(
Nz

2
+ 1

))
+ 1

(3.4)

and pi,g is the ith element in the gth column of the MPP, g = 1, 2, · · · , (P −

Nz/2)(Nz/2 + 1), i = 1, 2, · · · , N , t = 1, 2, · · · , lp, and 1 ≤ n ≤ l. There is only one

non zero element in the summation in (3.3).

At the receiver, the received signal at the j th receive antenna (j = 1, 2, · · · , M)

is a noisy superposition of the N transmitted symbols corrupted by channel fading.

The received signal matrix r equals:

r =




r1
1 r1

2 · · · r1
lp

r2
1 r2

2 · · · r2
lp

...
...

. . .
...

rM
1 rM

2 · · · rM
lp




(3.5)

and rt =
[
r1
t , r

2
t , · · · , rM

t ,
]T

is the received sequence at the M receive antennas at

reception time t, thus the signal at the jth receive antenna after the match filter is
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given by:

rj
t =

N∑

i=1

αi,j (t) ci
t + nj

t (3.6)

where nj
t is the noise component of the jth receive antenna at time t, and it is

modeled as independent complex Gaussian random variable with zero mean and

variance N0/2 per dimension. The fade coefficients αi,j (t), t = 1, 2, · · · , lp i =

1, 2, · · · , N j = 1, 2, · · · , M , are modeled as complex Gaussian random variables

with zero mean and variance 1/2 per dimension, and vary independently from one

symbol interval to other in rapid fading channels and from one frame interval to

other in quasi-static fading channels. Moreover, the fade coefficients for paths from

the N transmit antennas to the M receive antennas at time t are uncorrelated.

Hence, the received signals at time t can be written in terms of the transmitted

symbols as:

rt = a (t) ct + nt (3.7)

where a (t) is the fade coefficients matrix at time t, which equals:

a (t) =




α1,1 (t) α2,1 (t) · · · αN,1 (t)

α1,2 (t) α2,2 (t) · · · αN,2 (t)

...
...

. . .
...

α1,M (t) α2,M (t) · · · αN,M (t)




(3.8)

and nt =
[
n1

t , n
2
t , · · · , nM

t

]T
is the noise vector at time t. The row aj (t) of the fade
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matrix is the channel path gains from the N transmit antennas to the j th receive

antenna at time t.

aj (t) = [α1,j (t) α2,j (t) · · · αN,j (t)] (3.9)

The maximum-likelihood decoder selects the path with the minimum cumula-

tive branch metric, which is given by:

lp∑

t=1

M∑

j=1

∣∣∣∣∣r
j
t −

N∑

i=1

αi,j (t) ci
t

∣∣∣∣∣

2

(3.10)

Substituting (3.3) in (3.10), results in:

lp∑

t=1

M∑

j=1

∣∣∣∣∣∣∣∣∣∣∣

rj
t −

N∑

i=1

αi,j (t)

t+ Nz
2

+Nz
2

[
t−1

P−
Nz
2

]

∑

n=t+ Nz
2

[
t−1

P−
Nz
2

] pi,g · xi
n

∣∣∣∣∣∣∣∣∣∣∣

2

(3.11)

The decoder will decides on the sequence (codeword matrix) e in favor of the

transmitted sequence c when:

lp∑

t=1

M∑

j=1

∣∣∣∣∣r
j
t −

N∑

i=1

αi,j (t) ci
t

∣∣∣∣∣

2

≥
lp∑

t=1

M∑

j=1

∣∣∣∣∣r
j
t −

N∑

i=1

αi,j (t) ei
t

∣∣∣∣∣

2

(3.12)

The probability of this event is the conditional pairwise error probability and it is
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well approximated by [1]:

P (c → e|αi,j (t) , i, j, t) ≤ exp
(
−d2 (c, e)

Eb

4N0

)
(3.13)

which is the standard approximation to the Gaussian tail function. Es is replaced

by Eb since they are equal for un-punctured QPSK ST codes and differ by kc for

punctured QPSK codes. The expression d2 (c, e) is the square (modified) Euclidean

distance and it is given by:

d2 (c, e) =
lp∑

t=1

M∑

j=1

∣∣∣∣∣
N∑

i=1

αi,j (t)
(
ci
t − ei

t

)∣∣∣∣∣

2

(3.14)

Let x̂ be the encoder-mapper output symbols sequence that after puncturing pro-

duce the sequence e. Substituting the value of ei
t in terms of x̂i

n and (3.3) in

equation (3.14) results in:

d2 (c, e) =
lp∑

t=1

M∑

j=1

∣∣∣∣∣∣∣∣∣∣∣

N∑

i=1

αi,j (t)




t+ Nz
2

+Nz
2

[
t−1

P−
Nz
2

]

∑

n=t+ Nz
2

[
t−1

P−
Nz
2

] pi,g ·
(
xi

n − x̂i
n

)




∣∣∣∣∣∣∣∣∣∣∣

2

(3.15)

3.2.1 COMMON DESIGN CRITERION AND PUNCTURING PATTEN

STRUCTURE

Before continuing the analysis in fading channels, a common design criterion on

the mother ST code is obtained and the effects of the PP structure are studied.
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To minimize the effects of puncturing on the PST system performance, the square

Euclidean distance of the PST code (3.15) between all codeword pairs should

be maximized. For symbol PST codes, the square Euclidean distance is mainly

dependent on the mother ST code, puncturing period and the PP structure. To

maximize the square Euclidean distance of the PST codes for any puncturing

period and PP structure, there should be a design criterion on the mother ST code

that is valid for both quasi-static and rapid fading channels.

In the original ST systems, the encoder-mapper output symbols N streams

are modulated and transmitted via the N transmit antennas. Thus the square

Euclidean distance of the un-punctured ST code (1.12) could be written directly

in terms of the encoder-mapper output ST symbols as:

d2 (c, e) =
l∑

n=1

M∑

j=1

∣∣∣∣∣
N∑

i=1

αi,j (n)
(
xi

n − x̂i
n

)∣∣∣∣∣

2

(3.16)

It is clear that the square Euclidean distance between the two codewords c and

e equals the summation of the square Euclidean distance between the encoder-

mapper output ST symbols x1
nx2

n · · ·xN
n and x̂1

nx̂2
n · · · x̂N

n (n = 1, 2, · · · , l) multi-

plied by the channel gains. Thus to maximize the square Euclidean distance of

the mother ST code, the square Euclidean distance between the encoder-mapper

output ST symbols x1
nx2

n · · ·xN
n and x̂1

nx̂2
n · · · x̂N

n (n = 1, 2, · · · , l) should be maxi-

mized.

However, this is not valid for PST codes because of the shift of symbols such
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that the encoder-mapper output ST symbol is not the transmitted ST symbol.

Consequently, for the QPSK symbol PST code, to maximize the square Euclidean

distance between all codeword pairs (c, e), the square Euclidean distance between

the encoder-mapper output symbols xi
n and x̂i

n (n = 1, 2, · · · , l i = 1, 2, · · · , N)

should be maximized. This is equivalent to maximize the symbol-wise Hamming

distance (∆H) between the encoder-mapper output ST symbols x1
nx2

n · · ·xN
n and

x̂1
nx̂2

n · · · x̂N
n (n = 1, 2, · · · , l).

Definition 3.1 The symbol-wise Hamming distance ∆H between two ST symbols

x1
nx2

n · · ·xN
n and x̂1

nx̂2
n · · · x̂N

n equals the number of places where xi
n 6= x̂i

n for i =

1, 2, · · · , N

The symbol-wise Hamming distance ∆H does not necessarily equal the ST symbol-

wise Hamming distance δH . The following example illustrates the deference be-

tween ∆H and δH .

Example 3.1 Consider the two ST symbols (00) and (01) or (000) and (010),

then in this case both ∆H and δH equal one. However, for the two ST symbols (00)

and (12) or (102) and (113), ∆H equals two while δH equals one.

By looking at the definition of ∆H , it is observed that maximizing ∆H between

two ST symbols, will maximize δH . The maximum value of ∆H between two ST

symbols is N , which corresponds to the maximum value of δH between the two

ST symbols that is one. For a ST code, the maximum value of the symbol-wise
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Hamming distance ∆H between two codewords with the ST symbol-wise Ham-

ming distance δh, is N · δH . The symbol-wise Hamming distance ∆H could easily

be maximized for a ST code by maximizing the symbol-wise Hamming distance

between branches diverging from and merging into the same state.

The selection of appropriate puncturing period is application dependent since

it affects the data rate, the decoder complexity, and the reliability of PST codes

family. However, for a given period, the PP structure design is mainly dependent

on the mother ST code. Maximizing ∆H simplify the design of PP’s for best per-

formance in both quasi-static and rapid fading channels. ST codes with maximum

∆H , would perform better as the zeros in the PP are far from each other. That

means, for a given puncturing period, all the remaining P − Nz/2 symbols from

the encoder-mapper output P symbols corresponding to one of the N transmit

antennas are shifted such that the effect of the punctured symbols are distributed

over the transmitted P −Nz/2 ST symbols. For example, ST code punctured using

period three PP-(5) shown in Figure 2.8(5) is expected to outperform the same

mother ST code but punctured using period three PP-(1) shown in Figure 2.8(1).

From the above analysis, two design criteria are derived, the first is the maxi-

mization of symbol-wise Hamming distance ∆H and it is related to the design of

the mother ST code. The second one is for ST code with maximum ∆H = N · δh

and a given puncturing period, the design of the PP for best performance is simply

by separating the punctured symbol in the PP as far as possible.
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3.2.2 QUASI-STATIC RAYLEIGH FADING CHANNELS

For quasi-static fading channels, the fade coefficients remain constant during frame

transmission time lp and vary independently from one frame to another. Therefore

αi,j (1) = αi,j (2) = · · · = αi,j (lp) = αi,j

and the jth row of the coefficients matrix will be:

aj = [α1,j α2,j · · · αN,j] (3.17)

Thus, the square Euclidean distance (3.15) can be written as:

d2 (c, e) =
M∑

j=1

N∑

i=1

N∑

i′=1

αi,jαi′,j

lp∑

t=1

t+ Nz
2

+Nz
2

[
t−1

P−
Nz
2

]

∑

n=t+ Nz
2

[
t−1

P−
Nz
2

] pi,g

(
xi

n − x̂i
n

)
pi′,g

(
xi′

n − x̂i′
n

)

(3.18)

that could be manipulated to arrive at:

d2 (c, e) =
M∑

j=1

ajA (c, e)aH
j (3.19)
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where

Ai,i′ (c, e) =
lp∑

t=1

t+ Nz
2

+Nz
2

[
t−1

P−
Nz
2

]

∑

n=t+ Nz
2

[
t−1

P−
Nz
2

] pi,g

(
xi

n − x̂i
n

)
pi′,g

(
xi′

n − x̂i′
n

)
(3.20)

By construction, A (c, e) has a square root B (c, e) (codeword difference matrix)

that equals:

B (c, e) =




c1
1 − e1

1 c1
2 − e1

2 · · · c1
lp − e1

lp

c2
1 − e2

1 c2
2 − e2

2 · · · c2
lp − e2

lp

...
...

. . .
...

cN
1 − eN

1 cN
2 − eN

2 · · · cN
lp − eN

lp




(3.21)

and clearly

A (c, e) = B (c, e) · BH (c, e) (3.22)

Hence A (c, e) is a nonnegative definite Hermitian matrix with real nonnegative

eigenvalues [1]. So, there exist a unitary matrix V such that:

VA (c, e)VH = D (3.23)

where D is a real diagonal matrix of the eigenvalues of the matrix A (c, e), with

diagonal elements λi, i = 1, 2, · · · , N counting multiplicity and λ1 ≥ λ2 ≥ · · · ≥

λn ≥ 0. The rows [v1,v2, · · · ,vN ], (eigenvectors of A (c, e)) of V form a complete

orthonormal basis of the N -dimensional vector space.
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Using the above results,(3.19) can be written as:

d2 (c, e) =
M∑

j=1

N∑

i=1

λi |βi,j|2 (3.24)

where βi,j = aj · vi. Substituting (3.24) in (3.13) leads to:

P (c → e|αi,j, i, j) ≤ exp


− Eb

4N0

M∑

j=1

N∑

i=1

λi |βi,j|2

 (3.25)

The βi,j are independent complex Gaussian random variables with variance 1/2

per dimension and mean value E [aj · vi]. Letting

Ki,j = |E [βi,j]|2 = |E [aj] · E [vi]|2 = |[E [a1,j ] E [a2,j ] · · · E [aN,j]] · vi|2

(3.26)

thus |βi,j| are independent Rician distributions [1] with probability density function

(pdf):

p (|βi,j|) = 2 |βi,j| exp
(
− |βi,j|2 − Ki,j

)
I0

(
2 |βi,j|

√
Ki,j

)
|βi,j| ≥ 0 (3.27)

where I0 (·) is the zero-order modified Bessel function of the first kind. Therefore

the unconditioned upper bound on the probability of error is simply computed

by averaging the right hand side of inequality (3.25) with respect to independent
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Rician distribution of |βi,j| to arrive at [1]:

P (c → e) ≤
M∏

j=1




N∏

i=1

1

1 + Eb

4N0
λi

exp


−

Ki,j
Eb

4N0
λi

1 + Eb

4N0
λi




 (3.28)

A special case of Rayleigh fading where E [αi,j] = 0 and thus Ki,j = 0 results

in an upper bound on PEP given by:

P (c → e) ≤
(

N∏

i=1

(
1 + λi

Eb

4N0

))−M

(3.29)

Let r denotes the rank of A (c, e), then there are exactly r nonzero eigenvalues of

A (c, e). Therefore, inequality (3.29) can be written as:

P (c → e) ≤
(

r∏

i=1

λi

)
−M (

Eb

4N0

)−rM

(3.30)

From (3.30), a diversity advantage of rM and a coding advantage of (λ1λ1 · λr)
1/r

are achieved.

From the above analysis, it is observed that the design criteria for un-punctured

ST code in quasi-static are valid for PST codes but with one more criterion.

Design Criteria for PST codes in Quasi-Static Fading Channels

• Maximize the symbol-wise Hamming distance ∆H for all distinct codeword

pairs of the mother code.

• Maximize the minimum rank of the matrix A (c, e) for all distinct codeword
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pairs for both the mother and the punctured codes.

• Maximize the minimum determinant of A (c, e) corresponding to distinct

codeword pairs with the minimum rank for both the mother and the punc-

tured ST codes.

The first design criterion is to insure the robustness of the ST code to the punctur-

ing period and the PP structure. The second and the third criteria are the rank

and determinant criteria respectively found in [1].

3.2.3 RAPID RAYLEIGH FADING CHANNELS

In rapid fading channels, channel gains (αi,j (t)) vary independently form one sym-

bol interval to another. Let F (ct, et) denotes a ST symbols difference vector that

is given by:

F (ct, et) =
[
c1
t − e1

t c2
t − e2

t · · · cN
t − eN

t

]T
(3.31)

then, the N by N matrix C (ct, et) defined by [1]:

C (ct, et) = F (ct, et) · FH (ct, et) (3.32)

with the element at the ith row and the i′th column equals to:

(
ci
t − ei

t

) (
ci′
t − ei′

t

)
=

t+ Nz
2

+Nz
2

[
t−1

P−
Nz
2

]

∑

n=t+ Nz
2

[
t−1

P−
Nz
2

] pi,g

(
xi

n − x̂i
n

)
pi′,g

(
xi′

n − x̂i′
n

)
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is a Hermitian matrix. So there exist a unitary matrix V (t) such that:

V (t)C (ct, et)VH (t) = D (t) (3.33)

where D (t) is a real diagonal matrix with diagonal elements Di,i (t), i = 1, 2, · · · , N

are the eigenvalues of C (ct, et). The rows of V (t), (v1 (t) ,v2 (t) , · · · ,vN (t)) eigen-

vectors of C (ct, et) form a complete orthonormal basis of the N -dimensional vector

space.

If ct = et, then C (ct, et) has all its eigenvalues equal zero. However, when

ct 6= et, then there is only one nonzero eigenvalue of C (ct, et). Let this eigenvalue

be denoted by D1,1 (t) and let the eigenvector corresponding to D1,1 (t) be denoted

by v1 (t). The value of this nonzero element D1,1 (t) is the squared Euclidean

distance between ct and et.

D1,1 (t) = |ct − et|2 =
N∑

i=1

∣∣∣ci
t − ei

t

∣∣∣
2

=
N∑

i=1

∣∣∣∣∣∣∣∣∣∣∣

t+ Nz
2

+Nz
2

[
t−1

P−
Nz
2

]

∑

n=t+ Nz
2

[
t−1

P−
Nz
2

] pi,g

(
xi

n − x̂i
n

)

∣∣∣∣∣∣∣∣∣∣∣

(3.34)

The square Euclidean distance d2 (c, e) given in (3.15) could be expressed as:

d2 (c, e) =
lp∑

t=1

M∑

j=1

N∑

i=1

|βi,j (t)|2 · Di,i (t) (3.35)

where βi,j (t) = aj (t) ·vi (t) are independent complex Gaussian variables with zero
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mean and variance 1/2 per dimension, and aj (t) is given by (3.9). While there is

at most one nonzero eigenvalue D1,1 (t) at each time t, equation (3.35) will be:

d2 (c, e) =
∑

t∈γ(c,e)

M∑

j=1

|β1,j (t)|2 D1,1 (t) =
∑

t∈γ(c,e)

M∑

j=1

|β1,j (t)|2 |ct − et|2 (3.36)

where γ (c, e) represents the set of time instances where |ct − et| 6= 0 and δH equals

the number of elements on γ (c, e). Substituting the value of d2 (c, e) from equation

(3.36) into inequality (3.13), the conditional PEP upper bound will be:

P (c → e|αi,j (t) , i, j, t) ≤ exp


−

∑

t∈γ(c,e)

M∑

j=1

|β1,j (t)|2 |ct − et|2
Eb

4N0


 (3.37)

By noting that D1,1 (t) given by (3.34) is the only nonzero eigenvalue, and averaging

(3.37) with respect to the Rayleigh distribution of |β1,j (t)|, the unconditional PEP

upper bound will be [1]:

P (c → e) ≤
∏

t∈γ(c,e)

(
|ct − et|2

Eb

4N0

)−M

=
∏

t∈γ(c,e)

|ct − et|−2M
(

Eb

4N0

)−δHM

(3.38)

From this inequality, a diversity of δHM is achieved.

The design criteria for PST codes in rapid Rayleigh fading channels are also

like that of un-punctured ST code.

Design Criteria of PST codes in Rapid Fading Channels

• Maximize the minimum symbol-wise Hamming distance ∆H between all dis-
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tinct codeword pairs of the mother ST code, thus the ST symbol-wise Ham-

ming distance δH between all distinct codeword pairs will be maximized for

both the un-punctured and the punctured ST codes.

• Maximize the product distance d2
p corresponding to the path with minimum

δH of the mother ST code.

The first criterion, insure the maximization of δH of the mother code which is

because of the maximization of ∆H . The second design criterion is the product

distance criterion found in [1].

3.3 SEARCH CRITERIA AND RESULTS

The design criteria for quasi-static and rapid fading channels were implemented

using a C program. In addition to the design criteria, the search program excludes

codes that do not satisfy the following conditions to minimize the searching time.

• The code must span all possible ST symbols for N transmit antennas, which

means it should contain all possible N QPSK symbols concatenations. Since

in this analysis there are two transmit antennas, the number of possible two

QPSK symbols concatenations (QPSK symbol pairs) equals 42 = 16. Codes

does not satisfy this condition does not have full rank and maximum δH [1].

In addition, they have a lower distance between codewords which increase

probability of errors.
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• No QPSK pair (ST symbol) appears more than once in the branches diverging

from or merging into the same state. Codes does not satisfy this conditions

does not have maximum δH .

• The encoder of the code must be linear, thus the encoder diagram contains

only memory elements and exclusive ors (modulo-2 adders). This research is

restricted to linear encoders only.

The search program procedure is:

• Code generation: ST codes are generated using generating matrix.

• Testing conditions: the above condtions are tested.

• Metric computations: the new code metrics such as rank, determinant and

product distance are calculated.

• Comparing and selecting: the generated code metrics are compared and the

code with best metric depending on the implemented design criterion is se-

lected.

These conditions are included in the search program to minimize the searching

time because condition testing does not take long time while metric computations

take most of the searching time.

The search program spans all possible codes that satisfy the above conditions

and the design criteria, and the codes with best metrics are selected. The search
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results are shown in Figure 3.1, where five codes are found. One 4-state code that

satisfy the design criteria for quasi-static and rapid fading channels is found, while

it was not possible to find single 8- or 16-state code that satisfies both design

criteria sets.

3.4 NUMERICAL RESULTS

Since the new codes satisfy the design criteria, they are excepted to have a com-

parable performance to the best codes in the literature. This can be shown via

comparing new and best codes metrics, and performance by simulation. Metrics

of the new codes are calculated and given in Table 3.1. In the same table, metrics

of the best codes shown in Figure 1.2 are also given. To simplify referencing in the

following section, each code is given a name in the third column.

From the table it is clearly seen that new and best codes have the same ST

symbol-wise hamming distance (δH) for the same number of states. However, the

symbol-wise hamming distances (∆H) for the new five codes are maximized. Since

the maximization of ∆H is the common criterion, it was not possible to find opti-

mum 4- and 16-state codes that have maximum coding advantage or determinant.

In contrast, the new 8-state code two (Nt8) and both 16-state codes (No16 and

Nt16) have better minimum product distance than the best codes with the same

number of states. These metrics does not completely describe the code performance

so that the new and best codes are simulated to complete the comparison.
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Figure 3.1: Search results for QPSK ST codes (a) 4-state QPSK (b) 8-state QPSK one (c) 8-state
QPSK two (d) 16-state QPSK one (e) 16-state QPSK two
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TABLE 3.1: Existing and new codes metrics

Number Product
of Source Name Rank Determinant ∆H δH distance

states pdmin

[1] T4 2 4 2 2 4
4 [4] B4 2 8 3 2 16

[5] V4 2 4 3 2 24
new N4 2 4 4 2 24

[1] T8 2 12 2 2 16
[4] B8 2 16 3 2 24

8 [5] V8 2 8 3 2 32
new one No8 2 16 4 2 16
new two Nt8 2 8 4 2 48

new high-rate HR8 1 4 3 2 16

[1] T16 2 12 3 3 16
[4] B16 2 32 4 3 64

16 [5] V16 2 20 4 3 64
new one No16 2 16 6 3 96
new two Nt16 2 12 6 3 144
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3.4.1 PERFORMANCE IN QUASI-STATIC FADING CHANNELS

The new codes and the best ones have been simulated in quasi-static fading chan-

nels. The performance of the new five codes are shown in Figure 3.2. From

Figure 3.3, it is seen that the optimum 4-state code B4 outperforms the V4 and

N4 for one and two receive antennas by about 0.5 dB at frame error rate of 10−2,

while both codes V4 and N4 outperform the reference code T4 for two receive

antennas. All 8-state codes have almost identical performance for one and two

receive antennas as shown in Figure 3.4. As can be seen from Figure 3.5, the

16-state codes almost have identical performance for one and two receive antennas

too. The above results show that the new codes have a comparable performance

in quasi-static fading channels to the existing codes. However, by construction the

new codes are expected to outperform the existing codes under puncturing as will

be shown next.

For puncturing period two, PP(2) is used to puncture the ST codes. In this

case all the redundancy in the ST codes are deleted. For the 4-state codes as shown

in Figure 3.6, N4 outperforms the optimum code B4 by about 0.5 dB and the code

V4 by about one dB for one and two receive antennas. No8 and Nt8 have almost

the same performance with a round 0.2 dB advantage for one receive antenna and

around 0.1 dB advantage for two receive antennas to Nt8 over No8. Both code

No8 and Nt8 outperform the optimum code B8 by a little more than one dB for

both one and two receive antennas as shown in Figure 3.7. Figure 3.8 shows that
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Figure 3.2: Performance of 4-, 8-, and 16-state codes in quasi-static fading channel
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Figure 3.3: Performance comparison of 4-state codes in quasi-static fading channel
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Figure 3.4: Performance comparison of 8-state codes in quasi-static fading channel
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Figure 3.5: Performance comparison of 16-state codes in quasi-static fading channel
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No16 and Nt16 have identical performance and also outperform V16 by more than

one dB. However, the reference codes T4, T8, and T16, and the codes V8 and B16

(optimum 16-state code) have a zero performance for both one and two receive

antennas. From the above results, although the new codes do not have a good

performance under puncturing period two, they have a better performance than

the existing codes under the same puncturing period.

Under puncturing with period three PP(5) there are some redundancy in the

punctured codes. Since the codes punctured with period three have the same rate

as that of the high-rate code HR8, the performance of the code HR8 found in

Chapter two is compared to that of the 4- and 8-state punctured codes. The code

N4 outperforms the optimum code B4 and the code V4 by about one dB and

outperforms the reference code T4 by around two dB’s for one receive antenna,

while it outperforms the optimum code B4 by about two dB’s and the codes V4

and T4 by more than three dB’s for two receive antennas system (Figure 3.9). For

the punctured 8-state codes with period three, the code Nt8 has an advantage of

about 0.5 dB and more than one dB over No8 for one and two receive antennas

respectively as it can be seen from Figure 3.10. In the other hand the code No8

outperforms V8 and T8 by two dB’s and a little less than 0.5 dB for one and

two receive antennas respectively, while in this case the optimum code B8 has the

worst performance for both one and two receive antennas systems. The code HR8

outperforms N4 by 1.25 dB’s for one receive antenna and 0.8 dB for two receive
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antenna as can bee seen in Figure 3.9, while it has the same performance with

around 0.2 dB advantage at high SNR and almost identical performance to Nt8

for one and two receive antennas respectively as shown in Figure 3.10. Unlike

in period two where Nt16 and No16 have identical performance for one and two

receive antennas, they have a similar performance only for one receive antenna and

Nt16 has an advantage of 0.5 dB over No16 for two receive antennas (Figure 3.11).

Both codes Nt16 and No16 outperforms all other 16-state codes by more than three

dB’s for one receive antenna and about 1.5 dB’s for two receive antennas.

For period four, PP(6) is used. The code N4 also outperforms the other 4-state

codes by about three dB’s for one receive antenna and 2.5 dB’s for two receive

antennas as shown in Figure 3.12. Similarly, Nt8 has an advantage of about 1.25

dB’s and about 0.75 dB over No8 for one and two receive antennas, where both

codes outperform other 8-state codes by three dB’s and two dB’s for one and two

receive antennas respectively (Figure 3.13). In contrast, No16 performs better than

Nt16 by two dB’s for one receive antenna and a little more than one dB for two

receive antennas as it can be seen in Figure 3.14. This can be explained by the

increasing redundancy and that No16 has a better deteminant than Nt16e. No16

outperforms other 16-state codes by about 2.5 dB’s for both one and two receive

antennas.

Since the decoding complexity and time increase as the puncturing period and

number of state increase, only the new 4-state (N4) code is simulated with peri-
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ods five and six. In Figure 3.15 shows the performance of N4 without and under

puncturing with periods two, three, four, five and six. For the one receive antenna

systems, most of the improvement in the performance (about four dB’s) due to

coding advantage (redundancy) is from period two where there is no redundancy in

the punctured code to period three where there are still some redundancy available

in the punctured code. N4 without puncturing has an advantage more than one

dB over the punctured code with period six, while that code outperforms N4 when

punctured with period five by only 0.2 dB. The performance deference increases

to about one dB between punctured code with period five and punctured code

with period four, and to three dB’s between punctured code with period four and

punctured code with period three. Similarly, for the two receive antennas systems,

most of the improvement (three dB’s) due to coding advantage is between punc-

tured code with period two and that with period three. However, the performance

deference between punctured code with period four and that with period three is

only one dB, and between punctured code with period five and that with period

four is about 0.5 dB. Punctured code with period six has identical performance to

the normal (un-punctured) one, which means that the punctured code has enough

redundancy to recover the transmitted frames as the normal code. Both codes

outperforms that punctured with period five by about 0.25 dB. From the above

results it can be seen that as the puncturing period increases, the performance of

the punctured code improved and in the systems where there are enough diversity
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advantage and large puncturing period, the punctured code would have identical

performance to the un-punctured one.

3.4.2 PERFORMANCE IN RAPID FADING CHANNELS

The new codes are also simulated in rapid fading channels as shown in Figure 3.16.

From Figure 3.17, N4 and one of best codes in rapid fading channel V4 have

identical performance and outperform B4 by about 0.1 dB and T4 the reference

code by about three dB’s for one receive antenna and outperform B4 by about 0.25

dB and T4 also by about three dB’s for two receive antennas. For the 8-state codes

as shown in Figure 3.18, the codes V8 and Nt8 have almost the same performance

and outperform B8 by about one dB for one and two receive antennas, while the

code B8 outperforms both No8 and T8 that have the same performance by around

one dB for one and two receive antennas. The performance of No8 is expected

since it is originally designed for quasi-static fading channels.

Since both new 16-state codes No16 and Nt16 have the minimum product dis-

tance better than other 16-state existing codes, it was expected that the codes

No16 and Nt16 perform better than the remaining three codes in rapid fading

channels. Simulation results given in Figure 3.19 show that the code Nt16 out-

performs the clammed best existing code V16 and the code B16 by around 0.5 dB

and the code No16 also outperforms the codes V16 and B16 by at least 0.18 dB

for one and two receive antennas systems.
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Figure 3.6: Performance of punctured 4-state codes with period 2 in quasi-static fading channel
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Figure 3.7: Performance of punctured 8-state codes with period 2 in quasi-static fading channel
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Figure 3.8: Performance of punctured 16-state codes with period 2 in quasi-static fading channel
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Figure 3.9: Performance of punctured 4-state codes with period 3 in quasi-static fading channel
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Figure 3.10: Performance of punctured 8-state codes with period 3 in quasi-static fading channel
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Figure 3.11: Performance of punctured 16-state codes with period 3 in quasi-static fading channel
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Figure 3.12: Performance of punctured 4-state codes with period 4 in quasi-static fading channel
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Figure 3.13: Performance of punctured 8-state codes with period 4 in quasi-static fading channel
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Figure 3.14: Performance of punctured 16-state codes with period 4 in quasi-static fading channel
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Figure 3.15: Performance of new 4-state code with deferent periods in quasi-static fading channel
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Figure 3.16: Performance of 4-, 8-, and 16-state codes in rapid fading channel
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Figure 3.17: Performance comparison of 4-state codes in rapid fading channel
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Figure 3.18: Performance comparison of 8-state codes in rapid fading channel
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Figure 3.19: Performance comparison of 16-state codes in rapid fading channel
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For the codes punctured with period two, Figures 3.20, 3.21 and 3.22 show

the performance of the 4-, 8-, and 16-state respectively. Although all punctured

codes do not have a good performance, the new codes outperform the existing

codes by more than one dB for the 4-state case, and by more than two dB’s for

the 8- and 16-state cases. As expected for period three (Figures 3.23, 3.24, and

3.25 for the 4-, 8-, and 16-state codes respectively), there are improvement in the

codes performance and the new codes also outperform the existing ones at least

by three dB’s for the three state cases. Similarly for puncturing period four, the

new codes have better performance over the existing ones at least by three dB’s for

the one antenna systems and about two dB’s for the two receive antennas systems

as shown in Figures 3.26, 3.27 and 3.28. The performance advantage of the code

Nt8 over the code No8 increase as the period increase while the codes No16 and

Nt16 have almost the same performance for the period two, three, and four with

two receive antennas, the first code outperforms the second one for the one receive

antenna systems. As shown in Figure 3.29, the code N4 performance improves as

the period increase.

3.4.3 PUNCTURING PATTERN STRUCTURE

In the previous subsections it has been shown that the new codes have a compa-

rable performance to the best codes without puncturing and perform much better

than the existing codes under puncturing. In this subsection it will be shown via
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Figure 3.20: Performance of punctured 4-state codes with period 2 in rapid fading channel
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Figure 3.21: Performance of punctured 8-state codes with period 2 in rapid fading channel
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Figure 3.22: Performance of punctured 16-state codes with period 2 in rapid fading channel
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Figure 3.23: Performance of punctured 4-state codes with period 3 in rapid fading channel
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Figure 3.24: Performance of punctured 8-state codes with period 3 in rapid fading channel
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Figure 3.25: Performance of punctured 16-state codes with period 3 in rapid fading channel
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Figure 3.26: Performance of punctured 4-state codes with period 4 in rapid fading channel
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Figure 3.27: Performance of punctured 8-state codes with period 4 in rapid fading channel
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Figure 3.28: Performance of punctured 16-state codes with period 4 in rapid fading channel
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Figure 3.29: Performance of new 4-state code with deferent periods in rapid fading channel
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simulation that as the punctured symbols are far from each other in the PP as the

performance of the punctured code improved. This is illustrated by using period

four PP-(4), PP-(5) and PP-(6) shown in Figure 2.11(4), (5) and (6) respectively

where the last PP is the used in the previous simulations. The code N4 is simulated

in quasi-static and rapid fading channels with the three PP’s and the results are

shown in Figure 3.30 and 3.31 respectively. By studying the two figures it can be

easily seen that for the one and the two receive antennas systems, as the distance

between the punctured symbols within the same PP increases the performance of

the punctured code improved.
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Figure 3.30: Performance of N4 with period four and various PP in quasi-static fading channel
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Figure 3.31: Performance of N4 with period four and various PP in rapid fading channel



CHAPTER 4

HIGH RATE AND PUNCTURED

SPACE-TIME CODES IN AUTOMATIC

REPEAT REQUEST SCHEMES

4.1 INTRODUCTION

In a simple data communication systems, information follows only in one direction

from transmitter to receiver. The information bits are encoded using an error-

correcting code (block or convolutional) to combat transmission errors caused by

the channel noise. The error control provided in these systems is called forward-

error-correction (FEC) scheme [47]. In a FEC system, parity-check bits are added

to each transmitted frame to form a codeword depending on the error-correcting

128



129

code used by the system. At the other end of the communication channel, if the

receiver discovers the occurrence of errors in the received word, it tries to locate and

correct the errors and then passes the decoded word to the user. Erroneous data

can be delivered to the user if the receiver either fails to discover the occurrence of

errors or fails to specify the exact locations of the errors. The system throughput

equals to the rate of the error-correcting code employed by the system.

The main drawback of the FEC schemes is that the receiver must deliver the

decoded word even if it is incorrect. It is difficult to achieve high system reliability

with FEC schemes because the probability of a decoding error is much greater than

the probability of an undetected error. To overcome this problem, a long powerful

error-correcting code should be used. However, this is not practical solution since

it increase the decoding complexity and cost.

A more reliable error control scheme is the automatic repeat request (ARQ)

scheme [47]. In an ARQ error-control system, a high rate error-detecting code is

employed with a known retransmission strategy. The information bits are encoded

where parity-check bits are added depending on the error-detecting code to form

a codeword, which is transmitted later. At the receiver, the receiver computes the

syndrome of the received word, if the syndrome is zero, the received word is a valid

codeword in the code used by the system and it is passed to the user after removing

the parity-check bits. If the syndrome is not zero, the received word is erroneous

word so that the receiver discards the received word and asks for retransmission of
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the same codeword via a feedback channel. Retransmission process continues until

an error-free word is received. Erroneous data can be delivered to the user if the

receiver fails to detect the occurrence of errors. The probability of an undetected

error can be made vary small by using a proper error-detecting code. However,

the system throughput is not constant and falls quickly with high channel noise.

To overcome drawbacks in both error-control schemes, they can be combined to

form a hybrid FEC ARQ or simply hybrid ARQ scheme. The error-correcting code

is used in this scheme to correct the most frequent error patterns and thus reduces

the number of retransmission, which increases the ARQ system throughput.

In the next section, types of basic ARQ and hybrid ARQ schemes are studied.

Next, hybrid ARQ schemes that employ ST, high-rat ST, and PST codes, are

presented. The Chapter is concluded with simulation results and a comparison

between the presented hybrid ARQ schemes.

4.2 AUTOMATIC REPEAT REQUEST

4.2.1 BASIC ARQ SCHEMES

There are three basic types of ARQ schemes; stop-and-wait ARQ, go-back-N ARQ,

and selective-repeat ARQ [47]. These schemes differ in the retransmission strate-

gies implemented in each scheme and in the storage requirement in both the trans-

mitter and the receiver. Before studying the basic ARQ types, it is important to
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define some quantities.

• Pc= probability that a received word is error free,

• Pd= probability that a received word contains a detectable error pattern,

and

• Pe probability that a received word contains an undetectable error pattern.

It is clear that Pc+Pd+Pe = 1. All three probabilities depend on the channel error

statistics while only the probabilities Pd and Pe also depend on the error-detecting

code used by the ARQ system. Retransmission depends on the probability Pd since

a transmitted frame is accepted by the receiver either if it does not contain errors

or if it contains an undetectable error pattern.

The performance of these ARQ schemes is measured by their reliability and

throughput efficiency. The reliability of an ARQ scheme can be increased by

making the probability of undetectable error pattern very small. Therefore the

reliability of an ARQ scheme depends mainly in the choice of the error-detecting

code and does not depend on the retransmission strategy. Thus all three basic

ARQ schemes achieve the same system reliability. The throughput efficiency or

simply throughput of an ARQ scheme is defined as the ratio of the average number

of information bits successfully accepted by the receiver per unit time to the total

number of bits that could be transmitted per unit time [47]. Because the three

basic ARQ schemes differ in the retransmission strategy, they achieve deferent
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throughput efficiencies.

Stop-and-wait ARQ Scheme

The stop-and-wait ARQ scheme is the simplest ARQ scheme. The transmitter

transmits the codeword and waits for acknowledgment from the receiver and during

this time the transmitter does not transmit any further frames. If the receiver sends

a positive acknowledgment (ACK), the transmitter transmits the next codeword.

however, if the receiver sends negative acknowledgment (NAK), the transmitter

retransmits the same codeword until it is successfully received. This process is

shown in the traffic digram in Figure 4.1.

This ARQ scheme does not require any storage in either the transmitter or the

receiver. However, it is inefficient because of the ideal time waiting for the receiver

acknowledgment. The system can transmit n + λδ bits if it does not remain ideal,

where n is the codeword length, λ is the ideal time, and δ is the bit rate of the

transmitter. The number of bits that the transmitter could have transmitted for

a successful reception of a codeword is [47]:

TSW =
n + λδ

Pc

(4.1)

Therefore, the throughput of the stop-and-wait ARQ scheme equals [47]:

ηSW =
k

TSW

=
Pc · (k/n)

1 + λδ/n
(4.2)
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where k is the number of data bits, and k/n = R is the rate of the error-detecting

code used by the system. For communication systems with large round-trip delay

and high data rate the throughput of the system will be unacceptable.

Go-back-N ARQ Scheme

Because the stop-and-wait ARQ scheme was in efficient due to the ideal time, a

continuous transmission scheme is needed, which result in introducing the go-back-

N ARQ scheme. In go-back-N ARQ scheme, the transmitter transmit the codeword

continuously and in order. The transmitter transmits N − 1 codewords during the

period from transmitting a codeword and receiving its acknowledgment from the

receiver. The N transmitted codewords are stored in the transmitter for later

use. If an NAK of a transmitted codeword for example codeword i is received by

the transmitter, it stops transmitting new codewords and goes back to retransmit

codeword i and the N−1 succeeding codewords. If the same codeword is negatively

acknowledged again, the same N codewords are retransmitted until it is positively

acknowledged. At the receiver side, if a received word contains a detectable error

pattern, the receiver will discard this word and the N − 1 succeeding received

words even if some of them are error free. The traffic digram in Figure 4.2 shows

an example of a go-back-5 ARQ scheme.

The go-back-N ARQ scheme requires a storage of N codewords at the trans-

mitter, but no storage is required at the receiver. It is more efficient than the
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stop-and-wait ARQ scheme since it is continuously transmitting codewords. The

average number of bits that the transmitter could transmit for a successful code-

word reception is [47]:

TGBN = n ·
(

1 +
N (1 − Pc)

Pc

)
(4.3)

Therefore, the throughput of a go-back-N ARQ scheme equals [47]:

ηGBN =
k

TGBN

=
Pc · (k/n)

Pc + (1 − Pc) N
(4.4)

However, for data communication systems with high data rates and long round-

trip delays, the throughput of the go-back-N ARQ scheme would be unacceptable

since N will be very large and thus for each negatively acknowledged codeword, N

codeword should be retransmitted and a huge storage is required at the transmitter.

Selective-repeat ARQ Scheme

The main drawback of the go-back-N ARQ scheme is the retransmission of N

codewords for each codeword detected in error. To overcome this drawback only

the codeword detected in error should be retransmitted, which is done in the

selective-repeat ARQ scheme. In the selective-repeat ARQ scheme, codewords are

transmitted continuously. Each transmitted codeword is stored in the transmitter

buffer until it is successfully received. At the receiver, if a received word contains
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a detectable error pattern, it is discarded and the next words are received and

checked for errors then they are queued to be delivered to the user in order. This

is illustrated in the traffic diagram shown in Figure 4.3.

The selective-repeat ARQ scheme requires theoretically infinite buffer at both

the transmitter to store transmitted codewords for possible retransmission and the

receiver to store error free received words. This scheme is called ideal selective-

repeat ARQ scheme. The average number of bits that the transmitter could trans-

mit for a successful codeword reception assuming infinite buffering is given by

[47]:

TSR =
n

Pc
(4.5)

Thus the throughput of an ideal selective-repeat ARQ scheme equals to [47]:

ηSR =
k

TSR

= Pc ·
k

n
(4.6)

This scheme provides superior throughput performance compared to the stop-and-

wait and the go-back-N ARQ schemes. However, infinite buffers are practically

not possible. So a mixed mode where two or even the three basic ARQ schemes

are combined to limit the storage size were proposed.
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Figure 4.3: Selective-repeat ARQ scheme
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4.2.2 HYBRID ARQ SCHEMES

A hybrid ARQ (HARQ) scheme is essentially a FEC error-control subsystem con-

tained in a basic or a mixed-mode ARQ system. The error-correcting code im-

plemented by the FEC subsystem is used to reduce the retransmission events by

correcting the most frequent error patterns. HARQ schemes are classified depend-

ing on the usage of the previous erroneously received words, into two categories;

type-I and type-II HARQ schemes.

In both HARQ scheme types, if a received word contains a detectable and

correctable error pattern, the errors in the received word are corrected and the

decoded word is passed to the user. In a type-I HARQ scheme, if a received word

contains a detectable but not correctable error pattern, the erroneously received

word is discarded and a retransmission of the same word is requested. Retransmis-

sion continues until an error free word is received or the number of retransmission

reaches a predetermined value.

However, in a type-II HARQ scheme, if a received word contains a detectable

but not correctable error pattern, the erroneously received word is stored for later

use and a retransmission of the same word is requested. If the second transmis-

sion of a codeword received with detectable and not correctable error pattern, the

receiver combines the two copies of the erroneously received word to increase the

redundancy available to the decoder. There are two ways of combining the pre-

vious erroneously received word with the retransmitted one; code combining and
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diversity combining. In a code combining system (proposed by Chase [48]), the er-

roneous L copies of a codeword are concatenated and decoded using low-rate R/L

code where individual received words are decoded using rate R error-correcting

code. In a diversity combining system, the erroneous copies of a codeword are

added or concatenated to form a single word whose symbols are more reliable than

those in individual words. An example of diversity combining scheme is the parity

retransmission (first proposed by Metzner [49]) where the first transmission at-

tempt of a codeword contains no or few parity bits for error correction and the

successive retransmissions contain more parity bits for error corrections. Clearly

type-II HARQ scheme has a better throughput performance than type-I HARQ

schemes.

4.3 HYBRID ARQ SCHEMES USED

Before describing the hybrid ARQ schemes used in this thesis, few assumptions

have to be made.

• Ideal channel state information.

• Low capacity noise-free feedback channel.

• Perfect error detection.

• Independent effect of channel noise on each frame.
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• Infinite buffering in both the transmitter and the receiver.

The selective-repeat ARQ scheme is used with high-rate ST, ST and PST codes

as FEC schemes to form different type-I and type-II HARQ schemes.

4.3.1 TYPE-I HARQ SCHEMES

Three type-I HARQ protocols are presented here. The first protocols uses the

high-rate ST codes, the second one uses ST codes, and the third one uses PST

codes family. The three protocols are presented in the following.

Type-I HARQ Protocol using HR ST codes

The information bits are encoded using a high-rate ST code. The channel symbols

are transmitted and at the same time stored at the transmitter buffer for possible

retransmissions. At the receiver, the received word is decoded and the decoded

bits are checked for errors. If the received word contains no errors (undetectable

error patterns are are not counted because perfect error detection is assumed), the

decoded bits are passed to the user and the receiver will send an ACK so that the

stored copy of this codeword is removed from the transmitter buffer. However, if

the received word contains a detectable error pattern, the receiver will discard the

received word and request a retransmission of the same codeword. Retransmission

continues until a successful reception of the codeword occurs or a preset number

of retransmissions is reached.
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Type-I HARQ Protocol using ST codes

This protocol is identical to the previous type-I HARQ protocol but employing

normal rate ST codes instead of the high-rate ST codes. This protocol and the

previous one are illustrated in Figure 4.4.

Type-I HARQ Protocol using PST Codes Family

The information bits are encoded using a normal ST code. The frame of chan-

nel symbols is punctured using a known period and PP. The punctured frame is

transmitted and the un-punctured frame is stored at the transmitter buffer for

later use. At the receiver, the received word is decoded and the decoded bits are

checked for errors. If the received word contains no errors, the decoded bits are

passed to the user and the receiver will send an ACK so that the stored copy of

the un-punctured codeword is removed from the transmitter buffer. However, if

the received word contains a detectable error pattern, the receiver will discard the

received word and request a retransmission of the same codeword but with more

redundancy. Retransmission continues until a successful reception of the code-

word occurs or a preset number of retransmissions is reached, which is in this case

equals to the number of members in the PST codes family including the mother

ST code. For example if a mother ST code is punctured using period three PP, a

family of two members is formed. If the normal frame length is 120 ST symbols,

the punctured frame is of length 80 ST symbols. The transmitter first transmits
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the 80 ST symbols punctured frame and stores the 120 ST symbols un-punctured

one. If the transmitter received NAK for this codeword, it transmits the 120 ST

symbols frame and removes the frame from the transmitter buffer. This protocol

is illustrated in Figure 4.5.

4.3.2 TYPE-II HARQ SCHEMES

There are also three type-II HARQ protocols presented here. The first protocol

uses the high-rate ST codes, the second one uses ST codes, and the third one uses

PST codes family. The three protocols are discussed in the following.

Type-II HARQ Protocol using HR ST codes

The information bits are encoded using a high-rate ST code. The channel symbols

are transmitted and at the same time stored at the transmitter buffer for possible

retransmissions. At the receiver, the received word is decoded and the decoded bits

are checked for errors. If the received word contains no errors, the decoded bits

are passed to the user and the receiver will send an ACK so that the stored copy

of this codeword is removed from the transmitter buffer. However, if the received

word contains a detectable error pattern, the receiver will store the received word

and request a retransmission of the same codeword. If the second transmission

of a codeword fails, both copies of the codeword are combined and decoded as

one frame. If the decoded bits contains no errors they are passed to the user and
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Figure 4.4: HARQ type-I protocols employing either normal or high-rate ST codes
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ACK is sent to the transmitter. If the decoded bits contains errors, the new frame

(combination of the two erroneously received frames) is stored at the receiver buffer

and a retransmission request is sent to the transmitter. Retransmission continues

until a successful reception of the codeword occurs, successful decoding of the

combined frame occurs or a preset number of retransmissions is reached.

Frames combining is not a simple addition of the ST symbols from the first

transmission to the corresponding ST symbols from the second transmission. In

fact the receiver stores the received signals from the M receive antennas. At the

second transmission (first retransmission) attempt, the stored signals are manipu-

lated as received signals from other M receive antennas. So the effect of the first

retransmission is simply doubling the number of receive antennas and the succes-

sive retransmission increase the diversity which increases the probability that the

frame is accepted. Frame combining is a type of diversity combining.

Type-II HARQ Protocol using ST codes

This protocol is identical to the previous type-II HARQ protocol but using normal

rate ST codes instead of the high-rate ST codes. This protocol and the previous

one are illustrated in Figure 4.6.

Type-II HARQ Protocol using PST codes Family

The information bits are encoded using a normal ST code. The frame of chan-

nel symbols is punctured using a known period and PP. The punctured frame is
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transmitted and the un-punctured frame is stored at the transmitter buffer for

later use. At the receiver, the received word is decoded and the decoded bits are

checked for errors. If the received word contains no errors, the decoded bits are

passed to the user and the receiver will send an ACK so that the stored copy of

the un-punctured codeword is removed from the transmitter buffer. However, if

the received word contains a detectable error pattern, the receiver will store the

received punctured word and request a retransmission of the same codeword but

with more redundancy. If the second transmission of a codeword with more redun-

dancy fails, both copies of the codeword are added and decoded as one frame. If

the decoded bits contains no errors they are passed to the user and ACK is sent

to the transmitter. If the decoded bits contains errors, the new frame is stored at

the receiver buffer and a retransmission request is sent to the transmitter for the

same codeword with more redundancy. Retransmission continues until a success-

ful reception of the codeword occurs, successful decoding of the summed frames

occurs or a preset number of retransmissions is reached, which is in this case also

equals to the number of members in the PST codes family including the mother

ST code. This protocol is illustrated in Figure 4.7.

Unlike the type-II HARQ using HR codes and HARQ using ST codes protocols,

in this type-II HARQ protocol, the frames of the first, second and other transmis-

sions of a codeword have different lengths. So they can not be combined directly.

Unfortunately, as explained in Chapter two, rate-compatible ST (RC-ST) codes are
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unlike rate-compatible trellis (RC-TCM) codes [46], simply because of the shifting

process in PST codes. So combining methods used for RC-TCM codes are not

applicable to RC-ST codes. However, frame combining problem can be solved by

noticing that each P − Nz/2 ST symbols in the punctured frame represents the

same information bits as the P ST symbols in the original (un-punctured) frame.

Since each member of a family of PST codes uses the same trellis diagram of the

mother ST code, the stage metrics (P transitions path metric) of the mother ST

and PST codes represent the same P transitions. Thus, instead of storing the

erroneously received frame at the receiver buffer, the stage metrics are stored and

added to the stage metrics of the second transmission of a codeword with different

frame lengths. This method is called metric combining and it can be classified as a

type of diversity combining. Metric combining can also be used with frames with

the same length where in this case it is equivalent to frame combining.

For example if period three PP is used to puncture a frame of length 120 ST

symbols, the resulting frame length is 80 ST symbols. Each three ST symbols in

the un-punctured frame represents the same information bits as the corresponding

two ST symbols in the punctured frame. In this case, for each received successive

two ST symbols from the punctured codeword, all 16 3-transition paths starting

at an initial state and ending at a final state are numbered and their 3-transition

branch metrics are stored (assuming 4-state code). At the second transmission

attempts, the un-punctured frame is transmitted. The receiver tries to decode the
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received frame, if no errors found, the decoded bits are passed to the user. If there

is an uncorrectable error pattern, for each received successive three ST symbols,

all 3-transition paths metrics are computed and added to the corresponding stored

3-transition metrics, and then decoding according to the new paths metrics. At

this stage, decoded bits must be passed to the user even if they contain errors.

4.4 NUMERICAL RESULTS

The hybrid ARQ schemes are simulated in both quasi-static and rapid fading

channels. Frame length is set to 120 ST symbols and for type-I and type-II hybrid

ARQ schemes using PST code family, period three PP-(5) is used. Since in period

three there are only two puncturing rates, the number of transmission is set to two

(only one retransmission) for all HARQ schemes presented in the previous section.

Moreover, for both type-I and type-II HARQ schemes using high-rate codes, the

high-rate code HR8 from Chapter two is used, while for the remaining HARQ

schemes the new 4-state code N4 from the previous Chapter is used.

The system throughput is computed using the following equation:

Throughput =
l · Rm · d

l1 · R1 · t1 + 12 · R2 · t2
(4.7)

where

• Rm = Mother ST code rate (or spectral efficiency)
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• l = Frame length (120)

• d = Number of delivered frames

• l1 = First transmission frame length

• R1 = First transmission code rate

• t1 = Number of first transmission frames

• l2 = Second transmission frame length

• R2 = Second transmission code rate

• t2 = Number of second transmission frames

For all HARQ schemes, l2 = l = 120 and R2 = Rm (equals 2 b/s/Hz for ST

codes and 3 for high-rate ST codes), where as for HARQ scheme using PST codes

family l1 = 80 and R1 = 3, and for other HARQ schemes l1 = l2 = l = 120 and

R1 = Rm. The number of delivered frames d includes correctly decoded frames and

even erroneous frames after second transmission. Another measure of throughput

is given (effective throughput) where only correctly delivered frames are counted

in d in equation 4.7. The effective throughput is required because the number of

possible frame transmissions is set to two and erroneous frames after the second

transmission are delivered to the user and counted in the throughput. So the

minimum throughput equals 0.5 even all delivered frames are erroneous.
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4.4.1 QUASI-STATIC FADING CHANNEL

In quasi-static channels, type-II ARQ protocols outperform the type-I ARQ pro-

tocols employing the same ST code at least by three dB’s and two dB’s for the

one and two receive antennas systems as shown in Figures 4.8 and 4.9 respectively.

It can also be seen form the two figures that for both type-I and type-II ARQ

protocols with one and two receive antennas, the protocols employing N4 perform

better than that employing N4 PST family, while the protocols employing HR8

has a worser performance. As can be seen from Figures 4.10 and 4.11, type-I and

type-II protocols employing the same coding scheme have identical throughput ef-

ficiencies. This s expected because the maximum number of frame transmissions

is set to two and erroneously delivered frames are counted in the throughput. It

also can be seen that the type-I and type-II protocols employing ST code N4 have

better throughput efficiencies than other protocols followed by the protocols em-

ploying ST code HR8. However, for low and moderate NEb/N0, type-II protocols

have a better effective throughput efficiencies than type-I protocols employing the

same ST code, while for high NEb/N0 type-I protocols reach the same effective

throughput efficiencies as type-II protocols employing the same ST code as shown

in Figures 4.13 and 4.13 for one and two receive antennas systems respectively.
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Figure 4.8: Performance of ARQ schemes in quasi-static fading channel with one receive antenna
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Figure 4.9: Performance of ARQ schemes in quasi-static fading channel with two receive antennas
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Figure 4.10: Throughput of ARQ schemes in quasi-static fading channel with one receive antenna
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Figure 4.11: Throughput of ARQ schemes in quasi-static fading channel with two receive antennas
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Figure 4.12: Effective throughput of ARQ schemes in quasi-static channel (one receive antenna)
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Figure 4.13: Effective throughput of ARQ schemes in quasi-static channel (two receive antennas)
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4.4.2 RAPID FADING CHANNEL

In rapid fading channels, type-II ARQ protocols also outperform type-I protocols

employing the same ST code as shown in Figure 4.14 for one receive antenna and

in Figure 4.15 for two receive antennas. As in quasi-static channels, ARQ protocols

employing N4 have a better performance than ARQ protocols employing N4 PST

code family or HR8. The protocols employing N4 PST code family outperform

that protocols employing HR8 except for type-II protocols with two receive an-

tennas. Type-I and type-II protocols employing the same ST code have identical

throughput efficiencies as shown in Figure 4.16 and Figure 4.17 for one and two

receive antennas. The protocols employing ST code N4 have also better through-

put efficiencies than other protocols for one and two receive antennas. Effective

throughput of type-II protocols is better than that of type-I ARQ protocols em-

ploying the same ST code for both one (Figure 4.18) and two (Figure 4.19) receive

antennas.
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Figure 4.14: Performance of ARQ schemes in rapid fading channel with one receive antenna
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Figure 4.15: Performance of ARQ schemes in rapid fading channel with two receive antennas
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Figure 4.16: Throughput of ARQ schemes in rapid fading channel with one receive antenna
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Figure 4.17: Throughput of ARQ schemes in rapid fading channel with two receive antennas
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Figure 4.18: Effective throughput of ARQ schemes in rapid fading channel (one receive antenna)
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Figure 4.19: Effective throughput of ARQ schemes in rapid fading channel (two receive antennas)



CHAPTER 5

CONCLUSIONS AND FUTURE

RESEARCH

5.1 CONCLUSIONS AND SUMMARY

In this thesis, performance of space-time coding systems over quasi-static and

rapid fading channels have been studied. An encoder-transmitter/receiver-decoder

wireless communication system is modeled and simulated using C language. The

program is tested using some of the existing codes in the literature with deferent

number of trellis states over both quasi-static and rapid fading environments.

Performance analysis and design criteria of ST codes are reviewed following [1]

and [3] on their approaches where in [1] the analysis is carried assuming high SNR’s

region while in [3] the analysis is carried for two SNR ranges; low and moderate

159
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SNR’s range and high SNR’s range. Since these criteria are valid for high-rate ST

codes, they are implemented in C program that span all possible high-rate 8-state

QPSK ST codes. Fortunately, the exhaustive search result is a code that satisfies

quasi-static and rapid fading environments design criteria. This code is simulated

and it shows a quite good performance in quasi-static fading channels and a better

performance in rapid fading channels.

Increasing the encoder rate is one of two ways used in this thesis to improve ST

coding system throughput where the other one is symbol puncturing. In Chapter

two a symbol puncturing technique is proposed for ST codes. This technique is

detailedly illustrated with some examples. Moreover, punctured system encoder

and decoder are also shown where the PST encoder/decoder can be used with

normal ST systems. This property of the PST codes suggest the use of PST codes

in a rate compatible coding systems. Since in ST coding systems two or more

symbols are transmitted at the same time, it is not possible to use the normal

Viterbi decoding method in PST systems. A modified Viterbi decoding method

for PST systems is presented that use a stage metric instead of branch metrics.

Formulas of normal and punctured frame lengths and punctured system rate as a

function of puncturing period and number of punctured symbols each period are

derived.

Current trellis representation describes only one time transition while punctur-

ing is performed to successive P transitions in time, so they can not be used to
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represent symbol PST codes. An alternative trellis representation that describe

P transitions in time is presented. Give a puncturing period and pattern this

representation completely express symbol PST codes and it also can be used to

express un-punctured ST codes. This representation is similar to that of multiple

trellis codes and it introduces the idea of multiple space-time (MST) codes which

is postponed to future research.

In Chapter three, performance of symbol PST codes over quasi-static and rapid

fading channels are analyzed. A common design criterion to quasi-static and rapid

fading channels is derived which is simply maximizing the symbol-wise Hamming

distance. Analyzing performance of un-punctured and punctured ST codes over

quasi-static and rapid fading channels leads to design criteria on the un-punctured

ST code for each channel that together with the common criterion can be used

to design good performing ST codes with and without puncturing. Since for a

given puncturing period, PST code performance depends on the un-punctured ST

code and the puncturing pattern structure, PP structure is studied. It is found

that increasing the distance between the punctured symbols within the PP will

improve the PST code performance since the effects of the punctured symbols will

be distributed over the remaining (transmitted) symbols within the same period.

Symbol PST code design criteria for both channel models are implemented in

an exhaustive search program written in C language. Five QPSK ST codes are

found where the first one is a 4-state code (N4) that satisfies the common and both
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channels design criteria. The other four codes are two codes (No8 and No16) for

quasi-static fading channel and two codes (Nt8 and Nt16) for rapid fading channels

where No8 and Nt8 are 8-state codes, and No16 and Nt16 are 16-state codes.

Simulation results show that without puncturing the new codes have comparable

performance to the best existing codes on their design environments. In fact No16

and Nt16 have better minimum product distance (96 and 144 respectively) than one

of the best codes (64) in the literature from (V16) [5] and both codes outperform

all other simulated 16-state codes in rapid fading channels. The new codes show

superior performance when compared to the existing codes under puncturing with

various puncturing periods over quasi-static and rapid fading channels.

ST coding system reliability has been improved by using hybrid ARQ schemes

with high-rate, normal or punctured ST codes as forward error correcting codes.

Three type-I and three type-II hybrid ARQ protocols are proposed in Chapter

four. These protocols are simulated in computer using both channel models. The

protocols using N4 perform better than other protocols for one and two receive an-

tennas systems in quasi-static and rapid fading channel models while the protocols

employing N4 PST family outperform that employing high-rate code HR8 in most

cases except for type-II two receive antennas over rapid fading channel model.
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5.2 FUTURE RESEARCH

• Higher signal constellations could be used for both high-rate ST codes and

PST codes where the design criteria for PST codes may change.

• The designed codes can be tested on other communication channel models

such as correlated channels and frequency selective channels.

• Using the alternative trellis representation, better design criteria for both

normal and punctured ST codes could be found where in this case the re-

sulting codes are Multiple Space-time (MST) codes.

• Increasing the puncturing periods which increases the number of members

in the family of PST codes thus improving the rate compatible punctured

space-time (RCPST) code reliability.

• Extend the number of transmit antennas to more than two for the PST

systems.

• The effects of increasing the number of possible retransmissions on the HARQ

system performance and throughput could be investigated.

• Other retransmit strategies and combining methods could be studied for the

HARQ systems.
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