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Title:   DYNAMIC PROJECTIVE COORDINATE SYSTEM  
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Date of Graduate 5-2006 
 

Scalar multiplication is the basic operation in elliptic curve cryptography that can 

be performed by many algorithms. These algorithms multiply a scalar value K with an 

elliptic curve base point P. One of the crucial decisions when implementing an efficient 

elliptic curve cryptosystem is deciding which point coordinate system to use. The point 

coordinate system used for addition and doubling of points on the elliptic curve 

determines the efficiency of these routines, and hence the efficiency of the basic 

cryptographic operation, scalar multiplication. Although using a fixed coordinate system 

enhances the performance of the scalar multiplication, (by removing the intermediate 

inversion operations), it becomes a security weakness since it can be exploited by 

projective coordinates leak attacks to reveal some secure information. Therefore, finding a 

coordinate system that can enhance the performance of the scalar multiplication and being 

secure against such attacks is desired goal. 

This thesis introduces a new approach called Dynamic Projective Coordinate 

(DPC) system. DPC provides a framework that automates the selection of the projective 

coordinate system and uses a single mathematical formulation/software code to 



 

 xvii

implement different projective coordinate systems. This framework allows the 

computing/encrypting device to select the projective coordinate either at random, or 

according to a certain rule. 

DPC uses dynamic transformation functions to convert coordinates of any point on 

the elliptic curve to any projective coordinates by using the same mathematical formula. 

These transformation functions are used to develop dynamic addition and doubling 

formulas for elliptic curve over the prime field GF(p) and over the binary field GF(2m). 

Also, this thesis proposes a new classification method for Side Channel Attacks 

(SCA). This classification is based on the type of information being leaked which can be 

Operation-dependent, Data-dependent , Address-dependent or any combination of them. 

New countermeasures for data-dependent, data-and-operation dependent and address-

dependent attacks are proposed. These countermeasures are based on the fact that DPC 

lends itself to randomize both the data being manipulated and the number of operations 

being performed by randomizing the coordinate system used. 
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Abstract (Arabic) 
 ملخص بحث درجة الدكتوراه في الفلسفة

 

  ذيب عايض القحطاني   :الاســـــم

  نظام الإحداثيات الحركي لأنظمة التشفير باستخدام المنحنى البيضاوي   :عنوان الرسالة

  ندسة الحاسب الآليهعلوم و    :التخصص

  م5/2006  :تاريخ التخرج

يات البيضاوية هي عملية ضرب نقطة مـن        إن العملية الأساسية في نظام التشفير باستخدام المنحن       

هذه العملية تتم عن طريق سلسلة مـن عمليـات          ). ك(نقاط المنحنى بعدد سري صحيح يرمز له بالرمز         

وذلك عبر خطوات كـل خطـوة       ) مضاعفة النقطة (إضافة نقطتين إلى بعضهما وإضافة نقطة إلى نفسها         

وجميع هذه العمليات تتم عن طريق حـساب    . ائيةتعطي نتيجة مرحلية حتى يتم الحصول على النتيجة النه        

وسرعة تنفيذ هذه المعادلات الرياضية تعتمد بدرجة كبيرة علـى          . معادلات رياضية على إحداثيات النقاط    

ففي حالة اسـتخدام نظـام الإحـداثيات        . نظام الإحداثيات المستخدم لتمثيل النقاط على المنحنى البيضاوي       

ت ضرب نقطة بعدد صحيح تحتاج إلى عملية قسمة والتي من المعروف            العادية فإن كل خطوة من خطوا     

ولحل هذه المشكلة   . أنها تحتاج إلى وقت أكبر بكثير مقارنة بالعمليات الحسابية الأخرى كالضرب والجمع           

فإنه يتم استخدام نظام الإحداثيات الإسقاطية بدلاً من نظام الإحداثيات العادية والتي مـن خلالهـا يمكـن                  

وبرغم أن هذه الطريقة أدت إلى تحـسين أداء عمليـة   . غناء عن عمليات القسمة في النتائج المرحلية      الاست

ضرب نقطة بعدد صحيح بشكل كبير جداً إلا أنها تمثل نقطة ضعف أمنية يمكن من خلالها النفـاذ إلـى                    
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سـتغناء عـن    ولذلك فإن الحاجة ماسة إلى إيجاد طريقة يمكن من خلالهـا الا           ). ك(معرفة الرقم السري    

عمليات القسمة في النتائج المرحلية وتكون في نفس الوقت آمنه لإتمام عملية ضرب نقطـة مـن نقـاط                   

  .المنحنى البيضاوي بعدد صحيح

والذي يتم  ) الديناميكي(تقدم هذه الرسالة طريقة مبتكرة تسمى نظام الإحداثيات الإسقاطية الحركي           

طية بشكل آني وتلقائي بدلاً من استخدام نظام إحداثي واحد يكون     عن طريقه اختيار نظام الإحداثيات الإسقا     

وهذه الطريقة تستخدم معادلة رياضية موحدة وبالتالي برمجيات موحدة لعملية إضـافة            . عرضة للاختراق 

وكذلك تستخدم معادلة رياضية موحدة وبالتالي برمجيات موحدة لعملية إضافة نقطة           . نقطتين إلى بعضهما  

بذلك يمكن من خلال هذه المعادلات الرياضية والبرمجيات الموحدة تمثيل إي من الإحداثيات             و. إلى نفسها 

الإسقاطية المعروفة دون الحاجة إلى استخدام معادلة رياضية مستقلة وبرمجيـات مـستقلة لكـل نظـام                 

  .إحداثيات

لـى نـوع    وتقدم هذه الرسالة أيضاً طريقة جديدة لتصنيف طرق اختراق أنظمة التشفير بنـاء ع             

كإضـافة نقطتـين أو     (فمنها ما يعتمد على نوع العملية المنفذة        . المعلومات المستغلة في عملية الاختراق    

، ومنها ما يعتمد على البيانات المدخلة إلى نظام التشفير، ومنها ما يعتمـد علـى مواقـع                  )مضاعفة نقطة 

ف، فإن هذه الرسالة تقدم طرق جديدة       وبناء على هذا التصني   . تخزين المعلومات في ذاكرة أجهزة التشفير     

وتعتمد طرق المقاومـة    . لمقاومة هذه الأنواع من الاختراقات باستخدام نظام الإحداثيات الحركي المقترح         

المقترحة على خاصية مهمة لنظام الإحداثيات الإسقاطية الحركي وهي إمكانية اختيار نظـام الإحـداثيات               

ممـا  ) ك(وات ضرب نقطة من نقاط المنحنى بالعدد الـسري          الإسقاطية بشكل عشوائي وآني خلال خط     

 .يجعل المعلومات الجانبية التي يجمعها المخترق عديمة الفائدة
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CHAPTER 1
 

Introduction 

 

Cryptography provides methods of providing privacy and authenticity for remote 

communications and data storage. Privacy is achieved by encryption of data, usually using 

the techniques of symmetric cryptography (so called because the same mathematical key 

is used to encrypt and decrypt the data). Authenticity is achieved by the functions of user 

identification, data integrity, and message non-repudiation. These are best achieved via 

asymmetric (or public-key) cryptography.  

 In particular, public-key cryptography enables encrypted communication between 

users that have not previously established a shared secret key between them. This is most 

often done using a combination of symmetric and asymmetric cryptography: public-key 

techniques are used to establish user identity and a common symmetric key, and a 

symmetric encryption algorithm is used for the encryption and decryption of the actual 

messages. The former operation is called key agreement. Prior establishment is necessary 

in symmetric cryptography, which uses algorithms for which the same key is used to 

encrypt and decrypt a message. Public-key cryptography, in contrast, is based on key pairs. 

A key pair consists of a private key and a public key. As the names imply, the private key 
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is kept private by its owner, while the public key is made public (and typically associated 

to its owner in an authenticated manner). In asymmetric encryption, the encryption step is 

performed using the public key, and decryption using the private key. Thus the encrypted 

message can be sent along an insecure channel with the assurance that only the intended 

recipient can decrypt it. 

 User identification is most easily achieved using what are called identification 

protocols. A related technique, that of digital signatures, provides data integrity and 

message non-repudiation in addition to user identification.  

 The public key is used for encryption or signature verification of a given message, 

and the private key is used for decryption or signature generation of the given message. 

Koblitz [1] and Miller [2] proposed a method by which public key cryptosystems 

can be constructed on a group of points of an elliptic curve. This group comes from a 

setting called finite fields (chapter 2).  

Elliptic Curve Cryptosystem (ECC) relies upon the difficulty of the Elliptic Curve 

Discrete Logarithm Problem (ECDLP) to provide its effectiveness as a cryptosystem. 

Using multiplicative notation, ECDLP can be described as (section 4.2): given elliptic 

curve points P and Q in the group, find a number K such that PK=Q; where K is called the 

discrete logarithm of Q to the base P. Using additive notation, the problem becomes: 

given two points P and Q in the group, find a number K such that KP=Q.  

 In an ECC, the large integer K is kept private and is often referred to as the secret 

key. The point Q together with the base point P are made public and are referred to as the 



 

 

3

public key. The security of the system, thus, relies upon the difficulty of deriving the 

secret K, knowing the public points P and Q. The main factor that determines the security 

strength of such a system is the size of its underlying finite field. In a real cryptographic 

application, the underlying field is made so large that it is computationally infeasible to 

determine K in a straightforward way by computing all the multiples of P until Q is found.  

The core of the elliptic curve cryptography is an operation called scalar 

multiplication which computes KP by adding together K copies of the point P. Thus, the 

efficiency of elliptic curve cryptosystems heavily depends on the implementation of the 

scalar multiplication. The scalar multiplication is performed through a combination of 

point-doubling and point-addition operations. The point-addition operation adds two 

distinct points together and the point doubling operation adds two copies of a point 

together. To compute, for example, 11P = (2*(2*(2P)))+3P = Q, it would take 3 point-

doublings and 1 point-addition. 

Point addition and doubling operations require field inversion operations which 

usually have very high cost (i.e. number of finite field operations required) compared to 

the multiplication operation (see section 5.1). Its cost ranges from 9 to 30 field 

multiplications for a field element with bit length grater than 100 [23]. Moreover, it must 

be (without projective coordinate) performed in each iteration of the scalar multiplication. 

Therefore, it is important to represent elliptic curve points using projective coordinates. 

The idea of projective coordinates is based on transferring the point coordinates into 

another coordinates that can eliminate the inversion operation while performing addition 

and doubling operations. By this way, the intermediate inversions within the scalar 
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multiplication iterations are eliminated. However, still we need one final inversion to 

return back to the affine coordinates after completion of the scalar multiplication.  

Transferring any elliptic curve point to projective coordinates can be achieved by 

using transformation functions. Different projective coordinates use different 

transformation functions [23], [24], [25]. In this thesis, the sentence “projective 

coordinate system” is used when referring to the transformation functions as well as the 

coordinates generated by these functions, and the sentence “projective coordinates” is 

used when referring the values of coordinates of a point. 

Every computing device acts also as a source of additional information usually 

called side channel leak information. Depending on its internal computations, it consumes 

different amounts of power, emits different amounts of electromagnetic emanations, needs 

different running times or even produces different types of error messages or sounds. All 

these additional types of information can and have already been exploited in attacking the 

cryptodevices.  

In the execution of ECC, side channel attacks have become serious threat. One of 

the most side channel attacks is the power analysis attacks, first introduced in [26], [27]. 

Power analysis attacks monitor power consumption and exploit the leakage information 

related to power consumption to reveal bits of a secret key K although K is hidden inside 

the cryptodevice.  Thus, it is a serious issue that the implementation should be resistant 

against SPA and DPA, and many countermeasures have been proposed in [28] – [37]. We 

may note here that almost all public key cryptosystems including RSA and DLP-based 
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cryptosystems also execute an exponentiation algorithm with a secret-key exponent, and, 

thus, they also suffer from both SPA and DPA in the same way as ECC. Recently, in the 

case of elliptic curve cryptosystems, DPA is further improved to the Refined Power 

Analysis (RPA) in [28], which exploits a special point with a zero value and reveals a 

secret key. An elliptic curve happens to have a special point (0, y) or (x, 0), which can be 

controlled by an adversary because the order of base point is usually known. RPA utilizes 

such a feature that the power consumption of 0 is distinguishable from that of an non-zero 

element. Although ECC are vulnerable to RPA, RPA are not applied to RSA or DLP-

based cryptosystems because they don‘t have such a special zero element. Furthermore, 

RPA is generalized to Zero-value Point Attack (ZPA) in [29]. ZPA makes use of any 

zero-value register used in the addition formula. To make matters worse, some previous 

efficient countermeasures of the randomized-projective-coordinate method (RPC) [32] are 

neither resistant against RPA nor ZPA because, a special point (0, y) or (x, 0) has still a 

zero value even if it is converted into (0, ry, r) or (rx, 0, r) by using RPC.  

In 2004, Nigel Smart et. al. [42] showed that it is possible to leak some 

information about the secret key (scalar K) through the projective representation of elliptic 

curve points. Giving that Q = KP is the elliptic-curve double-and-add scalar 

multiplication of a public base point P by a secret K, they showed that allowing an 

adversary access to the projective representation of Q, obtained using a particular double 

and add method, may result in information being revealed about K. A countermeasure for 

such an attack is proposed also in [42] but they assume that the attacker knows the 

projective coordinate system used and that the coordinate system is fixed.  



 

 

6

1.1 Scope of the Thesis 

The existing projective coordinate systems and the countermeasures based on 

them lack the following issues that can be used to enhance the security and/or 

performance of the scalar multiplication.  

First, issues related to the efficiency of the scalar multiplication:   

1. Each coordinate system needs its own mathematical formulation/software code 

and if a different coordinate system is used, it is required to change the microcode 

of the scalar multiplication. 

2. It is a costly operation to convert from one coordinate system to another during the 

scalar multiplication since this requires an inversion operation.  

Second, issues related to the security:   

1. The available projective coordinate systems are very limited in number.  

2. Vulnerability to RPA, ZPA and projective coordinate leak [31]. 

3. Existing countermeasures for power analysis attacks that use randomization of 

projective coordinates such as those introduced in [32] and the countermeasure 

proposed in [42] for projective coordinate leakage assume that projective 

coordinate system is fixed and they do not pursue the direction of changing the 

projective coordinate system randomly during the scalar multiplication due to the 

efficiency problems mentioned above.  

This thesis introduces a new approach for scalar multiplication called dynamic 

projective coordinate (DPC) system. We mean by dynamic projective coordinate system, 

is a system that automates the selection of the projective coordinate system and uses a 
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single mathematical formulation/software code to implement different projective 

coordinate systems. Also, DPC allows projective coordinates hopping at any time during 

the scalar multiplication with taking into account the efficiency and security issues 

mentioned above. 

Different projective coordinates are implemented by using two projecting parameters 

where one parameter defines the projection of the x-coordinate and a second parameter 

defines the projection of the y-coordinate of an elliptic curve point. This allows different 

projective coordinates to be used within the same mathematical formulation in calculating 

the scalar multiplication. 

These parameters are used to define dynamic transformation functions that can be 

used to convert any affine point to any projective coordinates using the same 

mathematical formula. These transformation functions are used to develop dynamic 

addition and doubling formulas for elliptic curve over the prime field GF(p) and elliptic 

curve over binary field E/GF(2m).  

In this thesis a survey of side channel attacks for ECC is presented in chapter 6. Based 

on that survey, we introduce a new classification of side channel attacks that can help in 

providing new countermeasures to cover the weaknesses of the existing ones. The 

proposed classification is based on the type of information being leaked. It divides all 

known attacks into three classes: Class A: Operation-dependent attacks that depend on the 

type of operation being performed (multiply, square, addition, doubling, etc…) such as 

simple power analysis attacks [26]. Class B: Data-dependent attacks that are based on the 

data being manipulated by the cryptodevice such as fault attacks [34]-[45] and projective 
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coordinate leaks [42]. Class C: Address-dependent attacks that are based on the addresses 

(locations) of the data being processed such as address-bit differential power analysis 

attacks [38]. There are, however, some attacks, called data-and-operation dependent 

attacks, that are both operation-dependent and data-dependent such as timing [27]  and 

DPA [26] attacks. 

However, an important feature of DPC is that by randomizing the projecting 

parameters (mentioned above) in addition and doubling DPC formulas, both the data 

being manipulated and the number of operations being performed are randomized. This 

fact is used to propose new countermeasures for data-dependent, data-and-operation 

dependent and address-dependent attacks. 

 

1.2 Organization of the Thesis 

The rest of this thesis is divided into 9 chapters. Chapter 2, presents an 

introduction to finite fields arithmetic. There are two kinds of finite fields that are 

especially preferred for the efficient implementation of elliptic curve cryptosystems. 

These fields are the prime field, GF(p), and the binary field )2( mGF . This chapter 

presents the definition of these fields and the basic arithmetic operations that can be 

performed on their elements. Also, various algorithms to perform arithmetic operations in 

the prime and binary finite fields are addressed in this chapter. 

Chapter 3 discusses the mathematical background of elliptic curves over finite 

fields. Curve arithmetic is defined in terms of underlining field operations. This includes 

the fundamentals of defining elliptic curve over the prime field GF(p) and the binary field 



 

 

9

GF(2m). 

Chapter 4 presents the principles of elliptic curve cryptography (ECC). It includes 

definition of the underlining hard problem, Elliptic Curve Discrete Logarithm Problem 

(ECDLP), that the security of ECC is based on. Also, it illustrates the domain parameters 

that are required to set up an ECC and the basic principles of symmetric and public key 

ECC . Finally, different scalar multiplication algorithms are addressed in this chapter.  

Chapter 5 surveys the existing projective coordinate systems, namely, Affine (A), 

Homogenous Projective (H), Jacobian (J), Chudnovsky-Jacobian (C), Modified (M) and 

mixed coordinate systems. We start this chapter by showing the cost of inversion 

operation in some recommended curves to show the motivation behind using projective 

coordinates. Also, this chapter presents the cost (in terms of the number of field 

multiplications and squaring) of point addition and doubling for each coordinate system. 

Furthermore, it gives the cost of converting a point from one projective coordinate to 

another. 

In chapter 6, we survey different types of side channel attacks and the various 

countermeasures known at the time of writing. Also, the classification methods of the 

attacks found in the literature are discussed. Based on that, we propose a new 

classification method according to the type of information being leaked. This 

classification method is used to classify and analyze both the attacks and countermeasures.  

Chapter 7 introduces the proposed dynamic projective coordinate (DPC) system for 

ECC over both finite fields GF(p) and GF(2m). In this chapter, we start by defining 
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dynamic transformation functions which are used to develop dynamic addition and 

doubling formulas for elliptic curve over the prime field GF(p) and elliptic curve over 

binary field E/GF(2m). 

Chapter 8 analyzes the performance and discusses the use of DPC. To analyze the 

performance of DPC, the number of field operations in each formula of the formulas 

presented in chapter 7 is calculated. We provide the method by which we can calculate the 

number of field operations in any DPC formula. Also, the issue of how the DPC can be 

used is discussed in this chapter. 

In chapter 9, we propose and analyze countermeasures for operation-and-data 

dependent, data-dependent and address-dependent attacks. All the proposed 

countermeasures are based on using the DPC system as the coordinate system. This is 

because the DPC system lends itself to randomization simply by randomizing the 

projecting parameters. For each countermeasure, we provide  the security and complexity 

analysis. 

Finally, conclusions are drawn in chapter 10. This includes a summary of the results 

obtained in this thesis. Suggestions for further work are also recommended at the end of 

this chapter.   



 

 11

 

 
CHAPTER 2
 

Finite Field Arithmetic 

 

2.1 Introduction 

Cryptographic mechanisms based on elliptic curves depend on arithmetic 

involving the points of the curve. Curve arithmetic is defined in terms of underlining field 

operations which its efficiency is essential. From a practical point of view, the 

performance of ECC depends on the efficiency of finite field computations and fast 

algorithms for elliptic scalar multiplications (section 4.5). In addition to the numerous 

known algorithms for these computations, the performance of ECC can be sped up by 

selecting particular underlying finite fields and/or elliptic curves. Thus, a fast 

implementation of a security application based on ECC requires several choices, any of 

which can have a major impact on the overall performance. 

This chapter introduces finite fields and the various algorithms to perform 

arithmetic operations in these fields. An introduction to groups and finite fields is 

provided in Section 2.2. There are tow kinds of finite fields that are especially prefer for 

the efficient implementation of elliptic curve cryptosystems. These fields are the prime 



12 

 

field, GF(p),and the binary field )2( mGF . Sections 2.3 and 2.4 present the definition of 

these fields and the basic arithmetic operations that can be performed in each of them. 

Finally, conclusions are presented in section 2.5. 

 

2.2 Finite Fields 

In this section we present the definition of groups and finite fields. These 

mathematical structures are fundamental for the construction of an elliptic curve 

cryptosystem. 

A group is an algebraic system consisting of a set G together with a binary operation ◊ 

defined on G satisfying the following axioms:  

• Closure: for all x , y in G we have x ◊ y ∈ G. 

• Associativity: for all x , y and z in G we have (x ◊ y) ◊ z =  x ◊ (y ◊ z). 

• Identity: there exists an e in G such that x ◊ e = e ◊ x = x for all x in G. 

• Inverse: for all x in G there exists y in G such that x ◊ y = y ◊ x = e. 

If in addition, the binary operation ◊ satisfies the abelian property:  

• abelian: for all x , y in G we have x ◊ y = y ◊ x,  

Then we say that the group G is abelian. 

A finite field is an algebraic system consisting of a finite set F together with two 

binary operations + and , defined on F satisfying the following axioms:  

• F  is an abelian group with respect to “+”. 

• F \ {0} is an abelian group with respect to “ ” 
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• distributive: for all x, y and z in F we have:  

)()()( zxyxzyx ×+×=+×  

)()()( zyzxzyx ×+×=×+ . 

The order of a finite field is the number of elements in the field. A fundamental 

result on the theory of finite fields [6] that characterizes the existence of finite field is the 

following: there exists a finite field of order p if and only if p is a prime. In addition, if p 

is a prime, then there is essentially only one finite field of order p. this field is denoted by 

GF(p) (or Fp). However, there are many ways of representing the elements of GF(p), and 

some representations may lead to more efficient implementations of the field arithmetic in 

hardware or in software.  

if mqp =  where q is a prime and m is a positive integer, then q is called the 

characteristic of GF(p) and m is called the extension degree of GF(p). Most standards 

which specify ECC restrict the order of the underlying finite field to be an odd prime (p = 

q, i.e. m=1) which result in GF(p) finite field, or restrict the order to a power of 2 ( mp 2= , 

i.e. q=2) which result in what called characteristic two finite field and denoted by 

)2( mGF . In the following sections, we will describe these two finite fields and present the 

basic algorithms for performing arithmetic operations in each of them. 

 

2.3 Finite Field GF(p) 

Definition 2.1: Prime Field GF(p). 

Let p be a prime number. The integers modulo p, consisting of the integers {0, 1, 2, 
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…, p – 1} with addition and multiplication performed modulo p, is a finite field of order p 

called prime field and denoted by GF(p). The prime number p is called the modulus of 

GF(p).  

 

2.3.1 Finite Field Arithmetic in GF(p) 

This section presents algorithms for performing arithmetic in the prime file GF(p). 

The algorithms presented here are well suited for software implementation. We assume 

that the implementation platform has a W-bit architecture where W is a multiple of 8. Let 

⎡ ⎤pm 2log=  be the bit length of p, and ⎡ ⎤Wmt /=  be its word length. Figure 2.1 

illustrates a binary representation of a field element A as an array of W-bit words. As an 

integer, 

 ]0[]1[2]2[2......]2[2]1[2 2)2()1( aaatataA WWWtWt ++++−+−= −− . 

 

a[t-1] … a[2] a[1] a[0] 
Figure 2. 1: Representation of A ∈GF(p) as an array of W-bits 

 

The following notation is used in algorithms for multiword integers. An 

assignment of the form "(ε,Z)  A" for an integer A means: 

  Z = A mod 2W, and 

  ε = 0 if A in [0, 2W – 1], otherwise ε = 1. 

ε is called the carry bit from single word addition. 

Addition: If a,b ∈ GF(p), then a + b = r, where r is the remainder of the division of (a+b) 
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by p and 0 ≤  r ≤  p – 1. This operation is called addition modulo p. To perform addition 

operation for multi-word integers in GF(p), we first perform multiprecision addition 

followed by an additional step for reduction modulo p. The following two algorithms 

present multiprecision addition and reduction modulo p respectively. 

 

Input: integers A,B ∈ [0,2Wt – 1] 
Output: (ε,C) where C = A + B mod 2Wt  

1. (ε,c[0])  a[0] + b[0] 
2. for i = 1 to t-1 do 
             (ε,c[i])  a[i] + b[i] + ε 
3. return (ε,C) 

Algorithm 2. 1: Multiprecision addition 
 

Modular addition in GF(p), (C = A + B mod p), is adapted directly from the 

corresponding multiprecision addition algorithm with an additional step for reduction 

modulo p. 

 

Input: modulus p and integers A,B ∈ [0, p – 1] 
Output: C = (A + B) mod p  

1. Use algorithm 2.1 to obtain (ε,C) where C = A + B mod 2Wt and ε 
is the carry bit. 

2. if (ε = 1 or C ≥ p) then 
                C = C – p       // subtract modulus. 

3. return (ε,C) 
Algorithm 2. 2: Addition in GF(p) 

 

Subtraction: If a,b ∈ GF(p), then a - b = r, where r is the remainder of the division of (a-

b) by p and 0 ≤  r ≤  p – 1. This operation is called subtraction modulo p. To perform 

subtraction operation for multi-word integers in GF(p), we first perform multiprecision 

subtraction followed by an additional step for reduction modulo p. Note that we need a 
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reduction step here because we may have a negative result which must be reduced to the 

range [0, p – 1]. We mean by reduction here is adding the modulus p to the negative result 

if any. The following two algorithms present multiprecision subtraction and reduction-for-

subtraction modulo p respectively. 

 

Input: integers A,B ∈ [0,2Wt – 1] 
Output: (ε,C) where C = A – B mod 2Wt  and ε is the borrow bit  

1. (ε,c[0])  a[0] – b[0] 
2. for i = 1 to t-1 do 
             (ε,c[i])  a[i] – b[i] – ε 
3. return (ε,C) 

Algorithm 2. 3: Multiprecision subtraction 
 

Modular subtraction in GF(p), (C = A – B mod p), is adapted directly from the 

corresponding multiprecision subtraction algorithm with an additional step for reduction 

modulo p. 

 

 

Input: modulus p and integers A,B ∈ [0, p – 1] 
Output: C = (A + B) mod p  

1. Use algorithm 2.3 to obtain (ε,C) where C = A – B mod 2Wt and ε 
is the borrow bit. 

2. if (ε = 1) then 
                C = C + p       // add modulus. 

3. return (ε,C) 
Algorithm 2. 4: Subtraction in GF(p) 

 

Multiplication: If a,b ∈ GF(p), then a . b = s, where s is the remainder of the division of 

(a.b) by p and 0 ≤  s ≤  p – 1. This operation is called multiplication modulo p. 
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The basic method for performing a multiplication in GF(p) is the "shift-and-add" 

method. Given A ∈ GF(p), the shift-left operation, (A << 1) mod p can be performed as 

modulo addition of A to itself using algorithm 2.2. That is: A = (A + A) mode p. The steps 

of the "shift-and-add" multiplication method are given below. 

 

Input: A,B ∈ GF(p) and the modulus p 
Output: C = A×B mod p 

1. set C = 0 
2. for i = m-1 to 0 do 
        C = C + C mod p          //shift left    
         If 0≠ib  then C = C + A   //use algorithm 2.2   
3. return (C) 

Algorithm 2. 5: Shift-and-add method for modular multiplication in GF(p). 
 

Inversion: The inverse of a nonzero element a ∈ GF(p), denoted 1)( −a  mod p or 

simply 1)( −a , is the unique element in GF(p) such that a.x = 1 in GF(p), i.e. a.x = 1 (mod 

p). The basic algorithm for computing multiplicative inverses in GF(p) is the extended 

Euclidean algorithm as shown below. 

 

Input: A ∈ GF(p), (A ≠ 0) and the modulus p 
Output: C = A-1 mod p 

1. set U = A, V = p 
          set X1 = 1, X2 = 0 

2. while U ≠  1 do 
         Q = ⎣V/U⎦ ,  R = V – QU,    X = X2 – Q X1. 
          V = U,    U = R,   X2 = X1 ,    X1 = X. 
3. return (X1 mod p) 

Algorithm 2. 6: Inversion using extended Euclidean algorithm in GF(p). 
 

However, several techniques for implementing the finite field arithmetic in pF  are 
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described in details in [7], [8], [9], [10], [11], and [12]. 

 

2.4 Finite Field GF(2m) 

Definition 2.2: Binary Field )2( mGF  

The finite field )2( mGF , called a binary finite field, can be viewed as a vector 

space of dimension m over GF(2). That is, there exist a set of m elements 

{ 110 ,...,, −mααα } in )2( mGF such that each a ∈ )2( mGF can be written uniquely in the 

form 

∑
−

=

=
1

0

m

i
iiaa α  where, ia  ∈ {0,1}. 

The set { 110 ,...,, −mααα }  is called a basis of )2( mGF over GF(2). We can then 

represent a as a binary vector ( 110 ,...,, −maaa ). In the sequel, we introduce the most 

common basis: polynomial basis.  

 

Polynomial basis 

Let ∑ −

=
+=

1

0
)( m

i
i

i
m xfxxF  where if  ∈ {0,1}, for i = 0,1, …, m-1 be an  irreducible 

polynomial1 of degree m over GF(2). F(x) is called the reduction polynomial. For each 

reduction polynomial, there exists a polynomial basis representation. In such a 

                                                 
1 A polynomial is said to be irreducible if it cannot be factored into nontrivial polynomials over the same 
field 
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representation, each element of )2( mGF corresponds to a binary polynomial of degree less 

than m. That is, for A ∈ )2( mGF  there exists m numbers ia  ∈ {0,1} such that 

01
2

2
1

1 ... axaxaxaA m
m

m
m ++++= −

−
−

−  

The field element A ∈ )2( mGF  is usually denoted by the bit string 

( 0121 ...... aaaa mm −− ) of length m. 

The following procedure is commonly used to choose a reduction polynomial: if 

an irreducible trinomial2 1++ km xx  exists over GF(2), then the reduction polynomial 

F(x) is chosen to be the irreducible trinomial with the lowest-degree middle term kx . If no 

irreducible trinomial exists, then select instead a pentanomial 1123 ++++ kkkm xxxx , such 

that 1k  has the minimal value; the value of 2k  is minimal for the given 1k ; and 3k  is 

minimal for given 1k  and 2k .  

 

2.4.1 Finite Field Arithmetic in GF(2m) Using Polynomial Basis 

In this section, we describe algorithms for performing arithmetic operations in the 

finite field )2( mGF  using polynomial basis representation.  

 

Addition. Addition in )2( mGF  is the usual addition of vectors over GF(2). That is, add 

the corresponding bits modulo 2, i.e. performing bitwise Xoring. 

 

                                                 
2 A polynomial with three terms 
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Input: 0121 ...... aaaaA mm −−=  , 0121 ...... bbbbB mm −−=  ∈ )2( mGF  
Output: 0121 ...... ccccBAC mm −−=+=  ∈ )2( mGF  

4. for i = 0 to m-1 do 
          iii bac ⊕=  
5. return (C) 

Algorithm 2. 7: Bit-level method for addition in )2( mGF  
 

Reduction. By the definition of multiplication in )2( mGF , the result of a polynomial 

multiplication or squaring has to be reduced modulo a reduction (irreducible) polynomial 

of degree m. This reduction operation is particularly efficient when the irreducible 

polynomial F(x) is a trinomial or pentanomial. The following algorithm for computing 

A(x) mod F(x) works by reducing the degree of A(x) until it is less than m. 

 

Input: 0122 ...... aaaA m−=  and 0121 ...... fffffF mmm −−=   
Output: C = A mod F 

1. for i = 2m-2 to m do 
          for j = 0 to m-1 do 
                  If 0≠jf  then ijmijmi aaa += +−+−     

2. return (C = 0121 ...... aaaa mm −− ) 
Algorithm 2. 8: Bit-level method for modular reduction in )2( mGF  

 

Multiplication. The basic method for performing a multiplication in )2( mGF  is the "shift-

and-add" method. Given A(x) ∈ )2( mGF , the shift-left operation xA(x) mod F(x) can be 

performed as follows: 

⎪⎩

⎪
⎨
⎧

≠++

=
=
∑
∑

−

= −−

−

= −−

1

1 101

1

1 11

0)(

0
)(mod)(

m

j m
j

ij

m

j m
j

j

aiffxfa

aifxa
xFxxA  
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Then the steps of the "shift-and-add" method are given below. 

 

Input: A(x),B(x) ∈ )2( mGF  and 0121 ...... fffffF mmm −−=   
Output: C = A×B mod F 

4. set C(x) = 0 
5. for i = m-1 to 0 do 
        C(x) = xC(x) mod F(x)    
         If 0≠ia  then C(x) = C(x) + B(x)   //use algorithm 2.7   
6. return (C(x)) 

Algorithm 2. 9: Shift-and-add method for modular multiplication in )2( mGF . 
 

A faster modular multiplication is proposed in [50] but it requires more temporary 

storage.  

Squaring. This operation can be calculated in an efficient way by observing that the 

square of a polynomial A(x) is given by: 

( ) ∑∑ −

=

−

=
==

1

1
2221

1
2))(( m

i
i

i
m

i
i

i xaxaxA  

This equation yields a simple squaring algorithm: 

Input: 011...... aaaA m−=  and 0121 ...... fffffF mmm −−=   
Output: C = A2 mod F 

1. ∑ −

=
=

1

1
22m

i
i

i xaT  
2. C = T mod F    // use algorithm 2.8 
3. return (C(x)) 

Algorithm 2. 10: Bit-level method for squaring in )2( mGF  
 

A known technique for speeding up the computation in step 1 is to use a table 

lookup as in [70]. 
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Inversion. The basic algorithm for computing multiplicative inverses is the extended 

Euclidean algorithm. A high level description of this method is the following: 

 

Input: A(x) ∈ )2( mGF , (A(x) ≠ 0) and 0121 ...... fffffF mmm −−=   
Output: C = A-1 mod F 

1. set B1(x) = 1, B2(x) = 0 
          set P1(x) = A(x), P2(x) = F(x) 

2. while degree(P1(x)) ≠  0 do 
        if degree(P1(x)) < degree(P2(x))   then 
                  Exchange P1(x),P2(x) and B1(x) B2(x) 
                   j = degree(P1(x)) – degree(P2(x)) 
                  )()()( 211 xPxxPxP j+= , )()()( 211 xBxxBxB j+=  
3. return (C(x)=  B1(x)) 

Algorithm 2. 11: Inversion using extended Euclidean algorithm in )2( mGF . 
 

An alternative method for computing inverses, called the almost inverse 

algorithm, was proposed by Schroeppel et al [70]. This method works quite well when the 

reduction polynomial is a trinomial of the form 1++ km xx  with k > W and m – k > W, 

where W is the word size of the computer used. The authors suggested a number of 

implementation tricks that can be used for improving the speed of this method. Many of 

these tricks also work for the extended Euclidean algorithm. However, in the context of 

elliptic curve computations, most of the inversions required can be avoided be using 

projective coordinates (see chapter 5). 

 

2.5 Conclusions 

 In this chapter, the basic theory behind finite fields has been presented. The 

construction of finite fields has been illustrated and the representation of finite field 
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elements has been considered. Also, the finite fields GF(p) and GF(2m) were defined. The 

basic arithmetic operations for these two finite fields were studied and the algorithms for 

performing these arithmetic operations have been presented.  
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CHAPTER 3
 

Elliptic Curve Arithmetic 

 

3.1 Introduction 

In this chapter, we present fundamentals of the theory of elliptic curves defined 

over finite fields. Curve arithmetic is defined in terms of underlining field operations 

discussed in chapter 2. However, based on the group law, elliptic curve can be defined 

over the prime field GF(p) or the binary field GF(2m). In both cases, the two main 

operations of elliptic curve are the addition and doubling operations. Figure 3.1 shows the 

hierarchal organization of curve operations in terms of finite field operations. 

 
Figure 3. 1: Hierarchal organization of elliptic curve arithmetic. 

 

The remaining of this chapter is organized as follows. Section 3.2 gives an 

introduction to elliptic curves. Section 3.3 presents the basic fundamentals of group low. 

Point Doubling Point Addition 

Field  
Multiplication 

Field 
 Subtraction 

Field  
Inversion 

Field  
Addition 
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Elliptic curve over the prime field GF(p) and the binary field )2( mGF  are discussed in 

sections 3.4 and 3.5 respectively. Finally, we conclude this chapter in section 3.6.  

 

3.2 Introduction to Elliptic Curves 

Definition 3.1: Let E be an elliptic curve defined over the finite field K denoted by E/K. 

E/K is defined by an equation 

 E/K: 64
2

2
3

31
2 axaxaxyaxyay +++=++     3.1 

 Where, 64321 ,,,, aaaaa  ∈ K. 

For GF(p), we get the simplified Weierstrass of the elliptic curve equation 3.1.  

E/K: 64
32 axaxy ++=        3.2 

However, there are several ways of defining equations for elliptic curves, which 

depend on whether the field is a prime finite field, pF , or a binary (characteristic 2) finite 

field, )2( mGF . The Weierstrass equation for both finite fields GF(p) and )2( mGF  are 

described in sections 3.4 and 3.5 respectively. 

Additional information on elliptic curves and its applications to cryptography can 

be found in [9], [13], [14] and [15]. 

 

3.3 Group Law 

 Let E be an elliptic curve defined over the field K denoted by E/K. There is a 

chord-and-tangent rule for adding tow points in E/K to give a third point in E/K. together 

with this addition operation, the set of points in E/K forms an abelian group with ∞ 
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serving as its identity. The group (E/K,+)  consists of a finite set of points P(x,y) that 

satisfy the elliptic curve equation 3.2 together with a point at infinity. The x and y 

coordinates of any point as well as the coefficients of elliptic curve equation, 64 ,aa , are 

elements of K. The group (E/K,+) is the algebraic group that is used to construct elliptic 

curve cryptosystem.  

Addition operation, + , is best explained geometrically. Let ),( 11 yxP =  and 

),( 22 yxQ =  be two distinct points on an elliptic curve E. Then the sum R of P and Q is 

defined as follows: 

1. Draw a line through P and Q. This line intersects the elliptic curve at a third 

point R . 

2. R is the reflection of R  around the x-axis. 

The double R, of P, is defined as follows: 

1. Draw the tangent line to the elliptic curve at P. This line intersects the elliptic 

curve at a third point R . 

2. R is the reflection of R  around the x-axis. 

The algebraic formulations of the group law can be derived from the geometric 

description. In the next two sections, we present the algebraic formulations of the group 

law of elliptic curve over finite fields GF(p) and )2( mGF . 

 

3.4 Elliptic Curve Over Prime Field GF(p) 

Definition 3.2: Let P > 3 be an odd prime and let a, b ∈ GF(p) satisfy 
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)(mod0274 23 pba ≠+ . Then an elliptic curve E over a finite prime field GF(p) , 

denoted by E/GF(p), is defined by an equation: 

E/GF(p): baxxy ++= 32        3.3 

where parameters a, b ∈ GF(p).  

Comments in definition 3.2 

(i) Equation 3.3 is called Weierstrass equation with aa =4  and ba =6 . 

(ii) We say that E is defined over GF(p) because the coefficients a and b are 

elements of GF(p). GF(p) is called the underlining field. 

(iii) The notion E/GF(p) (or E( pF )) is used to emphasize that E is defined over 

GF(p).  

(iv) The set of points of an elliptic curve E/GF(p) are  the points (or solutions) P = 

(x, y) (where x, y ∈ GF(p)) that satisfy equation 3.3 together with a special 

point called the point at inanity, ∞.  

(v) The point ∞ is the only point on the line at infinity (∞ and –∞) that satisfies the 

projective form of the Weierstrass equation. 

(vi) For a given point ),( 111 yxP = , 1x  is called the x-coordinate of 1P  and 1y  is 

called the y-coordinate of 1P . 

The algebraic formulas of group law for E/GF(p) are specified as follows: 

1. Identity: P + ∞ = ∞ + P  =  P for all P ∈ E/GF(p). 
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2. Inverse: if ),( yxP =  ∈ E/GF(p), then ),(),( yxyx −+  = ∞. The point ),( yx − is 

denoted by –P and is called the inverse of P. Note that –P is indeed a point in 

E/GF(p). Also, – ∞ = ∞. 

3. Point Addition (denoted by ADD): Let ),( 11 yxP =  ∈ E/GF(p) and ),( 22 yxQ =  ∈ 

E/GF(p) be two points satisfying the elliptic curve equation 3.3 where QP ±≠ . 

Then ),( 33 yxQPR =+=  is given by: 

⎪
⎭

⎪
⎬

⎫

−−=
−−=

−−=

)/()(,
)(

1212

1313
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λ
λ
λ

     3.4 

4. Point doubling (denoted by DBL): Let ),( 11 yxP =  ∈ E/GF(p) be a point satisfying 

the elliptic curve equation 3.3 where P ≠ –P. Then ),(2 33 yxPR ==  is given by: 

⎪
⎭
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⎬

⎫
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From the above formulas, we get the following results: 

• If ),(),( 1122 yxyx −= , then )),((),(),( 111133 yxyxyx −+=  = ∞. 

• If ),( 22 yx  = ∞, then += ),(),( 1133 yxyx  ∞ ),( 11 yx= . 

• ),( 11 yx−  = ),( 11 yx − . 

Example 3.1: Elliptic curve over the prime field GF(29). 
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 Let P = 29 (hence we have finite field GF(29) (or 29F )) and the elliptic curve 

coefficients a and b are 4 and 20 respectively. The elliptic curve equation 3.3 becomes:  

 20432 ++= xxy  

First, note that )(mod0274 23 pba ≠+  is satisfied. That is, 

7)29(mod11056)29(mod202744 23 ==×+×  which ≠ (0 mod 29). 

 To get the points of  E/GF(29), consider all possible values of x which are in the 

range from 0 to 28 and compute the corresponding y value by using equation 3.3 with a = 

4 and b = 20. Note that all operations are performed modulo 29. For example, 

• When x = 0, 20002 ++=y  = 20 = 20 (mod 29), and )29(mod20=y . There 

are two solutions: 

• y = 7 since 7 × 7 = 49 = 20 (mod 29). i.e. the first solution of square root of 20 

(mod 29) is 7. Therefore, the point (0,7) ∈ E/GF(29). 

• y = 22 since 22 × 22 = 484 = 20 (mod 29). i.e. the second solution of square 

root of 20 (mod 29) is 22. Therefore, the point (0,22) ∈ E/GF(29). 

• When x = 10, 201041032 +×+=y  = 1060 = 16 (mod 29), and  

)29(mod16=y . There are two solutions: 

• y = 4 since 4 × 4 = 16 = 16 (mod 29). i.e. the first solution of square root of 16 

(mod 29) is 4. Therefore, the point (10,4) ∈ E/GF(29). 

• y = 25 since 25 × 25 = 625 = 16 (mod 29). i.e. the second solution of square 

root of 16 (mod 29) is 25. Therefore, the point (10,25) ∈ E/GF(29). 
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• When x = 7, 2074732 +×+=y  = 391 = 14 (mod 29). )29(mod14=y  is not 

found. In other words, there is no number in the range from 0 to 29 that when it is 

multiplied by itself gives 14 (mod 29). Therefore points (7, y) ∉ E/GF(29). 

The points in E/GF(29) are the following: 

∞ (2,6) (4,19) (8,10) (13,23) (16,2) (19,16) (27,2) 

(0,7) (2,23) (5,7) (8,19) (14,6) (16,27) (20,3) (27,27) 

(0,22) (3,1) (5,22) (10,4) (14,23) (17,10) (20,26)  

(1,5) (3,28) (6,12) (10,25) (15,2) (17,19) (24,7)  

(1,24) (4,10) (6,17) (13,6) (15,27) (19,13) (24,22)  

 

Point Addition: Let ),( 11 yxP =  = (5,22) and ),( 22 yxQ =  = (16,27) (note that QP ±≠ ). 

Then ),( 33 yxQPR =+=  is given by: (apply addition formula 3.4) 

11

12

12 )11(5)11(5
11
5

516
2227 −− ×=×==
−
−

=
−
−

=
xx
yy

λ  = 5 × 8 = 40 = 11 (mod 29).  

Note that the inverse of 11 (mod 29) is the number r where 11 × r = 1 (mod 29). 

That number, i.e. r, is 8 since 8 × 11 = 88 = 1 (mod 29). 

100165)11( 2
21

2
3 =−−=−−= xxx λ  = 13 (mod 29). 

22)135(11)( 1313 −−=−−= yxxy λ  = –110 = 6 (mod 29). 

 Therefore, R = (13,6) which is in E/GF(29). 
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Remark: to get the modulo of a negative number r mod P, repeat adding P to r until 

getting the first positive number in the range from 0 to P. for example, to get –110 mod 

29, repeat adding 29 to –110 until getting the first positive number in the range from 0 to 

29 which is 6. 

Point doubling: Let ),( 11 yxP =  = (5,22). Then ),(2 33 yxPR ==  is given by: (apply 

doubling formula 3.5) 

1
2

1

2
1 )44(79

222
4)5(3

2
3 −×=

×
+

=
+

=
y

ax
λ  = 21 (mod 29) × 1)15( − (mod 29) = 21 × 2 = 

42 = 13 (mod 29).  

Note that the inverse of 15 (mod 29) is the number r where 15 × r = 1 (mod 29). 

That number, i.e. r, is 2 since 2 × 15 = 30 = 1 (mod 29). 

15910)13(2 2
1

2
3 =−=−= xx λ  = 14 (mod 29). 

22)145(13)( 1313 −−=−−= yxxy λ  = –139 = 6 (mod 29). 

 Therefore, R = (14,6) which is in E/GF(29).  

 

3.5 Elliptic Curve Over Binary Field GF(2m) 

Definition 3.3: Let )2( mGF  be a finite field of characteristic two. A non-supersingular 

elliptic curve E over )2( mGF , denoted by E/ )2( mGF , is defined to be the set of solutions 

),( yx ∈ )2( mGF  to the equation, 
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E/ )2( mGF : baxxxyy ++=+ 232       3.6 

where a and b ∈ )2( mGF  and b ≠ 0.  

Comments in definition 3.3 

(i) Equation 3.6 is called Weierstrass equation with 11 =a , aa =4  and ba =6 . 

(ii) We say that E is defined over )2( mGF  because the coefficients a and b are 

elements of )2( mGF . )2( mGF  is called the underlining field. 

(iii) The notion E/ )2( mGF  (or E( )2( mGF )) is used to emphasize that E is defined 

over )2( mGF .  

(iv) The set of points of an elliptic curve E/ )2( mGF  are  the points (or solutions) P 

= (x, y) (where x, y ∈ )2( mGF ) that satisfy equation 3.6 together with a 

special point called the point at inanity, ∞.  

(v) The point ∞ is the only point on the line at infinity (∞ and –∞) that satisfies the 

projective form of the Weierstrass equation. 

(vi) For a given point ),( 111 yxP = , 1x  is called the x-coordinate of 1P  and 1y  is 

called the y-coordinate of 1P . 

It is well known that E with the point at infinity, ∞, forms an abelian finite group with ∞ 

serving as the identity element of the group. The algebraic formulas of group law for 

E/ )2( mGF  are specified as follows: 

1. Identity: P + ∞ = ∞ + P  =  P for all P ∈ E/ )2( mGF . 
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2. Inverse: if ),( yxP =  ∈ E/ )2( mGF , then ),(),( yxxyx ++ = ∞. The point 

),( yxx +  is denoted by –P and is called the inverse of P. Note that –P is indeed a 

point in E/ )2( mGF . Also, – ∞ = ∞. 

3. Point Addition (denoted by ADD): Let ),( 11 yxP =  ∈ E/ )2( mGF  and ),( 22 yxQ =  

∈ E/ )2( mGF  be two points satisfying the elliptic curve equation 3.6 where 

QP ±≠ . Then ),( 33 yxQPR =+=  is given by: 
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5. Point doubling (denoted by DBL): Let ),( 11 yxP =  ∈ E/ )2( mGF  be a point 

satisfying the elliptic curve equation 3.6 where P ≠ –P. Then ),(2 33 yxPR ==  is 

given by: 

( )
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From the above formulas, we get the following results: 

• If ),(),( 1122 yxyx −= , then )),((),(),( 111133 yxyxyx −+=  = ∞. 

• If ),( 22 yx  = ∞, then += ),(),( 1133 yxyx  ∞ ),( 11 yx= . 

• ),(),( 11111 yxxyx +=− . 

Example 3.2: non-supersingular elliptic curve over the binary field )2( 4GF . 
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 Consider the finite field )2( 4GF  as represented by the reduction polynomial 

1)( 4 ++= zzzf . An element 01
2

2
3

3 azazaza +++  ∈ )2( 4GF  is represented by the bit 

string )( 0123 aaaa  of length 4 bits. For example, (0101) represents 12 +z .  

 Let elliptic curve coefficients a and b are 3z  and 13 +z  respectively. The elliptic 

curve equation 3.6 becomes: E/ )2( 4GF : 132332 +++=+ zxzxxyy . 

To get the points of  E/ )2( 4GF , consider all possible values of x which are in the 

range from (0000) to (1111) and compute the corresponding y value by using the above 

elliptic equation. Note that all operations are performed modulo the reduction polynomial  

1)( 4 ++= zzzf .  

The points in E/ )2( 4GF  are the following: 

∞ (0011,1100) (1000,0001) (1100,0000) 

(0000,1011) (0011,1111) (1000,1001) (1100,1100) 

(0001,0000) (0101,0000) (1001,0110) (1111,0100) 

(0001,0001) (0101,0101) (1001,1111) (1111,1011) 

(0010,1101) (0111,1011) (1011,0010)  

(0010,1111) (0111,1100) (1011,1001)  

 

Point Addition: Let ),( 11 yxP =  = (0010,1111) and ),( 22 yxQ =  = (1100,1100) (note that 

QP ±≠ ). Then ),( 33 yxQPR =+=  = (0001,0001) (apply addition formula 3.7). 
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Point doubling: Let ),( 11 yxP =  = (0010,1111). Then ),(2 33 yxPR ==  is (1011,0010) 

(apply doubling formula 3.8)  

 

3.6 Conclusions 

In this chapter, we have presented the fundamentals of the theory of elliptic curves 

defined over finite fields. Hierarchal organization of curve operations in terms of finite 

field operations has been introduced. Also, defining an elliptic curve over the prime field 

GF(p) and over the binary field GF(2m) has been discussed with providing an example for 

each case.  
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CHAPTER 4
 

Elliptic Curve Cryptography 

 

4.1 Introduction 

 The security of Elliptic Curve Cryptography (ECC) in based on the apparent 

intractability of Elliptic Curve Discrete Logarithm Problem (ECDLP) [9]. To date, that 

there are no sub-exponential algorithms for the ECDLP known. This means that we can 

use shorter keys (compared to other cryptosystems) for high security levels. However, to 

establish an ECC, several main aspects need to be discussed. The main purpose of this 

chapter is to present these main aspect which are necessary for any environment that 

wishes to use ECC. 

 To setup an ECC, domain parameters such as the curve coefficients a and b and 

the base point should be selected and verified. These parameters are used to establish a 

cryptography system whether this system is a symmetric key or public key cryptography. 

Also, a curial operation in ECC is the scalar multiplication (or point multiplication) in 

which a base point P is added to itself K times. This point multiplication is performed 

based on the group law discussed in chapter 3.   
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Since this thesis considers both the elliptic curve defined over the prime field 

E/GF(p) and over the binary field E/GF(2m), we use the following common notation: 

E/GF(q) , where q = p or q = 2m, to denote both cases. Whenever "E/GF(q)" appears, it 

means that the related subject is applicable to both E/GF(p) and E/GF(2m). 

 This chapter is organized as follows. Section 4.2 discusses the ECDLC. Elliptic 

curve domain parameters are presented in section 4.3. Elliptic curve cryptosystems 

namely, elliptic curve symmetric and public cryptography are discussed in section 4.4. 

Scalar multiplication and the most popular algorithms to perform it are the subject of 

section 4.5. Finally, conclusions are drawn in section 4.6. 

 

4.2 Elliptic Curve Discrete Logarithm Problem (ECDLP) 

ECDLP is defined as follows: Given an elliptic curve E/GF(q), a point P ∈ 

E/GF(q) of order n and a point Q ∈ E/GF(q), determine the integer K satisfying Q = K P, 

provided that such 0 ≤ K  ≤ n-1 exists. The integer K  is called the discrete logarithm of Q 

to the base P, denoted QK Plog= . 

To date, the most efficient general algorithm to resolve the ECDLP is Pollard-ρ 

[17] algorithm, which has the running time )/( rnΟ , where r is the parallel processor 

number.  

Another possible attack known on the ECDLP is the combination of the Pohlig-

Hellman algorithm [16] and Pollard-ρ algorithm where the computation of K  is reduced 

to the problem of computing K  modulo each prime factor of n. So if n is a large prime, 
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the ECDLP becomes harder. In practice, one must carefully select elliptic curve 

parameters (section 4.2) such as selecting a base point that has large prime order n and 

curve order  #E/GF(q) = n ×  h, where h is a small integer.   

 It is well known that the security of any cryptosystems depends mainly on the 

hardness of the mathematical underlining problem that the cryptosystems is based on. 

Fore example, Rivest-Shamir-Adleman (RSA) 3  cryptosystem is based on integer 

factorization problem. An instance of integer factorization problem is an integer n that is a 

product of two L/2 bits  primes. The best algorithm known for solving the integer 

factorization problem is the Number Field Sieve (NFS) [9] which has sub-exponential 

time.   On the other hand, The best algorithm to solve the ECDLP is the combination of 

the Pohlig-Hellman [16] and Pollard’s ρ algorithms [17], which has a fully-exponential 

running time. This means that significantly smaller parameters can be used in ECC than in 

RSA system, but with equivalent levels of security. A typical example of the size in bits 

of the keys used, is that a l60-bit ECC key is equivalent to RSA with a modulus of 1024 

bits. Thus ECC offers potential reductions in the number of required arithmetic operations, 

storage space, bandwidth and electrical power. These advantages are specially important 

in applications on constrained devices such as smart cards and cellular phones. 

 

 

 

                                                 
3 In RSA, one has a public key (e, n), a prime number P, and a private key 01...kkK n−= .When creating an 
encrypted message C one has to compute C = Pe mod n. Decryption is done by P = Cd mod n. The modular 
exponentiation is usually done by the square-and-multiply algorithm. 
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4.3 ECC Domain Parameters 

Before we introduce the ECC domain parameters, It is necessary to present some basic 

facts and concepts of ECC.  

• Order of point P ∈ E/GF(q) is the smallest integer r such that rP = ∞. 

• Order of the curve, is the number of points of E/GF(q), donated by #E/GF(q).  

Note that the curve order can be computed by Schoof's algorithm [9] or its 

improvements, which is needed if one selects a random curve. And normally 

choosing a and b to make the curve order have a large prime factor can improve 

the cryptography scheme's security. So, this is an important parameter of the 

scheme to determine the system's security. 

• Hasse Theorem: let E be an elliptic curve defined over GF(p). then the curve order 

#E/GF(p) is bounded by: 

≤−+ pp 21  #E/GF(p) pp 21++≤  

Elliptic curve parameters over the finite field GF(p) or GF(2m) can be described by 

the following 6-tuple: 

T = (q, FR, a, b, G, n, h)   

Where: 

• q: the prime p or 2m that defines the field and at the same time decides the curve 

form. 
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• FR: the field representation, i.e., using which method to represent the elements in 

the field (polynomial basis or normal basis for GF(2m), or normal or Montgomery 

residue for GF(p)). 

• a, b: the curve coefficients, depending on the security requirement. 

• G: the base point, G = ( GG yx , ), one element in E/GF(q), which has the largest 

order n. 

• n: the order of G, large prime. Also, the order of the curve, N = #E/GF(q), is 

divisible by n. 

• h: # E/GF(q)/n. 

These parameters should be chosen to setup an ECC system. 

 

4.4 Elliptic Curve Cryptosystem 

Given a message point ),( mm yx , a base point ( GG yx , ), and a given key, K, the 

cipher point ),( CC yx  is obtained using the following equation, 

),(),(),( GGmmCC yxKyxyx +=       4.1 

There are two basics steps in the computation of the above equations. The first is 

to find the scalar multiplication (section 4.5) of the base point with the key,  )",(" GG yxK .  

The resulting point is then added to the message point, ),( mm yx  to obtain the cipher point.   

At the receiver, the message point is recovered from the cipher point which is 

usually transmitted, the shared key and the base point, that is 

),(),(),( GGCCmm yxKyxyx −=       4.2 
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4.4.1 Symmetric Elliptic Curve Cryptography 

The steps of elliptic curve symmetric cryptography can be summarized as follows: 

Both the sender and receiver must agree on: 

1. A random number, K, that will be the shared secret key for communication,  

2. A base point, ),( GG yxG = . 

At the sending correspondent:  

1 Embed a message bit string into the x-coordinate of an elliptic curve point 

which is designated as the message point, ),( mm yx . 

2 The cipher point ),( cc yx is computed using, 

),(),(),( GGmmcc yxKyxyx +=  

3 The appropriate bits of the x-coordinate and the sign bit of the y-coordinate of 

the cipher point ),( cc yx  are sent to the receiving entity. 

At the receiving correspondent, the following steps are performed, 

1. Using the shared key, K, and the base point ),( GG yx , the scalar multiplication 

),( GG yxKKG =  is computed. 

2. The message point ),( mm yx  is computed using,  

)),((),(),( GGccmm yxKyxyx −+=  

3. The secret messages bit string is recovered from xm.  
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4.4.2 Public Key Elliptic Curve Cryptography 

Before we proceed to see how two entities can communicate using elliptic curve 

public key cryptography, we first have to show how the private and public keys are 

generated and verified and then how the sending and receiving entities agree on a key. For 

the following, let A denotes the sending entity and B denotes the receiving entity.  

Key Generation. We mean by key generation is to generate the public and private key 

pair. Given the domain parameters (q, FR, a, b, G, n, h), each entity does the following: 

Sending entity, A: 

1. Selects a random integer Ad  from the interval [1,n – 1]. 

2. Computes GdQ AA = . (It is a scalar multiplication step, ),( GGAA yxdQ = ). 

Ad  is the private key and AQ  is the public key of A.  

Similarly, B computes Bd  and BQ  as its private and public key pair. 

Key Validation. We mean by key validation is to validate the public key's legality. Entity 

A does the following: 

1. Check that BQ  ≠ ∞. 

2. Check that 
BQx , 

BQy ∈ E/GF(q), where 
BQx and 

BQy denote the x-coordinate and 

y-coordinate of the point BQ . 

3. Check that BQ  lies on the elliptic curve defined by a and b; 

4. Check that n BQ  = ∞. (note that, n BQ  = n( Bd G) = Bd (nG) = Bd ∞ = ∞, because 

G's order is n) 
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The public key validation without Step 4 is called the partial public-key validation. 

Without Step 4, the entity could be attacked. However, we can carefully select h to reduce 

the threat. 

Key agreement scheme. One of the most popular key agreement schemes  is the Diffie-

Hellman key agreement scheme [9]. Table 4.1 shows the steps taken by each entity. 

By end of step 3, in table 4.1,each entity get the same shared secret point 

),( PP yx . That is, A computes: GddGddQdP BABABA )()( ===  and 

B computes: GddGddGddQdP BAABABAB )()()( ==== .  

 
Table 4. 1 : Diffie-Hellman key agreement scheme 

Step Description Entity A Entity B 
1 Choose random private key Ad =rand(1,n – 1) Bd =rand(1,n – 1) 
2 Compute public key from the private key and 

the base point G. Then each entity publishes 
its public key. 

GdQ AA =  GdQ BB =  

3 Generate Common key. Each entity 
computes the common key using its private 
key and the public key of the other entity. 

),( PPBA yxQdP ==  ),( PPAB yxQdP ==
 

 

The steps of elliptic curve public key cryptography can be summarized as follows: 

Both the sender and receiver must agree on: 

1. An elliptic curve. 2. A base point, ),( GG yxG = . 
 
At the sending correspondent: 
 

1. Embed a message bit string into the x-coordinate of an elliptic curve point which 

is designated as the message point, ),( mm yx . 
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2.  Using the steps (entity A) in table 4.1, compute the shared secret point 

),( PP yxP = . 

3. Compute a cipher point ),( cc yx  using: ),(),(),( PPmmcc yxyxyx += .  

4. Send appropriate bits of the x-coordinate and the sign bit of the y-coordinate of the 

cipher point ),( cc yx  to the receiving correspondent; 

At the receiving correspondent: 

1. Using the steps (entity B) in table 4.1, compute the shared secret point 

),( PP yxP = . 

2. Compute the message point ),( mm yx  using ),(),(),( PPccmm yxyxyx −= . 

3. Recover the message bit string from xm  

 
4.5 Scalar Multiplication 

Scalar multiplication (SM) (or point multiplication) is the result of adding the base 

point4 P to itself K times on the elliptic curve over a given finite field, where K is a 

positive integer. That is 

4434421
timesK

PPPKP ++= ......         4.3 

The integer K is referred to as scalar and the point P as the base point.  

However, adding the point P to itself K times is not an efficient way to compute 

scalar multiplication. More efficient methods are based on a sequence of Addition (ADD) 

                                                 
4 We mean by base point here, is a base point for the scalar multiplication and not the base point G in the 
domain parameters. This is because scalar multiplication can be performed to any point whether this point is 
G or any other point P 
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and Doubling (DBL) operations. Note that doubling operation is simply adding the point 

to itself. In the literature, there are many methods (or algorithms) for computing KP or 

equivalently performing the scalar multiplication. In the following subsections, we present 

the most popular scalar multiplication algorithms. However, it is worth to mention that 

each of theses algorithms can be applied to E/GF(p) and E/GF(2m). 

 
4.5.1 Binary Methods 

Let 201
2

2
1

1 )2.......22( kkkk n
n

n
n ++++ −

−
−

−  be the binary representation of the 

scalar K where }1,0{∈ik  is the i-th bit and n is the total number of bits. Hence, the scalar 

multiplication KP can be written as: 

PkKP
n

i

i
i ⎟

⎠
⎞

⎜
⎝
⎛= ∑

−

=

1

0
2   

which can be expanded to one of the following forms: 

     PkPkPkPkKP n
n

n
n 01

2
2

1
1 2.......22 ++++= −

−
−

−    4.4 

     PkPkPkPkKP nn 0121 )...)))(2(2(...2(2 ++++= −−    4.5 

Based on 4.4 and 4.5, there are two main binary methods of calculating KP. The 

first is the Least-to-Most (LM) algorithm, which corresponds to the expansion in 4.4, 

starts from the least significant bit of K to the most significant one. The second is the 

Most-to-Least (ML) algorithm, which corresponds to the expansion in 4.5, starts from the 

most significant bit of K. Algorithms 4.1 and 4.2 show the LM and the ML binary 

algorithms respectively. 
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Algorithm 4. 1: Least-to-Most (LM) binary algorithm for scalar multiplication 

 

 
Algorithm 4. 2: Most-to- Least (ML) binary algorithm for scalar multiplication 

 

In both algorithms, KP is computed using the straightforward double-and-add 

approach in n iterations. The point doubling operation (DBL) is performed in all cases 

regardless of the scalar bit value, while the ADD operation is conditioned by the scalar bit 

value. If the scalar bit value is 1, ADD is performed; otherwise it is not performed. 

 

4.5.2 Window Methods 

Several generalizations of the binary method work by processing simultaneously a 

block of digits. In these methods, depending on the size of the blocks (or windows) a 

INPUT  K, P 
OUTPUT    KP 

1. Initialize Q[0] = P 
2. for i = n-2 downto 0 
3.      Q[0] = DBL(Q[0]) 
4.      if k[i] = 1 then 
5.          Q[0] = ADD(Q[0],P) 
6.      end if 
7. end for 
8. return Q[0]  

INPUT  K, P 
OUTPUT    KP 

1. Initialize Q[0] = ∞ , Q[1] = P 
2. for i = 0 to n-1 
3.       if k[i] = 1 then 
4.              Q[0] = ADD(Q[0],Q[1]) 
5.        end if 
6.       Q[1] = DBL(Q[1]) 
7. end for 
8. return Q[0]  
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number of precomputed points are required. However, the most popular window methods 

presented in this subsection are: m-ary, modified m-ary and sliding window methods. 

 

4.5.2.1 The m-ary Method 

This method uses the m-ary expansion of K where rm 2=  for some integer r ≥  1. 

The binary method is a special case of m-ary method corresponding to r = 1. The scalar  

K is expanded as follows: 

∑
−

=

=
1

0

n

j

j
j mkK , jk  ∈ {0, 1, 2, …, m-1}. 

The m-ary method of computing KP is shown in algorithm 4.3. 

Input: An integer ∑
−

=

=
1

0

n

j

j
j mkK and a point P = (x,y) ∈ E/GF(q) 

Output: The point Q = KP ∈ E/GF(q) 
// Precomputation: 
1. P1 = P 
2. for i = 2 to m – 1 do 
          Pi = Pi-1 + P            // (we have Pi  = iP) 
3. Q = ∞ 
// Main loop 
4. for j = n - 1 downto 0 do 
5.            Q = [m]Q             //(this requires r doublings) 
6.            Q = Q + 

jKP  

Return (Q) 
Algorithm 4. 3: m-ary method for scalar multiplication 

 

It can be readily verified that the algorithm computes KP, following Horner's rule [16]:  

PkPkPkPkmmmmKP nn 0121 )...)))](]([](...[]([[ ++++= −−  

The number of doubling in the main loop of the m-ary method is (d – 1)r (the first 

iteration is not counted, as it starts with Q = ∞ ). Since ⎡ ⎤rnd /= , where n is the length 
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of the binary representation of K, the number of doublings in the m-ary method may be up 

to (r – 1) less than the (n – 1) required by the binary method. However, it needs to pre-

compute and store the points 2P to [m-1]P. 

 

4.5.2.2 The Modified m-ary Method 

The main disadvantage of the m-ary method is that it requites pre-computing and 

storing the points 2P, 3P, …, [m-1]P. This disadvantage can be reduced to only 

computing and saving the odd multiples of P only (i.e. skipping the even multiples of P in 

the precomputation phase) resulting in the modified m-ary method shown in algorithm 4.4.  

 

Input: An integer ∑
−

=

=
1

0

n

j

j
j mkK and a point P= (x,y) ∈ E/GF(q) 

Output: The point Q = KP ∈ E/GF(q) 
// Precomputation: 
1. P1 = P,     P2 = P 
2. for i = 1 to (m – 2) / 2 do 
         21212 PPP ii += −+  
3. Q = ∞. 
// Main loop 
4. for j = n - 1 downto 0 do 
5.              If jk  ≠ 0 then 

6.                        Let js , jh  be such that j
s

j hk j2= , jh  odd. 

7.                       Q = [ jsr−2 ]Q 
8.                       Q = Q  + 

jhP  

9.              Else  js  = r 

10.            Q = [ js2 ]Q 
Return (Q) 

Algorithm 4. 4: Modified m-ary method for scalar multiplication 
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In the modified m-ary method, computation of mP (step 5 of algorithm 4.3) is split 

into two steps (steps 7 and 8) as shown algorithm 4.4. However, in algorithm 4.4, we 

assume that r > 1, otherwise we revert to the original binary method. 

 

4.5.2.3 Sliding Window Method 

 In the m-ary and modified m-ary methods, the windows are contiguous and in 

fixed bit positions. When a window has zeros in the left most bit positions, it is treated as 

any other window. However, in the sliding window methods, the left most zeros of any 

window are dropped and corresponding doubling operations are performed in the 

accumulator point Q. Therefore, the window size can shrink and grow up to length r.   

In the sliding window method, K is represented as: 

∑
−

=

=
1

0
2

n

j

j
jkK , 

jk  ∈ {0, 1}. 

and computing KP using this method is shown in algorithm 4.5. 

In the main while loop of algorithm 4.5, the bits of the K are scanned starting from 

the most significant bit and based on the value of each bit one of two things may 

performed: 

1. If jk  = 0, then perform a double operation on the point Q (step 5).  

2. If jk  ≠ 0, (i.e jk  = 1) then: 
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a. Consider a window of size up to r bits such that the contents of this 

window is 21 )......( tjjj kkkh −=  where j is the current bit position and t is 

the least integer such that j – t + 1 ≤  r and tk  = 1. 

b. Update the value of the point Q as shown in step 9. 

 

Input: An integer ∑
−

=

=
1

0
2

n

j

j
jkK and a point P= (x,y) ∈ E/GF(q) 

Output: The point Q = KP ∈ E/GF(q) 
// Precomputation: 
1. P1 = P,     P2 =2P 
2. for i = 1 to )12( 1 −−r  do 
         21212 PPP ii += −+  
3. Q = ∞   ,      j = n – 1. 
// Main loop 
4. While j ≥ 0  do 
5.              If jk  = 0 then         
                      Q = [2]Q;        j = j – 1; 
6.              Else 
7.                       Let t be the least integer such that 
                                   j – t + 1 ≤ r and tk  = 1 
8.                       21 )......( tjjj kkkh −=  

9.                       Q = [ 12 +−tj ]Q + 
jhP  

10.                      j = t – 1 
Return (Q) 

 
Algorithm 4. 5: Sliding window method for scalar multiplication 

 

 

4.5.3 Scalar Recoding Methods 

We main by scalar recoding is transforming the scalar K to another form K  such 

that it still gives the correct result of computing KP. i.e. KP = K P but with less 
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computations. One popular recoding of any integer (rather than the scalar) is the non-

adjacent form (NAF) recoding. In NAF, every integer K has a unique signed digit 

representation of the form ∑ −

=
= 1

0
2l

i
i

ikK  where ik  ∈ {-1,0,1}, such that no two 

consecutive digits are nonzero [9]. However, there are several algorithms for computing 

the NAF of K from its binary representation (see for example [8] and [9]). The following 

algorithm (algorithm 4.6), from Solinas [18] computes the NAF of an integer K.  

 

Input: an integer K 
Output: The NAF form of K, NAF(K) = (ul-1 … u1u0) 
1. Set c = K,    l = 0 
2. While c > 0 do 
            if c odd then  
                   Set ul = 2 – (c mod 4) 
                   Set c = c – ul 
             Else ul = 0 
             Set c = c/2,   l = l + 1 
Return (NAF(K) = (ul-1 … u1u0)) 

Algorithm 4. 6: Computation of NAF(K) 
 
A general form of NAF(K) is what is called the width-w nonadjacent form or 

width-w NAF. Let w be an integer greater than one. Then every positive number K has a 

unique width-w nonadjacent form: 

∑
−

=

=
1

0
2

l

j

j
juK  Where: 

• Each nonzero ju  is odd and less than 12 −w  in absolute value. 

• Among any w consecutive coefficients, at most one is non zero. 
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The width-w NAF is written as ).....()( 0121 uuuuKNAF llw −−= . A generalized version of 

algorithm 4.6 for computing )(KNAFw  is described in algorithm 4.7. 

 
Input: an integer K 
Output: ).....()( 0121 uuuuKNAF llw −−=  
1. Set c = K,    l = 0 
2. While c > 0 do 
            if c odd then  
                   ul = 2 – (c mod 2w) 
                   If ul > 2w-1 then 
                        ul = ul – 2w 
                   c = c – ul 
             Else ul = 0 
             c = c/2,   l = l + 1 
Return ( ).....()( 0121 uuuuKNAF llw −−← ) 

Algorithm 4. 7: Computation of )(KNAFw  
 

Many scalar multiplication algorithms have been proposed based on NAF(K) and 

)(KNAFw  representations of the scalar [8], [9], [18] and [19]. Addition-subtraction 

algorithm (section 4.3.3.1) and width-w window algorithm (section 4.3.3.2) are examples 

of using these representations respectively. 

 

4.5.3.1 Addition-Subtraction Algorithms 

An improved algorithm for computing KP can be obtained from the following facts:  

• Every integer K has a unique NAF representation.  

• The expected weight of a NAF of length l is l/3 [9].  

• The computation of the negation of a point P = (x; y) ∈ E/GF(p) is simply the 

negation of its y-coordinate (i.e. – P = (x; –y)) which  is virtually free. So the cost 
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of addition or subtraction is practically the same. In case of E/GF(2m), –P is 

computed by replacing y-coordinate by (x+y). 

Addition-subtraction algorithm requires computing the NAF representation of the 

scalar K. It performs a point addition or subtraction depending on the sign of each digit of 

K as shown in Algorithm 4.8. This algorithm scans the NAF representation of the scalar K 

(which has now l bits rather than n) from left to right and requires l doublings and l /3 

additions on average. However, this algorithm can be modified to obtain a right-to-left 

version [18], which does not need storage for the NAF(K). 

 

Input: An integer K an a point P = (x,y) ∈ E/GF(q) 
Output: The point Q = KP ∈ E/GF(q) 
1. Use algorithm 4.6 to compute NAF(K) = (ul-1 … u1u0) 
2. Q = ∞ 
2. for j = l - 1 downto 0 do 
            Q = DBL(Q) 
            if ul = 1  then  
                   Q = ADD(Q, P) 
            if ul = –1  then  
                   Q = ADD(Q, – P) 
Return (Q) 

Algorithm 4. 8: Binary NAF algorithm (addition-subtraction) for scalar multiplication 
 

4.5.3.2 Width-w Window Method 

Given the width-w NAF of an integer K, and a point ∈ E/GF(p), the calculation of 

KP can be carried out by using a typical window method called the width-w window 

method [18] shown in algorithm 4.9. 

The number of nonzero digits in the )(KNAFw  is on the average l/(w + 1) [20]. 

Therefore, algorithm 4.9 requires 12 2 −−w  additions and one doubling for the 
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precomputation step, and (l/(w + 1)) additions and (l – 1) doublings for the main 

computation. Note that although the number of additions can be reduced by selecting an 

appropriate width w, the number of doublings is the same as in the previous methods. The 

total number of finite fields operations required for computing KP depends mainly on the 

algorithms used for the elliptic operations (affine or projective coordinates), the cost-ratio 

of inversion to multiplication, and the width w. 

 

Input: integers K and w, a point P = (x,y) ∈ E/GF(q) 
Output: The point Q = KP ∈ E/GF(q) 
// Precomputation: 
// Compute uP for u odd and 122 −<< wu  
1. P0 = P, T = 2P 
2. for i = 1 to 12 2 −−w  do 
          Pi = Pi-1 + T 
// Main computation 
3. Use algorithm 4.7 to compute ).....()( 0121 uuuuKNAF llw −−←  
4. Q = ∞ 
5. for j = l - 1 downto 0 do 
            Q = DBL(Q) 
            if uj ≠  0  then  
                     2/)1( −= jui  
                     if uj >  0  then 
                            Q = ADD(Q, Pi) 
                      Else 
                            Q = ADD(Q,–Pi) 
Return (Q) 
Algorithm 4. 9: width-w window method for scalar multiplication 
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4.5.4 Lim/Lee Method 

This method, developed by Lim and Lee [21], can be used for computing KP when 

P is a fixed point, known in advance of the computation. In order to compute KP, the l-bit 

integer K is divided into h blocks Kr, each one of length a = ⎡ ⎤hl / . In addition, each 

block Kr is subdivided into v blocks of size b = ⎡ ⎤va / . Thus K can be written as: 

 ∑∑∑
−

=

−

=

−

=

++
++

1

0

1

0

1

0

2
h

r

v

s

b

t

tbsvbr
tbsvbrk  

Then, Lim/Lee’s method uses the following expression for computing KP:  

∑ ∑
−

=

−

=

=
1

0

1

0
, ])][[(2

b

t

v

s
ts

t IsGKP  

Where the precomputation array G[s][u] for 0 ≤ s < v, 0 ≤ u < 2h and 201 )...( uuu h−= , is 

defined by the following equations: 

∑
−

=

=
1

0
2]][0[

h

r

rvb
r PuuG , 

]][0[2]][[ uGusG sb=  

and the number Is,t for 0 ≤  s < v – 1 and 0 ≤  t < b is defined by 

∑
−

=
++=

1

0
, 2

h

r

r
tbsvbrts kI  

A detailed description of Lim/Lee’s method is given in algorithm 4.10. This 

algorithm requires )12( −hv  elliptic points of storage, and the average number of 

operations to perform a scalar multiplication is (b – 1) doublings and ( 12/)12( −− vbhh ) 

additions on average, but (vb – 1) additions in the worst case. The selection of both 
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parameters h and v presents a trade-off between precomputation (memory) and online 

computations (speed). Some improvements to this algorithm are discussed in [22]. 

 

Input: Integers K, h, v and an array of points G[s][u],with huvs 21,0 <≤<≤  
Output: The point Q = KP ∈ E/GF(q) 
// The array G is computed as: 
for u = 1 to 12 −h  do 
for s = 0 to v – 1 do 

201 )...( uuu h−=  

∑
−

=

=
1

0
22]][[

h

i

vbi
i

sb PuusG  

// Main computation 
1. Q = ∞ 
2. for t = b - 1 downto 0 do 
Q = DBL(Q) 
For s = v – 1 downto 0 do 

∑
−

=
++=

1

0
, 2

h

i
tbsvbi

i
ts kI  

if Is,t ≠  0  then 
Q = ADD(Q, G[s][ Is,t]) 
Return (Q) 

Algorithm 4. 10: Lim/Lee method for scalar multiplication 
 

4.6 Conclusions 

 In this chapter, the basic aspects behind elliptic curve cryptography has been 

introduced. ECDLP has been defined as the mathematical underlining problem of ECC. 

The ECC domain parameters were presented. We concluded that careful selection of these 

parameters plays a certain role in ECC security. The most important elliptic curve 

cryptography schemes, symmetric key and public key, are studied. The detailed steps to 

establish a secure communication between two entities using these two schemes are 



57 

 

addressed. Finally, in this chapter, the main operation in ECC, scalar multiplication, is 

discussed. Also, The various popular algorithms for scalar multiplication has been 

presented. 
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CHAPTER 5
 

Coordinate Systems 

 

5.1 Introduction 

The most difficult finite field operation to implement is inversion. An efficient  

hardware implementations in GF(2m) costs [52]5: 

⎣ ⎦ 1)1()1(log2 −−+− mwm  multiplications ;   1−m  squaring 

Where w(m – 1) denotes the number of ones in the binary representation of        (m 

– 1). It is reported in [52] that the number of multiplications and squaring needed to 

compute inversions in the NIST binary fields GF(2163) and GF(2232) to be: 

m ⎣ ⎦)1(log2 −m w(m – 1) Multiplication Squaring 

163 7 3 9 162 

233 7 4 10 232 

 

In software implementation, the inversion is estimated to be between 9 and 30 

multiplications in case of GF(p) with p larger than 100 bits [23]. 

                                                 
5 It is derived based on the fact: 221 −− =

m

aa  with a ∈GF(2m). Then recursively compute ( )2121 1−− −

=
m

aa  
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Therefore, one of the most important techniques that can be used to enhance the 

scalar multiplication is the idea of transferring the point coordinates into another 

coordinates that can eliminate the inversion operation. 

Deciding which point Coordinate System (CS) to use is also one of the crucial 

decisions when implementing elliptic curve cryptosystem. The point coordinate system 

used for addition and doubling of points on the elliptic curve determines the efficiency of 

these operations, and hence the efficiency of the basic cryptographic operation, scalar 

multiplication.  

This chapter discusses the various coordinates that can be used in order to 

eliminate the inverse operation in the scalar multiplication and hence increase the speed of 

calculations. We still need one final inverse operation to return back to the normal 

(Affine) coordinates after completing the scalar multiplication. However, there are five 

different coordinate systems [23] - [25]: Affine (A), Homogenous Projective (H), Jacobian 

(J), Chudnovsky-Jacobian (C), Modified (M) and mixed coordinate systems. The 

computation times in terms of number of multiplications (M), squaring (S), and inverse (I) 

operations are computed for each coordinate system. For simplicity we will not consider 

the addition, subtraction and multiplication by a small constant because they are very fast 

compared to multiplication, squaring and inversion operations.  

Affine coordinates are the simplest to understand and are used for communication 

between two parties because they require the lowest bandwidth. However, the modular 

inversions required when adding and doubling points which are represented using Affine 

coordinates cause them to be highly inefficient for use in addition and doubling of points. 
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The other coordinate systems require at least one extra value (i.e. z-coordinate) to 

represent a point and do not require the use of modular inversions in point addition and 

doubling, but extra multiplications and squaring are required instead. When referring to 

the Affine CS, small liters are used, i.e. x, y, and capital liters, i.e. X, Y, Z, are used when 

referring to the remaining coordinate systems.  

This chapter is organized as follows. Affined coordinate system is discussed in 

section 5.2. Sections 5.3 to 5.7 present homogenous, Jacobian, Chudnovsky-Jacobian, 

modified Jacobian and mixed  coordinate systems. In section 5.8 conclusions are provided. 

 

5.2 Affine Coordinates 

Let: 

 ECE:     y2 = x3 + ax + b  (a,b ∈ GF(p), 4a3 + 27b2 ≠ 0).   5.1 

be the equation of elliptic curve E over Fp. We will refer to this equation as ECE. 

Let: P = (x1,y1), Q = (x2,y2) are points on E, and we want to fined R = P + Q = (x3,y3). 

The affine formulas for addition and doubling are given below: 

• The addition formulas (R = P + Q = (x3,y3) where (P ≠ ±Q)) is given by: 

x3 = λ2 – x1 – x2 

y3 = λ (x1 – x3) – y1       5.2 

Where: λ = (y2 – y1)/( x2 – x1) 

• The doubling formulas (R = 2P = (x3,y3)) is given by: 

x3 = λ2 – 2 x1  
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y3 = λ (x1 – x3) – y1       5.3 

Where: λ = (3 x1
2 + a)/(2 y1) 

The computation times for addition and doubling operations using affine 

coordinates are (1I + 2M + 1S) and (1I + 2M + 2S) respectively. 

 

5.3 Homogenous Projective Coordinates 

 In homogenous projective coordinates the following transformation functions are 

used to get the projected X & Y coordinates: 

 
Z
Xx =  and 

Z
Yy =        

The ECE becomes: 

3232 bZaXZXZY ++=         5.4 

In this CS, the points P, Q, and R are represented as follows: 

P = (X1,Y1,Z1), Q = (X2,Y2,Z2), and R = P + Q = (X3,Y3,Z3). 

• The addition formulas are given by: 

( ) 21
3

321
3

21
2

33 ,, ZZvZZYvAZXvuYvAX =−−==    5.5 

 where: 

2112 ZYZYu −= , 2112 ZXZXv −=  and 21
23

21
2 2 ZXvvZZuA −−=  

• The doubling formulas are given by (R = 2P): 

( ) 3
3

22
133 8,84,2 sZsYhBwYhsX =−−==     5.6 

 where: 
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2
1

2
1 3XaZw += ,  11ZYs = ,  sYXB 11=  and Bwh 82 −=  

The computation times for addition and doubling operations using homogenous 

coordinates are (12M + 2S) and (7M + 5S) respectively. 

 

5.4 Jacobian Coordinates 

 In Jacobian CS, the following transformation functions are used: 

 2Z
Xx =  and 3Z

Yy =        

The ECE becomes: 

6432 bZaXZXY ++=              5.7  

In this CS, the points P, Q, and R are represented as follows: 

P = (X1, Y1, Z1), Q = (X2, Y2, Z2), and R = P + Q = (X3, Y3, Z3). 

• The addition formulas are given by: 

HZZZXHUrHSYrHUHX 2133
2

1
3

13
22

1
3

3 ),(,2 =−+−=+−−=   5.8 

 where: 

2
211 ZXU = , 2

122 ZXU = , 3
211 ZYS = , 3

122 ZYS = , 12 UUH −= , and 12 SSr −=  

• The doubling formulas are given by (R = 2P): 

113
4

133 2),(8, ZYZTSMYYTX =−+−==          5.9 

 where: 2
114 YXS = ,  4

1
2

13 aZXM += ,  and 22 MST +−=  

The computation times for addition and doubling operations using Jacobian 

coordinates are (12M + 4S) and (4M + 6S) respectively. 
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5.5 Chudnovsky-Jacobian Coordinates 

 D. V. Chudnovsky [25] concluded that Jacobian coordinate system provide faster 

doubling and slower addition compared to projective coordinates. In order to speedup 

addition, he proposed the Chudnovsky-Jacobian coordinate system. In this CS, a Jacobian 

point is represented internally as 5-tupel point (X, Y, Z, Z2, Z3). The transformation and 

ECE equations are the same as in Jacobian CS, while the points P, Q, and R represented 

as follows: 

P = (X1, Y1, Z1, Z1
2, Z1

3), Q = (X2, Y2, Z2, Z2
2, Z2

3), and R = P + Q = (X3, Y3, Z3, Z3
2, 

Z3
3).  

The main idea in Chudnovsky-Jacobian coordinate is that the Z2, Z3
 are already 

calculated in the previous iteration and no need to calculate them again in the current 

iteration. In other words, Z1
2, Z1

3, Z2
2, Z2

3 are computed during the previous iteration and 

fed to the current iteration as inputs, while Z3
2, Z3

3 need to be calculated. 

• The addition formulas are given by: 

HZZZ
XHUrHSYrHUHX

213

3
2

1
3

13
22

1
3

3 ),(,2
=

−+−=+−−=
  5.10 

3
3

3
3

2
3

2
3 , ZZZZ ==         

 where: 

2
211 ZXU = , 2

122 ZXU = , 3
211 ZYS = , 3

122 ZYS = , 12 UUH −= , and  

12 SSr −=  

• The doubling formula is given by (R = 2P): 
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113
4

133 2),(8, ZYZTSMYYTX =−+−==    5.11 

3
3

3
3

2
3

2
3 , ZZZZ ==  

 where: 2
114 YXS = ,  22

1
2

1 )(3 ZaXM += ,  and 22 MST +−=  

The computation times for addition and doubling operations using Chudnovsky-

Jacobian coordinates are (11M + 3S) and (5M + 6S) respectively. 

 

5.6 Modified Jacobian Coordinates 

 Henri Cohen et. al. modified the Jacobian coordinates and claimed that they got 

the fastest possible point doubling. The term (aZ4) is needed in doubling rather than in 

Addition. Taking this into consideration, they employed the idea of internally representing 

this term and provide it as input to the doubling formula. The point is represented in 4-

tuple representation (X, Y, Z, aZ4). It uses the same transformation equations used in 

Jacobian coordinates.  

The points P, Q, and R are represented as follows: 

P = (X1, Y1, Z1, a Z1
4), Q = (X2, Y2, Z2, a Z2

4), and R = P + Q = (X3, Y3, Z3, a Z3
4) 

• The addition formulas are given by: 

HZZZ
XHUrHSYrHUHX

213

3
2

1
3

13
22

1
3

3 ),(,2
=

−+−=+−−=
  5.12 

4
3

4
3 aZaZ =        

 where: 

2
211 ZXU = , 2

122 ZXU = , 3
211 ZYS = , 3

122 ZYS = , 12 UUH −= , and 12 SSr −=  
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• The doubling formula is given by (R = 2P): 

11333 2,)(, ZYZUTSMYTX =−−==     5.13 

)(2 4
1

4
3 aZUaZ =  

 where: 2
114 YXS = , 4

18YU = , 4
1

2
13 aZXM += ,  and 22 MST +−=  

The computation times for addition and doubling operations using modified 

Jacobian coordinates are (13M + 6S) and (4M + 4S) respectively. 

 

5.7 Mixed Coordinates 

Henri Cohen et al. [23] recommended the idea of mixed coordinates, where the 

inputs and outputs to point additions and doublings may be in different coordinates. i.e. 

with mixed coordinates we can add two points where one point is given in some 

coordinate system and the other point is in some other coordinate system. Also, the result 

point can be computed in a third coordinate system.  

Consider the coordinate systems discussed so far. We have many choices in order to 

mix them in one operation. For example, we can select Affine coordinates for input points 

and the result be in Chudnovsky-Jacobian coordinates. This mixing can be denoted by 

(AAC), where the first two letters denote the input coordinates (Affine) and the third one 

represents the result coordinates (Chudnovsky-Jacobian). In case of doubling, (AM) 

means that the input point is represented in Affine coordinates and the result is in  

Modified coordinates.  However, Cohen does not show the formulas used in case of 

mixing different coordinates. Therefore, considerable effort needs to be spent to derive 
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these equations. He provides the cost of mixed coordinates in terms of number of 

multiplication, squaring and inversion operations required for Addition and Doubling 

operations as shown in Table 5.1 [23]. 

Table 5. 1: Costs of Addition and Doubling operations  
using mixed coordinates 

Coordinates S M I 

Point Addition 

AAC 
AAM 
AJJ 

AHH 
ACC 
AJM 
AMM 
CCC 
HHH 
JJJ 
JJM 

MMM 
AAA 

4 
5 
8 
9 
8 
9 
9 
11 
12 
12 
13 
13 
2 

2 
3 
3 
2 
3 
5 
5 
3 
2 
4 
6 
6 
1 

 
 
 
 
 
 
 
 
 
 
 
 
1 

Point Doubling 

AJ 
MJ 
MM 
AC 
AM 
CC 
JJ 

HH 
AA 

5 
3 
4 
3 
5 
5 
4 
7 
2 

2 
4 
4 
5 
4 
6 
6 
5 
2 

 
 
 
 
 
 
 
 
1 

 

In order to use mixed coordinates it is necessary to be able to convert a point 

representation from one coordinate system to another. Table 5.2 presents the number of 
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multiplications, squaring, and inversions required to convert a point representation among 

the discussed five coordinate systems.  

Table 5. 2: Point Conversions among different coordinates 
From \ To Affine Projective Jacobean Chudnovsky Modified

Affine - - - - - 
Projective 2M + I - 2M + I 2M + I 2M + I 
Jacobean 3M+S+I 3M+S+I - 2M 3M 

Chudnovsky 3M+S+I 3M+S+I - - 3M 
Modified 3M+S+I 3M+S+I - 2M - 

 

Table 5.2 shows that the conversion from Affine coordinates to any of the other 

coordinate systems is very efficient because the conversions only consist of setting all of 

the Z, Z2 and Z3 coordinates to one, and the aZ4 coordinate to a (the elliptic curve 

parameter). Conversion to or from homogenous projective coordinates is inefficient 

because of the inversion required, as is converting from any of the other coordinate 

systems to affine coordinates. 

 

5.8 Conclusions 

 This chapter has discussed the various coordinates that can be used in order 

to eliminate the inverse operation in the scalar multiplication. Five different coordinate 

systems were studied: Affine (A) CS, Homogenous Projective (P) CS, Jacobian (J) CS, 

Chudnovsky-Jacobian (C) CS, and Modified (M) CS. The computation times in terms of 

number of multiplications (M), squaring (S), and inverses (I) operations were computed 

for each coordinate system. Also, mixed coordinates system in which the inputs and 
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outputs to point additions and doublings may be in different coordinates has been 

illustrated. Comparisons among different coordinate systems and the required operations 

to convert a point form one coordinate system to another were provided. 
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CHAPTER 6
 

Side Channel Attacks and Countermeasures 

 

6.1 Introduction 

Every computing device acts also as a source of additional information usually 

called side channel leak information (figure 6.1). Depending on its internal computations, 

it consumes different amounts of power, emits different amounts of electromagnetic 

radiations, needs different running times or even produces different types of error 

messages or sounds. All these additional types of information can and have already been 

exploited in attacks.  

 

Figure 6. 1: Side channel leak Information. 

Sound 
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Magnetic 
field  
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Side-channel cryptanalysis takes advantage of implementation-specific 

characteristics to recover the secret parameters involved in the computation. It is therefore 

much less general than classical cryptanalysis – since it is specific to a given 

implementation – but often much more powerful, and is considered very seriously by 

cryptographic devices' implementers. 

In this chapter, we survey different types of side channel attacks and the various 

countermeasures known at the time of writing. Also, the classification methods of the 

attacks found in the literature are discussed. Based on that, we propose a new 

classification method according to the type of information being leaked. This 

classification method is used to classify and analyze both the attacks and countermeasures.  

The remaining of this chapter is organized as follows. Section 6.2 gives a 

classification of the various attacks found in the literature. It also presents the proposed 

classification method. Sections 6.4 to 6.8 describe the various side channel attacks, 

namely, fault attacks, timing attacks, power analysis attacks, electromagnetic attacks and 

projective coordinates leak. Section 6.9 presents countermeasures for these attacks. In 

section 6.9, we classify the countermeasures according to the proposed classification. 

Also in this section, we analyze each countermeasure via providing the attacks that it can 

defend, attacks that it cannot defend, its advantages and weaknesses. Finally, conclusions 

are drawn in section 6.10. 
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6.2 Classification of Side Channel Attacks 

The literature usually classifies side channel attacks depending on the way they 

affect the attacked device. This result in the following two orthogonal axes.  

Invasive vs. non-invasive: invasive attacks require depackaging the chip to get direct 

access to its components; a typical example of this is the connection of a wire on a data 

bus to see the data transfers. A non-invasive attack only exploits externally available 

information  such as running time and power consumption. In [80], Skorobogatov and 

Anderson add a new distinction with what they call semi-invasive attacks. These attacks 

have the specificity that they require depackaging of the chip to get access to the chip 

surface, but do not tamper with the passivation layer –  they do not require electrical 

contact to the metal surface. 

Active vs. passive: active attacks try to tamper with the device's proper functioning; for 

example, fault-induction attacks will try to induce errors in the computation. As opposed, 

passive attacks will simply observe the device's behavior during its processing, without 

disturbing it. 

Although these classifications help in organizing the attacks into groups, it does 

not help in providing the type of information being leaked. Therefore, we propose the 

following classification based on the type of information being leaked so that it is possible 

to devise some countermeasures to protect against attacks of certain class. This 

classification divides all known attacks into three classes: Class A: Operation-dependent 

attacks that depend on the type of operation being performed (multiply, square, addition, 
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doubling, etc…) such as timing attacks and simple power analysis attacks. Class B: Data-

dependent attacks that are based on the data being manipulated by the cryptodevice such 

as fault attacks and projective coordinate leaks. Class C: Address-dependent attacks that 

are based on the addresses (locations) of the data being processed such as and address-bit 

differential power attacks. Table 6.1 presents the various side channel attacks according to 

the above proposed classification. 

Note that some attacks exploit both the data being processed and a certain 

operation such as doubling certain point to leak some information. Examples of these 

attacks are DPA and DEMA. This will be illustrated in more details when we discuss each 

attack alone. 

Let the type of information being leaked be represented by a binary variable that 

equals "1" when this type of information is leaked and "0" when it is not. For example, let 

O denotes operation-dependent information, D denotes data-dependent information and A 

denotes Address-dependent information. Then, there are seven possible classes of attacks 

each of which exploits one or more kind of leaked information. These classes range from 

ADO = 001 to 111. The code 000 means no attacks while 111 means an attack that 

exploits operations, data and locations of data. Table 6.2 lists the side channel attacks and 

the code of each one according to this general classification. 

SPA attack has the code 001 because it is based on the conditional ADD operation 

whether it is performed or not (section 6.5.1). DPA attack has the code 011 because it is 

based on operations being performed on classified input points (section 6.5.1). ABDPA 
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has the code 100 because it is based on the addresses (or locations) of data being 

manipulated. 

Table 6. 1: Classification of side channel attacks. 
Class Attack Year of 

discovery6 
Target 

Timing Attack (TA) 1996 
[27] 

-Conditional operations. 
- Small differences obtained from 
feeding the operations with classified 
input points 

Simple Power Analysis (SPA) 
attack 

1999 
[26] 

- Conditional operations. 
-Optimization techniques 

Differential Power Analysis 
(DPA) attack 

1999 
[26] 

-Small differences obtained from 
feeding the operations with classified 
input points. 

Simple Electromagnetic 
Analysis (SEMA) attack 

2000 
[46]-[48] 

- Conditional operations. 
-Optimization techniques 

Differential Electromagnetic 
Analysis (DEMA) attack 

2000 
[46]-[48] 

-Small differences obtained from 
feeding the operations with classified 
input points. 

A:  
Operation-
dependent 

Doubling Attack (DA) 2003 [30] -Zeros in the scalar. 
Fault Attacks (FA) 1997 

[43]-[45] 
-Registers (variables) content.  

Timing Attack (TA) 1996 
[27] 

- Small differences obtained from 
feeding the operations with classified 
input points 

DPA attack 1999 
[26] 

Small differences obtained from 
feeding the operations with classified 
input points 

DEMA attack 2000 
[46]-[48] 

Small differences obtained from 
feeding the operations with classified 
input points 

Refined Power Analysis (RPA) 
attacks 

2003 
[28] 

-Coordinates of a point.  

Doubling Attack (DA) 2003 [30] -Zeros in the scalar. 
Zero-value Point Attack (ZPA) 2003 

[29] 
-Registers (variables) content.  

B: 
Data-
dependent 

Projective Coordinates Leak 
(PCL) 

2004 
[42] 

-Projective coordinates of a point. (not 
affine) 

C: 
Address-
dependent 

Address-bit DPA (ABDPA) 2002 
[38],[39] 

-Addresses (Locations) of variables. 

                                                 
6 The year shown is either the discovery year of the attack or its application to ECC. 
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The three classes in table 6.1 are special cases of the general classification in table 

6.2. However, since most of classes in this general classification are empty (at the time of 

writing) especially classes from 101 to 111, we stick to the proposed classification 

presented in table 6.1. 

In the following sections, we discuss all side channel attacks listed in table 6.2 in 

the same order they appear in the table. 

 

Table 6. 2: Codes of side channel attacks. 
Attack Code 

(ADO) 
Description 

Fault Attacks (FA) 010 Based on faults induced to the data being 
manipulated. 

Timing Attack (TA) 011 Based on the variation in execution time for 
classified input points. 

Simple Power Analysis (SPA) 
attack 

001 Based on the conditional ADD operation, i.e. 
whether it is performed or not. 

Differential Power Analysis 
(DPA) attack 

011 Based on operations being performed on classified 
input points. 

Refined Power Analysis (RPA) 
attacks 

010 Exploits a special point with zero-value such as (0, 
y) or (x, 0). 

Zero-value Point Attack (ZPA) 010 A generalization of RPA where it exploits any 
zero-value auxiliary register. 

Doubling Attack (DA) 011 Based on detecting when the same operation is 
performed on the same operands. 

Address-bit DPA (ABDPA) 100 Based on the idea that accessing the same location 
is correlated to the scalar bit value. 

Simple Electromagnetic 
Analysis (SEMA) attack 

001 Based on the conditional ADD operation, i.e. 
whether it is performed or not. 

Differential Electromagnetic 
Analysis (DEMA) attack 

011 Based on operations being performed on classified 
input points. 

Projective Coordinates Leak 
(PCL) 

010 Based on knowing the projective representation of 
a point obtained using a particular projective 
coordinate system. 
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6.3 Fault Analysis Attacks 

Fault attacks were introduced by Boneh et al in [43]. Fault attacks are based on 

tampering with a device in order to have it perform some erroneous operations, hoping 

that the result of that erroneous behavior will  leak information about the secret 

parameters involved – for example by changing some bits in the internal memory. 

Boneh et al classified the faults into three categories. The first type is transient 

faults which can occur randomly causing a faulty computation to be executed. The second 

type is latent faults, which are hardware or software bugs that are difficult to locate. The 

third type is induced faults for which physical access to the hardware is necessary. 

Induced faults are the most interesting because of the active role of the attacker. For 

example, optical fault induction attacks, as introduced by Scorobogatov and Anderson 

[44], use a flashgun targeting a transistor to change the state of a memory cell in a 

microcontroller. The authors have proven this optical probing to be feasible as they 

managed to change an arbitrary bit of an SRAM array. 

Differential fault attacks (DFA) on ECC cryptosystems were outlined in the work 

of Biehl et al. [45]. They presented three types of attacks on ECC that can be used to 

derive information about the secret key if bit errors can be inserted into the elliptic curve 

computations in a tamper-proof device. They also estimate the effectiveness of the attacks 

using a software simulation. 

Their methods require very precise placement and timing of the faults and depend 

on the ability to change the coordinates of a point at any specific iteration of the scalar 

multiplication. Based on that, the scenario of DFA on ECC is the following: 
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Let the binary representation of the scalar K is, 

01
2

2
1

1 2.......22 kkkkK n
n

n
n ++++= −

−
−

−       6.1 

And let P be the base point, and the right-to-left scalar multiplication algorithm is: 

 

H = P; Q = 0; 
for i = 0 to n-1 do 
      if ( ik  = 1) then Q = Q + H; 
      H = 2 H; 
end for; 
return Q; 
 
Assume that we know the binary length n of the unknown scalar K (note that an 

attacker can easily guess this length). Denote by Q[i], H[i] the value stored in the variable 

Q, H in the algorithm above before iteration i. The final result will then be Q[n-1]. The 

attacker proceeds as follows: 

1. Use the tamper-proof device with some input Pe to get the correct result Q[n-1] = 

K Pe.  

2. Restart scalar multiplication with the same input Pe but enforce a random register 

fault to get a faulty result ]1[
~

−nQ . Assume that we enforce the register fault in 

beginning of the last iteration, n-1, and that this fault changes the variable H.  

3. If the final result is unchanged, then there was no addition in the last iteration and 

1−nk  = 0, otherwise there was an addition and 1−nk = 1 (remember that the final 

result is in the variable Q, see the above algorithm). 

Clearly, we can do this for each bit of the scalar. 
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Fault attacks can be considered as one of the biggest threat of all implementation 

attacks as countermeasures usually include more complex techniques which are not easy 

to implement on constraint environment such as smart cards. 

 

6.4 Timing attack 

In 1996 Kocher [27] described timing based attacks on public key algorithms such 

as RSA. Timing attacks are based on the fact that algorithms with a non-constant 

execution time can leak secret information. A non-constant execution time can be caused 

by conditional branches in the algorithm, various optimization techniques, cache hits, etc. 

For example, the binary algorithm 4.1 (in chapter 4) of the scalar multiplication performs 

the addition operation only if the current bit of the scalar is 1. Hence there will be 

different execution times when the current bit is 0 or 1. 

Assume that the scalar K is constant throughout the attack and that the attacker can 

choose the input points. The scenario of timing attack on ECC is the following: 

Let the scalar K be represented by the binary representation 6.1. Assume that 

algorithm 4.1 is used for the scalar multiplication. Suppose that the bits 

121 ,.......,, +−− jnn kkk  are known. The attacker wants to find the j-th bit, jk . He proceeds as 

follows: 

1. The attacker first makes a guess: jk = 1 (or 0). 

2. He takes several input points tDD ,...1  and divides these points into two subsets 

based on the following rule: based in his knowledge about the scalar multiplication 
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algorithm, he knows (via simulation for example) that some points need more time 

than the others to be doubled and added to a fixed base point P. This difference in 

time comes due to the fact that doubling certain point and adding the result to the 

base point needs more modular reductions than other points. Based on that, he 

selects input points tDD ,...1  and classify them into two subsets: S1 for which the 

computation of DBL( iD ) and ADD( iD +P) will induce a modular reduction and 

S2 for which it will not. 

3. For each input point iD , he computes a full scalar multiplication K iD . If jk  is 

really one, then we can expect the computation times for the points from S1 to be 

slightly higher than the corresponding times for S2. On the other hand, if the 

actual value of jk  is zero, then the ADD operation will not be performed and the 

separation into two subsets should look random and we should not observe any 

distinguishable difference in the computation times. 

 

6.5 Power Analysis Attacks 

The power consumption of a cryptographic device may provide much information 

about the operations that take place and the involved parameters. This is the idea of 

simple and differential power analysis, first introduced by Kocher et al. in [26] and [27]. 

After publication of these two main types, other power analysis attacks have been 

discovered. At the time of writing there are six types of power analysis attacks. These 

attacks are:  Simple Power Analysis (SPA) attack [26], Differential Power Analysis 
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(DPA) Attack [26] and [32], Refined Power Analysis (RPA) attack (also known as 

Goubin attack) [28],  Zero-value Point Attack (ZPA) [29], Doubling Attack (DA) [30] and 

Address-Bit Differential Power Analysis (ABDPA) Attack [38], [39]. Sections 6.6.1 to 

6.6.6 discuss each of these attacks. 

 

6.5.1 Simple Power Analysis (SPA) Attack 

SPA makes direct use of one power consumption measurement. A trace refers to a 

measurement (i.e., a dataset) taken for one execution of the cryptographic operation under 

attack. In a simple power analysis attack, only a single measurement is used to gain 

information about the secret key of a device.  Obviously, to perform such an attack the 

side-channel information needs to be strong enough to be directly visible in the trace. 

Additionally, the secret key needs to have some simple, exploitable relationship with the 

operations visible in the power trace. Such an attack typically targets implementations 

which use key dependent operations in the implementation. 

An important characteristic of simple power attacks is the assumption that the 

attacker is supposed to have a detailed knowledge about the implementation of the 

cryptographic algorithm under attack. Furthermore, the part(s) of the trace corresponding 

to the operation under attack needs to be clearly distinguishable from the whole trace. 

In elliptic curve cryptography, SPA attack consists of observing the power 

consumption during a single execution of an elliptic curve cryptographic algorithm. The 

power consumption analysis may enable one to distinguish between point addition and 
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point doubling in the non-immune scalar multiplication algorithm. As shown in scalar 

multiplication algorithms presented in section 4.3 namely Algorithms 4.1 and 4.2, 

performing the ADD operation is conditioned by the scalar (key) bit. If the scalar bit value 

is ONE, an ADD operation is performed, otherwise, an ADD operation is not performed. 

Therefore, a simple power analysis will produce different power traces that distinguish 

between the existence of an ADD operation or not.  This can reveal the bit values of the 

scalar. 

 

6.5.2 Differential Power Analysis (DPA) Attack 

Even if an algorithm is protected against SPA attack, it may be vulnerable to the more 

sophisticated differential power analysis (DPA) attack. DPA attack is based on the same 

basic concept as a SPA attack, but makes use of several measurements and statistical 

analysis to extract very small differences in the power consumption signals.  

Assume that the scalar multiplication algorithm is immune against SAP by using 

double-and-add always method (algorithms 6.2 or 6.3). Let the scalar K be represented by 

6.1 where ik  is the i-th bit of the binary representation of K, and n is the total number of 

bits. If one knows the binary representation of the computed points one can again mount a 

successful attack. At step i the processed point P depends only on the first bits in kk ...1−  of 

the secret scalar K. When P is processed, power consumptions is correlated to the bits of 

P. No correlation will be observed if the point is not computed. For example, the second 

most significant bit can be learned by calculating the correlation between the power 
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consumption and any specific bit of the binary representation of 4P. If 2−nk  = 0, 4P is 

computed during the binary algorithm. Otherwise if 2−nk  = 1, 4P is never computed and 

thus there will be no correlation observed. This correlation method  is used to classify 

power traces of several input points chosen by the attacker. In the following we present a 

possible scenario of DPA. 

Assume that an attacker already knows the highest bits, 121 ......., +−− jnn kkk , of K. (i.e. 

the bits from position j+1 up to n-1 where j is the current position) and he wants to find 

jk . The scenario of DPA on ECC is the following: 

1. The attacker first makes a guess: jk = 0 (or 1). 

2. He chooses several input points tDD ,...1  and computes ( ) i
jdn

jd di DkQ −−

=∑= 22 1 . 

The attacker can compute these points using a small program. For example, in 

attacking bit 2−nk  if the attacker guess that jk = 0, then he will computes (He will 

compute not the cryptodevice) tQQ ,...1  = tDD 4,...4 1 .  

3. He picks a certain bit in the binary representation of tQQ ,...1  (fixed for all points) 

as a boolean selection function g to construct the following two index sets: 

})(:{})(:{ falseQgiSandtrueQgiS ifit ====  

For example, g is chosen to be a specific bit of the binary representation of 

tDD 4,...4 1  in case of attacking bit 2−nk . Note that the same bit must be chosen for 

all points. 
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4. Let )(τii CC =  = power trace obtained from the computation of a full scalar 

multiplication KDi. This is a function of the time τ. 

5. Let SiiC
∈ denote the average of the functions iC  for the i ∈ S, ft SSS ∪= . If 

the guess of jk  was incorrect then  

0≈−
∈∈ ft SiiSii CC  

i.e. the two sets are uncorrelated.  

On the other hand, if the guess of jk  was correct then the difference 

ft SiiSii CC
∈∈

−  will present spikes, i.e. deviations from zero. 

 

6.5.3 Refined Power Analysis (RPA) Attack 

In 2003, DPA is further improved to the Refined Power Analysis (RPA) by Goubin et 

al [28]. RPA exploits a special point with a zero value and reveals a secret key. An elliptic 

curve happens to have a special point (0, y) or (x, 0), which can be controlled by an 

adversary because the order of base point is usually known. RPA utilizes such a feature 

that the power consumption of 0 is distinguishable from that of a non-zero element. 

Although elliptic curve cryptosystems are vulnerable to RPA, RPA is not applied to RSA 

or DLP-based cryptosystems because they don‘t have such a special zero element. In 

general, the RPA attack assumes that the attacker can input adaptively chosen messages or 

elliptic curve points to the victim scalar multiplication algorithm.  
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Smart analyzed the RPA attack in detail and discounted its effectiveness in a large 

number of order [37]. However, the RPA attack is still a threat to most elliptic curve 

cryptosystems. 

 

6.5.4 Zero-value Point Attack (ZPA) 

RPA is generalized to Zero-value Point Attack (ZPA) in [29]. ZPA makes use of any 

zero-value register used in addition or doubling formula. ZPA utilizes a special feature of 

elliptic curves that addition and doubling formulas need a lot of each different operations 

stored in auxiliary registers, one of which happens to become zero. 

In ZPA, the attacker utilizes an auxiliary register which might take a zero-value in the 

definition field. This auxiliary register will take a value of zero for certain operations that 

are some how correlated to the scalar bit values. Hence, some secret bits may be revealed. 

 

6.5.5 Doubling Attack  

In 2003, a new attack known as Doubling attack is proposed by Fouque et al [30]. DA 

only works for the ML binary method. The main idea of this attack is based on the fact 

that, even if an adversary cannot see whether the computation being done is doubling or 

addition, he can still detect when the same operation is done twice. More precisely, if a 

device computes 2A and 2B in any operation, the attacker is not able to guess the value of 

A or B but he can check if A = B. This assumption is reasonable since this kind of 

computation usually takes many clock cycles and depends greatly on the value of the 
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operands. If the noise is negligible, a simple comparison of the two power traces during 

the doubling will be efficient to detect this equality. 

 

6.5.6 Address-Bit Differential Power Analysis Attack 

In 1999, Messerges et al. proposed a new attack against the secret key cryptosystems, 

the address-bit DPA (ABDPA), which analyzes a correlation between the secret 

information and addresses of registers [38]. Then, in 2002, Itoh et al. extended the attack 

to Elliptic Curve based Cryptosystems [39].  

Address-bit Differential Power Analysis Attack is based on the correlation between bit 

values of the scalar and the location (address) of the variables used in a scalar 

multiplication algorithm. Consider for example Takagi’s algorithm (algorithm 6.3). The 

values of variables Q[0], Q[1] and Q[2] can be randomized by randomizing the projective 

coordinates (or the base point) as shown in Figure 6.2(a). However, Figure 6.2(b) shows 

that the location of input operand of DBL operation (dotted line) and the data transfer 

from either Q[1] or Q[2] to Q[0] (solid line) are correlated to the bit value of the scalar. 

This Figure shows that, in Takagi’s algorithm, the following data transfer is performed 

based on the bit value of the scalar: 

 

⎭
⎬
⎫

⎩
⎨
⎧

=
=

=
1]1[
0]2[

]0[
i

i

kQ
kQ

Q    

⎭
⎬
⎫

⎩
⎨
⎧

=
=

=
1]2[
0]1[

]1[
i

i

kQ
kQ

Q  



85 

 

 

    
 

(a) Randomizing data by using randomized projective coordinates 
 

  

 
(b) Correlation still exists between the addresses and the bit values of the scalar 

 
Figure 6. 2: Address-bit differential power analysis attack 

 

6.6 Electromagnetic Analysis Attacks 

Any movement of electric charges is accompanied by an electromagnetic (EM) 

field. The currents going through a processor can characterize it according to its spectral 

signature. Electromagnetic attacks, first introduced by Quisquater and Samyde [46], and 

further developed in [47], [48] exploit this side channel by placing coils in the 

neighborhood of the chip and studying the measured electromagnetic field. 
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The information measured can be analyzed in the same way as power consumption 

(simple and differential electromagnetic analysis – SEMA and DEMA), but may also 

provide much more information and are therefore very useful, even when power 

consumption is available. Agrawal et al [49] show that EM emanations consist of a 

multiplicity of signals, each leaking somewhat different information about the underlying 

computation. They sort the EM emanations in two main categories: direct emanations, i.e. 

emanations that result from intentional current flow, and unintentional emanations, caused 

by coupling effects between components in close proximity. According to them, 

unintentional emanations, which have been somewhat neglected so far, can prove much 

more useful than direct emanations. Moreover, some of them have substantially better 

propagation than direct emanations, which enables them to be observed without resorting 

to invasive attacks (and even, in some cases, to be carried out at pretty large distances - 15 

feet! - which comes back to the field of tempest-like attacks [50]). Finally, they argue that 

EM emanations can even be used to break power analysis countermeasures, and illustrate 

this by sketching a practical example. 

Electromagnetic attacks are powerful attacks especially when combined with other 

side channel attacks. For example, Quisquater and Samyde recently showed [51] that it 

was possible to build a dictionary of instructions and their power/electromagnetic traces, 

and, using correlation techniques and neural networks, to recognize the instructions 

executed by a processor. 
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EMA is a non-invasive attack, as it consists in measuring the near field. However, 

this attack is made much more efficient by de-packaging the chip first, to allow nearer 

measurements and to avoid perturbations due to the passivation layer. 

 

6.7 Projective Coordinates Leak 

In 2004, Nigel Smart et. al. [42] showed that it is possible to leak some 

information about the secret key (scalar K) through the projective representation of elliptic 

curve points. Giving that Q = KP is the elliptic-curve double-and-add scalar multiplication 

of an elliptic curve point P by a secret K, they showed that allowing an adversary access 

to the projective representation of Q may result in information being revealed about K.  

In [42], they restrict projective coordinates leak to Jacobian projective coordinates 

in GF(p) (although it can be applied to other coordinates). For each affine point there are 

P-1 representatives in Jacobian projective coordinates, one for every non-zero value of Z. 

By knowing the projective coordinates of a point G, they consider the least significant bit 

of the scalar and guess its value. Once this is done, it is possible to compute a set of 

candidates for the coordinates of the previous intermediate values handled by the double-

and-add algorithm while processing that bit. This is achieved by reversing computations: 

reversing doubling is Halving while reversing addition is subtracting. In other words, they 

apply a backtracking algorithm that can reveal whether the final bit was zero or not.  

This attack requires a special backtracking formulas for each projective coordinate 

system. Thus, formulas used to half (subtract) a point in homogenous projective 

coordinates cannot be used to half (subtract) a point in Jacobian projective coordinates.  
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6.8 Countermeasures 

This section presents countermeasures found in the literature for side channel 

attacks . We organized the countermeasures in the same way as we did for attacks. 

 

6.8.1 Fault Attack Countermeasures 

The most obvious way that comes to mind in order to protect against fault attacks 

is to check the computation for errors, for example by repeating the computation and 

comparing the results. However, it must be noted that this policy is very costly, either in 

time (repeat computation) or in hardware (double hardware and perform both 

computations in parallel). Moreover, repeating the computation is not always satisfactory 

as, in the case of a permanent fault induction, it will yield identical, although wrong, 

results. 

Another way to check for the presence of faults is, in the case of public-key 

cryptography, to re-encrypt the message. This is usually less time-consuming, as the 

public exponent is usually chosen to be small.  

 

6.8.2 Timing Attack Countermeasures 

The obvious way to prevent timing attacks is to implement cryptographic 

algorithms with a constant execution time. In case of elliptic curve cryptography, this idea 

can be implemented by adding a dummy operation to balance all operations in all 

iterations. 
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Almost all modern implementations are resistant against timing attacks, which 

makes a timing-only attack very difficult. However, the threat remains in combining 

timing information with other side-channels. For example, timing information can be used 

by an attacker in order to locate specific parts of the algorithm. 

 

6.8.3 SPA Attack Countermeasures 

To protect against SPA attack, Coron [32] proposed a simple SPA countermeasure 

which consisted of modifying the binary methods shown in algorithms 4.1 and 4.2 to be 

as in algorithms 6.1 and 6.2 respectively. The basic idea of these countermeasures is to 

perform the ADD operation in all cases regardless of the scalar bit value. Therefore, the 

ADD operation is no longer conditioned by the scalar bit values. However, if the ADD 

operation is originally not required (i.e. in case of the scalar bit is 0), the result of ADD 

operation is simply discarded. Since none of the instructions in algorithms 6.1 and 6.2 

depend on the scalar bit value, these algorithms are resistant to a SPA attack. These 

algorithms are called Double-and-ADD always algorithms since it computes a point 

addition and point doubling in each iteration without regard to the secret key K. However, 

even though this scheme is resistant to SPA attack, it remains vulnerable to DPA attack. 

INPUT K, P 
OUTPUT    KP 

1. Initialize Q[2] = P 
2. for i = n-2 down to 0 
3.      Q[0] = DBL(Q[2]) 
4.      Q[1] = ADD(Q[0], P) 
5.      Q[2] = Q[ki] 
6. end for 

            return Q[2] 
Algorithm 6. 1: Double-and-ADD always Most-to-Least (ML) binary algorithm. 
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INPUT K, P 
OUTPUT    KP 

1. Initialize Q[0] = P; Q[1] = P 
2. for i = 1 to n-1 
3.      Q[0] = DBL(Q[0])   
4.      Q[2] = ADD(Q[0], Q[1]) 
5.       Q[1] = Q[1+ ki]  
      end for 

            return Q[1] 
Algorithm 6. 2: Double-and-ADD always Least-to-Most (LM) binary algorithm. 

 

 Another ML algorithm to avoid this kind of leak was proposed by Takagi et al 

[33]. This algorithm uses extra ADD operations to assure that the sequence of DBL and 

ADD operations is carried out in each iteration. We refer to this algorithm as Takagi’s 

algorithm and it is shown in algorithm 6.3. 

 

INPUT  K, P 
OUTPUT    KP 

1. Initialize Q[0] = P; Q[1] = 2P 
2. for i = n-2 down to 0 
3.      Q[2] = DBL(Q[ki]) 
4.      Q[1] = ADD(Q[0], Q[1]) 
5.      Q[0] = Q[2- ki],  
6.      Q[1] = Q[1+ ki] 
7. end for 

            return Q[0] 
Algorithm 6. 3: Takagi’s ML algorithm for scalar multiplication. 

 
6.8.4 DPA Attack Countermeasures 

In order for an algorithm to be resistant to a DPA attack, some system parameters or 

computation procedures must be randomized. Coron et. al [32] suggested three 

countermeasures to protect against a classical DPA: randomizing the scalar, randomizing 
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the base point P, and randomizing the projective coordinates. Brief summary of how these 

countermeasures can be realized is given below: 

1. Randomizing the scalar K 

If n = ordE(P) denotes the order of P ∈  E/GF(p), then Q = KP can be 

computed as Q = (k + r n)P for a random r. Alternatively, one can replace n by 

the order of the elliptic curve, #E/GF(p). 

2. Randomizing the base-point P 

The base point P to be multiplied by K is randomized by adding a secret 

random point R for which we know S = KR. Scalar multiplication is done by 

computing the point (R + P)K and subtracting S = KR to get Q = KP. 

3. Using randomized projective coordinates 

Randomized projective coordinates can use the Homogenous or Jacobian 

coordinate to randomize a point P = (x, y).  For homogenous projective 

coordinate, P can be randomized to ( rryrx ,, ) for a random number r  ∈ 

GF(p). Similarly, P can be randomized to ( ryrxr ,, 32 ) in case of using 

Jacobian coordinates where r is a random in GF(p). 

 However, the main goal of all these countermeasures, and others proposed in [33] 

- [36], is to randomize the power traces collected by the attacker and hence make it 

difficult for him to exploit the differences between these traces. 
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6.8.5 Doubling Attack Countermeasures 

According to [30], two of Coron’s three proposed countermeasures against DPA 

attacks, discussed in the previous section, fail to protect against a doubling attack: 

randomizing the scalar and randomizing the base point. However, his third 

countermeasure, the randomized projective coordinate does protect against a doubling 

attack as does a randomized exponentiation algorithm such as the Ha-Moon algorithm 

which maps a given scalar to one of various representations [34]. Since the positions of 

the zeros in the Ha-Moon algorithm vary in each representation, the doubling attack 

cannot detect the positions of the zeros for the doubling operation. 

To enhance the Coron’s 2ed countermeasure, to protect against a doubling attack, the 

secret random point R should be randomly updated. A regularly updated method shouldn’t 

be used. 

 

6.8.6 RPA & ZPA Attacks Countermeasures 

To protect against RPA and ZPA attacks, the base point P or the secret scalar d should 

be randomized. For example, Coron’s first two counter-measures (but not the 3rd) protect 

against these attacks. Projective coordinates randomization does not protect against RPA 

and ZPA because it cannot randomize the zero-value operands. 

Mamiya et al [31] recently proposed a countermeasure (called BRIP) which uses a 

random initial point (RIP) R. They computes KP + R using a special algorithm and then 

subtracts R to get KP.  
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6.8.7 Address-Bit Differential Power Analysis Attack Countermeasures 

The countermeasures used to protect against simple power analysis and differential 

power analysis that are based on randomization of the base point or the projective 

coordinate do not provide countermeasure against address-bit analysis attacks. Therefore, 

these countermeasures do not remove the correlation between the bit values of a scalar 

and the location (address) of the variables used in a scalar multiplication algorithm.  

Itoh et al gave several countermeasures against the ABDPA attack in [39]. But 

those countermeasures require at least twice computing time than without them [39]. 

A hardware-based DPA countermeasure proposed by May et al. [40] is based on 

Randomized Register Renaming (RRR). RRR is supposed to be implemented on a 

processor that can execute instructions in parallel. In other words, it requires a special 

hardware to work [41]. 

In 2003, Itoh et al. proposed a countermeasure [41], called randomized addressing 

method (RA), which is similar to RRR but does not require special hardware because it 

can be implemented by only software with a program code. In RA, they randomize 

addresses of registers by a one-time random number 01
2

2
1

1 2...22 rrrr n
n

n
n ++++ −

−
−

−  

where ( )}1,0{∈ir . They change each bit, ik , of the scalar to ii rk ⊕ , where ⊕  denotes 

the XOR operation. Then all addresses of registers are randomized so that the side channel 

information will be randomized for each scalar exponentiation. Of course this change in 

the scalar bits requires a special algorithm to calculate the correct point of the scalar 

multiplication KP. They provided such an algorithm in [41]. 
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6.8.8 Electromagnetic Attacks Countermeasures 

Electromagnetic attacks and power attacks are, in many respects, very similar. 

Although the way the side channel leaks information differs, but the type of leaking 

information is roughly the same. Countermeasures do not try to reduce the signal 

amplitude, but rather to make the information it conveys useless by obscuring the internal 

parameters. Therefore, any countermeasure for SPA and DPA can be used for SEMA and 

DEMA respectively. 

 

6.8.9 Projective Coordinates Leak Countermeasures 

Nigel Smart et al [42] suggested two methods to resist this attack. First, we call it 

Smart's trick, which is done by randomly replacing the output (X, Y, Z) of the 

computation by (X, εY, εZ), with ε = ±1. Although, this method does not lend itself to a 

formal proof, they claim that it can defend the PCL. However, this method does not 

protect against PCL if the attacker obtains intermediate points. Second, is by replacing (x, 

y, z) representation of Q by ),,( 32 λλλ yx , where λ  is randomly chosen among the non 

zero elements of the base field. This method, identical to Coron's 3-ed countermeasure, 

provides a randomly chosen set of projective coordinates for the result and, therefore, 

cannot leak additional information.  

However, it is worth mentioning that they assume that the attacker knows the 

projective coordinate system used and that the coordinate system is fixed. 
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6.9 Classification of Countermeasures 

In this section, we provide a classification of countermeasures according to the 

proposed classification of the attacks presented in section 6.2. Table 6.3 shows the 

proposed classification. In addition, table 6.3 contains the attacks that each 

countermeasure can help in defending them and those  it cannot.  Also, table 6.3 contrast 

the advantages and disadvantages of each countermeasure. 

 

6.10 Conclusions 

In this chapter, we have surveyed different types of side channel attacks and the 

various countermeasures for defending them. Also, according to the type of information 

being leaked, a new classification method of attacks has been proposed. This 

classification method was used to classify and analyze both the attacks and 

countermeasures. Three classes were proposed: Class A: Operation-dependent attacks that 

depend on the type of operation being performed. Class B: Data-dependent attacks that 

are based on the data being manipulated. Class C: Address-dependent attacks that are 

based on the addresses (locations) of the data being processed. 

In this chapter, we analyze and contrast the existed countermeasures in terms of 

what attacks each countermeasure can defend and what it cannot, its advantages and 

disadvantages. A summary of this analyze is presented in table 6.3 

We conclude that there are powerful side channel attacks that exploit more that 

one type of leaked information. Therefore, sophisticated countermeasures to protect 
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against each type of information are mandatory. We recommend that at least one 

countermeasure from each class should be involved in any ECC implementation. 

Table 6. 3: Countermeasures classification, protection, advantages and disadvantages. 
Class Countermeasure/ 

(Code) 
Help in 
protect 

Not 
protect 

Advantages Disadvantages 

Operations balancing 
by adding a dummy 
operation. 
(001) 

SPA 
TA 
SEMA 

DPA 
DEMA 
ABDPA 
DA 
RPA 
ZPA 
PCL 

-Simple and can be 
plugged to any 
scalar 
multiplication 
algorithm. 

-The dummy operation is extra 
operation, that increases the 
execution time. 

A: 
Operation-
dependent 

Randomizing the 
Scalar  
(001) 

DPA 
FAs 
DEMA 
RPA 
ZPA 

DA 
PCL 
ABDPA 

-Simple and can be 
plugged to any 
scalar 
multiplication 
algorithm. 

-Requires a word length 
multiplication and an addition 
operations. 
-Requires knowing order of the 
base point or the curve. 

Randomizing the base 
point. (Coron's 2-ed 
countermeasure) 
(010) 

DPA 
FAs 
DEMA 
RPA 
ZPA 
PCL 

DA 
ABDPA 

-Simple and can be 
plugged to any 
scalar 
multiplication 
algorithm. 

-S = KR of the secret random 
point R must be known. 
Otherwise it needs to be 
computed hence duplicating 
scalar the multiplication time.  
-Weak since R needs to be 
updated.  

Randomizing 
projective coordinates 
(010) 

DPA 
FAs 
DEMA 
DA 
PCL 

RPA 
ZPA 
ABDPA 
 

-Simple and can be 
plugged to any 
scalar 
multiplication 
algorithm. 

-Each coordinate system 
requires its own randomization 
method. 
-Requires 2 multiplications in H 
coordinate system and 3 
multiplications and one 
squaring in J coordinate system. 

Random initial point 
(RIP) 
(010) 

DPA 
FAs 
DEMA 
RPA 
ZPA 
PCL 

DA -Does not require 
storing RK of the 
random point R. 
-Does not require 
updating R. 

-Complex. 
-Needs a special scalar 
multiplication algorithm. 

Error detection 
technique 
(010) 

FAs The rest - The only way to 
detect errors. 

-Complex. 
-Needs special techniques. 
-Increase scalar multiplication 
time dramatically. 

B:  
Data-
dependent 

N. Smart's trick 
(010) 

PCL The rest -Simple. -Does not protect PCL if the 
attacker obtain intermediate 
points. 

Randomized register 
renaming (RRR) (100) 

ABDPA The rest -Faster than RA. -Requires special hardware. C: 
Address-
dependent Randomized 

addressing (RA) (100) 
ABDPA The rest -Does not requires 

special hardware. 
-Requires special scalar 
multiplication algorithm. 
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CHAPTER 7
 

Dynamic Projective Coordinate (DPC) System 

 

7.1 Introduction 

Using projective coordinates in point addition and doubling operations is an 

important requirement to remove the need for intermediate inversion operations in the 

scalar multiplication. The usual way used in the literature to achieve this is by using a 

fixed coordinate system that is selected in the design stage. The selected system is used in 

a fixed manner for all scalar multiplication iterations. However, although using a fixed 

coordinate system removes the intermediate inversion operations, it becomes a security 

weakness since it can be exploited by projective coordinates leak attacks to reveal some 

secure information (section 6.7 in chapter 6). Therefore, finding a coordinate system that 

can satisfy both requirements: removing the intermediate inversions and being secure 

against such attacks is mandatory. 

Although, mixed coordinates (section 5.7) provide efficient addition and doubling 

operations, most of them cannot be used for the following reasons: 

• It is necessary to convert a point representation from one coordinate system to 

another to have the input in the required format for the addition or doubling 
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operation. For example, using Jacobian coordinate for addition operation and 

homogenous coordinates for doubling operation requires converting the addition 

result to homogenous coordinates. This conversion requires an inversion operation. 

Same thing happens if using homogenous for addition and Jacobian for doubling.  

• It requires separate mathematical formulas for each coordinate system. 

However, using different projective coordinates for different runs and/or different 

phases of the scalar multiplication is not used yet as a randomization method to resist 

many operation-dependent and data-dependent attacks. 

In this chapter, we introduce the Dynamic Projective Coordinate (DPC) system 

which is proposed to overcome the above difficulties and has the following properties: 

• It automates the selection of the projective coordinate system and uses a single 

mathematical formulation/software code to implement different projective 

coordinate systems.  

• It allows the computing/encrypting device to select the projective coordinate either 

at random, or according to a certain rule. 

• Different projective coordinates can be implemented by using two parameters 

where one parameter defines the projection of the x-coordinate and a second 

parameter defines the projection of the y-coordinate of an elliptic curve point. This 

allows different projective coordinates to be used within the same mathematical 

formulation in calculating the scalar multiplication. 
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• The computation of the scalar multiplication can be randomized by simply varying 

either the x-coordinate projecting parameter and/or the y-coordinate projecting 

parameter.  

•  It allows projective coordinates hopping at any time during the scalar 

multiplication.  

• With DPC system, different projective coordinate systems can be used for 

different phases of the scalar multiplication. Fore example, a certain coordinate 

system can be used for the pre-computation phase of the scalar multiplication 

while other coordinate systems can be used for addition and/or doubling 

operations in the main loop. Furthermore, different blocks (or windows) of the 

scalar K can use different projective coordinate systems. 

• It does not require the sending and receiving correspondents to use to the same 

projective coordinates in computing the same scalar multiplication. 

In this chapter, we start by defining dynamic transformation functions that are 

used to convert any affine point to any projective coordinates using the same 

mathematical formula. Then these transformation functions are used to develop dynamic 

addition and doubling formulas for elliptic curve over the prime field GF(p) and elliptic 

curve over binary field E/GF(2m). 

The rest of this chapter is organized as follows. Section 7.2 introduces the 

proposed dynamic projecting parameters and transformation functions. In section 7.3, 

DPC is used to propose dynamic addition and doubling formulas for elliptic curve over 

finite field GF(P). Similarly, in section 7.4, DPC is used to propose dynamic addition and 
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doubling formulas for elliptic curve over finite field )2( mGF . Finally, conclusions are 

presented in section 7.5 

 

7.2 Dynamic Projecting Parameters  

In DPC, we use two values xLZ  and yLZ  for projecting the x-coordinate and the y-

coordinate of a point respectively. xL  and yL  are projecting parameters (powers) that can 

be chosen either at random or according to a certain criteria such as a criteria for reducing 

the computation complexity. 

To formulate the Dynamic Projective Coordinate system, consider that there are 

multiple degrees of powers for the Z-coordinate, as follows: 

Degree-0 is the affine coordinate system P = (x,y) 

In Degree-1, 
Z
Xx = , 

Z
Yy =  

In Degree-2, 2Z
Xx = , 2Z

Yy =  

…  … … 

In Degree-i, iZ
Xx = , iZ

Yy =  

In DPC system the x and y coordinates can be projected to any degree of the above 

degrees and not necessarily to the same degree. In other words, x-coordinate can be in one 

degree while y-coordinate in another one resulting in many combinations of coordinate 

systems.  
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Projecting parameters xL  and yL  are used to define the following Dynamic 

Transformation Functions: 

 
xLZ

Xx =  and 
yLZ

Yy =       7.1 

where, xL  and yL  are positive integers. 

However, in any projective coordinate system, each affine point ( yx, ) can be 

converted to many projective points ( ZYX ,, ), one for each non-zero value of Z. This 

means that we have the freedom to select Z. However, Z should be selected in a way that 

clears the denominators and minimizes the computations of 3X  and 3Y . For example, 

consider addition operation using homogenous coordinate system in which the point 

),,( 3333 ZYXP =  is the result of point addition ),,( 1111 ZYXP = + ),,( 2222 ZYXP = . The 

Z-coordinate of the result point, 3Z , is chosen to be 21
3 ZZV , where 2112 ZXZXV −= , 

which is the best choice to unify Z-coordinate and minimize the computations of 3X  and 

3Y  (see equation 5.5 in section 5.3). Similarly, in case of addition using Jacobian 

coordinate system, 3Z  is chosen to be 21ZHZ , where 2
21

2
12 ZXZXH −=  (equation 5.8 in 

section 5.4).  

Therefore, in order to have a general method for choosing 3Z  in DPC, a third 

parameter, called d-parameter, is used to control choosing the Z-coordinate of the 

resulting point of addition and doubling operations. For example, 3Z  can be chosen to be 

21ZZV d . By setting d=3 we get the same definition of 3Z  in homogenous coordinate 
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system while by setting d=1 we get the same definition of 3Z  in Jacobian coordinate 

system.  However, it is worth mentioning that d is not used to project neither x nor y 

coordinates. It is only used to help in choosing Z-coordinate of the resulting point of 

addition and doubling operations. Furthermore, 3Z  of addition operation and 3Z  of 

doubling operation are different because each operation has its own formula. 

 However, using the d-parameter in the way discussed above introduces a powerful 

and very efficient projective coordinates randomization method by simply randomizing d 

itself. This method is discussed in chapter 8.  

 

7.3 Dynamic Projective Coordinate System for E/GF(p) 

Let E/GF(P) denotes elliptic curve defined over the prime field GF(P) (see section 

3.3 in chapter 3). By substituting for x and y from 7.1 in the elliptic curve equation 3.3, we 

get: 

xxyx LLLL bZaXZXZY 323232 ++=−       7.2 

Note that if we set 1== yx LL  in 7.2, we get: 3232 bZaXZXZY ++=  which is 

identical to the standard projective equation of the elliptic curve equation over prime field 

found in [4]. 

This equation is satisfied by all projective points with Z ≠ 0 for which the 

corresponding affine points satisfy the affine equation 3.3. Now the question is which 

points on the line at infinity satisfy equation 7.2? Setting Z = 0 in the equation leads to 
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03 =X , i.e. 0=X . The only point with both X and Z zero is the point (0, 1, 0). This point 

is called the point at infinity and denoted as ∞. It is the point on the intersection of the y-

axis with the line at infinity 

Lemma 7.1: Any point ),( yxQ =  ∈ E/GF(p) represented in affine coordinates can be 

transferred to a 4-tuple projective point ),,,( yx LL ZZYXP =  ∈ E/GF(p) where, xLZ  and yLZ  

≠ 0. 

Proof: Since the two values, xLZ  and yLZ , are available within the 4-tuple representation 

of the point, the affine point (x,y) can be obtained by direct application of 7.1. 

The following subsections present the addition and doubling formulas for GF(p) 

using DPC. However, several DPC formulas are introduced. These formulas are: General 

formulas in which xL  and yL  can be selected to be any positive integers without any 

restriction. Optimized formulas in which xL  and yL  are selected according to certain rule 

to reduce the number of computations required. Mixed formulas in which each coordinate 

of each point has its own projecting parameter.  

 

7.3.1 General Dynamic Projective Coordinate System for E/GF(p) 

Formulations for Elliptic curve point addition and doubling, over GF(p), using 

DPC are presented in this section. We develop point addition mathematical formulas that 

can be used to implement any projective coordinate system simply by varying the 

projecting parameters xL  and yL . Similarly, point doubling formulas are also presented. 
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However, one of the most important features of the DPC system for E/GF(p) is that the 

same mathematical formulas, either for point addition or doubling, can implement any 

projective coordinate system without the need to recode or reprogram the cryptodevice. 

 

Point Addition Formula 

Theorem 7.1: Given two elliptic curve points represented in DPC, 

),,,( 1111
yx LL ZZYXP = ∈E/GF(P), ),,,( 2222

yx LL ZZYXQ =  ∈ E/GF(p), and denoting the point 

),,,( 3333
yx LL ZZYXR =  ∈ E/GF(p) as the addition  of the two points P and Q, i.e. QPR += , 

the dynamic projective coordinates of the point R is given by: 
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Proof: According to lemma 7.1, since ),,,( 1111
yx LL ZZYXP = , ),,,( 2222

yx LL ZZYXQ =  and 

),,,( 3333
yx LL ZZYXR =  are elliptic curve projective points ∈ E/GF(p), one can use the 

addition formula 3.4 for E/GF(p) in affine coordinates to compute QPR +=  (addition 
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operation). The projective coordinates ),,,( 3333
yx LL ZZYX  of the point R can be derived using 

the dynamic transformation functions 7.1. This is shown in appendix A-I to obtain the 

formulas 7.3 for computing QPR += . 

 

Point Doubling Formula 

Theorem 7.2: Given an elliptic curve point represented in DPC, ),,,( 1111
yx LL ZZYXP =  ∈ 

E/GF(p), and denoting the point ),,,( 3333
yx LL ZZYXR =  ∈ E/GF(p) as the addition  of the 

point P to itself, i.e. PR 2= , the coordinates of the point R is given by: 
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Proof: According to lemma 7.1, let ),,,( 1111
yx LL ZZYXP = , and ),,,( 3333

yx LL ZZYXR =  be elliptic 

curve projective points ∈ E/GF(p). We can use the doubling formula 3.5 for E/GF(p) in 

affine coordinates to compute PR 2=  (doubling operation). The projective coordinates 

),,,( 3333
yx LL ZZYX  of the point R can be derived using the dynamic transformation 
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functions 7.1. This is shown in appendix B-I to obtain the formulas 7.4 for computing 

PR 2= . 

 

7.3.2 Mixed Dynamic Projective Coordinate System for E/GF(p) 

Formulas 7.3 are obtained using uniform transformation in which xL  and yL  are 

the same for the three points P, Q and R. More general addition formulas can be obtained 

by using mixed transformation where each coordinate in each point has its own projecting 

parameter. In this case, projecting parameters 11 , yx LL  are used for P, 22 , yx LL  are used for 

Q and 33 , yx LL  are used for R.  

Theorem 7.3: Given two elliptic curve points represented in DPC, 

),,,( 11
1111

yx LL ZZYXP = ∈E/GF(p), ),,,( 22
2222

yx LL ZZYXQ = ∈E/GF(p), and denoting the 

point ),,,( 33
3333

yx LL ZZYXR =  ∈ E/GF(p) as the addition  of the two points P and Q, 

i.e. QPR += , the coordinates of the point R is given by: 
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Proof: The proof of Theorem 7.3 is similar to the proof of Theorem 7.1 with replacing 

each xL
iZ  by xiL

iZ  and each yL
iZ  by yiL

iZ  where, i = 1,2. 

Formulas 7.4 are obtained using uniform transformation functions in which xL  and 

yL  are the same for P and R. More general addition formulas can be obtained by using 

mixed transformation, where different projecting parameters for each point, i.e. 11, yx LL  for 

P and 33 , yx LL  for R.  

Theorem 7.4: Given an elliptic curve point represented in DPC, 

),,,( 11
1111

yx LL ZZYXP = ∈E/GF(p), and denoting the point ),,,( 33
3333

yx LL ZZYXR =  ∈ E/GF(p) as 

the addition  of the point P to itself, i.e. PR 2= , the coordinates of the point R is given 

by:  
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Proof: The proof of Theorem 7.4 is similar to the proof of Theorem 7.2 with replacing 

each xL
iZ  by xiL

iZ  and each yL
iZ  by yiL

iZ  where, i = 1,2. 
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7.3.3 Optimized Dynamic Projective Coordinate System for E/GF(p) 

Addition and doubling formulas 7.3 and 7.4 are the most general homogenous 

formulas for E/GF(p) without any restriction on the values of the projecting parameters 

xL  and yL . However, their computation complexity can be reduced by reproducing these 

formulas with taking 1Z  and 2Z  as common factors in each equation (whenever it is 

possible) and simplify the resultant formulas by eliminating the unnecessary terms. This 

results in the existence of terms such as yx LLZ −
1 , in which its power is a relation between 

xL  and yL . Existence of such terms requires providing either pure Z-coordinate (i.e. not 

raised to any power) or the required term as a ready computed value in the point 

representation. This can be achieved with the help of the following lemma. 

Lemma 7.2: Any point ),( yxQ =  E/GF(p) represented in affine coordinates can be 

transferred to a 5-tuple projective point ),,,,( yx LL ZZZYXP =  E/GF(p) where, Z , xLZ  and 

yLZ  ≠ 0. 

Proof: Since the values, Z , xLZ  and yLZ , are available within the 5-tuple representation 

of the point, proof follows directly from 7.1. 

Appendixes C-I and D-I present the derivation of optimized addition and doubling 

formulas respectively. The optimized addition formulas are: 
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and the optimized doubling formulas are: 

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎭

⎪⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎬

⎫

≥−≥−≥−≥−
−−=

−=

===

=+=

=

=

=

=

=

−

−

−

−

03,02,02,0
4)(

2

,2,,

,2,3,

)(

)(

2
1

2
11

'
32

'
3

2
2'

3

112111

11
2

1
2

1

3

3

3

3'
33

2'
33

yxyxxy

LL

LL

LL

LdL

LdL

d

dL

dL

dLdLLLLL
ZYTXTTY

TTX

XTTSYTWZT

YZSaZXWWhere

SZ

SZ

SZ

SYY

SXX

yx

xy

xx

yy

xx

y

x

    7.8 

Formulas 7.7 and 7.8 are obtained using uniform transformation functions. Similar 

mixed optimized formulas can be obtained using the same way as in appendixes C-I and 

D-I with replacing each xL
iZ  by xiL

iZ  and each yL
iZ  by yiL

iZ  where, i = 1,2. The mixed 

optimized addition formulas are: 
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and the mixed optimized doubling formulas are: 
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7.4 Dynamic Projective Coordinate System for E/GF(2m) 

Dynamic Projective Coordinate system can be used to get addition and doubling 

formulas, similar to those obtained in section 7.4, in case of defining ECC over the binary 

field )2( mGF . 

Transformation functions 7.1 are used to formulate the DPC in E/ )2( mGF . By 

substituting for x and y from 7.1 in the elliptic curve equation 3.6, we get: 

xxyxyx LLLLLL bZZaXXXYZZY 3232232 ++=+ −−
    7.11 

Note that if we set 1== yx LL  in 7.11, we get: 3232 bZZaXXXYZZY ++=+  which is 

identical to the standard projective form of the elliptic curve equation over binary field 

found in [52]. Also, If Z = 0, then 03 =X , i.e. 0=X . Therefore, (0,1,0) is the only 

projective point that satisfies this equation. This point is called the point at infinity and 

denoted as ∞. 

Lemma 7.3: Any point ),( yxQ = ∈ E/ )2( mGF  represented in affine coordinates can be 

transferred to a 4-tuple projective point ),,,( yx LL ZZYXP = ∈ E/ )2( mGF  where, xLZ  and 

yLZ  ≠ 0. 

Proof: Since the two values, xLZ  and yLZ , is available within the 4-tuple representation of 

the point, proof follows directly from 7.1. 
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7.4.1 General Dynamic Projective Coordinate System for E/GF(2m)  

Formulations for Elliptic curve point addition and doubling, over )2( mGF , using 

DPC are presented in this section. We develop point addition mathematical formulas that 

can be used to implement any projective coordinate system simply by varying the 

projecting parameters xL  and yL . Similarly, point doubling formulas are also presented. 

However, one of the most important features of the DPC system for E/ )2( mGF   is that the 

same mathematical formulas, either for point addition or doubling, can implement any 

projective coordinate system without the need to recode or reprogram the cryptodevice. 

 

Point Addition Formula 

Theorem 7.5: Given two elliptic curve points represented in DPC, 

),,,( 1111
yx LL ZZYXP = ∈E/ )2( mGF , ),,,( 2222

yx LL ZZYXQ =  E/ )2( mGF , and denoting the 

point ),,,( 3333
yx LL ZZYXR =  ∈ E/ )2( mGF  as the addition of the two points P and Q, 

i.e. QPR += , the coordinates of the point R is given by: 
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    7.12 

Proof: According to lemma 7.3, since ),,,( 1111
yx LL ZZYXP = , ),,,( 2222

yx LL ZZYXQ =  and 

),,,( 3333
yx LL ZZYXR =  are elliptic curve projective points ∈ E/ )2( mGF , one can use the 

addition formula 3.7 for E/ )2( mGF  in affine coordinates to compute QPR +=  (addition 

operation). The dynamic projective coordinates ),,,( 3333
yx LL ZZYX  of the point R can be 

derived using the dynamic transformation functions 7.1. This is shown in appendix A-II to 

obtain the formulas in equation 7.12 for computing QPR += . 

 

Point Doubling Formula  

Theorem 7.6: Given an elliptic curve point represented in DPC, ),,,( 1111
yx LL ZZYXP =  ∈ 

E/ )2( mGF , and denoting the point ),,,( 3333
yx LL ZZYXR =  ∈ E/ )2( mGF  as the addition of 

the point P to itself, i.e. PR 2= , the coordinates of the point R is given by: 
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 7.13 

Proof: According to lemma 7.3, let ),,,( 1111
yx LL ZZYXP = , and ),,,( 3333

yx LL ZZYXR =  be elliptic 

curve projective points ∈ E/ )2( mGF . We can use the doubling formula 3.8 for E/ )2( mGF  

in affine coordinates to compute PR 2=  (doubling operation). The dynamic projective 

coordinates ),,,( 3333
yx LL ZZYX  of the point R can be derived using the dynamic 

transformation functions 7.1. This is shown in appendix B-II to obtain the formulas in 

equation 7.13 for computing PR 2= . 

 

7.4.2 Mixed Dynamic Projective Coordinate System for E/GF(2m) 

Formulas 7.12 are obtained using uniform transformation in which xL  and yL  are 

the same for the three points P, Q and R. More general addition formulas can be obtained 

by using mixed transformation where each coordinate in each point has its own projecting 

parameter. In this case, projecting parameters 11, yx LL  are used for P, 22 , yx LL  are used for 

Q and 33 , yx LL  are used for R.  
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Theorem 7.7: Given two elliptic curve points represented in DPC, 

),,,( 11
1111

yx LL ZZYXP = ∈ E/ )2( mGF , ),,,( 22
2222

yx LL ZZYXQ = ∈ E/ )2( mGF , and denoting 

the point ),,,( 33
3333

yx LL ZZYXR = ∈ E/ )2( mGF  as the addition of the two points P and Q, 

i.e. QPR += , the coordinates of the point R is given by: 
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    7.14 

Proof: The proof of Theorem 7.7 is similar to the proof of Theorem 7.5 with replacing 

each xL
iZ  by xiL

iZ  and each yL
iZ  by yiL

iZ  where, i = 1,2. 

Formulas 7.13 are obtained using uniform transformation in which xL  and yL  are 

the same for P and R. More general doubling formulas can be obtained by using mixed 

transformation. In this case, projecting parameters 11, yx LL  are used for P, and 33 , yx LL  are 

used for R.  
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Theorem 7.8: Given an elliptic curve point represented in DPC, ),,,( 11
1111

yx LL ZZYXP = ∈ 

E/ )2( mGF , and denoting the point ),,,( 33
3333

yx LL ZZYXR = ∈ E/ )2( mGF  as the addition  of 

the point P to itself, i.e. PR 2= , the coordinates of the point R is given by:  
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Proof: The proof of Theorem 7.8 is similar to the proof of Theorem 7.6 and is omitted 

here for space limitations. 

 

7.4.3 Optimized Dynamic Projective Coordinate System for E/GF(2m) 

Addition and doubling formulas 7.12 and 7.13 are the most general homogenous 

formulas for E/ )2( mGF  without any restriction in the values of the projecting parameters 

xL  and yL . However, their computation complexity can be reduced by reproducing these 

formulas with taking 1Z  and 2Z  as common factors in each equation (whenever it is 

possible) and simplify the resultant formulas by eliminating the unnecessary terms. This 

results in the existence of terms such as yx LLZ −
1 , in which its power is a relation between 
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xL  and yL . Existence of such terms requires providing either pure Z-coordinate (i.e. not 

raised to any power) or the required term as a ready computed value in the point 

representation. This can be achieved with the help of the following lemma. 

Lemma 7.4: Any point ),( yxQ =  ∈ E/ )2( mGF   represented in affine coordinates can be 

transferred to a 5-tuple projective point ),,,,( yx LL ZZZYXP =  ∈ E/ )2( mGF  where, Z , 

xLZ  and yLZ  ≠ 0. 

Proof: Since the values, Z , xLZ  and yLZ , are available within the 5-tuple representation 

of the point, proof is follows directly from 7.1. 

Appendixes C-II and D-II present the derivation of optimized addition and 

doubling formulas respectively. The optimized addition formulas are: 
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   7.16 

and the optimized doubling formulas are: 
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    7.17 

Formulas 7.16 and 7.17 are obtained using uniform transformation functions. 

Similar mixed optimized formulas can be obtained using the same way as in appendixes 

C-II and D-II with replacing each xL
iZ  by xiL

iZ  and each yL
iZ  by yiL

iZ  where, i = 1,2. The 

mixed optimized addition formulas are: 
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and the mixed optimized doubling formulas are: 
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7.5 Conclusions 

In this chapter, a new approach called Dynamic Projective Coordinate (DPC) 

system was presented. In DPC, we first proposed a general transformation functions that 

can be used to project x and y coordinates of any point to any projective coordinates. Then 

these transformation functions are used to derive dynamic addition and doubling formulas 

for both E/GF(p) and E/GF(2m). However, three types of formulas for both addition and 

doubling operations were presented. First, general formulas in which there is no 

constraints on the projecting parameters xL  and yL  with d ≥ 3. Second, optimized 

formulas that reduce the number of required computations by selecting projecting 

parameters according to certain rules. Third, mixed formulas in which each coordinate can 

be projected using its own projecting parameter resulting in the most mixing degree of 

coordinates ever. By this way, coordinates of the same point can be represented in 
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different coordinate systems. The detailed steps for deriving each type of these formula 

are presented in appendices.  

The resulting DPC allows the computing/encrypting device to select the projective 

coordinate either at random, or according to a certain rule. Therefore, DPC automates the 

selection of the projective coordinate system and uses a single mathematical 

formulation/software code to implement different projective coordinate systems. 
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CHAPTER 8
 

Performance and Using of DPC 

 

8.1 Introduction 

We mean by performance of DPC system is the number of required field 

arithmetic operations (computations) for addition and doubling operations. The less the 

number of required computations the faster the system we get. As in [23]-[25], for 

simplicity, we neglect addition, subtraction and multiplication by a small constant because 

they are much faster than multiplication and inversion operations.  

To analyze the performance of DPC, we have to compute the number of field 

operations in each formula of the formulas presented in chapter 7. Therefore, a method for 

computing the number of computations in a dynamic formula is required. In this chapter 

we provide such a method that can determine the number of computations as a function of 

the projecting parameters xLZ and yLZ  and d parameter.  

As shown in chapter 7, the conventional homogenous and Jacobian coordinate 

systems are special cases of DPC. Hence, by selecting the appropriate xLZ and yLZ  and d 
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parameters, we compare the DPC with these coordinate systems. Moreover, Mixed DPC 

system is compared with the mixed coordinates (section 5.7 in chapter5). 

The rest of this chapter is organized as follows. Section 8.2 presents a method of 

computing the number of field operations that can be applied for both E/GF(p) and 

E/GF(2m). The performance of DPC in E/GF(p) and in E/GF(2m) is discussed in sections 

8.3 and 8.4 respectively. Using DPC is addressed in section 8.5. Finally, conclusions are 

given in section 8.6  

 

8.2 Calculating the Number of Field Operations in DPC System 

To calculate the number of field operations in any DPC formula of the addition 

and doubling formulas presented in chapter 7, the following points should be noticed. 

• First, the number of field operations in a DPC formula consists of two parts. Part1 

is a constant number of operations that must be performed regardless of the values 

of xL , yL  and d. Examples of part1 are the field operations required to compute 

the auxiliary variables U and V in all addition formulas (i.e. formulas 7.3, 7.5, 7.7, 

7.9, 7.12, 7.14, 7.16 and 7.18 ) and compute the auxiliary variables W and S in all 

doubling formulas (i.e. formulas 7.4, 7.6, 7.8, 7.10, 7.13, 7.15, 7.17 and 7.19). 

Part2 is the number of field operations required to compute the terms that are 

raised to some powers and these powers are functions of xL , yL  and d. Examples 

of part2 are the field operations required to compute xLZ3  and yLZ3  in all formulas. 
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• Second, the total number of field operations in any formula is the summation of 

part1 and part2. Hence the total number of field operations is a function of xL , yL  

and d even of a part of it is a constant number. 

Let ),( BTα  and ),( BTβ  be two functions that calculate, respectively, the number 

of multiplication and squaring operations required to raise some term, T, to the power of 

B. Then these alpha and beta functions are used to determine part2 of the total number of 

required field operations in any formula. Let the binary representation of B is: 

01
2

2
1

1 2.......22 bbbbB l
l

l
l ++++= −

−
−

−   with l bit length. Then the average number of ones 

in B is l/2. Hence, according to the square and multiply method, the average values (E) of 

),( BTα  and ),( BTβ  are given by: 

E( ),( BTα ) = l/2 multiplications;  E( ),( BTβ ) = l squaring.  8.1 

However, without loss of generality, xL  and yL  can be selected in a way that 

minimizes part2 computations such as selecting them to be powers of 2. In this case, part2 

computations become squaring only which are faster than multiplications. 

In the following, we present a full example of how the number of field operations 

are calculated in a DPC formula. Consider the optimized addition formula 7.7. The 

number of field operations in this formula is computed as in table 8.1: 
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Table 8. 1: Number of field operations in addition formula 7.7 
 

Term # of Multiplications (M) # of Squaring (S) 
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By setting xL  = yL  = 1 and d = 3 we get a total number of computations equals to 

2+2+1+0+3+2+1+0+1 = 12M and 0+0+0+0+2+0+0+0+0 = 2S which is identical to the 

number of computations in homogenous coordinate system (section 5.3). 
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The number of computations in other DPC formulas are computed in the same 

way discussed above. However, it is important to mention that the above method is 

applied in both cases when using DPC for E/GF(p) and for E/GF(2m).  

 

8.3 Performance of DPC for E/GF(p)  

As presented in chapter 7, there are several DPC formulas for E/GF(p) for addition 

and doubling operations. These formulas range from general formulas in which no 

constraints in selecting xL  and yL  (with d≥3) to formulas that can be used according to 

certain selection rules of xL  and yL  such as 023 ≥− yx LL  or 0≥− xy LL . However, if the 

main goal is enhancing the performance, then clever selection of xL , yL  and d can reduce 

the number of computations dramatically.  

Tables 8.2 and 8.3 show the computation times in terms of the required number of 

multiplication and squaring operations for addition and doubling operations respectively. 
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Table 8. 2: Computation times for DPC addition operation in E/GF(p). a ∈ (0,1) 
 

Formula Multiplications (M) Squaring (S) 
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Table 8. 3: Computation times for DPC doubling operation in E/GF(p). a ∈ (0,1) 
 

Formula Multiplications (M) Squaring (S) 
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The first column specifies the DPC system used. The second and third columns 

specify the number of multiplications and squaring respectively. The number of required 

multiplications and squaring are calculated using the method introduced in section 8.2. 

For example, in the case of using general-uniform addition formula (the first row of table 

8.2) the number of required multiplications is ( )),(),,(max18 y
d

x
d LRLR αα+ . Thus, it 

requires 18 multiplications (part1) plus the maximum of ),( x
d LRα  and ),( y

d LRα (part2). 

Note that we need only the maximum of these two numbers because the other one 

(minimum) will be computed in the way while computing the maximum one.  

Also, Tables 8.2 and 8.3 show the savings in the number of required operations in 

optimized formulas compared to the general formulas. However, for further analyzing of 

performance of DPC in E/GF(p), we compare it with the most popular existing 

(conventional) coordinate systems, namely, homogenous (H), Jacobian (J), modified (M) 

and mixed coordinate systems. Table 8.4 shows the exact number of computations in 

these coordinate systems according to [23] and the corresponding equivalent systems in 

DPC. The first four rows show the number of computations in the conventional projective 

coordinates found in [23]. The second four rows present the DPC systems that are 

equivalent to those conventional ones. The remaining rows show some possible new 

mixed DPC systems that do not exist in [23]-[25]. An example of such new mixed 

coordinates is DPC-HxAyH. In this system the x-coordinate of the input points is 

represented in homogenous coordinates, the y-coordinate is represented in affine 
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coordinates and the result point is represented in homogenous coordinates. Similar other 

mixed systems are listed in the table with their computation times. 

Table 8. 4: Comparisons of field operations using DPC in E/GF(p). 
 

Projective Coordinate (PC) System Addition Doubling 
HHH 12M + 2S 7M + 5S  

JJJ 12M + 4S 4M + 6S  

MMM 13M + 6S  4M + 4S  

AAJ 5M + 3S  2M + 4S  

Optimized DPC (DPC-HHH) 1,3 === Yx LLd  12M + 2S  8M + 5S  

Optimized DPC (DPC-JJJ) 3,2,1 === Yx LLd  12M + 3S  8M + 5S   

Optimized DPC (DPC-MMM) 3,2,1 === Yx LLd  12M + 4S  8M + 4S  

Mixed DPC (DPC-AAJ) 1=d ,         

3,2
0
0

33
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11

==
==
==

Yx

Yx

Yx

LL
LL
LL

 
6M + 2S  4M + 4S  
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0
0

33
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11

==
==
==

Yx

Yx

Yx

LL
LL
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7M + 2S  5M + 4S  

Mixed DPC (DPC- AxHyH) 3=d ,        

1
1
0

33
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21

==
==
==

Yx

YY

xx

LL
LL
LL

 
12M + 2S 7M + 4S 

Mixed DPC(DPC- AxJyJ) 1=d ,            

3,2
3
0

33
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==
==
==

Yx

YY

xx

LL
LL
LL

 
13M +3S 7M + 5S 

Mixed DPC (DPC- HxAyH) 3=d ,          

1
0
1

33

21

21

==
==
==

Yx

YY

xx

LL
LL
LL

 
14M + 2S 10M + 4S 

Mixed DPC (DPC- JxAyJ) 1=d ,             

3,2
0
2

33
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==
==
==

Yx

YY

xx

LL
LL
LL

 
15M + 3S 10M + 5S 

 (DPC-HHH = Equivalent homogenous DPC, DPC-JJJ = Equivalent Jacobian DPC  DPC-
MMM = Equivalent modified DPC) 
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By comparing the number of arithmetic operations of the existing coordinate 

systems and the corresponding DPC systems, table 8.4 shows that addition using DPC-

HHH has the same cost as HHH. In case of Jacobian the DPC-JJJ is faster than JJJ by one 

square operation. Also, DPC-MMM is faster than MMM by one multiplication and 2 

squaring operations.  

In the case of doubling operation, HH is faster than DPC-HH by one 

multiplication while JJ has less multiplications and more squaring than DPC-JJ.  

By using mixed DPC formulas for E/GF(p), it is possible to hop from one 

coordinate system to another during the scalar multiplication without the need to perform 

any inversion operation. We mean by hopping is using a coordinate system in iteration i 

of the scalar multiplication and use another (desired) coordinate system in the next 

iteration, i+1. In conventional coordinate systems, hopping is achieved by first converting 

the resulting point of iteration i to the desired coordinate system and then perform the 

point doubling (or addition) in iteration i+1 using the desired coordinate system formulas. 

In DPC, hopping is achieved by simply setting the projecting parameters 3xL  and 3yL  and 

d-parameter of the resulting point of iteration i to the desired values by which point 

operations in iteration i+1 will be performed in the desired coordinate system. In other 

words, hopping in DPC system is achieved by adjusting the projecting parameters 3xL  and 

3yL  and d-parameter of addition and doubling formulas to the values of the desired 

coordinate system. 
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Tables 8.5 and 8.6 show the cost of hoping among a set of possible DPC systems. 

These tables show only the DPC systems that are equivalent to the conventional 

coordinate systems presented in chapter 5. Other possible coordinate systems can be 

obtained by using different values of 3xL , 3yL  and d. 

However, it should be pointed out that the affine coordinates are used only in the 

boundaries of the scalar multiplication (bolded areas in tables 8.5 and 8.6). i.e. the affine 

base point is converted to any DPC system, scalar multiplication is performed and the 

result is converted back to the affine coordinates. The conversion from affine to any DPC 

system costs nothing since Z can be initialized to 1; while conversion back to affine 

coordinates requires an inversion operation.  Note that conversion back to affine 

coordinates requires an inversion operation in all coordinate systems (conventional as well 

as DPC) regardless of the projective coordinate system used. 

 

Table 8. 5: Hopping cost in DPC system (E/GF(p) Addition operation) 
From \ To Affine DPC-HHH DPC-JJJ DPC-CCC DPC-MMM 

Affine - - - - - 
DPC-HHH 2M + I 16M + 2S 15M + 2S 16M + 3S 15M + 4S 
DPC-JJJ 3M+S+I 18M + 2S 17M + 2S 17M + 2S 17M + 3S 

DPC-CCC 3M+S+I 18M + 2S 17M + 2S 17M + 2S 17M + 3S 
DPC-MMM 3M+S+I 18M + 2S 17M + 2S 17M + 2S 17M + 3S 

 
 

Table 8. 6: Hopping cost in DPC system (E/GF(p) Doubling operation) 
From \ To Affine DPC-HHH DPC-JJJ DPC-CCC DPC-MMM 

Affine - - - - - 
DPC-HHH 2M + I 8M + 5S 7M + 5S 8M + 6S 7M + 7S 
DPC-JJJ 3M+S+I 9M + 5S 8M + 5S 8M + 5S 8M + 6S 

DPC-CCC 3M+S+I 9M + 5S 8M + 5S 8M + 5S 8M + 6S 
DPC-MMM 3M+S+I 9M + 4S 8M + 4S 8M + 4S 8M + 4S 
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Tables 8.5 and 8.6 show that hoping from one DPC system to another during the 

scalar multiplication does not require any inversion operation. On the other hand, in 

conventional coordinate systems, the conversion form homogenous to Jacobian or to any 

Jacobian variant coordinate system (i.e. C and M) requires an inversion operation as 

shown in table 5.2. Same thing happens if converting from Jacobian or Jacobian variant 

coordinate systems to Homogenous. However, conversion among the Jacobian and 

Jacobian variant coordinate systems does not require inversion operation because they are 

actually belong to the same coordinate systems (Jacobian). In other words, they use the 

same transformation functions 2/ ZXx =  and 3/ ZXx = , and hence no need to perform 

the inversion operation. Also, note that table 5.2 shows only the point conversion cost and 

does not include the cost of addition (or doubling) operation. 

Tables 8.7 and 8.8 show the number of multiplications for different values of xL  

and yL  for E/GF(p) optimized DPC addition and doubling operations respectively. For 

each value of xL  there are several possible choices of yL (second column). These choices 

increase as xL  increases. For example, in case of addition operation, if xL  = 1, then we 

have only one yL  possible value while if xL  = 10 we have six possible values of yL . In 

case of doubling operation, if xL  = 1, then we have two possible values of yL  while if xL  

= 5 we have six possible values of yL . This due to the constraints caused by the relations 

between xL  and yL . 
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Table 8. 7: Possible values of xL  and 

yL for addition operation in E/GF(p) 

xL  
Valid range 

of yL  
Number of 

multiplications 
1 1 12 

2 14 2 
3 15 
3 18 3 
4 18 
4 15 
5 17 4 
6 18 
5 18 
6 21 5 
7 19 
6 18 
7 17 
8 17 

6 

9 16 
7 20 
8 21 
9 20 

7 

10 22 
8 18 
9 19 

10 20 
11 22 

8 

12 17 
9 18 

10 22 
11 22 
12 20 

9 

13 19 
10 20 
11 21 
12 19 
13 20 
14 21 

10 

15 21  

Table 8. 8: Possible values of xL  and 

yL for doubling operation in E/GF(p) 

xL  
Valid range 

of yL  
Number of 

multiplications 
1 7 1 
2 9 
2 9 
3 11 2 
4 9 
3 13 
4 13 
5 13 

3 

6 15 
4 10 
5 13 
6 14 
7 14 

4 

8 11 
5 13 
6 15 
7 15 
8 15 
9 13 

5 

10 15  
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In case of addition operation (table 8.7), for a certain xL , the best choice of  yL  is 

the one with the minimum umber of ones in the binary representation of the terms 

( xy LL − ), ( yx LL 23 − ), ( 2−xdL ), ( 3−ydL ) and (max( xL , yL )). For example, if xL  = 5, 

then the best choice of yL  is 5 while the best choice for xL  = 10 is yL  = 12. 

 Similarly, in case of doubling operation (table 8.8), the best choice of  yL  for a 

certain xL  is the one with the minimum umber of ones in the binary representation of the 

terms ( xy LL − ), ( yx LL −2 ), ( 2−xdL ), ( 3−ydL ) and (max( xL , yL )). For example, if xL  

= 3, then the best choice of yL  is either 3, 4 or 5 while the best choice for xL  = 5 is yL  = 

5 or 9 . 

 
8.4 Performance of DPC for E/GF(2m) 

There are several DPC formulas for E/GF(2m) for both addition and doubling 

operations. These formulas range from general formulas in which no constraints in 

selecting xL  and yL  (with d≥3) to formulas that can be used according to certain selection 

rules of xL  and yL  such as 023 ≥− yx LL  or 0≥− xy LL . Again, if the main goal is 

enhancing the performance, then clever selection of xL , yL  and d can reduce the number 

of computations dramatically.  

Tables 8.9 and 8.10 show the computation times in terms of the required number 

of multiplication and squaring operations for addition and doubling operations 

respectively. 
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Table 8. 9: Computation times for addition in DPC/GF(2m). a ∈ (0,1) 
Formula Multiplications (M) Squaring (S) 

General–Uniform ( )),(),,(max17 y
d

x
d LTRLTR αα+  ( )),(),,(max1 y

d
x

d LTRLTR ββ+  

General–Mixed ( )),(),,(max17 33 y
d

x
d LTRLTR αα+  ( )),(),,(max1 33 y

d
x

d LTRLTR ββ+  

Optimized-Uniform 

d ≥3, 023 ≥− yx LL , 
0≥− xy LL  

),(),,(max(

)3,(1

030

)2,(1
020

)23,(1

0230

),(1

00
12

y
d

x
d

y

y

x

x

yx

yx

xy

xy

LTVLTV

otherwisedLV

dLif

otherwisedLV
dLif

otherwiseLLT

LLif

otherwiseLLT

LLif

αα

α

α

α

α

+

⎪⎩

⎪
⎨
⎧

−+

=−
+

⎩
⎨
⎧

−+
=−

+

⎪⎩

⎪
⎨
⎧

−+

=−
+

⎪⎩

⎪
⎨
⎧

−+

=−
+

 

),(),,(max(

)3,(

030

)2,(
020

)23,(

0230

),(

00
1

y
d

x
d

y

y

x

x

yx

yx

xy

xy

LTVLTV

otherwisedLV

dLif

otherwisedLV
dLif

otherwiseLLT

LLif

otherwiseLLT

LLif

ββ

β

β

β

β

+

⎪⎩

⎪
⎨
⎧

−

=−
+

⎩
⎨
⎧

−
=−

+

⎪⎩

⎪
⎨
⎧

−

=−
+

⎪⎩

⎪
⎨
⎧

−

=−
+

 

Optimized–Mixed 

d ≥3, , 0≥− xy LL  

),(),,(max(

)3,(1

030

)2,(1
020

),(

),(2

0

0),(1

0

0),(1

0

00

17

3

3

3

3

222

111

11

22111

22

11222

22

11

y
d

x
d

y

y

x

x

xy

xy

xy

xyxy

xy

xyxy

xy

xy

LRLR

otherwisedLR

dLif

otherwisedLR
dLif

otherwiseLLZ

LLZ

LLAND

LLifLLZ

LLAND

LLifLLZ

LLAND

LLif

αα

α

α

α

α

α

α

+

⎪⎩

⎪
⎨
⎧

−+

=−
+

⎩
⎨
⎧

−+
=−

+

⎪
⎪
⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪
⎪
⎪

⎨

⎧

−+

−+

>−

=−−+

>−

=−−+

=−

=−

+  

),(),,(max(

)3,(

030

)2,(
020

),(

),(

0

0),(

0

0),(

0

00

1

3

3

3

3

222

111

11

22111

22

11222

22

11

y
d

x
d

y

y

x

x

xy

xy

xy

xyxy

xy

xyxy

xy

xy

LRLR

otherwisedLR

dLif

otherwisedLR
dLif

otherwiseLLZ

LLZ

LLAND

LLifLLZ

LLAND

LLifLLZ

LLAND

LLif

ββ

β

β

β

β

β

β

+

⎪⎩

⎪
⎨
⎧

−

=−
+

⎩
⎨
⎧

−
=−

+

⎪
⎪
⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪
⎪
⎪

⎨

⎧

−+

−

>−

=−−

>−

=−−

=−

=−

+

Equivalent homogenous 
PC  

d = 3, 1== yx LL  

15 2 

Equivalent  Jacobian PC  

d =1, 3,2 == yx LL  

13 2 
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Table 8. 10: Computation times for doubling in DPC/GF(2m). a ∈ (0,1) 
Formula Multiplications (M) Squaring (S) 

General–Uniform ( )),(),,(max10 y
d

x
d LSLS αα+  ( )),(),,(max1 y

d
x

d LSLS ββ+  

General–Mixed ( )),(),,(max10 33 y
d

x
d LSLS αα+  ( )),(),,(max1 33 y

d
x

d LSLS ββ+  

Optimized-Uniform 

2≥xdL , 3≥ydL  

),(),,(max(

)3,(1

030

)2,(1
020

)2,(1

020
5

1

y
d

x
d

y

y

x

x

yx

yx

LSLS

otherwisedLS

dLif

otherwisedLS
dLif

otherwiseLLZ

LLif

αα

α

α

α

+

⎪⎩

⎪
⎨
⎧

−+

=−
+

⎩
⎨
⎧

−+
=−

+

⎪⎩

⎪
⎨
⎧

−+

=−
+

 

),(),,(max(

)3,(1

030

)2,(1
020

)2,(1

020
2

1

y
d

x
d

y

y

x

x

yx

yx

LSLS

otherwisedLS

dLif

otherwisedLS
dLif

otherwiseLLZ

LLif

ββ

β

β

β

+

⎪⎩

⎪
⎨
⎧

−+

=−
+

⎩
⎨
⎧

−+
=−

+

⎪⎩

⎪
⎨
⎧

−+

=−
+

 

Optimized–Mixed 

23 ≥xdL , 33 ≥ydL  

),(),,(max(

)3,(1

030

)2,(1
020

)2,(1

020
5

33

3

3

3

3

111

11

y
d

x
d

y

y

x

x

yx

yx

LSLS

otherwisedLS

dLif

otherwisedLS
dLif

otherwiseLLZ

LLif

αα

α

α

α

+

⎪⎩

⎪
⎨
⎧

−+

=−
+

⎩
⎨
⎧

−+
=−

+

⎪⎩

⎪
⎨
⎧

−+

=−
+

 

),(),,(max(

)3,(

030

)2,(
020

)2,(

020
2

33

3

3

3

3

111

11

y
d

x
d

y

y

x

x

yx

yx

LSLS

otherwisedLS

dLif

otherwisedLS
dLif

otherwiseLLZ

LLif

ββ

β

β

β

+

⎪⎩

⎪
⎨
⎧

−

=−
+

⎩
⎨
⎧

−
=−

+

⎪⎩

⎪
⎨
⎧

−

=−
+

Equivalent homogenous PC 

1== yx LL , d = 3 

8 2 

Equivalent Jacobian PC 

d =1, 3,2 == yx LL  

7 2 

 

Similar to what we did in case of E/GF(p), we compare DPC for E/GF(2m) with 

the conventional coordinate systems. Table 8.11 shows the exact number of computations 

of these coordinate systems and the corresponding equivalent systems in DPC for 

E/GF(2m). Although mixed coordinates for E/GF(2m) are not existing in the literature, 

table 8.11 contains some useful mixed DPC systems. 
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Table 8. 11: Comparisons of field operations using DPC in E/GF(2m). 
PC System Addition Doubling 

HHH 15M + 2S 7M + 5S  

JJJ 14M + 4S 5M + 5S  

Optimized DPC (DPC-HHH) 1,3 === Yx LLd  15M + 2S  8M + 2S  

Optimized DPC (DPC-JJJ) 3,2,1 === Yx LLd  13M + 2S  7M + 2S   

General Mixed DPC (DPC-AAH) 3=d  

02211 ==== YxYx LLLL  

1,1 33 == Yx LL  

8M + 1S  6M + 2S  

General Mixed DPC (DPC-AAJ) 

d =1 

02211 ==== YxYx LLLL  

3,2 33 == Yx LL  

7M + 1S  5M + 2S  

General Mixed DPC (DPC- AxHyH) 

3=d ,    

1
1
0

33

21

21

==
==
==

Yx

YY

xx

LL
LL
LL

 

12M + 1S 8M + 2S 

General Mixed DPC(DPC- AxJyJ) 

1=d ,    

3,2
3
0

33

21

21

==
==
==

Yx

YY

xx

LL
LL
LL

 

11M +2S 7M + 2S 

General Mixed DPC (DPC- HxAyH) 

3=d ,   

1
0
1

33

21

21

==
==
==

Yx

YY

xx

LL
LL
LL

 

13M + 1S 8M + 3S 

General Mixed DPC (DPC- JxAyJ) 

1=d ,   

3,2
0
2

33

21

21

==
==
==

Yx

YY

xx

LL
LL
LL

 

15M + 2S 7M + 3S 

DPC-HHH = Equivalent homogenous DPC, DPC-JJJ = Equivalent Jacobian DPC  DPC-
MMM = Equivalent modified DPC 
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In case of addition operation, table 8.11 shows that DPC-HHH has exactly the 

same number of computations as in HHH and DPC-JJJ is faster than JJJ by one 

multiplication and two squaring operations.  

In doubling operation,  DPC-HH is higher than HH by one multiplication but 

lower by 3 squaring.  Hence by considering S = 0.8M, as in [23], DPC-HH is in total 

faster than HH. Also, DPC-JJ is higher than JJ by two multiplications but lower by 3 

squaring. Hence, under the same assumption, i.e. S = 0.8M, DPC-JJ is faster than JJ. 

Similar to the case of E/GF(p), by using mixed DPC formulas for E/GF(2m), it is 

possible to hop from one coordinate system to another during the scalar multiplication 

without the need to perform any inversion operation. Tables 8.12 and 8.13 show the cost 

of hopping among a set of possible coordinate systems. 

 

Table 8. 12: Hopping cost in DPC system (E/GF(2m) Addition operation) 
From \ To Affine DPC-HHH DPC-JJJ DPC-CCC DPC-MMM 

Affine - - - - - 
DPC-HHH 2M + I 19M+2S 18M+2S 18M+2S 18M+3S 
DPC-JJJ 3M+S+I 20M+2S 19M+2S 19M+2S 19M+3S 

DPC-CCC 3M+S+I 20M+2S 19M+2S 19M+2S 19M+3S 
DPC-MMM 3M+S+I 20M+3S 19M+3S 19M+3S 19M+3S 

 
 

Table 8. 13: Hopping cost in DPC system (E/GF(2m) Doubling operation) 
From \ To Affine DPC-HHH DPC-JJJ DPC-CCC DPC-MMM 

Affine - - - - - 
DPC-HHH 2M + I 8M+2S 7M+2S 8M+3S 8M+4S 
DPC-JJJ 3M+S+I 8M+2S 7M+2S 7M+2S 7M+3S 

DPC-CCC 3M+S+I 8M+2S 7M+2S 7M+2S 7M+3S 
DPC-MMM 3M+S+I 8M+3S 7M+3S 7M+3S 7M+3S 
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Tables 8.14 and 8.15 show the number of multiplications for different values of xL  

and yL  for E/GF(2m) optimized DPC addition and doubling operations respectively. For 

each value of xL  there are several possible choices of yL  (second column). These choices 

increase as xL  increases. For example, in case of addition operation, if xL  = 1, then we 

have only one yL  possible value while if xL  = 10 we have six possible values of yL . In 

case of doubling operation, if xL  = 1, then we have two possible values of yL  while if xL  

= 5 we have six possible values of yL . This due to the constraints caused by the relations 

between xL  and yL .  

In case of addition operation (table 8.14), for a certain xL , the best choice of  yL  is 

the one with the minimum umber of ones in the binary representation of the terms 

( xy LL − ), ( yx LL 23 − ), ( 2−xdL ), ( 3−ydL ) and (max( xL , yL )). For example, if xL  = 5, 

then the best choice of yL  is 5 while the best choice for xL  = 10 is yL  = 12. 

 Similarly, in case of doubling operation (table 8.15), the best choice of  yL  for a 

certain xL  is the one with the minimum umber of ones in the binary representation of the 

terms ( yx LL −2 ), ( 2−xdL ), ( 3−ydL ) and (max( xL , yL )). For example, if xL  = 3, then 

the best choice of yL  is either 3, 4 or 5 while the best choice for xL  = 5 is yL  = 5 or 9. 
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Table 8. 14: Possible values of xL  and 

yL for addition operation in E/GF(2m) 

xL  
Valid range 

of yL  

Number of 
multiplicatio

ns 
1 1 15 

2 17 2 
3 18 
3 21 3 
4 21 
4 18 
5 20 4 
6 21 
5 21 
6 24 5 
7 22 
6 21 
7 20 
8 20 

6 

9 19 
7 23 
8 24 
9 23 

7 

10 25 
8 21 
9 22 

10 23 
11 25 

8 

12 20 
9 21 

10 25 
11 25 
12 23 

9 

13 22 
10 23 
11 24 
12 22 
13 23 
14 24 

10 

15 24 
 
 

 Table 8. 15: Possible values of xL  and 

yL for doubling operation in E/GF(2m) 

xL  
Valid range 

of yL  
Number of 

multiplications 
1 1 8 
1 2 10 
2 2 10 
2 3 12 
2 4 10 
3 3 14 
3 4 14 
3 5 14 
3 6 16 
4 4 11 
4 5 14 
4 6 15 
4 7 15 
4 8 12 
5 5 14 
5 6 16 
5 7 16 
5 8 16 
5 9 14 
5 10 16 
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8.5 Using DPC System 

One of the most important features of DPC is that it automates the selection of the 

projective coordinate system and uses a single mathematical formulation/software code to 

implement different projective coordinate systems. In other words, different projective 

coordinate systems can be implemented by using different values of xLZ  , yLZ and d. For 

example, consider DPC addition formulas 7.7 and doubling formulas 7.8. By setting 

1== yx LL  and d = 3, we get the following  addition and doubling formulas: 

Addition: 

⎪
⎭

⎪
⎬

⎫

−−=−−===

−===−===

===

3
2

'
32

2'
32

232'
3121

1121212111212121

3
3

'
33

'
33

)(,2,,

,,,,,,,

,,,

VUXVVUYVVVTUXVTZZT

VVVZXVZXVUUUZYUZYUwhere

TVZYYVXX
 

Doubling: 

⎪
⎪
⎭

⎪⎪
⎬

⎫

−−=−=

====+=

===

1
2

11
'
32

'
32

2'
3

1121111
2
1

2
1

3
3

'
33

'
33

4)(,2

,2,,,2,3,

,,

ZYTXTTYTTX

XTTSYTWTYZSaZXWWhere

SZYYSXX

 

Which are identical to the homogenous projective coordinates system (section 5.3 

in chapter 5) in which the transformation functions: ZXx /=  and ZYy /=  are used.  

Also, By setting 3,2 == yx LL  and d = 1, we get a DPC system that is identical to the 

Jacobian projective coordinates system (section 5.3 in chapter 5) in which the 

transformation functions: 2/ ZXx =  and 3/ ZYy =  are used. 
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DPC system can be plugged to any scalar multiplication algorithm such as those in 

[3] and [14] without any restriction. The only thing that is needed to be done is selecting 

the values of the projecting parameters xL  and yL  and the d-parameter. However, there 

are two possible modes for using DPC with any scalar multiplication algorithm. First, is 

initializing the coordinate system and selecting the projecting and d parameters in the 

beginning of the scalar multiplication and fixing that system for the whole scalar 

multiplication iterations. Second, is allowing projective coordinates hopping at any time 

during the scalar multiplication.  

In scalar multiplication, it is required to perform a series of doubling and addition 

operations where the result of one operation is used as input operands to the other. This 

prevents conventional mixed coordinates from benefiting from the efficient mixed 

coordinates such as using HHH for addition and JJ for doubling. This is, however, 

because the result of the ADD operation is represented in  H coordinates while the input 

of the DBL operation must be in J representation. The conversion from H to J 

representation requires an inversion operation as shown in table 5.2. This kind of 

problems do not exit in DPC system since it is possible to dynamically change from one 

coordinate system to another without any inversion operation simply by using mixed DPC 

formulas with setting 3xL  and 3yL  to the desired values.  

In window based methods, DPC can use different projective coordinate systems 

for different phases of the scalar multiplication. Fore example, a certain coordinate system 

can be used for the pre-computation phase of the scalar multiplication while other 

coordinate systems can be used for addition and/or doubling operations in the main loop. 
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Furthermore, different blocks (or windows) of the scalar K can use different projective 

coordinate systems. 

Finally, it worth to mention that each run of the scalar multiplication can start with 

new coordinate system every time. This is because DPC system lends itself to randomize 

the scalar multiplication simply by randomizing the projecting parameters.  

 

8.6 Conclusions 

This chapter discussed the performance and using of DPC. The performance of 

DPC for addition and doubling operations in both E/GF(p) and E/GF(2m) has been 

analyzed. We conclude that the number of field operations required is a function of the 

projecting parameters xL  and yL  and the d-parameter. Various tables that show the 

number for required operations for several coordinate systems were presented.  

Also, this chapter studied how the DPC can be used. DPC uses a single 

mathematical formulation/software code to implement different projective coordinate 

systems. Hence, we conclude that DPC system can be plugged to any scalar multiplication 

algorithm. However, two possible modes for using DPC with any scalar multiplication 

algorithm were been discussed. First, initializing the coordinate system and selecting the 

projecting and d parameters in the beginning of the scalar multiplication and fixing that 

system for the whole scalar multiplication iterations. Second, is allowing projective 

coordinates hopping at any time during the scalar multiplication.  
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CHAPTER 9
 

Scalar Multiplication Security In Presence of DPC 

 

9.1 Introduction 

Since the scalar multiplication is the part of any elliptic curve cryptosystem that is 

directly correlated to the secret scalar K, researcher have become increasingly aware of 

the possibility of side channel attacks that exploits specific properties of the 

implementation of the scalar multiplication. As discussed in chapter 6, there are many 

countermeasures that can be used to protect against these attacks. However, non of these 

countermeasures are guaranteed to defeat all the side channel attacks. For example, many 

countermeasures against differential power analysis attacks rely on randomizing the 

projective coordinates. But all these countermeasures are vulnerable to the projective 

coordinates leak since they depend on pre-determined projective coordinate systems. 

Moreover, these countermeasures are vulnerable to the newly proposed attacks such as 

RPA, ZPA, DA, ABDPA attacks.  

According to the proposed classification, presented in chapter 6, of side channel 

attacks, in this chapter, we propose and analyze countermeasures for operation-and-data 

dependent and data-dependent attacks. We mean by operation-and-data dependent attacks 
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is the attacks that are based on both the data being manipulated and the operations being 

performed on this data. Also, we propose countermeasures for address-dependent attacks. 

For each of the proposed countermeasure, we provide  the security and complexity 

analysis. 

All the proposed countermeasures are based on using the DPC system as the 

coordinate system. This is because the DPC system lends itself to randomization simply 

by randomizing the projecting parameters xL  and yL  and/or d-parameter. Also, all the 

proposed countermeasures are applied to both E/GF(p) and E/GF(2m). 

However, the following notations are used through out this chapter. DPC_ADD 

means any DPC addition formula. DPC_DBL means any DPC doubling formula. Also, 

we use the word "mixed" or "optimized" in front of these notations to specify the mixed 

and optimized DPC formulas.  

This chapter is organized as follows. Section 9.2 discusses the proposed 

countermeasures for operation-and-data dependent attacks. The proposed 

countermeasures for address-dependent attacks are addressed in section 9.3. Finally, 

section 9.4 gives the conclusions.  

 

9.2 Countermeasures for Operation and Data Dependent Attacks 

As discussed in chapter 6, most of attacks are operation-dependent and at the same 

time data-dependent such as DPA and DA attacks. Some other attacks are data-dependent 

only such as RPA, ZPA and PCL. The existing countermeasures (section 6.9) do not 
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defeat all these attacks. More precisely, if a countermeasure defends one attack it may not 

defend the others. In the following, we show the attacks that each countermeasure cannot 

defend according to the mentioned reference. 

• Randomizing the base point (code = 010). (Coron's 2nd countermeasure) does not 

protect RPA [30].  

• Randomizing projective coordinates (code = 010) does not protect RPA, ZPA 

[31]. 

• Randomizing the scalar (code = 001) does not protect PCL [42]. 

• N. Smart's trick (code = 010) does not protect RPA, ZPA [31] and some cases of 

PCL [42]. 

• Non of the above countermeasures protect address bit DPA (ABDPA) [38]. 

Therefore, it is desired to find countermeasures to protect against these type of attacks. 

In this chapter, we propose three countermeasures for operation-and-data dependent and 

data-dependent attacks and two countermeasures for address-dependent attacks. All the 

proposed countermeasures are based on the following lemma. 

 

Lemma 9.1: By randomizing the projecting parameters xL  and yL  and/or d parameter in 

any addition and doubling DPC formula, both the data being manipulated and the number 

of operations being performed are randomized.  
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Proof: Given that xL  and yL  and/or d are initialized randomly. Then the proof consists of 

the following three parts: 

1. Each auxiliary variable T in any formula of the formulas presented in chapter 7 is a 

function of either xL , yL  and/or d. Hence, the value of T is randomized since xL  

and yL  and/or d are initialized randomly. 

2. Each of the variables 3X , 3Y  xLZ3  and yLZ3  which form the resultant point 

( 3X , 3Y , xLZ3 , yLZ3 ) of any formula of the formulas presented in chapter 7 is a 

function of either xL , yL  and/or d. Hence, the values of these variables are 

randomized since xL  and yL  and/or d are initialized randomly. 

3. As shown in tables 8.2, 8.3, 8.9 and 8.10, the number of required operations for 

each formula of the formulas presented in chapter 7 is a function of either xL , yL  

and/or d. Hence, the number of required operations are randomized since xL  and 

yL  and/or d are initialized randomly. 

 In the following, we introduce the proposed countermeasures and for each 

countermeasure, we do the following: 

• Apply the countermeasure to the binary ML and binary NAF algorithms (4.2 and 

4.8) respectively. We have chosen these two algorithms because they are the most 

widely used scalar multiplication algorithms.  
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• Analyze the security of the countermeasure by showing the attacks that the 

countermeasure can resist and how; and the attacks that the countermeasure cannot 

resist and why.  

• Analyze the complexity of the countermeasure by showing the cost in terms of 

number of field operations required for the countermeasure itself and the cost of 

applying it to the ML and binary NAF algorithms. 

 

Countermeasure 1: This countermeasure uses the DPC system with randomly initialized 

projecting parameters, xL , yL  and d. Countermeasure1 randomizes xL , yL  and d in the 

beginning of each run of the scalar multiplication. Hence, each execution of the scalar 

multiplication has its own coordinate system with different data values and different 

number of field operations. Although any DPC addition or doubling formula can be used 

for this countermeasure, it is preferred to use the optimized formulas since they require 

less number of field operations such as using formula 7.7 for addition in E/GF(p) and 7.16 

for addition in GF(2m) (see tables 8.2, 8.3, 8.9 and 8.10).  

Algorithms 9.1 and  9.2 show the application of this countermeasure to the binary 

ML and binary NAF algorithms (4.2 and 4.8) respectively (N is positive integer).  
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INPUT K, P 
OUTPUT    KP 

7. xL = rand(1..N) , yL = rand(1..N), d = rand(3..N) 
8. Set Z = 1 then compute P = (X,Y,1,1) 
9. Initialize Q[2] = P 
10. for i = n-2 down to 0 
11.      Q[0] = DPC_DBL(Q[2]) 
12.      Q[1] = DPC_ADD(Q[0], P) 
13.      Q[2] = Q[ki] 
14. end for 
15. Convert Q[2] to affine coordinate. 

       Return Q[2] 

Algorithm 9. 1: Binary ML algorithm with countermeasure1 
 

Input: An integer K an a point P = (x,y) ∈ E/GF(q) 
Output: The point Q = KP ∈ E/GF(q) 

1. Compute NAF(K) = (ul-1 … u1u0) 
2. xL = rand(1..N) , yL = rand(1..N), d = rand(3..N) 
3. Set Z = 1 then compute P = (X,Y,1,1) 
4. Q = ∞ 
5. for j = l - 1 downto 0 do 
6. Q = DPC_DBL(Q) 
7. if ul = 1  then 
8.          Q = DPC_ADD(Q, P) 
9. if ul = –1  then 
10.          Q = DPC_ADD(Q, – P) 
11. Convert Q to affine coordinate. 

  Return (Q) 
Algorithm 9. 2: Binary NAF algorithm with countermeasure1 

 

Security analysis of Countermeasure1:  

The number of field operations in DPC_ADD and DPC_DBL is determined in the 

beginning of the scalar multiplication when the values of xL , yL  and d are initialized. 

These numbers remain fixed during the whole scalar multiplication. In the next run of the 

scalar multiplication, new values of xL , yL  and d will be initiated and hence the number 
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of field operations in DPC_ADD and DPC_DBL will be changed accordingly. Based on 

that, this countermeasure can resist DPA, DFA, DEMA and DA. 

Also, any register used in DPC_ADD and DPC_DBL operations changes at each 

execution. Hence this countermeasure is resistant against RPA, ZPA and PCL attacks. 

Since countermeasure1 has nothing to do with addresses of variables, algorithm 

9.1 is not immune against ABDPA. This is because there is still a direct correlation 

between the register transfer operation in step 7 and the scalar bit value. On the other 

hand, algorithm 9.2 is immune against ABDPA by its nature since the locations of 

operands of DPC_ADD and DPC_DBL operations are independent of the scalar bit 

values. 

Finally, it is worth to mention that countermeasure1 resists SPA since it uses 

double-and-add always method in algorithm 9.1. In algorithm 9.2, the addition operations 

are not conditioned by the value of the scalar bit. 

 

Complexity analysis of Countermeasure1:  

As discussed in chapter 4, let the binary representation of the scalar K is 

01
2

2
1

1 2.......22 kkkkK n
n

n
n ++++= −

−
−

−  where n is the number of bits. 

Let A and D denotes the number of field operations (multiplications + squaring) in 

DPC_ADD and DPC_DBL respectively. In other words, A contains the number of 

multiplications and squaring in DPC_ADD and D contains the number of multiplications 
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and squaring in DPC_DBL. Fore example,  A = 12M + 2S and D = 8M + 5S in case of 

using DPC-HHH system. Since the DPC_ADD and DPC_DBL operations are performed 

in each iteration of algorithm 9.1 (double-and-add always), then its Expected Running 

Time (ERT) is given by [52]: 

 ERT(Algorithm 9.1) = An + Dn      9.1 

With n being the bit length of the scalar K. 

The values of A and D are given in tables 8.2 and 8.3 for E/GF(p) and in tables 8.9 

and 8.10 for E/GF(2m). Note that the number of field operations in A and D differ from 

one DPC formula to the other. For example, the ERT of algorithm 9.1 when using the 

general DPC_ADD and DPC_DBL formulas is given by: 

ERT(Algorithm 9.1) =  

( ) ( )( ) +++++ nMLSELSELRELRE y
d
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d

y
d

x
d )),(()),((max11)),(()),,((max18 αααα  

( ) ( )( )nSLSELSELRELRE y
d

x
d

y
d

x
d )),(()),((max4)),(()),,((max2 ββββ ++++  

Where the letter E before alpha and beta functions means their expected values which are 

given by equation 8.1 (see section 8.2). Note that M denotes multiplication and S denotes 

squaring. 

 Table 9.1 shows the expected running times of algorithm 9.1 when using some 

specific DPC system.  
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Table 9. 1: Expected running times of algorithm 9.1 for specified DPC systems 
 

Coordinate system ERT in case of E/GF(p) ERT in case of E/GF(2m) 

Optimized DPC-HHH 20n M + 7n S 23n M + 4n S 

Optimized DPC-JJJ 20n M + 8n S 20n M + 4n S 

n = bit length of the recoded scalar, M = multiplication and S = squaring 

 

 In case of algorithm 9.2, given that the binary representation of the recoded scalar 

U = NAF(K) is given by: 

01
2

2
1

1 2.......22 uuuuU l
l

l
l ++++= −

−
−

−      9.2 

Then according to [52] the average density of non zero digits in U is l/3 where l is 

the bit length of U. Based on that, the expected running time of algorithm 9.2 is: 

ERT(Algorithm 9.2) = lDAl
+

3
      9.3 

with A and D given in tables 8.2 and 8.3 for E/GF(p) and in tables 8.9 and 8.10 for 

E/GF(2m). For example, the ERT  of algorithm 9.2 when using the general DPC_ADD 

and DPC_DBL formulas is given by: 

ERT(Algorithm 9.2) =  
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 Table 9.2 shows the expected running times of algorithm 9.2 when using some 

specific DPC systems. 

 

Table 9. 2: Expected running times of algorithm 9.2 for specified DPC systems 
 

Coordinate system ERT in case of E/GF(p) ERT in case of E/GF(2m) 

Optimized DPC-HHH 12l M + 5.66l S 13l M + 2.66l S 

Optimized DPC-JJJ 12l M + 6l S 11.33l M + 2.66l S 

l = bit length of the recoded scalar, M = multiplication and S = squaring 

 

Countermeasure 2: This countermeasure is based in using DPC in conjunction with 

exponent (scalar) splitting (ES) method as follows:  

1. ES splits the scalar K into two parts R and (K – R) using a random number R.  

2. Computes RPP =1 , PRKP )(2 −=  and then 21 PPKP += . 

1P  and 2P   are computed using DPC with randomly initialized projecting 

parameters. These parameters could be the same for both points (i.e. for 1P  and 2P ) or 

be different. In case of different projecting parameters, the final addition to get 

21 PPKP += , is performed either using a mixed addition formula that allows using 

different projective coordinates, or performed using the affine coordinates since it is 

the last operation and the final result should be presented in the affine coordinates.  

Let the number of bits in R and (K – R) be 1n  and 2n  respectively. Then the binary 

representation of R is given by, 
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01
2

2
1

1 2.......22 rrrrR n
n

n
n ++++= −

−
−

−  

Algorithms 9.3 and  9.4 show the application of this countermeasure to the binary 

ML and binary NAF algorithms respectively. Note that in case of binary NAF, 

countermeasure2 splits the scalar before recoding and then R and (K – R) are recoded 

separately. In this case, 1n  and 2n  become the bit length of U1 and U2 respectively. 

However, note that the binary representation of the recoded scalar is 

01
2

2
1

1 2.......22 uuuuU l
l

l
l ++++= −

−
−

−  (see section 4.5.3) with bit length l equals to n 

or grater by only 1. 

 

Security analysis of Countermeasure2: 

The security analysis of countermeasure1 is applicable to phase1 and phase2 of 

countermeasure2. That is, each phase is immune against DPA, DFA, and DA since the 

number of operations is randomized and immune against RPA, ZPA, and PCL since the 

data manipulated is also randomized. Furthermore, countermeasure2 resists SPA and DPA 

in the same way discussed in countermeasure1. Also, algorithm 9.3 does not resist 

ABDPA for the same reason addressed in countermeasure1.  

However, countermeasure2 has an additional security strength resulting from 

random splitting the scalar into two scalars. This is because in each run of the scalar 

multiplication the data and the number of operations will be randomized since R and (K – 

R) will have different values in each run. 
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INPUT K, P 
OUTPUT    KP 
  Phase 1: 

1. R = rand(1..K-1) 
2. xL = rand(1..N) , yL = rand(1..N), d = 

rand(3..N) 
3. Set Z = 1 then compute P = (X,Y,1,1) 
4. Initialize Q[2] = P 
5. for i = 1n -2 down to 0 
6.      Q[0] = Optimized_DPC_DBL(Q[2]) 
7.      Q[1] = Optimized_DPC_ADD(Q[0], P) 
8.      Q[2] = Q[ ir ] 
9. end for 
10. 1P  = Q[2] 

  Phase 2:  
11. K = K – R  
12. xL = rand(1..N) , yL = rand(1..N), d = 

rand(3..N) 
13. Set Z = 1 then compute P = (X,Y,1,1) 
14. Initialize Q[2] = P 
15. for i = 2n -2 down to 0 
16.      Q[0] = Optimized_DPC_DBL(Q[2]) 
17.      Q[1] = Optimized_DPC_ADD(Q[0], P) 
18.      Q[2] = Q[ ik ] 
19. end for 
20. 1P  = 1P  + Q[2] 
21. Convert 1P  to affine coordinate. 

       Return ( 1P ) 

 Input: K , P  
Output: The point Q = KP  

1. R = rand(1..K-1) 
  Phase 1: 

2. Compute NAF(U) = ( 11−nu 21−nu  … 0u ) 

3. xL = rand(1..N) , yL = rand(1..N), d = 
rand(3..N) 

4. Set Z = 1 then compute P = (X,Y,1,1) 
5. Q = ∞ 
6. for i = 1n  - 1 downto 0 do 
7. Q = Optimized_DPC_DBL(Q) 
8. if iu  = 1  then 
9.          Q = Optimized_DPC_ADD(Q, P) 
10. if iu  = –1  then 
11.          Q = Optimized_DPC_ADD(Q, – P) 
12. 1P = Q 

  Phase 2: 
13. Compute NAF(K-R) U = ( 12−nu 22−nu  … 

0u ) 

14. xL = rand(1..N) , yL = rand(1..N), d = 
rand(3..N) 

15. Set Z = 1 then compute P = (X,Y,1,1) 
16. Q = ∞ 
17. for i = 2n  - 1 downto 0 do 
18. Q = Optimized_DPC_DBL(Q) 
19. if iu  = 1  then 
20.          Q = Optimized_DPC_ADD(Q, P) 
21. if iu  = –1  then 
22.          Q = Optimized_DPC_ADD(Q, – P) 
23. 1P = 1P  +  Q 
24. Convert 1P  to affine coordinate. 

  Return ( 1P ) 

Algorithm 9. 3: Binary ML algorithm with 
countermeasure2 

 Algorithm 9. 4: Binary NAF algorithm with 
countermeasure2 
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Complexity analysis of Countermeasure2: 

Countermeasure2 computes KP by almost the same cost as countermeasure1 since 

each phase uses the double-and-add always method. However, there are an extra final 

addition operation to compute 21 PPKP += . Also, computing K = K – R requires one 

word-length subtraction operation which can be neglected.  

 

Countermeasure3: A third countermeasure uses the ability of DPC to dynamically hop 

from one coordinate system to another half the way in the scalar multiplication. This 

hopping can be achieved by using general or optimized mixed addition and doubling 

formulas. This kind of formulas have the ability to perform the addition and doubling 

operations in totally different projective coordinates. Furthermore, these formulas do not 

requires any inversion operation to change form one coordinate system to the other. 

However, dynamic hopping can range from hopping in each iteration of the scalar 

multiplication (full hopping) to non-hopping which is identical to the case of 

countermeasure1.  

Countermeasure3 can be performed as follows: 

1. Randomly initialize the projecting parameters 1xL , 1yL , 2xL , 2yL , 3xL , 3yL  and d 

parameter. Note that we need to use all these parameters since the mixed formulas 

are used. 

2. Start the scalar multiplication. 
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3. In each iteration, based on the value of a random bit r, randomly select new 

parameters 3xL , 3yL  and d. i.e. if r = 1, then 3xL  = rand (1..N), 3yL = rand (1..N), 

and d = rand (3..N); otherwise keep the old values. This random selection is called 

a hop.  

Algorithms 9.5 and  9.6 show the application of this countermeasure to the binary 

ML and binary NAF algorithms respectively.  

 

INPUT K, P 
OUTPUT    KP 

1. 1xL = rand(1..N) , 1yL = rand(1..N), d = rand(3..N) 

2. 2xL = rand(1..N) , 2yL = rand(1..N) 

3. 3xL = rand(1..N) , 3yL = rand(1..N) 
4. Set Z = 1 then compute P = (X,Y,1,1) 
5. Initialize Q[2] = P 
6. for i = n-2 down to 0 
7.       if (r = rand(0..1) = 1) then 
8.             3xL = rand(1..N) , 3yL = rand(1..N) 
9.      Q[0] = Mixed_DPC_DBL(Q[2]) 
10.      Q[1] = Mixed_DPC_ADD(Q[0], P) 
11.      Q[2] = Q[ki] 
12. end for 
13. Convert Q[2] to affine coordinate. 

       Return Q[2] 

Algorithm 9. 5: Binary ML algorithm with countermeasure3 
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Input: An integer K an a point P = (x,y) ∈ E/GF(q) 
Output: The point Q = KP ∈ E/GF(q) 

1. Compute NAF(K) = (ul-1 … u1u0) 
2. 1xL = rand(1..N) , 1yL = rand(1..N), d = rand(3..N) 

3. 2xL = rand(1..N) , 2yL = rand(1..N) 

4. 3xL = rand(1..N) , 3yL = rand(1..N) 
5. Set Z = 1 then compute P = (X,Y,1,1) 
6. Q = ∞ 
7. for j = l - 1 downto 0 do 
8.       if (r = rand(0..1) = 1) then 
9.             3xL = rand(1..N) , 3yL = rand(1..N) 
10.      Q = Mixed_DPC_DBL(Q) 
11.      if ul = 1  then 
12.               Q = Mixed_DPC_ADD(Q, P) 
13.      if ul = –1  then 
14.               Q = Mixed_DPC_ADD(Q, – P) 
15. end for 
16. Convert Q to affine coordinate. 

  Return (Q) 
Algorithm 9. 6: Binary NAF algorithm with countermeasure3 

 

Security analysis of Countermeasure3: 

The security analysis of this countermeasure is similar to that of countermeasure1 

except that it uses mixed DPC formulas in which each coordinate of each point has it own 

different projecting parameters.  

According to step1 of countermeasure3, the number of field operations and the 

data manipulated will be randomized in each run of the scalar multiplication. Hence this 

countermeasure has the same security as countermeasure1. i.e. it can defend the same 

attacks defended by countermeasure1. Moreover, in any iteration of the scalar 

multiplication, one or more of the projecting parameters 3xL , 3yL  and/or d can hop to a 

new random value. This introduces intermediate randomization inside execution of the 
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scalar multiplication where it can guard any similarity analysis of different blocks of the 

scalar multiplication.  

Since countermeasure3 has nothing to do with addresses of variables, algorithm 

9.5 is not immune against ABDPA. This is because there is still a direct correlation 

between the register transfer operation in step 11 and the scalar bit value. On the other 

hand, algorithm 9.6 is immune against ABDPA by its nature since the locations of 

operands of DPC_ADD and DPC_DBL operations are independent of the scalar bit 

values. 

Algorithm 9.5 resists SPA because of: First, it uses double-and-add always 

method. Second, the projective coordinates hopping in the intermediate iterations is 

applied to both the addition and doubling operations to prevent any distinguishably 

between them. Recall that the addition and doubling operations are performed in each 

iteration independently from the scalar bit value. Third, projective coordinates hopping 

happens at random iterations without any correlation between this hopping and the scalar 

bit value. i.e. the projective coordinates hopping is independent of the scalar bit values.  

Also, algorithm 9.6 resists SPA because the addition operations are not 

conditioned by the value of the scalar bit. Moreover, the "Third" argument above is valid 

in case of algorithm 9.6 as well. 
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Complexity analysis of Countermeasure3: 

The expected running time of algorithms 9.5 and 9.6 are given by 9.1 and 9.3 

respectively with the values of A and D being the number of filed operations for addition 

and doubling operations for the mixed DPC formulas only. The number of field 

operations of such formulas are given in tables 8.2 and 8.3 for E/GF(p) and in tables 8.9 

and 8.10 for E/GF(2m). For example, the ERT of algorithm 9.5 when using the general 

mixed DPC_ADD and DPC_DBL formulas is given by: 
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Where the letter E before alpha and beta functions means their expected values which are 

given by equation 8.1 (see section 8.2). 

On the other hand, the ERT of algorithm 9.6 when using the general mixed 

DPC_ADD and DPC_DBL formulas is given by: 
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9.3 Countermeasures for Address-Dependent Attacks 

Since most of the scalar multiplication binary algorithms are vulnerable to 

address-bit-DPA attack (ABDPA), it is desired to find an immune algorithm to such 

attack. Here, we prose two ML algorisms called Add-Add algorithm and transition-based 

algorithm that can be used in conjunction with DPC system. These algorithms can be used 

to protect against class C attack. Fortunately, these algorithms can also be used to protect 

against doubling attack. However, it is worth to mention that DPC can be plugged to any 

of these algorithms. Hence, we will concentrate in describing the proposed algorithms 

letting the use of DPC to be default argument. 

 

  9.3.1 Add-Add Algorithm 

This algorithm is a ML algorithm.  It performs one ADD operation followed by 

another ADD operation in each iteration of a scalar multiplication. In any iteration of the 

scalar multiplication, the first ADD and the second ADD operations are performed in a 

fixed sequence (ADD  ADD). i.e. they will be performed in all iterations in the same 

order independently of the scalar bit values.  Note that we can get –P by simply negating 

the y-coordinate of P in case of GF(p) and adding x to y coordinates in case of GF(2m). 

Steps of algorithm Add-Add are shown in algorithm 9.7. 
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INPUT  K, P 
OUTPUT    KP 

1. Initialize Q[0] = P(or 2P); Q[1] = 2P(or P);     Q[2] = P 
2. for i = n-2 down to 0 
3.      Q[0] = ADD(Q[1],Q[0]) 
4.      Q[1] = ADD((Q[0], (-1)1-ki Q[2])] 
5. end for 

            return Q[1- k0] 
Algorithm 9. 7: Add-Add algorithm 

 

The second ADD operation performs the addition operation on the contents of 

Q[0] and Q[2]. The result is stored in Q[1]. The effect of ik−− 1)1( in step 4 of the algorithm 

can be explained as follows. First, note that the contents of Q[2] is always P. If the current 

bit ik  is 1, P will be added to Q[0]. Otherwise (i.e. for ik  = 0), –P is added to Q[0].  

Figure 9.1 presents two examples of Add-Add algorithm. The upper table of the 

Figure shows the values of Q[0], Q[1], and Q[2] in all iterations of calculating 173P. The 

lower table shows all iterations of calculating 155P. 

 

K 1 0 1 0 1 1 0 1 
Q[2] 1 1 1 1 1 1 1 1 
Q[0] 1 3 5 11 21 43 87 173 
Q[1] 2 2 6 10 22 44 86 174 

         
K 1 0 0 1 1 0 1 1 

Q[2] 1 1 1 1 1 1 1 1 
Q[0] 1 3 5 9 19 39 77 155 
Q[1] 2 2 4 10 20 38 78 156 

Figure 9. 1: Two examples of Add-Add algorithm. 
Upper table calculates 173P. Lower table calculates 155P. 

 

Add-Add algorithm resists doubling attack by its nature since no doubling 

operation at all. It resists ABDPA since it reads its operands from a fixed locations 
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regardless of the scalar bit value. When –P is needed it is simply computed (it can be 

computed all the times). 

 

9.3.2 Transition-Based Algorithm 

This algorithm is a ML algorithm. In any iteration, doubling and addition 

operations are performed in a fixed sequence, denoted by DBL ADD. In other words, 

DBL and ADD operations are always performed in all iterations in the same order 

independently of the bit values of a scalar. The most important property of this algorithm 

is that in the i-th iteration of calculating KP, the selection of the input operand of DBL 

operation is dependant on the existence of a transition between bits ik  and 1+ik  of a scalar 

K and it is not dependant directly on the value of ik . The steps of the transition-based 

algorithm are shown in algorithm 9.8. 

 

INPUT  K, P 
OUTPUT    KP 

1. Initialize Q[0] = P; Q[1] = 2P 
2. for i = n-2 down to 0 
3.      Q[2] = DBL(Q[1 – (ki ⊕ ki+1)]) 
4.      Q[0] = ADD(Q[1],Q[0]] 
5.      Q[1] = Q[2] 
6. end for 

            return Q[1- k0] 
Algorithm 9. 8: Transition-based algorithm 

 

The choice of input operand of DBL operation in step3 is based on existence of a 

transition between ik  and 1+ik  bits of the scalar. If there is a transition from 0 to 1 or from 
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1 to 0 between bits ik  and 1+ik , Q[0] is doubled and the result is stored in Q[2]; otherwise 

(i.e. ik  and 1+ik  are both 1’s or both are 0’s and hence no transition) Q[1] is doubled and 

the result is stored in Q[2]. 

Figure 9.2 presents two examples transition-based algorithm. The upper table of 

the Figure shows the values of Q[0], Q[1], and Q[2] in all iterations of calculating 173P. 

The lower table shows all iterations of calculating 155P. 

 

K 1 0 1 0 1 1 0 1 
Q[2]   2 6 10 22 44 86 174 
Q[0] 1 3 5 11 21 43 87 173 
Q[1] 2 2 6 10 22 44 86 174 

         
K 1 0 0 1 1 0 1 1 

Q[2]   2 4 10 20 38 78 156 
Q[0] 1 3 5 9 19 39 77 155 
Q[1] 2 2 4 10 20 38 78 156 

Figure 9. 2: Two examples Transition-Based algorithm.  
Upper table calculates 173P. Lower table calculates 155P. 

 

Transition-based algorithm resists ABDPA in the sense that the same location 

(address) is accessed either on a transition from 1 to 0 or from 0 to 1.  Therefore, it is 

difficult to detect whether this transition is from 0 to 1 or from 1 to 0. The same argument 

can hold in the absence of a transition. In this case, an attacker cannot know whether the 

previous bit was 1 and remains 1 or was 0 and remains 0 since the same address is used in 

both cases.  

Transition-based algorithm resists DA in the same scenario described above since 

the operand of the doubling operation is chosen based on the existence/absence of a 
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transition. The same operand is doubled either on a transition from 1 to 0 or from 0 to 1.  

Therefore, it is difficult to detect whether this transition is from 0 to 1 or from 1 to 0. On 

the other hand, in the case of transition absence, the same operand is doubled whether the 

previous bit was 1 and remains 1 or was 0 and remains 0. 

 

Countermeasure4: Combining Add-Add and Transition-based Algorithms  

The first iteration of  transition-based algorithm is weak against ABDPA since the 

most significant bit of the key, 1−nk , is always known to be 1. In this case, an attacker can 

find the value of the second most significant bit 2−nk  depending on whether the input 

operand of DBL operation is Q[1] or Q[0] as stated in step 3 of the algorithm. To 

overcome this difficulty we use the Add-Add algorithm to perform the initial iteration. 

This is because it has the property that its initial step is independent of the content of Q[0] 

and Q[1] which could be either the points P and 2P or 2P and P respectively. In other 

words, when using Add-Add algorithm in the first iteration, an attacker can not detect the 

value of the next most significant bit,   2−nk , even though the value of the most significant 

bit, 2−nk , is always known to be 1. It is this property of Add-Add algorithm that is used to 

overcome the possible leaking of information about 2−nk  in the first iteration of transition-

based algorithm. This combination of Add-Add and transition-based algorithms is used to 

prevent any leakage of information about 2−nk . Once the value of 2−nk  is protected against 

ABDPA in the first iteration, transition-based algorithm is used in subsequent iterations. 
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9.4 Conclusions 

This chapter discussed the security of DPC. We have proposed and analyzed 

countermeasures for operation-and-data dependent and address-dependent attacks.  

All the proposed countermeasures are based on using the DPC system as the 

coordinate system since it has the ability to lends itself to randomization simply by 

randomizing the projecting parameters xL  and yL  and/or d-parameter. We conclude that 

by randomizing the projecting parameters xL  and yL  and/or d parameter in any addition 

and doubling DPC formula, both the data being manipulated and the number of operations 

being performed are randomized. 

Also, we conclude that all the proposed countermeasures can be applied to both 

E/GF(p) and E/GF(2m). 
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CHAPTER 10
 

General Conclusions 

 

10.1 Introduction 

The main objective of this chapter is to summarize the results obtained in this 

thesis. Another aim is to provide some suggestions for future work that may be carried out 

based on the results obtained.  

This chapter is subdivided as follows. Section 10.2 summarizes the work 

undertaken in the thesis. Section 10.3 presents some suggestions for future research.  

 

10.2 Overview and Summary of The Work in The Thesis 

The work undertaken in this thesis is mainly in three parts: first, proposing the 

new Dynamic Projective Coordinate (DPC) system. Second, analyzing performance of the 

proposed DPC and discussing how it can be used. Third, developing DPC-based 

countermeasures and algorithms that can cover all the classes of the side channel attacks 

presented in chapter 6.  
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10.2.1 DPC System 

10.2.1.1 Overview 

In this thesis, a new approach, called Dynamic Projective Coordinate (DPC) 

system was proposed. It allows the computing/encrypting device to select the projective 

coordinate system either at random, or according to a certain rule. 

DPC automates the selection of the projective coordinate system and uses a single 

mathematical formulation/software code to implement different projective coordinate 

systems. Different projective coordinates can be implemented by using two parameters 

where one parameter defines the projection of the x-coordinate and a second parameter 

defines the projection of the y-coordinate of an elliptic curve point. This allows different 

projective coordinates to be used within the same mathematical formulation in calculating 

the scalar multiplication. 

 

10.2.1.2 Summary of The Results 

In this part of the thesis, we obtained the following formulas for elliptic curve 

defined over finite fields GF(p) and GF(2m): 

1. General dynamic addition and doubling formulas that allow different projective 

coordinate systems to be used within the same mathematical formulation. In these 

formulas, xL  and yL  can be selected without any restriction. In other words no 

relation between them. 

2. Optimized dynamic addition and doubling formulas that use DPC system and 

minimize the computation time through reducing the required number of filed 
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operations. In these formulas, xL  and yL  are selected according to certain rules to 

minimize the number of required operations. 

3. Mixed dynamic addition and doubling formulas in which each coordinate can be 

projected using its own projecting parameter resulting in the most mixing degree 

of coordinates ever. In this way, coordinates of the same point can be represented 

in different coordinate systems 

 

10.2.2 Performance of DPC System  

10.2.2.1 Overview 

The performance of DPC for addition and doubling operations in both E/GF(p) 

and E/GF(2m) has been analyzed. We conclude that the number of field operations 

required is a function of the projecting parameters xL  and yL  and the d-parameter. 

Various tables that show the number for required operations for several coordinate 

systems were presented.  

 

10.2.2.2 Summary of The Results 

In this part of the thesis, we obtained the following results: 

First, in case of E/GF(p) 

1. Addition using DPC-HHH has exactly the same number of computations as in 

HHH.  

2. Addition using DPC-JJJ is faster than JJJ by one squaring operation.  
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3. Addition using DPC-MMM is faster than MMM by one multiplication and 2 

squaring operations.  

1. Doubling using HH is faster than DPC-HH by one multiplication  

2. Doubling using JJ has less multiplications and more squaring than DPC-JJ. 

Second, in case of E/GF(2m) 

1. Addition using DPC-HHH has exactly the same number of computations as in 

HHH 

2.  Addition using DPC-JJJ is faster than JJJ by one multiplication and two squaring 

operations.  

3. Doubling using DPC-HH is higher than HH by one multiplication but lower by 3 

squaring.  Hence by considering S = 0.8M, as in [23], DPC-HH is in total faster 

than HH.  

4. Doubling using DPC-JJ is higher than JJ by two multiplications but lower by 3 

squaring.  Hence by considering S = 0.8M, as in [23], DPC-JJ is in total faster than 

JJ. 

5. Various dynamic mixed coordinates for E/GF(2m) for addition and doubling 

operations. Note that the conventional mixed coordinates for E/GF(2m) are not 

existed in the literature. 

 

10.2.3 Using DPC System 

In this thesis, we studied how the DPC can be used. DPC uses a single 

mathematical formulation/software code to implement different projective coordinate 
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systems. Hence, we conclude that DPC system can be plugged into any scalar 

multiplication algorithm. However, two possible modes for using DPC with any scalar 

multiplication algorithm were discussed. First, initializing the coordinate system and 

selecting the projecting and d parameters in the beginning of the scalar multiplication and 

fixing that system for all scalar multiplication iterations. Second, is allowing projective 

coordinates hopping at any time during the scalar multiplication.  

 

10.2.4 Scalar Multiplication Security in Presence of DPC System 

10.2.4.1 Overview 

In this thesis, we proposed DPC-based countermeasures for each class of the 

classes of attacks presented in chapter 6. A common property among the proposed DPC-

Based countermeasures is that the scalar multiplication can be randomized by simply 

varying one of the projecting parameter used. We conclude that by randomizing xL , yL  

and d parameters, we randomize both the data being manipulated and the number of 

operations being performed in the scalar multiplication.  

 

10.2.4.2 Summary of The Results 

In this part of the thesis, we obtained the following results: 

First, Proposed Countermeasures 

Countermeasure 1: This countermeasure uses the DPC system with randomly initialized 

projecting parameters, xL , yL  and d. It randomizes xL , yL  and d in the beginning of each 
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run of the scalar multiplication. Hence, each execution of the scalar multiplication has its 

own coordinate system with different data values and different number of field operations. 

Countermeasure 2: This countermeasure is based on using DPC in conjunction with 

exponent (scalar) splitting (ES) method.  ES splits the scalar K into two parts r and (K – r) 

using a random number r . The scalar multiplication is then computed as, 

21 PPKP += , where rPP =1 , PrKP )(2 −=  

1P  and 2P   are computed using DPC with randomly initialized projecting 

parameters. These parameters could be the same for both points (i.e. for 1P  and 2P ) or 

be different. 

Countermeasure 3: A third countermeasure uses the ability of DPC to dynamically hop 

from one coordinate system to another half the way in the scalar multiplication. This 

hopping can be achieved by using general or optimized mixed addition and doubling 

formulas which have the ability to perform the addition and doubling operations in totally 

different projective coordinates. 

 

Second, proposed algorithms 

 1.  Add-Add Algorithm 

It is a ML algorithm. It performs one ADD operation followed by another ADD 

operation in each iteration of a scalar multiplication. In any iteration of the scalar 

multiplication, the first ADD and the second ADD operations are performed in a fixed 
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sequence. The second ADD operation works as follows: If the current bit ik  is 1, P will 

be added. Otherwise (i.e. for ik  = 0), –P is added.  

 

2. Transition-based Algorithm 

It is a ML algorithm. In this algorithm, DBL and ADD operations are always 

performed in all iterations in the same order independently of the bit values of a scalar. 

The most important property of this algorithm is that in the i-th iteration, the selection of 

the input operand of DBL operation is dependant on the existence of a transition between 

bits ik  and 1+ik  of a scalar K and it is not dependant directly on the value of ik . 

 

Countermeasure 4: This countermeasure is based on Combining the Add-Add and 

Transition-based Algorithms. The Add-Add algorithm is used to perform the initial 

iteration of the scalar multiplication because the first iteration of the transition-based 

algorithm is weak against ABDPA. It is this property of Add-Add algorithm that is used 

to overcome the possible leaking of information about 2−nk  in the first iteration of 

transition-based algorithm. This combination of Add-Add and transition-based algorithms 

is used to prevent any leakage of information about 2−nk . Once the value of 2−nk  is 

protected against ABDPA in the first iteration, transition-based algorithm is used in 

subsequent iterations. 
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10.3 Suggestions for Future Work 

 Since the proposed DPC enables the ECC designers to choose from many 

combinations of DPC systems and/or various scalar multiplication algorithms, we propose 

the following future work 

1. This thesis provides dynamic addition and doubling formulas for E/GF(p) based 

on the DPC system where these formulas are separate. A suggested future research 

is to provide a unified dynamic formula for E/GF(p) that can be used for both 

addition and doubling operations. i.e. getting one dynamic formula that can be 

used for both addition and doubling operations at the same time. This unified 

formula should be developed using the DPC transformation functions. 

2. This thesis provides dynamic addition and doubling formulas for E/GF(2m) based 

on the DPC system where these formulas are separate. A suggested future research 

is to provide a unified dynamic formula for E/GF(2m) that can be used for both 

addition and doubling operations. i.e. getting one dynamic formula that can be 

used for both addition and doubling operations at the same time. This unified 

formula should be developed using the DPC transformation functions. 

3. Study the security-performance tradeoffs of the unified dynamic formula 

suggested in (1) for different scalar multiplication algorithms for E/GF(p). 

4. Study the security-performance tradeoffs of the unified dynamic formula 

suggested in (2) for different scalar multiplication algorithms for E/GF(2m). 

 



 

 

Appendices
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Appendix A-I: Derivation of DPC General Addition Formula for E/GF(p) 

Transformation functions 7.1 are used to get the dynamic projective coordinates 

),,,( 3333
yx LL ZZYX  of the point R according to addition formula 3.4 (section 3.3 in chapter 

3). The following subsections present the derivation of dynamic projective addition 

formulas. 

A-I.1 Derivation of Dynamic projective x-coordinate, 3X . 

Let ),,,( 1111
yx LL ZZYXP = , ),,,( 2222

yx LL ZZYXQ =  and ),,,( 3333
yx LL ZZYXR = . Then the 

dynamic projective coordinate 3X  of the point R = P + Q  can be derived as follows: 

By applying the dynamic transformation functions 7.1 to the equation of 3x  in 3.4, 

we get: 
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can be written as, 
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A-I.2 Derivation of Dynamic projective y-coordinate, 3Y . 

By applying the dynamic transformation functions 7.1 to the equation of 3y  in 3.4, 

we get: 
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Finally, the above equation can be written as, 
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A-I.3 Choosing Common 3Z . 

 

Let 213 ZZRZ d= , then we can write, 
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Substitute for 3X = 2'
3

−xdLRX , obtained from A-I.3, in A-I.2 to get, 
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Since xxxx LLdLL ZZRZ 213 = , xLZ3  can be taken as a common factor in the numerator and 

canceled with xLZ3  in the denominator to get,  
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According to the selection of 213 ZZRZ d=  which result in yy LdL ZZRZ )( 213 = , multiply the 

right hand side of the above equation by 
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From equations A-I.3 and A-I.4, we get the following general dynamic addition 

formulas: 
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Appendix B-I: Derivation of DPC General Doubling Formula for E/GF(p) 

Transformation functions 7.1 are used to get the dynamic projective coordinates 

),,,( 3333
yx LL ZZYX  of the point R according to doubling formula 3.5 (section 3.3 in chapter 

3). The following subsections present the derivation of dynamic projective doubling 

formulas. 
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B-I.1 Derivation of Dynamic projective x-coordinate, 3X . 

Let ),,,( 1111
yx LL ZZYXP = and ),,,( 3333

yx LL ZZYXR = . Then the dynamic projective 

coordinate 3X  of the point R = 2P  can be derived as follows: 

By applying the dynamic transformation functions 7.1 to the equation of 3x  in 3.5, we get: 
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B-I.2 Derivation of Dynamic projective y-coordinate, 3Y . 

By applying the dynamic transformation functions 7.1 to the equation of 3y  in 3.5, 

we get: 
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From equations B-I.3 and B-I.4, we get the following general dynamic doubling 

formulas: 
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Appendix C-I: Derivation of DPC Optimized Addition Formula for E/GF(p) 

From equation A-I.2 in appendix A-I, we have: 
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From equation A-I.4 in appendix A-I, we have: 
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Let 213 ZZVZ d= , then we can write, 
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Rearrange the numerator of the above equation to exploit the previously computed terms, 
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From equations C-I.3 and C-I.4, we get the following set of optimized dynamic addition 

formulas: note that 2
2

1
2 VVVV −−  = 2

23 2 VVV −−  
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Appendix D-I: Derivation of DPC Optimized Doubling Formula for E/GF(p) 

From equation B-I.1 in appendix B-I, we have: 
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From equation B-I.3 in appendix B-I, we have: 
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Let xy LLWZT −= 1 . Then rearrange the numerator of the above equation to exploit the 

previously computed terms. 

3

2
1

2
11

'
311

3

3 )(4)2(
S

ZYSYXXSYT
Z
Y yx

y

LL

L

−−−
=  

Let yx LLZYSYXXSYTY −−−= 2
1

2
11

'
311

'
3 )(4)2( , then the above equation can be written as, 

y

y

y dL

dL

L S
SY

Z
Y 3'

3

3

3
−

=         D-I.4 

From equations D-I.3 and D-I.4, we get the following dynamic optimized doubling 

formulas: 
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Appendix A-II: Derivation of DPC General Addition Formula for E/GF(2m)  

Transformation functions 7.1 are used to get the dynamic projective coordinates 

),,,( 3333
yx LL ZZYX  of the point R according to addition formula 3.7 (section 3.4 in chapter 
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3). The following subsections present the derivation of dynamic projective addition 

formulas. 

 

A-II.1 Derivation of projective x-coordinate, 3X . 

Let ),,,( 1111
yx LL ZZYXP = , ),,,( 2222

yx LL ZZYXQ =  and ),,,( 3333
yx LL ZZYXR = . Then the 

projective coordinate 3X  of the point R = P + Q  can be derived as follows: 

By applying the transformation functions 7.1 to the affine x-coordinate equation, 

3x , in 3.7, we get: 
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A-II.2 Derivation of projective y-coordinate, 3Y . 
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By applying the transformation functions 7.1 to the affine y-coordinate equation, 

3y , in 3.7, we get: 
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Unify denominators to get: 
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A-II.3 Choosing Common 3Z . 
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Based on that, equation A-II.1 can be written as, 



190 

 

xxxx

xxxx

x LLLdL

LLLdL

L ZZR
ZZRX

Z
X

)(
)(

21

1
21

2'
3

3

3
−−

=        A-II.3 

Substitute for 3X = 1
21

2'
3 )( −− xxxx LLLdL ZZRX , obtained from A-II.3, in A-II.2 to get, 

( ) ( )
x

xxxxxxyxx

y L

LLLLLdLLLL

L RZ
RZUZZZRXZVYZUXZ

Z
Y

3

21
1

21
2'

321213

3

3 )( +++
=

−−

 

Since xxxx LLLdL ZZRZ )( 213 = , xLZ3  can be taken as a common factor in the numerator and 
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From equations A-II.3 and A-II.4, we get the following general dynamic addition 

formulas: 
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Appendix B-II: Derivation of DPC General Doubling Formula for E/GF(2m) 

 Transformation functions 7.1 are used to get the dynamic projective coordinates 

),,,( 3333
yx LL ZZYX  of the point R according to doubling formula 3.8. The following 

subsections present the derivation of projective doubling formulas. 

B-II.1 Derivation of projective x-coordinate, 3X . 

Let ),,,( 1111
yx LL ZZYXP =  and ),,,( 3333

yx LL ZZYXR = . Then the projective coordinate 3X  

of the point PR 2=  can be derived as follows: 

By applying the transformation functions 7.1 to the affine x-coordinate equation, 

3x , in 3.8, we get: 
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Let xy LL ZYZXW 2
111

2
1 +=  and yx LL ZZXS 111= , then we get: 
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B-II.2 Derivation of projective y-coordinate, 3Y . 

By applying the transformation functions 7.1 to the affine y-coordinate equation, 

3y , in 3.8, we can get: 
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Unify denominators to get: 
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B-II.3 Choosing a common 3Z  
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Let dSZ =3 , then we can write, 
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Based on that, equation B-II.1 can be written as, 
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Substitute for 2'
33

−= xdLSXX , taken from B-II.3, in B-II.2 to get, 
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Since xx dLL SZ =3 , xLZ3  can be taken as a common factor in the numerator and canceled 

with xLZ3  in the denominator to get,  
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Multiply the right hand side by 2S / 2S  to get, 
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Take xLZ1  as a common factor in the numerator and cancel it with xLZ1  in the denominator. 
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3 )( , then the above equation can be written as, 
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From equations B-II.3 and B-II.4, we get the following dynamic general doubling 

formulas: 
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Appendix C-II: Derivation of DPC Optimized Addition Formula for E/GF(2m) 

From equation A-II.2 in appendix A-II, we have, 
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21 )( yy LL ZZ  as a common factor from the numerator and simplify,  
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Further simplification yields,  
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can be written as, 
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From equation A-II.2 in appendix A-II, we have, 
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Let 213 ZZVZ d= , then we can write, 
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Based on that, equation C-II.1 can be written as, 
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Substitute for 3X  from C-II.3 in C-II.2 to get, 
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Since xxxx LLdLL ZZVZ 213 = , xLZ3  can be taken as a common factor in the numerator and 

canceled with xLZ3  in the denominator to get,  
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Multiply the right hand side by 22 /VV ,  
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Rearrange the numerator of the above equation to exploit the previously computed terms, 
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From equations C-II.1 and C-II.4, we get the following dynamic optimized addition 

formulas: 
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Appendix D-II: Derivation of DPC Optimized Doubling Formula for 

E/GF(2m) 

From equation B-II.2 in appendix B-II, we have: 
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Take yLZ 2
1  as a common factor in the numerator and cancel it with yLZ 2

1  in the 

denominator.  

( )
2

11

2
1111

2
11

2
1

2
11

2
1

3

3

)(
)()(

x

xxyxyx

x L

LLLLLL

L ZX
ZXaZXZYXZYX

Z
X ++++

=
−−

  

Let xLZXS 11=  , yx LLZYXW −+= 2
11

2
1  and  '

3X  = numerator of the above equation, then we 

can write, 
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From equation B-II.5 in appendix B-II, we have:  
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Let dSZ =3 , then we can write, 
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Based on that, equation D-II.1 can be written as, 
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Substitute for 2'
33

−= xdLSXX , taken from D-II.3, in D-II.2 to get, 
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Since xx dLL SZ =3 , xLZ3  can be taken as a common factor in the numerator and canceled 

with xLZ3  in the denominator to get,  
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Multiply the right hand side by 2S / 2S  to get, 
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Take xLZ1  as a common factor in the numerator and cancel it with xLZ1  in the denominator. 
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Take yLZ1  as a common factor in the numerator and cancel it with yLZ1  in the denominator.  
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From equations D-II.3 and D-II.4, we get the following dynamic optimized doubling 

formulas: 
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