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Scalar multiplication is the basic operation in elliptic curve cryptography that can
be performed by many algorithms. These algorithms multiply a scalar value K with an
elliptic curve base point P. One of the crucial decisions when implementing an efficient
elliptic curve cryptosystem is deciding which point coordinate system to use. The point
coordinate system used for addition and doubling of points on the elliptic curve
determines the efficiency of these routines, and hence the efficiency of the basic
cryptographic operation, scalar multiplication. Although using a fixed coordinate system
enhances the performance of the scalar multiplication, (by removing the intermediate
inversion operations), it becomes a security weakness since it can be exploited by
projective coordinates leak attacks to reveal some secure information. Therefore, finding a
coordinate system that can enhance the performance of the scalar multiplication and being
secure against such attacks is desired goal.

This thesis introduces a new approach called Dynamic Projective Coordinate
(DPC) system. DPC provides a framework that automates the selection of the projective

coordinate system and uses a single mathematical formulation/software code to

XVi



implement different projective coordinate systems. This framework allows the
computing/encrypting device to select the projective coordinate either at random, or
according to a certain rule.

DPC uses dynamic transformation functions to convert coordinates of any point on
the elliptic curve to any projective coordinates by using the same mathematical formula.
These transformation functions are used to develop dynamic addition and doubling

formulas for elliptic curve over the prime field GF(p) and over the binary field GF(2").

Also, this thesis proposes a new classification method for Side Channel Attacks
(SCA). This classification is based on the type of information being leaked which can be
Operation-dependent, Data-dependent , Address-dependent or any combination of them.
New countermeasures for data-dependent, data-and-operation dependent and address-
dependent attacks are proposed. These countermeasures are based on the fact that DPC
lends itself to randomize both the data being manipulated and the number of operations

being performed by randomizing the coordinate system used.
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CHAPTER 1

Introduction

Cryptography provides methods of providing privacy and authenticity for remote
communications and data storage. Privacy is achieved by encryption of data, usually using
the techniques of symmetric cryptography (so called because the same mathematical key
is used to encrypt and decrypt the data). Authenticity is achieved by the functions of user
identification, data integrity, and message non-repudiation. These are best achieved via
asymmetric (or public-key) cryptography.

In particular, public-key cryptography enables encrypted communication between
users that have not previously established a shared secret key between them. This is most
often done using a combination of symmetric and asymmetric cryptography: public-key
techniques are used to establish user identity and a common symmetric key, and a
symmetric encryption algorithm is used for the encryption and decryption of the actual
messages. The former operation is called key agreement. Prior establishment is necessary
in symmetric cryptography, which uses algorithms for which the same key is used to
encrypt and decrypt a message. Public-key cryptography, in contrast, is based on key pairs.

A key pair consists of a private key and a public key. As the names imply, the private key
1



is kept private by its owner, while the public key is made public (and typically associated
to its owner in an authenticated manner). In asymmetric encryption, the encryption step is
performed using the public key, and decryption using the private key. Thus the encrypted
message can be sent along an insecure channel with the assurance that only the intended
recipient can decrypt it.

User identification is most easily achieved using what are called identification
protocols. A related technique, that of digital signatures, provides data integrity and
message non-repudiation in addition to user identification.

The public key is used for encryption or signature verification of a given message,
and the private key is used for decryption or signature generation of the given message.

Koblitz [1] and Miller [2] proposed a method by which public key cryptosystems
can be constructed on a group of points of an elliptic curve. This group comes from a
setting called finite fields (chapter 2).

Elliptic Curve Cryptosystem (ECC) relies upon the difficulty of the Elliptic Curve
Discrete Logarithm Problem (ECDLP) to provide its effectiveness as a cryptosystem.
Using multiplicative notation, ECDLP can be described as (section 4.2): given elliptic
curve points P and QO in the group, find a number K such that P*=0; where X is called the
discrete logarithm of Q to the base P. Using additive notation, the problem becomes:
given two points P and Q in the group, find a number K such that KP=Q.

In an ECC, the large integer K is kept private and is often referred to as the secret

key. The point Q together with the base point P are made public and are referred to as the



3
public key. The security of the system, thus, relies upon the difficulty of deriving the
secret K, knowing the public points P and Q. The main factor that determines the security
strength of such a system is the size of its underlying finite field. In a real cryptographic
application, the underlying field is made so large that it is computationally infeasible to
determine K in a straightforward way by computing all the multiples of P until Q is found.

The core of the elliptic curve cryptography is an operation called scalar
multiplication which computes KP by adding together K copies of the point P. Thus, the
efficiency of elliptic curve cryptosystems heavily depends on the implementation of the
scalar multiplication. The scalar multiplication is performed through a combination of
point-doubling and point-addition operations. The point-addition operation adds two
distinct points together and the point doubling operation adds two copies of a point
together. To compute, for example, 11P = (2*(2*(2P)))+3P = Q, it would take 3 point-
doublings and 1 point-addition.

Point addition and doubling operations require field inversion operations which
usually have very high cost (i.e. number of finite field operations required) compared to
the multiplication operation (see section 5.1). Its cost ranges from 9 to 30 field
multiplications for a field element with bit length grater than 100 [23]. Moreover, it must
be (without projective coordinate) performed in each iteration of the scalar multiplication.
Therefore, it is important to represent elliptic curve points using projective coordinates.
The idea of projective coordinates is based on transferring the point coordinates into
another coordinates that can eliminate the inversion operation while performing addition

and doubling operations. By this way, the intermediate inversions within the scalar



4
multiplication iterations are eliminated. However, still we need one final inversion to

return back to the affine coordinates after completion of the scalar multiplication.

Transferring any elliptic curve point to projective coordinates can be achieved by
using transformation functions. Different projective coordinates use different
transformation functions [23], [24], [25]. In this thesis, the sentence “projective
coordinate system” is used when referring to the transformation functions as well as the
coordinates generated by these functions, and the sentence “projective coordinates” is

used when referring the values of coordinates of a point.

Every computing device acts also as a source of additional information usually
called side channel leak information. Depending on its internal computations, it consumes
different amounts of power, emits different amounts of electromagnetic emanations, needs
different running times or even produces different types of error messages or sounds. All
these additional types of information can and have already been exploited in attacking the

cryptodevices.

In the execution of ECC, side channel attacks have become serious threat. One of
the most side channel attacks is the power analysis attacks, first introduced in [26], [27].
Power analysis attacks monitor power consumption and exploit the leakage information
related to power consumption to reveal bits of a secret key K although K is hidden inside
the cryptodevice. Thus, it is a serious issue that the implementation should be resistant
against SPA and DPA, and many countermeasures have been proposed in [28] — [37]. We

may note here that almost all public key cryptosystems including RSA and DLP-based
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cryptosystems also execute an exponentiation algorithm with a secret-key exponent, and,
thus, they also suffer from both SPA and DPA in the same way as ECC. Recently, in the
case of elliptic curve cryptosystems, DPA is further improved to the Refined Power
Analysis (RPA) in [28], which exploits a special point with a zero value and reveals a
secret key. An elliptic curve happens to have a special point (0, y) or (x, 0), which can be
controlled by an adversary because the order of base point is usually known. RPA utilizes
such a feature that the power consumption of 0 is distinguishable from that of an non-zero
element. Although ECC are vulnerable to RPA, RPA are not applied to RSA or DLP-
based cryptosystems because they don‘t have such a special zero element. Furthermore,
RPA is generalized to Zero-value Point Attack (ZPA) in [29]. ZPA makes use of any
zero-value register used in the addition formula. To make matters worse, some previous
efficient countermeasures of the randomized-projective-coordinate method (RPC) [32] are
neither resistant against RPA nor ZPA because, a special point (0, ) or (x, 0) has still a

zero value even if it is converted into (0, ry, ) or (rx, 0, ) by using RPC.

In 2004, Nigel Smart et. al. [42] showed that it is possible to leak some
information about the secret key (scalar K) through the projective representation of elliptic
curve points. Giving that 9 = KP 1is the elliptic-curve double-and-add scalar
multiplication of a public base point P by a secret K, they showed that allowing an
adversary access to the projective representation of Q, obtained using a particular double
and add method, may result in information being revealed about K. A countermeasure for
such an attack is proposed also in [42] but they assume that the attacker knows the

projective coordinate system used and that the coordinate system is fixed.



1.1 Scope of the Thesis

The existing projective coordinate systems and the countermeasures based on
them lack the following issues that can be used to enhance the security and/or
performance of the scalar multiplication.

First, issues related to the efficiency of the scalar multiplication:

1. Each coordinate system needs its own mathematical formulation/software code
and if a different coordinate system is used, it is required to change the microcode
of the scalar multiplication.

2. TItis a costly operation to convert from one coordinate system to another during the
scalar multiplication since this requires an inversion operation.

Second, issues related to the security:

1. The available projective coordinate systems are very limited in number.

2. Vulnerability to RPA, ZPA and projective coordinate leak [31].

3. Existing countermeasures for power analysis attacks that use randomization of
projective coordinates such as those introduced in [32] and the countermeasure
proposed in [42] for projective coordinate leakage assume that projective
coordinate system is fixed and they do not pursue the direction of changing the
projective coordinate system randomly during the scalar multiplication due to the
efficiency problems mentioned above.

This thesis introduces a new approach for scalar multiplication called dynamic

projective coordinate (DPC) system. We mean by dynamic projective coordinate system,

is a system that automates the selection of the projective coordinate system and uses a
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single mathematical formulation/software code to implement different projective
coordinate systems. Also, DPC allows projective coordinates hopping at any time during
the scalar multiplication with taking into account the efficiency and security issues
mentioned above.

Different projective coordinates are implemented by using two projecting parameters
where one parameter defines the projection of the x-coordinate and a second parameter
defines the projection of the y-coordinate of an elliptic curve point. This allows different
projective coordinates to be used within the same mathematical formulation in calculating
the scalar multiplication.

These parameters are used to define dynamic transformation functions that can be
used to convert any affine point to any projective coordinates using the same
mathematical formula. These transformation functions are used to develop dynamic
addition and doubling formulas for elliptic curve over the prime field GF(p) and elliptic

curve over binary field E/GF(2").

In this thesis a survey of side channel attacks for ECC is presented in chapter 6. Based
on that survey, we introduce a new classification of side channel attacks that can help in
providing new countermeasures to cover the weaknesses of the existing ones. The
proposed classification is based on the type of information being leaked. It divides all
known attacks into three classes: Class A: Operation-dependent attacks that depend on the
type of operation being performed (multiply, square, addition, doubling, etc...) such as
simple power analysis attacks [26]. Class B: Data-dependent attacks that are based on the

data being manipulated by the cryptodevice such as fault attacks [34]-[45] and projective
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coordinate leaks [42]. Class C: Address-dependent attacks that are based on the addresses
(locations) of the data being processed such as address-bit differential power analysis
attacks [38]. There are, however, some attacks, called data-and-operation dependent
attacks, that are both operation-dependent and data-dependent such as timing [27] and
DPA [26] attacks.

However, an important feature of DPC is that by randomizing the projecting
parameters (mentioned above) in addition and doubling DPC formulas, both the data
being manipulated and the number of operations being performed are randomized. This
fact is used to propose new countermeasures for data-dependent, data-and-operation

dependent and address-dependent attacks.

1.2 Organization of the Thesis

The rest of this thesis is divided into 9 chapters. Chapter 2, presents an
introduction to finite fields arithmetic. There are two kinds of finite fields that are

especially preferred for the efficient implementation of elliptic curve cryptosystems.
These fields are the prime field, GF(p), and the binary field GF(2"). This chapter

presents the definition of these fields and the basic arithmetic operations that can be
performed on their elements. Also, various algorithms to perform arithmetic operations in
the prime and binary finite fields are addressed in this chapter.

Chapter 3 discusses the mathematical background of elliptic curves over finite
fields. Curve arithmetic is defined in terms of underlining field operations. This includes

the fundamentals of defining elliptic curve over the prime field GF(p) and the binary field



GF(2").

Chapter 4 presents the principles of elliptic curve cryptography (ECC). It includes
definition of the underlining hard problem, Elliptic Curve Discrete Logarithm Problem
(ECDLP), that the security of ECC is based on. Also, it illustrates the domain parameters
that are required to set up an ECC and the basic principles of symmetric and public key

ECC . Finally, different scalar multiplication algorithms are addressed in this chapter.

Chapter 5 surveys the existing projective coordinate systems, namely, Affine (A),
Homogenous Projective (H), Jacobian (J), Chudnovsky-Jacobian (C), Modified (M) and
mixed coordinate systems. We start this chapter by showing the cost of inversion
operation in some recommended curves to show the motivation behind using projective
coordinates. Also, this chapter presents the cost (in terms of the number of field
multiplications and squaring) of point addition and doubling for each coordinate system.
Furthermore, it gives the cost of converting a point from one projective coordinate to

another.

In chapter 6, we survey different types of side channel attacks and the various
countermeasures known at the time of writing. Also, the classification methods of the
attacks found in the literature are discussed. Based on that, we propose a new
classification method according to the type of information being leaked. This

classification method is used to classify and analyze both the attacks and countermeasures.

Chapter 7 introduces the proposed dynamic projective coordinate (DPC) system for

ECC over both finite fields GF(p) and GF(2"). In this chapter, we start by defining
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dynamic transformation functions which are used to develop dynamic addition and

doubling formulas for elliptic curve over the prime field GF(p) and elliptic curve over

binary field E/GF(2").

Chapter 8 analyzes the performance and discusses the use of DPC. To analyze the
performance of DPC, the number of field operations in each formula of the formulas
presented in chapter 7 is calculated. We provide the method by which we can calculate the
number of field operations in any DPC formula. Also, the issue of how the DPC can be

used is discussed in this chapter.

In chapter 9, we propose and analyze countermeasures for operation-and-data
dependent, data-dependent and address-dependent attacks. All the proposed
countermeasures are based on using the DPC system as the coordinate system. This is
because the DPC system lends itself to randomization simply by randomizing the
projecting parameters. For each countermeasure, we provide the security and complexity

analysis.

Finally, conclusions are drawn in chapter 10. This includes a summary of the results
obtained in this thesis. Suggestions for further work are also recommended at the end of

this chapter.



CHAPTER 2

Finite Field Arithmetic

2.1 Introduction

Cryptographic mechanisms based on elliptic curves depend on arithmetic
involving the points of the curve. Curve arithmetic is defined in terms of underlining field
operations which its efficiency is essential. From a practical point of view, the
performance of ECC depends on the efficiency of finite field computations and fast
algorithms for elliptic scalar multiplications (section 4.5). In addition to the numerous
known algorithms for these computations, the performance of ECC can be sped up by
selecting particular underlying finite fields and/or elliptic curves. Thus, a fast
implementation of a security application based on ECC requires several choices, any of
which can have a major impact on the overall performance.

This chapter introduces finite fields and the various algorithms to perform
arithmetic operations in these fields. An introduction to groups and finite fields is
provided in Section 2.2. There are tow kinds of finite fields that are especially prefer for

the efficient implementation of elliptic curve cryptosystems. These fields are the prime

11
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field, GF(p),and the binary field GF(2"). Sections 2.3 and 2.4 present the definition of

these fields and the basic arithmetic operations that can be performed in each of them.

Finally, conclusions are presented in section 2.5.

2.2 Finite Fields

In this section we present the definition of groups and finite fields. These
mathematical structures are fundamental for the construction of an elliptic curve
cryptosystem.

A group is an algebraic system consisting of a set G together with a binary operation ¢
defined on G satisfying the following axioms:

e Closure: forall x, yin Gwe havex 0y € G.

Associativity: forall x, yand zin G we have (x 0 ) 0z= x 0 (y 0 z).

Identity: there exists an e in G such that x 0 e = e 0 x = x for all x in G.

Inverse: for all x in G there exists y in G such thatx 0y =y 0 x =e.
If in addition, the binary operation ¢ satisfies the abelian property:
e abelian: forallx, yin Gwe havex 0y =y 0x,
Then we say that the group G is abelian.
A finite field is an algebraic system consisting of a finite set F together with two
binary operations + and X, defined on F satisfying the following axioms:
e F isan abelian group with respect to “+”.

e F\ {0} is an abelian group with respect to “X”
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e distributive: for all x, y and z in F we have:
xx(y+z)=(xxy)+(xxz)
(x+y)xz=(xxz)+(yxz).

The order of a finite field is the number of elements in the field. A fundamental
result on the theory of finite fields [6] that characterizes the existence of finite field is the
following: there exists a finite field of order p if and only if p is a prime. In addition, if p
is a prime, then there is essentially only one finite field of order p. this field is denoted by
GF(p) (or F,). However, there are many ways of representing the elements of GF(p), and
some representations may lead to more efficient implementations of the field arithmetic in

hardware or in software.

if p=q" where ¢ is a prime and m is a positive integer, then ¢ is called the
characteristic of GF(p) and m is called the extension degree of GF(p). Most standards
which specify ECC restrict the order of the underlying finite field to be an odd prime (p =
q, i.e. m=1) which result in GF(p) finite field, or restrict the order to a power of 2 ( p =2",
i.e. ¢g=2) which result in what called characteristic two finite field and denoted by
GF(2"). In the following sections, we will describe these two finite fields and present the

basic algorithms for performing arithmetic operations in each of them.

2.3 Finite Field GF(p)

Definition 2.1: Prime Field GF(p).

Let p be a prime number. The integers modulo p, consisting of the integers {0, 1, 2,
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..., p — 1} with addition and multiplication performed modulo p, is a finite field of order p

called prime field and denoted by GF(p). The prime number p is called the modulus of

GF(p).

2.3.1 Finite Field Arithmetic in GF(p)

This section presents algorithms for performing arithmetic in the prime file GF(p).
The algorithms presented here are well suited for software implementation. We assume
that the implementation platform has a W-bit architecture where W is a multiple of 8. Let

m=!_10g2 p—| be the bit length of p, and t=|_m/W—‘ be its word length. Figure 2.1

illustrates a binary representation of a field element 4 as an array of W-bit words. As an
integer,

A=2""g[t =11+ 2"" a[t = 2]+ ...+ 2*" a[2]+ 2" a[1] + a[0].

Lafr1] | ... | af2] | afi] | af0] |
Figure 2. 1: Representation of 4 € GF(p) as an array of W-bits

The following notation is used in algorithms for multiword integers. An
assignment of the form "(g,Z) € A" for an integer A means:
Z=Amod 2", and
e=0i1fA41in [0, o 1], otherwise € = 1.
¢ is called the carry bit from single word addition.

Addition: If a,b € GF(p), then a + b = r, where r is the remainder of the division of (a+b)
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by p and 0 < r < p — I. This operation is called addition modulo p. To perform addition
operation for multi-word integers in GF(p), we first perform multiprecision addition
followed by an additional step for reduction modulo p. The following two algorithms

present multiprecision addition and reduction modulo p respectively.

Input: integers 4,8 € [0,2""— 1]
Output: (¢,C) where C =4 + B mod 2"
1. (e,c[0]) € a[0] + b[0]
2. fori=1tot1do
(e,cli]) € afi] + b[i] +¢
3. return (g,0C)
Algorithm 2. 1: Multiprecision addition

Modular addition in GF(p), (C = 4 + B mod p), is adapted directly from the
corresponding multiprecision addition algorithm with an additional step for reduction

modulo p.

Input: modulus p and integers 4,B € [0, p — 1]
Output: C= (4 + B) mod p

1. Use algorithm 2.1 to obtain (¢,C) where C =4 + B mod 2" and ¢

is the carry bit.
2. if(e=1or C2=p) then
C=C-p [/ subtract modulus.
3. return (g,0)
Algorithm 2. 2: Addition in GF(p)

Subtraction: If a,b € GF(p), then a - b = r, where r is the remainder of the division of (a-
b) by pand 0 < r < p — 1. This operation is called subtraction modulo p. To perform
subtraction operation for multi-word integers in GF(p), we first perform multiprecision

subtraction followed by an additional step for reduction modulo p. Note that we need a
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reduction step here because we may have a negative result which must be reduced to the
range [0, p — 1]. We mean by reduction here is adding the modulus p to the negative result
if any. The following two algorithms present multiprecision subtraction and reduction-for-

subtraction modulo p respectively.

Input: integers 4,8 € [0,2"' — 1]
Output: (¢,C) where C=4 — Bmod 2" and ¢ is the borrow bit
1. (&,c/0]) € a[0] —b[0]
2. fori=1to¢1do
(e,c[i]) € afi] — b[i] —¢
3. return (g,0)
Algorithm 2. 3: Multiprecision subtraction

Modular subtraction in GF(p), (C = A — B mod p), is adapted directly from the
corresponding multiprecision subtraction algorithm with an additional step for reduction

modulo p.

Input: modulus p and integers 4,8 € [0, p — 1]
Output: C= (4 + B) mod p

1. Use algorithm 2.3 to obtain (¢,C) where C =4 — B mod 2" and &

is the borrow bit.
2. if (e =1) then
C=C+p // add modulus.
3. return (g,0)
Algorithm 2. 4: Subtraction in GF(p)

Multiplication: If a,b € GF(p), then a . b = s, where s is the remainder of the division of

(a.b) by pand 0 < s < p — 1. This operation is called multiplication modulo p.
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The basic method for performing a multiplication in GF(p) is the "shift-and-add"

method. Given 4 € GF(p), the shift-left operation, (4 << ) mod p can be performed as

modulo addition of A to itself using algorithm 2.2. That is: 4 = (4 + A) mode p. The steps

of the "shift-and-add" multiplication method are given below.

Input: 4,B € GF(p) and the modulus p
Output: C = AxB mod p
I. setC=20
2. fori=m-1to0do
C=C+Cmodp //shift left
If b, 20 then C=C + A /luse algorithm 2.2

3. return (C)
Algorithm 2. 5: Shift-and-add method for modular multiplication in GF(p).

Inversion: The inverse of a nonzero element a € GF(p), denoted (a)”' mod p or

simply (@), is the unique element in GF(p) such that a.x = 1 in GF(p), i.e. a.x = 1 (mod

p). The basic algorithm for computing multiplicative inverses in GF(p) is the extended

Euclidean algorithm as shown below.

Input: 4 € GF(p), (A #0) and the modulus p
Output: C =A™ mod p
1. setU=A4,V=p
set X;=1,X,=0
2. while U # I do
o=lvul, R=v-0U X=X-0X.
V:l], U:R, X2:X1, X[ZX

3. return (X; mod p)
Algorithm 2. 6: Inversion using extended Euclidean algorithm in GF(p).

However, several techniques for implementing the finite field arithmetic in ¥, are
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described in details in [7], [8], [9], [10], [11], and [12].

2.4 Finite Field GF(2™)
Definition 2.2: Binary Field GF(2")

The finite field GF(2"), called a binary finite field, can be viewed as a vector
space of dimension m over GF(2). That is, there exist a set of m elements
{a,,a,,...,a, } in GF(2")such that each a € GF(2")can be written uniquely in the

form

m—1

a= Zalai where, a, € {0,1}.

i=0
The set {«,,q,,...,a,_, } 1s called a basis of GF(2")over GF(2). We can then
represent a as a binary vector (a,,d,,...,d, ,). In the sequel, we introduce the most

common basis: polynomial basis.

Polynomial basis

Let F(x):x'"+2j:f[x[ where f, e {0,1}, for i = 0,1, ..., m-1 be an irreducible

polynomial' of degree m over GF(2). F(x) is called the reduction polynomial. For each

reduction polynomial, there exists a polynomial basis representation. In such a

" A polynomial is said to be irreducible if it cannot be factored into nontrivial polynomials over the same
field
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representation, each element of GF'(2™) corresponds to a binary polynomial of degree less
than m. That is, for 4 € GF(2") there exists m numbers a, € {0,1} such that
A=a, x" " +a, X" +..+ax+a,

The field element 4 € GF(2") 1is usually denoted by the bit string
(a _.a ... a,a,) of length m.

The following procedure is commonly used to choose a reduction polynomial: if
an irreducible trinomial’ x" +x* +1 exists over GF(2), then the reduction polynomial
F(x) is chosen to be the irreducible trinomial with the lowest-degree middle term x* . Ifno

irreducible trinomial exists, then select instead a pentanomial x™ + X% +x" +x" +1, such

that k, has the minimal value; the value of k, is minimal for the given k,; and £, is

minimal for given k, and k,.

2.4.1 Finite Field Arithmetic in GF(2™) Using Polynomial Basis
In this section, we describe algorithms for performing arithmetic operations in the

finite field GF(2™) using polynomial basis representation.

Addition. Addition in GF(2™) is the usual addition of vectors over GF(2). That is, add

the corresponding bits modulo 2, i.e. performing bitwise Xoring.

* A polynomial with three terms
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Input: 4=a,_a, ,...aa,, B=b, b, ,...bb, € GF(2")
Output: C=A4+B=c, c, ,....c;c, € GF(2™)
4. fori=0tom-1do
¢, =a,®b,
5. return (C)
Algorithm 2. 7: Bit-level method for addition in GF(2™)

Reduction. By the definition of multiplication in GF(2"), the result of a polynomial
multiplication or squaring has to be reduced modulo a reduction (irreducible) polynomial
of degree m. This reduction operation is particularly efficient when the irreducible
polynomial F(x) is a trinomial or pentanomial. The following algorithm for computing

A(x) mod F(x) works by reducing the degree of 4A(x) until it is less than m.

Input: A=a,, ,....aa,and F=f f f ... fif
Output: C = 4 mod F
1. fori=2m-2tomdo
forj = 0tom-1 do
If f,#0thena,, 5 =a., +aq

i—m+j

2. return (C = a,,_a,, ,.....a,a,)
Algorithm 2. 8: Bit-level method for modular reduction in GF'(2")

Multiplication. The basic method for performing a multiplication in GF(2™) is the "shift-
and-add" method. Given A(x) € GF(2"), the shift-left operation x4(x) mod F(x) can be

performed as follows:

m—1

J . _
%X ifa, =0

xA(x) mod F(x) =
Do+ )X+ ] if a_ #0



Then the steps of the "shift-and-add" method are given below.

Input: A(x),B(x) € GF(2") and F =¥, f, |
Output: C = AxB mod F
4. setCx) =0
5. fori=m-1to0do
C(x) = xC(x) mod F(x)
If a, # 0 then C(x) = C(x) + B(x) /luse algorithm 2.7
6. return (C(x))

e Sy

Algorithm 2. 9: Shift-and-add method for modular multiplication in GF'(2").

A faster modular multiplication is proposed in [50] but it requires more temporary

storage.

Squaring. This operation can be calculated in an efficient way by observing that the

square of a polynomial A(x) is given by:

(A = (7 0 | =3 a2

This equation yields a simple squaring algorithm:

Input: 4=a, ,....a,a, and F=f, f |
Output: C = A° mod F
1. T=Z:::1 a’x”
2. C=TmodF // usealgorithm 2.8
3. return (C(x))

i ]y

Algorithm 2. 10: Bit-level method for squaring in GF(2")

A known technique for speeding up the computation in step 1 is to use a table

lookup as in [70].



22
Inversion. The basic algorithm for computing multiplicative inverses is the extended

Euclidean algorithm. A high level description of this method is the following:

Input: A(x) € GF(2"),(Ax) #0)and F =1, f, \fo seeSiSo
Output: C =A™ mod F
1. setB;(x) =1, By(x) =0
set Pi(x) = A(x), Pa(x) = F(x)
2. while degree(P;(x)) # 0 do
if degree(P;(x)) < degree(P»(x)) then
Exchange P;(x),P:(x) and B;(x) Ba(x)
j =degree(P(x)) — degree(P:(x))
B (x)=F(x)+x'P,(x), B(x)=B(x)+x'B,(x)
3. return (C(x)= B(x))
Algorithm 2. 11: Inversion using extended Euclidean algorithm in GF(2").

An alternative method for computing inverses, called the almost inverse

algorithm, was proposed by Schroeppel et al [70]. This method works quite well when the

reduction polynomial is a trinomial of the form x” +x* +1 with k> Wand m — k > W,
where W is the word size of the computer used. The authors suggested a number of
implementation tricks that can be used for improving the speed of this method. Many of
these tricks also work for the extended Euclidean algorithm. However, in the context of
elliptic curve computations, most of the inversions required can be avoided be using

projective coordinates (see chapter 5).

2.5 Conclusions

In this chapter, the basic theory behind finite fields has been presented. The

construction of finite fields has been illustrated and the representation of finite field
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elements has been considered. Also, the finite fields GF(p) and GF(2") were defined. The
basic arithmetic operations for these two finite fields were studied and the algorithms for

performing these arithmetic operations have been presented.



CHAPTER 3

Elliptic Curve Arithmetic

3.1 Introduction

In this chapter, we present fundamentals of the theory of elliptic curves defined
over finite fields. Curve arithmetic is defined in terms of underlining field operations
discussed in chapter 2. However, based on the group law, elliptic curve can be defined
over the prime field GF(p) or the binary field GF(2m). In both cases, the two main
operations of elliptic curve are the addition and doubling operations. Figure 3.1 shows the

hierarchal organization of curve operations in terms of finite field operations.

Point Addition Point Doubling
Field Field Field Field
Addition Subtraction Multiplication Inversion

Figure 3. 1: Hierarchal organization of elliptic curve arithmetic.

The remaining of this chapter is organized as follows. Section 3.2 gives an

introduction to elliptic curves. Section 3.3 presents the basic fundamentals of group low.

24
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Elliptic curve over the prime field GF(p) and the binary field GF(2") are discussed in

sections 3.4 and 3.5 respectively. Finally, we conclude this chapter in section 3.6.

3.2 Introduction to Elliptic Curves

Definition 3.1: Let £ be an elliptic curve defined over the finite field K denoted by E/K.

E/K is defined by an equation
EK: y'+axy+a,y=x"+a,x’+ax+a, 3.1
Where, a,,a,,a,,a,,a, € K.
For GF(p), we get the simplified Weierstrass of the elliptic curve equation 3.1.
E/K: y’=x"+a,x+a, 3.2
However, there are several ways of defining equations for elliptic curves, which
depend on whether the field is a prime finite field, ¥, or a binary (characteristic 2) finite
field, GF(2"). The Weierstrass equation for both finite fields GF(p) and GF(2") are

described in sections 3.4 and 3.5 respectively.
Additional information on elliptic curves and its applications to cryptography can

be found in [9], [13], [14] and [15].

3.3 Group Law

Let E be an elliptic curve defined over the field K denoted by E/K. There is a
chord-and-tangent rule for adding tow points in E/K to give a third point in E/K. together

with this addition operation, the set of points in E/K forms an abelian group with oo
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serving as its identity. The group (E/K,+) consists of a finite set of points P(x,y) that
satisfy the elliptic curve equation 3.2 together with a point at infinity. The x and y
coordinates of any point as well as the coefficients of elliptic curve equation, a,,a,, are
elements of K. The group (E/K,+) is the algebraic group that is used to construct elliptic
curve cryptosystem.

Addition operation, + , is best explained geometrically. Let P =(x,,y,) and
0 =(x,,y,) be two distinct points on an elliptic curve E. Then the sum R of P and Q is

defined as follows:
1. Draw a line through P and Q. This line intersects the elliptic curve at a third
point R .
2. Ris the reflection of R around the x-axis.

The double R, of P, is defined as follows:

1. Draw the tangent line to the elliptic curve at P. This line intersects the elliptic
curve at a third point R .

2. Ris the reflection of R around the x-axis.
The algebraic formulations of the group law can be derived from the geometric

description. In the next two sections, we present the algebraic formulations of the group

law of elliptic curve over finite fields GF(p) and GF(2").

3.4 Elliptic Curve Over Prime Field GF(p)

Definition 3.2: Let P > 3 be an odd prime and let a, b € GF(p) satisfy
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4a® +27b* # 0 (mod p) . Then an elliptic curve E over a finite prime field GF(p) ,
denoted by E/GF(p), is defined by an equation:
E/GF(p): y> =x +ax+b 33
where parameters a, b € GF(p).
Comments in definition 3.2
(1) Equation 3.3 is called Weierstrass equation with a, =a and a, =b.
(1)  We say that E is defined over GF(p) because the coefficients a and b are
elements of GF(p). GF(p) is called the underlining field.
(ii))  The notion E/GF(p) (or E(F,)) is used to emphasize that £ is defined over
GF(p).
(iv)  The set of points of an elliptic curve E/GF(p) are the points (or solutions) P =
(x, v) (where x, y € GF(p)) that satisfy equation 3.3 together with a special
point called the point at inanity, «.
(V) The point o is the only point on the line at infinity (co and —o0) that satisfies the
projective form of the Weierstrass equation.
(vi)  For a given point P, =(x,,y,), x, is called the x-coordinate of P, and y, is
called the y-coordinate of P, .
The algebraic formulas of group law for E/GF(p) are specified as follows:

1. Identity: P+ =0+ P = Pforall P € E/GF(p).
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2. Inverse: if P=(x,y) € E/GF(p), then (x,y)+(x,—y) = . The point (x,—y)is

denoted by —P and is called the inverse of P. Note that —P is indeed a point in

E/GF(p). Also, — o = o0,

3. Point Addition (denoted by ADD): Let P=(x,,y,) € E/GF(p) and Q=(x,,y,) €
E/GF(p) be two points satisfying the elliptic curve equation 3.3 where P # £Q.
Then R=P+Q=(x,,y,) 1s given by:

_ 12
X, =4 —x —x

y3 Zﬂ(xl—)%)—yl 34
where, A=(y,—y,)/(x,—x,)

4. Point doubling (denoted by DBL): Let P =(x,,y,) € E/GF(p) be a point satisfying

the elliptic curve equation 3.3 where P #—P. Then R = 2P = (x;, ;) is given by:

x, =4 —2x,
Y3 =A0x = x3) =y, 3.5
where, A=(3x+a)/2y,

From the above formulas, we get the following results:
o If (x,,,)=—(x;,), then (x;,y;) = (x;, ;) +(—(x,, 1)) =°.
o If (x,,y,) =00, then (x;,y;) =(x,»,) + © =(x,»).

o —(x,) = (x,=y).

Example 3.1: Elliptic curve over the prime field GF'(29).
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Let P = 29 (hence we have finite field GF(29) (or F,,)) and the elliptic curve
coefficients a and b are 4 and 20 respectively. The elliptic curve equation 3.3 becomes:
Y =x +4x+20
First, note that 44> + 27b> # 0 (mod p) is satisfied. That is,

4x 4’ +27x20° (mod 29) = 11056 (mod 29) = 7 which # (0 mod 29).

To get the points of E/GF(29), consider all possible values of x which are in the
range from 0 to 28 and compute the corresponding y value by using equation 3.3 with a =

4 and b = 20. Note that all operations are performed modulo 29. For example,
e Whenx=0, y>=0+0+20 =20 = 20 (mod 29), and y = V20 (mod 29). There
are two solutions:
e y=7since 7 x7=49 =20 (mod 29). i.c. the first solution of square root of 20
(mod 29) is 7. Therefore, the point (0,7) € E/GF(29).
o Yy =22since 22 x 22 =484 = 20 (mod 29). i.e. the second solution of square
root of 20 (mod 29) is 22. Therefore, the point (0,22) € E/GF(29).

e When x = 10, »*=10"+4x10+20 = 1060 = 16 (mod 29), and

y= J16 (mod 29) . There are two solutions:

e y=4since4 x4=16=16 (mod 29). i.e. the first solution of square root of 16
(mod 29) is 4. Therefore, the point (10,4) € E/GF(29).

o y =25since 25 x 25 = 625 = 16 (mod 29). i.e. the second solution of square

root of 16 (mod 29) is 25. Therefore, the point (10,25) € E/GF(29).
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e Whenx=7, y2=7>+4x7+20 =391 = 14 (mod 29). y =+/14 (mod 29) is not
found. In other words, there is no number in the range from 0 to 29 that when it is
multiplied by itself gives 14 (mod 29). Therefore points (7, y) ¢ E/GF(29).
The points in E/GF(29) are the following:
© (2,6) (4,19) (8,10) (13,23) (16,2) (19,16) (27,2)
(0,7) (2,23) (5,7) (8,19) (14,6) (16,27) (20,3) (27,27)
(0,22) (3,1) (5,22) (10,4) (14,23)  (17,10)  (20,26)
(1,5) (3,28) (6,12) (10,25) (15,2) (17,19) (24,7)

(124) (4,100  (617)  (13,6) (1527) (19,13)  (24,22)

Point Addition: Let P=(x,,y,) =(5,22) and Q =(x,,y,) = (16,27) (note that P # Q).

Then R=P+Q =(x;,y,) is given by: (apply addition formula 3.4)

A= 21722 S s (1) = Sx (1) =5 x 8 =40 = 11 (mod 29).
x,—-x, 16-5 11

Note that the inverse of 11 (mod 29) is the number » where 11 x » = 1 (mod 29).

That number, i.e. 7, is 8 since 8 x 11 =88 =1 (mod 29).
x, =4 —x,—x, =(11) =5-16 =100 = 13 (mod 29).
vy, =Ax, —x;)—y, =11(5-13)-22 =—-110 =6 (mod 29).

Therefore, R = (13,6) which is in E/GF(29).
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Remark: to get the modulo of a negative number » mod P, repeat adding P to r until
getting the first positive number in the range from 0 to P. for example, to get —110 mod

29, repeat adding 29 to —110 until getting the first positive number in the range from 0 to

29 which is 6.

Point doubling: Let P=(x,,y,) = (5,22). Then R=2P =(x,,y,) is given by: (apply

doubling formula 3.5)

_3xl+a 305 +4
2y, 2x22

A

=79%(44)™" =21 (mod 29) x (15)"'(mod 29) =21 x 2 =

42 =13 (mod 29).

Note that the inverse of 15 (mod 29) is the number » where 15 x » = 1 (mod 29).

That number, i.e. 7, is 2 since 2 x 15 =30 =1 (mod 29).
x, = A" =2x, =(13)> =10 =159 = 14 (mod 29).
Yy =Ax, —x;)—y, =13(5-14) - 22 =—-139 = 6 (mod 29).

Therefore, R = (14,6) which is in E/GF(29). []

3.5 Elliptic Curve Over Binary Field GF(2™)
Definition 3.3: Let GF(2™) be a finite field of characteristic two. A non-supersingular

elliptic curve E over GF(2™), denoted by E/GF(2"), is defined to be the set of solutions

(x,y)e GF(2™) to the equation,
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E/GF(2"):y* +xy=x"+ax’ +b 3.6

where a and b € GF(2") and b # 0.
Comments in definition 3.3
(1) Equation 3.6 is called Weierstrass equation with @, =1, a, =a and a, =b.
(1))  We say that E is defined over GF(2") because the coefficients a and b are
elements of GF(2"). GF(2") is called the underlining field.
(ii1))  The notion E/GF(2") (or E(GF(2"))) is used to emphasize that E is defined
over GF(2™).
(iv)  The set of points of an elliptic curve E/GF(2") are the points (or solutions) P
= (x, ¥) (where x, y € GF(2™)) that satisfy equation 3.6 together with a

special point called the point at inanity, .
(V) The point o is the only point on the line at infinity (co and —o0) that satisfies the
projective form of the Weierstrass equation.
(vi)  For a given point P, =(x,,y,), x, is called the x-coordinate of P, and y, is
called the y-coordinate of P, .
It is well known that £ with the point at infinity, oo, forms an abelian finite group with o
serving as the identity element of the group. The algebraic formulas of group law for

E/GF(2™) are specified as follows:

1. Identity: P+owo=0w+ P = Pforall P € E/GF(2").
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2. Inverse: if P=(x,y) € E/GF(2"), then (x,y)+(x,x+y)= . The point
(x,x+ y) is denoted by —P and is called the inverse of P. Note that —P is indeed a
point in E/GF(2"). Also, — o = o0,
3. Point Addition (denoted by ADD): Let P=(x,,y,) € E/GF(2") and QO =(x,,y,)
e E/GF(2") be two points satisfying the elliptic curve equation 3.6 where

P#+0Q.Then R=P+Q =(x,,y;) is given by:

X, =A +A+x +x,+a

y3=/1(x1+x3)+x3+y1 3.7
where, A=(y,+y,)/(x,+x,)

5. Point doubling (denoted by DBL): Let P=(x,,y,) € E/GF(2") be a point
satisfying the elliptic curve equation 3.6 where P #—P. Then R =2P = (x;,),) is

given by:

X, =A +A+a

y3=/1(x1+x3)+x3+yl 3.8
where, A=x+y /x

From the above formulas, we get the following results:

o If (xy,0,) ==(x, 1), then (x5, y3) = (x, 1) + (=(%;, 1)) = co.
o If(x,,y,) =, then (x;,y;)=(x,,y,)+ © =(x,),).
o~ =0x,x +y).

Example 3.2: non-supersingular elliptic curve over the binary field GF(2*).
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Consider the finite field GF(2*) as represented by the reduction polynomial

f(z2)=z"+z+1. An element a,z’ +a,z> +a,z+a, € GF(2*) is represented by the bit

string (a,a,a,a,) of length 4 bits. For example, (0101) represents z7+1.

Let elliptic curve coefficients @ and b are z° and z’ +1 respectively. The elliptic
curve equation 3.6 becomes: E/GF(2*): y* +xy=x"+z°x> +z° +1.

To get the points of E/GF(2*), consider all possible values of x which are in the

range from (0000) to (1111) and compute the corresponding y value by using the above

elliptic equation. Note that all operations are performed modulo the reduction polynomial
f(z)=z+z+1.

The points in E/GF(2*) are the following:

(0000,1011)
(0001,0000)
(0001,0001)
(0010,1101)

(0010,1111)

(0011,1100)

(0011,1111)
(0101,0000)
(0101,0101)
(0111,1011)

(0111,1100)

(1000,0001)
(1000,1001)
(1001,0110)
(1001,1111)
(1011,0010)

(1011,1001)

(1100,0000)
(1100,1100)
(1111,0100)

(1111,1011)

Point Addition: Let P=(x,,y,) = (0010,1111) and Q = (x,, y,) = (1100,1100) (note that

P#=x0Q). Then R=P+Q=(x;,y,) =(0001,0001) (apply addition formula 3.7).
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Point doubling: Let P=(x,,y,) = (0010,1111). Then R=2P =(x,,y;) is (1011,0010)

(apply doubling formula 3.8) [

3.6 Conclusions

In this chapter, we have presented the fundamentals of the theory of elliptic curves
defined over finite fields. Hierarchal organization of curve operations in terms of finite
field operations has been introduced. Also, defining an elliptic curve over the prime field
GF(p) and over the binary field GF(2") has been discussed with providing an example for

each case.



CHAPTER 4

Elliptic Curve Cryptography

4.1 Introduction

The security of Elliptic Curve Cryptography (ECC) in based on the apparent
intractability of Elliptic Curve Discrete Logarithm Problem (ECDLP) [9]. To date, that
there are no sub-exponential algorithms for the ECDLP known. This means that we can
use shorter keys (compared to other cryptosystems) for high security levels. However, to
establish an ECC, several main aspects need to be discussed. The main purpose of this
chapter is to present these main aspect which are necessary for any environment that
wishes to use ECC.

To setup an ECC, domain parameters such as the curve coefficients a and b and
the base point should be selected and verified. These parameters are used to establish a
cryptography system whether this system is a symmetric key or public key cryptography.
Also, a curial operation in ECC is the scalar multiplication (or point multiplication) in
which a base point P is added to itself K times. This point multiplication is performed

based on the group law discussed in chapter 3.

36
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Since this thesis considers both the elliptic curve defined over the prime field
E/GF(p) and over the binary field E/GF(2"), we use the following common notation:
E/GF(q) , where g = p or g = 2", to denote both cases. Whenever "E/GF(q)" appears, it
means that the related subject is applicable to both E/GF(p) and E/GF(2").

This chapter is organized as follows. Section 4.2 discusses the ECDLC. Elliptic
curve domain parameters are presented in section 4.3. Elliptic curve cryptosystems
namely, elliptic curve symmetric and public cryptography are discussed in section 4.4.
Scalar multiplication and the most popular algorithms to perform it are the subject of

section 4.5. Finally, conclusions are drawn in section 4.6.

4.2 Elliptic Curve Discrete Logarithm Problem (ECDLP)

ECDLP is defined as follows: Given an elliptic curve E/GF(q), a point P €
E/GF(q) of order n and a point Q € E/GF(g), determine the integer K satisfying O = K P,
provided that such 0 < K < n-/ exists. The integer K is called the discrete logarithm of QO

to the base P, denoted K =log, Q.
To date, the most efficient general algorithm to resolve the ECDLP is Pollard-p

[17] algorithm, which has the running time O(\/; /r), where r is the parallel processor
number.

Another possible attack known on the ECDLP is the combination of the Pohlig-
Hellman algorithm [16] and Pollard-p algorithm where the computation of K is reduced

to the problem of computing K modulo each prime factor of n. So if n is a large prime,
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the ECDLP becomes harder. In practice, one must carefully select elliptic curve
parameters (section 4.2) such as selecting a base point that has large prime order n and
curve order #E/GF(q) =n x h, where h is a small integer.

It is well known that the security of any cryptosystems depends mainly on the
hardness of the mathematical underlining problem that the cryptosystems is based on.
Fore example, Rivest-Shamir-Adleman (RSA)° cryptosystem is based on integer
factorization problem. An instance of integer factorization problem is an integer » that is a
product of two L/2 bits primes. The best algorithm known for solving the integer
factorization problem is the Number Field Sieve (NFS) [9] which has sub-exponential
time. On the other hand, The best algorithm to solve the ECDLP is the combination of
the Pohlig-Hellman [16] and Pollard’s p algorithms [17], which has a fully-exponential
running time. This means that significantly smaller parameters can be used in ECC than in
RSA system, but with equivalent levels of security. A typical example of the size in bits
of the keys used, is that a 160-bit ECC key is equivalent to RSA with a modulus of 1024
bits. Thus ECC offers potential reductions in the number of required arithmetic operations,
storage space, bandwidth and electrical power. These advantages are specially important

in applications on constrained devices such as smart cards and cellular phones.

? In RSA, one has a public key (e, 7), a prime number P, and a private key K = kn_1 ---ko .When creating an

encrypted message C one has to compute C = P° mod #. Decryption is done by P = C? mod n. The modular
exponentiation is usually done by the square-and-multiply algorithm.
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4.3 ECC Domain Parameters

Before we introduce the ECC domain parameters, It is necessary to present some basic

facts and concepts of ECC.

e Order of point P € E/GF(q) is the smallest integer r such that 7P = co.

e Order of the curve, is the number of points of E/GF(q), donated by #E/GF(q).
Note that the curve order can be computed by Schoof's algorithm [9] or its
improvements, which is needed if one selects a random curve. And normally
choosing a and b to make the curve order have a large prime factor can improve
the cryptography scheme's security. So, this is an important parameter of the
scheme to determine the system's security.

e Hasse Theorem: let £ be an elliptic curve defined over GF(p). then the curve order

#E/GF(p) is bounded by:

p+1-2/p < HE/GF(p) < p+1+2.[p

Elliptic curve parameters over the finite field GF(p) or GF(2") can be described by
the following 6-tuple:
T=(q FR a, b G, n h)
Where:
e ¢: the prime p or 2" that defines the field and at the same time decides the curve

form.
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e FR: the field representation, i.e., using which method to represent the elements in

the field (polynomial basis or normal basis for GF(2"), or normal or Montgomery

residue for GF(p)).

e g, b: the curve coefficients, depending on the security requirement.

e G: the base point, G = (x,),), one element in E/GF(g), which has the largest
order n.

e n: the order of G, large prime. Also, the order of the curve, N = #E/GF(q), is
divisible by 7.

o h:#E/GF(q)/n.

These parameters should be chosen to setup an ECC system.

4.4 Elliptic Curve Cryptosystem

Given a message point(x,,y, ), a base point (x,, V), and a given key, K, the
cipher point (x.,y.) is obtained using the following equation,

(Xcsye) = (x,,¥,)+ K(xXg,y5) 4.1

There are two basics steps in the computation of the above equations. The first is

to find the scalar multiplication (section 4.5) of the base point with the key, "K(x,,y;)".
The resulting point is then added to the message point, (x, , ), ) to obtain the cipher point.

At the receiver, the message point is recovered from the cipher point which is

usually transmitted, the shared key and the base point, that is

(‘xm’ym):(xc9yc)_K(xG9yG) 42
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4.4.1 Symmetric Elliptic Curve Cryptography
The steps of elliptic curve symmetric cryptography can be summarized as follows:
Both the sender and receiver must agree on:
1. A random number, K, that will be the shared secret key for communication,

2. Abasepoint, G=(x;,y,).

At the sending correspondent:
1 Embed a message bit string into the x-coordinate of an elliptic curve point

which is designated as the message point, (x,,, ).
2 The cipher point (x,, y,) is computed using,
(xt’yc) = (xm’ym)+K(xG’yG)

3 The appropriate bits of the x-coordinate and the sign bit of the y-coordinate of

the cipher point (x_, y,) are sent to the receiving entity.

At the receiving correspondent, the following steps are performed,

1. Using the shared key, K, and the base point (x,, V), the scalar multiplication
KG =K(xg,y;) 1s computed.
2. The message point(x, ,, ) is computed using,

(X, Y,)=(x,y.)+(-K(x5,55))

3. The secret messages bit string is recovered from x;,.
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4.4.2 Public Key Elliptic Curve Cryptography
Before we proceed to see how two entities can communicate using elliptic curve
public key cryptography, we first have to show how the private and public keys are
generated and verified and then how the sending and receiving entities agree on a key. For
the following, let A denotes the sending entity and B denotes the receiving entity.
Key Generation. We mean by key generation is to generate the public and private key
pair. Given the domain parameters (g, FR, a, b, G, n, h), each entity does the following:
Sending entity, A:
1. Selects a random integer d , from the interval [1,n — 1].
2. Computes Q, =d ,G . (It is a scalar multiplication step, O, =d ,(x;,7;)).
d , is the private key and Q, is the public key of A.

Similarly, B computes d, and O, as its private and public key pair.

Key Validation. We mean by key validation is to validate the public key's legality. Entity
A does the following:

1. Check that O, # oo.

2. Check that x, , v, € E/GF(q), where x, and y, denote the x-coordinate and
y-coordinate of the point 0, .

3. Check that O, lies on the elliptic curve defined by a and b;

4. Check that nQ, = . (note that, nQ, = n(d,G) = d,(nG) = d, o = o, because

G's order is n)
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The public key validation without Step 4 is called the partial public-key validation.
Without Step 4, the entity could be attacked. However, we can carefully select 4 to reduce
the threat.
Key agreement scheme. One of the most popular key agreement schemes is the Diffie-
Hellman key agreement scheme [9]. Table 4.1 shows the steps taken by each entity.
By end of step 3, in table 4.1,each entity get the same shared secret point

(x,,y,). Thatis, A computes: P=d ,Q,=d ,(d,G)=(d ,d,;)G and

B computes: P=d,Q,=d,(d ,G)=(d,d,)G=(d d,)G.

Table 4. 1 : Diffie-Hellman key agreement scheme

Step Description Entity A Entity B
1 Choose random private key d,=rand(1,n —1) dy=rand(1,n —1)
2 Compute public key from the private key and 0,=d,G 0,=d,G
the base point G. Then each entity publishes
its public key.
3 Generate Common key. Each entity P=d,0,=(xp,y,) | P=d;0,=(xp,¥p)
computes the common key using its private
key and the public key of the other entity.

The steps of elliptic curve public key cryptography can be summarized as follows:
Both the sender and receiver must agree on:
1. An elliptic curve. 2. Abasepoint, G=(x,,);).
At the sending correspondent:
1. Embed a message bit string into the x-coordinate of an elliptic curve point which

is designated as the message point, (x,, 7, ).
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2. Using the steps (entity A) in table 4.1, compute the shared secret point
P=(xp,¥p).

3. Compute a cipher point (x,,y,) using: (x,,y,)=(x,,y,)+ (X, V).

4. Send appropriate bits of the x-coordinate and the sign bit of the y-coordinate of the
cipher point (x,,y,) to the receiving correspondent;

At the receiving correspondent:

1. Using the steps (entity B) in table 4.1, compute the shared secret point
P=(xp,¥p).

2. Compute the message point (x,,y, ) using (x,,y,)=(x.,y.)—(X,,V,).

3. Recover the message bit string from x,,

4.5 Scalar Multiplication
Scalar multiplication (SM) (or point multiplication) is the result of adding the base
point* P to itself K times on the elliptic curve over a given finite field, where K is a

positive integer. That is

KP=P+P..... +P 4.3
%/—J

K times
The integer K is referred to as scalar and the point P as the base point.
However, adding the point P to itself K times is not an efficient way to compute

scalar multiplication. More efficient methods are based on a sequence of Addition (ADD)

* We mean by base point here, is a base point for the scalar multiplication and not the base point G in the
domain parameters. This is because scalar multiplication can be performed to any point whether this point is
G or any other point P
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and Doubling (DBL) operations. Note that doubling operation is simply adding the point
to itself. In the literature, there are many methods (or algorithms) for computing KP or
equivalently performing the scalar multiplication. In the following subsections, we present

the most popular scalar multiplication algorithms. However, it is worth to mention that

each of theses algorithms can be applied to E/GF(p) and E/GF(2").

4.5.1 Binary Methods
Let (k,_ 2" +k, ,2"" +....... +k,2+k,), be the binary representation of the
scalar K where k, € {0,1} is the i-¢h bit and » is the total number of bits. Hence, the scalar
multiplication KP can be written as:
KP = (HZ_E k.2’ jP
i-0
which can be expanded to one of the following forms:
KP=k, 2" P+k, ,2"Pt.c.t k, 2P + kP 4.4
KP=2(2(..2Q2(k, ,P)+k, ,P)+..)+kP)+k,P 4.5
Based on 4.4 and 4.5, there are two main binary methods of calculating KP. The
first is the Least-to-Most (LM) algorithm, which corresponds to the expansion in 4.4,
starts from the least significant bit of K to the most significant one. The second is the
Most-to-Least (ML) algorithm, which corresponds to the expansion in 4.5, starts from the

most significant bit of K. Algorithms 4.1 and 4.2 show the LM and the ML binary

algorithms respectively.
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INPUT K, P
OUTPUT KP
1. Initialize Q[0] =00, Q[1]=P
2. fori=0ton-I
3. if k[{]=1 then
4. Q[0] = ADD(Q[0],Q[1])
5. end if
6. Q[1]=DBL(Q[1])
7. end for
8. return Q[0]

Algorithm 4. 1: Least-to-Most (LM) binary algorithm for scalar multiplication

INPUT K P
OUTPUT KP
Initialize Q[0] = P
for i = n-2 downto 0
Q[0] = DBL(QI[0])
if k[/]=1 then
Q[0] = ADD(Q[0],P)
end if
end for
return Q[O0]

~

PN N R W

Algorithm 4. 2: Most-to- Least (ML) binary algorithm for scalar multiplication

In both algorithms, KP is computed using the straightforward double-and-add
approach in n iterations. The point doubling operation (DBL) is performed in all cases
regardless of the scalar bit value, while the ADD operation is conditioned by the scalar bit

value. If the scalar bit value is 1, ADD is performed; otherwise it is not performed.

4.5.2 Window Methods

Several generalizations of the binary method work by processing simultaneously a

block of digits. In these methods, depending on the size of the blocks (or windows) a
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number of precomputed points are required. However, the most popular window methods

presented in this subsection are: m-ary, modified m-ary and sliding window methods.

4.5.2.1 The m-ary Method
This method uses the m-ary expansion of K where m = 2" for some integer » > 1.

The binary method is a special case of m-ary method corresponding to » = [. The scalar

K is expanded as follows:

n—1
K=Ykm', k €{0,1,2,...,m-I}.
j=0

The m-ary method of computing KP is shown in algorithm 4.3.

n—1

Input: An integer K = ijmj and a point P = (x,y) € E/GF(q)
j=0

Output: The point Q = KP € E/GF(q)

// Precomputation:

1. P] =P

2.fori=2tom—1do

P,=P,;+P // (we have P; =iP)

3.Q=w

// Main loop

4. for j =n - 1 downto 0 do

5. 0=[m]Q //(this requires » doublings)

6. 0=0+ PK]_

Return (Q)

Algorithm 4. 3: m-ary method for scalar multiplication

It can be readily verified that the algorithm computes KP, following Horner's rule [16]:

KP =[m]([m](..[m)((m](k,_ P)+k, ,P)+..)+kP)+k,P

n—1 n-2

The number of doubling in the main loop of the m-ary method is (d — I)r (the first

iteration is not counted, as it starts with Q = o ). Since d = |_n / r-|, where 7 is the length
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of the binary representation of K, the number of doublings in the m-ary method may be up
to (r — 1) less than the (n — 1) required by the binary method. However, it needs to pre-

compute and store the points 2P to [m-1]P.

4.5.2.2 The Modified m-ary Method

The main disadvantage of the m-ary method is that it requites pre-computing and
storing the points 2P, 3P, ..., [m-1]P. This disadvantage can be reduced to only
computing and saving the odd multiples of P only (i.e. skipping the even multiples of P in

the precomputation phase) resulting in the modified m-ary method shown in algorithm 4.4.

n—1

Input: An integer K = Zk jmj and a point P= (x,y) € E/GF(q)
=0

Output: The point Q = KP € E/GF(q)

// Precomputation:

1. P] = P, Pg =pP

2.fori=1to(m—2)/2do

P.,=P_ +Ph

3.Q=o0.

// Main loop

4. forj =n- 1 downto 0 do

5. If &, =0 then

6. Let s, h]. be such that k‘/. =2% hj, hj odd.
7 0=12""10

3 0-0+P,
9. Else s, =r

10. 0=[2"10
Return (Q)
Algorithm 4. 4: Modified m-ary method for scalar multiplication

J
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In the modified m-ary method, computation of mP (step 5 of algorithm 4.3) is split
into two steps (steps 7 and 8) as shown algorithm 4.4. However, in algorithm 4.4, we

assume that » > 1, otherwise we revert to the original binary method.

4.5.2.3 Sliding Window Method

In the m-ary and modified m-ary methods, the windows are contiguous and in
fixed bit positions. When a window has zeros in the left most bit positions, it is treated as
any other window. However, in the sliding window methods, the left most zeros of any
window are dropped and corresponding doubling operations are performed in the
accumulator point Q. Therefore, the window size can shrink and grow up to length r.

In the sliding window method, K is represented as:
n—1
K=2k2",k €{0,1}.
=0

and computing KP using this method is shown in algorithm 4.5.

In the main while loop of algorithm 4.5, the bits of the K are scanned starting from
the most significant bit and based on the value of each bit one of two things may
performed:

1. If k, =0, then perform a double operation on the point O (step 5).

2. Ifk, #0,(i.e k, = 1) then:
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a. Consider a window of size up to r bits such that the contents of this

window is /i, = (k k,_,.....k,), where j is the current bit position and t is
the least integer such thatj— ¢+ 1 < rand k, = 1.

b. Update the value of the point Q as shown in step 9.

n—1

Input: An integer K = ij 2/ and a point P= (x,y) € E/GF(q)
=0
Output: The point Q = KP € E/GF(q)
// Precomputation:
1. P] = P, P2 :2P
2. fori=1to (2" =1) do
P, =P, +P
3.Q=0 , j=n-1.
// Main loop
4. Whilej >0 do
5. If k£, =0then
Q=121Q; j=j-1
6. Else
7. Let ¢ be the least integer such that
j—t+1<rand k, =1

8. hy=(k k),
9. 0=[2""10+ P,

10. j=t—1
Return (Q)

Algorithm 4. 5: Sliding window method for scalar multiplication

4.5.3 Scalar Recoding Methods

We main by scalar recoding is transforming the scalar K to another form K such

that it still gives the correct result of computing KP. i.e. KP = K P but with less
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computations. One popular recoding of any integer (rather than the scalar) is the non-
adjacent form (NAF) recoding. In NAF, every integer K has a unique signed digit

representation of the form K zzgkiZi where k, € {-1,0,1}, such that no two

consecutive digits are nonzero [9]. However, there are several algorithms for computing
the NAF of K from its binary representation (see for example [8] and [9]). The following

algorithm (algorithm 4.6), from Solinas [18] computes the NAF of an integer K.

Input: an integer K
Output: The NAF form of K, NAF(K) = (uy; ... ujug)
1.Setc=K, [=0
2. While ¢ >0 do
if ¢ odd then
Set u; =2 — (¢ mod 4)
Setc=c—uy
Else u;=0
Setc=¢/2, [=1+1
Return (NAF(K) = (uy; ... ujuy))
Algorithm 4. 6: Computation of NAF(K)

A general form of NAF(K) is what is called the width-w nonadjacent form or
width-w NAF. Let w be an integer greater than one. Then every positive number K has a

unique width-w nonadjacent form:
I-1 4
K= Zuj2’ Where:
j=0

e FEach nonzero u ; is odd and less than 2" in absolute value.

e Among any w consecutive coefficients, at most one is non zero.
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The width-w NAF is written as NAF, (K) = (u, u, ,....u,u,). A generalized version of

algorithm 4.6 for computing NAF, (K) is described in algorithm 4.7.

Input: an integer K
Output: NAF (K)=(u, u, ,....uu,)
l.Setc=K, [=0
2. While ¢>0do
if ¢ odd then
u; =2 —(cmod2")
If u;>2"" then

uy= u1—2w
c=c—u
Else u;=0
c=cl2, I=1+1

Return (NAF, (K) < (u, ,u, ,....uu,))
Algorithm 4. 7: Computation of NAF (K)

Many scalar multiplication algorithms have been proposed based on NAF(K) and
NAF (K) representations of the scalar [8], [9], [18] and [19]. Addition-subtraction

algorithm (section 4.3.3.1) and width-w window algorithm (section 4.3.3.2) are examples

of using these representations respectively.

4.5.3.1 Addition-Subtraction Algorithms
An improved algorithm for computing KP can be obtained from the following facts:
e Every integer K has a unique NAF representation.
e The expected weight of a NAF of length 7 is //3 [9].
e The computation of the negation of a point P = (x; y) € E/GF(p) is simply the

negation of its y-coordinate (i.e. — P = (x; —y)) which is virtually free. So the cost
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of addition or subtraction is practically the same. In case of E/GF(2"), —P is

computed by replacing y-coordinate by (x+y).

Addition-subtraction algorithm requires computing the NAF representation of the
scalar K. It performs a point addition or subtraction depending on the sign of each digit of
K as shown in Algorithm 4.8. This algorithm scans the NAF representation of the scalar K
(which has now [ bits rather than ») from left to right and requires / doublings and / /3
additions on average. However, this algorithm can be modified to obtain a right-to-left

version [ 18], which does not need storage for the NAF(K).

Input: An integer K an a point P = (x,y) € E/GF(q)
Output: The point Q = KP € E/GF(q)
1. Use algorithm 4.6 to compute NAF(K) = (u.; ... ujugp)
2.0=
2.forj =1[-1downto 0 do
Q=DBL(Q)
ifu;=1 then
Q=ADD(Q, P)
if u;=—-1 then
Q=ADD(Q, - P)
Return (Q)
Algorithm 4. 8: Binary NAF algorithm (addition-subtraction) for scalar multiplication

4.5.3.2 Width-w Window Method

Given the width-w NAF of an integer K, and a point € E/GF(p), the calculation of
KP can be carried out by using a typical window method called the width-w window
method [18] shown in algorithm 4.9.

The number of nonzero digits in the NAF (K) is on the average //(w + 1) [20].

Therefore, algorithm 4.9 requires 2" > —1 additions and one doubling for the
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precomputation step, and (//(w + 1)) additions and (/ — /) doublings for the main
computation. Note that although the number of additions can be reduced by selecting an
appropriate width w, the number of doublings is the same as in the previous methods. The
total number of finite fields operations required for computing KP depends mainly on the
algorithms used for the elliptic operations (affine or projective coordinates), the cost-ratio

of inversion to multiplication, and the width w.

Input: integers K and w, a point P = (x,y) € E/GF(q)
Output: The point Q = KP € E/GF(q)
// Precomputation:
// Compute uP for u odd and 2 <u < 2"
1.Py=P, T=2P
2.fori=1to 2" —1do
P=P;+T
// Main computation
3. Use algorithm 4.7 to compute NAF, (K) < (v, u, ,....uu,)

4.0= o
5.forj=1-1downto 0 do
0 =DBL(0)
if u; = 0 then
i=(u|-1/2
if u;> 0 then
Q= ADD(Q, P)
Else
Q= ADD(Q.-F)
Return (Q)

Algorithm 4. 9: width-w window method for scalar multiplication
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4.5.4 Lim/Lee Method
This method, developed by Lim and Lee [21], can be used for computing KP when
P is a fixed point, known in advance of the computation. In order to compute KP, the /-bit

integer K is divided into 4 blocks K, each one of length a = |_l / h—‘ In addition, each

block K, is subdivided into v blocks of size b = |_a / v-|. Thus K can be written as:

2vbr+bs+t
vbr+bs+t

Then, Lim/Lee’s method uses the following expression for computing KP:
b—1 -1
t
KP=32'(3 GIsll/,, D)
t=0 y=0

Where the precomputation array G[s][u] for 0 <s <v, 0 <u < 2"and u = (U, y.-uy)y, 18

defined by the following equations:

G[0][u] = gurzwbp :

Gls][u]=2"G[0][u]

and the number /;, for 0 < s <v— [ and 0 < ¢ < b is defined by

I, =>k

s,t vbr+bs+t

=
—_

2}“

i
[}

A detailed description of Lim/Lee’s method is given in algorithm 4.10. This
algorithm requires v(2" —1) elliptic points of storage, and the average number of

operations to perform a scalar multiplication is (b — 1) doublings and ((2" —1)/2"vb -1)

additions on average, but (vb — 1) additions in the worst case. The selection of both
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parameters 4 and v presents a trade-off between precomputation (memory) and online

computations (speed). Some improvements to this algorithm are discussed in [22].

Input: Integers K, h, v and an array of points G/s][u],with 0 < s <v,] <u <2"
Output: The point Q = KP € E/GF(q)

// The array G is computed as:

foru=1to 2" =1 do

fors=0tov—1do

u= ..,

h-1
Gls][u]=2"> u,2™ P
i=0
// Main computation
.=
2.for¢t=b- 1 downto 0 do

0 =DBL(Q)

Fors=v— 1 downto 0 do

-l
_ i
Is,t - 22 kvbi+bs+t
i=0

if I, = 0 then
Q=ADD(Q, G/s][ I.J)
Return (Q)
Algorithm 4. 10: Lim/Lee method for scalar multiplication

4.6 Conclusions

In this chapter, the basic aspects behind elliptic curve cryptography has been
introduced. ECDLP has been defined as the mathematical underlining problem of ECC.
The ECC domain parameters were presented. We concluded that careful selection of these
parameters plays a certain role in ECC security. The most important elliptic curve
cryptography schemes, symmetric key and public key, are studied. The detailed steps to

establish a secure communication between two entities using these two schemes are
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addressed. Finally, in this chapter, the main operation in ECC, scalar multiplication, is
discussed. Also, The various popular algorithms for scalar multiplication has been

presented.



CHAPTER 5

Coordinate Systems

5.1 Introduction
The most difficult finite field operation to implement is inversion. An efficient

hardware implementations in GF(2") costs [52]’:
|_10g2 (m— I)J +w(m—1)—1 multiplications ; m—1 squaring

Where w(m — 1) denotes the number of ones in the binary representation of (m
— 1). It is reported in [52] that the number of multiplications and squaring needed to
compute inversions in the NIST binary fields GF(2'") and GF(2%*) to be:
m [ log, (m—1) | w(m—1) Multiplication Squaring

163 7 3 9 162
233 7 4 10 232

In software implementation, the inversion is estimated to be between 9 and 30

multiplications in case of GF(p) with p larger than 100 bits [23].

m m-1
51t is derived based on the fact: @' =a” * witha eGF, (2"). Then recursively compute a 1= (a : _l)z
58
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Therefore, one of the most important techniques that can be used to enhance the
scalar multiplication is the idea of transferring the point coordinates into another

coordinates that can eliminate the inversion operation.

Deciding which point Coordinate System (CS) to use is also one of the crucial
decisions when implementing elliptic curve cryptosystem. The point coordinate system
used for addition and doubling of points on the elliptic curve determines the efficiency of
these operations, and hence the efficiency of the basic cryptographic operation, scalar

multiplication.

This chapter discusses the various coordinates that can be used in order to
eliminate the inverse operation in the scalar multiplication and hence increase the speed of
calculations. We still need one final inverse operation to return back to the normal
(Affine) coordinates after completing the scalar multiplication. However, there are five
different coordinate systems [23] - [25]: Affine (A), Homogenous Projective (H), Jacobian
(J), Chudnovsky-Jacobian (C), Modified (M) and mixed coordinate systems. The
computation times in terms of number of multiplications (M), squaring (S), and inverse (I)
operations are computed for each coordinate system. For simplicity we will not consider
the addition, subtraction and multiplication by a small constant because they are very fast
compared to multiplication, squaring and inversion operations.

Affine coordinates are the simplest to understand and are used for communication
between two parties because they require the lowest bandwidth. However, the modular
inversions required when adding and doubling points which are represented using Affine

coordinates cause them to be highly inefficient for use in addition and doubling of points.
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The other coordinate systems require at least one extra value (i.e. z-coordinate) to
represent a point and do not require the use of modular inversions in point addition and
doubling, but extra multiplications and squaring are required instead. When referring to
the Affine CS, small liters are used, i.e. x, y, and capital liters, i.e. X, Y, Z, are used when
referring to the remaining coordinate systems.
This chapter is organized as follows. Affined coordinate system is discussed in
section 5.2. Sections 5.3 to 5.7 present homogenous, Jacobian, Chudnovsky-Jacobian,

modified Jacobian and mixed coordinate systems. In section 5.8 conclusions are provided.

5.2 Affine Coordinates
Let:
ECE: Y =xX+ax+b (ab e GF(p), 4a° + 27b° =0). 5.1
be the equation of elliptic curve E over F,, We will refer to this equation as ECE.
Let: P = (x1,y1), Q = (X2,y2) are points on E, and we want to fined R =P + Q = (x3,y3).

The affine formulas for addition and doubling are given below:
e The addition formulas (R =P + Q = (x3,y3) where (P #+Q)) is given by:
x3 = —x;—x;
Y3 =Axi—x3) =y 5.2
Where: A= (v2—yi)/( x2—Xx1)
e The doubling formulas (R = 2P = (x3,y3)) is given by:

X3:/12—2X]
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Vvi=A(—Xx3) =y 5.3
Where: A= (3x,° + a)/(2y1)
The computation times for addition and doubling operations using affine

coordinates are (11 +2M + 1S) and (11 + 2M + 2S) respectively.

5.3 Homogenous Projective Coordinates

In homogenous projective coordinates the following transformation functions are

used to get the projected X & Y coordinates:

Y
x=—and y=—
Z =7

The ECE becomes:
Y’Z =X +aXZ*+bZ’ 5.4
In this CS, the points P, Q, and R are represented as follows:
P=(X1,Y1,Z1), Q=(X2,Y2,Z2),and R =P + Q = (X3,Y3,Z3).
e The addition formulas are given by:
Xy=vd, Y, =ulV’X,Z, - A)-v'Y,Z,, Z,=v'ZZ, 5.5
where:
u=Y,Z, -YZ,,v=X,Z, -X,Z, and A=u’Z,Z,—v' -2V’ X,Z,
e The doubling formulas are given by (R = 2P):
X, =2hs, Y,=wd4B-h)-8Y’s*, Z,=8s’ 5.6

where:
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w=aZ +3X}, s=Y,Z, , B=X\Ys and h=w" -8B
The computation times for addition and doubling operations using homogenous

coordinates are (12M + 2S) and (7M + 5S) respectively.

5.4 Jacobian Coordinates

In Jacobian CS, the following transformation functions are used:

X Y
X:? and y:?

The ECE becomes:
Y =X’ +aXZ* +bZ° 5.7
In this CS, the points P, Q, and R are represented as follows:
P=(X1,Y1,Z1),Q=(Xs, Y2, Z),and R=P + Q = (X3, Y3, Z3).
e The addition formulas are given by:
X,=-H’-2UH*+r*, Y,==-SH +r(UH*-X,), Z,=7Z,27,H 5.8
where:
U=XZ7:,U,=X,2},8,=Y2,,8,=Y,Z), H=U,-U,,and r=8§, - S,
e The doubling formulas are given by (R = 2P):
X,=T, Y,==8Y*+M(S-T), Z,=2YZ, 5.9
where: S=4XY?, M =3X}+aZ}, and T=-2S+M"
The computation times for addition and doubling operations using Jacobian

coordinates are (12M + 4S) and (4M + 6S) respectively.
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5.5 Chudnovsky-Jacobian Coordinates

D. V. Chudnovsky [25] concluded that Jacobian coordinate system provide faster
doubling and slower addition compared to projective coordinates. In order to speedup
addition, he proposed the Chudnovsky-Jacobian coordinate system. In this CS, a Jacobian
point is represented internally as 5-tupel point (X, Y, Z, Z?, Z°). The transformation and
ECE equations are the same as in Jacobian CS, while the points P, Q, and R represented
as follows:

P=(Xi, Y1, Z1, Zi%, Z1°), Q = (Xa, Y2, Zo, Z5°, Z5°), and R = P + Q = (X3, Y3, Zs, Z5,
Z5).

The main idea in Chudnovsky-Jacobian coordinate is that the Z,, Z; are already
calculated in the previous iteration and no need to calculate them again in the current
iteration. In other words, le, Zl3, Zzz, 223 are computed during the previous iteration and
fed to the current iteration as inputs, while Z32, 233 need to be calculated.

e The addition formulas are given by:

X,=-H’-2UH*+r*, Y,==-SH +r(UH’-X,),
Z,=2,7Z,H

5.10

Z;=2;, 7Z;=27;

where:

U=XZ7Z;,U,=X,2},8,=Y27;,S,=Y,7Z), H=U,-U,, and
r=3S,-5

e The doubling formula is given by (R = 2P):
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X,=T, Y,=-8Y'+M(S-T), Z,=2YZ, 5.11
Z;=2;, 7Z;=7;
where: S =4X,Y?, M =3X]+a(Z})*, and T =-25+M"

The computation times for addition and doubling operations using Chudnovsky-

Jacobian coordinates are (11M + 3S) and (5M + 6S) respectively.

5.6 Modified Jacobian Coordinates

Henri Cohen et. al. modified the Jacobian coordinates and claimed that they got
the fastest possible point doubling. The term (aZ*) is needed in doubling rather than in
Addition. Taking this into consideration, they employed the idea of internally representing
this term and provide it as input to the doubling formula. The point is represented in 4-
tuple representation (X, Y, Z, aZ*). It uses the same transformation equations used in
Jacobian coordinates.

The points P, Q, and R are represented as follows:

P=(Xi, Y1, Z1,aZ*), Q= Xz, Y2, Z2, 2 Z5"), and R=P + Q = (X3, Y3, Z3, a Z5*)
e The addition formulas are given by:

X,=-H-2UH*+r*, Y,=-SH’+r(UH’-X,),
Z,=2,7Z,H

5.12

4 4
al; =aZ,
where:

U=XZ,,U,=X,2,8=YZ7,8,=Y,Z,, H=U,-U,,and r =S, - S,
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e The doubling formula is given by (R = 2P):
X,=T, Y,=M(S-T)-U, Z,=2YZ 5.13
aZ} =2U(aZ})
where: S=4XY?, U=8Y", M =3X] +aZ', and T=-2S+M"

The computation times for addition and doubling operations using modified

Jacobian coordinates are (13M + 6S) and (4M + 4S) respectively.

5.7 Mixed Coordinates

Henri Cohen et al. [23] recommended the idea of mixed coordinates, where the
inputs and outputs to point additions and doublings may be in different coordinates. i.e.
with mixed coordinates we can add two points where one point is given in some
coordinate system and the other point is in some other coordinate system. Also, the result

point can be computed in a third coordinate system.

Consider the coordinate systems discussed so far. We have many choices in order to
mix them in one operation. For example, we can select Affine coordinates for input points
and the result be in Chudnovsky-Jacobian coordinates. This mixing can be denoted by
(AAC), where the first two letters denote the input coordinates (Affine) and the third one
represents the result coordinates (Chudnovsky-Jacobian). In case of doubling, (AM)
means that the input point is represented in Affine coordinates and the result is in
Modified coordinates. However, Cohen does not show the formulas used in case of

mixing different coordinates. Therefore, considerable effort needs to be spent to derive
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these equations. He provides the cost of mixed coordinates in terms of number of
multiplication, squaring and inversion operations required for Addition and Doubling

operations as shown in Table 5.1 [23].

Table 5. 1: Costs of Addition and Doubling operations
using mixed coordinates

Coordinates S M |
Point Addition
AAC 4 2
AAM 5 3
Al 8 3
AHH 9 2
ACC 8 3
AIM 9 5
AMM 9 5
CCC 11 3
HHH 12 2
I 12 4
JIIM 13 6
MMM 13 6

AAA 2 1 1
Point Doubling
Al 5 2
MJ 3 4
MM 4 4
AC 3 5
AM 5 4
CC 5 6
1] 4 6
HH 7 5

AA 2 2 1

In order to use mixed coordinates it is necessary to be able to convert a point

representation from one coordinate system to another. Table 5.2 presents the number of
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multiplications, squaring, and inversions required to convert a point representation among

the discussed five coordinate systems.

Table 5. 2: Point Conversions among different coordinates

From \ To Affine | Projective | Jacobean | Chudnovsky | Modified
Affine - - - - -
Projective | 2M + 1 - 2M + 1 2M + 1 2M + 1
Jacobean | IM+S+I| 3M+S+] - 2M 3IM
Chudnovsky | 3M+S+1 | 3M+S+1 - - 3IM
Modified | SM+S+I | 3M+S+I - 2M -

Table 5.2 shows that the conversion from Affine coordinates to any of the other
coordinate systems is very efficient because the conversions only consist of setting all of
the Z, Z* and Z° coordinates to one, and the aZ* coordinate to a (the elliptic curve
parameter). Conversion to or from homogenous projective coordinates is inefficient
because of the inversion required, as is converting from any of the other coordinate

systems to affine coordinates.

5.8 Conclusions

This chapter has discussed the various coordinates that can be used in order
to eliminate the inverse operation in the scalar multiplication. Five different coordinate
systems were studied: Affine (A) CS, Homogenous Projective (P) CS, Jacobian (J) CS,
Chudnovsky-Jacobian (C) CS, and Modified (M) CS. The computation times in terms of
number of multiplications (M), squaring (S), and inverses (I) operations were computed

for each coordinate system. Also, mixed coordinates system in which the inputs and
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outputs to point additions and doublings may be in different coordinates has been
illustrated. Comparisons among different coordinate systems and the required operations

to convert a point form one coordinate system to another were provided.



CHAPTER 6

Side Channel Attacks and Countermeasures

6.1 Introduction

Every computing device acts also as a source of additional information usually
called side channel leak information (figure 6.1). Depending on its internal computations,
it consumes different amounts of power, emits different amounts of electromagnetic
radiations, needs different running times or even produces different types of error
messages or sounds. All these additional types of information can and have already been

exploited in attacks.

Magnetic

Sound field

Power Execution
Consumed time

Figure 6. 1: Side channel leak Information.
69
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Side-channel cryptanalysis takes advantage of implementation-specific
characteristics to recover the secret parameters involved in the computation. It is therefore
much less general than classical cryptanalysis — since it is specific to a given
implementation — but often much more powerful, and is considered very seriously by

cryptographic devices' implementers.

In this chapter, we survey different types of side channel attacks and the various
countermeasures known at the time of writing. Also, the classification methods of the
attacks found in the literature are discussed. Based on that, we propose a new
classification method according to the type of information being leaked. This

classification method is used to classify and analyze both the attacks and countermeasures.

The remaining of this chapter is organized as follows. Section 6.2 gives a
classification of the various attacks found in the literature. It also presents the proposed
classification method. Sections 6.4 to 6.8 describe the various side channel attacks,
namely, fault attacks, timing attacks, power analysis attacks, electromagnetic attacks and
projective coordinates leak. Section 6.9 presents countermeasures for these attacks. In
section 6.9, we classify the countermeasures according to the proposed classification.
Also in this section, we analyze each countermeasure via providing the attacks that it can
defend, attacks that it cannot defend, its advantages and weaknesses. Finally, conclusions

are drawn in section 6.10.
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6.2 Classification of Side Channel Attacks

The literature usually classifies side channel attacks depending on the way they

affect the attacked device. This result in the following two orthogonal axes.

Invasive vs. non-invasive: invasive attacks require depackaging the chip to get direct
access to its components; a typical example of this is the connection of a wire on a data
bus to see the data transfers. A non-invasive attack only exploits externally available
information such as running time and power consumption. In [80], Skorobogatov and
Anderson add a new distinction with what they call semi-invasive attacks. These attacks
have the specificity that they require depackaging of the chip to get access to the chip
surface, but do not tamper with the passivation layer — they do not require electrical

contact to the metal surface.

Active vs. passive: active attacks try to tamper with the device's proper functioning; for
example, fault-induction attacks will try to induce errors in the computation. As opposed,
passive attacks will simply observe the device's behavior during its processing, without

disturbing it.

Although these classifications help in organizing the attacks into groups, it does
not help in providing the type of information being leaked. Therefore, we propose the
following classification based on the type of information being leaked so that it is possible
to devise some countermeasures to protect against attacks of certain class. This
classification divides all known attacks into three classes: Class A: Operation-dependent

attacks that depend on the type of operation being performed (multiply, square, addition,
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doubling, etc...) such as timing attacks and simple power analysis attacks. Class B: Data-
dependent attacks that are based on the data being manipulated by the cryptodevice such
as fault attacks and projective coordinate leaks. Class C: Address-dependent attacks that
are based on the addresses (locations) of the data being processed such as and address-bit
differential power attacks. Table 6.1 presents the various side channel attacks according to

the above proposed classification.

Note that some attacks exploit both the data being processed and a certain
operation such as doubling certain point to leak some information. Examples of these
attacks are DPA and DEMA. This will be illustrated in more details when we discuss each

attack alone.

Let the type of information being leaked be represented by a binary variable that
equals "1" when this type of information is leaked and "0" when it is not. For example, let
O denotes operation-dependent information, D denotes data-dependent information and A
denotes Address-dependent information. Then, there are seven possible classes of attacks
each of which exploits one or more kind of leaked information. These classes range from
ADO = 001 to 111. The code 000 means no attacks while 111 means an attack that
exploits operations, data and locations of data. Table 6.2 lists the side channel attacks and

the code of each one according to this general classification.

SPA attack has the code 001 because it is based on the conditional ADD operation
whether it is performed or not (section 6.5.1). DPA attack has the code 011 because it is

based on operations being performed on classified input points (section 6.5.1). ABDPA
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has the code 100 because it is based on the addresses (or locations) of data being

manipulated.
Table 6. 1: Classification of side channel attacks.
Class Attack Year of Target
discovery®
A: Timing Attack (TA) 1996 -Conditional operations.
Operation- [27] - Small differences obtained from
dependent feeding t.he operations with classified
Input points
Simple Power Analysis (SPA) 1999 - Conditional operations.
attack [26] -Optimization techniques
Differential Power Analysis 1999 -Small differences obtained from
(DPA) attack [26] feeding the operations with classified
input points.
Simple Electromagnetic 2000 - Conditional operations.
Analysis (SEMA) attack [46]-[48] -Optimization techniques
Differential Electromagnetic 2000 -Small differences obtained from
Analysis (DEMA) attack [46]-[48] feeding the operations with classified
input points.
Doubling Attack (DA) 2003 [30] -Zeros in the scalar.
B: Fault Attacks (FA) 1997 -Registers (variables) content.
Data- [43]-[45]
dependent | Timing Attack (TA) 1996 - Small differences obtained from
[27] feeding the operations with classified
input points
DPA attack 1999 Small differences obtained from
[26] feeding the operations with classified
input points
DEMA attack 2000 Small differences obtained from
[46]-[48] feeding the operations with classified
input points
Refined Power Analysis (RPA) 2003 -Coordinates of a point.
attacks [28]
Doubling Attack (DA) 2003 [30] -Zeros in the scalar.
Zero-value Point Attack (ZPA) 2003 -Registers (variables) content.
[29]
Projective Coordinates Leak 2004 -Projective coordinates of a point. (not
(PCL) [42] affine)
C: Address-bit DPA (ABDPA) 2002 -Addresses (Locations) of variables.
Address- [38],[39]
dependent

® The year shown is either the discovery year of the attack or its application to ECC.
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The three classes in table 6.1 are special cases of the general classification in table

6.2. However, since most of classes in this general classification are empty (at the time of

writing) especially classes from 101 to 111, we stick to the proposed classification

presented in table 6.1.

In the following sections, we discuss all side channel attacks listed in table 6.2 in

the same order they appear in the table.

Table 6. 2: Codes of side channel attacks.

Attack Code Description
(ADO)

Fault Attacks (FA) 010 Based on faults induced to the data being
manipulated.

Timing Attack (TA) 011 Based on the variation in execution time for
classified input points.

Simple Power Analysis (SPA) 001 Based on the conditional ADD operation, i.e.

attack whether it is performed or not.

Differential Power Analysis 011 Based on operations being performed on classified

(DPA) attack input points.

Refined Power Analysis (RPA) 010 Exploits a special point with zero-value such as (0,

attacks y) or (X, 0).

Zero-value Point Attack (ZPA) 010 A generalization of RPA where it exploits any
zero-value auxiliary register.

Doubling Attack (DA) 011 Based on detecting when the same operation is
performed on the same operands.

Address-bit DPA (ABDPA) 100 Based on the idea that accessing the same location
is correlated to the scalar bit value.

Simple Electromagnetic 001 Based on the conditional ADD operation, i.e.

Analysis (SEMA) attack whether it is performed or not.

Differential Electromagnetic 011 Based on operations being performed on classified

Analysis (DEMA) attack input points.

Projective Coordinates Leak 010 Based on knowing the projective representation of

(PCL)

a point obtained using a particular projective
coordinate system.
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6.3 Fault Analysis Attacks

Fault attacks were introduced by Boneh et al in [43]. Fault attacks are based on
tampering with a device in order to have it perform some erroneous operations, hoping
that the result of that erroneous behavior will leak information about the secret
parameters involved — for example by changing some bits in the internal memory.

Boneh et al classified the faults into three categories. The first type is transient
faults which can occur randomly causing a faulty computation to be executed. The second
type is latent faults, which are hardware or software bugs that are difficult to locate. The
third type is induced faults for which physical access to the hardware is necessary.
Induced faults are the most interesting because of the active role of the attacker. For
example, optical fault induction attacks, as introduced by Scorobogatov and Anderson
[44], use a flashgun targeting a transistor to change the state of a memory cell in a
microcontroller. The authors have proven this optical probing to be feasible as they
managed to change an arbitrary bit of an SRAM array.

Differential fault attacks (DFA) on ECC cryptosystems were outlined in the work
of Biehl et al. [45]. They presented three types of attacks on ECC that can be used to
derive information about the secret key if bit errors can be inserted into the elliptic curve
computations in a tamper-proof device. They also estimate the effectiveness of the attacks
using a software simulation.

Their methods require very precise placement and timing of the faults and depend
on the ability to change the coordinates of a point at any specific iteration of the scalar

multiplication. Based on that, the scenario of DFA on ECC is the following:
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Let the binary representation of the scalar KX is,
K=k 2" +k 2" +. ...+ k2+k, 6.1

And let P be the base point, and the right-to-left scalar multiplication algorithm is:

H=P;Q=0;
fori=0ton-1do
if (k, =1)then Q=Q + H;
H=2H;
end for;
return Q;

Assume that we know the binary length n of the unknown scalar K (note that an

attacker can easily guess this length). Denote by Q[1], H[i] the value stored in the variable

Q, H in the algorithm above before iteration i. The final result will then be Q[n-1]. The

attacker proceeds as follows:

1.

Use the tamper-proof device with some input P, to get the correct result Q[n-1] =

KP.,.

. Restart scalar multiplication with the same input P, but enforce a random register

fault to get a faulty result O[n —1]. Assume that we enforce the register fault in

beginning of the last iteration, n-1, and that this fault changes the variable H.

. If the final result is unchanged, then there was no addition in the last iteration and

k,, = 0, otherwise there was an addition and k, = 1 (remember that the final

result is in the variable Q, see the above algorithm).

Clearly, we can do this for each bit of the scalar.
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Fault attacks can be considered as one of the biggest threat of all implementation
attacks as countermeasures usually include more complex techniques which are not easy

to implement on constraint environment such as smart cards.

6.4 Timing attack

In 1996 Kocher [27] described timing based attacks on public key algorithms such
as RSA. Timing attacks are based on the fact that algorithms with a non-constant
execution time can leak secret information. A non-constant execution time can be caused
by conditional branches in the algorithm, various optimization techniques, cache hits, etc.
For example, the binary algorithm 4.1 (in chapter 4) of the scalar multiplication performs
the addition operation only if the current bit of the scalar is 1. Hence there will be
different execution times when the current bit is 0 or 1.

Assume that the scalar K is constant throughout the attack and that the attacker can
choose the input points. The scenario of timing attack on ECC is the following:

Let the scalar K be represented by the binary representation 6.1. Assume that
algorithm 4.1 1is used for the scalar multiplication. Suppose that the bits

k .k ., are known. The attacker wants to find the j-th bit, k. He proceeds as

T P
follows:

1. The attacker first makes a guess: k,= 1 (or 0).

2. He takes several input points D,,...D, and divides these points into two subsets

based on the following rule: based in his knowledge about the scalar multiplication
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algorithm, he knows (via simulation for example) that some points need more time
than the others to be doubled and added to a fixed base point P. This difference in
time comes due to the fact that doubling certain point and adding the result to the
base point needs more modular reductions than other points. Based on that, he

selects input points D, ,...D, and classify them into two subsets: S1 for which the
computation of DBL(D,) and ADD( D, +P) will induce a modular reduction and

S2 for which it will not.

3. For each input point D,, he computes a full scalar multiplication K D,. If k, is

really one, then we can expect the computation times for the points from S1 to be
slightly higher than the corresponding times for S2. On the other hand, if the

actual value of k ; 1s zero, then the ADD operation will not be performed and the

separation into two subsets should look random and we should not observe any

distinguishable difference in the computation times.

6.5 Power Analysis Attacks

The power consumption of a cryptographic device may provide much information
about the operations that take place and the involved parameters. This is the idea of
simple and differential power analysis, first introduced by Kocher et al. in [26] and [27].
After publication of these two main types, other power analysis attacks have been
discovered. At the time of writing there are six types of power analysis attacks. These

attacks are: Simple Power Analysis (SPA) attack [26], Differential Power Analysis
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(DPA) Attack [26] and [32], Refined Power Analysis (RPA) attack (also known as
Goubin attack) [28], Zero-value Point Attack (ZPA) [29], Doubling Attack (DA) [30] and
Address-Bit Differential Power Analysis (ABDPA) Attack [38], [39]. Sections 6.6.1 to

6.6.6 discuss each of these attacks.

6.5.1 Simple Power Analysis (SPA) Attack

SPA makes direct use of one power consumption measurement. A frace refers to a
measurement (i.e., a dataset) taken for one execution of the cryptographic operation under
attack. In a simple power analysis attack, only a single measurement is used to gain
information about the secret key of a device. Obviously, to perform such an attack the
side-channel information needs to be strong enough to be directly visible in the trace.
Additionally, the secret key needs to have some simple, exploitable relationship with the
operations visible in the power trace. Such an attack typically targets implementations

which use key dependent operations in the implementation.

An important characteristic of simple power attacks is the assumption that the
attacker is supposed to have a detailed knowledge about the implementation of the
cryptographic algorithm under attack. Furthermore, the part(s) of the trace corresponding

to the operation under attack needs to be clearly distinguishable from the whole trace.

In elliptic curve cryptography, SPA attack consists of observing the power
consumption during a single execution of an elliptic curve cryptographic algorithm. The

power consumption analysis may enable one to distinguish between point addition and
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point doubling in the non-immune scalar multiplication algorithm. As shown in scalar
multiplication algorithms presented in section 4.3 namely Algorithms 4.1 and 4.2,
performing the ADD operation is conditioned by the scalar (key) bit. If the scalar bit value
is ONE, an ADD operation is performed, otherwise, an ADD operation is not performed.
Therefore, a simple power analysis will produce different power traces that distinguish
between the existence of an ADD operation or not. This can reveal the bit values of the

scalar.

6.5.2 Differential Power Analysis (DPA) Attack

Even if an algorithm is protected against SPA attack, it may be vulnerable to the more
sophisticated differential power analysis (DPA) attack. DPA attack is based on the same
basic concept as a SPA attack, but makes use of several measurements and statistical

analysis to extract very small differences in the power consumption signals.

Assume that the scalar multiplication algorithm is immune against SAP by using
double-and-add always method (algorithms 6.2 or 6.3). Let the scalar K be represented by

6.1 where £k, is the i-th bit of the binary representation of K, and # is the total number of

bits. If one knows the binary representation of the computed points one can again mount a
successful attack. At step i the processed point P depends only on the first bits &, ...k, of
the secret scalar K. When P is processed, power consumptions is correlated to the bits of

P. No correlation will be observed if the point is not computed. For example, the second

most significant bit can be learned by calculating the correlation between the power
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consumption and any specific bit of the binary representation of 4P. If k, , = 0, 4P is
computed during the binary algorithm. Otherwise if k, , = 1, 4P is never computed and

thus there will be no correlation observed. This correlation method is used to classify
power traces of several input points chosen by the attacker. In the following we present a

possible scenario of DPA.

k k

J+l?

Assume that an attacker already knows the highest bits, k of K. (i.e.

i1 ypeeeeres

the bits from position j+/ up to n-1 where j is the current position) and he wants to find

k; . The scenario of DPA on ECC is the following:

1. The attacker first makes a guess: k( ,=0(or1).

2. He chooses several input points D,,...D, and computes Q, = Z(ZZ;ljdel‘j )Dl..

The attacker can compute these points using a small program. For example, in
attacking bit &, , if the attacker guess that kj = 0, then he will computes (He will
compute not the cryptodevice) Q,,...0, = 4D,,..4D, .

3. He picks a certain bit in the binary representation of Q,,...0, (fixed for all points)
as a boolean selection function g to construct the following two index sets:

S, =1{i:g(0,) =true} and S, =1i:g(Q,) = false}

For example, g is chosen to be a specific bit of the binary representation of
4D,,..4D, in case of attacking bit k, ,. Note that the same bit must be chosen for

all points.
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4. Let C,=C,(r) = power trace obtained from the computation of a full scalar
multiplication KD;. This is a function of the time .

5. Let <Ci>[e ¢ denote the average of the functions C, for thei € S, S=§5,0US o If

the guess of k; was incorrect then

<Ci>ies, _<Ci>ieSf ~0

1.e. the two sets are uncorrelated.

On the other hand, if the guess of k ; was correct then the difference

<C,~>l.€S - <C,~>l.€S will present spikes, i.e. deviations from zero.
! S

6.5.3 Refined Power Analysis (RPA) Attack

In 2003, DPA is further improved to the Refined Power Analysis (RPA) by Goubin et
al [28]. RPA exploits a special point with a zero value and reveals a secret key. An elliptic
curve happens to have a special point (0, y) or (x, 0), which can be controlled by an
adversary because the order of base point is usually known. RPA utilizes such a feature
that the power consumption of 0 is distinguishable from that of a non-zero element.
Although elliptic curve cryptosystems are vulnerable to RPA, RPA is not applied to RSA
or DLP-based cryptosystems because they don‘t have such a special zero element. In
general, the RPA attack assumes that the attacker can input adaptively chosen messages or

elliptic curve points to the victim scalar multiplication algorithm.
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Smart analyzed the RPA attack in detail and discounted its effectiveness in a large
number of order [37]. However, the RPA attack is still a threat to most elliptic curve

cryptosystems.

6.5.4 Zero-value Point Attack (ZPA)

RPA is generalized to Zero-value Point Attack (ZPA) in [29]. ZPA makes use of any
zero-value register used in addition or doubling formula. ZPA utilizes a special feature of
elliptic curves that addition and doubling formulas need a lot of each different operations
stored in auxiliary registers, one of which happens to become zero.

In ZPA, the attacker utilizes an auxiliary register which might take a zero-value in the
definition field. This auxiliary register will take a value of zero for certain operations that

are some how correlated to the scalar bit values. Hence, some secret bits may be revealed.

6.5.5 Doubling Attack

In 2003, a new attack known as Doubling attack is proposed by Fouque et al [30]. DA
only works for the ML binary method. The main idea of this attack is based on the fact
that, even if an adversary cannot see whether the computation being done is doubling or
addition, he can still detect when the same operation is done twice. More precisely, if a
device computes 2A and 2B in any operation, the attacker is not able to guess the value of
A or B but he can check if 4 = B. This assumption is reasonable since this kind of

computation usually takes many clock cycles and depends greatly on the value of the
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operands. If the noise is negligible, a simple comparison of the two power traces during

the doubling will be efficient to detect this equality.

6.5.6 Address-Bit Differential Power Analysis Attack

In 1999, Messerges et al. proposed a new attack against the secret key cryptosystems,
the address-bit DPA (ABDPA), which analyzes a correlation between the secret
information and addresses of registers [38]. Then, in 2002, Itoh et al. extended the attack
to Elliptic Curve based Cryptosystems [39].

Address-bit Differential Power Analysis Attack is based on the correlation between bit
values of the scalar and the location (address) of the variables used in a scalar
multiplication algorithm. Consider for example Takagi’s algorithm (algorithm 6.3). The
values of variables Q[0], Q[1] and Q[2] can be randomized by randomizing the projective
coordinates (or the base point) as shown in Figure 6.2(a). However, Figure 6.2(b) shows
that the location of input operand of DBL operation (dotted line) and the data transfer
from either Q[1] or Q[2] to Q[0] (solid line) are correlated to the bit value of the scalar.
This Figure shows that, in Takagi’s algorithm, the following data transfer is performed

based on the bit value of the scalar:

(o121 k=0
0[0]= { on k=1 }

o k=0
Q[l]—{Q[z] k :1}
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When k=0 When k=1
data data
Q[0] skt ke ke o Q[0] ok ok ok
Q1] ofok ook ok Q[1] $efoskoskok ok ok
o1 eodokofotok 01 ok ok ok ok

(a) Randomizing data by using randomized projective coordinates

When k=0 When k=1
data data
Q[()] - Hofokkckokk | g Q[()] dolokksdokkk | o
Q[l] seokokokokok ok F ] Q[]] sene skokokokokokok: I
0121 oo sorrnnns R
................ » DBL — Copy

(b) Correlation still exists between the addresses and the bit values of the scalar

Figure 6. 2: Address-bit differential power analysis attack

6.6 Electromagnetic Analysis Attacks

Any movement of electric charges is accompanied by an electromagnetic (EM)
field. The currents going through a processor can characterize it according to its spectral
signature. Electromagnetic attacks, first introduced by Quisquater and Samyde [46], and
further developed in [47], [48] exploit this side channel by placing coils in the

neighborhood of the chip and studying the measured electromagnetic field.
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The information measured can be analyzed in the same way as power consumption
(simple and differential electromagnetic analysis — SEMA and DEMA), but may also
provide much more information and are therefore very useful, even when power
consumption is available. Agrawal et al [49] show that EM emanations consist of a
multiplicity of signals, each leaking somewhat different information about the underlying
computation. They sort the EM emanations in two main categories: direct emanations, i.e.
emanations that result from intentional current flow, and unintentional emanations, caused
by coupling effects between components in close proximity. According to them,
unintentional emanations, which have been somewhat neglected so far, can prove much
more useful than direct emanations. Moreover, some of them have substantially better
propagation than direct emanations, which enables them to be observed without resorting
to invasive attacks (and even, in some cases, to be carried out at pretty large distances - 15
feet! - which comes back to the field of tempest-like attacks [50]). Finally, they argue that
EM emanations can even be used to break power analysis countermeasures, and illustrate
this by sketching a practical example.

Electromagnetic attacks are powerful attacks especially when combined with other
side channel attacks. For example, Quisquater and Samyde recently showed [51] that it
was possible to build a dictionary of instructions and their power/electromagnetic traces,
and, using correlation techniques and neural networks, to recognize the instructions

executed by a processor.
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EMA is a non-invasive attack, as it consists in measuring the near field. However,
this attack is made much more efficient by de-packaging the chip first, to allow nearer

measurements and to avoid perturbations due to the passivation layer.

6.7 Projective Coordinates Leak

In 2004, Nigel Smart et. al. [42] showed that it is possible to leak some
information about the secret key (scalar K) through the projective representation of elliptic
curve points. Giving that Q = KP is the elliptic-curve double-and-add scalar multiplication
of an elliptic curve point P by a secret K, they showed that allowing an adversary access
to the projective representation of Q may result in information being revealed about K.

In [42], they restrict projective coordinates leak to Jacobian projective coordinates
in GF(p) (although it can be applied to other coordinates). For each affine point there are
P-1 representatives in Jacobian projective coordinates, one for every non-zero value of Z.
By knowing the projective coordinates of a point G, they consider the least significant bit
of the scalar and guess its value. Once this is done, it is possible to compute a set of
candidates for the coordinates of the previous intermediate values handled by the double-
and-add algorithm while processing that bit. This is achieved by reversing computations:
reversing doubling is Halving while reversing addition is subtracting. In other words, they
apply a backtracking algorithm that can reveal whether the final bit was zero or not.

This attack requires a special backtracking formulas for each projective coordinate
system. Thus, formulas used to half (subtract) a point in homogenous projective

coordinates cannot be used to half (subtract) a point in Jacobian projective coordinates.
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6.8 Countermeasures

This section presents countermeasures found in the literature for side channel

attacks . We organized the countermeasures in the same way as we did for attacks.

6.8.1 Fault Attack Countermeasures

The most obvious way that comes to mind in order to protect against fault attacks
is to check the computation for errors, for example by repeating the computation and
comparing the results. However, it must be noted that this policy is very costly, either in
time (repeat computation) or in hardware (double hardware and perform both
computations in parallel). Moreover, repeating the computation is not always satisfactory
as, in the case of a permanent fault induction, it will yield identical, although wrong,

results.

Another way to check for the presence of faults is, in the case of public-key
cryptography, to re-encrypt the message. This is usually less time-consuming, as the

public exponent is usually chosen to be small.

6.8.2 Timing Attack Countermeasures

The obvious way to prevent timing attacks is to implement cryptographic
algorithms with a constant execution time. In case of elliptic curve cryptography, this idea
can be implemented by adding a dummy operation to balance all operations in all

iterations.
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Almost all modern implementations are resistant against timing attacks, which

makes a timing-only attack very difficult. However, the threat remains in combining
timing information with other side-channels. For example, timing information can be used

by an attacker in order to locate specific parts of the algorithm.

6.8.3 SPA Attack Countermeasures

To protect against SPA attack, Coron [32] proposed a simple SPA countermeasure
which consisted of modifying the binary methods shown in algorithms 4.1 and 4.2 to be
as in algorithms 6.1 and 6.2 respectively. The basic idea of these countermeasures is to
perform the ADD operation in all cases regardless of the scalar bit value. Therefore, the
ADD operation is no longer conditioned by the scalar bit values. However, if the ADD
operation is originally not required (i.e. in case of the scalar bit is 0), the result of ADD
operation is simply discarded. Since none of the instructions in algorithms 6.1 and 6.2
depend on the scalar bit value, these algorithms are resistant to a SPA attack. These
algorithms are called Double-and-ADD always algorithms since it computes a point
addition and point doubling in each iteration without regard to the secret key K. However,

even though this scheme is resistant to SPA attack, it remains vulnerable to DPA attack.

INPUTK, P
OUTPUT KP
1. Initialize Q[2] =P
2. fori=n-2downto0
3. Q[0]=DBL(Q[2])
4. Q[1]=ADD(Q[0],P)
5. Q[2]1=Qlki]
6. end for
return Q[2]

Algorithm 6. 1: Double-and-ADD always Most-to-Least (ML) binary algorithm.
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INPUTK, P
OUTPUT KP
1. Initialize Q[0]=P; Q[1]=P
2. fori=1ton-1
Q[0] = DBL(Q[0])
Q[2] = ADD(Q[0], Q[1])
Q[1] = Q[1+ &/]
end for
return Q[ 1]
Algorithm 6. 2: Double-and-ADD always Least-to-Most (LM) binary algorithm.

kW

Another ML algorithm to avoid this kind of leak was proposed by Takagi et al
[33]. This algorithm uses extra ADD operations to assure that the sequence of DBL and
ADD operations is carried out in each iteration. We refer to this algorithm as Takagi’s

algorithm and it is shown in algorithm 6.3.

INPUT K, P
OUTPUT KP
1. Initialize Q[0] =P; Q[1]=2P
2. fori=n-2downto 0

3. Q[2]=DBL(Q[ki])

4. Q[1]=ADD(Q[0],Q[1])
5. Q[0]=QI[2-ki],

6.  Q[1]=Q[l+ki]

7. end for

return Q[0]

Algorithm 6. 3: Takagi’s ML algorithm for scalar multiplication.
6.8.4 DPA Attack Countermeasures
In order for an algorithm to be resistant to a DPA attack, some system parameters or
computation procedures must be randomized. Coron et. al [32] suggested three

countermeasures to protect against a classical DPA: randomizing the scalar, randomizing
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the base point P, and randomizing the projective coordinates. Brief summary of how these
countermeasures can be realized is given below:

1. Randomizing the scalar K

If n = ordg(P) denotes the order of P € E/GF(p), then QO = KP can be
computed as O = (k + r n)P for a random r. Alternatively, one can replace n by

the order of the elliptic curve, #E/GF(p).
2. Randomizing the base-point P

The base point P to be multiplied by K is randomized by adding a secret
random point R for which we know § = KR. Scalar multiplication is done by

computing the point (R + P)K and subtracting S = KR to get Q = KP.
3. Using randomized projective coordinates

Randomized projective coordinates can use the Homogenous or Jacobian
coordinate to randomize a point P = (x, y). For homogenous projective

coordinate, P can be randomized to (rx, ry, r) for a random number r €

GF(p). Similarly, P can be randomized to (7°x,7’y,r) in case of using
Jacobian coordinates where r is a random in GF(p).
However, the main goal of all these countermeasures, and others proposed in [33]

- [36], is to randomize the power traces collected by the attacker and hence make it

difficult for him to exploit the differences between these traces.
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6.8.5 Doubling Attack Countermeasures
According to [30], two of Coron’s three proposed countermeasures against DPA
attacks, discussed in the previous section, fail to protect against a doubling attack:
randomizing the scalar and randomizing the base point. However, his third
countermeasure, the randomized projective coordinate does protect against a doubling
attack as does a randomized exponentiation algorithm such as the Ha-Moon algorithm
which maps a given scalar to one of various representations [34]. Since the positions of
the zeros in the Ha-Moon algorithm vary in each representation, the doubling attack
cannot detect the positions of the zeros for the doubling operation.
To enhance the Coron’s 2ed countermeasure, to protect against a doubling attack, the
secret random point R should be randomly updated. A regularly updated method shouldn’t

be used.

6.8.6 RPA & ZPA Attacks Countermeasures

To protect against RPA and ZPA attacks, the base point P or the secret scalar d should
be randomized. For example, Coron’s first two counter-measures (but not the 3rd) protect
against these attacks. Projective coordinates randomization does not protect against RPA
and ZPA because it cannot randomize the zero-value operands.

Mamiya et al [31] recently proposed a countermeasure (called BRIP) which uses a
random initial point (RIP) R. They computes KP + R using a special algorithm and then

subtracts R to get KP.
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6.8.7 Address-Bit Differential Power Analysis Attack Countermeasures
The countermeasures used to protect against simple power analysis and differential
power analysis that are based on randomization of the base point or the projective
coordinate do not provide countermeasure against address-bit analysis attacks. Therefore,
these countermeasures do not remove the correlation between the bit values of a scalar
and the location (address) of the variables used in a scalar multiplication algorithm.
Itoh et al gave several countermeasures against the ABDPA attack in [39]. But
those countermeasures require at least twice computing time than without them [39].
A hardware-based DPA countermeasure proposed by May et al. [40] is based on
Randomized Register Renaming (RRR). RRR is supposed to be implemented on a
processor that can execute instructions in parallel. In other words, it requires a special

hardware to work [41].

In 2003, Itoh et al. proposed a countermeasure [41], called randomized addressing
method (RA), which is similar to RRR but does not require special hardware because it

can be implemented by only software with a program code. In RA, they randomize
addresses of registers by a one-time random number 7, 2" +r 2" +. ..+ 12 +7,
where (7. € {0,1}). They change each bit, k,, of the scalar to k, ® r,, where @ denotes

the XOR operation. Then all addresses of registers are randomized so that the side channel
information will be randomized for each scalar exponentiation. Of course this change in
the scalar bits requires a special algorithm to calculate the correct point of the scalar

multiplication KP. They provided such an algorithm in [41].
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6.8.8 Electromagnetic Attacks Countermeasures
Electromagnetic attacks and power attacks are, in many respects, very similar.
Although the way the side channel leaks information differs, but the type of leaking
information is roughly the same. Countermeasures do not try to reduce the signal
amplitude, but rather to make the information it conveys useless by obscuring the internal
parameters. Therefore, any countermeasure for SPA and DPA can be used for SEMA and

DEMA respectively.

6.8.9 Projective Coordinates Leak Countermeasures

Nigel Smart et al [42] suggested two methods to resist this attack. First, we call it
Smart's trick, which is done by randomly replacing the output (X, Y, Z) of the
computation by (X, €Y, €Z), with ¢ = £1. Although, this method does not lend itself to a
formal proof, they claim that it can defend the PCL. However, this method does not
protect against PCL if the attacker obtains intermediate points. Second, is by replacing (x,
y, z) representation of Q by (A’x, 'y, 1), where 1 is randomly chosen among the non
zero elements of the base field. This method, identical to Coron's 3-ed countermeasure,
provides a randomly chosen set of projective coordinates for the result and, therefore,
cannot leak additional information.

However, it is worth mentioning that they assume that the attacker knows the

projective coordinate system used and that the coordinate system is fixed.
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6.9 Classification of Countermeasures

In this section, we provide a classification of countermeasures according to the
proposed classification of the attacks presented in section 6.2. Table 6.3 shows the
proposed classification. In addition, table 6.3 contains the attacks that each
countermeasure can help in defending them and those it cannot. Also, table 6.3 contrast

the advantages and disadvantages of each countermeasure.

6.10 Conclusions

In this chapter, we have surveyed different types of side channel attacks and the
various countermeasures for defending them. Also, according to the type of information
being leaked, a new classification method of attacks has been proposed. This
classification method was used to classify and analyze both the attacks and
countermeasures. Three classes were proposed: Class A: Operation-dependent attacks that
depend on the type of operation being performed. Class B: Data-dependent attacks that
are based on the data being manipulated. Class C: Address-dependent attacks that are

based on the addresses (locations) of the data being processed.

In this chapter, we analyze and contrast the existed countermeasures in terms of
what attacks each countermeasure can defend and what it cannot, its advantages and

disadvantages. A summary of this analyze is presented in table 6.3

We conclude that there are powerful side channel attacks that exploit more that

one type of leaked information. Therefore, sophisticated countermeasures to protect
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against each type of information are mandatory. We recommend that at least one

countermeasure from each class should be involved in any ECC implementation.

Table 6. 3: Countermeasures classification, protection, advantages and disadvantages.

Class Countermeasure/ Help in Not Advantages Disadvantages
(Code) protect | protect
A: Operations balancing SPA DPA -Simple and can be | -The dummy operation is extra
Operation- | by adding a dummy TA DEMA | plugged to any operation, that increases the
dependent | operation. SEMA | ABDPA | scalar execution time.
(001) DA multiplication
RPA algorithm.
ZPA
PCL
Randomizing the DPA DA -Simple and can be | -Requires a word length
Scalar FAs PCL plugged to any multiplication and an addition
(001) DEMA | ABDPA | scalar operations.
RPA multiplication -Requires knowing order of the
ZPA algorithm. base point or the curve.
B: Randomizing the base | DPA DA -Simple and can be | -S = KR of the secret random
Data- point. (Coron's 2-ed FAs ABDPA | plugged to any point R must be known.
dependent | countermeasure) DEMA scalar Otherwise it needs to be
(010) RPA multiplication computed hence duplicating
ZPA algorithm. scalar the multiplication time.
PCL -Weak since R needs to be
updated.
Randomizing DPA RPA -Simple and can be | -Each coordinate system
projective coordinates | FAs ZPA plugged to any requires its own randomization
(010) DEMA | ABDPA | scalar method.
DA multiplication -Requires 2 multiplications in H
PCL algorithm. coordinate system and 3
multiplications and one
squaring in J coordinate system.
Random initial point DPA DA -Does not require -Complex.
(RIP) FAs storing RK of the -Needs a special scalar
(010) DEMA random point R. multiplication algorithm.
RPA -Does not require
ZPA updating R.
PCL
Error detection FAs The rest | - The only way to -Complex.
technique detect errors. -Needs special techniques.
(010) -Increase scalar multiplication
time dramatically.
N. Smart's trick PCL The rest | -Simple. -Does not protect PCL if the
(010) attacker obtain intermediate
points.
C: Randomized register ABDPA | Therest | -Faster than RA. -Requires special hardware.
Address- renaming (RRR) (100)
dependent | Randomized ABDPA | Therest | -Does not requires | -Requires special scalar

addressing (RA) (100)

special hardware.

multiplication algorithm.




CHAPTER 7

Dynamic Projective Coordinate (DPC) System

7.1 Introduction

Using projective coordinates in point addition and doubling operations is an
important requirement to remove the need for intermediate inversion operations in the
scalar multiplication. The usual way used in the literature to achieve this is by using a
fixed coordinate system that is selected in the design stage. The selected system is used in
a fixed manner for all scalar multiplication iterations. However, although using a fixed
coordinate system removes the intermediate inversion operations, it becomes a security
weakness since it can be exploited by projective coordinates leak attacks to reveal some
secure information (section 6.7 in chapter 6). Therefore, finding a coordinate system that
can satisfy both requirements: removing the intermediate inversions and being secure
against such attacks is mandatory.

Although, mixed coordinates (section 5.7) provide efficient addition and doubling
operations, most of them cannot be used for the following reasons:

e [t is necessary to convert a point representation from one coordinate system to

another to have the input in the required format for the addition or doubling

97
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operation. For example, using Jacobian coordinate for addition operation and
homogenous coordinates for doubling operation requires converting the addition
result to homogenous coordinates. This conversion requires an inversion operation.
Same thing happens if using homogenous for addition and Jacobian for doubling.

It requires separate mathematical formulas for each coordinate system.

However, using different projective coordinates for different runs and/or different

phases of the scalar multiplication is not used yet as a randomization method to resist

many operation-dependent and data-dependent attacks.

In this chapter, we introduce the Dynamic Projective Coordinate (DPC) system

which is proposed to overcome the above difficulties and has the following properties:

It automates the selection of the projective coordinate system and uses a single
mathematical formulation/software code to implement different projective
coordinate systems.

It allows the computing/encrypting device to select the projective coordinate either
at random, or according to a certain rule.

Different projective coordinates can be implemented by using two parameters
where one parameter defines the projection of the x-coordinate and a second
parameter defines the projection of the y-coordinate of an elliptic curve point. This
allows different projective coordinates to be used within the same mathematical

formulation in calculating the scalar multiplication.
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e The computation of the scalar multiplication can be randomized by simply varying
either the x-coordinate projecting parameter and/or the y-coordinate projecting
parameter.

e It allows projective coordinates hopping at any time during the scalar
multiplication.

e With DPC system, different projective coordinate systems can be used for
different phases of the scalar multiplication. Fore example, a certain coordinate
system can be used for the pre-computation phase of the scalar multiplication
while other coordinate systems can be used for addition and/or doubling
operations in the main loop. Furthermore, different blocks (or windows) of the
scalar K can use different projective coordinate systems.

e It does not require the sending and receiving correspondents to use to the same
projective coordinates in computing the same scalar multiplication.

In this chapter, we start by defining dynamic transformation functions that are
used to convert any affine point to any projective coordinates using the same
mathematical formula. Then these transformation functions are used to develop dynamic
addition and doubling formulas for elliptic curve over the prime field GF(p) and elliptic

curve over binary field E/GF(2").

The rest of this chapter is organized as follows. Section 7.2 introduces the
proposed dynamic projecting parameters and transformation functions. In section 7.3,
DPC is used to propose dynamic addition and doubling formulas for elliptic curve over

finite field GF(P). Similarly, in section 7.4, DPC is used to propose dynamic addition and
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doubling formulas for elliptic curve over finite field GF(2™). Finally, conclusions are

presented in section 7.5

7.2 Dynamic Projecting Parameters

In DPC, we use two values z* and z" for projecting the x-coordinate and the y-

coordinate of a point respectively. L, and L, are projecting parameters (powers) that can

be chosen either at random or according to a certain criteria such as a criteria for reducing
the computation complexity.

To formulate the Dynamic Projective Coordinate system, consider that there are
multiple degrees of powers for the Z-coordinate, as follows:

Degree-0 is the affine coordinate system P = (x,y)

X Y
In Degree-1, x=—, y=—
& Z Y Z

X Y
In Degree-2, x=—, y=—
Z VA

. X Y
In Degree-1, x=—, y=—
A A

In DPC system the x and y coordinates can be projected to any degree of the above
degrees and not necessarily to the same degree. In other words, x-coordinate can be in one
degree while y-coordinate in another one resulting in many combinations of coordinate

systems.
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Projecting parameters L, and L, are used to define the following Dynamic

Transformation Functions:

7.1

X= and y=

Z L, L,

where, L, and L, are positive integers.

However, in any projective coordinate system, each affine point (x,y) can be
converted to many projective points ( X,Y,Z ), one for each non-zero value of Z. This
means that we have the freedom to select Z. However, Z should be selected in a way that

clears the denominators and minimizes the computations of X, and Y;. For example,
consider addition operation using homogenous coordinate system in which the point
P, =(X,.Y;,Z,) is the result of point addition A, =(X,,Y,,Z,)+ P, =(X,,Y,,Z,). The
Z-coordinate of the result point, Z,, is chosen to be V°Z,Z,, where V = X,Z, - X,Z,,
which is the best choice to unify Z-coordinate and minimize the computations of X; and
Y, (see equation 5.5 in section 5.3). Similarly, in case of addition using Jacobian
coordinate system, Z, is chosen to be HZ,Z,, where H = X,Z} — X,Z; (equation 5.8 in
section 5.4).

Therefore, in order to have a general method for choosing Z, in DPC, a third

parameter, called d-parameter, is used to control choosing the Z-coordinate of the

resulting point of addition and doubling operations. For example, Z, can be chosen to be

V?Z,Z,. By setting d=3 we get the same definition of Z, in homogenous coordinate
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system while by setting d=1 we get the same definition of Z, in Jacobian coordinate
system. However, it is worth mentioning that d is not used to project neither x nor y
coordinates. It is only used to help in choosing Z-coordinate of the resulting point of

addition and doubling operations. Furthermore, Z, of addition operation and Z, of

doubling operation are different because each operation has its own formula.

However, using the d-parameter in the way discussed above introduces a powerful
and very efficient projective coordinates randomization method by simply randomizing d

itself. This method is discussed in chapter 8.

7.3 Dynamic Projective Coordinate System for E/GF(p)

Let E/GF(P) denotes elliptic curve defined over the prime field GF(P) (see section
3.3 in chapter 3). By substituting for x and y from 7.1 in the elliptic curve equation 3.3, we
get:

3L,-2L,

Y’z =X +aXZ*" +bZ°" 7.2
Note that if we set L, =L, =1 in 7.2, we get: Y’Z =X’ +aXZ* +bZ’ which is
identical to the standard projective equation of the elliptic curve equation over prime field
found in [4].
This equation is satisfied by all projective points with Z # 0 for which the

corresponding affine points satisfy the affine equation 3.3. Now the question is which

points on the line at infinity satisfy equation 7.2? Setting Z = 0 in the equation leads to
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X3 =0,ie. X =0.The only point with both X and Z zero is the point (0, 1, 0). This point
is called the point at infinity and denoted as . It is the point on the intersection of the y-

axis with the line at infinity
Lemma 7.1: Any point Q=(x,y) € E/GF(p) represented in affine coordinates can be

transferred to a 4-tuple projective point P=(X,Y,z%,z") e E/GF(p) where, z" and z"

# 0.

Proof: Since the two values, z and z", are available within the 4-tuple representation

of the point, the affine point (x,y) can be obtained by direct application of 7.1.

The following subsections present the addition and doubling formulas for GF(p)
using DPC. However, several DPC formulas are introduced. These formulas are: General

formulas in which L, and L, can be selected to be any positive integers without any
restriction. Optimized formulas in which L, and L, are selected according to certain rule

to reduce the number of computations required. Mixed formulas in which each coordinate

of each point has its own projecting parameter.

7.3.1 General Dynamic Projective Coordinate System for E/GF(p)

Formulations for Elliptic curve point addition and doubling, over GF(p), using
DPC are presented in this section. We develop point addition mathematical formulas that
can be used to implement any projective coordinate system simply by varying the

projecting parameters L, and L, . Similarly, point doubling formulas are also presented.
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However, one of the most important features of the DPC system for E/GF(p) is that the
same mathematical formulas, either for point addition or doubling, can implement any

projective coordinate system without the need to recode or reprogram the cryptodevice.

Point Addition Formula

Theorem 7.1: Given two  elliptic curve points represented in  DPC,
P=(X.Y,,z,2") eE/GF(P), 0=(X,.Y,.Z%,Zzy') € E/GF(p), and denoting the point

R=(X,.Y,,ZL . zl") e E/GF(p) as the addition of the two points P and Q, i.e. R=P+Q,

the dynamic projective coordinates of the point R is given by:

X, =X,R"
Yo=Y R
Zi = R"T
Zy =R™T,
where, U,=Y,Z, U,=YZy, U=U,-U,, 73
Vi=X,Zlx, V,=X,Zy, V=V, -V,,
T =27, T,=2"7y, R=VT,
X, =UT - R, - RV,
Y, = T,(URY, - X})~U,(R*V, - R*V))
d=3, L >0, L >0

Proof: According to lemma 7.1, since P=(X,.Y,.Z>,Z"), 0=(X,.Y,,Z*,z)") and

R=(X,,Y,,Zz%,z7) are elliptic curve projective points € E/GF(p), one can use the

addition formula 3.4 for E/GF(p) in affine coordinates to compute R=P+Q (addition
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operation). The projective coordinates (X;,Y;,Z5, /) of the point R can be derived using

the dynamic transformation functions 7.1. This is shown in appendix A-I to obtain the

formulas 7.3 for computing R =P+ Q.

Point Doubling Formula

Theorem 7.2: Given an elliptic curve point represented in DPC, P=(X,,Y,,Z,Z IL)’ ) €

1
E/GF(p), and denoting the point R = (X,,Y,,Z%*,Z;") € E/GF(p) as the addition of the

point P to itself, i.e. R =2P, the coordinates of the point R is given by:

X, =X 25"
Y3 _ Y3deLy—3
Zy=S"Z)
zy =8S"zp
Where, W =3X]+aZ", S=27Z"Y, 7.4
T=wz", T =SYzZ", T,=2TX,
X, =WT-2T,
Y, =T(T, - X,) - 2T}
d>3, L >0, L, >0

Proof: According to lemma 7.1, let P=(X,,Y;,Z},z]"), and R=(X,.Y;,Z5,Z;") be elliptic
curve projective points € E/GF(p). We can use the doubling formula 3.5 for E/GF(p) in
affine coordinates to compute R =2P (doubling operation). The projective coordinates

(X,,Y,,Z%,Z) of the point R can be derived using the dynamic transformation
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functions 7.1. This is shown in appendix B-I to obtain the formulas 7.4 for computing

R=2P.

7.3.2 Mixed Dynamic Projective Coordinate System for E/GF(p)

Formulas 7.3 are obtained using uniform transformation in which L, and L, are
the same for the three points P, Q and R. More general addition formulas can be obtained
by using mixed transformation where each coordinate in each point has its own projecting

parameter. In this case, projecting parameters L ,,L , are used for P, L ,,L , are used for

x1°

Qand L, L ; are used for R.

x32

Theorem 7.3: Given two  elliptic  curve points represented in  DPC,
P=(X,,Y,,Z 2" eE/GF(p), 0=(X,,Y,,Z+*,Z,"*) eE/GF(p), and denoting the
point R=(X,,Y,,Z:" ,Z3L ") € E/GF(p) as the addition of the two points P and Q,

i.e. R = P+ Q, the coordinates of the point R is given by:

v pdLs—2mrL-1

X, = X, R%s2T
' ydL -3 L,3—1

Y, =Y.R“7°T"

Z3Lx} — Rdes Tisz
Z3L,3 — R T1L'ﬂ
where, U,=Y,Z[", U,=YZy", U=U,-U,, 75

Vi=X,Z, V,=XZy>, V=V, -V,,
T=ZzMZy, T,=Z7Zy*, R=VT,
X, =UT} =R, - R*V,,
Y, = L{URY, - X)) ~U,(RV, - RV,
d=3, L,>0, L,>0
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Proof: The proof of Theorem 7.3 is similar to the proof of Theorem 7.1 with replacing

each z by z and each z by z" where, i = I,2.

Formulas 7.4 are obtained using uniform transformation functions in which L, and
L, are the same for P and R. More general addition formulas can be obtained by using

mixed transformation, where different projecting parameters for each point, i.e. L,,L,, for

Pand L,,L,; forR.

x3»

Theorem 7.4: Given  an  elliptic  curve  point  represented in  DPC,
P=(X,,Y,,zk 2"y e E/GF(p), and denoting the point R=(X,.Y,,z5*,z1*) e E/GF(p) as
the addition of the point P to itself, i.e. R =2P, the coordinates of the point R is given
by:

X, =X, 8%z
Y =vst @z

Z3Lx3 — Sdes (ZlLyl )Lx3
Z3Ly3 — SdL),»z (ZIL‘I )Lys

Where, W =3X]+aZ!", S§=27"Y, 7.6
T=wz}", T,=SYZ', T,=2TX,
X,=T?-2T,

Y, =T(T,Z" — X,)-2T"
d>3, L;>0, L;>0

Proof: The proof of Theorem 7.4 is similar to the proof of Theorem 7.2 with replacing

each z by z and each z" by z" where, i = I,2.
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7.3.3 Optimized Dynamic Projective Coordinate System for E/GF(p)

Addition and doubling formulas 7.3 and 7.4 are the most general homogenous
formulas for E/GF(p) without any restriction on the values of the projecting parameters
L, and L,. However, their computation complexity can be reduced by reproducing these
formulas with taking 7z, and Z, as common factors in each equation (whenever it is
possible) and simplify the resultant formulas by eliminating the unnecessary terms. This
results in the existence of terms such as Z,*™ , in which its power is a relation between
L, and L. Existence of such terms requires providing either pure Z-coordinate (i.e. not
raised to any power) or the required term as a ready computed value in the point
representation. This can be achieved with the help of the following lemma.

Lemma 7.2: Any point Q=(x,y) E/GF(p) represented in affine coordinates can be

transferred to a S-tuple projective point P=(X,Y,Z,Z%,z") E/GF(p) where, Z, z" and

7" #0.

Proof: Since the values, z, z% and z", are available within the 5-tuple representation
of the point, proof follows directly from 7.1.

Appendixes C-I and D-I present the derivation of optimized addition and doubling

formulas respectively. The optimized addition formulas are:



X, =x,y"7
Y=y, v
Z,=VT
Zy =(VT)"
Zy ='n"
where, U, =Y,Z, U,=Y,Zy, U=U,-U,,
Vi=X,Zl, V,=XZ, V=V, -V,
T=22, T, =vr-™"
X, =UT" 0 R —orty,,
Y, =UWV,-X,)-U,V’
L -L 20, 3L,-2L >0, dL -220, dL 320

and the optimized doubling formulas are:

X, =X,8"7

v=rst

Z,=8"

Zy = (S)"

Zs =(s)"

Where, W =3X]+aZ>", S=2ZY,
T=wz"™", T =SY, T, =2TX,

X,=T"-2T,

Y, =T(T, - X,)-4T,1 2" ™"

L,—L >0, 2L ,—L >0, dL,-2>0, dL,-3>0

7.7

7.8
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Formulas 7.7 and 7.8 are obtained using uniform transformation functions. Similar

mixed optimized formulas can be obtained using the same way as in appendixes C-I and

D-I with replacing each zX by z!+ and each z by z* where, i = 1,2. The mixed

optimized addition formulas are:
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X, = X,R"
Y=YR
Z,=R’
Z;® =(R")™
Z7 = (R
where, U, =Y,Z", U,=YZ", U=U -U,, 7.9
Vi=X,Zl, V,=X 72y, V=V,-V,,
T,=2z!"z!*, T,=2"2,*, R=VI,, T,=UT,
Xy =T =VR(Z" ™ 2,7V, +V5),
Y, =R*(UV,-VU,)- X,T,
L,~-L,20, L,-L,>0, dL,-2>0, dL,-3>0

x1

and the mixed optimized doubling formulas are:

X, =X,8%7
Y3 _ Y3'SdLy3—3

Z, =8
ZSLH — (Sd)Lﬁ
Zy = (8 7.10

Where, W =3X}+aZ, S=2ZMY,, T=wz» "
X, =T?-4SY,X,
Y, = T(2SY, X, - Xy) - 4(SY,)Y;2Z;
L,~L,>0, 2L,~L,>0, dL,-220, dL,-320




111
7.4 Dynamic Projective Coordinate System for E/GF(2™)

Dynamic Projective Coordinate system can be used to get addition and doubling

formulas, similar to those obtained in section 7.4, in case of defining ECC over the binary

field GF(2").

Transformation functions 7.1 are used to formulate the DPC in E/GF(2™). By
substituting for x and y from 7.1 in the elliptic curve equation 3.6, we get:

2y xyzt T 2 X3 v ax 2z v bz 711

Y*z
Note that if we set L, =L, =1 in 7.11, we get: Y*Z+XYZ=X" +aX*Z+bZ> which is
identical to the standard projective form of the elliptic curve equation over binary field
found in [52]. Also, If Z = 0, then Xx°=0, i.e. X =0. Therefore, (0,1,0) is the only

projective point that satisfies this equation. This point is called the point at infinity and

denoted as oo.

Lemma 7.3: Any point Q =(x,y) € E/GF(2") represented in affine coordinates can be

transferred to a 4-tuple projective point P=(X,Y,z%,z") e E/GF(2") where, z" and

7" £0.

Proof: Since the two values, z> and z" , is available within the 4-tuple representation of

the point, proof follows directly from 7.1.
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7.4.1 General Dynamic Projective Coordinate System for E/GF(2™)
Formulations for Elliptic curve point addition and doubling, over GF'(2"), using

DPC are presented in this section. We develop point addition mathematical formulas that
can be used to implement any projective coordinate system simply by varying the

projecting parameters L, and L,. Similarly, point doubling formulas are also presented.

However, one of the most important features of the DPC system for £/ GF(2™) 1is that the

same mathematical formulas, either for point addition or doubling, can implement any

projective coordinate system without the need to recode or reprogram the cryptodevice.

Point Addition Formula

Theorem 7.5: Given  two  elliptic curve points represented in  DPC,

P=(X,.Y,,Z. 2" eE/GF@2™), Q=(X,.Y,,Z¥,Z,) E/GF(2"), and denoting the
point R =(X3,Y3,Z3L-‘,Z3L'”) e E/GF(2") as the addition of the two points P and Q,

i.e. R = P+ Q, the coordinates of the point R is given by:
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X, =X, R
L=YRVTTH
Zy =(R'TY"
Zy =(R'T)"
where, U,=Y,2,*, U,=YZ,, U=U, +U,, 7.12
Vi=X,ZF, V,=XZy, V=V +V,,
R=VZ"Zy, T=2"7", T =UT,
X, =TT(T, +R)+ R*(V +aT),
Y, =T,(UV, + VU, )+ X5(T, +R)
d>3, L, >0, L >0

Proof: According to lemma 7.3, since P=(X,.Y,.z>.z"), 0=(X,.Y,.z*.z") and
R=(X3.Y,,Zk,zy) are elliptic curve projective points € E/GF(2"), one can use the
addition formula 3.7 for E/GF(2") in affine coordinates to compute R=P+Q (addition
operation). The dynamic projective coordinates (X,,¥;,Z%,Zy") of the point R can be

derived using the dynamic transformation functions 7.1. This is shown in appendix A-II to

obtain the formulas in equation 7.12 for computingR = P+ Q.

Point Doubling Formula

Theorem 7.6: Given an elliptic curve point represented in DPC, P =(X,,Y;,Z/ *’,ZIL ") €
E/GF(2™), and denoting the point R = (X 3,Y3,Z3L*,Z3L ") € E/GF(2") as the addition of

the point P to itself, i.e. R =2P, the coordinates of the point R is given by:
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X, =X,87

Y3 _ Y3'SdL),—3

Z3LX _ (Sd )L

2t =(s') 7.13

Where, T, =X}Z!", T,=YZM*, W=T+T, S=XZ-Z"
X, =W(W +5)+aS*
Y, =ST,(W +T,)+ X,(W + S)
d>3, L >0, L, >0

Proof: According to lemma 7.3, let P=(X,,¥,,z".,z/), and R=(X,.Y,,Z5 z]) be elliptic
curve projective points € E/GF(2"). We can use the doubling formula 3.8 for £/ GF(2™)
in affine coordinates to compute R=2P (doubling operation). The dynamic projective
coordinates (X,.Y;,Z,zy') of the point R can be derived using the dynamic

transformation functions 7.1. This is shown in appendix B-II to obtain the formulas in

equation 7.13 for computing R =2P.

7.4.2 Mixed Dynamic Projective Coordinate System for E/GF(2™)

Formulas 7.12 are obtained using uniform transformation in which £ and L, are

the same for the three points P, Q and R. More general addition formulas can be obtained
by using mixed transformation where each coordinate in each point has its own projecting

parameter. In this case, projecting parameters L L, are used for P, L,,L , are used for

Qand L,L, are used for R.
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Theorem 7.7: Given two  elliptic  curve points represented in  DPC,
P=(X,Y,,Z, 2"y e EIGFQ2"), O=(X,.,Y,,Z"*,Z,*) e E/GF(2"), and denoting
the point R = (X,,Y,,Z5,Z{"*) e E/GF(2") as the addition of the two points P and O,

i.e. R = P+ Q, the coordinates of the point R is given by:

X3 — X;RdLﬁ*ZTLﬁ*l
}73 _ Y;Rdl‘y]_:;TL‘v}_l

Zy =(RT)™
7y =(RT)"™
where, U, =Y,Z", U,=YZ* U=U, +U,, 7.14

Vi=X,ZM, V,=X,Zy2, V=V, +V,,
R=VZ'Z;*, T=2"Z, T =UT,
X, =TT(T, + R)+ R*(V +al),

Y, =T,(UV, +VU, )+ X,(T;, + R)

d=3, L;>0, L;>0

Proof: The proof of Theorem 7.7 is similar to the proof of Theorem 7.5 with replacing

each z» by z and each z by z"* where, i = 1,2.

Formulas 7.13 are obtained using uniform transformation in which L, and L, are
the same for P and R. More general doubling formulas can be obtained by using mixed

x1»

transformation. In this case, projecting parameters L,,L , are used for P, and L,;,L ; are

used for R.
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L

Theorem 7.8: Given an elliptic curve point represented in DPC, P=(X,,Y,,Z,Z"") e
E/GF(2"), and denoting the point R = (X,,Y,,Z1", Z3L ") e E/GF(2™) as the addition of

the point P to itself, i.e. R =2P, the coordinates of the point R is given by:

Xy =X,8%7

Y3 _ Y3-SdL),_.,73

Z3LX _ (Sd )L.xs

zi=(s") 7.15

Where, leXlzZlL“, TzzYlleL"‘, W=T +T,, S:XlzlL“ZILyl
X, =W(W +5)+aS*
Y, =ST,(W +T,)+ X,(W +S)
d>3, L;>0, L;>0

Proof: The proof of Theorem 7.8 is similar to the proof of Theorem 7.6 and is omitted

here for space limitations.

7.4.3 Optimized Dynamic Projective Coordinate System for E/GF(2™)
Addition and doubling formulas 7.12 and 7.13 are the most general homogenous

formulas for £/ GF(2™) without any restriction in the values of the projecting parameters

L, and L,. However, their computation complexity can be reduced by reproducing these

formulas with taking Z, and Z, as common factors in each equation (whenever it is

possible) and simplify the resultant formulas by eliminating the unnecessary terms. This

. . L-L, . .- . .
results in the existence of terms such as Z,* ™, in which its power is a relation between
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L, and L. Existence of such terms requires providing either pure Z-coordinate (i.e. not

raised to any power) or the required term as a ready computed value in the point

representation. This can be achieved with the help of the following lemma.

Lemma 7.4: Any point O =(x,y) € E/GF(2") represented in affine coordinates can be
transferred to a 5-tuple projective point P = (X,Y,Z,ZL",ZL*‘) € E/GF(2") where, 7,

7% and z% #0.

Proof: Since the values, Z, Z* and Z b , are available within the 5-tuple representation

of the point, proof is follows directly from 7.1.

Appendixes C-II and D-II present the derivation of optimized addition and

doubling formulas respectively. The optimized addition formulas are:

X, =x,y"7?

L=ryt

Z,=vT

Zy =(VIT)"™

Zy =iT)"-

where, U, =Y,2*, U,=YZ,”, U=U+U,,
Vi=X,Zl, V,=X,Zy, V=V, +V,
r=22, T,=vr""
X, =U0r""(U+T,)+aV’T" +V*
Y, U7V, + X))+ VU, + X7,
L,—L >0, 3L -2L >0, dL,-220, dL,—3>0

7.16

and the optimized doubling formulas are:
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X, =X, 8%
Y, =10
Z, =81
zp=(sf
zb =(s*) 7.17
Where, T=Y,Z}"™, W=X!+T, S=XZk

X, =w(W +5)+aS*

Y, =SX (W +T)+ X,(W+S)

2L,~L,>0, dL -2>0, dL,—320

Formulas 7.16 and 7.17 are obtained using uniform transformation functions.

Similar mixed optimized formulas can be obtained using the same way as in appendixes
C-II and D-II with replacing each z* by z¢ and each z" by z" where, i = 1,2. The

mixed optimized addition formulas are:

X, = X,R"="
Y, =Y, R
Z,=R’
z = ()"
2 =)
where, U, =Y,Z", U,=YZy*, U=U,+U,,
Vi=X,Z, V,=XZ, V=V +V,,
T,=22y, T,=2"2,", R=VI,, R=V(Z""Z"")
X, =UT}(U +R,)+RR,(V +aT;)
Y, = R*(UV, +VU,)+ X,(UT, +VT,)
L,-L,20, L,-L,>0, dL,-220, dL,-320

x1 =

dL,3=3

7.18

and the mixed optimized doubling formulas are:
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X, =X, 8%

Y, =Y

Z,=8"

zie =(s")"

zi = (s) 7.19

Where, T=YZ!"™ W=X2+T, S=XZ!
X, =WW +8)+aS’
Y, =SX}(W +T)+ X,(W +5)
2L,-L,20, dL,-220, dL,-320

7.5 Conclusions

In this chapter, a new approach called Dynamic Projective Coordinate (DPC)
system was presented. In DPC, we first proposed a general transformation functions that
can be used to project x and y coordinates of any point to any projective coordinates. Then
these transformation functions are used to derive dynamic addition and doubling formulas
for both E/GF(p) and E/GF(2"). However, three types of formulas for both addition and
doubling operations were presented. First, general formulas in which there is no

constraints on the projecting parameters L, and L, with d > 3. Second, optimized

formulas that reduce the number of required computations by selecting projecting
parameters according to certain rules. Third, mixed formulas in which each coordinate can
be projected using its own projecting parameter resulting in the most mixing degree of

coordinates ever. By this way, coordinates of the same point can be represented in
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different coordinate systems. The detailed steps for deriving each type of these formula
are presented in appendices.

The resulting DPC allows the computing/encrypting device to select the projective
coordinate either at random, or according to a certain rule. Therefore, DPC automates the
selection of the projective coordinate system and uses a single mathematical

formulation/software code to implement different projective coordinate systems.



CHAPTER 8

Performance and Using of DPC

8.1 Introduction

We mean by performance of DPC system is the number of required field
arithmetic operations (computations) for addition and doubling operations. The less the
number of required computations the faster the system we get. As in [23]-[25], for
simplicity, we neglect addition, subtraction and multiplication by a small constant because

they are much faster than multiplication and inversion operations.

To analyze the performance of DPC, we have to compute the number of field
operations in each formula of the formulas presented in chapter 7. Therefore, a method for
computing the number of computations in a dynamic formula is required. In this chapter

we provide such a method that can determine the number of computations as a function of

the projecting parameters Z" and Z “ and d parameter.

As shown in chapter 7, the conventional homogenous and Jacobian coordinate

systems are special cases of DPC. Hence, by selecting the appropriate Z* and Z“ and d

121
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parameters, we compare the DPC with these coordinate systems. Moreover, Mixed DPC

system is compared with the mixed coordinates (section 5.7 in chapter5).

The rest of this chapter is organized as follows. Section 8.2 presents a method of
computing the number of field operations that can be applied for both E/GF(p) and
E/GF(2"). The performance of DPC in E/GF(p) and in E/GF(2") is discussed in sections
8.3 and 8.4 respectively. Using DPC is addressed in section 8.5. Finally, conclusions are

given in section 8.6

8.2 Calculating the Number of Field Operations in DPC System

To calculate the number of field operations in any DPC formula of the addition

and doubling formulas presented in chapter 7, the following points should be noticed.

e First, the number of field operations in a DPC formula consists of two parts. Partl
is a constant number of operations that must be performed regardless of the values

of L., L, and d. Examples of partl are the field operations required to compute

the auxiliary variables U and V in all addition formulas (i.e. formulas 7.3, 7.5, 7.7,
7.9, 7.12,7.14, 7.16 and 7.18 ) and compute the auxiliary variables / and S in all
doubling formulas (i.e. formulas 7.4, 7.6, 7.8, 7.10, 7.13, 7.15, 7.17 and 7.19).
Part2 is the number of field operations required to compute the terms that are

raised to some powers and these powers are functions of £, L, and d. Examples

of part2 are the field operations required to compute Z;* and Z3L * in all formulas.
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e Second, the total number of field operations in any formula is the summation of

partl and part2. Hence the total number of field operations is a function of L, L,

and d even of a part of it is a constant number.

Let a(T,B) and S(T,B) be two functions that calculate, respectively, the number

of multiplication and squaring operations required to raise some term, 7, to the power of
B. Then these alpha and beta tfunctions are used to determine part2 of the total number of

required field operations in any formula. Let the binary representation of B is:

B=b,,2""+b,,2"7 +......+ b2 +b, with [ bit length. Then the average number of ones
in B is //2. Hence, according to the square and multiply method, the average values (E) of
a(T,B) and B(T,B) are given by:

E(a(T,B))=1/2 multiplications;  E( A(T,B)) =/ squaring. 8.1

However, without loss of generality, L, and L, can be selected in a way that

minimizes part2 computations such as selecting them to be powers of 2. In this case, part2

computations become squaring only which are faster than multiplications.

In the following, we present a full example of how the number of field operations
are calculated in a DPC formula. Consider the optimized addition formula 7.7. The

number of field operations in this formula is computed as in table 8.1:



Table 8. 1: Number of field operations in addition formula 7.7
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Term # of Multiplications (M) # of Squaring (S)
U 2
14 2
T 1
T, 0 if L,—L =0 0 ifL,~L =0
I+a(T,L,—L,) otherwise B(T,L,—L,) otherwise
X, 24 [0 if 3L,~2L, =0 7+ [0 if 3L, 2L, =0
1+a(T3L,~2L,) otherwise B(T3L, -2L,) otherwise
Y, 2
X, 0 if dL.—2=0 {0 if dL,—2=0
l+a(V,dL -2) otherwise BV .dL,=2) otherwise
Y; 0 ifdL,-3=0 {0 if dL,—3=0
I+a(V,dL,—3) otherwise BYV.dL,=3) otherwise
Zy
v 1+ max(a(V‘T,L,),a(V'T,L,) max(B(V‘T,L,), BV T,L))
3
0 ifL,—L =0 0 if L,—L =0
+ ’ +
Il+a(T,L, —L,) otherwise B(T,L,~L,) otherwise
Totals . 0 if 3L, -2L, =0 . {0 if 3L,-2L, =0
1+a(T3L, —2L,) otherwise BT 3L, —2L,) otherwise
0 ifdL,-2=0 +{0 if dL,-2=0
+ .
l+a(V,dL, —2) otherwise BV,dL,=2) otherwise
0 if dL, ~3=0 +{0 if dL,-3=0
* I+a(V,dL, —3) otherwise BV ,dL, =3) otherwise

+max(a(VT,L,),a(V'T,L,)

+max(B(VT,L,), p(V'T,L,)

By setting £, = L, = 1 and d = 3 we get a total number of computations equals to

24+2+14+0+3+2+14+0+1 = 12M and 0+0+0+0+2+0+0+0+0 = 2S which is identical to the

number of computations in homogenous coordinate system (section 5.3).
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The number of computations in other DPC formulas are computed in the same

way discussed above. However, it is important to mention that the above method is

applied in both cases when using DPC for E/GF(p) and for E/GF(2").

8.3 Performance of DPC for E/GF(p)

As presented in chapter 7, there are several DPC formulas for £/GF(p) for addition
and doubling operations. These formulas range from general formulas in which no

constraints in selecting L, and L, (with d=3) to formulas that can be used according to
certain selection rules of L_and L, such as 3L, —-2L,>0 or L,~L >0. However, if the
main goal is enhancing the performance, then clever selection of L., L, and d can reduce
the number of computations dramatically.

Tables 8.2 and 8.3 show the computation times in terms of the required number of

multiplication and squaring operations for addition and doubling operations respectively.
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Table 8. 2: Computation times for DPC addition operation in E/GF(p). a € (0,1)

Formula

Multiplications (M)

Squaring (S)

General-Uniform d > 3

18+ max(e(R, L), (R, L))

2+ max(ﬂ(Rd,Lx),ﬂ(RdsLy))

General-Mixed d > 3

18+ max(a(R?,L,,),a(R",L,,))+
max(a(T;", L)), (T, L)

2+max(B(R',L,), B(R', L))+
maX(ﬂ(TId B Lx3)n ﬂ(TId s Ly3 ))

Optimized-Uniform . {0 ifL-L =0 . {0 ifL,—L, =0
d>33] 2L 50 L ~L 0 l+a(T,L,~L,) otherwise B(T,L,—L,) otherwise
Lo 0 if 3L,~2L, =0 0 if3L,-2L,=0
* {1 +a(T 3L, -2L) otherwise " {ﬁ(T,3LI —2L,) otherwise
+{o ifdL,—2=0 +{0 ifdL,—2=0
l+a(V,dL,—2) otherwise BV.,dL, -2) otherwise
+{0 if dL,~3=0 +{0 ifdL,-3=0
1+a(V,dL,~3) otherwise pV,dL, —3) otherwise
+max(a(V'T, L,),a(V'T,L,) +max(B(V ‘T, L,), BV ‘T,L,)
Optimized—Mixed 0 ifLy—L,=0 0 ifL,-L,=0
A3 1 1 50 L.—L.50 ANDL,~L, =0 ANDL, L, =0
v y2 T l+a(Z,L,~L,) ifL,~L,=0 B(Zy L, —L,) ifL,~L,=0
s ANDL,=Lo>0 | ANDL,, ~L,>0
l+a(Z,,L,-Ly)  ifL,—L,=0 BZ,L, -L,) ifL,-L,=0
AND L, ~L, >0 ANDL, ~L, >0
2+a(Z,,L,-L,) BZ,L,-Ly)
+a(Z,,L,~L,)  otherwise +B(Z,,L,,-L,)  otherwise
0 ifdl,—2=0 +{0 ifdL,-2=0
" {1 +a(R,dL , —2) otherwise BR.dL, =2) otherwise
0 if dL,,~3=0 +{0 if dL,; =3=0
i {1 +a(RydL,, ~3) otherwise BR,dL,; =3) otherwise

d d
+max(a(R,L,),a(R",L,)

+max(B(R,L,), B(R",L,)

Equivalent homogenous PC 13 2
d=3 L.,=L,=1
12 3

Equivalent Jacobian PC
d=1,L,=2, L,=3
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Table 8. 3: Computation times for DPC doubling operation in E/GF(p). a € (0,1)

Formula

Multiplications (M)

Squaring (S)

General-Uniform d > 3

11+ max(e($9,L,) +a(s9,L,))

4+max(ﬁ(Sd,Lx)+ﬂ(Sd’Ly))

General-Mixed d >3

1 max(e(S7, L) + (87, L))+
max(a(ZlL"‘ L)+ oc(ZlL‘I ,Ly3))

5+ max(B(S7 L)+ (S L)+
max(B(Z L)+ B2 L)

Optimized-Uniform . {o if L, —L, = 0 . {0 if L, —L, = 0
d=>320 -1, 20, L ~L >0 I+a(Z,L,-L,) otherwise 1+B(Z,,L, ~L,) otherwise
4 4 N {o if 2L, —L, =0 . {o if 2L, —L, =0
l+a(Z,2L, —L,) otherwise 1+ p(Z,,2L, —L,) otherwise
+{o if dL,—2=0 +{o if dL,—2=0
1+a(S,dL, —2) otherwise 1+ B(S,dL, —2) otherwise
+{O ifdL,-3=0 +{0 if dL,-3=0
1+a(S,dL, —3) otherwise 1+ B(S,dL, —3) otherwise
+max(a(S’,L,),a(S? L)) +max(B(S*,L,), B(S, L)
Optimized—Mixed . {0 if L,-L,= 0 is {o if L,-L,= 0
d>3,50 1, 20,0, -1, >0 I+a(Z,,L, -L,) otherwise B(Z,L,-L,) otherwise
N {0 if2L,—L, =0 . {o if 2L, —L, =0
I+a(Z,,2L, - L,) otherwise B(Z 2L, —L,) otherwise
+{0 ifdL,-2=0 +{o if dL,—2=0
1+a(S,dL ; —2) otherwise B(S,dL , —2) otherwise
+{0 ifdL,-3=0 +{0 ifdL,-3=0
1+a(S,dL ; —3) otherwise B(S,dL,; —3) otherwise
+max(a(S?,L,),a(S?, L) +max(B(S’, L), B, L)
Equivalent homogenous PC 8 5
d=3L.,=L,=1
Equivalent Jacobian PC 8 5
d=11L =2L, =3,
Equivalent Modified 8 4
Jacobian

d=1L,=2L, =3,
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The first column specifies the DPC system used. The second and third columns
specify the number of multiplications and squaring respectively. The number of required
multiplications and squaring are calculated using the method introduced in section 8.2.

For example, in the case of using general-uniform addition formula (the first row of table

8.2) the number of required multiplications is 18+max(a(Rd,Lx),a(Rd,Ly)). Thus, it

requires 18 multiplications (partl) plus the maximum of «(R?,L,) and a(R‘ ,L,) (part2).

Note that we need only the maximum of these two numbers because the other one

(minimum) will be computed in the way while computing the maximum one.

Also, Tables 8.2 and 8.3 show the savings in the number of required operations in
optimized formulas compared to the general formulas. However, for further analyzing of
performance of DPC in E/GF(p), we compare it with the most popular existing
(conventional) coordinate systems, namely, homogenous (H), Jacobian (J), modified (M)
and mixed coordinate systems. Table 8.4 shows the exact number of computations in
these coordinate systems according to [23] and the corresponding equivalent systems in
DPC. The first four rows show the number of computations in the conventional projective
coordinates found in [23]. The second four rows present the DPC systems that are
equivalent to those conventional ones. The remaining rows show some possible new
mixed DPC systems that do not exist in [23]-[25]. An example of such new mixed
coordinates is DPC-H AyH. In this system the x-coordinate of the input points is

represented in homogenous coordinates, the y-coordinate is represented in affine
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coordinates and the result point is represented in homogenous coordinates. Similar other

mixed systems are listed in the table with their computation times.

Table 8. 4: Comparisons of field operations using DPC in E/GF(p).

Projective Coordinate (PC) System Addition Doubling
HHH 12M + 28 TM + 58S
1 12M + 48 4M + 6S
MMM 13M + 6S 4M + 48
AAJ SM+3S 2M +48S
Optimized DPC (DPC-HHH) d =3,L =L, =1 12M + 28 8M + 58
Optimized DPC (DPC-JJJ) d =1,L, =2,L, =3 12M + 38 8M + 58
Optimized DPC (DPC-MMM) d =1,L_=2,L, =3 12M + 48 8M +4S
L,=Ly, =0 6M +2S 4M +4S
Mixed DPC (DPC-AAJ)d =1, L,=L,=0
Li3=2,Ly;=3
L,=L,=0 ™ +2S 5M +4S
Mixed DPC (DPC-AAH) d =3, [, =L, =0
Lsy=1Ly;=1
L,=L,=0 12M + 28 ™M + 48
Mixed DPC (DPC- A\HH) d =3, [, =L, =1
Ly=Ly;=1
L,=L,=0 13M +3S T™ + 58
Mixed DPC(DPC- AJ,J) d =1, Ly=Ly,,=3
Li3=2,Ly;=3
L,=L,=1 14M +2S 10M +4S
Mixed DPC (DPC- H/AH) d =3, Ly=Ly,=0
Ly=Ly;=1
L,=L,=2 15M + 38 10M + 58
Mixed DPC (DPC- J,A\J) d =1, Ly =L,,=0
L,=2,L,;=3

(DPC-HHH = Equivalent homogenous DPC, DPC-JJJ = Equivalent Jacobian DPC DPC-
MMM = Equivalent modified DPC)
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By comparing the number of arithmetic operations of the existing coordinate
systems and the corresponding DPC systems, table 8.4 shows that addition using DPC-
HHH has the same cost as HHH. In case of Jacobian the DPC-J]J is faster than JJJ by one
square operation. Also, DPC-MMM is faster than MMM by one multiplication and 2

squaring operations.

In the case of doubling operation, HH is faster than DPC-HH by one

multiplication while JJ has less multiplications and more squaring than DPC-JJ.

By using mixed DPC formulas for E/GF(p), it is possible to hop from one
coordinate system to another during the scalar multiplication without the need to perform
any inversion operation. We mean by hopping is using a coordinate system in iteration i
of the scalar multiplication and use another (desired) coordinate system in the next
iteration, i+1. In conventional coordinate systems, hopping is achieved by first converting
the resulting point of iteration i to the desired coordinate system and then perform the
point doubling (or addition) in iteration i+1 using the desired coordinate system formulas.

In DPC, hopping is achieved by simply setting the projecting parameters L,, and L, and

d-parameter of the resulting point of iteration i to the desired values by which point
operations in iteration i+/ will be performed in the desired coordinate system. In other

words, hopping in DPC system is achieved by adjusting the projecting parameters L ; and
L,, and d-parameter of addition and doubling formulas to the values of the desired

coordinate system.
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Tables 8.5 and 8.6 show the cost of hoping among a set of possible DPC systems.

These tables show only the DPC systems that are equivalent to the conventional
coordinate systems presented in chapter 5. Other possible coordinate systems can be

obtained by using different values of L ;, L, and d.

However, it should be pointed out that the affine coordinates are used only in the
boundaries of the scalar multiplication (bolded areas in tables 8.5 and 8.6). i.e. the affine
base point is converted to any DPC system, scalar multiplication is performed and the
result is converted back to the affine coordinates. The conversion from affine to any DPC
system costs nothing since Z can be initialized to 1; while conversion back to affine
coordinates requires an inversion operation. Note that conversion back to affine

coordinates requires an inversion operation in all coordinate systems (conventional as well

as DPC) regardless of the projective coordinate system used.

Table 8. 5: Hopping cost in DPC system (E/GF(p) Addition operation)

From\ To Affine | DPC-HHH | DPC-JJJ | DPC-CCC | DPC-MMM
Affine - - - - -
DPC-HHH | 2M + | 16M +2S | I5M+ 2S | 16M + 3S I5M + 48
DPC-JJJ SM+S+l | ISM+2S | I7TM+2S | I7M + 2§ 17M + 38
DPC-CCC |3M+S+l | I8M+2S | I7M+2S | 17M + 2S 17M + 38
DPC-MMM | 3M+S+1 | I8M+2S | I7TM+2S | I7M + 28 17M + 38

Table 8. 6: Hopping cost in DPC system (E/GF(p) Doubling operation)

From\ To Affine | DPC-HHH | DPC-J1J | DPC-CCC | DPC-MMM
Affine - - - - -
DPC-HHH | 2M + | SM+55 | 7TM+ 55| 8M+ 6S M+ 7S
DPC-J1JJ 3M+S+I IM+55 | SM+55| 8M+5S SM + 6S
DPC-CCC | 3M+S+I IM+ 55 | S8M+ 55| S8M+ 5S 8M + 6S
DPC-MMM | 3M+S+I OM+4S | SM+4S | 8M+4S SM + 4S
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Tables 8.5 and 8.6 show that hoping from one DPC system to another during the
scalar multiplication does not require any inversion operation. On the other hand, in
conventional coordinate systems, the conversion form homogenous to Jacobian or to any
Jacobian variant coordinate system (i.e. C and M) requires an inversion operation as
shown in table 5.2. Same thing happens if converting from Jacobian or Jacobian variant
coordinate systems to Homogenous. However, conversion among the Jacobian and
Jacobian variant coordinate systems does not require inversion operation because they are
actually belong to the same coordinate systems (Jacobian). In other words, they use the
same transformation functions x=X/Z* and x=X/Z’, and hence no need to perform
the inversion operation. Also, note that table 5.2 shows only the point conversion cost and
does not include the cost of addition (or doubling) operation.

Tables 8.7 and 8.8 show the number of multiplications for different values of L,
and L, for E/GF(p) optimized DPC addition and doubling operations respectively. For
each value of L there are several possible choices of L (second column). These choices
increase as L_ increases. For example, in case of addition operation, if L = 1, then we
have only one L, possible value while if L, = 10 we have six possible values of L . In
case of doubling operation, if L, = 1, then we have two possible values of L while if L,
=5 we have six possible values of L, . This due to the constraints caused by the relations

between L, and L, .
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Table 8. 7: Possible values of L and Table 8. 8: Possible values of L and
L, for addition operation in E/GF(p) L, for doubling operation in E/GF(p)
Valid range Number of Valid range Number of
L, of L, multiplications L, of L, multiplications
1 1 12 1 1 7
) 2 14 2 9
3 15 2 9
3 18 2 3 11
3 4 18 4 9
4 15 3 13
4 5 17 3 4 13
6 18 5 13
5 18 6 15
5 6 21 4 10
7 19 5 13
6 18 4 6 14
7 17 7 14
6 8 17 8 11
9 16 5 13
7 20 6 15
8 21 7 15
7 9 20 > 8 15
10 22 9 13
8 18 10 15
9 19
8 10 20
11 22
12 17
9 18
10 22
9 11 22
12 20
13 19
10 20
11 21
12 19
10 13 20
14 21
15 21
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In case of addition operation (table 8.7), for a certain L, the best choice of L, is
the one with the minimum umber of ones in the binary representation of the terms
(L,-L,), (3L, -2L)), (dL,-2), (dL,—3) and (max(L,,L,)). For example, if L =5,
then the best choice of L, is 5 while the best choice for L, =101is L, = 12.

Similarly, in case of doubling operation (table 8.8), the best choice of L, for a
certain L_is the one with the minimum umber of ones in the binary representation of the
terms (L, —L,), (2L, —L,), (dL, —=2), (dL,-3) and (max(L,,L,)). For example, if L,
= 3, then the best choice of L, is either 3, 4 or 5 while the best choice for L, =51is L, =

S5o0r9.

8.4 Performance of DPC for E/GF(2™)

There are several DPC formulas for E/GF(2") for both addition and doubling
operations. These formulas range from general formulas in which no constraints in

selecting L, and L, (with d>3) to formulas that can be used according to certain selection
rules of L, and L, such as 3L, -2L,>0 or L,—L >0. Again, if the main goal is
enhancing the performance, then clever selection of L., L, and d can reduce the number

of computations dramatically.

Tables 8.9 and 8.10 show the computation times in terms of the required number
of multiplication and squaring operations for addition and doubling operations

respectively.
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Table 8. 9: Computation times for addition in DPC/GF(2"). a € (0,1)

Formula

Multiplications (M)

Squaring (S)

General-Uniform

17+max(@(R'T, L,),a(R'T, L))

1+ max(/)’(RdT,Lx),ﬁ(RdTnLy ))

General-Mixed

17+ max(@(R'T, L ,),a(R'T, L,,))

1+max(B(R'T, L ,), B(R'T, L,,))

Optimized-Uniform

d=23,3[ -21,>0,
L —-L >0

0 ifL,—L, =0
i {1 +a(T,L,—L,) otherwise

0 if 3L, 2L =0
" {l +a(T 3L, —2L,) otherwise

0 if dL. -2=0
" {1 +a(V,dL, -2) otherwise

0 ifdL,-3=0
* {1 +a(V, dLy —3) otherwise

+max(a(V'T,L,),a(VT,L,)

0 if Ly -L. =0
n
BT,L,~L,) otherwise
Lo if 3L, ~2L, =0
B(T3L, -2L,) otherwise
0 ifdL.—2=0
+
pSV,dL, —2) otherwise
NE if dL,-3=0
BV.,dL,=3) otherwise

+max(B(VT,L,),B(V'T,L,)

Optimized—Mixed 0 if L,—L,=0 0 ifL,—L,=0
R ANDL,~L,=0 ANDL,~L,=0
’ \+a(Z,,L,,~L,) if L,~L,=0 B(Z,,L,~L,) ifL,~L,=0
s AND Ly =L, >0 | ANDL,~L,>0
l+a(Z,L,~L,) ifL,-L,=0 B(Z,L,~L,) ifL,~L,=0
AND L, L, >0 ANDL, ~L, >0
2+a(Z,,L, - L,) BZ,L,—-L,)
+a(Z,,L,~-L,) otherwise +B(Z,,L,,—L,,) otherwise
+{o if dL—2=0 +{0 ifdL, -2=0
1+ a(R,dL ,—2) otherwise B(R,dL; -2) otherwise
+{o if dL,~3=0 +{0 if dL,,-3=0
1+a(R,dL, —3) otherwise BR,dL,; =3) otherwise
+max(a(R,L,),a(R*,L,) +max(B(R*,L,), B(R*,L,)
Equivalent homogenous 15 2
PC
d=3 L,=L,=1
Equivalent Jacobian PC 13 2

d=I,1,=2, L,=3
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Computation times for doubling in DPC/GF(2"). a € (0,1)

Formula

Multiplications (M)

Squaring (S)

General-Uniform

10+ max(a(s?,L,),a(5,L,))

1+ max(8(s7,L,), B(S",L,))

General-Mixed

10+ max(a(Sd L), a(S¢ oL ))

1+max(B(S*,L.,), (5", L,,))

Optimized-Uniform S 0 if 2L, — L, =0 5 0 if 2L, - L,=0
+ +
dL,>2,dL, >3 l+a(Z,,2L, —L,) otherwise 1+ p(Z,,2L, —L,) otherwise
0 ifdL,-2=0 0 if dL.-2=0
+ +
1+a(S,dL, —2) otherwise 1+ B(S,dL, —2) otherwise

0 ifdL,-3=0
+

1+ a(S,dLy —3) otherwise
+max(a(S?,L,),a(S’ L)

0 ifdL,-3=0
+

1+ B(S,dL, =3) otherwise
+max(B(S*,L,), B(S,L,)

Optimized—Mixed 0 if 2L, —L, =0 0 if 2L, ~L, =0
5+ 2+
dLy 22, dL 523 I1+a(Z,,2L, —L,) otherwise B(Z2L,—L,) otherwise
. 0 if dL,-2=0 N 0 ifdL,-2=0
1+a(S,dL ; —2) otherwise P(S,dL , —2) otherwise

0 ifdL,;-3=0
+

1+a(S,dL , —3) otherwise
+max(a(S?, L), a(S?,L,;)

0 if dL,, -3=0
+

B(S,dL,; —3) otherwise
+max(B(S*, L), A(S,L,s)

Equivalent homogenous PC

L,=L,=1,d=3

8

2

Equivalent Jacobian PC
d=1,L =2,L =3

Similar to what we did in case of E/GF(p), we compare DPC for E/GF(2") with

the conventional coordinate systems. Table 8.11 shows the exact number of computations

of these coordinate systems and the corresponding equivalent systems in DPC for

E/GF(2"). Although mixed coordinates for E/GF(2") are not existing in the literature,

table 8.11 contains some useful mixed DPC systems.
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Table 8. 11: Comparisons of field operations using DPC in E/GF(2").

PC System Addition Doubling
HHH 15M + 28 M + 58
JJJ 14M + 4S 5M + 58
Optimized DPC (DPC-HHH) d =3,L, =L, =1 15M + 28 8M +2S
Optimized DPC (DPC-JJ)) d =1,L_=2,L, =3 13M +28 ™ + 28
General Mixed DPC (DPC-AAH)d =3 8M + 1S 6M + 28

Lxl =Ly, :sz =Ly, =0

Ly=1Ly;=1

General Mixed DPC (DPC-AAJ) ™ + 1S 5M + 28
d=1
Ly=Lyy=Ly=Ly;=0

L,=2L,;=3
General Mixed DPC (DPC- A H,H) 12M + 1S 8M + 28
Lxl = Lx2 =0
d=3, Ly, =Ly, =1
Ly=Ly;=1
General Mixed DPC(DPC- A,J,J) 11M +2S ™ + 28
Lxl = Lx2 =0
d=1, Ly, =Ly, =3
L,=2,L,,=3
General Mixed DPC (DPC- H,A,H) I3M + 1S 8M + 38
Lxl = Lx2 =1
d=3, Ly =Ly, =0
Ly=1Ly;=1
General Mixed DPC (DPC- J,A,J) 15M + 28 7™ + 38
Lxl = Lx2 =2
d=1, L, =L,=0
L,=2,L,=3

DPC-HHH = Equivalent homogenous DPC, DPC-1JJ = Equivalent Jacobian DPC DPC-
MMM = Equivalent modified DPC
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In case of addition operation, table 8.11 shows that DPC-HHH has exactly the
same number of computations as in HHH and DPC-JJJ is faster than JJJ by one
multiplication and two squaring operations.

In doubling operation, DPC-HH is higher than HH by one multiplication but
lower by 3 squaring. Hence by considering S = 0.8M, as in [23], DPC-HH is in total
faster than HH. Also, DPC-]J is higher than JJ by two multiplications but lower by 3
squaring. Hence, under the same assumption, i.e. S = 0.8M, DPC-JJ is faster than JJ.

Similar to the case of E/GF(p), by using mixed DPC formulas for E/GF(2"), it is
possible to hop from one coordinate system to another during the scalar multiplication
without the need to perform any inversion operation. Tables 8.12 and 8.13 show the cost

of hopping among a set of possible coordinate systems.

Table 8. 12: Hopping cost in DPC system (E/GF(2") Addition operation)
From \ To Affine | DPC-HHH | DPC-]JJ | DPC-CCC | DPC-MMM
Affine - - - - -
DPC-HHH | 2M + | 19M+2S I18M+2S | 18M+2S 18M+3S
DPC-J1J | 3M+S+l | 20M+2S 19M+2S | 19M+2S 19M+3S
DPC-CCC | 3M+S+l | 20M+2S 19M+2S | 19M+2S 19M+3S
DPC-MMM | 3M+S+1 | 20M+3S 19M+3S | 19M+3S 19M+3S

Table 8. 13: Hopping cost in DPC system (E/GF(2") Doubling operation)
From \ To Affine | DPC-HHH | DPC-JJJ | DPC-CCC | DPC-MMM

Affine - - - - -
DPC-HHH | 2M + | SM+2S 7M+2S SM+3S SM+4S
DPC-1JJ 3M+S+I SM+2S 7M+2S 7M+2S 7M+3S
DPC-CCC | 3M+S+I SM+2S 7M+2S 7M+2S 7M+3S

DPC-MMM | 3M+S+| SM+3S 7M+3S 7M+3S 7M+3S
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Tables 8.14 and 8.15 show the number of multiplications for different values of L
and L, for E/GF(2") optimized DPC addition and doubling operations respectively. For
each value of L there are several possible choices of L, (second column). These choices
increase as L_ increases. For example, in case of addition operation, if L = 1, then we
have only one L, possible value while if L, = 10 we have six possible values of L . In
case of doubling operation, if L, = 1, then we have two possible values of L while if L,
=5 we have six possible values of L, . This due to the constraints caused by the relations
between L, and L, .

In case of addition operation (table 8.14), for a certain L, the best choice of L, is

the one with the minimum umber of ones in the binary representation of the terms

(L,-L,), (3L, -2L)), (dL,-2), (dL,—3) and (max(L,,L,)). For example, if L =5,
then the best choice of L, is 5 while the best choice for L, =101is L, = 12.

Similarly, in case of doubling operation (table 8.15), the best choice of L for a
certain L_is the one with the minimum umber of ones in the binary representation of the
terms (2L, —L,), (dL,—2), (dL,-3) and (max(L,,L,)). For example, if L = 3, then

the best choice of L, is either 3, 4 or 5 while the best choice for L, =51is L, =5 or 9.



Table 8. 14: Possible values of L_ and
L, for addition operation in £/GF(2")
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Table 8. 15: Possible values of L and
L, for doubling operation in E/GF(2")

h

=

Valid range
of L,

Number of
multiplications

8
10

10
12
10

14
14
14
16

11
14
15
15
12

WL b BB DB DBRWLWWWWINDDNDND|(=—

O 0 1 O LN I N N AN b WIR W~

—_
(=]

14
16
16
16
14
16

Valid range Nurpbq o.f
multiplicatio

L, of L, ns
1 1 15
2 17

2 3 18
3 21

3 4 21
4 18

4 5 20
6 21

5 21

5 6 24
7 22

6 21

7 20

6 8 20
9 19

7 23

8 24

7 9 23
10 25

8 21

9 22

8 10 23
11 25

12 20

9 21

10 25

9 11 25
12 23

13 22

10 23

11 24

12 22

10 13 23
14 24

15 24
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8.5 Using DPC System

One of the most important features of DPC is that it automates the selection of the
projective coordinate system and uses a single mathematical formulation/software code to

implement different projective coordinate systems. In other words, different projective

coordinate systems can be implemented by using different values of z% , z" and d. For

example, consider DPC addition formulas 7.7 and doubling formulas 7.8. By setting

L,=L, =1 andd = 3, we get the following addition and doubling formulas:

Addition:

X, =XV, Y,=Y,, Z,=V'T,
where, U,=Y,Z,, U,=YZ,, U=U,-U,, V,=X,Z,, V,=X,Z,, V=V, -V,
T=272, T,=V, X,=UT-V’-2V*,, Y,=UVV,-X,)-U,V’

Doubling:

X,=X,8, ,=Y,, Z,=5"
Where, W =3X!+aZ}, S=22Z,Y, T=W, T,=8Y, T,=2TX,,
Xy=T"-21,, Y,=T(I,-X3)-4L}’Z,

Which are identical to the homogenous projective coordinates system (section 5.3
in chapter 5) in which the transformation functions: x=X/Z and y=Y/Z are used.
Also, By setting L, =2, L, =3 and d = I, we get a DPC system that is identical to the

Jacobian projective coordinates system (section 5.3 in chapter 5) in which the

transformation functions: x=X/Z? and y=Y/Z 3 are used.
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DPC system can be plugged to any scalar multiplication algorithm such as those in
[3] and [14] without any restriction. The only thing that is needed to be done is selecting

the values of the projecting parameters L, and L, and the d-parameter. However, there

are two possible modes for using DPC with any scalar multiplication algorithm. First, is
initializing the coordinate system and selecting the projecting and d parameters in the
beginning of the scalar multiplication and fixing that system for the whole scalar
multiplication iterations. Second, is allowing projective coordinates hopping at any time
during the scalar multiplication.

In scalar multiplication, it is required to perform a series of doubling and addition
operations where the result of one operation is used as input operands to the other. This
prevents conventional mixed coordinates from benefiting from the efficient mixed
coordinates such as using HHH for addition and JJ for doubling. This is, however,
because the result of the ADD operation is represented in H coordinates while the input
of the DBL operation must be in J representation. The conversion from H to J
representation requires an inversion operation as shown in table 5.2. This kind of
problems do not exit in DPC system since it is possible to dynamically change from one
coordinate system to another without any inversion operation simply by using mixed DPC

formulas with setting L ; and L, to the desired values.

In window based methods, DPC can use different projective coordinate systems
for different phases of the scalar multiplication. Fore example, a certain coordinate system
can be used for the pre-computation phase of the scalar multiplication while other

coordinate systems can be used for addition and/or doubling operations in the main loop.
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Furthermore, different blocks (or windows) of the scalar K can use different projective
coordinate systems.

Finally, it worth to mention that each run of the scalar multiplication can start with

new coordinate system every time. This is because DPC system lends itself to randomize

the scalar multiplication simply by randomizing the projecting parameters.

8.6 Conclusions

This chapter discussed the performance and using of DPC. The performance of
DPC for addition and doubling operations in both E/GF(p) and E/GF(2") has been
analyzed. We conclude that the number of field operations required is a function of the

projecting parameters L, and L, and the d-parameter. Various tables that show the

number for required operations for several coordinate systems were presented.

Also, this chapter studied how the DPC can be used. DPC uses a single
mathematical formulation/software code to implement different projective coordinate
systems. Hence, we conclude that DPC system can be plugged to any scalar multiplication
algorithm. However, two possible modes for using DPC with any scalar multiplication
algorithm were been discussed. First, initializing the coordinate system and selecting the
projecting and d parameters in the beginning of the scalar multiplication and fixing that
system for the whole scalar multiplication iterations. Second, is allowing projective

coordinates hopping at any time during the scalar multiplication.



CHAPTER 9

Scalar Multiplication Security In Presence of DPC

9.1 Introduction

Since the scalar multiplication is the part of any elliptic curve cryptosystem that is
directly correlated to the secret scalar K, researcher have become increasingly aware of
the possibility of side channel attacks that exploits specific properties of the
implementation of the scalar multiplication. As discussed in chapter 6, there are many
countermeasures that can be used to protect against these attacks. However, non of these
countermeasures are guaranteed to defeat all the side channel attacks. For example, many
countermeasures against differential power analysis attacks rely on randomizing the
projective coordinates. But all these countermeasures are vulnerable to the projective
coordinates leak since they depend on pre-determined projective coordinate systems.
Moreover, these countermeasures are vulnerable to the newly proposed attacks such as

RPA, ZPA, DA, ABDPA attacks.

According to the proposed classification, presented in chapter 6, of side channel
attacks, in this chapter, we propose and analyze countermeasures for operation-and-data

dependent and data-dependent attacks. We mean by operation-and-data dependent attacks
144
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is the attacks that are based on both the data being manipulated and the operations being
performed on this data. Also, we propose countermeasures for address-dependent attacks.
For each of the proposed countermeasure, we provide the security and complexity

analysis.

All the proposed countermeasures are based on using the DPC system as the
coordinate system. This is because the DPC system lends itself to randomization simply

by randomizing the projecting parameters L, and L, and/or d-parameter. Also, all the

proposed countermeasures are applied to both E/GF(p) and E/GF(2").

However, the following notations are used through out this chapter. DPC_ADD
means any DPC addition formula. DPC_DBL means any DPC doubling formula. Also,
we use the word "mixed" or "optimized" in front of these notations to specify the mixed

and optimized DPC formulas.

This chapter is organized as follows. Section 9.2 discusses the proposed
countermeasures  for  operation-and-data  dependent attacks. The  proposed
countermeasures for address-dependent attacks are addressed in section 9.3. Finally,

section 9.4 gives the conclusions.

9.2 Countermeasures for Operation and Data Dependent Attacks

As discussed in chapter 6, most of attacks are operation-dependent and at the same
time data-dependent such as DPA and DA attacks. Some other attacks are data-dependent

only such as RPA, ZPA and PCL. The existing countermeasures (section 6.9) do not
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defeat all these attacks. More precisely, if a countermeasure defends one attack it may not
defend the others. In the following, we show the attacks that each countermeasure cannot

defend according to the mentioned reference.

e Randomizing the base point (code = 010). (Coron's 2" countermeasure) does not

protect RPA [30].

¢ Randomizing projective coordinates (code = 010) does not protect RPA, ZPA

[31].
e Randomizing the scalar (code = 001) does not protect PCL [42].

e N. Smart's trick (code = 010) does not protect RPA, ZPA [31] and some cases of

PCL [42].
e Non of the above countermeasures protect address bit DPA (ABDPA) [38].

Therefore, it is desired to find countermeasures to protect against these type of attacks.
In this chapter, we propose three countermeasures for operation-and-data dependent and
data-dependent attacks and two countermeasures for address-dependent attacks. All the

proposed countermeasures are based on the following lemma.

Lemma 9.1: By randomizing the projecting parameters L, and L, and/or d parameter in

any addition and doubling DPC formula, both the data being manipulated and the number

of operations being performed are randomized.
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Proof: Given that L, and L, and/or d are initialized randomly. Then the proof consists of

the following three parts:

1. Each auxiliary variable 7 in any formula of the formulas presented in chapter 7 is a

function of either L, , L, and/or d. Hence, the value of T is randomized since L,

and L, and/or d are initialized randomly.

2. Each of the variables X,, ¥, Z and Z,” which form the resultant point
(X,,Y,,Z5,Z) of any formula of the formulas presented in chapter 7 is a
function of either L, , L, and/or d. Hence, the values of these variables are

randomized since L, and L, and/or d are initialized randomly.

3. As shown in tables 8.2, 8.3, 8.9 and 8.10, the number of required operations for
each formula of the formulas presented in chapter 7 is a function of eitherZ,, L,
and/or d. Hence, the number of required operations are randomized since L, and

L, and/or d are initialized randomly.

In the following, we introduce the proposed countermeasures and for each

countermeasure, we do the following:

e Apply the countermeasure to the binary ML and binary NAF algorithms (4.2 and
4.8) respectively. We have chosen these two algorithms because they are the most

widely used scalar multiplication algorithms.
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e Analyze the security of the countermeasure by showing the attacks that the
countermeasure can resist and how; and the attacks that the countermeasure cannot

resist and why.

e Analyze the complexity of the countermeasure by showing the cost in terms of
number of field operations required for the countermeasure itself and the cost of

applying it to the ML and binary NAF algorithms.

Countermeasure 1: This countermeasure uses the DPC system with randomly initialized

projecting parameters, L., L, and d. Countermeasurel randomizes L , L, and d in the

beginning of each run of the scalar multiplication. Hence, each execution of the scalar
multiplication has its own coordinate system with different data values and different
number of field operations. Although any DPC addition or doubling formula can be used
for this countermeasure, it is preferred to use the optimized formulas since they require
less number of field operations such as using formula 7.7 for addition in £/GF(p) and 7.16

for addition in GF(2") (see tables 8.2, 8.3, 8.9 and 8.10).

Algorithms 9.1 and 9.2 show the application of this countermeasure to the binary

ML and binary NAF algorithms (4.2 and 4.8) respectively (N is positive integer).
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INPUT K, P
OUTPUT KP

7. L,=rand(1.N), L =rand(1..N), d = rand(3..N)

8. SetZ =1 then compute P = (X,Y,1,1)
9. Initialize Q[2]=P

10. fori=n-2downto 0

11. Q[0]=DPC_DBL(QI[2])

12. Q[1]=DPC_ADD(Q[0], P)

13, Q[2]=Qlk]

14. end for

15. Convert Q[2] to affine coordinate.
Return Q[2]

Algorithm 9. 1: Binary ML algorithm with countermeasurel

Input: An integer K an a point P = (x,y) € E/GF(q)
Output: The point Q = KP € E/GF(q)
1. Compute NAF(K) = (uy; ... ujug)

2. L =rand(1.N),L, = rand(l..N), d =rand(3..N)

3. SetZ =1 then compute P = (X,Y,1,1)

4. Q=

5. forj=1[-1downto0do

6. Q=DPC DBL(Q)

7. ifu;=1 then

8. Q=DPC _ADD(Q, P)

9. ifu;=-1 then

10. Q=DPC _ADD(Q, - P)

11. Convert Q to affine coordinate.
Return (Q)

Algorithm 9. 2: Binary NAF algorithm with countermeasurel

Security analysis of Countermeasurel:

The number of field operations in DPC_ADD and DPC_DBL is determined in the

beginning of the scalar multiplication when the values of L , L, and d are initialized.

These numbers remain fixed during the whole scalar multiplication. In the next run of the

scalar multiplication, new values of L , L, and d will be initiated and hence the number
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of field operations in DPC_ADD and DPC_DBL will be changed accordingly. Based on

that, this countermeasure can resist DPA, DFA, DEMA and DA.

Also, any register used in DPC_ADD and DPC_DBL operations changes at each

execution. Hence this countermeasure is resistant against RPA, ZPA and PCL attacks.

Since countermeasurel has nothing to do with addresses of variables, algorithm
9.1 is not immune against ABDPA. This is because there is still a direct correlation
between the register transfer operation in step 7 and the scalar bit value. On the other
hand, algorithm 9.2 is immune against ABDPA by its nature since the locations of
operands of DPC_ADD and DPC DBL operations are independent of the scalar bit

values.

Finally, it is worth to mention that countermeasurel resists SPA since it uses
double-and-add always method in algorithm 9.1. In algorithm 9.2, the addition operations

are not conditioned by the value of the scalar bit.

Complexity analysis of Countermeasurel:

As discussed in chapter 4, let the binary representation of the scalar K is

K=k, 2" +k, ,2"7 +.....+ k2 + k, where n is the number of bits.

Let 4 and D denotes the number of field operations (multiplications + squaring) in
DPC ADD and DPC DBL respectively. In other words, 4 contains the number of

multiplications and squaring in DPC_ADD and D contains the number of multiplications
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and squaring in DPC_DBL. Fore example, 4 = I12M + 2§ and D = 8M + 5§ in case of
using DPC-HHH system. Since the DPC_ADD and DPC_DBL operations are performed
in each iteration of algorithm 9.1 (double-and-add always), then its Expected Running

Time (ERT) is given by [52]:
ERT(Algorithm 9.1) = An + Dn 9.1
With n being the bit length of the scalar K.

The values of 4 and D are given in tables 8.2 and 8.3 for £/GF(p) and in tables 8.9
and 8.10 for E/GF(2"). Note that the number of field operations in 4 and D differ from
one DPC formula to the other. For example, the ERT of algorithm 9.1 when using the

general DPC_ADD and DPC_DBL formulas is given by:
ERT(Algorithm 9.1) =

(18+ max(E(a(R?, L)), E(@(R, L, )))+11+max(E(@(S?, L)) + E(a(S*,L,)))) nM +
(2+max(E(B(R?, L)), E(B(R?, L,)))+ 4+ max(E(B(S*, L))+ E(B(S*,L,))))nS

Where the letter £ before alpha and beta functions means their expected values which are
given by equation 8.1 (see section 8.2). Note that M denotes multiplication and S denotes
squaring.

Table 9.1 shows the expected running times of algorithm 9.1 when using some

specific DPC system.
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Table 9. 1: Expected running times of algorithm 9.1 for specified DPC systems

Coordinate system ERT in case of E/GF(p) | ERT in case of E/GF(2™)
Optimized DPC-HHH 20nM+Tn S 23nM+4n S
Optimized DPC-JJJ 20nM+8nS 20nM+4n S

n = bit length of the recoded scalar, M = multiplication and S = squaring

In case of algorithm 9.2, given that the binary representation of the recoded scalar

U= NAF(K) is given by:
U=u,_ 2" +u, 27+ +u2+u, 9.2

Then according to [52] the average density of non zero digits in U is //3 where [ is

the bit length of U. Based on that, the expected running time of algorithm 9.2 is:
ERT(Algorithm 9.2) = éA+Dl 9.3

with 4 and D given in tables 8.2 and 8.3 for E/GF(p) and in tables 8.9 and 8.10 for
E/GF(2"). For example, the ERT of algorithm 9.2 when using the general DPC_ADD

and DPC_DBL formulas is given by:

ERT(Algorithm 9.2) =

((18 + max(E(a(R,L,)), E(@(R", L, ))))é +(11+ max(Ea(S*,L,)) + E(a(S, L, ))))zj M+

(2+max(E(BR?, L,)), E(B(R? L))+ 4+ max(E(B(S*, L)+ E(B(S*,L,))))SI
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Table 9.2 shows the expected running times of algorithm 9.2 when using some

specific DPC systems.

Table 9. 2: Expected running times of algorithm 9.2 for specified DPC systems

Coordinate system ERT in case of E/GF(p) | ERT in case of E/GF(2™)
Optimized DPC-HHH 121 M +5.661 S 13/ M +2.66]S
Optimized DPC-JJJ 12IM+6lS 11.331 M+2.661 S

/ = bit length of the recoded scalar, M = multiplication and S = squaring

Countermeasure 2: This countermeasure is based in using DPC in conjunction with

exponent (scalar) splitting (ES) method as follows:
1. ES splits the scalar K into two parts R and (K — R) using a random number R.

2. Computes A, =RP, P,=(K—-R)P andthen KP=PF,+P,.

B and P, are computed using DPC with randomly initialized projecting
parameters. These parameters could be the same for both points (i.e. for A and P,) or

be different. In case of different projecting parameters, the final addition to get

KP =P +P,, is performed either using a mixed addition formula that allows using

different projective coordinates, or performed using the affine coordinates since it is

the last operation and the final result should be presented in the affine coordinates.

Let the number of bits in R and (K — R) be n, and n, respectively. Then the binary

representation of R is given by,
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n—-1 n-2
R=r 2" +r 2"  +... +r2+7,

n

Algorithms 9.3 and 9.4 show the application of this countermeasure to the binary
ML and binary NAF algorithms respectively. Note that in case of binary NAF,
countermeasure? splits the scalar before recoding and then R and (K — R) are recoded
separately. In this case, n, and n, become the bit length of U/ and U2 respectively.
However, note that the binary representation of the recoded scalar is

U=u,_ 2" +u, ,2"7 +.....+u,2 +u, (see section 4.5.3) with bit length / equals to n

or grater by only 1.

Security analysis of Countermeasure?2:

The security analysis of countermeasurel is applicable to phasel and phase2 of
countermeasure2. That is, each phase is immune against DPA, DFA, and DA since the
number of operations is randomized and immune against RPA, ZPA, and PCL since the
data manipulated is also randomized. Furthermore, countermeasure? resists SPA and DPA
in the same way discussed in countermeasurel. Also, algorithm 9.3 does not resist

ABDPA for the same reason addressed in countermeasurel.

However, countermeasure2 has an additional security strength resulting from
random splitting the scalar into two scalars. This is because in each run of the scalar
multiplication the data and the number of operations will be randomized since R and (K —

R) will have different values in each run.
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INPUT K, P
OUTPUT KP
Phase 1:
1. R=rand(l..K-1)

2. L =rand(l.N) , L =
rand(3..N)

rand(1..N), d =

3. SetZ =1 then compute P = (X,Y,1,1)

4. Initialize Q[2]=P

5. fori= n-2downto0

6. Q[0] = Optimized DPC_DBL(Q[2])

7. Q[1] = Optimized DPC_ADD(QI[0], P)

8. Q[2]=Q[r;]

9. end for

10. B =Q[2]

Phase 2:

11. K=K-R

12. L = rand(1.N) , L = rand(1.N), d =
rand(3..N)

13. Set Z =1 then compute P = (X,Y,1,1)

14. Initialize Q[2] = P

15. fori= n,-2downto0

16.  Q[0] = Optimized DPC_DBL(QI[2])
17.  Q[1]=Optimized_DPC_ADD(Q[0], P)
18.  Q21=Qlk;]

19. end for

2. B =R +Qp]

21. Convert A to affine coordinate.

Return (F)

Input: K, P
Output: The point Q = KP
1. R=rand(l..K-1)
Phase 1:

2. Compute NAF(U)=(u, ,u, , .. Uy)
3. L = rand(1.N) , L = rand(1.N), d =

rand(3..N)

4. SetZ =1 then compute P = (X,Y,1,1)

5. Q=

6. fori= n, - 1downto0do

7. Q=Optimized DPC_DBL(Q)

8. ifu, =1 then

9. Q = Optimized DPC_ADD(Q, P)

10. if u, =—1 then

11. Q = Optimized DPC_ADD(Q, — P)

12. B=0Q

Phase 2:

13. Compute NAF(K-R) U = (u, , u, , ..
u,)

14. L = rand(1.N) , Ly = rand(1.N), d =
rand(3..N)

15. Set Z=1 then compute P = (X,Y,1,1)

16. Q=

17. fori= n, - 1 downto 0 do

18. Q = Optimized DPC_DBL(Q)

19. if u; =1 then

20. Q =Optimized_DPC_ADD(Q, P)

21. if u; =-1 then

22. Q = Optimized_DPC_ADD(Q, — P)

23. B=B + 0

24. Convert B to affine coordinate.
Return (F)

Algorithm 9. 3: Binary ML algorithm with
countermeasure?2

Algorithm 9. 4: Binary NAF algorithm with
countermeasure?2
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Complexity analysis of Countermeasure2:

Countermeasure2 computes KP by almost the same cost as countermeasurel since
each phase uses the double-and-add always method. However, there are an extra final

addition operation to compute KP=F, +P,. Also, computing K = K — R requires one

word-length subtraction operation which can be neglected.

Countermeasure3: A third countermeasure uses the ability of DPC to dynamically hop
from one coordinate system to another half the way in the scalar multiplication. This
hopping can be achieved by using general or optimized mixed addition and doubling
formulas. This kind of formulas have the ability to perform the addition and doubling
operations in totally different projective coordinates. Furthermore, these formulas do not
requires any inversion operation to change form one coordinate system to the other.
However, dynamic hopping can range from hopping in each iteration of the scalar
multiplication (full hopping) to non-hopping which is identical to the case of

countermeasurel.
Countermeasure3 can be performed as follows:

L.,L

x1> Hyl > Hx2>

1. Randomly initialize the projecting parameters L L,,L,,L,andd

y2 2 x3>°
parameter. Note that we need to use all these parameters since the mixed formulas

are used.

2. Start the scalar multiplication.
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3. In each iteration, based on the value of a random bit r, randomly select new
parameters L ,, L ; and d. i.e. if r =1, then L ; = rand (1.N), L ;= rand (1..N),

and d = rand (3..N); otherwise keep the old values. This random selection is called

a hop.

Algorithms 9.5 and 9.6 show the application of this countermeasure to the binary

ML and binary NAF algorithms respectively.

INPUT K, P
OUTPUT KP

I L,=rand(1.N), L, =rand(1..N), d = rand(3..N)
L ,=rand(1.N), L, =rand(1..N)

L ;=rand(1.N), L ;=rand(1..N)

Set Z =1 then compute P = (X,Y,1,1)
Initialize Q[2] =P
fori=n-2downto0
if (r=rand(0..1) = 1) then
L ;=rand(1.N), L ;=rand(1..N)

9. Q[0] =Mixed DPC_DBL(Q[2])
10. Q[1]=Mixed DPC_ADD(QI[0], P)
1. Q[21=Qrk]

12. end for

13. Convert Q[2] to affine coordinate.
Return Q[2]

NNk wWoDN

Algorithm 9. 5: Binary ML algorithm with countermeasure3
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Input: An integer K an a point P = (x,y) € E/GF(q)
Output: The point Q = KP € E/GF(q)
1. Compute NAF(K) = (u; ... ujug)

L, =rand(1.N), L, = rand(l..N), d =rand(3..N)
L ,=rand(1.N), L, =rand(1..N)

2
3
4. L=rand(1.N), L ;=rand(1..N)

5. SetZ =1 then compute P = (X,Y,1,1)

6. Q=

7. forj=1[-1downto 0 do

8 if (r=rand(0..1) = 1) then

9. L ,=rand(1.N) , L ;=rand(1.N)

10. Q =Mixed DPC DBL(Q)
11. ifu;=1 then

12. Q=Mixed DPC_ADD(Q, P)
13. if u;=-1 then
14. Q=Mixed DPC_ADD(Q, - P)
15. end for
16. Convert Q to affine coordinate.

Return (Q)

Algorithm 9. 6: Binary NAF algorithm with countermeasure3

Security analysis of Countermeasure3:

The security analysis of this countermeasure is similar to that of countermeasurel
except that it uses mixed DPC formulas in which each coordinate of each point has it own

different projecting parameters.

According to stepl of countermeasure3, the number of field operations and the
data manipulated will be randomized in each run of the scalar multiplication. Hence this
countermeasure has the same security as countermeasurel. i.e. it can defend the same
attacks defended by countermeasurel. Moreover, in any iteration of the scalar

multiplication, one or more of the projecting parameters L ,, L ; and/or d can hop to a

new random value. This introduces intermediate randomization inside execution of the
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scalar multiplication where it can guard any similarity analysis of different blocks of the

scalar multiplication.

Since countermeasure3 has nothing to do with addresses of variables, algorithm
9.5 is not immune against ABDPA. This is because there is still a direct correlation
between the register transfer operation in step 11 and the scalar bit value. On the other
hand, algorithm 9.6 is immune against ABDPA by its nature since the locations of
operands of DPC_ADD and DPC DBL operations are independent of the scalar bit

values.

Algorithm 9.5 resists SPA because of: First, it uses double-and-add always
method. Second, the projective coordinates hopping in the intermediate iterations is
applied to both the addition and doubling operations to prevent any distinguishably
between them. Recall that the addition and doubling operations are performed in each
iteration independently from the scalar bit value. Third, projective coordinates hopping
happens at random iterations without any correlation between this hopping and the scalar

bit value. i.e. the projective coordinates hopping is independent of the scalar bit values.

Also, algorithm 9.6 resists SPA because the addition operations are not
conditioned by the value of the scalar bit. Moreover, the "Third" argument above is valid

in case of algorithm 9.6 as well.
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Complexity analysis of Countermeasure3:

The expected running time of algorithms 9.5 and 9.6 are given by 9.1 and 9.3
respectively with the values of 4 and D being the number of filed operations for addition
and doubling operations for the mixed DPC formulas only. The number of field
operations of such formulas are given in tables 8.2 and 8.3 for £E/GF(p) and in tables 8.9
and 8.10 for E/GF(2"). For example, the ERT of algorithm 9.5 when using the general

mixed DPC_ADD and DPC_DBL formulas is given by:

ERT(Algorithm 9.5) =

[[1 8+ max(E(a(R’, L)), E(a(R",L,, )))+] {1 1+ max(E(@(S*, L,,) + E(a(S*, L, )))+B y
+ n

max(E(@(T*, L,)), E(a(T;" , L,,))) max(E(a(Z"" L)+ E@(Z" ,L,,)))

[2 +max(E(B(R", L)), E(B(R" L,y )))+] S+max(E(B(S*, L)+ E(B(S’,L,,)+ S
+ + n
max(E(BT L), EQBT L,1)) max(E(B(Z) L)+ E(B(Z ,L,,)

Where the letter £ before alpha and beta functions means their expected values which are
given by equation 8.1 (see section 8.2).

On the other hand, the ERT of algorithm 9.6 when using the general mixed

DPC _ADD and DPC DBL formulas is given by:

ERT(Algorithm 9.6) =
18+max(E(a(R*,L,)), E(@(R*,L,))+) ; (11+max(E(@(S’, L)+ E(@(S*,L,)))+ o
’ ~+
max(E@(T, L)L E@®' L)) )3 | max{E(@z, L)+ Bz L)

[2 +max(E(B(R', L)), E(B(R", L, )))+] [5 +max(E(B(S’, L))+ E(B(S’ ,Ly3)))+] .
+ +
max(E(B(T, L)), E(B(T,L,,) max(EQB(Z L)+ E(B(ZE L))
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9.3 Countermeasures for Address-Dependent Attacks

Since most of the scalar multiplication binary algorithms are vulnerable to
address-bit-DPA attack (ABDPA), it is desired to find an immune algorithm to such
attack. Here, we prose two ML algorisms called Add-Add algorithm and transition-based
algorithm that can be used in conjunction with DPC system. These algorithms can be used
to protect against class C attack. Fortunately, these algorithms can also be used to protect
against doubling attack. However, it is worth to mention that DPC can be plugged to any
of these algorithms. Hence, we will concentrate in describing the proposed algorithms

letting the use of DPC to be default argument.

9.3.1 Add-Add Algorithm

This algorithm is a ML algorithm. It performs one ADD operation followed by
another ADD operation in each iteration of a scalar multiplication. In any iteration of the
scalar multiplication, the first ADD and the second ADD operations are performed in a
fixed sequence (ADD > ADD). i.e. they will be performed in all iterations in the same
order independently of the scalar bit values. Note that we can get —P by simply negating
the y-coordinate of P in case of GF(p) and adding x to y coordinates in case of GF(2").

Steps of algorithm Add-Add are shown in algorithm 9.7.
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INPUT K, P
OUTPUT KP
1. Initialize Q[0] = P(or 2P); Q[1] =2P(or P); Q[2]=P
2. fori=mn-2downto0
3. Q[0]=ADD(Q[1],Q[0])
4. Q[1]=ADD((Q[0], (-1)"™Q[21)]
5. end for
return Q[ 1- ko]
Algorithm 9. 7: Add-Add algorithm

The second ADD operation performs the addition operation on the contents of
Q[0] and Q[2]. The result is stored in Q[1]. The effect of (-1)'"* in step 4 of the algorithm

can be explained as follows. First, note that the contents of Q[2] is always P. If the current
bit £, is 1, P will be added to Q[0]. Otherwise (i.e. for &, =0), —P is added to Q[0].

Figure 9.1 presents two examples of Add-Add algorithm. The upper table of the
Figure shows the values of Q[0], Q[1], and Q[2] in all iterations of calculating 173P. The

lower table shows all iterations of calculating 155P.

K |1]o]l1]o]l1]1]o0] 1
ol 1 11212 ]1] 1
Qo]| 1 | 3| 5 |11|21]43]|87][173
Quil 2 | 2| 6 [10]22]44]| 86 174
K |l1]o]lo]1]1]o]l1]1
ol 121222 ]1] 1
Qo]| 1| 3| 5| 9 |19]|39]77]155
Quj| 2| 2| 4 10|20 |38] 78] 156

Figure 9. 1: Two examples of Add-Add algorithm.
Upper table calculates 173P. Lower table calculates 155P.

Add-Add algorithm resists doubling attack by its nature since no doubling

operation at all. It resists ABDPA since it reads its operands from a fixed locations
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regardless of the scalar bit value. When —P is needed it is simply computed (it can be

computed all the times).

9.3.2 Transition-Based Algorithm

This algorithm is a ML algorithm. In any iteration, doubling and addition
operations are performed in a fixed sequence, denoted by DBL->ADD. In other words,
DBL and ADD operations are always performed in all iterations in the same order
independently of the bit values of a scalar. The most important property of this algorithm
is that in the i-th iteration of calculating KP, the selection of the input operand of DBL

operation is dependant on the existence of a transition between bits k; and k,,, of a scalar
K and it is not dependant directly on the value of k. The steps of the transition-based

algorithm are shown in algorithm 9.8.

INPUT K, P
OUTPUT KP
1. Initialize Q[0] =P; Q[1]=2P
2. fori=n-2downto0
3. Q[2]=DBL(QI1 — (ki ® ki+1)])
4. Q[0]=ADD(Q[1],Q[0]]
5. Q[II=Q[2]
6. end for
return Q[ 1- ko]

Algorithm 9. 8: Transition-based algorithm

The choice of input operand of DBL operation in step3 is based on existence of a

transition between &, and k,,, bits of the scalar. If there is a transition from 0 to 1 or from

i+1
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1 to 0 between bits k, and k,,,, Q[0] is doubled and the result is stored in Q[2]; otherwise
(i.e. k, and k,,, are both 1’s or both are 0’s and hence no transition) Q[1] is doubled and

the result is stored in Q[2].
Figure 9.2 presents two examples transition-based algorithm. The upper table of
the Figure shows the values of Q[0], Q[1], and Q[2] in all iterations of calculating 173P.

The lower table shows all iterations of calculating 155P.

K |1]o]l1]o]l1]1]o0o] 1
Q[2] 2 | 6 |10] 224486 174
Qo]| 1 | 3| 5 |11 |21]43]|87][173
Quil 2 | 2| 6 [10]22]44]| 86 174
K |1]o]Jo]a2]1]o]1] 1
Q[2] 2 | 4 |10]20]38] 78] 156
Qo]| 1| 3| 5| 9 |19]|39]77]155
Quj| 2| 2| 4 10|20 |38] 78] 156

Figure 9. 2: Two examples Transition-Based algorithm.
Upper table calculates 173P. Lower table calculates 155P.

Transition-based algorithm resists ABDPA in the sense that the same location
(address) is accessed either on a transition from 1 to 0 or from 0 to 1. Therefore, it is
difficult to detect whether this transition is from 0 to 1 or from 1 to 0. The same argument
can hold in the absence of a transition. In this case, an attacker cannot know whether the
previous bit was 1 and remains 1 or was 0 and remains 0 since the same address is used in
both cases.

Transition-based algorithm resists DA in the same scenario described above since

the operand of the doubling operation is chosen based on the existence/absence of a
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transition. The same operand is doubled either on a transition from 1 to 0 or from O to 1.
Therefore, it is difficult to detect whether this transition is from 0 to 1 or from 1 to 0. On
the other hand, in the case of transition absence, the same operand is doubled whether the

previous bit was 1 and remains 1 or was 0 and remains 0.

Countermeasure4: Combining Add-Add and Transition-based Algorithms
The first iteration of transition-based algorithm is weak against ABDPA since the

most significant bit of the key, &

n—-1»

is always known to be 1. In this case, an attacker can
find the value of the second most significant bit k, , depending on whether the input

operand of DBL operation is Q[1] or Q[0] as stated in step 3 of the algorithm. To
overcome this difficulty we use the Add-Add algorithm to perform the initial iteration.
This is because it has the property that its initial step is independent of the content of Q[0]
and Q[1] which could be either the points P and 2P or 2P and P respectively. In other
words, when using Add-Add algorithm in the first iteration, an attacker can not detect the

value of the next most significant bit, %, ,, even though the value of the most significant

n-2°

bit, k,_,, is always known to be 1. It is this property of Add-Add algorithm that is used to

n-2°
overcome the possible leaking of information about k, , in the first iteration of transition-

based algorithm. This combination of Add-Add and transition-based algorithms is used to

prevent any leakage of information about k, ,. Once the value of k,_, is protected against

ABDPA in the first iteration, transition-based algorithm is used in subsequent iterations.



166
9.4 Conclusions

This chapter discussed the security of DPC. We have proposed and analyzed
countermeasures for operation-and-data dependent and address-dependent attacks.
All the proposed countermeasures are based on using the DPC system as the

coordinate system since it has the ability to lends itself to randomization simply by

. . . L
randomizing the projecting parameters L and ™ and/or d-parameter. We conclude that

L L,

by randomizing the projecting parameters “* and ' and/or d parameter in any addition
and doubling DPC formula, both the data being manipulated and the number of operations
being performed are randomized.

Also, we conclude that all the proposed countermeasures can be applied to both

E/GF(p) and E/GF(2™).



CHAPTER 10

General Conclusions

10.1 Introduction

The main objective of this chapter is to summarize the results obtained in this
thesis. Another aim is to provide some suggestions for future work that may be carried out
based on the results obtained.

This chapter is subdivided as follows. Section 10.2 summarizes the work

undertaken in the thesis. Section 10.3 presents some suggestions for future research.

10.2 Overview and Summary of The Work in The Thesis

The work undertaken in this thesis is mainly in three parts: first, proposing the
new Dynamic Projective Coordinate (DPC) system. Second, analyzing performance of the
proposed DPC and discussing how it can be used. Third, developing DPC-based
countermeasures and algorithms that can cover all the classes of the side channel attacks

presented in chapter 6.

167



168
10.2.1 DPC System
10.2.1.1 Overview

In this thesis, a new approach, called Dynamic Projective Coordinate (DPC)
system was proposed. It allows the computing/encrypting device to select the projective
coordinate system either at random, or according to a certain rule.

DPC automates the selection of the projective coordinate system and uses a single
mathematical formulation/software code to implement different projective coordinate
systems. Different projective coordinates can be implemented by using two parameters
where one parameter defines the projection of the x-coordinate and a second parameter
defines the projection of the y-coordinate of an elliptic curve point. This allows different
projective coordinates to be used within the same mathematical formulation in calculating

the scalar multiplication.

10.2.1.2 Summary of The Results
In this part of the thesis, we obtained the following formulas for elliptic curve
defined over finite fields GF(p) and GF(2"):

1. General dynamic addition and doubling formulas that allow different projective
coordinate systems to be used within the same mathematical formulation. In these
formulas, L, and L, can be selected without any restriction. In other words no
relation between them.

2. Optimized dynamic addition and doubling formulas that use DPC system and

minimize the computation time through reducing the required number of filed
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operations. In these formulas, L, and L, are selected according to certain rules to

minimize the number of required operations.

3. Mixed dynamic addition and doubling formulas in which each coordinate can be
projected using its own projecting parameter resulting in the most mixing degree
of coordinates ever. In this way, coordinates of the same point can be represented

in different coordinate systems

10.2.2 Performance of DPC System
10.2.2.1 Overview

The performance of DPC for addition and doubling operations in both E/GF(p)
and E/GF(2") has been analyzed. We conclude that the number of field operations

required is a function of the projecting parameters L, and L, and the d-parameter.

Various tables that show the number for required operations for several coordinate

systems were presented.

10.2.2.2 Summary of The Results
In this part of the thesis, we obtained the following results:
First, in case of E/GF(p)
1. Addition using DPC-HHH has exactly the same number of computations as in

HHH.

2. Addition using DPC-]JJ is faster than JJJ by one squaring operation.
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2.
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. Addition using DPC-MMM is faster than MMM by one multiplication and 2

squaring operations.

Doubling using HH is faster than DPC-HH by one multiplication

Doubling using JJ has less multiplications and more squaring than DPC-JJ.

Second, in case of E/GF(2™)

1.

Addition using DPC-HHH has exactly the same number of computations as in
HHH
Addition using DPC-JJJ is faster than JJJ by one multiplication and two squaring

operations.

. Doubling using DPC-HH is higher than HH by one multiplication but lower by 3

squaring. Hence by considering S = 0.8M, as in [23], DPC-HH is in total faster

than HH.

. Doubling using DPC-JJ is higher than JJ by two multiplications but lower by 3

squaring. Hence by considering S = 0.8M, as in [23], DPC-JJ is in total faster than
JI.

Various dynamic mixed coordinates for E/GF(2") for addition and doubling
operations. Note that the conventional mixed coordinates for E/GF(2") are not

existed in the literature.

10.2.3 Using DPC System

In this thesis, we studied how the DPC can be used. DPC uses a single

mathematical formulation/software code to implement different projective coordinate
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systems. Hence, we conclude that DPC system can be plugged into any scalar
multiplication algorithm. However, two possible modes for using DPC with any scalar
multiplication algorithm were discussed. First, initializing the coordinate system and
selecting the projecting and d parameters in the beginning of the scalar multiplication and
fixing that system for all scalar multiplication iterations. Second, is allowing projective

coordinates hopping at any time during the scalar multiplication.

10.2.4 Scalar Multiplication Security in Presence of DPC System
10.2.4.1 Overview

In this thesis, we proposed DPC-based countermeasures for each class of the
classes of attacks presented in chapter 6. A common property among the proposed DPC-
Based countermeasures is that the scalar multiplication can be randomized by simply

varying one of the projecting parameter used. We conclude that by randomizing L, L,

and d parameters, we randomize both the data being manipulated and the number of

operations being performed in the scalar multiplication.

10.2.4.2 Summary of The Results
In this part of the thesis, we obtained the following results:
First, Proposed Countermeasures
Countermeasure 1: This countermeasure uses the DPC system with randomly initialized

projecting parameters, L., L, and d. It randomizes L , L, and d in the beginning of each
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run of the scalar multiplication. Hence, each execution of the scalar multiplication has its

own coordinate system with different data values and different number of field operations.

Countermeasure 2: This countermeasure is based on using DPC in conjunction with
exponent (scalar) splitting (ES) method. ES splits the scalar K into two parts » and (K — r)

using a random number 7 . The scalar multiplication is then computed as,
KP=P,+P,, where b =rP, P, = (K —r)P

P and P, are computed using DPC with randomly initialized projecting
parameters. These parameters could be the same for both points (i.e. for A, and P,) or

be different.

Countermeasure 3: A third countermeasure uses the ability of DPC to dynamically hop
from one coordinate system to another half the way in the scalar multiplication. This
hopping can be achieved by using general or optimized mixed addition and doubling
formulas which have the ability to perform the addition and doubling operations in totally

different projective coordinates.

Second, proposed algorithms
1. Add-Add Algorithm

It 1s a ML algorithm. It performs one ADD operation followed by another ADD
operation in each iteration of a scalar multiplication. In any iteration of the scalar

multiplication, the first ADD and the second ADD operations are performed in a fixed
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sequence. The second ADD operation works as follows: If the current bit £, is 1, P will

be added. Otherwise (i.e. for k£, = 0), —P is added.

2. Transition-based Algorithm

It 1s a ML algorithm. In this algorithm, DBL and ADD operations are always
performed in all iterations in the same order independently of the bit values of a scalar.
The most important property of this algorithm is that in the i-#4 iteration, the selection of
the input operand of DBL operation is dependant on the existence of a transition between

bits &, and k,,, of a scalar K and it is not dependant directly on the value of %;.

i+l
Countermeasure 4: This countermeasure is based on Combining the Add-Add and
Transition-based Algorithms. The Add-Add algorithm is used to perform the initial
iteration of the scalar multiplication because the first iteration of the transition-based
algorithm is weak against ABDPA. It is this property of Add-Add algorithm that is used

to overcome the possible leaking of information about k, , in the first iteration of

transition-based algorithm. This combination of Add-Add and transition-based algorithms

is used to prevent any leakage of information about k, ,. Once the value of k _, is

protected against ABDPA in the first iteration, transition-based algorithm is used in

subsequent iterations.



174

10.3 Suggestions for Future Work

Since the proposed DPC enables the ECC designers to choose from many

combinations of DPC systems and/or various scalar multiplication algorithms, we propose

the following future work

1.

This thesis provides dynamic addition and doubling formulas for E/GF(p) based
on the DPC system where these formulas are separate. A suggested future research
is to provide a unified dynamic formula for E/GF(p) that can be used for both
addition and doubling operations. i.e. getting one dynamic formula that can be
used for both addition and doubling operations at the same time. This unified
formula should be developed using the DPC transformation functions.

This thesis provides dynamic addition and doubling formulas for E/GF(2") based
on the DPC system where these formulas are separate. A suggested future research
is to provide a unified dynamic formula for E/GF(2") that can be used for both
addition and doubling operations. i.e. getting one dynamic formula that can be
used for both addition and doubling operations at the same time. This unified
formula should be developed using the DPC transformation functions.

Study the security-performance tradeoffs of the unified dynamic formula
suggested in (1) for different scalar multiplication algorithms for E/GF(p).

Study the security-performance tradeoffs of the unified dynamic formula

suggested in (2) for different scalar multiplication algorithms for E/GF(2").
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Appendix A-I: Derivation of DPC General Addition Formula for E/GF(p)

Transformation functions 7.1 are used to get the dynamic projective coordinates
(X,,Y,,Z5, 7)) of the point R according to addition formula 3.4 (section 3.3 in chapter

3). The following subsections present the derivation of dynamic projective addition

formulas.

A-1.1 Derivation of Dynamic projective x-coordinate, X;.

Let P=(X,.%.Z",Z2l"), 0=(X,.Y,,Z5,2y) and R=(X,.,Y,,Z5,Zy"). Then the

dynamic projective coordinate X, of the point R = P + O can be derived as follows:

By applying the dynamic transformation functions 7.1 to the equation of x; in 3.4,

we get:

Y, %Y
X, _|zy ozt | x X
Z3L,\‘ X2 _ Xl ZILX ZZLX

LJ( LX
Z, Z

Unify denominators to get,

2
Y,2" -%,2,

L, Ly . X
_ 7,7, XZy + X7
X221LX _XlzzLX ZlezzLx
ZlZy

2

(YzzlLy _lezLy )(ZlezzLX) _ XlzzLx +XzzlLX
I, L, L. L,
(Xzzfx_XlzzLK)(Zlyzz‘) AR

Let U=Y,Z" -Y,Z,” and V = X,Z} — X,Z" then,

X, UNZPZy) XZh +XZy
Zy VNZPZy)? Lly
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_UNZ 2y ) -V (2 2y V(X2 + X Z))
vizhzy Y zhzy

Let R=(VZ"Zy") and X,=U*(ZlZ:)* —R*X,ZL —R*X,Z% |, then the above equation

can be written as,

X, X
Z& RzZlzk

A-I1.1

A-1.2 Derivation of Dynamic projective y-coordinate, Y;.

By applying the dynamic transformation functions 7.1 to the equation of y; in 3.4,

we get:
L, _ 4
L, L,
L |4 Zp X _X3 _ M
Z3L,,. X, X \zb zk ZIL"'
Zy Z\

L, L,
[zl -vzy wzthzy }[ X, X3j_ Y,

(XZ =X Z W& ) \N2e 2 )z

_ U(ZlezzLx)][ X, X j_ )

vizhziy\zl zx ) zb

Unify denominators to get,

zb vzl zh) Zh 7k L

Y, (U@Zhzy) | XZ9 -Xz ) Y,
zb

U@ Zy )X\ Zs - XZ) - X

L

V(ZD Zy)Zlzh zZ

UZy (X\Zy - X,2))-YVZ, 23
V(2" Zy)Zy

Finally, the above equation can be written as,
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Y, 7y (UZy X, - YVZy ) - XUZy 2} A-1.2

Z3L'v RZ3LX

A-1.3 Choosing Common Z,.

Let Z, = R‘Z,Z, , then we can write,

Zy =(R'Z,Z,)"
7 =(Rz,2,)"

Based on that, equation A-I.1 can be written as,

CdL, -2
X AR A3
Z3Lx Rde le.x ZZL.Y

Substitute for X, =X,R"*"*, obtained from A-1.3, in A-1.2 to get,

Y, 2 UZE X, - YYZE) - R UZE 71
zy RZ¥:

Since Z)* =R™z}*7Z}, 7% can be taken as a common factor in the numerator and

canceled with z; in the denominator to get,

Y,  (UZyX,-YVZ,)- X,R°U

zy R

Multiply the right hand side by R*/R” to get,

Y, _RNUZy X, -WZy ) - XU

zZ R

Rearrange the numerator of the above equation to exploit the previously computed terms,

Y, URZNX,-X)-R*ZyYYV
zZ R
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According to the selection of Z, = R?Z,Z, which result in Z;* =(R?Z,Z,)" , multiply the

. . . zb
right hand side of the above equation by ———
VAR

L, L,
2
L, °
L
Y, 77y (U(RZZZLX X, - X,)-R*Z) YIV)

zy RzbzZy

Let ¥, =227y (U (R*ZE X, - X)) -R*Z; "‘YIV), then the above equation can be written as,

Y, Y, RiLs3

> —

zy R™(z)'zy)

A-1.4

From equations A-1.3 and A-1.4, we get the following general dynamic addition
formulas:

Xy, =X;R"?

Y, :Y; RiLs3

Z5 =R™T,

7z =R,

where, UlezZlL"‘, U2:Y]ZZL”, U=U,-U,, A-L5
N=XZl, V,=X\Zy, V=V-V,
L=27y, T,=2"Zy, R=VT,
X, =UT —=R*, - R%,,
¥, =T, [URW, - X))~ U, (RV, - R*V,))

Appendix B-1: Derivation of DPC General Doubling Formula for E/GF(p)

Transformation functions 7.1 are used to get the dynamic projective coordinates
(X3.Y;,Z5, 21y of the point R according to doubling formula 3.5 (section 3.3 in chapter

3). The following subsections present the derivation of dynamic projective doubling

formulas.
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B-1.1 Derivation of Dynamic projective x-coordinate, x;.

Let P=(X,.%,,z.z")and R=(X,.¥;,Z%,z;"). Then the dynamic projective

coordinate X, of the point R = 2P can be derived as follows:

By applying the dynamic transformation functions 7.1 to the equation of x; in 3.5, we get:

N
N
~|
N
N\

2
(X7 vazr 2 ) X,
2725y,

Let W =3X] +aZ}", then

X3 — (WZIL))Z _2 Xl
zk ezt zk

RUZD RS
2z;1)y

Let S =2Z"Y,, then

X, _(WZ") -4sxv,z}"
Z S?

Let X, =(WZ")* —4SX Y,Z"  then
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2 23 B-1.1

B-1.2 Derivation of Dynamic projective y-coordinate, ;.

By applying the dynamic transformation functions 7.1 to the equation of y; in 3.5,

we get:

[zl (X X)o7y
QzINZs Zy
Unify denominators to get,

Y, _(WZ))X\Zy -XZ[) Y,
zy 274Y, 75 z

— ZlLy (WzlLy )(Xlz;x B stle ) - 2Y1213LXY123LX
221% ZlL'v lesLx

which can be rearranged to get,

Y, _ Z3L\' (WXlzlzLy — SZleYJ - X3W212L}'21LX
z SZhzl 7k

B-1.2

B-1.3 Choosing a common Z,

Let Z; = Sle , then we can write,

Zi =8%zk
7z =8%zp

Therefore, B-1.1 can be written as,
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X, X;SdL“_ZZIL‘
7L = gl L, B-1.3
3 1

Substitute for X, = X,Z* S obtained in D-1.3, in D-1.2 to get,

Y, ZIhWXZ" -SZhY) - X2l St wzl zb
zy SzzPZ)

Take z;* as a common factor in the numerator and cancel it with Z;* in the denominator.

Note that Z3L" = SdLXZlL‘ ,

Y, _ (WXlzlzLy _SZleYJ_X;SJWleLyZle

L L

zZ) SZz.”

Multiply the right hand side by s%/5? to get,

Y, _SPvXZ" -SZPY) - X Wz Z)k

zy S3zkzh

L . . . L. - .
Take Z;* as a common factor in the numerator and cancel it with Z,* in the denominator

(note that S =2Z"Y)),

Y3 B 2SYIZILX (WleLy Xl _ SYIZILX ) _ X;WZIZL'V
75 Sz

Let T = WleLv". Then rearrange the numerator of the above equation to exploit the

previously computed terms.

Y, TQSYZ"X -X,)-2SKZ")
z) Sz

Let ¥, =T(2SY,.Z[* X, - X,) - 2(SY,Z/*)*, then the above equation can be written as,
Y3 ~ Y;SdLy -3

= B-1.4
7 3L}, gL Z1Ly
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From equations B-I1.3 and B-1.4, we get the following general dynamic doubling
formulas:

X, =X, zS"

Y, = Y3 g3
Zy =8"Zh
zy =8"zh

B-1.5
Where, W =3X]+aZl", S=27Z!"Y,

T=wz;", T,=SYZl, T, =2TX,
X, =WT -2T,
Y, =T(T, - X;) - 21}

Appendix C-I: Derivation of DPC Optimized Addition Formula for E/GF(p)
From equation A-1.2 in appendix A-I, we have:

X, UMz zy) - @bz Y (7o x,zy)
zZy viAz 2, )zl zy

Take (z”z,")* as a common factor from the numerator and simplify,

X, UX2,2,)" 7 - x,zbv? - x, 7502

Zh v2izhzls

3L,-2L,

Let X;=U%Z2,2,)"" " - X,zv* - x,ZV?*, then,

XX C-L1
Zb vizhzy
From equation A-1.4 in appendix A-I, we have:

Y, Zy(UZrX,-Y\VZ,)- XUZb 2z} 12

zy vzl 7y )2k
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Let z,=V"Z,Z,, then we can write,

Zi =22y
zy =0'2,2,)"

Based on that, equation C-1.1 can be written as,

X, Xyt C-1.3
L.~ 1dL, L. L, .
Z3x V XZIXZZ‘X

Substitute for X5 from C-1.3 in C-1.2 to get,

Y,  ZEUZEX, -YVZy)- Xy huzbzh

zy vzl zy)zk

Since zi=vizlzl 75 can be taken as a common factor in the numerator and

canceled with z; in the denominator to get,

Y, _(UZy X, -YVZ))- XV U
L, L, L,
Zy Vi(z,"2y")

Multiply the right hand side by v*/7?,

Y, VXUZEX,-YWZy)- XU

zy vz z,)

Rearrange the numerator of the above equation to exploit the previously computed terms,

Y, U@EXV?-X)-%WZ)
zy vzl zy)

Let ¥, =U(Z- x> - X3)-Y,/°Z," , then the above equation can be written as,

v dL,-3
o KV C-1.4

L, dL, L, L,
Zy VUL Zy)
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From equations C-1.3 and C-1.4, we get the following set of optimized dynamic addition

formulas: note that —V*V, - V¥, = - V> - 2V*V,

X, =X y*

Y=y, v

Z,=vV'T

Zy =T

zZy =('T)"

where, U, =Y,Z>, U,=Y,Z,>, U=U,-U,,
Vi=X,Zl, V,=XZy, V=V -V,,
r=2,2,, T,=vr"™"
X, =0Tty oy,
Y, =UWV,-X,)-U,V">

C-L.5

Appendix D-1: Derivation of DPC Optimized Doubling Formula for E/GF(p)

From equation B-1.1 in appendix B-I, we have:

X, _ (WZIL),)z _8X1213Lxle
Zy 2z %)’

Take z!* as a common factor in the numerator and cancel it with z+ in the

denominator.

x, |z -aezinrx)

Zs 2z"%)’

Let S=2Z"Y, and X, = (WzleL«"_ZL*) —4S8Y,X,), then we can write,

X, _X,
a

= D-1.1
Zi
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From equation B-1.3 in appendix B-I, we have:

Y, _ZEWX.Z}0 227 Y2 Y) - X Wz Z )

> YR — D-1.2
Z}y 2Zl X}IIZIXZI}rZSX
Let Z, =S ¢ then we can write,
Z?)LX — SdL.x
Z3L _ SdLy
Therefore, D-1.1 can be written as,
X, X,8%7
Zf* T D-1.3

Substitute for X, = X,5“*, obtained in D-1.3, in D-1.2 to get,

Y,  ZhWXZ]" -2ZMY,ZY) - X STwZ Z)
z; YA VA A

Take z;* as a common factor in the numerator and cancel it with Z;- in the denominator.

Note that Z;* = S%,

Y, _ (WXlzlzLy — 2212LXY121L'YYl) _ X;S_ZWZfLyZlLX
zy WA AV A

Multiply the right hand side by $*/S* to get,

Y, _ s (WXlzlzLy - 2leLXYlZleYl) — X;WzlzLyZle
zy S*2zYz25Z)”

Take Z!™Z as a common factor in the numerator and cancel it with Z*Z" in the
denominator (note that §=2zY,),
L 2L,-L, L ' L,-L,
Y, — 4Y12(WX121 —2Z, Yz, Y)-XWz,
zy S*2Y 7
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_ ZS)II (Xl WZIL_V—LX _ 2Y1222L'¥—Ly ) _ X:; WZIL'V_LX

1

S3

Let T :WZIL "% Then rearrange the numerator of the above equation to exploit the

previously computed terms.

Y, TQSYX,-X,)-4SY)Y2Z" "
zy s’

Let Y, = T(2SY, X, — X,)—4(SY,)Y?Z“™" | then the above equation can be written as,

' @dL,-3
, _LS | D-1.4

From equations D-1.3 and D-1.4, we get the following dynamic optimized doubling

formulas:

X, = X;SdLX_Z

Y, =y

Z, =8

Zy =(8H"

Zy = (8" D-1.5

Where, W=3X7 +aZi", S=2Z0'Y,
T=wz"™, T =8Y, T,=2TX,,
X, =T"-2T,
Y, =T(Ty - Xy) - 4T3 Z 07"

Appendix A-11: Derivation of DPC General Addition Formula for E/GF(2™)

Transformation functions 7.1 are used to get the dynamic projective coordinates

(X,,Y,,Z5, 7)) of the point R according to addition formula 3.7 (section 3.4 in chapter
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3). The following subsections present the derivation of dynamic projective addition
formulas.

A-11.1 Derivation of projective x-coordinate, x;.
Let P=(X.Y,.z5.2"), 0=(X,.Y,.Zz%,zy') and R=(X,,Y;,Zz 7). Then the
projective coordinate X, of the point R = P + Q can be derived as follows:

By applying the transformation functions 7.1 to the affine x-coordinate equation,
x5, 1n 3.7, we get:

2

L 4 L o5
L + L L + L,
Xy |2 70| 2 7| X X
Z3L" X, +X1 X, X ZIL’ ZZL-*
Zy Zl Zy Zl

2
L, L, L ~L L, L, L L
_ LZ)” + N2, N2, Zy)) J +[ NLZ)” + N2y N2, Zy))

L L,
: ez X\Zy + X2}
(X Z" + X4Zy W27 Zy)

L, L, L1,
(X2Zl + X\ 20 )2, Z,)") VARV A
L, L, L L,
Let U=Y,Z," +Y,Z,", V = X,Z* + X, Zy* then,

X, _Uzizy)? N uzhbzy) v
Zy VA2 2y V(2°2y) 402y

+a

vk a2y cvab e @b 2y azi-zi)
vAZP 2y ) (2 2y

Let R=VZ)Z\ and X, =U(Z 22 (U2 25)+ R)+ RV +a(ZEZ%)), then

XX AL
Zy RNZ{Zy)

A-11.2 Derivation of projective y-coordinate, Y;.
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By applying the transformation functions 7.1 to the affine y-coordinate equation,
ys,1n 3.7, we get:

o 1
L L
;o Z," Z X1+X3 +X3+Y1
Z3L" )(24_)(1 ZILX ZSLX Z3Lx ZIL"
ZZL“ Zle

LV LV X X
_| (B2 +hZy (Z{"Zy") {Xl n X3 ]+£
L, L,
(X2Z{ + X2y )2, Zy")

L4
Zle Z3Lx ZSLX ZlLy
LX LX
_|UEZy) | X +X3 +X3+ Y
- L, L, L, L, L, L,
V(ZzZy )\ 2 Zy ) Zy oz
Unify denominators to get:
L L, L,
:UZZ-*(XlZy +X321»)+ X, %
vzpzy 7k zy o zh
_zy (UXIZZLX +VYZy )+ X, (UZILX Zkvzlbzy )
L}' L}' Lx
VZ,"Z,"Z,
Finally,
Y, zhluxzb +vvzh ) x vzl zh +R)
3 _ 73 172 + 172 + 3 1 2 + A-I1.2
z) RZy
A-11.3 Choosing Common Z, .

Let Z, = R"Z}*Z}* , then we can write,

Zi =Rz 23)"
Zb = (RIZb 2Ly

Based on that, equation A-II.1 can be written as,
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X, _ X R™ (202 )

A-11.3
7T Rz

Substitute for X,=X,R™ *(Z*Z}* )", obtained from A-IL.3, in A-I1.2 to get,

Y,  ZbUx.zb +vyzh )+ X, (zE 2y Uzl 25 + R)
zb RZy

: L L L.~N\L :
Since Zi* =(R‘Z*Zy )", z5 can be taken as a common factor in the numerator and

canceled with z;* in the denominator to get,

v, _(uxzivvnzy s xR (202l (Uzb b + R)
L, =
Zy R

Multiply the right hand side by R*(Z}*Z)*)/R*(Z}*Z}*) to get,

Y, RXZMzZb )(UXlzzLX +VYZh )+ x,{uztzk +R)
Z3Ly R3(ZlezzLx)

According to the selection of Z; = (R"Z*Z¥) which result in Z,” =(R‘Z}Z5)" | the

above equation can be written as,

v, _R“7zbzin Rz zluxzh +vvzi )« xi(uzizh + R))
zy R™ (2t zy )"

Let ¥, =R’ (ZIL"ZZL*)(UX Z vz )+ X ;(UZlLXZZL" +R), then the above equation can

be written as,

dL,=3 5L L \L,~1y,
Y, _RT(Z1Z,y)" Y, ALIL4

L

2 S VAVAOR

From equations A-I1.3 and A-11.4, we get the following general dynamic addition

formulas:



X, = X,R**TH!
v=vRYT
Z{ =(RTH™

Z = (RT)"

where, U, =Y,Z", U,=YZy, U=U+U,,
Vi=X,Z, V,=X,Z)y, V=V +V,,

R=VZZ,, T=2z:z}, T =UT,
X, =TT(T, +R)+ R*(V +aT),
Y, = LUV, +VU,)+ X,(T, + R)
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A-ILS

Appendix B-11: Derivation of DPC General Doubling Formula for E/GF(2™)

Transformation functions 7.1 are used to get the dynamic projective coordinates

(X5.Y,,Z5 2]y of the point R according to doubling formula 3.8. The following

subsections present the derivation of projective doubling formulas.

B-11.1 Derivation of projective x-coordinate, Xx,.

Let P=(X,.Y.z.,z") and R=(X,.Y,,z% 2,). Then the projective coordinate X,

of the point R=2P can be derived as follows:

By applying the transformation functions 7.1 to the affine x-coordinate equation,

x5, 1n 3.8, we get:




192
Let w=x2z" +v,z* and 5=x,z2z"  then we get:

X, wWW+S5)+aS?

Zi s?
Let X; =w (W +S)+aS*, then

X5 _ X
ZHs?

B-1I.1

B-11.2 Derivation of projective y-coordinate, Y; .

By applying the transformation functions 7.1 to the affine y-coordinate equation,

y3, 1n 3.8, we can get:

XPoL Y
T
r Zi Z" X, X X3 h
L X AR R S Ry
Z3 v X le 23x Z3.x Zl y
Zle

4 X, X X; 4
= L L Lo T oL o
Xlzl XZ] y Zl X Z3 x 23 x Zl 'y

Unify denominators to get:

5o W(XlzaLx+X3Z1LX) R
2 xgezia ) 7D

W(XIZSL* + X,z )+ X, x, 2zl vy x, 2 7k

xzihz) 7y
Finally,
Y,  X,Z4W+ ¥,z )+ X258 (W + S) -
zy Szl zk '

B-11.3 Choosing a common Zz,
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Let Z, =S¢, then we can write,
zt = (s")"
Z; = (S")L»v}
Based on that, equation B-II.1 can be written as,

X, X587

ZSLX - SdLX B-I1.3

Substitute for X, = X,S 7, taken from B-IL.3, in B-IL.2 to get,

Y, _XZEW Yz e XiSsh 2z (W + S)
zy Szl 2zt

Since Zy* =S, Zi* can be taken as a common factor in the numerator and canceled

with Z;* in the denominator to get,

Y,  X,w+¥22" )+ x,5°Z(W +S)

z) SZ

Multiply the right hand side by S*/S” to get,

Y, SX,W+¥z22" )+ X,z (W +S)
zb S’z

. . . L. - .
Take Z/* as a common factor in the numerator and cancel it with Z* in the denominator.

(we expand S% to S(X,Z-Z)))

Y, SRz vz ) X, +5)
zy s3

Let Y, =S(X}Z )(W +YZM )+ X, (W + ), then the above equation can be written as,
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Which can be written as,

' dL, 3
Yo Y3$dL B-IL.4
zb g

From equations B-II.3 and B-I.4, we get the following dynamic general doubling
formulas:
X, =X, 8%
Y, =Y;s%™
z=(s'f
zh =(s) B-IL5
Where, T,=XZ/", T,=YZ!, W=T+T,, S=XZ-z"
X, =W(W +S)+aS*
Y, =ST,(W +T,)+ X,(W +S)

Appendix C-11: Derivation of DPC Optimized Addition Formula for E/GF(2™)

From equation A-II.2 in appendix A-II, we have,

X, U@hziyubziywvzh 2z« vizh zh v+ azl zi)
zZy VA2 2y ) (2 2y)

Take (ZIL/" ZZL ")* as a common factor from the numerator and simplify,

X, _U@Zz)" @z vzl z))s v s azhzi)
z Vb z

Further simplification yields,
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3L,-2L, (

X, UZZ,) U+V(Z,2,)" ™" )+ avizhbzl +v?
Z VAZZy)

Let X,=U(Z2,)"" (U +V(Z,2,)" " )+ aV?ZlZ* +V>, then the above equation

can be written as,

X X

Z Tk C-IL1
From equation A-II.2 in appendix A-II, we have,

Y, _Z (UXIZZL* +VYZy) )+ X, (UZIL* Zh +VZZ, ) 112
zy vzl z, 7t '
Let Z, =V“Z,Z,, then we can write,

Zy=(V'ZZ,)"
zZy = (delzz)ﬁ‘}
Based on that, equation C-II.1 can be written as,
X, X C-113

Zb vhzhzy
Substitute for X, from C-I1.3 in C-I1.2 to get,

Y, Zb (UXIZZL‘ +VYZ) )+ Xy (szx Zh vzl ny)

z, VzZiz,zZh

: L, L L L L, :
Since Z,* =V™Z}Zl, Z!* can be taken as a common factor in the numerator and

canceled with Z;* in the denominator to get,

Yo (UXIZf‘ +VYZ, )+ X;V‘Z(U +V(Z,Z, )L):—LX)
zy vz zb

Multiply the right hand side by ¥*/1?,
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Y, VZ(UXIZZL* +VYZ) )+ X, (U +V(Z,2,)" " )

zZy vizhzy

Rearrange the numerator of the above equation to exploit the previously computed terms,

Y, UW*Xzh+X,)+VYzh + Xy (2, Z,)" 7"

z) vz zy

Let Y, :U(VzXlZzL* +X;)+ V3Y.Z, + XV (Z,Z,)" ™", then the above equation can be

written as,

Y3 B Y3 VdLy -3
L, — 1,dL, ;5 L, L,
Z3} Vo (Zl ' Zz' )

C-11.4

From equations C-II.1 and C-I1.4, we get the following dynamic optimized addition
formulas:

X, =Xy
L=yt
Z,=VT
Zy ="
Zy =Ty C-11.5
where, U,=Y,Z”, U,=Y,Zy, U=U,+U,,
N=X,Z", V,=XZy, V=V+V,
r=22, T =vr"™"
X, =Ur*>"(U+T)+aV’T" +V*
Y, U, + X,)+ VU, + XiT,
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Appendix D-11: Derivation of DPC Optimized Doubling Formula for
E/GF(2™)
From equation B-II.2 in appendix B-II, we have:

X, _ (X1221Ly + Y1212LX)(X1221L’V + YlleLx + XlzlezlLy )+ a(X121LxZ1Ly)2
zy (X,Z\°Z)’

Take Z" as a common factor in the numerator and cancel it with Z'” in the

denominator.

X, (X2 +%Z X+ vZ - X ZE Ja(X,Z0)?

ZzLX (X, Zle )2

Let S=X,Z> , W=X+Y2Z"™ and X, = numerator of the above equation, then we

can write,

X, =W(W +S)+aS* and,

_ % D-IL1

N2

From equation B-IL.5 in appendix B-II, we have:

Y, Xz (szf-v +Y, 2+ Y2 )+ X,z (Xf VALES &/ A O Ay A )

zh X Zhzbzbzk pAl2
Let Z, =S¢, then we can write,

Zy =(5D"

zy = (S”’)L)}

Based on that, equation D-II.1 can be written as,

X, _ X8 D-IL3

L.~ dL,
Z! S
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Substitute for X, = X,5, taken from D-I1.3, in D-IL.2 to get,

Y, XZ- (szf«v + Y2+ Y2 )+ X, 8%z (szfy + Y2 v X Zhzh )

L

zy X ZhZZkzk

: L, L. L :
Since Zi =S8, Z¥ can be taken as a common factor in the numerator and canceled

with Z;* in the denominator to get,

Y, X, (Xf VAR /A A )+ X872z (szfy +YZM + X220 )

zy Xzhzpzl

Multiply the right hand side by S*/S* to get,

v, _Sx(xizhexzit vz s xizi izt v vzt s X zbz))
s _

z S X, 27z
Take Z/* as a common factor in the numerator and cancel it with Z in the denominator.

(recall that S = X, Z[*)

v, szt vzt ezt xi(xiz) vzt v xzb 2

7 SXZ7

L, . o L . .
Take Z,” as a common factor in the numerator and cancel it with Z,” in the denominator.

Y, _Sx} (Xf +YzZ ! eyt )+ X, (Xf +Y 2z x .z )
zy s
_Sx; (W +YzZ )+ X,(w+S)
- 5

2L-L,

Let Y, = SX; (W +YZ7 )+ X, (W +5), then the above equation can be written as,

Y,
L

zv

“ale=

Which can be written as,
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" dL, =3
Li =Y35dL D-11.4
A

From equations D-I1.3 and D-II1.4, we get the following dynamic optimized doubling
formulas:

X, =X,8""
Y, =1,s%"
Z,=8"
zy=(s')f D-IL5
2 (s}
Where, T=YZ!"™", W=X}+T, S=XZ"
X, =W +S)+aS*
Y, =SX:(W +T)+ X,(W +S)
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