

 iii

DEDICATION

TO MY PARENTS AND MY FAMILY

 iv

ACKNOWLEDGMENTS

Acknowledgement is due to the King Fahd University of Petroleum &

Minerals for supporting this research.

Firstly, I would like to thank my major adviser Dr. Mohammad Al-

Suwaiyel for his inspiration, encouragement and trust.

I wish to express my appreciation to Professor M. K. Ibrahim for his

guidance and valuable help and encouragement throughout the period of the

research and the writing-up.

I also wish to thank Dr. Alaaeldin A. Amin for his support throughout my

work.

I feel deeply indebted to Major General Aqeel S. Alaqeel for his valuable

support and encouragement to making this thesis possible.

Warm thanks to my family who supported me till the last day of completing

this work.

 v

Table of Contents

List of Tables .. xi

List of Figures ..xiii

List of Algorithms ...xiv

Abstract (English)..xvi

Abstract (Arabic) .. xviii

1 Introduction ...1

1.1 Scope of the Thesis...6

1.2 Organization of the Thesis ...8

2 Finite Field Arithmetic .. 11

2.1 Introduction ..11

2.2 Finite Fields..12

2.3 Finite Field GF(p) ..13

2.3.1 Finite Field Arithmetic in GF(p) .. 14

2.4 Finite Field GF(2m) ..18

2.4.1 Finite Field Arithmetic in GF(2m) Using Polynomial Basis 19

2.5 Conclusions ..22

3 Elliptic Curve Arithmetic.. 24

 vi

3.1 Introduction ..24

3.2 Introduction to Elliptic Curves ...25

3.3 Group Law..25

3.4 Elliptic Curve Over Prime Field GF(p)..26

3.5 Elliptic Curve Over Binary Field GF(2m) ..31

3.6 Conclusions ..35

4 Elliptic Curve Cryptography.. 36

4.1 Introduction ..36

4.2 Elliptic Curve Discrete Logarithm Problem (ECDLP) ..37

4.3 ECC Domain Parameters..39

4.4 Elliptic Curve Cryptosystem ..40

4.4.1 Symmetric Elliptic Curve Cryptography... 41

4.4.2 Public Key Elliptic Curve Cryptography .. 42

4.5 Scalar Multiplication ..44

4.5.1 Binary Methods .. 45

4.5.2 Window Methods ... 46

4.5.3 Scalar Recoding Methods.. 50

4.5.4 Lim/Lee Method... 55

4.6 Conclusions ..56

5 Coordinate Systems.. 58

5.1 Introduction ..58

 vii

5.2 Affine Coordinates ...60

5.3 Homogenous Projective Coordinates ...61

5.4 Jacobian Coordinates..62

5.5 Chudnovsky-Jacobian Coordinates ..63

5.6 Modified Jacobian Coordinates..64

5.7 Mixed Coordinates ...65

5.8 Conclusions ..67

6 Side Channel Attacks and Countermeasures.. 69

6.1 Introduction ..69

6.2 Classification of Side Channel Attacks ..71

6.3 Fault Analysis Attacks ...75

6.4 Timing attack..77

6.5 Power Analysis Attacks..78

6.5.1 Simple Power Analysis (SPA) Attack .. 79

6.5.2 Differential Power Analysis (DPA) Attack ... 80

6.5.3 Refined Power Analysis (RPA) Attack... 82

6.5.4 Zero-value Point Attack (ZPA) .. 83

6.5.5 Doubling Attack ... 83

6.5.6 Address-Bit Differential Power Analysis Attack ... 84

6.6 Electromagnetic Analysis Attacks..85

6.7 Projective Coordinates Leak ..87

6.8 Countermeasures ..88

 viii

6.8.1 Fault Attack Countermeasures ... 88

6.8.2 Timing Attack Countermeasures.. 88

6.8.3 SPA Attack Countermeasures .. 89

6.8.4 DPA Attack Countermeasures ... 90

6.8.5 Doubling Attack Countermeasures... 92

6.8.6 RPA & ZPA Attacks Countermeasures .. 92

6.8.7 Address-Bit Differential Power Analysis Attack Countermeasures........................... 93

6.8.8 Electromagnetic Attacks Countermeasures ... 94

6.8.9 Projective Coordinates Leak Countermeasures.. 94

6.9 Classification of Countermeasures...95

6.10 Conclusions ..95

7 Dynamic Projective Coordinate (DPC) System .. 97

7.1 Introduction ..97

7.2 Dynamic Projecting Parameters ...100

7.3 Dynamic Projective Coordinate System for E/GF(p) ..102

7.3.1 General Dynamic Projective Coordinate System for E/GF(p) 103

7.3.2 Mixed Dynamic Projective Coordinate System for E/GF(p) 106

7.3.3 Optimized Dynamic Projective Coordinate System for E/GF(p)............................. 108

7.4 Dynamic Projective Coordinate System for E/GF(2m) ..111

7.4.1 General Dynamic Projective Coordinate System for E/GF(2m)............................... 112

7.4.2 Mixed Dynamic Projective Coordinate System for E/GF(2m) 114

7.4.3 Optimized Dynamic Projective Coordinate System for E/GF(2m) 116

7.5 Conclusions ..119

 ix

8 Performance and Using of DPC ..121

8.1 Introduction ..121

8.2 Calculating the Number of Field Operations in DPC System................................122

8.3 Performance of DPC for E/GF(p) ..125

8.4 Performance of DPC for E/GF(2m) ..134

8.5 Using DPC System...141

8.6 Conclusions ..143

9 Scalar Multiplication Security In Presence of DPC144

9.1 Introduction ..144

9.2 Countermeasures for Operation and Data Dependent Attacks...............................145

9.3 Countermeasures for Address-Dependent Attacks...161

9.3.1 Add-Add Algorithm.. 161

9.3.2 Transition-Based Algorithm .. 163

9.4 Conclusions ..166

10 General Conclusions ..167

10.1 Introduction ..167

10.2 Overview and Summary of The Work in The Thesis ..167

10.2.1 DPC System... 168

10.2.2 Performance of DPC System ... 169

10.2.3 Using DPC System ... 170

10.2.4 Scalar Multiplication Security in Presence of DPC System 171

 x

10.3 Suggestions for Future Work ...174

Appendices...175

Appendix A-I: Derivation of DPC General Addition Formula for E/GF(p) 176

Appendix B-I: Derivation of DPC General Doubling Formula for E/GF(p) 179

Appendix C-I: Derivation of DPC Optimized Addition Formula for E/GF(p) 183

Appendix D-I: Derivation of DPC Optimized Doubling Formula for E/GF(p)................. 185

Appendix A-II: Derivation of DPC General Addition Formula for E/GF(2m)................... 187

Appendix B-II: Derivation of DPC General Doubling Formula for E/GF(2m) 191

Appendix C-II: Derivation of DPC Optimized Addition Formula for E/GF(2m) 194

Appendix D-II: Derivation of DPC Optimized Doubling Formula for E/GF(2m) 197

References ..200

 xi

List of Tables

Table 4. 1 : Diffie-Hellman key agreement scheme...43

Table 5. 1: Costs of Addition and Doubling operations...66

Table 5. 2: Point Conversions among different coordinates ..67

Table 6. 1: Classification of side channel attacks. ...73

Table 6. 2: Codes of side channel attacks. ...74

Table 6. 3: Countermeasures classification, protection, advantages and disadvantages....96

Table 8. 1: Number of field operations in addition formula 7.7124

Table 8. 2: Computation times for DPC addition operation in E/GF(p). a ∈ (0,1)126

Table 8. 3: Computation times for DPC doubling operation in E/GF(p). a ∈ (0,1)127

Table 8. 4: Comparisons of field operations using DPC in E/GF(p).129

Table 8. 5: Hopping cost in DPC system (E/GF(p) Addition operation).........................131

Table 8. 6: Hopping cost in DPC system (E/GF(p) Doubling operation)........................131

Table 8. 7: Possible values of xL and yL for addition operation in E/GF(p)133

Table 8. 8: Possible values of xL and yL for doubling operation in E/GF(p)..................133

Table 8. 9: Computation times for addition in DPC/GF(2m). a ∈ (0,1)135

Table 8. 10: Computation times for doubling in DPC/GF(2m). a ∈ (0,1)........................136

Table 8. 11: Comparisons of field operations using DPC in E/GF(2m).137

Table 8. 12: Hopping cost in DPC system (E/GF(2m) Addition operation).....................138

Table 8. 13: Hopping cost in DPC system (E/GF(2m) Doubling operation)....................138

Table 8. 14: Possible values of xL and yL for addition operation in E/GF(2m)140

 xii

Table 8. 15: Possible values of xL and yL for doubling operation in E/GF(2m)..............140

Table 9. 1: Expected running times of algorithm 9.1 for specified DPC systems152

Table 9. 2: Expected running times of algorithm 9.2 for specified DPC systems153

 xiii

List of Figures

Figure 2. 1: Representation of A ∈GF(p) as an array of W-bits...14

Figure 3. 1: Hierarchal organization of elliptic curve arithmetic.24

Figure 6. 1: Side channel leak Information. ...69

Figure 6. 2: Address-bit differential power analysis attack ...85

Figure 9. 1: Two examples of Add-Add algorithm. ...162

Figure 9. 2: Two examples Transition-Based algorithm..164

 xiv

List of Algorithms

Algorithm 2. 1: Multiprecision addition ..15

Algorithm 2. 2: Addition in GF(p)...15

Algorithm 2. 3: Multiprecision subtraction..16

Algorithm 2. 4: Subtraction in GF(p)...16

Algorithm 2. 5: Shift-and-add method for modular multiplication in GF(p).....................17

Algorithm 2. 6: Inversion using extended Euclidean algorithm in GF(p).17

Algorithm 2. 7: Bit-level method for addition in)2(mGF ..20

Algorithm 2. 8: Bit-level method for modular reduction in)2(mGF20

Algorithm 2. 9: Shift-and-add method for modular multiplication in)2(mGF21

Algorithm 2. 10: Bit-level method for squaring in)2(mGF ..21

Algorithm 2. 11: Inversion using extended Euclidean algorithm in)2(mGF22

Algorithm 4. 1: Least-to-Most (LM) binary algorithm for scalar multiplication...............46

Algorithm 4. 2: Most-to- Least (ML) binary algorithm for scalar multiplication..............46

Algorithm 4. 3: m-ary method for scalar multiplication ..47

Algorithm 4. 4: Modified m-ary method for scalar multiplication48

Algorithm 4. 5: Sliding window method for scalar multiplication50

Algorithm 4. 6: Computation of NAF(K)...51

Algorithm 4. 7: Computation of)(KNAFw ..52

Algorithm 4. 8: Binary NAF algorithm (addition-subtraction) for scalar multiplication ..53

Algorithm 4. 9: width-w window method for scalar multiplication...................................54

 xv

Algorithm 4. 10: Lim/Lee method for scalar multiplication..56

Algorithm 6. 1: Double-and-ADD always Most-to-Least (ML) binary algorithm.89

Algorithm 6. 2: Double-and-ADD always Least-to-Most (LM) binary algorithm.90

Algorithm 6. 3: Takagi’s ML algorithm for scalar multiplication.90

Algorithm 9. 1: Binary ML algorithm with countermeasure1 ...149

Algorithm 9. 2: Binary NAF algorithm with countermeasure1149

Algorithm 9. 3: Binary ML algorithm with countermeasure2 ...155

Algorithm 9. 4: Binary NAF algorithm with countermeasure2155

Algorithm 9. 5: Binary ML algorithm with countermeasure3 ...157

Algorithm 9. 6: Binary NAF algorithm with countermeasure3158

Algorithm 9. 7: Add-Add algorithm ..162

Algorithm 9. 8: Transition-based algorithm...163

 xvi

Abstract (English)

Student's Name: Theeb Ayedh Al-Gahtani

Title: DYNAMIC PROJECTIVE COORDINATE SYSTEM

FOR ELLIPTIC CURVE CRYPTOGRAPHY

Major Field: Computer Science and Engineering

Date of Graduate 5-2006

Scalar multiplication is the basic operation in elliptic curve cryptography that can

be performed by many algorithms. These algorithms multiply a scalar value K with an

elliptic curve base point P. One of the crucial decisions when implementing an efficient

elliptic curve cryptosystem is deciding which point coordinate system to use. The point

coordinate system used for addition and doubling of points on the elliptic curve

determines the efficiency of these routines, and hence the efficiency of the basic

cryptographic operation, scalar multiplication. Although using a fixed coordinate system

enhances the performance of the scalar multiplication, (by removing the intermediate

inversion operations), it becomes a security weakness since it can be exploited by

projective coordinates leak attacks to reveal some secure information. Therefore, finding a

coordinate system that can enhance the performance of the scalar multiplication and being

secure against such attacks is desired goal.

This thesis introduces a new approach called Dynamic Projective Coordinate

(DPC) system. DPC provides a framework that automates the selection of the projective

coordinate system and uses a single mathematical formulation/software code to

 xvii

implement different projective coordinate systems. This framework allows the

computing/encrypting device to select the projective coordinate either at random, or

according to a certain rule.

DPC uses dynamic transformation functions to convert coordinates of any point on

the elliptic curve to any projective coordinates by using the same mathematical formula.

These transformation functions are used to develop dynamic addition and doubling

formulas for elliptic curve over the prime field GF(p) and over the binary field GF(2m).

Also, this thesis proposes a new classification method for Side Channel Attacks

(SCA). This classification is based on the type of information being leaked which can be

Operation-dependent, Data-dependent , Address-dependent or any combination of them.

New countermeasures for data-dependent, data-and-operation dependent and address-

dependent attacks are proposed. These countermeasures are based on the fact that DPC

lends itself to randomize both the data being manipulated and the number of operations

being performed by randomizing the coordinate system used.

 xviii

Abstract (Arabic)
 ملخص بحث درجة الدكتوراه في الفلسفة

 ذيب عايض القحطاني :الاســـــم

 نظام الإحداثيات الحركي لأنظمة التشفير باستخدام المنحنى البيضاوي :عنوان الرسالة

 ندسة الحاسب الآليهعلوم و :التخصص

 م5/2006 :تاريخ التخرج

يات البيضاوية هي عملية ضرب نقطة مـن إن العملية الأساسية في نظام التشفير باستخدام المنحن

هذه العملية تتم عن طريق سلسلة مـن عمليـات). ك(نقاط المنحنى بعدد سري صحيح يرمز له بالرمز

وذلك عبر خطوات كـل خطـوة) مضاعفة النقطة (إضافة نقطتين إلى بعضهما وإضافة نقطة إلى نفسها

وجميع هذه العمليات تتم عن طريق حـساب . ائيةتعطي نتيجة مرحلية حتى يتم الحصول على النتيجة النه

وسرعة تنفيذ هذه المعادلات الرياضية تعتمد بدرجة كبيرة علـى . معادلات رياضية على إحداثيات النقاط

ففي حالة اسـتخدام نظـام الإحـداثيات . نظام الإحداثيات المستخدم لتمثيل النقاط على المنحنى البيضاوي

ت ضرب نقطة بعدد صحيح تحتاج إلى عملية قسمة والتي من المعروف العادية فإن كل خطوة من خطوا

ولحل هذه المشكلة . أنها تحتاج إلى وقت أكبر بكثير مقارنة بالعمليات الحسابية الأخرى كالضرب والجمع

فإنه يتم استخدام نظام الإحداثيات الإسقاطية بدلاً من نظام الإحداثيات العادية والتي مـن خلالهـا يمكـن

وبرغم أن هذه الطريقة أدت إلى تحـسين أداء عمليـة . غناء عن عمليات القسمة في النتائج المرحلية الاست

ضرب نقطة بعدد صحيح بشكل كبير جداً إلا أنها تمثل نقطة ضعف أمنية يمكن من خلالها النفـاذ إلـى

 xix

سـتغناء عـن ولذلك فإن الحاجة ماسة إلى إيجاد طريقة يمكن من خلالهـا الا). ك(معرفة الرقم السري

عمليات القسمة في النتائج المرحلية وتكون في نفس الوقت آمنه لإتمام عملية ضرب نقطـة مـن نقـاط

 .المنحنى البيضاوي بعدد صحيح

والذي يتم) الديناميكي(تقدم هذه الرسالة طريقة مبتكرة تسمى نظام الإحداثيات الإسقاطية الحركي

طية بشكل آني وتلقائي بدلاً من استخدام نظام إحداثي واحد يكون عن طريقه اختيار نظام الإحداثيات الإسقا

وهذه الطريقة تستخدم معادلة رياضية موحدة وبالتالي برمجيات موحدة لعملية إضـافة . عرضة للاختراق

وكذلك تستخدم معادلة رياضية موحدة وبالتالي برمجيات موحدة لعملية إضافة نقطة . نقطتين إلى بعضهما

بذلك يمكن من خلال هذه المعادلات الرياضية والبرمجيات الموحدة تمثيل إي من الإحداثيات و. إلى نفسها

الإسقاطية المعروفة دون الحاجة إلى استخدام معادلة رياضية مستقلة وبرمجيـات مـستقلة لكـل نظـام

 .إحداثيات

لـى نـوع وتقدم هذه الرسالة أيضاً طريقة جديدة لتصنيف طرق اختراق أنظمة التشفير بنـاء ع

كإضـافة نقطتـين أو (فمنها ما يعتمد على نوع العملية المنفذة . المعلومات المستغلة في عملية الاختراق

، ومنها ما يعتمد على البيانات المدخلة إلى نظام التشفير، ومنها ما يعتمـد علـى مواقـع)مضاعفة نقطة

ف، فإن هذه الرسالة تقدم طرق جديدة وبناء على هذا التصني . تخزين المعلومات في ذاكرة أجهزة التشفير

وتعتمد طرق المقاومـة . لمقاومة هذه الأنواع من الاختراقات باستخدام نظام الإحداثيات الحركي المقترح

المقترحة على خاصية مهمة لنظام الإحداثيات الإسقاطية الحركي وهي إمكانية اختيار نظـام الإحـداثيات

ممـا) ك(وات ضرب نقطة من نقاط المنحنى بالعدد الـسري الإسقاطية بشكل عشوائي وآني خلال خط

 .يجعل المعلومات الجانبية التي يجمعها المخترق عديمة الفائدة

 1

CHAPTER 1

Introduction

Cryptography provides methods of providing privacy and authenticity for remote

communications and data storage. Privacy is achieved by encryption of data, usually using

the techniques of symmetric cryptography (so called because the same mathematical key

is used to encrypt and decrypt the data). Authenticity is achieved by the functions of user

identification, data integrity, and message non-repudiation. These are best achieved via

asymmetric (or public-key) cryptography.

 In particular, public-key cryptography enables encrypted communication between

users that have not previously established a shared secret key between them. This is most

often done using a combination of symmetric and asymmetric cryptography: public-key

techniques are used to establish user identity and a common symmetric key, and a

symmetric encryption algorithm is used for the encryption and decryption of the actual

messages. The former operation is called key agreement. Prior establishment is necessary

in symmetric cryptography, which uses algorithms for which the same key is used to

encrypt and decrypt a message. Public-key cryptography, in contrast, is based on key pairs.

A key pair consists of a private key and a public key. As the names imply, the private key

2

is kept private by its owner, while the public key is made public (and typically associated

to its owner in an authenticated manner). In asymmetric encryption, the encryption step is

performed using the public key, and decryption using the private key. Thus the encrypted

message can be sent along an insecure channel with the assurance that only the intended

recipient can decrypt it.

 User identification is most easily achieved using what are called identification

protocols. A related technique, that of digital signatures, provides data integrity and

message non-repudiation in addition to user identification.

 The public key is used for encryption or signature verification of a given message,

and the private key is used for decryption or signature generation of the given message.

Koblitz [1] and Miller [2] proposed a method by which public key cryptosystems

can be constructed on a group of points of an elliptic curve. This group comes from a

setting called finite fields (chapter 2).

Elliptic Curve Cryptosystem (ECC) relies upon the difficulty of the Elliptic Curve

Discrete Logarithm Problem (ECDLP) to provide its effectiveness as a cryptosystem.

Using multiplicative notation, ECDLP can be described as (section 4.2): given elliptic

curve points P and Q in the group, find a number K such that PK=Q; where K is called the

discrete logarithm of Q to the base P. Using additive notation, the problem becomes:

given two points P and Q in the group, find a number K such that KP=Q.

 In an ECC, the large integer K is kept private and is often referred to as the secret

key. The point Q together with the base point P are made public and are referred to as the

3

public key. The security of the system, thus, relies upon the difficulty of deriving the

secret K, knowing the public points P and Q. The main factor that determines the security

strength of such a system is the size of its underlying finite field. In a real cryptographic

application, the underlying field is made so large that it is computationally infeasible to

determine K in a straightforward way by computing all the multiples of P until Q is found.

The core of the elliptic curve cryptography is an operation called scalar

multiplication which computes KP by adding together K copies of the point P. Thus, the

efficiency of elliptic curve cryptosystems heavily depends on the implementation of the

scalar multiplication. The scalar multiplication is performed through a combination of

point-doubling and point-addition operations. The point-addition operation adds two

distinct points together and the point doubling operation adds two copies of a point

together. To compute, for example, 11P = (2*(2*(2P)))+3P = Q, it would take 3 point-

doublings and 1 point-addition.

Point addition and doubling operations require field inversion operations which

usually have very high cost (i.e. number of finite field operations required) compared to

the multiplication operation (see section 5.1). Its cost ranges from 9 to 30 field

multiplications for a field element with bit length grater than 100 [23]. Moreover, it must

be (without projective coordinate) performed in each iteration of the scalar multiplication.

Therefore, it is important to represent elliptic curve points using projective coordinates.

The idea of projective coordinates is based on transferring the point coordinates into

another coordinates that can eliminate the inversion operation while performing addition

and doubling operations. By this way, the intermediate inversions within the scalar

4

multiplication iterations are eliminated. However, still we need one final inversion to

return back to the affine coordinates after completion of the scalar multiplication.

Transferring any elliptic curve point to projective coordinates can be achieved by

using transformation functions. Different projective coordinates use different

transformation functions [23], [24], [25]. In this thesis, the sentence “projective

coordinate system” is used when referring to the transformation functions as well as the

coordinates generated by these functions, and the sentence “projective coordinates” is

used when referring the values of coordinates of a point.

Every computing device acts also as a source of additional information usually

called side channel leak information. Depending on its internal computations, it consumes

different amounts of power, emits different amounts of electromagnetic emanations, needs

different running times or even produces different types of error messages or sounds. All

these additional types of information can and have already been exploited in attacking the

cryptodevices.

In the execution of ECC, side channel attacks have become serious threat. One of

the most side channel attacks is the power analysis attacks, first introduced in [26], [27].

Power analysis attacks monitor power consumption and exploit the leakage information

related to power consumption to reveal bits of a secret key K although K is hidden inside

the cryptodevice. Thus, it is a serious issue that the implementation should be resistant

against SPA and DPA, and many countermeasures have been proposed in [28] – [37]. We

may note here that almost all public key cryptosystems including RSA and DLP-based

5

cryptosystems also execute an exponentiation algorithm with a secret-key exponent, and,

thus, they also suffer from both SPA and DPA in the same way as ECC. Recently, in the

case of elliptic curve cryptosystems, DPA is further improved to the Refined Power

Analysis (RPA) in [28], which exploits a special point with a zero value and reveals a

secret key. An elliptic curve happens to have a special point (0, y) or (x, 0), which can be

controlled by an adversary because the order of base point is usually known. RPA utilizes

such a feature that the power consumption of 0 is distinguishable from that of an non-zero

element. Although ECC are vulnerable to RPA, RPA are not applied to RSA or DLP-

based cryptosystems because they don‘t have such a special zero element. Furthermore,

RPA is generalized to Zero-value Point Attack (ZPA) in [29]. ZPA makes use of any

zero-value register used in the addition formula. To make matters worse, some previous

efficient countermeasures of the randomized-projective-coordinate method (RPC) [32] are

neither resistant against RPA nor ZPA because, a special point (0, y) or (x, 0) has still a

zero value even if it is converted into (0, ry, r) or (rx, 0, r) by using RPC.

In 2004, Nigel Smart et. al. [42] showed that it is possible to leak some

information about the secret key (scalar K) through the projective representation of elliptic

curve points. Giving that Q = KP is the elliptic-curve double-and-add scalar

multiplication of a public base point P by a secret K, they showed that allowing an

adversary access to the projective representation of Q, obtained using a particular double

and add method, may result in information being revealed about K. A countermeasure for

such an attack is proposed also in [42] but they assume that the attacker knows the

projective coordinate system used and that the coordinate system is fixed.

6

1.1 Scope of the Thesis

The existing projective coordinate systems and the countermeasures based on

them lack the following issues that can be used to enhance the security and/or

performance of the scalar multiplication.

First, issues related to the efficiency of the scalar multiplication:

1. Each coordinate system needs its own mathematical formulation/software code

and if a different coordinate system is used, it is required to change the microcode

of the scalar multiplication.

2. It is a costly operation to convert from one coordinate system to another during the

scalar multiplication since this requires an inversion operation.

Second, issues related to the security:

1. The available projective coordinate systems are very limited in number.

2. Vulnerability to RPA, ZPA and projective coordinate leak [31].

3. Existing countermeasures for power analysis attacks that use randomization of

projective coordinates such as those introduced in [32] and the countermeasure

proposed in [42] for projective coordinate leakage assume that projective

coordinate system is fixed and they do not pursue the direction of changing the

projective coordinate system randomly during the scalar multiplication due to the

efficiency problems mentioned above.

This thesis introduces a new approach for scalar multiplication called dynamic

projective coordinate (DPC) system. We mean by dynamic projective coordinate system,

is a system that automates the selection of the projective coordinate system and uses a

7

single mathematical formulation/software code to implement different projective

coordinate systems. Also, DPC allows projective coordinates hopping at any time during

the scalar multiplication with taking into account the efficiency and security issues

mentioned above.

Different projective coordinates are implemented by using two projecting parameters

where one parameter defines the projection of the x-coordinate and a second parameter

defines the projection of the y-coordinate of an elliptic curve point. This allows different

projective coordinates to be used within the same mathematical formulation in calculating

the scalar multiplication.

These parameters are used to define dynamic transformation functions that can be

used to convert any affine point to any projective coordinates using the same

mathematical formula. These transformation functions are used to develop dynamic

addition and doubling formulas for elliptic curve over the prime field GF(p) and elliptic

curve over binary field E/GF(2m).

In this thesis a survey of side channel attacks for ECC is presented in chapter 6. Based

on that survey, we introduce a new classification of side channel attacks that can help in

providing new countermeasures to cover the weaknesses of the existing ones. The

proposed classification is based on the type of information being leaked. It divides all

known attacks into three classes: Class A: Operation-dependent attacks that depend on the

type of operation being performed (multiply, square, addition, doubling, etc…) such as

simple power analysis attacks [26]. Class B: Data-dependent attacks that are based on the

data being manipulated by the cryptodevice such as fault attacks [34]-[45] and projective

8

coordinate leaks [42]. Class C: Address-dependent attacks that are based on the addresses

(locations) of the data being processed such as address-bit differential power analysis

attacks [38]. There are, however, some attacks, called data-and-operation dependent

attacks, that are both operation-dependent and data-dependent such as timing [27] and

DPA [26] attacks.

However, an important feature of DPC is that by randomizing the projecting

parameters (mentioned above) in addition and doubling DPC formulas, both the data

being manipulated and the number of operations being performed are randomized. This

fact is used to propose new countermeasures for data-dependent, data-and-operation

dependent and address-dependent attacks.

1.2 Organization of the Thesis

The rest of this thesis is divided into 9 chapters. Chapter 2, presents an

introduction to finite fields arithmetic. There are two kinds of finite fields that are

especially preferred for the efficient implementation of elliptic curve cryptosystems.

These fields are the prime field, GF(p), and the binary field)2(mGF . This chapter

presents the definition of these fields and the basic arithmetic operations that can be

performed on their elements. Also, various algorithms to perform arithmetic operations in

the prime and binary finite fields are addressed in this chapter.

Chapter 3 discusses the mathematical background of elliptic curves over finite

fields. Curve arithmetic is defined in terms of underlining field operations. This includes

the fundamentals of defining elliptic curve over the prime field GF(p) and the binary field

9

GF(2m).

Chapter 4 presents the principles of elliptic curve cryptography (ECC). It includes

definition of the underlining hard problem, Elliptic Curve Discrete Logarithm Problem

(ECDLP), that the security of ECC is based on. Also, it illustrates the domain parameters

that are required to set up an ECC and the basic principles of symmetric and public key

ECC . Finally, different scalar multiplication algorithms are addressed in this chapter.

Chapter 5 surveys the existing projective coordinate systems, namely, Affine (A),

Homogenous Projective (H), Jacobian (J), Chudnovsky-Jacobian (C), Modified (M) and

mixed coordinate systems. We start this chapter by showing the cost of inversion

operation in some recommended curves to show the motivation behind using projective

coordinates. Also, this chapter presents the cost (in terms of the number of field

multiplications and squaring) of point addition and doubling for each coordinate system.

Furthermore, it gives the cost of converting a point from one projective coordinate to

another.

In chapter 6, we survey different types of side channel attacks and the various

countermeasures known at the time of writing. Also, the classification methods of the

attacks found in the literature are discussed. Based on that, we propose a new

classification method according to the type of information being leaked. This

classification method is used to classify and analyze both the attacks and countermeasures.

Chapter 7 introduces the proposed dynamic projective coordinate (DPC) system for

ECC over both finite fields GF(p) and GF(2m). In this chapter, we start by defining

10

dynamic transformation functions which are used to develop dynamic addition and

doubling formulas for elliptic curve over the prime field GF(p) and elliptic curve over

binary field E/GF(2m).

Chapter 8 analyzes the performance and discusses the use of DPC. To analyze the

performance of DPC, the number of field operations in each formula of the formulas

presented in chapter 7 is calculated. We provide the method by which we can calculate the

number of field operations in any DPC formula. Also, the issue of how the DPC can be

used is discussed in this chapter.

In chapter 9, we propose and analyze countermeasures for operation-and-data

dependent, data-dependent and address-dependent attacks. All the proposed

countermeasures are based on using the DPC system as the coordinate system. This is

because the DPC system lends itself to randomization simply by randomizing the

projecting parameters. For each countermeasure, we provide the security and complexity

analysis.

Finally, conclusions are drawn in chapter 10. This includes a summary of the results

obtained in this thesis. Suggestions for further work are also recommended at the end of

this chapter.

 11

CHAPTER 2

Finite Field Arithmetic

2.1 Introduction

Cryptographic mechanisms based on elliptic curves depend on arithmetic

involving the points of the curve. Curve arithmetic is defined in terms of underlining field

operations which its efficiency is essential. From a practical point of view, the

performance of ECC depends on the efficiency of finite field computations and fast

algorithms for elliptic scalar multiplications (section 4.5). In addition to the numerous

known algorithms for these computations, the performance of ECC can be sped up by

selecting particular underlying finite fields and/or elliptic curves. Thus, a fast

implementation of a security application based on ECC requires several choices, any of

which can have a major impact on the overall performance.

This chapter introduces finite fields and the various algorithms to perform

arithmetic operations in these fields. An introduction to groups and finite fields is

provided in Section 2.2. There are tow kinds of finite fields that are especially prefer for

the efficient implementation of elliptic curve cryptosystems. These fields are the prime

12

field, GF(p),and the binary field)2(mGF . Sections 2.3 and 2.4 present the definition of

these fields and the basic arithmetic operations that can be performed in each of them.

Finally, conclusions are presented in section 2.5.

2.2 Finite Fields

In this section we present the definition of groups and finite fields. These

mathematical structures are fundamental for the construction of an elliptic curve

cryptosystem.

A group is an algebraic system consisting of a set G together with a binary operation ◊

defined on G satisfying the following axioms:

• Closure: for all x , y in G we have x ◊ y ∈ G.

• Associativity: for all x , y and z in G we have (x ◊ y) ◊ z = x ◊ (y ◊ z).

• Identity: there exists an e in G such that x ◊ e = e ◊ x = x for all x in G.

• Inverse: for all x in G there exists y in G such that x ◊ y = y ◊ x = e.

If in addition, the binary operation ◊ satisfies the abelian property:

• abelian: for all x , y in G we have x ◊ y = y ◊ x,

Then we say that the group G is abelian.

A finite field is an algebraic system consisting of a finite set F together with two

binary operations + and , defined on F satisfying the following axioms:

• F is an abelian group with respect to “+”.

• F \ {0} is an abelian group with respect to “ ”

13

• distributive: for all x, y and z in F we have:

)()()(zxyxzyx ×+×=+×

)()()(zyzxzyx ×+×=×+ .

The order of a finite field is the number of elements in the field. A fundamental

result on the theory of finite fields [6] that characterizes the existence of finite field is the

following: there exists a finite field of order p if and only if p is a prime. In addition, if p

is a prime, then there is essentially only one finite field of order p. this field is denoted by

GF(p) (or Fp). However, there are many ways of representing the elements of GF(p), and

some representations may lead to more efficient implementations of the field arithmetic in

hardware or in software.

if mqp = where q is a prime and m is a positive integer, then q is called the

characteristic of GF(p) and m is called the extension degree of GF(p). Most standards

which specify ECC restrict the order of the underlying finite field to be an odd prime (p =

q, i.e. m=1) which result in GF(p) finite field, or restrict the order to a power of 2 (mp 2= ,

i.e. q=2) which result in what called characteristic two finite field and denoted by

)2(mGF . In the following sections, we will describe these two finite fields and present the

basic algorithms for performing arithmetic operations in each of them.

2.3 Finite Field GF(p)

Definition 2.1: Prime Field GF(p).

Let p be a prime number. The integers modulo p, consisting of the integers {0, 1, 2,

14

…, p – 1} with addition and multiplication performed modulo p, is a finite field of order p

called prime field and denoted by GF(p). The prime number p is called the modulus of

GF(p).

2.3.1 Finite Field Arithmetic in GF(p)

This section presents algorithms for performing arithmetic in the prime file GF(p).

The algorithms presented here are well suited for software implementation. We assume

that the implementation platform has a W-bit architecture where W is a multiple of 8. Let

⎡ ⎤pm 2log= be the bit length of p, and ⎡ ⎤Wmt /= be its word length. Figure 2.1

illustrates a binary representation of a field element A as an array of W-bit words. As an

integer,

]0[]1[2]2[2......]2[2]1[2 2)2()1(aaatataA WWWtWt ++++−+−= −− .

a[t-1] … a[2] a[1] a[0]
Figure 2. 1: Representation of A ∈GF(p) as an array of W-bits

The following notation is used in algorithms for multiword integers. An

assignment of the form "(ε,Z) A" for an integer A means:

 Z = A mod 2W, and

 ε = 0 if A in [0, 2W – 1], otherwise ε = 1.

ε is called the carry bit from single word addition.

Addition: If a,b ∈ GF(p), then a + b = r, where r is the remainder of the division of (a+b)

15

by p and 0 ≤ r ≤ p – 1. This operation is called addition modulo p. To perform addition

operation for multi-word integers in GF(p), we first perform multiprecision addition

followed by an additional step for reduction modulo p. The following two algorithms

present multiprecision addition and reduction modulo p respectively.

Input: integers A,B ∈ [0,2Wt – 1]
Output: (ε,C) where C = A + B mod 2Wt

1. (ε,c[0]) a[0] + b[0]
2. for i = 1 to t-1 do
 (ε,c[i]) a[i] + b[i] + ε
3. return (ε,C)

Algorithm 2. 1: Multiprecision addition

Modular addition in GF(p), (C = A + B mod p), is adapted directly from the

corresponding multiprecision addition algorithm with an additional step for reduction

modulo p.

Input: modulus p and integers A,B ∈ [0, p – 1]
Output: C = (A + B) mod p

1. Use algorithm 2.1 to obtain (ε,C) where C = A + B mod 2Wt and ε
is the carry bit.

2. if (ε = 1 or C ≥ p) then
 C = C – p // subtract modulus.

3. return (ε,C)
Algorithm 2. 2: Addition in GF(p)

Subtraction: If a,b ∈ GF(p), then a - b = r, where r is the remainder of the division of (a-

b) by p and 0 ≤ r ≤ p – 1. This operation is called subtraction modulo p. To perform

subtraction operation for multi-word integers in GF(p), we first perform multiprecision

subtraction followed by an additional step for reduction modulo p. Note that we need a

16

reduction step here because we may have a negative result which must be reduced to the

range [0, p – 1]. We mean by reduction here is adding the modulus p to the negative result

if any. The following two algorithms present multiprecision subtraction and reduction-for-

subtraction modulo p respectively.

Input: integers A,B ∈ [0,2Wt – 1]
Output: (ε,C) where C = A – B mod 2Wt and ε is the borrow bit

1. (ε,c[0]) a[0] – b[0]
2. for i = 1 to t-1 do
 (ε,c[i]) a[i] – b[i] – ε
3. return (ε,C)

Algorithm 2. 3: Multiprecision subtraction

Modular subtraction in GF(p), (C = A – B mod p), is adapted directly from the

corresponding multiprecision subtraction algorithm with an additional step for reduction

modulo p.

Input: modulus p and integers A,B ∈ [0, p – 1]
Output: C = (A + B) mod p

1. Use algorithm 2.3 to obtain (ε,C) where C = A – B mod 2Wt and ε
is the borrow bit.

2. if (ε = 1) then
 C = C + p // add modulus.

3. return (ε,C)
Algorithm 2. 4: Subtraction in GF(p)

Multiplication: If a,b ∈ GF(p), then a . b = s, where s is the remainder of the division of

(a.b) by p and 0 ≤ s ≤ p – 1. This operation is called multiplication modulo p.

17

The basic method for performing a multiplication in GF(p) is the "shift-and-add"

method. Given A ∈ GF(p), the shift-left operation, (A << 1) mod p can be performed as

modulo addition of A to itself using algorithm 2.2. That is: A = (A + A) mode p. The steps

of the "shift-and-add" multiplication method are given below.

Input: A,B ∈ GF(p) and the modulus p
Output: C = A×B mod p

1. set C = 0
2. for i = m-1 to 0 do
 C = C + C mod p //shift left
 If 0≠ib then C = C + A //use algorithm 2.2
3. return (C)

Algorithm 2. 5: Shift-and-add method for modular multiplication in GF(p).

Inversion: The inverse of a nonzero element a ∈ GF(p), denoted 1)(−a mod p or

simply 1)(−a , is the unique element in GF(p) such that a.x = 1 in GF(p), i.e. a.x = 1 (mod

p). The basic algorithm for computing multiplicative inverses in GF(p) is the extended

Euclidean algorithm as shown below.

Input: A ∈ GF(p), (A ≠ 0) and the modulus p
Output: C = A-1 mod p

1. set U = A, V = p
 set X1 = 1, X2 = 0

2. while U ≠ 1 do
 Q = ⎣V/U⎦ , R = V – QU, X = X2 – Q X1.
 V = U, U = R, X2 = X1 , X1 = X.
3. return (X1 mod p)

Algorithm 2. 6: Inversion using extended Euclidean algorithm in GF(p).

However, several techniques for implementing the finite field arithmetic in pF are

18

described in details in [7], [8], [9], [10], [11], and [12].

2.4 Finite Field GF(2m)

Definition 2.2: Binary Field)2(mGF

The finite field)2(mGF , called a binary finite field, can be viewed as a vector

space of dimension m over GF(2). That is, there exist a set of m elements

{ 110 ,...,, −mααα } in)2(mGF such that each a ∈)2(mGF can be written uniquely in the

form

∑
−

=

=
1

0

m

i
iiaa α where, ia ∈ {0,1}.

The set { 110 ,...,, −mααα } is called a basis of)2(mGF over GF(2). We can then

represent a as a binary vector (110 ,...,, −maaa). In the sequel, we introduce the most

common basis: polynomial basis.

Polynomial basis

Let ∑ −

=
+=

1

0
)(m

i
i

i
m xfxxF where if ∈ {0,1}, for i = 0,1, …, m-1 be an irreducible

polynomial1 of degree m over GF(2). F(x) is called the reduction polynomial. For each

reduction polynomial, there exists a polynomial basis representation. In such a

1 A polynomial is said to be irreducible if it cannot be factored into nontrivial polynomials over the same
field

19

representation, each element of)2(mGF corresponds to a binary polynomial of degree less

than m. That is, for A ∈)2(mGF there exists m numbers ia ∈ {0,1} such that

01
2

2
1

1 ... axaxaxaA m
m

m
m ++++= −

−
−

−

The field element A ∈)2(mGF is usually denoted by the bit string

(0121 aaaa mm −−) of length m.

The following procedure is commonly used to choose a reduction polynomial: if

an irreducible trinomial2 1++ km xx exists over GF(2), then the reduction polynomial

F(x) is chosen to be the irreducible trinomial with the lowest-degree middle term kx . If no

irreducible trinomial exists, then select instead a pentanomial 1123 ++++ kkkm xxxx , such

that 1k has the minimal value; the value of 2k is minimal for the given 1k ; and 3k is

minimal for given 1k and 2k .

2.4.1 Finite Field Arithmetic in GF(2m) Using Polynomial Basis

In this section, we describe algorithms for performing arithmetic operations in the

finite field)2(mGF using polynomial basis representation.

Addition. Addition in)2(mGF is the usual addition of vectors over GF(2). That is, add

the corresponding bits modulo 2, i.e. performing bitwise Xoring.

2 A polynomial with three terms

20

Input: 0121 aaaaA mm −−= , 0121 bbbbB mm −−= ∈)2(mGF
Output: 0121 ccccBAC mm −−=+= ∈)2(mGF

4. for i = 0 to m-1 do
 iii bac ⊕=
5. return (C)

Algorithm 2. 7: Bit-level method for addition in)2(mGF

Reduction. By the definition of multiplication in)2(mGF , the result of a polynomial

multiplication or squaring has to be reduced modulo a reduction (irreducible) polynomial

of degree m. This reduction operation is particularly efficient when the irreducible

polynomial F(x) is a trinomial or pentanomial. The following algorithm for computing

A(x) mod F(x) works by reducing the degree of A(x) until it is less than m.

Input: 0122 aaaA m−= and 0121 fffffF mmm −−=
Output: C = A mod F

1. for i = 2m-2 to m do
 for j = 0 to m-1 do
 If 0≠jf then ijmijmi aaa += +−+−

2. return (C = 0121 aaaa mm −−)
Algorithm 2. 8: Bit-level method for modular reduction in)2(mGF

Multiplication. The basic method for performing a multiplication in)2(mGF is the "shift-

and-add" method. Given A(x) ∈)2(mGF , the shift-left operation xA(x) mod F(x) can be

performed as follows:

⎪⎩

⎪
⎨
⎧

≠++

=
=
∑
∑

−

= −−

−

= −−

1

1 101

1

1 11

0)(

0
)(mod)(

m

j m
j

ij

m

j m
j

j

aiffxfa

aifxa
xFxxA

21

Then the steps of the "shift-and-add" method are given below.

Input: A(x),B(x) ∈)2(mGF and 0121 fffffF mmm −−=
Output: C = A×B mod F

4. set C(x) = 0
5. for i = m-1 to 0 do
 C(x) = xC(x) mod F(x)
 If 0≠ia then C(x) = C(x) + B(x) //use algorithm 2.7
6. return (C(x))

Algorithm 2. 9: Shift-and-add method for modular multiplication in)2(mGF .

A faster modular multiplication is proposed in [50] but it requires more temporary

storage.

Squaring. This operation can be calculated in an efficient way by observing that the

square of a polynomial A(x) is given by:

() ∑∑ −

=

−

=
==

1

1
2221

1
2))((m

i
i

i
m

i
i

i xaxaxA

This equation yields a simple squaring algorithm:

Input: 011...... aaaA m−= and 0121 fffffF mmm −−=
Output: C = A2 mod F

1. ∑ −

=
=

1

1
22m

i
i

i xaT
2. C = T mod F // use algorithm 2.8
3. return (C(x))

Algorithm 2. 10: Bit-level method for squaring in)2(mGF

A known technique for speeding up the computation in step 1 is to use a table

lookup as in [70].

22

Inversion. The basic algorithm for computing multiplicative inverses is the extended

Euclidean algorithm. A high level description of this method is the following:

Input: A(x) ∈)2(mGF , (A(x) ≠ 0) and 0121 fffffF mmm −−=
Output: C = A-1 mod F

1. set B1(x) = 1, B2(x) = 0
 set P1(x) = A(x), P2(x) = F(x)

2. while degree(P1(x)) ≠ 0 do
 if degree(P1(x)) < degree(P2(x)) then
 Exchange P1(x),P2(x) and B1(x) B2(x)
 j = degree(P1(x)) – degree(P2(x))
)()()(211 xPxxPxP j+= ,)()()(211 xBxxBxB j+=
3. return (C(x)= B1(x))

Algorithm 2. 11: Inversion using extended Euclidean algorithm in)2(mGF .

An alternative method for computing inverses, called the almost inverse

algorithm, was proposed by Schroeppel et al [70]. This method works quite well when the

reduction polynomial is a trinomial of the form 1++ km xx with k > W and m – k > W,

where W is the word size of the computer used. The authors suggested a number of

implementation tricks that can be used for improving the speed of this method. Many of

these tricks also work for the extended Euclidean algorithm. However, in the context of

elliptic curve computations, most of the inversions required can be avoided be using

projective coordinates (see chapter 5).

2.5 Conclusions

 In this chapter, the basic theory behind finite fields has been presented. The

construction of finite fields has been illustrated and the representation of finite field

23

elements has been considered. Also, the finite fields GF(p) and GF(2m) were defined. The

basic arithmetic operations for these two finite fields were studied and the algorithms for

performing these arithmetic operations have been presented.

 24

CHAPTER 3

Elliptic Curve Arithmetic

3.1 Introduction

In this chapter, we present fundamentals of the theory of elliptic curves defined

over finite fields. Curve arithmetic is defined in terms of underlining field operations

discussed in chapter 2. However, based on the group law, elliptic curve can be defined

over the prime field GF(p) or the binary field GF(2m). In both cases, the two main

operations of elliptic curve are the addition and doubling operations. Figure 3.1 shows the

hierarchal organization of curve operations in terms of finite field operations.

Figure 3. 1: Hierarchal organization of elliptic curve arithmetic.

The remaining of this chapter is organized as follows. Section 3.2 gives an

introduction to elliptic curves. Section 3.3 presents the basic fundamentals of group low.

Point Doubling Point Addition

Field
Multiplication

Field
 Subtraction

Field
Inversion

Field
Addition

25

Elliptic curve over the prime field GF(p) and the binary field)2(mGF are discussed in

sections 3.4 and 3.5 respectively. Finally, we conclude this chapter in section 3.6.

3.2 Introduction to Elliptic Curves

Definition 3.1: Let E be an elliptic curve defined over the finite field K denoted by E/K.

E/K is defined by an equation

 E/K: 64
2

2
3

31
2 axaxaxyaxyay +++=++ 3.1

 Where, 64321 ,,,, aaaaa ∈ K.

For GF(p), we get the simplified Weierstrass of the elliptic curve equation 3.1.

E/K: 64
32 axaxy ++= 3.2

However, there are several ways of defining equations for elliptic curves, which

depend on whether the field is a prime finite field, pF , or a binary (characteristic 2) finite

field,)2(mGF . The Weierstrass equation for both finite fields GF(p) and)2(mGF are

described in sections 3.4 and 3.5 respectively.

Additional information on elliptic curves and its applications to cryptography can

be found in [9], [13], [14] and [15].

3.3 Group Law

 Let E be an elliptic curve defined over the field K denoted by E/K. There is a

chord-and-tangent rule for adding tow points in E/K to give a third point in E/K. together

with this addition operation, the set of points in E/K forms an abelian group with ∞

26

serving as its identity. The group (E/K,+) consists of a finite set of points P(x,y) that

satisfy the elliptic curve equation 3.2 together with a point at infinity. The x and y

coordinates of any point as well as the coefficients of elliptic curve equation, 64 ,aa , are

elements of K. The group (E/K,+) is the algebraic group that is used to construct elliptic

curve cryptosystem.

Addition operation, + , is best explained geometrically. Let),(11 yxP = and

),(22 yxQ = be two distinct points on an elliptic curve E. Then the sum R of P and Q is

defined as follows:

1. Draw a line through P and Q. This line intersects the elliptic curve at a third

point R .

2. R is the reflection of R around the x-axis.

The double R, of P, is defined as follows:

1. Draw the tangent line to the elliptic curve at P. This line intersects the elliptic

curve at a third point R .

2. R is the reflection of R around the x-axis.

The algebraic formulations of the group law can be derived from the geometric

description. In the next two sections, we present the algebraic formulations of the group

law of elliptic curve over finite fields GF(p) and)2(mGF .

3.4 Elliptic Curve Over Prime Field GF(p)

Definition 3.2: Let P > 3 be an odd prime and let a, b ∈ GF(p) satisfy

27

)(mod0274 23 pba ≠+ . Then an elliptic curve E over a finite prime field GF(p) ,

denoted by E/GF(p), is defined by an equation:

E/GF(p): baxxy ++= 32 3.3

where parameters a, b ∈ GF(p).

Comments in definition 3.2

(i) Equation 3.3 is called Weierstrass equation with aa =4 and ba =6 .

(ii) We say that E is defined over GF(p) because the coefficients a and b are

elements of GF(p). GF(p) is called the underlining field.

(iii) The notion E/GF(p) (or E(pF)) is used to emphasize that E is defined over

GF(p).

(iv) The set of points of an elliptic curve E/GF(p) are the points (or solutions) P =

(x, y) (where x, y ∈ GF(p)) that satisfy equation 3.3 together with a special

point called the point at inanity, ∞.

(v) The point ∞ is the only point on the line at infinity (∞ and –∞) that satisfies the

projective form of the Weierstrass equation.

(vi) For a given point),(111 yxP = , 1x is called the x-coordinate of 1P and 1y is

called the y-coordinate of 1P .

The algebraic formulas of group law for E/GF(p) are specified as follows:

1. Identity: P + ∞ = ∞ + P = P for all P ∈ E/GF(p).

28

2. Inverse: if),(yxP = ∈ E/GF(p), then),(),(yxyx −+ = ∞. The point),(yx − is

denoted by –P and is called the inverse of P. Note that –P is indeed a point in

E/GF(p). Also, – ∞ = ∞.

3. Point Addition (denoted by ADD): Let),(11 yxP = ∈ E/GF(p) and),(22 yxQ = ∈

E/GF(p) be two points satisfying the elliptic curve equation 3.3 where QP ±≠ .

Then),(33 yxQPR =+= is given by:

⎪
⎭

⎪
⎬

⎫

−−=
−−=

−−=

)/()(,
)(

1212

1313

21
2

3

xxyywhere
yxxy

xxx

λ
λ
λ

 3.4

4. Point doubling (denoted by DBL): Let),(11 yxP = ∈ E/GF(p) be a point satisfying

the elliptic curve equation 3.3 where P ≠ –P. Then),(2 33 yxPR == is given by:

⎪
⎭

⎪
⎬

⎫

+=

−−=
−=

1
2
1

1313

1
2

3

2/)3(,

)(
2

yaxwhere

yxxy
xx

λ

λ
λ

 3.5

From the above formulas, we get the following results:

• If),(),(1122 yxyx −= , then)),((),(),(111133 yxyxyx −+= = ∞.

• If),(22 yx = ∞, then +=),(),(1133 yxyx ∞),(11 yx= .

•),(11 yx− =),(11 yx − .

Example 3.1: Elliptic curve over the prime field GF(29).

29

 Let P = 29 (hence we have finite field GF(29) (or 29F)) and the elliptic curve

coefficients a and b are 4 and 20 respectively. The elliptic curve equation 3.3 becomes:

 20432 ++= xxy

First, note that)(mod0274 23 pba ≠+ is satisfied. That is,

7)29(mod11056)29(mod202744 23 ==×+× which ≠ (0 mod 29).

 To get the points of E/GF(29), consider all possible values of x which are in the

range from 0 to 28 and compute the corresponding y value by using equation 3.3 with a =

4 and b = 20. Note that all operations are performed modulo 29. For example,

• When x = 0, 20002 ++=y = 20 = 20 (mod 29), and)29(mod20=y . There

are two solutions:

• y = 7 since 7 × 7 = 49 = 20 (mod 29). i.e. the first solution of square root of 20

(mod 29) is 7. Therefore, the point (0,7) ∈ E/GF(29).

• y = 22 since 22 × 22 = 484 = 20 (mod 29). i.e. the second solution of square

root of 20 (mod 29) is 22. Therefore, the point (0,22) ∈ E/GF(29).

• When x = 10, 201041032 +×+=y = 1060 = 16 (mod 29), and

)29(mod16=y . There are two solutions:

• y = 4 since 4 × 4 = 16 = 16 (mod 29). i.e. the first solution of square root of 16

(mod 29) is 4. Therefore, the point (10,4) ∈ E/GF(29).

• y = 25 since 25 × 25 = 625 = 16 (mod 29). i.e. the second solution of square

root of 16 (mod 29) is 25. Therefore, the point (10,25) ∈ E/GF(29).

30

• When x = 7, 2074732 +×+=y = 391 = 14 (mod 29).)29(mod14=y is not

found. In other words, there is no number in the range from 0 to 29 that when it is

multiplied by itself gives 14 (mod 29). Therefore points (7, y) ∉ E/GF(29).

The points in E/GF(29) are the following:

∞ (2,6) (4,19) (8,10) (13,23) (16,2) (19,16) (27,2)

(0,7) (2,23) (5,7) (8,19) (14,6) (16,27) (20,3) (27,27)

(0,22) (3,1) (5,22) (10,4) (14,23) (17,10) (20,26)

(1,5) (3,28) (6,12) (10,25) (15,2) (17,19) (24,7)

(1,24) (4,10) (6,17) (13,6) (15,27) (19,13) (24,22)

Point Addition: Let),(11 yxP = = (5,22) and),(22 yxQ = = (16,27) (note that QP ±≠).

Then),(33 yxQPR =+= is given by: (apply addition formula 3.4)

11

12

12)11(5)11(5
11
5

516
2227 −− ×=×==
−
−

=
−
−

=
xx
yy

λ = 5 × 8 = 40 = 11 (mod 29).

Note that the inverse of 11 (mod 29) is the number r where 11 × r = 1 (mod 29).

That number, i.e. r, is 8 since 8 × 11 = 88 = 1 (mod 29).

100165)11(2
21

2
3 =−−=−−= xxx λ = 13 (mod 29).

22)135(11)(1313 −−=−−= yxxy λ = –110 = 6 (mod 29).

 Therefore, R = (13,6) which is in E/GF(29).

31

Remark: to get the modulo of a negative number r mod P, repeat adding P to r until

getting the first positive number in the range from 0 to P. for example, to get –110 mod

29, repeat adding 29 to –110 until getting the first positive number in the range from 0 to

29 which is 6.

Point doubling: Let),(11 yxP = = (5,22). Then),(2 33 yxPR == is given by: (apply

doubling formula 3.5)

1
2

1

2
1)44(79

222
4)5(3

2
3 −×=

×
+

=
+

=
y

ax
λ = 21 (mod 29) × 1)15(− (mod 29) = 21 × 2 =

42 = 13 (mod 29).

Note that the inverse of 15 (mod 29) is the number r where 15 × r = 1 (mod 29).

That number, i.e. r, is 2 since 2 × 15 = 30 = 1 (mod 29).

15910)13(2 2
1

2
3 =−=−= xx λ = 14 (mod 29).

22)145(13)(1313 −−=−−= yxxy λ = –139 = 6 (mod 29).

 Therefore, R = (14,6) which is in E/GF(29). �

3.5 Elliptic Curve Over Binary Field GF(2m)

Definition 3.3: Let)2(mGF be a finite field of characteristic two. A non-supersingular

elliptic curve E over)2(mGF , denoted by E/)2(mGF , is defined to be the set of solutions

),(yx ∈)2(mGF to the equation,

32

E/)2(mGF : baxxxyy ++=+ 232 3.6

where a and b ∈)2(mGF and b ≠ 0.

Comments in definition 3.3

(i) Equation 3.6 is called Weierstrass equation with 11 =a , aa =4 and ba =6 .

(ii) We say that E is defined over)2(mGF because the coefficients a and b are

elements of)2(mGF .)2(mGF is called the underlining field.

(iii) The notion E/)2(mGF (or E()2(mGF)) is used to emphasize that E is defined

over)2(mGF .

(iv) The set of points of an elliptic curve E/)2(mGF are the points (or solutions) P

= (x, y) (where x, y ∈)2(mGF) that satisfy equation 3.6 together with a

special point called the point at inanity, ∞.

(v) The point ∞ is the only point on the line at infinity (∞ and –∞) that satisfies the

projective form of the Weierstrass equation.

(vi) For a given point),(111 yxP = , 1x is called the x-coordinate of 1P and 1y is

called the y-coordinate of 1P .

It is well known that E with the point at infinity, ∞, forms an abelian finite group with ∞

serving as the identity element of the group. The algebraic formulas of group law for

E/)2(mGF are specified as follows:

1. Identity: P + ∞ = ∞ + P = P for all P ∈ E/)2(mGF .

33

2. Inverse: if),(yxP = ∈ E/)2(mGF , then),(),(yxxyx ++ = ∞. The point

),(yxx + is denoted by –P and is called the inverse of P. Note that –P is indeed a

point in E/)2(mGF . Also, – ∞ = ∞.

3. Point Addition (denoted by ADD): Let),(11 yxP = ∈ E/)2(mGF and),(22 yxQ =

∈ E/)2(mGF be two points satisfying the elliptic curve equation 3.6 where

QP ±≠ . Then),(33 yxQPR =+= is given by:

()
⎪
⎭

⎪
⎬

⎫

++=
+++=
++++=

)/()(, 1212

13313

21
2

3

xxyywhere
yxxxy
axxx

λ
λ

λλ

 3.7

5. Point doubling (denoted by DBL): Let),(11 yxP = ∈ E/)2(mGF be a point

satisfying the elliptic curve equation 3.6 where P ≠ –P. Then),(2 33 yxPR == is

given by:

()
⎪
⎭

⎪
⎬

⎫

+=
+++=

++=

111

13313

2
3

/, xyxwhere
yxxxy

ax

λ
λ

λλ

 3.8

From the above formulas, we get the following results:

• If),(),(1122 yxyx −= , then)),((),(),(111133 yxyxyx −+= = ∞.

• If),(22 yx = ∞, then +=),(),(1133 yxyx ∞),(11 yx= .

•),(),(11111 yxxyx +=− .

Example 3.2: non-supersingular elliptic curve over the binary field)2(4GF .

34

 Consider the finite field)2(4GF as represented by the reduction polynomial

1)(4 ++= zzzf . An element 01
2

2
3

3 azazaza +++ ∈)2(4GF is represented by the bit

string)(0123 aaaa of length 4 bits. For example, (0101) represents 12 +z .

 Let elliptic curve coefficients a and b are 3z and 13 +z respectively. The elliptic

curve equation 3.6 becomes: E/)2(4GF : 132332 +++=+ zxzxxyy .

To get the points of E/)2(4GF , consider all possible values of x which are in the

range from (0000) to (1111) and compute the corresponding y value by using the above

elliptic equation. Note that all operations are performed modulo the reduction polynomial

1)(4 ++= zzzf .

The points in E/)2(4GF are the following:

∞ (0011,1100) (1000,0001) (1100,0000)

(0000,1011) (0011,1111) (1000,1001) (1100,1100)

(0001,0000) (0101,0000) (1001,0110) (1111,0100)

(0001,0001) (0101,0101) (1001,1111) (1111,1011)

(0010,1101) (0111,1011) (1011,0010)

(0010,1111) (0111,1100) (1011,1001)

Point Addition: Let),(11 yxP = = (0010,1111) and),(22 yxQ = = (1100,1100) (note that

QP ±≠). Then),(33 yxQPR =+= = (0001,0001) (apply addition formula 3.7).

35

Point doubling: Let),(11 yxP = = (0010,1111). Then),(2 33 yxPR == is (1011,0010)

(apply doubling formula 3.8) �

3.6 Conclusions

In this chapter, we have presented the fundamentals of the theory of elliptic curves

defined over finite fields. Hierarchal organization of curve operations in terms of finite

field operations has been introduced. Also, defining an elliptic curve over the prime field

GF(p) and over the binary field GF(2m) has been discussed with providing an example for

each case.

36

CHAPTER 4

Elliptic Curve Cryptography

4.1 Introduction

 The security of Elliptic Curve Cryptography (ECC) in based on the apparent

intractability of Elliptic Curve Discrete Logarithm Problem (ECDLP) [9]. To date, that

there are no sub-exponential algorithms for the ECDLP known. This means that we can

use shorter keys (compared to other cryptosystems) for high security levels. However, to

establish an ECC, several main aspects need to be discussed. The main purpose of this

chapter is to present these main aspect which are necessary for any environment that

wishes to use ECC.

 To setup an ECC, domain parameters such as the curve coefficients a and b and

the base point should be selected and verified. These parameters are used to establish a

cryptography system whether this system is a symmetric key or public key cryptography.

Also, a curial operation in ECC is the scalar multiplication (or point multiplication) in

which a base point P is added to itself K times. This point multiplication is performed

based on the group law discussed in chapter 3.

37

Since this thesis considers both the elliptic curve defined over the prime field

E/GF(p) and over the binary field E/GF(2m), we use the following common notation:

E/GF(q) , where q = p or q = 2m, to denote both cases. Whenever "E/GF(q)" appears, it

means that the related subject is applicable to both E/GF(p) and E/GF(2m).

 This chapter is organized as follows. Section 4.2 discusses the ECDLC. Elliptic

curve domain parameters are presented in section 4.3. Elliptic curve cryptosystems

namely, elliptic curve symmetric and public cryptography are discussed in section 4.4.

Scalar multiplication and the most popular algorithms to perform it are the subject of

section 4.5. Finally, conclusions are drawn in section 4.6.

4.2 Elliptic Curve Discrete Logarithm Problem (ECDLP)

ECDLP is defined as follows: Given an elliptic curve E/GF(q), a point P ∈

E/GF(q) of order n and a point Q ∈ E/GF(q), determine the integer K satisfying Q = K P,

provided that such 0 ≤ K ≤ n-1 exists. The integer K is called the discrete logarithm of Q

to the base P, denoted QK Plog= .

To date, the most efficient general algorithm to resolve the ECDLP is Pollard-ρ

[17] algorithm, which has the running time)/(rnΟ , where r is the parallel processor

number.

Another possible attack known on the ECDLP is the combination of the Pohlig-

Hellman algorithm [16] and Pollard-ρ algorithm where the computation of K is reduced

to the problem of computing K modulo each prime factor of n. So if n is a large prime,

38

the ECDLP becomes harder. In practice, one must carefully select elliptic curve

parameters (section 4.2) such as selecting a base point that has large prime order n and

curve order #E/GF(q) = n × h, where h is a small integer.

 It is well known that the security of any cryptosystems depends mainly on the

hardness of the mathematical underlining problem that the cryptosystems is based on.

Fore example, Rivest-Shamir-Adleman (RSA) 3 cryptosystem is based on integer

factorization problem. An instance of integer factorization problem is an integer n that is a

product of two L/2 bits primes. The best algorithm known for solving the integer

factorization problem is the Number Field Sieve (NFS) [9] which has sub-exponential

time. On the other hand, The best algorithm to solve the ECDLP is the combination of

the Pohlig-Hellman [16] and Pollard’s ρ algorithms [17], which has a fully-exponential

running time. This means that significantly smaller parameters can be used in ECC than in

RSA system, but with equivalent levels of security. A typical example of the size in bits

of the keys used, is that a l60-bit ECC key is equivalent to RSA with a modulus of 1024

bits. Thus ECC offers potential reductions in the number of required arithmetic operations,

storage space, bandwidth and electrical power. These advantages are specially important

in applications on constrained devices such as smart cards and cellular phones.

3 In RSA, one has a public key (e, n), a prime number P, and a private key 01...kkK n−= .When creating an
encrypted message C one has to compute C = Pe mod n. Decryption is done by P = Cd mod n. The modular
exponentiation is usually done by the square-and-multiply algorithm.

39

4.3 ECC Domain Parameters

Before we introduce the ECC domain parameters, It is necessary to present some basic

facts and concepts of ECC.

• Order of point P ∈ E/GF(q) is the smallest integer r such that rP = ∞.

• Order of the curve, is the number of points of E/GF(q), donated by #E/GF(q).

Note that the curve order can be computed by Schoof's algorithm [9] or its

improvements, which is needed if one selects a random curve. And normally

choosing a and b to make the curve order have a large prime factor can improve

the cryptography scheme's security. So, this is an important parameter of the

scheme to determine the system's security.

• Hasse Theorem: let E be an elliptic curve defined over GF(p). then the curve order

#E/GF(p) is bounded by:

≤−+ pp 21 #E/GF(p) pp 21++≤

Elliptic curve parameters over the finite field GF(p) or GF(2m) can be described by

the following 6-tuple:

T = (q, FR, a, b, G, n, h)

Where:

• q: the prime p or 2m that defines the field and at the same time decides the curve

form.

40

• FR: the field representation, i.e., using which method to represent the elements in

the field (polynomial basis or normal basis for GF(2m), or normal or Montgomery

residue for GF(p)).

• a, b: the curve coefficients, depending on the security requirement.

• G: the base point, G = (GG yx ,), one element in E/GF(q), which has the largest

order n.

• n: the order of G, large prime. Also, the order of the curve, N = #E/GF(q), is

divisible by n.

• h: # E/GF(q)/n.

These parameters should be chosen to setup an ECC system.

4.4 Elliptic Curve Cryptosystem

Given a message point),(mm yx , a base point (GG yx ,), and a given key, K, the

cipher point),(CC yx is obtained using the following equation,

),(),(),(GGmmCC yxKyxyx += 4.1

There are two basics steps in the computation of the above equations. The first is

to find the scalar multiplication (section 4.5) of the base point with the key,)",(" GG yxK .

The resulting point is then added to the message point,),(mm yx to obtain the cipher point.

At the receiver, the message point is recovered from the cipher point which is

usually transmitted, the shared key and the base point, that is

),(),(),(GGCCmm yxKyxyx −= 4.2

41

4.4.1 Symmetric Elliptic Curve Cryptography

The steps of elliptic curve symmetric cryptography can be summarized as follows:

Both the sender and receiver must agree on:

1. A random number, K, that will be the shared secret key for communication,

2. A base point,),(GG yxG = .

At the sending correspondent:

1 Embed a message bit string into the x-coordinate of an elliptic curve point

which is designated as the message point,),(mm yx .

2 The cipher point),(cc yx is computed using,

),(),(),(GGmmcc yxKyxyx +=

3 The appropriate bits of the x-coordinate and the sign bit of the y-coordinate of

the cipher point),(cc yx are sent to the receiving entity.

At the receiving correspondent, the following steps are performed,

1. Using the shared key, K, and the base point),(GG yx , the scalar multiplication

),(GG yxKKG = is computed.

2. The message point),(mm yx is computed using,

)),((),(),(GGccmm yxKyxyx −+=

3. The secret messages bit string is recovered from xm.

42

4.4.2 Public Key Elliptic Curve Cryptography

Before we proceed to see how two entities can communicate using elliptic curve

public key cryptography, we first have to show how the private and public keys are

generated and verified and then how the sending and receiving entities agree on a key. For

the following, let A denotes the sending entity and B denotes the receiving entity.

Key Generation. We mean by key generation is to generate the public and private key

pair. Given the domain parameters (q, FR, a, b, G, n, h), each entity does the following:

Sending entity, A:

1. Selects a random integer Ad from the interval [1,n – 1].

2. Computes GdQ AA = . (It is a scalar multiplication step,),(GGAA yxdQ =).

Ad is the private key and AQ is the public key of A.

Similarly, B computes Bd and BQ as its private and public key pair.

Key Validation. We mean by key validation is to validate the public key's legality. Entity

A does the following:

1. Check that BQ ≠ ∞.

2. Check that
BQx ,

BQy ∈ E/GF(q), where
BQx and

BQy denote the x-coordinate and

y-coordinate of the point BQ .

3. Check that BQ lies on the elliptic curve defined by a and b;

4. Check that n BQ = ∞. (note that, n BQ = n(Bd G) = Bd (nG) = Bd ∞ = ∞, because

G's order is n)

43

The public key validation without Step 4 is called the partial public-key validation.

Without Step 4, the entity could be attacked. However, we can carefully select h to reduce

the threat.

Key agreement scheme. One of the most popular key agreement schemes is the Diffie-

Hellman key agreement scheme [9]. Table 4.1 shows the steps taken by each entity.

By end of step 3, in table 4.1,each entity get the same shared secret point

),(PP yx . That is, A computes: GddGddQdP BABABA)()(=== and

B computes: GddGddGddQdP BAABABAB)()()(==== .

Table 4. 1 : Diffie-Hellman key agreement scheme

Step Description Entity A Entity B
1 Choose random private key Ad =rand(1,n – 1) Bd =rand(1,n – 1)
2 Compute public key from the private key and

the base point G. Then each entity publishes
its public key.

GdQ AA = GdQ BB =

3 Generate Common key. Each entity
computes the common key using its private
key and the public key of the other entity.

),(PPBA yxQdP ==),(PPAB yxQdP ==

The steps of elliptic curve public key cryptography can be summarized as follows:

Both the sender and receiver must agree on:

1. An elliptic curve. 2. A base point,),(GG yxG = .

At the sending correspondent:

1. Embed a message bit string into the x-coordinate of an elliptic curve point which

is designated as the message point,),(mm yx .

44

2. Using the steps (entity A) in table 4.1, compute the shared secret point

),(PP yxP = .

3. Compute a cipher point),(cc yx using:),(),(),(PPmmcc yxyxyx += .

4. Send appropriate bits of the x-coordinate and the sign bit of the y-coordinate of the

cipher point),(cc yx to the receiving correspondent;

At the receiving correspondent:

1. Using the steps (entity B) in table 4.1, compute the shared secret point

),(PP yxP = .

2. Compute the message point),(mm yx using),(),(),(PPccmm yxyxyx −= .

3. Recover the message bit string from xm

4.5 Scalar Multiplication

Scalar multiplication (SM) (or point multiplication) is the result of adding the base

point4 P to itself K times on the elliptic curve over a given finite field, where K is a

positive integer. That is

4434421
timesK

PPPKP ++= 4.3

The integer K is referred to as scalar and the point P as the base point.

However, adding the point P to itself K times is not an efficient way to compute

scalar multiplication. More efficient methods are based on a sequence of Addition (ADD)

4 We mean by base point here, is a base point for the scalar multiplication and not the base point G in the
domain parameters. This is because scalar multiplication can be performed to any point whether this point is
G or any other point P

45

and Doubling (DBL) operations. Note that doubling operation is simply adding the point

to itself. In the literature, there are many methods (or algorithms) for computing KP or

equivalently performing the scalar multiplication. In the following subsections, we present

the most popular scalar multiplication algorithms. However, it is worth to mention that

each of theses algorithms can be applied to E/GF(p) and E/GF(2m).

4.5.1 Binary Methods

Let 201
2

2
1

1)2.......22(kkkk n
n

n
n ++++ −

−
−

− be the binary representation of the

scalar K where }1,0{∈ik is the i-th bit and n is the total number of bits. Hence, the scalar

multiplication KP can be written as:

PkKP
n

i

i
i ⎟

⎠
⎞

⎜
⎝
⎛= ∑

−

=

1

0
2

which can be expanded to one of the following forms:

 PkPkPkPkKP n
n

n
n 01

2
2

1
1 2.......22 ++++= −

−
−

− 4.4

 PkPkPkPkKP nn 0121)...)))(2(2(...2(2 ++++= −− 4.5

Based on 4.4 and 4.5, there are two main binary methods of calculating KP. The

first is the Least-to-Most (LM) algorithm, which corresponds to the expansion in 4.4,

starts from the least significant bit of K to the most significant one. The second is the

Most-to-Least (ML) algorithm, which corresponds to the expansion in 4.5, starts from the

most significant bit of K. Algorithms 4.1 and 4.2 show the LM and the ML binary

algorithms respectively.

46

Algorithm 4. 1: Least-to-Most (LM) binary algorithm for scalar multiplication

Algorithm 4. 2: Most-to- Least (ML) binary algorithm for scalar multiplication

In both algorithms, KP is computed using the straightforward double-and-add

approach in n iterations. The point doubling operation (DBL) is performed in all cases

regardless of the scalar bit value, while the ADD operation is conditioned by the scalar bit

value. If the scalar bit value is 1, ADD is performed; otherwise it is not performed.

4.5.2 Window Methods

Several generalizations of the binary method work by processing simultaneously a

block of digits. In these methods, depending on the size of the blocks (or windows) a

INPUT K, P
OUTPUT KP

1. Initialize Q[0] = P
2. for i = n-2 downto 0
3. Q[0] = DBL(Q[0])
4. if k[i] = 1 then
5. Q[0] = ADD(Q[0],P)
6. end if
7. end for
8. return Q[0]

INPUT K, P
OUTPUT KP

1. Initialize Q[0] = ∞ , Q[1] = P
2. for i = 0 to n-1
3. if k[i] = 1 then
4. Q[0] = ADD(Q[0],Q[1])
5. end if
6. Q[1] = DBL(Q[1])
7. end for
8. return Q[0]

47

number of precomputed points are required. However, the most popular window methods

presented in this subsection are: m-ary, modified m-ary and sliding window methods.

4.5.2.1 The m-ary Method

This method uses the m-ary expansion of K where rm 2= for some integer r ≥ 1.

The binary method is a special case of m-ary method corresponding to r = 1. The scalar

K is expanded as follows:

∑
−

=

=
1

0

n

j

j
j mkK , jk ∈ {0, 1, 2, …, m-1}.

The m-ary method of computing KP is shown in algorithm 4.3.

Input: An integer ∑
−

=

=
1

0

n

j

j
j mkK and a point P = (x,y) ∈ E/GF(q)

Output: The point Q = KP ∈ E/GF(q)
// Precomputation:
1. P1 = P
2. for i = 2 to m – 1 do
 Pi = Pi-1 + P // (we have Pi = iP)
3. Q = ∞
// Main loop
4. for j = n - 1 downto 0 do
5. Q = [m]Q //(this requires r doublings)
6. Q = Q +

jKP

Return (Q)
Algorithm 4. 3: m-ary method for scalar multiplication

It can be readily verified that the algorithm computes KP, following Horner's rule [16]:

PkPkPkPkmmmmKP nn 0121)...)))](]([](...[]([[++++= −−

The number of doubling in the main loop of the m-ary method is (d – 1)r (the first

iteration is not counted, as it starts with Q = ∞). Since ⎡ ⎤rnd /= , where n is the length

48

of the binary representation of K, the number of doublings in the m-ary method may be up

to (r – 1) less than the (n – 1) required by the binary method. However, it needs to pre-

compute and store the points 2P to [m-1]P.

4.5.2.2 The Modified m-ary Method

The main disadvantage of the m-ary method is that it requites pre-computing and

storing the points 2P, 3P, …, [m-1]P. This disadvantage can be reduced to only

computing and saving the odd multiples of P only (i.e. skipping the even multiples of P in

the precomputation phase) resulting in the modified m-ary method shown in algorithm 4.4.

Input: An integer ∑
−

=

=
1

0

n

j

j
j mkK and a point P= (x,y) ∈ E/GF(q)

Output: The point Q = KP ∈ E/GF(q)
// Precomputation:
1. P1 = P, P2 = P
2. for i = 1 to (m – 2) / 2 do
 21212 PPP ii += −+
3. Q = ∞.
// Main loop
4. for j = n - 1 downto 0 do
5. If jk ≠ 0 then

6. Let js , jh be such that j
s

j hk j2= , jh odd.

7. Q = [jsr−2]Q
8. Q = Q +

jhP

9. Else js = r

10. Q = [js2]Q
Return (Q)

Algorithm 4. 4: Modified m-ary method for scalar multiplication

49

In the modified m-ary method, computation of mP (step 5 of algorithm 4.3) is split

into two steps (steps 7 and 8) as shown algorithm 4.4. However, in algorithm 4.4, we

assume that r > 1, otherwise we revert to the original binary method.

4.5.2.3 Sliding Window Method

 In the m-ary and modified m-ary methods, the windows are contiguous and in

fixed bit positions. When a window has zeros in the left most bit positions, it is treated as

any other window. However, in the sliding window methods, the left most zeros of any

window are dropped and corresponding doubling operations are performed in the

accumulator point Q. Therefore, the window size can shrink and grow up to length r.

In the sliding window method, K is represented as:

∑
−

=

=
1

0
2

n

j

j
jkK ,

jk ∈ {0, 1}.

and computing KP using this method is shown in algorithm 4.5.

In the main while loop of algorithm 4.5, the bits of the K are scanned starting from

the most significant bit and based on the value of each bit one of two things may

performed:

1. If jk = 0, then perform a double operation on the point Q (step 5).

2. If jk ≠ 0, (i.e jk = 1) then:

50

a. Consider a window of size up to r bits such that the contents of this

window is 21)......(tjjj kkkh −= where j is the current bit position and t is

the least integer such that j – t + 1 ≤ r and tk = 1.

b. Update the value of the point Q as shown in step 9.

Input: An integer ∑
−

=

=
1

0
2

n

j

j
jkK and a point P= (x,y) ∈ E/GF(q)

Output: The point Q = KP ∈ E/GF(q)
// Precomputation:
1. P1 = P, P2 =2P
2. for i = 1 to)12(1 −−r do
 21212 PPP ii += −+
3. Q = ∞ , j = n – 1.
// Main loop
4. While j ≥ 0 do
5. If jk = 0 then
 Q = [2]Q; j = j – 1;
6. Else
7. Let t be the least integer such that
 j – t + 1 ≤ r and tk = 1
8. 21)......(tjjj kkkh −=

9. Q = [12 +−tj]Q +
jhP

10. j = t – 1
Return (Q)

Algorithm 4. 5: Sliding window method for scalar multiplication

4.5.3 Scalar Recoding Methods

We main by scalar recoding is transforming the scalar K to another form K such

that it still gives the correct result of computing KP. i.e. KP = K P but with less

51

computations. One popular recoding of any integer (rather than the scalar) is the non-

adjacent form (NAF) recoding. In NAF, every integer K has a unique signed digit

representation of the form ∑ −

=
= 1

0
2l

i
i

ikK where ik ∈ {-1,0,1}, such that no two

consecutive digits are nonzero [9]. However, there are several algorithms for computing

the NAF of K from its binary representation (see for example [8] and [9]). The following

algorithm (algorithm 4.6), from Solinas [18] computes the NAF of an integer K.

Input: an integer K
Output: The NAF form of K, NAF(K) = (ul-1 … u1u0)
1. Set c = K, l = 0
2. While c > 0 do
 if c odd then
 Set ul = 2 – (c mod 4)
 Set c = c – ul
 Else ul = 0
 Set c = c/2, l = l + 1
Return (NAF(K) = (ul-1 … u1u0))

Algorithm 4. 6: Computation of NAF(K)

A general form of NAF(K) is what is called the width-w nonadjacent form or

width-w NAF. Let w be an integer greater than one. Then every positive number K has a

unique width-w nonadjacent form:

∑
−

=

=
1

0
2

l

j

j
juK Where:

• Each nonzero ju is odd and less than 12 −w in absolute value.

• Among any w consecutive coefficients, at most one is non zero.

52

The width-w NAF is written as).....()(0121 uuuuKNAF llw −−= . A generalized version of

algorithm 4.6 for computing)(KNAFw is described in algorithm 4.7.

Input: an integer K
Output:).....()(0121 uuuuKNAF llw −−=
1. Set c = K, l = 0
2. While c > 0 do
 if c odd then
 ul = 2 – (c mod 2w)
 If ul > 2w-1 then
 ul = ul – 2w
 c = c – ul
 Else ul = 0
 c = c/2, l = l + 1
Return ().....()(0121 uuuuKNAF llw −−←)

Algorithm 4. 7: Computation of)(KNAFw

Many scalar multiplication algorithms have been proposed based on NAF(K) and

)(KNAFw representations of the scalar [8], [9], [18] and [19]. Addition-subtraction

algorithm (section 4.3.3.1) and width-w window algorithm (section 4.3.3.2) are examples

of using these representations respectively.

4.5.3.1 Addition-Subtraction Algorithms

An improved algorithm for computing KP can be obtained from the following facts:

• Every integer K has a unique NAF representation.

• The expected weight of a NAF of length l is l/3 [9].

• The computation of the negation of a point P = (x; y) ∈ E/GF(p) is simply the

negation of its y-coordinate (i.e. – P = (x; –y)) which is virtually free. So the cost

53

of addition or subtraction is practically the same. In case of E/GF(2m), –P is

computed by replacing y-coordinate by (x+y).

Addition-subtraction algorithm requires computing the NAF representation of the

scalar K. It performs a point addition or subtraction depending on the sign of each digit of

K as shown in Algorithm 4.8. This algorithm scans the NAF representation of the scalar K

(which has now l bits rather than n) from left to right and requires l doublings and l /3

additions on average. However, this algorithm can be modified to obtain a right-to-left

version [18], which does not need storage for the NAF(K).

Input: An integer K an a point P = (x,y) ∈ E/GF(q)
Output: The point Q = KP ∈ E/GF(q)
1. Use algorithm 4.6 to compute NAF(K) = (ul-1 … u1u0)
2. Q = ∞
2. for j = l - 1 downto 0 do
 Q = DBL(Q)
 if ul = 1 then
 Q = ADD(Q, P)
 if ul = –1 then
 Q = ADD(Q, – P)
Return (Q)

Algorithm 4. 8: Binary NAF algorithm (addition-subtraction) for scalar multiplication

4.5.3.2 Width-w Window Method

Given the width-w NAF of an integer K, and a point ∈ E/GF(p), the calculation of

KP can be carried out by using a typical window method called the width-w window

method [18] shown in algorithm 4.9.

The number of nonzero digits in the)(KNAFw is on the average l/(w + 1) [20].

Therefore, algorithm 4.9 requires 12 2 −−w additions and one doubling for the

54

precomputation step, and (l/(w + 1)) additions and (l – 1) doublings for the main

computation. Note that although the number of additions can be reduced by selecting an

appropriate width w, the number of doublings is the same as in the previous methods. The

total number of finite fields operations required for computing KP depends mainly on the

algorithms used for the elliptic operations (affine or projective coordinates), the cost-ratio

of inversion to multiplication, and the width w.

Input: integers K and w, a point P = (x,y) ∈ E/GF(q)
Output: The point Q = KP ∈ E/GF(q)
// Precomputation:
// Compute uP for u odd and 122 −<< wu
1. P0 = P, T = 2P
2. for i = 1 to 12 2 −−w do
 Pi = Pi-1 + T
// Main computation
3. Use algorithm 4.7 to compute).....()(0121 uuuuKNAF llw −−←
4. Q = ∞
5. for j = l - 1 downto 0 do
 Q = DBL(Q)
 if uj ≠ 0 then
 2/)1(−= jui
 if uj > 0 then
 Q = ADD(Q, Pi)
 Else
 Q = ADD(Q,–Pi)
Return (Q)
Algorithm 4. 9: width-w window method for scalar multiplication

55

4.5.4 Lim/Lee Method

This method, developed by Lim and Lee [21], can be used for computing KP when

P is a fixed point, known in advance of the computation. In order to compute KP, the l-bit

integer K is divided into h blocks Kr, each one of length a = ⎡ ⎤hl / . In addition, each

block Kr is subdivided into v blocks of size b = ⎡ ⎤va / . Thus K can be written as:

 ∑∑∑
−

=

−

=

−

=

++
++

1

0

1

0

1

0

2
h

r

v

s

b

t

tbsvbr
tbsvbrk

Then, Lim/Lee’s method uses the following expression for computing KP:

∑ ∑
−

=

−

=

=
1

0

1

0
,])][[(2

b

t

v

s
ts

t IsGKP

Where the precomputation array G[s][u] for 0 ≤ s < v, 0 ≤ u < 2h and 201)...(uuu h−= , is

defined by the following equations:

∑
−

=

=
1

0
2]][0[

h

r

rvb
r PuuG ,

]][0[2]][[uGusG sb=

and the number Is,t for 0 ≤ s < v – 1 and 0 ≤ t < b is defined by

∑
−

=
++=

1

0
, 2

h

r

r
tbsvbrts kI

A detailed description of Lim/Lee’s method is given in algorithm 4.10. This

algorithm requires)12(−hv elliptic points of storage, and the average number of

operations to perform a scalar multiplication is (b – 1) doublings and (12/)12(−− vbhh)

additions on average, but (vb – 1) additions in the worst case. The selection of both

56

parameters h and v presents a trade-off between precomputation (memory) and online

computations (speed). Some improvements to this algorithm are discussed in [22].

Input: Integers K, h, v and an array of points G[s][u],with huvs 21,0 <≤<≤
Output: The point Q = KP ∈ E/GF(q)
// The array G is computed as:
for u = 1 to 12 −h do
for s = 0 to v – 1 do

201)...(uuu h−=

∑
−

=

=
1

0
22]][[

h

i

vbi
i

sb PuusG

// Main computation
1. Q = ∞
2. for t = b - 1 downto 0 do
Q = DBL(Q)
For s = v – 1 downto 0 do

∑
−

=
++=

1

0
, 2

h

i
tbsvbi

i
ts kI

if Is,t ≠ 0 then
Q = ADD(Q, G[s][Is,t])
Return (Q)

Algorithm 4. 10: Lim/Lee method for scalar multiplication

4.6 Conclusions

 In this chapter, the basic aspects behind elliptic curve cryptography has been

introduced. ECDLP has been defined as the mathematical underlining problem of ECC.

The ECC domain parameters were presented. We concluded that careful selection of these

parameters plays a certain role in ECC security. The most important elliptic curve

cryptography schemes, symmetric key and public key, are studied. The detailed steps to

establish a secure communication between two entities using these two schemes are

57

addressed. Finally, in this chapter, the main operation in ECC, scalar multiplication, is

discussed. Also, The various popular algorithms for scalar multiplication has been

presented.

58

CHAPTER 5

Coordinate Systems

5.1 Introduction

The most difficult finite field operation to implement is inversion. An efficient

hardware implementations in GF(2m) costs [52]5:

⎣ ⎦ 1)1()1(log2 −−+− mwm multiplications ; 1−m squaring

Where w(m – 1) denotes the number of ones in the binary representation of (m

– 1). It is reported in [52] that the number of multiplications and squaring needed to

compute inversions in the NIST binary fields GF(2163) and GF(2232) to be:

m ⎣ ⎦)1(log2 −m w(m – 1) Multiplication Squaring

163 7 3 9 162

233 7 4 10 232

In software implementation, the inversion is estimated to be between 9 and 30

multiplications in case of GF(p) with p larger than 100 bits [23].

5 It is derived based on the fact: 221 −− =

m

aa with a ∈GF(2m). Then recursively compute ()2121 1−− −

=
m

aa

59

Therefore, one of the most important techniques that can be used to enhance the

scalar multiplication is the idea of transferring the point coordinates into another

coordinates that can eliminate the inversion operation.

Deciding which point Coordinate System (CS) to use is also one of the crucial

decisions when implementing elliptic curve cryptosystem. The point coordinate system

used for addition and doubling of points on the elliptic curve determines the efficiency of

these operations, and hence the efficiency of the basic cryptographic operation, scalar

multiplication.

This chapter discusses the various coordinates that can be used in order to

eliminate the inverse operation in the scalar multiplication and hence increase the speed of

calculations. We still need one final inverse operation to return back to the normal

(Affine) coordinates after completing the scalar multiplication. However, there are five

different coordinate systems [23] - [25]: Affine (A), Homogenous Projective (H), Jacobian

(J), Chudnovsky-Jacobian (C), Modified (M) and mixed coordinate systems. The

computation times in terms of number of multiplications (M), squaring (S), and inverse (I)

operations are computed for each coordinate system. For simplicity we will not consider

the addition, subtraction and multiplication by a small constant because they are very fast

compared to multiplication, squaring and inversion operations.

Affine coordinates are the simplest to understand and are used for communication

between two parties because they require the lowest bandwidth. However, the modular

inversions required when adding and doubling points which are represented using Affine

coordinates cause them to be highly inefficient for use in addition and doubling of points.

60

The other coordinate systems require at least one extra value (i.e. z-coordinate) to

represent a point and do not require the use of modular inversions in point addition and

doubling, but extra multiplications and squaring are required instead. When referring to

the Affine CS, small liters are used, i.e. x, y, and capital liters, i.e. X, Y, Z, are used when

referring to the remaining coordinate systems.

This chapter is organized as follows. Affined coordinate system is discussed in

section 5.2. Sections 5.3 to 5.7 present homogenous, Jacobian, Chudnovsky-Jacobian,

modified Jacobian and mixed coordinate systems. In section 5.8 conclusions are provided.

5.2 Affine Coordinates

Let:

 ECE: y2 = x3 + ax + b (a,b ∈ GF(p), 4a3 + 27b2 ≠ 0). 5.1

be the equation of elliptic curve E over Fp. We will refer to this equation as ECE.

Let: P = (x1,y1), Q = (x2,y2) are points on E, and we want to fined R = P + Q = (x3,y3).

The affine formulas for addition and doubling are given below:

• The addition formulas (R = P + Q = (x3,y3) where (P ≠ ±Q)) is given by:

x3 = λ2 – x1 – x2

y3 = λ (x1 – x3) – y1 5.2

Where: λ = (y2 – y1)/(x2 – x1)

• The doubling formulas (R = 2P = (x3,y3)) is given by:

x3 = λ2 – 2 x1

61

y3 = λ (x1 – x3) – y1 5.3

Where: λ = (3 x1
2 + a)/(2 y1)

The computation times for addition and doubling operations using affine

coordinates are (1I + 2M + 1S) and (1I + 2M + 2S) respectively.

5.3 Homogenous Projective Coordinates

 In homogenous projective coordinates the following transformation functions are

used to get the projected X & Y coordinates:

Z
Xx = and

Z
Yy =

The ECE becomes:

3232 bZaXZXZY ++= 5.4

In this CS, the points P, Q, and R are represented as follows:

P = (X1,Y1,Z1), Q = (X2,Y2,Z2), and R = P + Q = (X3,Y3,Z3).

• The addition formulas are given by:

() 21
3

321
3

21
2

33 ,, ZZvZZYvAZXvuYvAX =−−== 5.5

 where:

2112 ZYZYu −= , 2112 ZXZXv −= and 21
23

21
2 2 ZXvvZZuA −−=

• The doubling formulas are given by (R = 2P):

() 3
3

22
133 8,84,2 sZsYhBwYhsX =−−== 5.6

 where:

62

2
1

2
1 3XaZw += , 11ZYs = , sYXB 11= and Bwh 82 −=

The computation times for addition and doubling operations using homogenous

coordinates are (12M + 2S) and (7M + 5S) respectively.

5.4 Jacobian Coordinates

 In Jacobian CS, the following transformation functions are used:

 2Z
Xx = and 3Z

Yy =

The ECE becomes:

6432 bZaXZXY ++= 5.7

In this CS, the points P, Q, and R are represented as follows:

P = (X1, Y1, Z1), Q = (X2, Y2, Z2), and R = P + Q = (X3, Y3, Z3).

• The addition formulas are given by:

HZZZXHUrHSYrHUHX 2133
2

1
3

13
22

1
3

3),(,2 =−+−=+−−= 5.8

 where:

2
211 ZXU = , 2

122 ZXU = , 3
211 ZYS = , 3

122 ZYS = , 12 UUH −= , and 12 SSr −=

• The doubling formulas are given by (R = 2P):

113
4

133 2),(8, ZYZTSMYYTX =−+−== 5.9

 where: 2
114 YXS = , 4

1
2

13 aZXM += , and 22 MST +−=

The computation times for addition and doubling operations using Jacobian

coordinates are (12M + 4S) and (4M + 6S) respectively.

63

5.5 Chudnovsky-Jacobian Coordinates

 D. V. Chudnovsky [25] concluded that Jacobian coordinate system provide faster

doubling and slower addition compared to projective coordinates. In order to speedup

addition, he proposed the Chudnovsky-Jacobian coordinate system. In this CS, a Jacobian

point is represented internally as 5-tupel point (X, Y, Z, Z2, Z3). The transformation and

ECE equations are the same as in Jacobian CS, while the points P, Q, and R represented

as follows:

P = (X1, Y1, Z1, Z1
2, Z1

3), Q = (X2, Y2, Z2, Z2
2, Z2

3), and R = P + Q = (X3, Y3, Z3, Z3
2,

Z3
3).

The main idea in Chudnovsky-Jacobian coordinate is that the Z2, Z3
 are already

calculated in the previous iteration and no need to calculate them again in the current

iteration. In other words, Z1
2, Z1

3, Z2
2, Z2

3 are computed during the previous iteration and

fed to the current iteration as inputs, while Z3
2, Z3

3 need to be calculated.

• The addition formulas are given by:

HZZZ
XHUrHSYrHUHX

213

3
2

1
3

13
22

1
3

3),(,2
=

−+−=+−−=
 5.10

3
3

3
3

2
3

2
3 , ZZZZ ==

 where:

2
211 ZXU = , 2

122 ZXU = , 3
211 ZYS = , 3

122 ZYS = , 12 UUH −= , and

12 SSr −=

• The doubling formula is given by (R = 2P):

64

113
4

133 2),(8, ZYZTSMYYTX =−+−== 5.11

3
3

3
3

2
3

2
3 , ZZZZ ==

 where: 2
114 YXS = , 22

1
2

1)(3 ZaXM += , and 22 MST +−=

The computation times for addition and doubling operations using Chudnovsky-

Jacobian coordinates are (11M + 3S) and (5M + 6S) respectively.

5.6 Modified Jacobian Coordinates

 Henri Cohen et. al. modified the Jacobian coordinates and claimed that they got

the fastest possible point doubling. The term (aZ4) is needed in doubling rather than in

Addition. Taking this into consideration, they employed the idea of internally representing

this term and provide it as input to the doubling formula. The point is represented in 4-

tuple representation (X, Y, Z, aZ4). It uses the same transformation equations used in

Jacobian coordinates.

The points P, Q, and R are represented as follows:

P = (X1, Y1, Z1, a Z1
4), Q = (X2, Y2, Z2, a Z2

4), and R = P + Q = (X3, Y3, Z3, a Z3
4)

• The addition formulas are given by:

HZZZ
XHUrHSYrHUHX

213

3
2

1
3

13
22

1
3

3),(,2
=

−+−=+−−=
 5.12

4
3

4
3 aZaZ =

 where:

2
211 ZXU = , 2

122 ZXU = , 3
211 ZYS = , 3

122 ZYS = , 12 UUH −= , and 12 SSr −=

65

• The doubling formula is given by (R = 2P):

11333 2,)(, ZYZUTSMYTX =−−== 5.13

)(2 4
1

4
3 aZUaZ =

 where: 2
114 YXS = , 4

18YU = , 4
1

2
13 aZXM += , and 22 MST +−=

The computation times for addition and doubling operations using modified

Jacobian coordinates are (13M + 6S) and (4M + 4S) respectively.

5.7 Mixed Coordinates

Henri Cohen et al. [23] recommended the idea of mixed coordinates, where the

inputs and outputs to point additions and doublings may be in different coordinates. i.e.

with mixed coordinates we can add two points where one point is given in some

coordinate system and the other point is in some other coordinate system. Also, the result

point can be computed in a third coordinate system.

Consider the coordinate systems discussed so far. We have many choices in order to

mix them in one operation. For example, we can select Affine coordinates for input points

and the result be in Chudnovsky-Jacobian coordinates. This mixing can be denoted by

(AAC), where the first two letters denote the input coordinates (Affine) and the third one

represents the result coordinates (Chudnovsky-Jacobian). In case of doubling, (AM)

means that the input point is represented in Affine coordinates and the result is in

Modified coordinates. However, Cohen does not show the formulas used in case of

mixing different coordinates. Therefore, considerable effort needs to be spent to derive

66

these equations. He provides the cost of mixed coordinates in terms of number of

multiplication, squaring and inversion operations required for Addition and Doubling

operations as shown in Table 5.1 [23].

Table 5. 1: Costs of Addition and Doubling operations
using mixed coordinates

Coordinates S M I

Point Addition

AAC
AAM
AJJ

AHH
ACC
AJM
AMM
CCC
HHH
JJJ
JJM

MMM
AAA

4
5
8
9
8
9
9
11
12
12
13
13
2

2
3
3
2
3
5
5
3
2
4
6
6
1

1

Point Doubling

AJ
MJ
MM
AC
AM
CC
JJ

HH
AA

5
3
4
3
5
5
4
7
2

2
4
4
5
4
6
6
5
2

1

In order to use mixed coordinates it is necessary to be able to convert a point

representation from one coordinate system to another. Table 5.2 presents the number of

67

multiplications, squaring, and inversions required to convert a point representation among

the discussed five coordinate systems.

Table 5. 2: Point Conversions among different coordinates
From \ To Affine Projective Jacobean Chudnovsky Modified

Affine - - - - -
Projective 2M + I - 2M + I 2M + I 2M + I
Jacobean 3M+S+I 3M+S+I - 2M 3M

Chudnovsky 3M+S+I 3M+S+I - - 3M
Modified 3M+S+I 3M+S+I - 2M -

Table 5.2 shows that the conversion from Affine coordinates to any of the other

coordinate systems is very efficient because the conversions only consist of setting all of

the Z, Z2 and Z3 coordinates to one, and the aZ4 coordinate to a (the elliptic curve

parameter). Conversion to or from homogenous projective coordinates is inefficient

because of the inversion required, as is converting from any of the other coordinate

systems to affine coordinates.

5.8 Conclusions

 This chapter has discussed the various coordinates that can be used in order

to eliminate the inverse operation in the scalar multiplication. Five different coordinate

systems were studied: Affine (A) CS, Homogenous Projective (P) CS, Jacobian (J) CS,

Chudnovsky-Jacobian (C) CS, and Modified (M) CS. The computation times in terms of

number of multiplications (M), squaring (S), and inverses (I) operations were computed

for each coordinate system. Also, mixed coordinates system in which the inputs and

68

outputs to point additions and doublings may be in different coordinates has been

illustrated. Comparisons among different coordinate systems and the required operations

to convert a point form one coordinate system to another were provided.

69

CHAPTER 6

Side Channel Attacks and Countermeasures

6.1 Introduction

Every computing device acts also as a source of additional information usually

called side channel leak information (figure 6.1). Depending on its internal computations,

it consumes different amounts of power, emits different amounts of electromagnetic

radiations, needs different running times or even produces different types of error

messages or sounds. All these additional types of information can and have already been

exploited in attacks.

Figure 6. 1: Side channel leak Information.

Sound

Power
Consumed

Execution
time

Magnetic
field

70

Side-channel cryptanalysis takes advantage of implementation-specific

characteristics to recover the secret parameters involved in the computation. It is therefore

much less general than classical cryptanalysis – since it is specific to a given

implementation – but often much more powerful, and is considered very seriously by

cryptographic devices' implementers.

In this chapter, we survey different types of side channel attacks and the various

countermeasures known at the time of writing. Also, the classification methods of the

attacks found in the literature are discussed. Based on that, we propose a new

classification method according to the type of information being leaked. This

classification method is used to classify and analyze both the attacks and countermeasures.

The remaining of this chapter is organized as follows. Section 6.2 gives a

classification of the various attacks found in the literature. It also presents the proposed

classification method. Sections 6.4 to 6.8 describe the various side channel attacks,

namely, fault attacks, timing attacks, power analysis attacks, electromagnetic attacks and

projective coordinates leak. Section 6.9 presents countermeasures for these attacks. In

section 6.9, we classify the countermeasures according to the proposed classification.

Also in this section, we analyze each countermeasure via providing the attacks that it can

defend, attacks that it cannot defend, its advantages and weaknesses. Finally, conclusions

are drawn in section 6.10.

71

6.2 Classification of Side Channel Attacks

The literature usually classifies side channel attacks depending on the way they

affect the attacked device. This result in the following two orthogonal axes.

Invasive vs. non-invasive: invasive attacks require depackaging the chip to get direct

access to its components; a typical example of this is the connection of a wire on a data

bus to see the data transfers. A non-invasive attack only exploits externally available

information such as running time and power consumption. In [80], Skorobogatov and

Anderson add a new distinction with what they call semi-invasive attacks. These attacks

have the specificity that they require depackaging of the chip to get access to the chip

surface, but do not tamper with the passivation layer – they do not require electrical

contact to the metal surface.

Active vs. passive: active attacks try to tamper with the device's proper functioning; for

example, fault-induction attacks will try to induce errors in the computation. As opposed,

passive attacks will simply observe the device's behavior during its processing, without

disturbing it.

Although these classifications help in organizing the attacks into groups, it does

not help in providing the type of information being leaked. Therefore, we propose the

following classification based on the type of information being leaked so that it is possible

to devise some countermeasures to protect against attacks of certain class. This

classification divides all known attacks into three classes: Class A: Operation-dependent

attacks that depend on the type of operation being performed (multiply, square, addition,

72

doubling, etc…) such as timing attacks and simple power analysis attacks. Class B: Data-

dependent attacks that are based on the data being manipulated by the cryptodevice such

as fault attacks and projective coordinate leaks. Class C: Address-dependent attacks that

are based on the addresses (locations) of the data being processed such as and address-bit

differential power attacks. Table 6.1 presents the various side channel attacks according to

the above proposed classification.

Note that some attacks exploit both the data being processed and a certain

operation such as doubling certain point to leak some information. Examples of these

attacks are DPA and DEMA. This will be illustrated in more details when we discuss each

attack alone.

Let the type of information being leaked be represented by a binary variable that

equals "1" when this type of information is leaked and "0" when it is not. For example, let

O denotes operation-dependent information, D denotes data-dependent information and A

denotes Address-dependent information. Then, there are seven possible classes of attacks

each of which exploits one or more kind of leaked information. These classes range from

ADO = 001 to 111. The code 000 means no attacks while 111 means an attack that

exploits operations, data and locations of data. Table 6.2 lists the side channel attacks and

the code of each one according to this general classification.

SPA attack has the code 001 because it is based on the conditional ADD operation

whether it is performed or not (section 6.5.1). DPA attack has the code 011 because it is

based on operations being performed on classified input points (section 6.5.1). ABDPA

73

has the code 100 because it is based on the addresses (or locations) of data being

manipulated.

Table 6. 1: Classification of side channel attacks.
Class Attack Year of

discovery6
Target

Timing Attack (TA) 1996
[27]

-Conditional operations.
- Small differences obtained from
feeding the operations with classified
input points

Simple Power Analysis (SPA)
attack

1999
[26]

- Conditional operations.
-Optimization techniques

Differential Power Analysis
(DPA) attack

1999
[26]

-Small differences obtained from
feeding the operations with classified
input points.

Simple Electromagnetic
Analysis (SEMA) attack

2000
[46]-[48]

- Conditional operations.
-Optimization techniques

Differential Electromagnetic
Analysis (DEMA) attack

2000
[46]-[48]

-Small differences obtained from
feeding the operations with classified
input points.

A:
Operation-
dependent

Doubling Attack (DA) 2003 [30] -Zeros in the scalar.
Fault Attacks (FA) 1997

[43]-[45]
-Registers (variables) content.

Timing Attack (TA) 1996
[27]

- Small differences obtained from
feeding the operations with classified
input points

DPA attack 1999
[26]

Small differences obtained from
feeding the operations with classified
input points

DEMA attack 2000
[46]-[48]

Small differences obtained from
feeding the operations with classified
input points

Refined Power Analysis (RPA)
attacks

2003
[28]

-Coordinates of a point.

Doubling Attack (DA) 2003 [30] -Zeros in the scalar.
Zero-value Point Attack (ZPA) 2003

[29]
-Registers (variables) content.

B:
Data-
dependent

Projective Coordinates Leak
(PCL)

2004
[42]

-Projective coordinates of a point. (not
affine)

C:
Address-
dependent

Address-bit DPA (ABDPA) 2002
[38],[39]

-Addresses (Locations) of variables.

6 The year shown is either the discovery year of the attack or its application to ECC.

74

The three classes in table 6.1 are special cases of the general classification in table

6.2. However, since most of classes in this general classification are empty (at the time of

writing) especially classes from 101 to 111, we stick to the proposed classification

presented in table 6.1.

In the following sections, we discuss all side channel attacks listed in table 6.2 in

the same order they appear in the table.

Table 6. 2: Codes of side channel attacks.
Attack Code

(ADO)
Description

Fault Attacks (FA) 010 Based on faults induced to the data being
manipulated.

Timing Attack (TA) 011 Based on the variation in execution time for
classified input points.

Simple Power Analysis (SPA)
attack

001 Based on the conditional ADD operation, i.e.
whether it is performed or not.

Differential Power Analysis
(DPA) attack

011 Based on operations being performed on classified
input points.

Refined Power Analysis (RPA)
attacks

010 Exploits a special point with zero-value such as (0,
y) or (x, 0).

Zero-value Point Attack (ZPA) 010 A generalization of RPA where it exploits any
zero-value auxiliary register.

Doubling Attack (DA) 011 Based on detecting when the same operation is
performed on the same operands.

Address-bit DPA (ABDPA) 100 Based on the idea that accessing the same location
is correlated to the scalar bit value.

Simple Electromagnetic
Analysis (SEMA) attack

001 Based on the conditional ADD operation, i.e.
whether it is performed or not.

Differential Electromagnetic
Analysis (DEMA) attack

011 Based on operations being performed on classified
input points.

Projective Coordinates Leak
(PCL)

010 Based on knowing the projective representation of
a point obtained using a particular projective
coordinate system.

75

6.3 Fault Analysis Attacks

Fault attacks were introduced by Boneh et al in [43]. Fault attacks are based on

tampering with a device in order to have it perform some erroneous operations, hoping

that the result of that erroneous behavior will leak information about the secret

parameters involved – for example by changing some bits in the internal memory.

Boneh et al classified the faults into three categories. The first type is transient

faults which can occur randomly causing a faulty computation to be executed. The second

type is latent faults, which are hardware or software bugs that are difficult to locate. The

third type is induced faults for which physical access to the hardware is necessary.

Induced faults are the most interesting because of the active role of the attacker. For

example, optical fault induction attacks, as introduced by Scorobogatov and Anderson

[44], use a flashgun targeting a transistor to change the state of a memory cell in a

microcontroller. The authors have proven this optical probing to be feasible as they

managed to change an arbitrary bit of an SRAM array.

Differential fault attacks (DFA) on ECC cryptosystems were outlined in the work

of Biehl et al. [45]. They presented three types of attacks on ECC that can be used to

derive information about the secret key if bit errors can be inserted into the elliptic curve

computations in a tamper-proof device. They also estimate the effectiveness of the attacks

using a software simulation.

Their methods require very precise placement and timing of the faults and depend

on the ability to change the coordinates of a point at any specific iteration of the scalar

multiplication. Based on that, the scenario of DFA on ECC is the following:

76

Let the binary representation of the scalar K is,

01
2

2
1

1 2.......22 kkkkK n
n

n
n ++++= −

−
−

− 6.1

And let P be the base point, and the right-to-left scalar multiplication algorithm is:

H = P; Q = 0;
for i = 0 to n-1 do
 if (ik = 1) then Q = Q + H;
 H = 2 H;
end for;
return Q;

Assume that we know the binary length n of the unknown scalar K (note that an

attacker can easily guess this length). Denote by Q[i], H[i] the value stored in the variable

Q, H in the algorithm above before iteration i. The final result will then be Q[n-1]. The

attacker proceeds as follows:

1. Use the tamper-proof device with some input Pe to get the correct result Q[n-1] =

K Pe.

2. Restart scalar multiplication with the same input Pe but enforce a random register

fault to get a faulty result]1[
~

−nQ . Assume that we enforce the register fault in

beginning of the last iteration, n-1, and that this fault changes the variable H.

3. If the final result is unchanged, then there was no addition in the last iteration and

1−nk = 0, otherwise there was an addition and 1−nk = 1 (remember that the final

result is in the variable Q, see the above algorithm).

Clearly, we can do this for each bit of the scalar.

77

Fault attacks can be considered as one of the biggest threat of all implementation

attacks as countermeasures usually include more complex techniques which are not easy

to implement on constraint environment such as smart cards.

6.4 Timing attack

In 1996 Kocher [27] described timing based attacks on public key algorithms such

as RSA. Timing attacks are based on the fact that algorithms with a non-constant

execution time can leak secret information. A non-constant execution time can be caused

by conditional branches in the algorithm, various optimization techniques, cache hits, etc.

For example, the binary algorithm 4.1 (in chapter 4) of the scalar multiplication performs

the addition operation only if the current bit of the scalar is 1. Hence there will be

different execution times when the current bit is 0 or 1.

Assume that the scalar K is constant throughout the attack and that the attacker can

choose the input points. The scenario of timing attack on ECC is the following:

Let the scalar K be represented by the binary representation 6.1. Assume that

algorithm 4.1 is used for the scalar multiplication. Suppose that the bits

121 ,.......,, +−− jnn kkk are known. The attacker wants to find the j-th bit, jk . He proceeds as

follows:

1. The attacker first makes a guess: jk = 1 (or 0).

2. He takes several input points tDD ,...1 and divides these points into two subsets

based on the following rule: based in his knowledge about the scalar multiplication

78

algorithm, he knows (via simulation for example) that some points need more time

than the others to be doubled and added to a fixed base point P. This difference in

time comes due to the fact that doubling certain point and adding the result to the

base point needs more modular reductions than other points. Based on that, he

selects input points tDD ,...1 and classify them into two subsets: S1 for which the

computation of DBL(iD) and ADD(iD +P) will induce a modular reduction and

S2 for which it will not.

3. For each input point iD , he computes a full scalar multiplication K iD . If jk is

really one, then we can expect the computation times for the points from S1 to be

slightly higher than the corresponding times for S2. On the other hand, if the

actual value of jk is zero, then the ADD operation will not be performed and the

separation into two subsets should look random and we should not observe any

distinguishable difference in the computation times.

6.5 Power Analysis Attacks

The power consumption of a cryptographic device may provide much information

about the operations that take place and the involved parameters. This is the idea of

simple and differential power analysis, first introduced by Kocher et al. in [26] and [27].

After publication of these two main types, other power analysis attacks have been

discovered. At the time of writing there are six types of power analysis attacks. These

attacks are: Simple Power Analysis (SPA) attack [26], Differential Power Analysis

79

(DPA) Attack [26] and [32], Refined Power Analysis (RPA) attack (also known as

Goubin attack) [28], Zero-value Point Attack (ZPA) [29], Doubling Attack (DA) [30] and

Address-Bit Differential Power Analysis (ABDPA) Attack [38], [39]. Sections 6.6.1 to

6.6.6 discuss each of these attacks.

6.5.1 Simple Power Analysis (SPA) Attack

SPA makes direct use of one power consumption measurement. A trace refers to a

measurement (i.e., a dataset) taken for one execution of the cryptographic operation under

attack. In a simple power analysis attack, only a single measurement is used to gain

information about the secret key of a device. Obviously, to perform such an attack the

side-channel information needs to be strong enough to be directly visible in the trace.

Additionally, the secret key needs to have some simple, exploitable relationship with the

operations visible in the power trace. Such an attack typically targets implementations

which use key dependent operations in the implementation.

An important characteristic of simple power attacks is the assumption that the

attacker is supposed to have a detailed knowledge about the implementation of the

cryptographic algorithm under attack. Furthermore, the part(s) of the trace corresponding

to the operation under attack needs to be clearly distinguishable from the whole trace.

In elliptic curve cryptography, SPA attack consists of observing the power

consumption during a single execution of an elliptic curve cryptographic algorithm. The

power consumption analysis may enable one to distinguish between point addition and

80

point doubling in the non-immune scalar multiplication algorithm. As shown in scalar

multiplication algorithms presented in section 4.3 namely Algorithms 4.1 and 4.2,

performing the ADD operation is conditioned by the scalar (key) bit. If the scalar bit value

is ONE, an ADD operation is performed, otherwise, an ADD operation is not performed.

Therefore, a simple power analysis will produce different power traces that distinguish

between the existence of an ADD operation or not. This can reveal the bit values of the

scalar.

6.5.2 Differential Power Analysis (DPA) Attack

Even if an algorithm is protected against SPA attack, it may be vulnerable to the more

sophisticated differential power analysis (DPA) attack. DPA attack is based on the same

basic concept as a SPA attack, but makes use of several measurements and statistical

analysis to extract very small differences in the power consumption signals.

Assume that the scalar multiplication algorithm is immune against SAP by using

double-and-add always method (algorithms 6.2 or 6.3). Let the scalar K be represented by

6.1 where ik is the i-th bit of the binary representation of K, and n is the total number of

bits. If one knows the binary representation of the computed points one can again mount a

successful attack. At step i the processed point P depends only on the first bits in kk ...1− of

the secret scalar K. When P is processed, power consumptions is correlated to the bits of

P. No correlation will be observed if the point is not computed. For example, the second

most significant bit can be learned by calculating the correlation between the power

81

consumption and any specific bit of the binary representation of 4P. If 2−nk = 0, 4P is

computed during the binary algorithm. Otherwise if 2−nk = 1, 4P is never computed and

thus there will be no correlation observed. This correlation method is used to classify

power traces of several input points chosen by the attacker. In the following we present a

possible scenario of DPA.

Assume that an attacker already knows the highest bits, 121, +−− jnn kkk , of K. (i.e.

the bits from position j+1 up to n-1 where j is the current position) and he wants to find

jk . The scenario of DPA on ECC is the following:

1. The attacker first makes a guess: jk = 0 (or 1).

2. He chooses several input points tDD ,...1 and computes () i
jdn

jd di DkQ −−

=∑= 22 1 .

The attacker can compute these points using a small program. For example, in

attacking bit 2−nk if the attacker guess that jk = 0, then he will computes (He will

compute not the cryptodevice) tQQ ,...1 = tDD 4,...4 1 .

3. He picks a certain bit in the binary representation of tQQ ,...1 (fixed for all points)

as a boolean selection function g to construct the following two index sets:

})(:{})(:{ falseQgiSandtrueQgiS ifit ====

For example, g is chosen to be a specific bit of the binary representation of

tDD 4,...4 1 in case of attacking bit 2−nk . Note that the same bit must be chosen for

all points.

82

4. Let)(τii CC = = power trace obtained from the computation of a full scalar

multiplication KDi. This is a function of the time τ.

5. Let SiiC
∈ denote the average of the functions iC for the i ∈ S, ft SSS ∪= . If

the guess of jk was incorrect then

0≈−
∈∈ ft SiiSii CC

i.e. the two sets are uncorrelated.

On the other hand, if the guess of jk was correct then the difference

ft SiiSii CC
∈∈

− will present spikes, i.e. deviations from zero.

6.5.3 Refined Power Analysis (RPA) Attack

In 2003, DPA is further improved to the Refined Power Analysis (RPA) by Goubin et

al [28]. RPA exploits a special point with a zero value and reveals a secret key. An elliptic

curve happens to have a special point (0, y) or (x, 0), which can be controlled by an

adversary because the order of base point is usually known. RPA utilizes such a feature

that the power consumption of 0 is distinguishable from that of a non-zero element.

Although elliptic curve cryptosystems are vulnerable to RPA, RPA is not applied to RSA

or DLP-based cryptosystems because they don‘t have such a special zero element. In

general, the RPA attack assumes that the attacker can input adaptively chosen messages or

elliptic curve points to the victim scalar multiplication algorithm.

83

Smart analyzed the RPA attack in detail and discounted its effectiveness in a large

number of order [37]. However, the RPA attack is still a threat to most elliptic curve

cryptosystems.

6.5.4 Zero-value Point Attack (ZPA)

RPA is generalized to Zero-value Point Attack (ZPA) in [29]. ZPA makes use of any

zero-value register used in addition or doubling formula. ZPA utilizes a special feature of

elliptic curves that addition and doubling formulas need a lot of each different operations

stored in auxiliary registers, one of which happens to become zero.

In ZPA, the attacker utilizes an auxiliary register which might take a zero-value in the

definition field. This auxiliary register will take a value of zero for certain operations that

are some how correlated to the scalar bit values. Hence, some secret bits may be revealed.

6.5.5 Doubling Attack

In 2003, a new attack known as Doubling attack is proposed by Fouque et al [30]. DA

only works for the ML binary method. The main idea of this attack is based on the fact

that, even if an adversary cannot see whether the computation being done is doubling or

addition, he can still detect when the same operation is done twice. More precisely, if a

device computes 2A and 2B in any operation, the attacker is not able to guess the value of

A or B but he can check if A = B. This assumption is reasonable since this kind of

computation usually takes many clock cycles and depends greatly on the value of the

84

operands. If the noise is negligible, a simple comparison of the two power traces during

the doubling will be efficient to detect this equality.

6.5.6 Address-Bit Differential Power Analysis Attack

In 1999, Messerges et al. proposed a new attack against the secret key cryptosystems,

the address-bit DPA (ABDPA), which analyzes a correlation between the secret

information and addresses of registers [38]. Then, in 2002, Itoh et al. extended the attack

to Elliptic Curve based Cryptosystems [39].

Address-bit Differential Power Analysis Attack is based on the correlation between bit

values of the scalar and the location (address) of the variables used in a scalar

multiplication algorithm. Consider for example Takagi’s algorithm (algorithm 6.3). The

values of variables Q[0], Q[1] and Q[2] can be randomized by randomizing the projective

coordinates (or the base point) as shown in Figure 6.2(a). However, Figure 6.2(b) shows

that the location of input operand of DBL operation (dotted line) and the data transfer

from either Q[1] or Q[2] to Q[0] (solid line) are correlated to the bit value of the scalar.

This Figure shows that, in Takagi’s algorithm, the following data transfer is performed

based on the bit value of the scalar:

⎭
⎬
⎫

⎩
⎨
⎧

=
=

=
1]1[
0]2[

]0[
i

i

kQ
kQ

Q

⎭
⎬
⎫

⎩
⎨
⎧

=
=

=
1]2[
0]1[

]1[
i

i

kQ
kQ

Q

85

(a) Randomizing data by using randomized projective coordinates

(b) Correlation still exists between the addresses and the bit values of the scalar

Figure 6. 2: Address-bit differential power analysis attack

6.6 Electromagnetic Analysis Attacks

Any movement of electric charges is accompanied by an electromagnetic (EM)

field. The currents going through a processor can characterize it according to its spectral

signature. Electromagnetic attacks, first introduced by Quisquater and Samyde [46], and

further developed in [47], [48] exploit this side channel by placing coils in the

neighborhood of the chip and studying the measured electromagnetic field.

CopyDBL

data
When ki=1

********Q[0]

Q[1]

Q[2]

data
When ki=0

******** Q[0]

Q[1]

Q[2]

data
When ki=1

******** Q[0]

Q[1]

Q[2]

data
When ki=0

******** Q[0]

Q[1]

Q[2]

86

The information measured can be analyzed in the same way as power consumption

(simple and differential electromagnetic analysis – SEMA and DEMA), but may also

provide much more information and are therefore very useful, even when power

consumption is available. Agrawal et al [49] show that EM emanations consist of a

multiplicity of signals, each leaking somewhat different information about the underlying

computation. They sort the EM emanations in two main categories: direct emanations, i.e.

emanations that result from intentional current flow, and unintentional emanations, caused

by coupling effects between components in close proximity. According to them,

unintentional emanations, which have been somewhat neglected so far, can prove much

more useful than direct emanations. Moreover, some of them have substantially better

propagation than direct emanations, which enables them to be observed without resorting

to invasive attacks (and even, in some cases, to be carried out at pretty large distances - 15

feet! - which comes back to the field of tempest-like attacks [50]). Finally, they argue that

EM emanations can even be used to break power analysis countermeasures, and illustrate

this by sketching a practical example.

Electromagnetic attacks are powerful attacks especially when combined with other

side channel attacks. For example, Quisquater and Samyde recently showed [51] that it

was possible to build a dictionary of instructions and their power/electromagnetic traces,

and, using correlation techniques and neural networks, to recognize the instructions

executed by a processor.

87

EMA is a non-invasive attack, as it consists in measuring the near field. However,

this attack is made much more efficient by de-packaging the chip first, to allow nearer

measurements and to avoid perturbations due to the passivation layer.

6.7 Projective Coordinates Leak

In 2004, Nigel Smart et. al. [42] showed that it is possible to leak some

information about the secret key (scalar K) through the projective representation of elliptic

curve points. Giving that Q = KP is the elliptic-curve double-and-add scalar multiplication

of an elliptic curve point P by a secret K, they showed that allowing an adversary access

to the projective representation of Q may result in information being revealed about K.

In [42], they restrict projective coordinates leak to Jacobian projective coordinates

in GF(p) (although it can be applied to other coordinates). For each affine point there are

P-1 representatives in Jacobian projective coordinates, one for every non-zero value of Z.

By knowing the projective coordinates of a point G, they consider the least significant bit

of the scalar and guess its value. Once this is done, it is possible to compute a set of

candidates for the coordinates of the previous intermediate values handled by the double-

and-add algorithm while processing that bit. This is achieved by reversing computations:

reversing doubling is Halving while reversing addition is subtracting. In other words, they

apply a backtracking algorithm that can reveal whether the final bit was zero or not.

This attack requires a special backtracking formulas for each projective coordinate

system. Thus, formulas used to half (subtract) a point in homogenous projective

coordinates cannot be used to half (subtract) a point in Jacobian projective coordinates.

88

6.8 Countermeasures

This section presents countermeasures found in the literature for side channel

attacks . We organized the countermeasures in the same way as we did for attacks.

6.8.1 Fault Attack Countermeasures

The most obvious way that comes to mind in order to protect against fault attacks

is to check the computation for errors, for example by repeating the computation and

comparing the results. However, it must be noted that this policy is very costly, either in

time (repeat computation) or in hardware (double hardware and perform both

computations in parallel). Moreover, repeating the computation is not always satisfactory

as, in the case of a permanent fault induction, it will yield identical, although wrong,

results.

Another way to check for the presence of faults is, in the case of public-key

cryptography, to re-encrypt the message. This is usually less time-consuming, as the

public exponent is usually chosen to be small.

6.8.2 Timing Attack Countermeasures

The obvious way to prevent timing attacks is to implement cryptographic

algorithms with a constant execution time. In case of elliptic curve cryptography, this idea

can be implemented by adding a dummy operation to balance all operations in all

iterations.

89

Almost all modern implementations are resistant against timing attacks, which

makes a timing-only attack very difficult. However, the threat remains in combining

timing information with other side-channels. For example, timing information can be used

by an attacker in order to locate specific parts of the algorithm.

6.8.3 SPA Attack Countermeasures

To protect against SPA attack, Coron [32] proposed a simple SPA countermeasure

which consisted of modifying the binary methods shown in algorithms 4.1 and 4.2 to be

as in algorithms 6.1 and 6.2 respectively. The basic idea of these countermeasures is to

perform the ADD operation in all cases regardless of the scalar bit value. Therefore, the

ADD operation is no longer conditioned by the scalar bit values. However, if the ADD

operation is originally not required (i.e. in case of the scalar bit is 0), the result of ADD

operation is simply discarded. Since none of the instructions in algorithms 6.1 and 6.2

depend on the scalar bit value, these algorithms are resistant to a SPA attack. These

algorithms are called Double-and-ADD always algorithms since it computes a point

addition and point doubling in each iteration without regard to the secret key K. However,

even though this scheme is resistant to SPA attack, it remains vulnerable to DPA attack.

INPUT K, P
OUTPUT KP

1. Initialize Q[2] = P
2. for i = n-2 down to 0
3. Q[0] = DBL(Q[2])
4. Q[1] = ADD(Q[0], P)
5. Q[2] = Q[ki]
6. end for

 return Q[2]
Algorithm 6. 1: Double-and-ADD always Most-to-Least (ML) binary algorithm.

90

INPUT K, P
OUTPUT KP

1. Initialize Q[0] = P; Q[1] = P
2. for i = 1 to n-1
3. Q[0] = DBL(Q[0])
4. Q[2] = ADD(Q[0], Q[1])
5. Q[1] = Q[1+ ki]
 end for

 return Q[1]
Algorithm 6. 2: Double-and-ADD always Least-to-Most (LM) binary algorithm.

 Another ML algorithm to avoid this kind of leak was proposed by Takagi et al

[33]. This algorithm uses extra ADD operations to assure that the sequence of DBL and

ADD operations is carried out in each iteration. We refer to this algorithm as Takagi’s

algorithm and it is shown in algorithm 6.3.

INPUT K, P
OUTPUT KP

1. Initialize Q[0] = P; Q[1] = 2P
2. for i = n-2 down to 0
3. Q[2] = DBL(Q[ki])
4. Q[1] = ADD(Q[0], Q[1])
5. Q[0] = Q[2- ki],
6. Q[1] = Q[1+ ki]
7. end for

 return Q[0]
Algorithm 6. 3: Takagi’s ML algorithm for scalar multiplication.

6.8.4 DPA Attack Countermeasures

In order for an algorithm to be resistant to a DPA attack, some system parameters or

computation procedures must be randomized. Coron et. al [32] suggested three

countermeasures to protect against a classical DPA: randomizing the scalar, randomizing

91

the base point P, and randomizing the projective coordinates. Brief summary of how these

countermeasures can be realized is given below:

1. Randomizing the scalar K

If n = ordE(P) denotes the order of P ∈ E/GF(p), then Q = KP can be

computed as Q = (k + r n)P for a random r. Alternatively, one can replace n by

the order of the elliptic curve, #E/GF(p).

2. Randomizing the base-point P

The base point P to be multiplied by K is randomized by adding a secret

random point R for which we know S = KR. Scalar multiplication is done by

computing the point (R + P)K and subtracting S = KR to get Q = KP.

3. Using randomized projective coordinates

Randomized projective coordinates can use the Homogenous or Jacobian

coordinate to randomize a point P = (x, y). For homogenous projective

coordinate, P can be randomized to (rryrx ,,) for a random number r ∈

GF(p). Similarly, P can be randomized to (ryrxr ,, 32) in case of using

Jacobian coordinates where r is a random in GF(p).

 However, the main goal of all these countermeasures, and others proposed in [33]

- [36], is to randomize the power traces collected by the attacker and hence make it

difficult for him to exploit the differences between these traces.

92

6.8.5 Doubling Attack Countermeasures

According to [30], two of Coron’s three proposed countermeasures against DPA

attacks, discussed in the previous section, fail to protect against a doubling attack:

randomizing the scalar and randomizing the base point. However, his third

countermeasure, the randomized projective coordinate does protect against a doubling

attack as does a randomized exponentiation algorithm such as the Ha-Moon algorithm

which maps a given scalar to one of various representations [34]. Since the positions of

the zeros in the Ha-Moon algorithm vary in each representation, the doubling attack

cannot detect the positions of the zeros for the doubling operation.

To enhance the Coron’s 2ed countermeasure, to protect against a doubling attack, the

secret random point R should be randomly updated. A regularly updated method shouldn’t

be used.

6.8.6 RPA & ZPA Attacks Countermeasures

To protect against RPA and ZPA attacks, the base point P or the secret scalar d should

be randomized. For example, Coron’s first two counter-measures (but not the 3rd) protect

against these attacks. Projective coordinates randomization does not protect against RPA

and ZPA because it cannot randomize the zero-value operands.

Mamiya et al [31] recently proposed a countermeasure (called BRIP) which uses a

random initial point (RIP) R. They computes KP + R using a special algorithm and then

subtracts R to get KP.

93

6.8.7 Address-Bit Differential Power Analysis Attack Countermeasures

The countermeasures used to protect against simple power analysis and differential

power analysis that are based on randomization of the base point or the projective

coordinate do not provide countermeasure against address-bit analysis attacks. Therefore,

these countermeasures do not remove the correlation between the bit values of a scalar

and the location (address) of the variables used in a scalar multiplication algorithm.

Itoh et al gave several countermeasures against the ABDPA attack in [39]. But

those countermeasures require at least twice computing time than without them [39].

A hardware-based DPA countermeasure proposed by May et al. [40] is based on

Randomized Register Renaming (RRR). RRR is supposed to be implemented on a

processor that can execute instructions in parallel. In other words, it requires a special

hardware to work [41].

In 2003, Itoh et al. proposed a countermeasure [41], called randomized addressing

method (RA), which is similar to RRR but does not require special hardware because it

can be implemented by only software with a program code. In RA, they randomize

addresses of registers by a one-time random number 01
2

2
1

1 2...22 rrrr n
n

n
n ++++ −

−
−

−

where ()}1,0{∈ir . They change each bit, ik , of the scalar to ii rk ⊕ , where ⊕ denotes

the XOR operation. Then all addresses of registers are randomized so that the side channel

information will be randomized for each scalar exponentiation. Of course this change in

the scalar bits requires a special algorithm to calculate the correct point of the scalar

multiplication KP. They provided such an algorithm in [41].

94

6.8.8 Electromagnetic Attacks Countermeasures

Electromagnetic attacks and power attacks are, in many respects, very similar.

Although the way the side channel leaks information differs, but the type of leaking

information is roughly the same. Countermeasures do not try to reduce the signal

amplitude, but rather to make the information it conveys useless by obscuring the internal

parameters. Therefore, any countermeasure for SPA and DPA can be used for SEMA and

DEMA respectively.

6.8.9 Projective Coordinates Leak Countermeasures

Nigel Smart et al [42] suggested two methods to resist this attack. First, we call it

Smart's trick, which is done by randomly replacing the output (X, Y, Z) of the

computation by (X, εY, εZ), with ε = ±1. Although, this method does not lend itself to a

formal proof, they claim that it can defend the PCL. However, this method does not

protect against PCL if the attacker obtains intermediate points. Second, is by replacing (x,

y, z) representation of Q by),,(32 λλλ yx , where λ is randomly chosen among the non

zero elements of the base field. This method, identical to Coron's 3-ed countermeasure,

provides a randomly chosen set of projective coordinates for the result and, therefore,

cannot leak additional information.

However, it is worth mentioning that they assume that the attacker knows the

projective coordinate system used and that the coordinate system is fixed.

95

6.9 Classification of Countermeasures

In this section, we provide a classification of countermeasures according to the

proposed classification of the attacks presented in section 6.2. Table 6.3 shows the

proposed classification. In addition, table 6.3 contains the attacks that each

countermeasure can help in defending them and those it cannot. Also, table 6.3 contrast

the advantages and disadvantages of each countermeasure.

6.10 Conclusions

In this chapter, we have surveyed different types of side channel attacks and the

various countermeasures for defending them. Also, according to the type of information

being leaked, a new classification method of attacks has been proposed. This

classification method was used to classify and analyze both the attacks and

countermeasures. Three classes were proposed: Class A: Operation-dependent attacks that

depend on the type of operation being performed. Class B: Data-dependent attacks that

are based on the data being manipulated. Class C: Address-dependent attacks that are

based on the addresses (locations) of the data being processed.

In this chapter, we analyze and contrast the existed countermeasures in terms of

what attacks each countermeasure can defend and what it cannot, its advantages and

disadvantages. A summary of this analyze is presented in table 6.3

We conclude that there are powerful side channel attacks that exploit more that

one type of leaked information. Therefore, sophisticated countermeasures to protect

96

against each type of information are mandatory. We recommend that at least one

countermeasure from each class should be involved in any ECC implementation.

Table 6. 3: Countermeasures classification, protection, advantages and disadvantages.
Class Countermeasure/

(Code)
Help in
protect

Not
protect

Advantages Disadvantages

Operations balancing
by adding a dummy
operation.
(001)

SPA
TA
SEMA

DPA
DEMA
ABDPA
DA
RPA
ZPA
PCL

-Simple and can be
plugged to any
scalar
multiplication
algorithm.

-The dummy operation is extra
operation, that increases the
execution time.

A:
Operation-
dependent

Randomizing the
Scalar
(001)

DPA
FAs
DEMA
RPA
ZPA

DA
PCL
ABDPA

-Simple and can be
plugged to any
scalar
multiplication
algorithm.

-Requires a word length
multiplication and an addition
operations.
-Requires knowing order of the
base point or the curve.

Randomizing the base
point. (Coron's 2-ed
countermeasure)
(010)

DPA
FAs
DEMA
RPA
ZPA
PCL

DA
ABDPA

-Simple and can be
plugged to any
scalar
multiplication
algorithm.

-S = KR of the secret random
point R must be known.
Otherwise it needs to be
computed hence duplicating
scalar the multiplication time.
-Weak since R needs to be
updated.

Randomizing
projective coordinates
(010)

DPA
FAs
DEMA
DA
PCL

RPA
ZPA
ABDPA

-Simple and can be
plugged to any
scalar
multiplication
algorithm.

-Each coordinate system
requires its own randomization
method.
-Requires 2 multiplications in H
coordinate system and 3
multiplications and one
squaring in J coordinate system.

Random initial point
(RIP)
(010)

DPA
FAs
DEMA
RPA
ZPA
PCL

DA -Does not require
storing RK of the
random point R.
-Does not require
updating R.

-Complex.
-Needs a special scalar
multiplication algorithm.

Error detection
technique
(010)

FAs The rest - The only way to
detect errors.

-Complex.
-Needs special techniques.
-Increase scalar multiplication
time dramatically.

B:
Data-
dependent

N. Smart's trick
(010)

PCL The rest -Simple. -Does not protect PCL if the
attacker obtain intermediate
points.

Randomized register
renaming (RRR) (100)

ABDPA The rest -Faster than RA. -Requires special hardware. C:
Address-
dependent Randomized

addressing (RA) (100)
ABDPA The rest -Does not requires

special hardware.
-Requires special scalar
multiplication algorithm.

97

CHAPTER 7

Dynamic Projective Coordinate (DPC) System

7.1 Introduction

Using projective coordinates in point addition and doubling operations is an

important requirement to remove the need for intermediate inversion operations in the

scalar multiplication. The usual way used in the literature to achieve this is by using a

fixed coordinate system that is selected in the design stage. The selected system is used in

a fixed manner for all scalar multiplication iterations. However, although using a fixed

coordinate system removes the intermediate inversion operations, it becomes a security

weakness since it can be exploited by projective coordinates leak attacks to reveal some

secure information (section 6.7 in chapter 6). Therefore, finding a coordinate system that

can satisfy both requirements: removing the intermediate inversions and being secure

against such attacks is mandatory.

Although, mixed coordinates (section 5.7) provide efficient addition and doubling

operations, most of them cannot be used for the following reasons:

• It is necessary to convert a point representation from one coordinate system to

another to have the input in the required format for the addition or doubling

98

operation. For example, using Jacobian coordinate for addition operation and

homogenous coordinates for doubling operation requires converting the addition

result to homogenous coordinates. This conversion requires an inversion operation.

Same thing happens if using homogenous for addition and Jacobian for doubling.

• It requires separate mathematical formulas for each coordinate system.

However, using different projective coordinates for different runs and/or different

phases of the scalar multiplication is not used yet as a randomization method to resist

many operation-dependent and data-dependent attacks.

In this chapter, we introduce the Dynamic Projective Coordinate (DPC) system

which is proposed to overcome the above difficulties and has the following properties:

• It automates the selection of the projective coordinate system and uses a single

mathematical formulation/software code to implement different projective

coordinate systems.

• It allows the computing/encrypting device to select the projective coordinate either

at random, or according to a certain rule.

• Different projective coordinates can be implemented by using two parameters

where one parameter defines the projection of the x-coordinate and a second

parameter defines the projection of the y-coordinate of an elliptic curve point. This

allows different projective coordinates to be used within the same mathematical

formulation in calculating the scalar multiplication.

99

• The computation of the scalar multiplication can be randomized by simply varying

either the x-coordinate projecting parameter and/or the y-coordinate projecting

parameter.

• It allows projective coordinates hopping at any time during the scalar

multiplication.

• With DPC system, different projective coordinate systems can be used for

different phases of the scalar multiplication. Fore example, a certain coordinate

system can be used for the pre-computation phase of the scalar multiplication

while other coordinate systems can be used for addition and/or doubling

operations in the main loop. Furthermore, different blocks (or windows) of the

scalar K can use different projective coordinate systems.

• It does not require the sending and receiving correspondents to use to the same

projective coordinates in computing the same scalar multiplication.

In this chapter, we start by defining dynamic transformation functions that are

used to convert any affine point to any projective coordinates using the same

mathematical formula. Then these transformation functions are used to develop dynamic

addition and doubling formulas for elliptic curve over the prime field GF(p) and elliptic

curve over binary field E/GF(2m).

The rest of this chapter is organized as follows. Section 7.2 introduces the

proposed dynamic projecting parameters and transformation functions. In section 7.3,

DPC is used to propose dynamic addition and doubling formulas for elliptic curve over

finite field GF(P). Similarly, in section 7.4, DPC is used to propose dynamic addition and

100

doubling formulas for elliptic curve over finite field)2(mGF . Finally, conclusions are

presented in section 7.5

7.2 Dynamic Projecting Parameters

In DPC, we use two values xLZ and yLZ for projecting the x-coordinate and the y-

coordinate of a point respectively. xL and yL are projecting parameters (powers) that can

be chosen either at random or according to a certain criteria such as a criteria for reducing

the computation complexity.

To formulate the Dynamic Projective Coordinate system, consider that there are

multiple degrees of powers for the Z-coordinate, as follows:

Degree-0 is the affine coordinate system P = (x,y)

In Degree-1,
Z
Xx = ,

Z
Yy =

In Degree-2, 2Z
Xx = , 2Z

Yy =

… … …

In Degree-i, iZ
Xx = , iZ

Yy =

In DPC system the x and y coordinates can be projected to any degree of the above

degrees and not necessarily to the same degree. In other words, x-coordinate can be in one

degree while y-coordinate in another one resulting in many combinations of coordinate

systems.

101

Projecting parameters xL and yL are used to define the following Dynamic

Transformation Functions:

xLZ

Xx = and
yLZ

Yy = 7.1

where, xL and yL are positive integers.

However, in any projective coordinate system, each affine point (yx,) can be

converted to many projective points (ZYX ,,), one for each non-zero value of Z. This

means that we have the freedom to select Z. However, Z should be selected in a way that

clears the denominators and minimizes the computations of 3X and 3Y . For example,

consider addition operation using homogenous coordinate system in which the point

),,(3333 ZYXP = is the result of point addition),,(1111 ZYXP = +),,(2222 ZYXP = . The

Z-coordinate of the result point, 3Z , is chosen to be 21
3 ZZV , where 2112 ZXZXV −= ,

which is the best choice to unify Z-coordinate and minimize the computations of 3X and

3Y (see equation 5.5 in section 5.3). Similarly, in case of addition using Jacobian

coordinate system, 3Z is chosen to be 21ZHZ , where 2
21

2
12 ZXZXH −= (equation 5.8 in

section 5.4).

Therefore, in order to have a general method for choosing 3Z in DPC, a third

parameter, called d-parameter, is used to control choosing the Z-coordinate of the

resulting point of addition and doubling operations. For example, 3Z can be chosen to be

21ZZV d . By setting d=3 we get the same definition of 3Z in homogenous coordinate

102

system while by setting d=1 we get the same definition of 3Z in Jacobian coordinate

system. However, it is worth mentioning that d is not used to project neither x nor y

coordinates. It is only used to help in choosing Z-coordinate of the resulting point of

addition and doubling operations. Furthermore, 3Z of addition operation and 3Z of

doubling operation are different because each operation has its own formula.

 However, using the d-parameter in the way discussed above introduces a powerful

and very efficient projective coordinates randomization method by simply randomizing d

itself. This method is discussed in chapter 8.

7.3 Dynamic Projective Coordinate System for E/GF(p)

Let E/GF(P) denotes elliptic curve defined over the prime field GF(P) (see section

3.3 in chapter 3). By substituting for x and y from 7.1 in the elliptic curve equation 3.3, we

get:

xxyx LLLL bZaXZXZY 323232 ++=− 7.2

Note that if we set 1== yx LL in 7.2, we get: 3232 bZaXZXZY ++= which is

identical to the standard projective equation of the elliptic curve equation over prime field

found in [4].

This equation is satisfied by all projective points with Z ≠ 0 for which the

corresponding affine points satisfy the affine equation 3.3. Now the question is which

points on the line at infinity satisfy equation 7.2? Setting Z = 0 in the equation leads to

103

03 =X , i.e. 0=X . The only point with both X and Z zero is the point (0, 1, 0). This point

is called the point at infinity and denoted as ∞. It is the point on the intersection of the y-

axis with the line at infinity

Lemma 7.1: Any point),(yxQ = ∈ E/GF(p) represented in affine coordinates can be

transferred to a 4-tuple projective point),,,(yx LL ZZYXP = ∈ E/GF(p) where, xLZ and yLZ

≠ 0.

Proof: Since the two values, xLZ and yLZ , are available within the 4-tuple representation

of the point, the affine point (x,y) can be obtained by direct application of 7.1.

The following subsections present the addition and doubling formulas for GF(p)

using DPC. However, several DPC formulas are introduced. These formulas are: General

formulas in which xL and yL can be selected to be any positive integers without any

restriction. Optimized formulas in which xL and yL are selected according to certain rule

to reduce the number of computations required. Mixed formulas in which each coordinate

of each point has its own projecting parameter.

7.3.1 General Dynamic Projective Coordinate System for E/GF(p)

Formulations for Elliptic curve point addition and doubling, over GF(p), using

DPC are presented in this section. We develop point addition mathematical formulas that

can be used to implement any projective coordinate system simply by varying the

projecting parameters xL and yL . Similarly, point doubling formulas are also presented.

104

However, one of the most important features of the DPC system for E/GF(p) is that the

same mathematical formulas, either for point addition or doubling, can implement any

projective coordinate system without the need to recode or reprogram the cryptodevice.

Point Addition Formula

Theorem 7.1: Given two elliptic curve points represented in DPC,

),,,(1111
yx LL ZZYXP = ∈E/GF(P),),,,(2222

yx LL ZZYXQ = ∈ E/GF(p), and denoting the point

),,,(3333
yx LL ZZYXR = ∈ E/GF(p) as the addition of the two points P and Q, i.e. QPR += ,

the dynamic projective coordinates of the point R is given by:

()
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎭

⎪⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎬

⎫

>>≥
−−−=

−−=

===

−===

−===

=

=

=

=
−

−

0,0,3
)()(

,

,,

,,,

,,,,

2
2

1
2

2
'
32

2
2

'
3

2
2

1
23

1
'
3

2212211

21212121

21212121

23

13

3'
33

2'
33

yx

LLLL

LL

LL

dLL

dLL

dL

dL

LLd
VRVRUXVRUTY

VRVRUTX

VTRZZTZZT

VVVZXVZXV

UUUZYUZYUwhere

TRZ

TRZ

RYY

RXX

yyxx

xx

yy

yy

xx

y

x

 7.3

Proof: According to lemma 7.1, since),,,(1111
yx LL ZZYXP = ,),,,(2222

yx LL ZZYXQ = and

),,,(3333
yx LL ZZYXR = are elliptic curve projective points ∈ E/GF(p), one can use the

addition formula 3.4 for E/GF(p) in affine coordinates to compute QPR += (addition

105

operation). The projective coordinates),,,(3333
yx LL ZZYX of the point R can be derived using

the dynamic transformation functions 7.1. This is shown in appendix A-I to obtain the

formulas 7.3 for computing QPR += .

Point Doubling Formula

Theorem 7.2: Given an elliptic curve point represented in DPC,),,,(1111
yx LL ZZYXP = ∈

E/GF(p), and denoting the point),,,(3333
yx LL ZZYXR = ∈ E/GF(p) as the addition of the

point P to itself, i.e. PR 2= , the coordinates of the point R is given by:

⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎭

⎪⎪
⎪
⎪
⎪
⎪
⎪

⎬

⎫

>>≥
−−=

−=

===

=+=

=

=

=

=
−

−

0,0,3
2)(

2

2,,

,2,3,

2
1

'
32

'
3

2
'
3

112111
2

1

1
2

1
2

1
2

1

13

13

3'
33

2
1

'
33

yx

LL

LL

LdLL

LdLL

dL

dLL

LLd
TXTTY

TWTX

XTTZSYTWZT

YZSaZXWWhere

ZSZ

ZSZ

SYY

SZXX

xy

xx

yyy

xxx

y

xx

 7.4

Proof: According to lemma 7.1, let),,,(1111
yx LL ZZYXP = , and),,,(3333

yx LL ZZYXR = be elliptic

curve projective points ∈ E/GF(p). We can use the doubling formula 3.5 for E/GF(p) in

affine coordinates to compute PR 2= (doubling operation). The projective coordinates

),,,(3333
yx LL ZZYX of the point R can be derived using the dynamic transformation

106

functions 7.1. This is shown in appendix B-I to obtain the formulas 7.4 for computing

PR 2= .

7.3.2 Mixed Dynamic Projective Coordinate System for E/GF(p)

Formulas 7.3 are obtained using uniform transformation in which xL and yL are

the same for the three points P, Q and R. More general addition formulas can be obtained

by using mixed transformation where each coordinate in each point has its own projecting

parameter. In this case, projecting parameters 11 , yx LL are used for P, 22 , yx LL are used for

Q and 33 , yx LL are used for R.

Theorem 7.3: Given two elliptic curve points represented in DPC,

),,,(11
1111

yx LL ZZYXP = ∈E/GF(p),),,,(22
2222

yx LL ZZYXQ = ∈E/GF(p), and denoting the

point),,,(33
3333

yx LL ZZYXR = ∈ E/GF(p) as the addition of the two points P and Q,

i.e. QPR += , the coordinates of the point R is given by:

()
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎭

⎪⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎬

⎫

>>≥
−−−=

−−=

===

−===

−===

=

=

=

=
−−

−−

0,0,3
()(

,

,,

,,,

,,,,

33

2
2

1
2

2
'
32

2
1

'
3

2
2

1
23

1
2'

3

2212211

21212121

21212121

13

13

1
1

3'
33

1
1

2'
33

2121

21

21

333

333

33

33

yx

LLLL

LL

LL

LdLL

LdLL

LdL

LdL

LLd
VRVRUXVRUTY

VRVRTUX

VTRZZTZZT

VVVZXVZXV

UUUZYUZYUwhere

TRZ

TRZ

TRYY

TRXX

yyxx

xx

yy

yyy

xxx

yy

xx

 7.5

107

Proof: The proof of Theorem 7.3 is similar to the proof of Theorem 7.1 with replacing

each xL
iZ by xiL

iZ and each yL
iZ by yiL

iZ where, i = 1,2.

Formulas 7.4 are obtained using uniform transformation functions in which xL and

yL are the same for P and R. More general addition formulas can be obtained by using

mixed transformation, where different projecting parameters for each point, i.e. 11, yx LL for

P and 33 , yx LL for R.

Theorem 7.4: Given an elliptic curve point represented in DPC,

),,,(11
1111

yx LL ZZYXP = ∈E/GF(p), and denoting the point),,,(33
3333

yx LL ZZYXR = ∈ E/GF(p) as

the addition of the point P to itself, i.e. PR 2= , the coordinates of the point R is given

by:

⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎭

⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎬

⎫

>>≥
−−=

−=

===

=+=

=

=

=

=
−−

−−

0,0,3
2)(

2

2,,

,2,3,

)(

)(

)(

)(

33

2
1

'
312

'
3

2
2'

3

112111
2

1

1
2

1
2

1
2

1

13

13

1
1

3'
33

1
1

2'
33

1

11

11

3133

3133

313

313

yx

L

LL

LL

LLdLL

LLdLL

LLdL

LLdL

LLd
TXZTTY

TTX

XTTZSYTWZT

YZSaZXWWhere

ZSZ

ZSZ

ZSYY

ZSXX

y

xy

xx

yyyy

xyxx

yyy

xyx

 7.6

Proof: The proof of Theorem 7.4 is similar to the proof of Theorem 7.2 with replacing

each xL
iZ by xiL

iZ and each yL
iZ by yiL

iZ where, i = 1,2.

108

7.3.3 Optimized Dynamic Projective Coordinate System for E/GF(p)

Addition and doubling formulas 7.3 and 7.4 are the most general homogenous

formulas for E/GF(p) without any restriction on the values of the projecting parameters

xL and yL . However, their computation complexity can be reduced by reproducing these

formulas with taking 1Z and 2Z as common factors in each equation (whenever it is

possible) and simplify the resultant formulas by eliminating the unnecessary terms. This

results in the existence of terms such as yx LLZ −
1 , in which its power is a relation between

xL and yL . Existence of such terms requires providing either pure Z-coordinate (i.e. not

raised to any power) or the required term as a ready computed value in the point

representation. This can be achieved with the help of the following lemma.

Lemma 7.2: Any point),(yxQ = E/GF(p) represented in affine coordinates can be

transferred to a 5-tuple projective point),,,,(yx LL ZZZYXP = E/GF(p) where, Z , xLZ and

yLZ ≠ 0.

Proof: Since the values, Z , xLZ and yLZ , are available within the 5-tuple representation

of the point, proof follows directly from 7.1.

Appendixes C-I and D-I present the derivation of optimized addition and doubling

formulas respectively. The optimized addition formulas are:

109

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎭

⎪⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎬

⎫

≥−≥−≥−≥−
−−=

−−=

==

−===

−===

=

=

=

=

=

−

−

−

−

03,02,023,0
)(

,2

,

,,,

,,,,

)(

)(

3
2

'
32

2'
3

2
23232'

3

121

21212121

21212121

3

3

3

3'
33

2'
33

yxyxxy

LL

LL

LL

LL

LdL

LdL

d

dL

dL

dLdLLLLL
VUXVVUY

VVVTUX

VTTZZT

VVVZXVZXV

UUUZYUZYUwhere

TVZ

TVZ

TVZ

VYY

VXX

yx

xy

xx

yy

yy

xx

y

x

 7.7

and the optimized doubling formulas are:

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎭

⎪⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎬

⎫

≥−≥−≥−≥−
−−=

−=

===

=+=

=

=

=

=

=

−

−

−

−

03,02,02,0
4)(

2

,2,,

,2,3,

)(

)(

2
1

2
11

'
32

'
3

2
2'

3

112111

11
2

1
2

1

3

3

3

3'
33

2'
33

yxyxxy

LL

LL

LL

LdL

LdL

d

dL

dL

dLdLLLLL
ZYTXTTY

TTX

XTTSYTWZT

YZSaZXWWhere

SZ

SZ

SZ

SYY

SXX

yx

xy

xx

yy

xx

y

x

 7.8

Formulas 7.7 and 7.8 are obtained using uniform transformation functions. Similar

mixed optimized formulas can be obtained using the same way as in appendixes C-I and

D-I with replacing each xL
iZ by xiL

iZ and each yL
iZ by yiL

iZ where, i = 1,2. The mixed

optimized addition formulas are:

110

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎭

⎪⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎬

⎫

≥−≥−≥−≥−
−−=

+−=

====

−===

−===

=

=

=

=

=

−−

−

−

03,02,0,0
)(

),)((

,,,

,,,

,,,,

)(

)(

332211

3
'
322

2'
3

2121
2

3
'
3

132212211

21212121

21212121

3

3

3

3'
33

2'
33

2211

2121

21

21

33

33

3

3

yxxyxy

LLLL

LLLL

LL

LL

LdL

LdL

d

dL

dL

dLdLLLLL
TXVUUVRY

VVZZVRTX

UTTVTRZZTZZT

VVVZXVZXV

UUUZYUZYUwhere

RZ

RZ

RZ

RYY

RXX

xyxy

yyxx

xx

yy

yy

xx

y

x

 7.9

and the mixed optimized doubling formulas are:

⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎭

⎪⎪
⎪
⎪
⎪
⎪
⎪

⎬

⎫

≥−≥−≥−≥−
−−=

−=

==+=

=

=

=

=

=

−

−

−

−

03,02,02,0
)(4)2(

4
,2,3,

)(

)(

331111

2
1

2
11

'
311

'
3

11
2'

3

111
2

1
2

1

3

3

3

3'
33

2'
33

11

1111

33

33

3

3

yxyxxy

LL

LLLL

LdL

LdL

d

dL

dL

dLdLLLLL
ZYSYXXSYTY

XSYTX
WZTYZSaZXWWhere

SZ

SZ

SZ

SYY

SXX

yx

xyxx

yy

xx

y

x

 7.10

111

7.4 Dynamic Projective Coordinate System for E/GF(2m)

Dynamic Projective Coordinate system can be used to get addition and doubling

formulas, similar to those obtained in section 7.4, in case of defining ECC over the binary

field)2(mGF .

Transformation functions 7.1 are used to formulate the DPC in E/)2(mGF . By

substituting for x and y from 7.1 in the elliptic curve equation 3.6, we get:

xxyxyx LLLLLL bZZaXXXYZZY 3232232 ++=+ −−
 7.11

Note that if we set 1== yx LL in 7.11, we get: 3232 bZZaXXXYZZY ++=+ which is

identical to the standard projective form of the elliptic curve equation over binary field

found in [52]. Also, If Z = 0, then 03 =X , i.e. 0=X . Therefore, (0,1,0) is the only

projective point that satisfies this equation. This point is called the point at infinity and

denoted as ∞.

Lemma 7.3: Any point),(yxQ = ∈ E/)2(mGF represented in affine coordinates can be

transferred to a 4-tuple projective point),,,(yx LL ZZYXP = ∈ E/)2(mGF where, xLZ and

yLZ ≠ 0.

Proof: Since the two values, xLZ and yLZ , is available within the 4-tuple representation of

the point, proof follows directly from 7.1.

112

7.4.1 General Dynamic Projective Coordinate System for E/GF(2m)

Formulations for Elliptic curve point addition and doubling, over)2(mGF , using

DPC are presented in this section. We develop point addition mathematical formulas that

can be used to implement any projective coordinate system simply by varying the

projecting parameters xL and yL . Similarly, point doubling formulas are also presented.

However, one of the most important features of the DPC system for E/)2(mGF is that the

same mathematical formulas, either for point addition or doubling, can implement any

projective coordinate system without the need to recode or reprogram the cryptodevice.

Point Addition Formula

Theorem 7.5: Given two elliptic curve points represented in DPC,

),,,(1111
yx LL ZZYXP = ∈E/)2(mGF ,),,,(2222

yx LL ZZYXQ = E/)2(mGF , and denoting the

point),,,(3333
yx LL ZZYXR = ∈ E/)2(mGF as the addition of the two points P and Q,

i.e. QPR += , the coordinates of the point R is given by:

113

()
() ()

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎭

⎪⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎬

⎫

>>≥
+++=

+++=

===

+===

+===

=

=

=

=
−−

−−

0,0,3

),(

,,,

,,,

,,,,

)(

)(

1
'
3222

'
3

2
11

'
3

12121

21212121

21212121

3

3

13'
33

12'
33

yx

LLLL

LL

LL

LdL

LdL

LdL

LdL

LLd
RTXVUUVTY

aTVRRTTTX

UTTZZTZVZR

VVVZXVZXV

UUUZYUZYUwhere

TRZ

TRZ

TRYY

TRXX

xxyy

xx

yy

yy

xx

yy

xx

 7.12

Proof: According to lemma 7.3, since),,,(1111
yx LL ZZYXP = ,),,,(2222

yx LL ZZYXQ = and

),,,(3333
yx LL ZZYXR = are elliptic curve projective points ∈ E/)2(mGF , one can use the

addition formula 3.7 for E/)2(mGF in affine coordinates to compute QPR += (addition

operation). The dynamic projective coordinates),,,(3333
yx LL ZZYX of the point R can be

derived using the dynamic transformation functions 7.1. This is shown in appendix A-II to

obtain the formulas in equation 7.12 for computing QPR += .

Point Doubling Formula

Theorem 7.6: Given an elliptic curve point represented in DPC,),,,(1111
yx LL ZZYXP = ∈

E/)2(mGF , and denoting the point),,,(3333
yx LL ZZYXR = ∈ E/)2(mGF as the addition of

the point P to itself, i.e. PR 2= , the coordinates of the point R is given by:

114

()
()

()
() ()

⎪
⎪
⎪
⎪
⎪
⎪

⎭

⎪
⎪
⎪
⎪
⎪
⎪

⎬

⎫

>>≥
+++=

++=

=+===

=

=

=

=
−

−

0,0,3

,,,,

'
321

'
3

2'
3

11121
2

1121
2

11

3

3

3'
33

2'
33

yx

LLLL

LdL

LdL

dL

dL

LLd
SWXTWSTY

aSSWWX
ZZXSTTWZYTZXTWhere

SZ

SZ

SYY

SXX

yxxy

yy

xx

y

x

 7.13

Proof: According to lemma 7.3, let),,,(1111
yx LL ZZYXP = , and),,,(3333

yx LL ZZYXR = be elliptic

curve projective points ∈ E/)2(mGF . We can use the doubling formula 3.8 for E/)2(mGF

in affine coordinates to compute PR 2= (doubling operation). The dynamic projective

coordinates),,,(3333
yx LL ZZYX of the point R can be derived using the dynamic

transformation functions 7.1. This is shown in appendix B-II to obtain the formulas in

equation 7.13 for computing PR 2= .

7.4.2 Mixed Dynamic Projective Coordinate System for E/GF(2m)

Formulas 7.12 are obtained using uniform transformation in which xL and yL are

the same for the three points P, Q and R. More general addition formulas can be obtained

by using mixed transformation where each coordinate in each point has its own projecting

parameter. In this case, projecting parameters 11, yx LL are used for P, 22 , yx LL are used for

Q and 33 , yx LL are used for R.

115

Theorem 7.7: Given two elliptic curve points represented in DPC,

),,,(11
1111

yx LL ZZYXP = ∈ E/)2(mGF ,),,,(22
2222

yx LL ZZYXQ = ∈ E/)2(mGF , and denoting

the point),,,(33
3333

yx LL ZZYXR = ∈ E/)2(mGF as the addition of the two points P and Q,

i.e. QPR += , the coordinates of the point R is given by:

()
() ()

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎭

⎪⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎬

⎫

>>≥
+++=

+++=

===

+===

+===

=

=

=

=
−−

−−

0,0,3

),(

,,,

,,,

,,,,

)(

)(

33

1
'
3222

'
3

2
11

'
3

12121

21212121

21212121

3

3

13'
33

12'
33

2121

21

21

3

3

33

33

yx

LLLL

LL

LL

LdL

LdL

LdL

LdL

LLd
RTXVUUVTY

aTVRRTTTX

UTTZZTZVZR

VVVZXVZXV

UUUZYUZYUwhere

TRZ

TRZ

TRYY

TRXX

xxyy

xx

yy

yy

xx

yy

xx

 7.14

Proof: The proof of Theorem 7.7 is similar to the proof of Theorem 7.5 with replacing

each xL
iZ by xiL

iZ and each yL
iZ by yiL

iZ where, i = 1,2.

Formulas 7.13 are obtained using uniform transformation in which xL and yL are

the same for P and R. More general doubling formulas can be obtained by using mixed

transformation. In this case, projecting parameters 11, yx LL are used for P, and 33 , yx LL are

used for R.

116

Theorem 7.8: Given an elliptic curve point represented in DPC,),,,(11
1111

yx LL ZZYXP = ∈

E/)2(mGF , and denoting the point),,,(33
3333

yx LL ZZYXR = ∈ E/)2(mGF as the addition of

the point P to itself, i.e. PR 2= , the coordinates of the point R is given by:

()
()

()
() ()

⎪
⎪
⎪
⎪
⎪
⎪

⎭

⎪
⎪
⎪
⎪
⎪
⎪

⎬

⎫

>>≥
+++=

++=

=+===

=

=

=

=
−

−

0,0,3

,,,,

33

'
321

'
3

2'
3

11121
2

1121
2

11

3

3

3'
33

2'
33

1111

3

3

3

3

yx

LLLL

LdL

LdL

dL

dL

LLd
SWXTWSTY

aSSWWX
ZZXSTTWZYTZXTWhere

SZ

SZ

SYY

SXX

yxxy

yy

xx

y

x

 7.15

Proof: The proof of Theorem 7.8 is similar to the proof of Theorem 7.6 and is omitted

here for space limitations.

7.4.3 Optimized Dynamic Projective Coordinate System for E/GF(2m)

Addition and doubling formulas 7.12 and 7.13 are the most general homogenous

formulas for E/)2(mGF without any restriction in the values of the projecting parameters

xL and yL . However, their computation complexity can be reduced by reproducing these

formulas with taking 1Z and 2Z as common factors in each equation (whenever it is

possible) and simplify the resultant formulas by eliminating the unnecessary terms. This

results in the existence of terms such as yx LLZ −
1 , in which its power is a relation between

117

xL and yL . Existence of such terms requires providing either pure Z-coordinate (i.e. not

raised to any power) or the required term as a ready computed value in the point

representation. This can be achieved with the help of the following lemma.

Lemma 7.4: Any point),(yxQ = ∈ E/)2(mGF represented in affine coordinates can be

transferred to a 5-tuple projective point),,,,(yx LL ZZZYXP = ∈ E/)2(mGF where, Z ,

xLZ and yLZ ≠ 0.

Proof: Since the values, Z , xLZ and yLZ , are available within the 5-tuple representation

of the point, proof is follows directly from 7.1.

Appendixes C-II and D-II present the derivation of optimized addition and

doubling formulas respectively. The optimized addition formulas are:

()
()

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎭

⎪⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎬

⎫

≥−≥−≥−≥−
+++=

+++=

==

+===

+===

=

=

=

=

=

−

−

−

−

03,02,023,0

,

,,,

,,,,

)(

)(

1
'
32

3'
32

2'
3

32
1

23'
3

121

11212121

11212121

3

3

3

3'
33

2'
33

yxyxxy

LLL

LL

LL

LL

LdL

LdL

d

dL

dL

dLdLLLLL
TXUVXVVUY

VTaVTUUTX

VTTZZT

VVVZXVZXV

UUUZYUZYUwhere

TVZ

TVZ

TVZ

VYY

VXX

xyx

xy

xx

yy

yy

xx

y

x

 7.16

and the optimized doubling formulas are:

118

()
()

()
() ()

⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎭

⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎬

⎫

≥−≥−≥−
+++=

++=

=+==

=

=

=

=

=

−

−

−

03,02,02

,,,

'
3

2
1

'
3

2'
3

11
2

1
2

11

3

3

3

3'
33

2'
33

yxyx

LLL

LdL

LdL

d

dL

dL

dLdLLL
SWXTWSXY

aSSWWX

ZXSTXWZYTWhere

SZ

SZ

SZ

SYY

SXX

xyx

yy

xx

y

x

 7.17

Formulas 7.16 and 7.17 are obtained using uniform transformation functions.

Similar mixed optimized formulas can be obtained using the same way as in appendixes

C-II and D-II with replacing each xL
iZ by xiL

iZ and each yL
iZ by yiL

iZ where, i = 1,2. The

mixed optimized addition formulas are:

()
()

() ()
() ()

03,02,0,0

)(,,,

,,,

,,,,

332211

21
'
322

2"
3

111
2

1
'
3

2112212211

21212121

21212121

3

3

3

3'
33

2'
33

22112121

21

21

33

33

3

3

≥−≥−≥−≥−

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎭

⎪⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎬

⎫

+++=

+++=

====

+===

+===

=

=

=

=

=

−−

−

−

yxxyxy

LLLLLLLL

LL

LL

LdL

LdL

d

dL

dL

dLdLLLLL
VTUTXVUUVRY

aTVRRRUUTX

ZZVRVTRZZTZZT

VVVZXVZXV

UUUZYUZYUwhere

RZ

RZ

RZ

RYY

RXX

xyxyyyxx

xx

yy

yy

xx

y

x

 7.18

and the mixed optimized doubling formulas are:

119

()
()

()
() ()

⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎭

⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎬

⎫

≥−≥−≥−
+++=

++=

=+==

=

=

=

=

=

−

−

−

03,02,02

,,,

3311

'
3

2
1

'
3

2'
3

11
2

1
2

11

3

3

3

3'
33

2'
33

111

33

33

3

3

yxyx

LLL

LdL

LdL

d

dL

dL

dLdLLL
SWXTWSXY

aSSWWX

ZXSTXWZYTWhere

SZ

SZ

SZ

SYY

SXX

xyx

yy

xx

y

x

 7.19

7.5 Conclusions

In this chapter, a new approach called Dynamic Projective Coordinate (DPC)

system was presented. In DPC, we first proposed a general transformation functions that

can be used to project x and y coordinates of any point to any projective coordinates. Then

these transformation functions are used to derive dynamic addition and doubling formulas

for both E/GF(p) and E/GF(2m). However, three types of formulas for both addition and

doubling operations were presented. First, general formulas in which there is no

constraints on the projecting parameters xL and yL with d ≥ 3. Second, optimized

formulas that reduce the number of required computations by selecting projecting

parameters according to certain rules. Third, mixed formulas in which each coordinate can

be projected using its own projecting parameter resulting in the most mixing degree of

coordinates ever. By this way, coordinates of the same point can be represented in

120

different coordinate systems. The detailed steps for deriving each type of these formula

are presented in appendices.

The resulting DPC allows the computing/encrypting device to select the projective

coordinate either at random, or according to a certain rule. Therefore, DPC automates the

selection of the projective coordinate system and uses a single mathematical

formulation/software code to implement different projective coordinate systems.

121

CHAPTER 8

Performance and Using of DPC

8.1 Introduction

We mean by performance of DPC system is the number of required field

arithmetic operations (computations) for addition and doubling operations. The less the

number of required computations the faster the system we get. As in [23]-[25], for

simplicity, we neglect addition, subtraction and multiplication by a small constant because

they are much faster than multiplication and inversion operations.

To analyze the performance of DPC, we have to compute the number of field

operations in each formula of the formulas presented in chapter 7. Therefore, a method for

computing the number of computations in a dynamic formula is required. In this chapter

we provide such a method that can determine the number of computations as a function of

the projecting parameters xLZ and yLZ and d parameter.

As shown in chapter 7, the conventional homogenous and Jacobian coordinate

systems are special cases of DPC. Hence, by selecting the appropriate xLZ and yLZ and d

122

parameters, we compare the DPC with these coordinate systems. Moreover, Mixed DPC

system is compared with the mixed coordinates (section 5.7 in chapter5).

The rest of this chapter is organized as follows. Section 8.2 presents a method of

computing the number of field operations that can be applied for both E/GF(p) and

E/GF(2m). The performance of DPC in E/GF(p) and in E/GF(2m) is discussed in sections

8.3 and 8.4 respectively. Using DPC is addressed in section 8.5. Finally, conclusions are

given in section 8.6

8.2 Calculating the Number of Field Operations in DPC System

To calculate the number of field operations in any DPC formula of the addition

and doubling formulas presented in chapter 7, the following points should be noticed.

• First, the number of field operations in a DPC formula consists of two parts. Part1

is a constant number of operations that must be performed regardless of the values

of xL , yL and d. Examples of part1 are the field operations required to compute

the auxiliary variables U and V in all addition formulas (i.e. formulas 7.3, 7.5, 7.7,

7.9, 7.12, 7.14, 7.16 and 7.18) and compute the auxiliary variables W and S in all

doubling formulas (i.e. formulas 7.4, 7.6, 7.8, 7.10, 7.13, 7.15, 7.17 and 7.19).

Part2 is the number of field operations required to compute the terms that are

raised to some powers and these powers are functions of xL , yL and d. Examples

of part2 are the field operations required to compute xLZ3 and yLZ3 in all formulas.

123

• Second, the total number of field operations in any formula is the summation of

part1 and part2. Hence the total number of field operations is a function of xL , yL

and d even of a part of it is a constant number.

Let),(BTα and),(BTβ be two functions that calculate, respectively, the number

of multiplication and squaring operations required to raise some term, T, to the power of

B. Then these alpha and beta functions are used to determine part2 of the total number of

required field operations in any formula. Let the binary representation of B is:

01
2

2
1

1 2.......22 bbbbB l
l

l
l ++++= −

−
−

− with l bit length. Then the average number of ones

in B is l/2. Hence, according to the square and multiply method, the average values (E) of

),(BTα and),(BTβ are given by:

E(),(BTα) = l/2 multiplications; E(),(BTβ) = l squaring. 8.1

However, without loss of generality, xL and yL can be selected in a way that

minimizes part2 computations such as selecting them to be powers of 2. In this case, part2

computations become squaring only which are faster than multiplications.

In the following, we present a full example of how the number of field operations

are calculated in a DPC formula. Consider the optimized addition formula 7.7. The

number of field operations in this formula is computed as in table 8.1:

124

Table 8. 1: Number of field operations in addition formula 7.7

Term # of Multiplications (M) # of Squaring (S)

U 2

V 2

T 1

T1
⎪⎩

⎪
⎨
⎧

−+

=−

otherwiseLLT

LLif

xy

xy

),(1

00

α

⎪⎩

⎪
⎨
⎧

−

=−

otherwiseLLT

LLif

xy

xy

),(

00

β

'
3X 2+

⎪⎩

⎪
⎨
⎧

−+

=−

otherwiseLLT

LLif

yx

yx

)23,(1

0230

α
 2+

⎪⎩

⎪
⎨
⎧

−

=−

otherwiseLLT

LLif

yx

yx

)23,(

0230

β

'
3Y 2

3X

⎩
⎨
⎧

−+
=−

otherwisedLV
dLif

x

x

)2,(1
020

α

⎩
⎨
⎧

−
=−

otherwisedLV
dLif

x

x

)2,(
020

β

3Y
⎪⎩

⎪
⎨
⎧

−+

=−

otherwisedLV

dLif

y

y

)3,(1

030

α

⎪⎩

⎪
⎨
⎧

−

=−

otherwisedLV

dLif

y

y

)3,(

030

β

xLZ3

yLZ3

1+),(),,(max(y
d

x
d LTVLTV αα

),(),,(max(y
d

x
d LTVLTV ββ

Totals

),(),,(max(

)3,(1

030

)2,(1
020

)23,(1

0230

),(1

00
10

y
d

x
d

y

y

x

x

yx

yx

xy

xy

LTVLTV

otherwisedLV

dLif

otherwisedLV
dLif

otherwiseLLT

LLif

otherwiseLLT

LLif

αα

α

α

α

α

+

⎪⎩

⎪
⎨
⎧

−+

=−
+

⎩
⎨
⎧

−+
=−

+

⎪⎩

⎪
⎨
⎧

−+

=−
+

⎪⎩

⎪
⎨
⎧

−+

=−
+

),(),,(max(

)3,(

030

)2,(
020

)23,(

0230

),(

00
2

y
d

x
d

y

y

x

x

yx

yx

xy

xy

LTVLTV

otherwisedLV

dLif

otherwisedLV
dLif

otherwiseLLT

LLif

otherwiseLLT

LLif

ββ

β

β

β

β

+

⎪⎩

⎪
⎨
⎧

−

=−
+

⎩
⎨
⎧

−
=−

+

⎪⎩

⎪
⎨
⎧

−

=−
+

⎪⎩

⎪
⎨
⎧

−

=−
+

By setting xL = yL = 1 and d = 3 we get a total number of computations equals to

2+2+1+0+3+2+1+0+1 = 12M and 0+0+0+0+2+0+0+0+0 = 2S which is identical to the

number of computations in homogenous coordinate system (section 5.3).

125

The number of computations in other DPC formulas are computed in the same

way discussed above. However, it is important to mention that the above method is

applied in both cases when using DPC for E/GF(p) and for E/GF(2m).

8.3 Performance of DPC for E/GF(p)

As presented in chapter 7, there are several DPC formulas for E/GF(p) for addition

and doubling operations. These formulas range from general formulas in which no

constraints in selecting xL and yL (with d≥3) to formulas that can be used according to

certain selection rules of xL and yL such as 023 ≥− yx LL or 0≥− xy LL . However, if the

main goal is enhancing the performance, then clever selection of xL , yL and d can reduce

the number of computations dramatically.

Tables 8.2 and 8.3 show the computation times in terms of the required number of

multiplication and squaring operations for addition and doubling operations respectively.

126

Table 8. 2: Computation times for DPC addition operation in E/GF(p). a ∈ (0,1)

Formula Multiplications (M) Squaring (S)

General–Uniform d ≥ 3 ()),(),,(max18 y
d

x
d LRLR αα+ ()),(),,(max2 y

d
x

d LRLR ββ+

General–Mixed d ≥ 3 ()
()),(),,(max

),(),,(max18

3131

33

y
d

x
d

y
d

x
d

LTLT

LRLR

αα

αα ++ ()
()),(),,(max

),(),,(max2

3131

33

y
d

x
d

y
d

x
d

LTLT

LRLR

ββ

ββ ++

Optimized-Uniform

d ≥ 3 023 ≥− yx LL 0≥− xy LL

),(),,(max(

)3,(1

030

)2,(1
020

)23,(1
0230

),(1

00
10

y
d

x
d

y

y

x

x

yx

yx

xy

xy

LTVLTV

otherwisedLV

dLif

otherwisedLV
dLif

otherwiseLLT
LLif

otherwiseLLT

LLif

αα

α

α

α

α

+

⎪⎩

⎪
⎨
⎧

−+

=−
+

⎩
⎨
⎧

−+
=−

+

⎪⎩

⎪
⎨
⎧

−+

=−
+

⎪⎩

⎪
⎨
⎧

−+

=−
+

),(),,(max(

)3,(

030

)2,(
020

)23,(

0230

),(

00
2

y
d

x
d

y

y

x

x

yx

yx

xy

xy

LTVLTV

otherwisedLV

dLif

otherwisedLV
dLif

otherwiseLLT

LLif

otherwiseLLT

LLif

ββ

β

β

β

β

+

⎪⎩

⎪
⎨
⎧

−

=−
+

⎩
⎨
⎧

−
=−

+

⎪⎩

⎪
⎨
⎧

−

=−
+

⎪⎩

⎪
⎨
⎧

−

=−
+

Optimized–Mixed

d ≥ 3, 011 ≥− xy LL , 022 ≥− xy LL

),(),,(max(

)3,(1
030

)2,(1
020

),(
),(2

0
0),(1

0
0),(1

0
00

14

3

3

3

3

222

111

11

22111

22

11222

22

11

y
d

x
d

y

y

x

x

xy

xy

xy

xyxy

xy

xyxy

xy

xy

LRLR

otherwisedLR
dLif

otherwisedLR
dLif

otherwiseLLZ
LLZ

LLAND
LLifLLZ

LLAND
LLifLLZ

LLAND
LLif

αα

α

α

α

α

α

α

+

⎪⎩

⎪
⎨
⎧

−+

=−
+

⎩
⎨
⎧

−+
=−

+

⎪
⎪
⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪
⎪
⎪

⎨

⎧

−+

−+

>−

=−−+

>−

=−−+

=−

=−

+

),(),,(max(

)3,(
030

)2,(
020

),(

),(

0
0),(

0
0),(

0

00

2

3

3

3

3

222

111

11

22111

22

11222

22

11

y
d

x
d

y

y

x

x

xy

xy

xy

xyxy

xy

xyxy

xy

xy

LRLR

otherwisedLR
dLif

otherwisedLR
dLif

otherwiseLLZ

LLZ

LLAND
LLifLLZ

LLAND
LLifLLZ

LLAND

LLif

ββ

β

β

β

β

β

β

+

⎪⎩

⎪
⎨
⎧

−

=−
+

⎩
⎨
⎧

−
=−

+

⎪
⎪
⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪
⎪
⎪

⎨

⎧

−+

−

>−

=−−

>−

=−−

=−

=−

+

Equivalent homogenous PC

d = 3, 1== yx LL

13 2

Equivalent Jacobian PC

d = 1, 3,2 == yx LL

12 3

127

Table 8. 3: Computation times for DPC doubling operation in E/GF(p). a ∈ (0,1)

Formula Multiplications (M) Squaring (S)

General–Uniform d ≥ 3 ()),(),(max11 y
d

x
d LSLS αα ++ ()),(),(max4 y

d
x

d LSLS ββ ++

General–Mixed d ≥ 3 ()
()),(),(max

),(),(max11

3131

33

11
y

L
x

L

y
d

x
d

LZLZ

LSLS
yy αα

αα

+

+++

()
()),(),(max

),(),(max5

3131

33

11
y

L
x

L

y
d

x
d

LZLZ

LSLS
yy ββ

ββ

+

+++

Optimized-Uniform

d ≥ 3, 02 ≥− yx LL , 0≥− xy LL

),(),,(max(

)3,(1

030

)2,(1
020

)2,(1

020

),(1

00
5

1

1

y
d

x
d

y

y

x

x

yx

yx

xy

xy

LSLS

otherwisedLS

dLif

otherwisedLS
dLif

otherwiseLLZ

LLif

otherwiseLLZ

LLif

αα

α

α

α

α

+

⎪⎩

⎪
⎨
⎧

−+

=−
+

⎩
⎨
⎧

−+
=−

+

⎪⎩

⎪
⎨
⎧

−+

=−
+

⎪⎩

⎪
⎨
⎧

−+

=−
+

),(),,(max(

)3,(1

030

)2,(1
020

)2,(1

020

),(1

00
4

1

1

y
d

x
d

y

y

x

x

yx

yx

xy

xy

LSLS

otherwisedLS

dLif

otherwisedLS
dLif

otherwiseLLZ

LLif

otherwiseLLZ

LLif

ββ

β

β

β

β

+

⎪⎩

⎪
⎨
⎧

−+

=−
+

⎩
⎨
⎧

−+
=−

+

⎪⎩

⎪
⎨
⎧

−+

=−
+

⎪⎩

⎪
⎨
⎧

−+

=−
+

Optimized–Mixed

d ≥ 3, 02 11 ≥− yx LL , 011 ≥− xy LL

),(),,(max(

)3,(1

030

)2,(1
020

)2,(1

020

),(1

00
5

33

3

3

3

3

111

11

111

11

y
d

x
d

y

y

x

x

yx

yx

xy

xy

LSLS

otherwisedLS

dLif

otherwisedLS
dLif

otherwiseLLZ

LLif

otherwiseLLZ

LLif

αα

α

α

α

α

+

⎪⎩

⎪
⎨
⎧

−+

=−
+

⎩
⎨
⎧

−+
=−

+

⎪⎩

⎪
⎨
⎧

−+

=−
+

⎪⎩

⎪
⎨
⎧

−+

=−
+

),(),,(max(

)3,(

030

)2,(
020

)2,(

020

),(

00
4

33

3

3

3

3

111

11

111

11

y
d

x
d

y

y

x

x

yx

yx

xy

xy

LSLS

otherwisedLS

dLif

otherwisedLS
dLif

otherwiseLLZ

LLif

otherwiseLLZ

LLif

ββ

β

β

β

β

+

⎪⎩

⎪
⎨
⎧

−

=−
+

⎩
⎨
⎧

−
=−

+

⎪⎩

⎪
⎨
⎧

−

=−
+

⎪⎩

⎪
⎨
⎧

−

=−
+

Equivalent homogenous PC

d = 3 1== yx LL

8 5

Equivalent Jacobian PC

d =1 ,3,2 == yx LL

8 5

Equivalent Modified
Jacobian

d =1 ,3,2 == yx LL

8 4

128

The first column specifies the DPC system used. The second and third columns

specify the number of multiplications and squaring respectively. The number of required

multiplications and squaring are calculated using the method introduced in section 8.2.

For example, in the case of using general-uniform addition formula (the first row of table

8.2) the number of required multiplications is ()),(),,(max18 y
d

x
d LRLR αα+ . Thus, it

requires 18 multiplications (part1) plus the maximum of),(x
d LRα and),(y

d LRα (part2).

Note that we need only the maximum of these two numbers because the other one

(minimum) will be computed in the way while computing the maximum one.

Also, Tables 8.2 and 8.3 show the savings in the number of required operations in

optimized formulas compared to the general formulas. However, for further analyzing of

performance of DPC in E/GF(p), we compare it with the most popular existing

(conventional) coordinate systems, namely, homogenous (H), Jacobian (J), modified (M)

and mixed coordinate systems. Table 8.4 shows the exact number of computations in

these coordinate systems according to [23] and the corresponding equivalent systems in

DPC. The first four rows show the number of computations in the conventional projective

coordinates found in [23]. The second four rows present the DPC systems that are

equivalent to those conventional ones. The remaining rows show some possible new

mixed DPC systems that do not exist in [23]-[25]. An example of such new mixed

coordinates is DPC-HxAyH. In this system the x-coordinate of the input points is

represented in homogenous coordinates, the y-coordinate is represented in affine

129

coordinates and the result point is represented in homogenous coordinates. Similar other

mixed systems are listed in the table with their computation times.

Table 8. 4: Comparisons of field operations using DPC in E/GF(p).

Projective Coordinate (PC) System Addition Doubling
HHH 12M + 2S 7M + 5S

JJJ 12M + 4S 4M + 6S

MMM 13M + 6S 4M + 4S

AAJ 5M + 3S 2M + 4S

Optimized DPC (DPC-HHH) 1,3 === Yx LLd 12M + 2S 8M + 5S

Optimized DPC (DPC-JJJ) 3,2,1 === Yx LLd 12M + 3S 8M + 5S

Optimized DPC (DPC-MMM) 3,2,1 === Yx LLd 12M + 4S 8M + 4S

Mixed DPC (DPC-AAJ) 1=d ,

3,2
0
0

33

22

11

==
==
==

Yx

Yx

Yx

LL
LL
LL

6M + 2S 4M + 4S

Mixed DPC (DPC-AAH) 3=d ,

1,1
0
0

33

22

11

==
==
==

Yx

Yx

Yx

LL
LL
LL

7M + 2S 5M + 4S

Mixed DPC (DPC- AxHyH) 3=d ,

1
1
0

33

21

21

==
==
==

Yx

YY

xx

LL
LL
LL

12M + 2S 7M + 4S

Mixed DPC(DPC- AxJyJ) 1=d ,

3,2
3
0

33

21

21

==
==
==

Yx

YY

xx

LL
LL
LL

13M +3S 7M + 5S

Mixed DPC (DPC- HxAyH) 3=d ,

1
0
1

33

21

21

==
==
==

Yx

YY

xx

LL
LL
LL

14M + 2S 10M + 4S

Mixed DPC (DPC- JxAyJ) 1=d ,

3,2
0
2

33

21

21

==
==
==

Yx

YY

xx

LL
LL
LL

15M + 3S 10M + 5S

 (DPC-HHH = Equivalent homogenous DPC, DPC-JJJ = Equivalent Jacobian DPC DPC-
MMM = Equivalent modified DPC)

130

By comparing the number of arithmetic operations of the existing coordinate

systems and the corresponding DPC systems, table 8.4 shows that addition using DPC-

HHH has the same cost as HHH. In case of Jacobian the DPC-JJJ is faster than JJJ by one

square operation. Also, DPC-MMM is faster than MMM by one multiplication and 2

squaring operations.

In the case of doubling operation, HH is faster than DPC-HH by one

multiplication while JJ has less multiplications and more squaring than DPC-JJ.

By using mixed DPC formulas for E/GF(p), it is possible to hop from one

coordinate system to another during the scalar multiplication without the need to perform

any inversion operation. We mean by hopping is using a coordinate system in iteration i

of the scalar multiplication and use another (desired) coordinate system in the next

iteration, i+1. In conventional coordinate systems, hopping is achieved by first converting

the resulting point of iteration i to the desired coordinate system and then perform the

point doubling (or addition) in iteration i+1 using the desired coordinate system formulas.

In DPC, hopping is achieved by simply setting the projecting parameters 3xL and 3yL and

d-parameter of the resulting point of iteration i to the desired values by which point

operations in iteration i+1 will be performed in the desired coordinate system. In other

words, hopping in DPC system is achieved by adjusting the projecting parameters 3xL and

3yL and d-parameter of addition and doubling formulas to the values of the desired

coordinate system.

131

Tables 8.5 and 8.6 show the cost of hoping among a set of possible DPC systems.

These tables show only the DPC systems that are equivalent to the conventional

coordinate systems presented in chapter 5. Other possible coordinate systems can be

obtained by using different values of 3xL , 3yL and d.

However, it should be pointed out that the affine coordinates are used only in the

boundaries of the scalar multiplication (bolded areas in tables 8.5 and 8.6). i.e. the affine

base point is converted to any DPC system, scalar multiplication is performed and the

result is converted back to the affine coordinates. The conversion from affine to any DPC

system costs nothing since Z can be initialized to 1; while conversion back to affine

coordinates requires an inversion operation. Note that conversion back to affine

coordinates requires an inversion operation in all coordinate systems (conventional as well

as DPC) regardless of the projective coordinate system used.

Table 8. 5: Hopping cost in DPC system (E/GF(p) Addition operation)
From \ To Affine DPC-HHH DPC-JJJ DPC-CCC DPC-MMM

Affine - - - - -
DPC-HHH 2M + I 16M + 2S 15M + 2S 16M + 3S 15M + 4S
DPC-JJJ 3M+S+I 18M + 2S 17M + 2S 17M + 2S 17M + 3S

DPC-CCC 3M+S+I 18M + 2S 17M + 2S 17M + 2S 17M + 3S
DPC-MMM 3M+S+I 18M + 2S 17M + 2S 17M + 2S 17M + 3S

Table 8. 6: Hopping cost in DPC system (E/GF(p) Doubling operation)
From \ To Affine DPC-HHH DPC-JJJ DPC-CCC DPC-MMM

Affine - - - - -
DPC-HHH 2M + I 8M + 5S 7M + 5S 8M + 6S 7M + 7S
DPC-JJJ 3M+S+I 9M + 5S 8M + 5S 8M + 5S 8M + 6S

DPC-CCC 3M+S+I 9M + 5S 8M + 5S 8M + 5S 8M + 6S
DPC-MMM 3M+S+I 9M + 4S 8M + 4S 8M + 4S 8M + 4S

132

Tables 8.5 and 8.6 show that hoping from one DPC system to another during the

scalar multiplication does not require any inversion operation. On the other hand, in

conventional coordinate systems, the conversion form homogenous to Jacobian or to any

Jacobian variant coordinate system (i.e. C and M) requires an inversion operation as

shown in table 5.2. Same thing happens if converting from Jacobian or Jacobian variant

coordinate systems to Homogenous. However, conversion among the Jacobian and

Jacobian variant coordinate systems does not require inversion operation because they are

actually belong to the same coordinate systems (Jacobian). In other words, they use the

same transformation functions 2/ ZXx = and 3/ ZXx = , and hence no need to perform

the inversion operation. Also, note that table 5.2 shows only the point conversion cost and

does not include the cost of addition (or doubling) operation.

Tables 8.7 and 8.8 show the number of multiplications for different values of xL

and yL for E/GF(p) optimized DPC addition and doubling operations respectively. For

each value of xL there are several possible choices of yL (second column). These choices

increase as xL increases. For example, in case of addition operation, if xL = 1, then we

have only one yL possible value while if xL = 10 we have six possible values of yL . In

case of doubling operation, if xL = 1, then we have two possible values of yL while if xL

= 5 we have six possible values of yL . This due to the constraints caused by the relations

between xL and yL .

133

Table 8. 7: Possible values of xL and

yL for addition operation in E/GF(p)

xL
Valid range

of yL
Number of

multiplications
1 1 12

2 14 2
3 15
3 18 3
4 18
4 15
5 17 4
6 18
5 18
6 21 5
7 19
6 18
7 17
8 17

6

9 16
7 20
8 21
9 20

7

10 22
8 18
9 19

10 20
11 22

8

12 17
9 18

10 22
11 22
12 20

9

13 19
10 20
11 21
12 19
13 20
14 21

10

15 21

Table 8. 8: Possible values of xL and

yL for doubling operation in E/GF(p)

xL
Valid range

of yL
Number of

multiplications
1 7 1
2 9
2 9
3 11 2
4 9
3 13
4 13
5 13

3

6 15
4 10
5 13
6 14
7 14

4

8 11
5 13
6 15
7 15
8 15
9 13

5

10 15

134

In case of addition operation (table 8.7), for a certain xL , the best choice of yL is

the one with the minimum umber of ones in the binary representation of the terms

(xy LL −), (yx LL 23 −), (2−xdL), (3−ydL) and (max(xL , yL)). For example, if xL = 5,

then the best choice of yL is 5 while the best choice for xL = 10 is yL = 12.

 Similarly, in case of doubling operation (table 8.8), the best choice of yL for a

certain xL is the one with the minimum umber of ones in the binary representation of the

terms (xy LL −), (yx LL −2), (2−xdL), (3−ydL) and (max(xL , yL)). For example, if xL

= 3, then the best choice of yL is either 3, 4 or 5 while the best choice for xL = 5 is yL =

5 or 9 .

8.4 Performance of DPC for E/GF(2m)

There are several DPC formulas for E/GF(2m) for both addition and doubling

operations. These formulas range from general formulas in which no constraints in

selecting xL and yL (with d≥3) to formulas that can be used according to certain selection

rules of xL and yL such as 023 ≥− yx LL or 0≥− xy LL . Again, if the main goal is

enhancing the performance, then clever selection of xL , yL and d can reduce the number

of computations dramatically.

Tables 8.9 and 8.10 show the computation times in terms of the required number

of multiplication and squaring operations for addition and doubling operations

respectively.

135

Table 8. 9: Computation times for addition in DPC/GF(2m). a ∈ (0,1)
Formula Multiplications (M) Squaring (S)

General–Uniform ()),(),,(max17 y
d

x
d LTRLTR αα+ ()),(),,(max1 y

d
x

d LTRLTR ββ+

General–Mixed ()),(),,(max17 33 y
d

x
d LTRLTR αα+ ()),(),,(max1 33 y

d
x

d LTRLTR ββ+

Optimized-Uniform

d ≥3, 023 ≥− yx LL ,
0≥− xy LL

),(),,(max(

)3,(1

030

)2,(1
020

)23,(1

0230

),(1

00
12

y
d

x
d

y

y

x

x

yx

yx

xy

xy

LTVLTV

otherwisedLV

dLif

otherwisedLV
dLif

otherwiseLLT

LLif

otherwiseLLT

LLif

αα

α

α

α

α

+

⎪⎩

⎪
⎨
⎧

−+

=−
+

⎩
⎨
⎧

−+
=−

+

⎪⎩

⎪
⎨
⎧

−+

=−
+

⎪⎩

⎪
⎨
⎧

−+

=−
+

),(),,(max(

)3,(

030

)2,(
020

)23,(

0230

),(

00
1

y
d

x
d

y

y

x

x

yx

yx

xy

xy

LTVLTV

otherwisedLV

dLif

otherwisedLV
dLif

otherwiseLLT

LLif

otherwiseLLT

LLif

ββ

β

β

β

β

+

⎪⎩

⎪
⎨
⎧

−

=−
+

⎩
⎨
⎧

−
=−

+

⎪⎩

⎪
⎨
⎧

−

=−
+

⎪⎩

⎪
⎨
⎧

−

=−
+

Optimized–Mixed

d ≥3, , 0≥− xy LL

),(),,(max(

)3,(1

030

)2,(1
020

),(

),(2

0

0),(1

0

0),(1

0

00

17

3

3

3

3

222

111

11

22111

22

11222

22

11

y
d

x
d

y

y

x

x

xy

xy

xy

xyxy

xy

xyxy

xy

xy

LRLR

otherwisedLR

dLif

otherwisedLR
dLif

otherwiseLLZ

LLZ

LLAND

LLifLLZ

LLAND

LLifLLZ

LLAND

LLif

αα

α

α

α

α

α

α

+

⎪⎩

⎪
⎨
⎧

−+

=−
+

⎩
⎨
⎧

−+
=−

+

⎪
⎪
⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪
⎪
⎪

⎨

⎧

−+

−+

>−

=−−+

>−

=−−+

=−

=−

+

),(),,(max(

)3,(

030

)2,(
020

),(

),(

0

0),(

0

0),(

0

00

1

3

3

3

3

222

111

11

22111

22

11222

22

11

y
d

x
d

y

y

x

x

xy

xy

xy

xyxy

xy

xyxy

xy

xy

LRLR

otherwisedLR

dLif

otherwisedLR
dLif

otherwiseLLZ

LLZ

LLAND

LLifLLZ

LLAND

LLifLLZ

LLAND

LLif

ββ

β

β

β

β

β

β

+

⎪⎩

⎪
⎨
⎧

−

=−
+

⎩
⎨
⎧

−
=−

+

⎪
⎪
⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪
⎪
⎪

⎨

⎧

−+

−

>−

=−−

>−

=−−

=−

=−

+

Equivalent homogenous
PC

d = 3, 1== yx LL

15 2

Equivalent Jacobian PC

d =1, 3,2 == yx LL

13 2

136

Table 8. 10: Computation times for doubling in DPC/GF(2m). a ∈ (0,1)
Formula Multiplications (M) Squaring (S)

General–Uniform ()),(),,(max10 y
d

x
d LSLS αα+ ()),(),,(max1 y

d
x

d LSLS ββ+

General–Mixed ()),(),,(max10 33 y
d

x
d LSLS αα+ ()),(),,(max1 33 y

d
x

d LSLS ββ+

Optimized-Uniform

2≥xdL , 3≥ydL

),(),,(max(

)3,(1

030

)2,(1
020

)2,(1

020
5

1

y
d

x
d

y

y

x

x

yx

yx

LSLS

otherwisedLS

dLif

otherwisedLS
dLif

otherwiseLLZ

LLif

αα

α

α

α

+

⎪⎩

⎪
⎨
⎧

−+

=−
+

⎩
⎨
⎧

−+
=−

+

⎪⎩

⎪
⎨
⎧

−+

=−
+

),(),,(max(

)3,(1

030

)2,(1
020

)2,(1

020
2

1

y
d

x
d

y

y

x

x

yx

yx

LSLS

otherwisedLS

dLif

otherwisedLS
dLif

otherwiseLLZ

LLif

ββ

β

β

β

+

⎪⎩

⎪
⎨
⎧

−+

=−
+

⎩
⎨
⎧

−+
=−

+

⎪⎩

⎪
⎨
⎧

−+

=−
+

Optimized–Mixed

23 ≥xdL , 33 ≥ydL

),(),,(max(

)3,(1

030

)2,(1
020

)2,(1

020
5

33

3

3

3

3

111

11

y
d

x
d

y

y

x

x

yx

yx

LSLS

otherwisedLS

dLif

otherwisedLS
dLif

otherwiseLLZ

LLif

αα

α

α

α

+

⎪⎩

⎪
⎨
⎧

−+

=−
+

⎩
⎨
⎧

−+
=−

+

⎪⎩

⎪
⎨
⎧

−+

=−
+

),(),,(max(

)3,(

030

)2,(
020

)2,(

020
2

33

3

3

3

3

111

11

y
d

x
d

y

y

x

x

yx

yx

LSLS

otherwisedLS

dLif

otherwisedLS
dLif

otherwiseLLZ

LLif

ββ

β

β

β

+

⎪⎩

⎪
⎨
⎧

−

=−
+

⎩
⎨
⎧

−
=−

+

⎪⎩

⎪
⎨
⎧

−

=−
+

Equivalent homogenous PC

1== yx LL , d = 3

8 2

Equivalent Jacobian PC

d =1, 3,2 == yx LL

7 2

Similar to what we did in case of E/GF(p), we compare DPC for E/GF(2m) with

the conventional coordinate systems. Table 8.11 shows the exact number of computations

of these coordinate systems and the corresponding equivalent systems in DPC for

E/GF(2m). Although mixed coordinates for E/GF(2m) are not existing in the literature,

table 8.11 contains some useful mixed DPC systems.

137

Table 8. 11: Comparisons of field operations using DPC in E/GF(2m).
PC System Addition Doubling

HHH 15M + 2S 7M + 5S

JJJ 14M + 4S 5M + 5S

Optimized DPC (DPC-HHH) 1,3 === Yx LLd 15M + 2S 8M + 2S

Optimized DPC (DPC-JJJ) 3,2,1 === Yx LLd 13M + 2S 7M + 2S

General Mixed DPC (DPC-AAH) 3=d

02211 ==== YxYx LLLL

1,1 33 == Yx LL

8M + 1S 6M + 2S

General Mixed DPC (DPC-AAJ)

d =1

02211 ==== YxYx LLLL

3,2 33 == Yx LL

7M + 1S 5M + 2S

General Mixed DPC (DPC- AxHyH)

3=d ,

1
1
0

33

21

21

==
==
==

Yx

YY

xx

LL
LL
LL

12M + 1S 8M + 2S

General Mixed DPC(DPC- AxJyJ)

1=d ,

3,2
3
0

33

21

21

==
==
==

Yx

YY

xx

LL
LL
LL

11M +2S 7M + 2S

General Mixed DPC (DPC- HxAyH)

3=d ,

1
0
1

33

21

21

==
==
==

Yx

YY

xx

LL
LL
LL

13M + 1S 8M + 3S

General Mixed DPC (DPC- JxAyJ)

1=d ,

3,2
0
2

33

21

21

==
==
==

Yx

YY

xx

LL
LL
LL

15M + 2S 7M + 3S

DPC-HHH = Equivalent homogenous DPC, DPC-JJJ = Equivalent Jacobian DPC DPC-
MMM = Equivalent modified DPC

138

In case of addition operation, table 8.11 shows that DPC-HHH has exactly the

same number of computations as in HHH and DPC-JJJ is faster than JJJ by one

multiplication and two squaring operations.

In doubling operation, DPC-HH is higher than HH by one multiplication but

lower by 3 squaring. Hence by considering S = 0.8M, as in [23], DPC-HH is in total

faster than HH. Also, DPC-JJ is higher than JJ by two multiplications but lower by 3

squaring. Hence, under the same assumption, i.e. S = 0.8M, DPC-JJ is faster than JJ.

Similar to the case of E/GF(p), by using mixed DPC formulas for E/GF(2m), it is

possible to hop from one coordinate system to another during the scalar multiplication

without the need to perform any inversion operation. Tables 8.12 and 8.13 show the cost

of hopping among a set of possible coordinate systems.

Table 8. 12: Hopping cost in DPC system (E/GF(2m) Addition operation)
From \ To Affine DPC-HHH DPC-JJJ DPC-CCC DPC-MMM

Affine - - - - -
DPC-HHH 2M + I 19M+2S 18M+2S 18M+2S 18M+3S
DPC-JJJ 3M+S+I 20M+2S 19M+2S 19M+2S 19M+3S

DPC-CCC 3M+S+I 20M+2S 19M+2S 19M+2S 19M+3S
DPC-MMM 3M+S+I 20M+3S 19M+3S 19M+3S 19M+3S

Table 8. 13: Hopping cost in DPC system (E/GF(2m) Doubling operation)
From \ To Affine DPC-HHH DPC-JJJ DPC-CCC DPC-MMM

Affine - - - - -
DPC-HHH 2M + I 8M+2S 7M+2S 8M+3S 8M+4S
DPC-JJJ 3M+S+I 8M+2S 7M+2S 7M+2S 7M+3S

DPC-CCC 3M+S+I 8M+2S 7M+2S 7M+2S 7M+3S
DPC-MMM 3M+S+I 8M+3S 7M+3S 7M+3S 7M+3S

139

Tables 8.14 and 8.15 show the number of multiplications for different values of xL

and yL for E/GF(2m) optimized DPC addition and doubling operations respectively. For

each value of xL there are several possible choices of yL (second column). These choices

increase as xL increases. For example, in case of addition operation, if xL = 1, then we

have only one yL possible value while if xL = 10 we have six possible values of yL . In

case of doubling operation, if xL = 1, then we have two possible values of yL while if xL

= 5 we have six possible values of yL . This due to the constraints caused by the relations

between xL and yL .

In case of addition operation (table 8.14), for a certain xL , the best choice of yL is

the one with the minimum umber of ones in the binary representation of the terms

(xy LL −), (yx LL 23 −), (2−xdL), (3−ydL) and (max(xL , yL)). For example, if xL = 5,

then the best choice of yL is 5 while the best choice for xL = 10 is yL = 12.

 Similarly, in case of doubling operation (table 8.15), the best choice of yL for a

certain xL is the one with the minimum umber of ones in the binary representation of the

terms (yx LL −2), (2−xdL), (3−ydL) and (max(xL , yL)). For example, if xL = 3, then

the best choice of yL is either 3, 4 or 5 while the best choice for xL = 5 is yL = 5 or 9.

140

Table 8. 14: Possible values of xL and

yL for addition operation in E/GF(2m)

xL
Valid range

of yL

Number of
multiplicatio

ns
1 1 15

2 17 2
3 18
3 21 3
4 21
4 18
5 20 4
6 21
5 21
6 24 5
7 22
6 21
7 20
8 20

6

9 19
7 23
8 24
9 23

7

10 25
8 21
9 22

10 23
11 25

8

12 20
9 21

10 25
11 25
12 23

9

13 22
10 23
11 24
12 22
13 23
14 24

10

15 24

 Table 8. 15: Possible values of xL and

yL for doubling operation in E/GF(2m)

xL
Valid range

of yL
Number of

multiplications
1 1 8
1 2 10
2 2 10
2 3 12
2 4 10
3 3 14
3 4 14
3 5 14
3 6 16
4 4 11
4 5 14
4 6 15
4 7 15
4 8 12
5 5 14
5 6 16
5 7 16
5 8 16
5 9 14
5 10 16

141

8.5 Using DPC System

One of the most important features of DPC is that it automates the selection of the

projective coordinate system and uses a single mathematical formulation/software code to

implement different projective coordinate systems. In other words, different projective

coordinate systems can be implemented by using different values of xLZ , yLZ and d. For

example, consider DPC addition formulas 7.7 and doubling formulas 7.8. By setting

1== yx LL and d = 3, we get the following addition and doubling formulas:

Addition:

⎪
⎭

⎪
⎬

⎫

−−=−−===

−===−===

===

3
2

'
32

2'
32

232'
3121

1121212111212121

3
3

'
33

'
33

)(,2,,

,,,,,,,

,,,

VUXVVUYVVVTUXVTZZT

VVVZXVZXVUUUZYUZYUwhere

TVZYYVXX

Doubling:

⎪
⎪
⎭

⎪⎪
⎬

⎫

−−=−=

====+=

===

1
2

11
'
32

'
32

2'
3

1121111
2
1

2
1

3
3

'
33

'
33

4)(,2

,2,,,2,3,

,,

ZYTXTTYTTX

XTTSYTWTYZSaZXWWhere

SZYYSXX

Which are identical to the homogenous projective coordinates system (section 5.3

in chapter 5) in which the transformation functions: ZXx /= and ZYy /= are used.

Also, By setting 3,2 == yx LL and d = 1, we get a DPC system that is identical to the

Jacobian projective coordinates system (section 5.3 in chapter 5) in which the

transformation functions: 2/ ZXx = and 3/ ZYy = are used.

142

DPC system can be plugged to any scalar multiplication algorithm such as those in

[3] and [14] without any restriction. The only thing that is needed to be done is selecting

the values of the projecting parameters xL and yL and the d-parameter. However, there

are two possible modes for using DPC with any scalar multiplication algorithm. First, is

initializing the coordinate system and selecting the projecting and d parameters in the

beginning of the scalar multiplication and fixing that system for the whole scalar

multiplication iterations. Second, is allowing projective coordinates hopping at any time

during the scalar multiplication.

In scalar multiplication, it is required to perform a series of doubling and addition

operations where the result of one operation is used as input operands to the other. This

prevents conventional mixed coordinates from benefiting from the efficient mixed

coordinates such as using HHH for addition and JJ for doubling. This is, however,

because the result of the ADD operation is represented in H coordinates while the input

of the DBL operation must be in J representation. The conversion from H to J

representation requires an inversion operation as shown in table 5.2. This kind of

problems do not exit in DPC system since it is possible to dynamically change from one

coordinate system to another without any inversion operation simply by using mixed DPC

formulas with setting 3xL and 3yL to the desired values.

In window based methods, DPC can use different projective coordinate systems

for different phases of the scalar multiplication. Fore example, a certain coordinate system

can be used for the pre-computation phase of the scalar multiplication while other

coordinate systems can be used for addition and/or doubling operations in the main loop.

143

Furthermore, different blocks (or windows) of the scalar K can use different projective

coordinate systems.

Finally, it worth to mention that each run of the scalar multiplication can start with

new coordinate system every time. This is because DPC system lends itself to randomize

the scalar multiplication simply by randomizing the projecting parameters.

8.6 Conclusions

This chapter discussed the performance and using of DPC. The performance of

DPC for addition and doubling operations in both E/GF(p) and E/GF(2m) has been

analyzed. We conclude that the number of field operations required is a function of the

projecting parameters xL and yL and the d-parameter. Various tables that show the

number for required operations for several coordinate systems were presented.

Also, this chapter studied how the DPC can be used. DPC uses a single

mathematical formulation/software code to implement different projective coordinate

systems. Hence, we conclude that DPC system can be plugged to any scalar multiplication

algorithm. However, two possible modes for using DPC with any scalar multiplication

algorithm were been discussed. First, initializing the coordinate system and selecting the

projecting and d parameters in the beginning of the scalar multiplication and fixing that

system for the whole scalar multiplication iterations. Second, is allowing projective

coordinates hopping at any time during the scalar multiplication.

144

CHAPTER 9

Scalar Multiplication Security In Presence of DPC

9.1 Introduction

Since the scalar multiplication is the part of any elliptic curve cryptosystem that is

directly correlated to the secret scalar K, researcher have become increasingly aware of

the possibility of side channel attacks that exploits specific properties of the

implementation of the scalar multiplication. As discussed in chapter 6, there are many

countermeasures that can be used to protect against these attacks. However, non of these

countermeasures are guaranteed to defeat all the side channel attacks. For example, many

countermeasures against differential power analysis attacks rely on randomizing the

projective coordinates. But all these countermeasures are vulnerable to the projective

coordinates leak since they depend on pre-determined projective coordinate systems.

Moreover, these countermeasures are vulnerable to the newly proposed attacks such as

RPA, ZPA, DA, ABDPA attacks.

According to the proposed classification, presented in chapter 6, of side channel

attacks, in this chapter, we propose and analyze countermeasures for operation-and-data

dependent and data-dependent attacks. We mean by operation-and-data dependent attacks

145

is the attacks that are based on both the data being manipulated and the operations being

performed on this data. Also, we propose countermeasures for address-dependent attacks.

For each of the proposed countermeasure, we provide the security and complexity

analysis.

All the proposed countermeasures are based on using the DPC system as the

coordinate system. This is because the DPC system lends itself to randomization simply

by randomizing the projecting parameters xL and yL and/or d-parameter. Also, all the

proposed countermeasures are applied to both E/GF(p) and E/GF(2m).

However, the following notations are used through out this chapter. DPC_ADD

means any DPC addition formula. DPC_DBL means any DPC doubling formula. Also,

we use the word "mixed" or "optimized" in front of these notations to specify the mixed

and optimized DPC formulas.

This chapter is organized as follows. Section 9.2 discusses the proposed

countermeasures for operation-and-data dependent attacks. The proposed

countermeasures for address-dependent attacks are addressed in section 9.3. Finally,

section 9.4 gives the conclusions.

9.2 Countermeasures for Operation and Data Dependent Attacks

As discussed in chapter 6, most of attacks are operation-dependent and at the same

time data-dependent such as DPA and DA attacks. Some other attacks are data-dependent

only such as RPA, ZPA and PCL. The existing countermeasures (section 6.9) do not

146

defeat all these attacks. More precisely, if a countermeasure defends one attack it may not

defend the others. In the following, we show the attacks that each countermeasure cannot

defend according to the mentioned reference.

• Randomizing the base point (code = 010). (Coron's 2nd countermeasure) does not

protect RPA [30].

• Randomizing projective coordinates (code = 010) does not protect RPA, ZPA

[31].

• Randomizing the scalar (code = 001) does not protect PCL [42].

• N. Smart's trick (code = 010) does not protect RPA, ZPA [31] and some cases of

PCL [42].

• Non of the above countermeasures protect address bit DPA (ABDPA) [38].

Therefore, it is desired to find countermeasures to protect against these type of attacks.

In this chapter, we propose three countermeasures for operation-and-data dependent and

data-dependent attacks and two countermeasures for address-dependent attacks. All the

proposed countermeasures are based on the following lemma.

Lemma 9.1: By randomizing the projecting parameters xL and yL and/or d parameter in

any addition and doubling DPC formula, both the data being manipulated and the number

of operations being performed are randomized.

147

Proof: Given that xL and yL and/or d are initialized randomly. Then the proof consists of

the following three parts:

1. Each auxiliary variable T in any formula of the formulas presented in chapter 7 is a

function of either xL , yL and/or d. Hence, the value of T is randomized since xL

and yL and/or d are initialized randomly.

2. Each of the variables 3X , 3Y xLZ3 and yLZ3 which form the resultant point

(3X , 3Y , xLZ3 , yLZ3) of any formula of the formulas presented in chapter 7 is a

function of either xL , yL and/or d. Hence, the values of these variables are

randomized since xL and yL and/or d are initialized randomly.

3. As shown in tables 8.2, 8.3, 8.9 and 8.10, the number of required operations for

each formula of the formulas presented in chapter 7 is a function of either xL , yL

and/or d. Hence, the number of required operations are randomized since xL and

yL and/or d are initialized randomly.

 In the following, we introduce the proposed countermeasures and for each

countermeasure, we do the following:

• Apply the countermeasure to the binary ML and binary NAF algorithms (4.2 and

4.8) respectively. We have chosen these two algorithms because they are the most

widely used scalar multiplication algorithms.

148

• Analyze the security of the countermeasure by showing the attacks that the

countermeasure can resist and how; and the attacks that the countermeasure cannot

resist and why.

• Analyze the complexity of the countermeasure by showing the cost in terms of

number of field operations required for the countermeasure itself and the cost of

applying it to the ML and binary NAF algorithms.

Countermeasure 1: This countermeasure uses the DPC system with randomly initialized

projecting parameters, xL , yL and d. Countermeasure1 randomizes xL , yL and d in the

beginning of each run of the scalar multiplication. Hence, each execution of the scalar

multiplication has its own coordinate system with different data values and different

number of field operations. Although any DPC addition or doubling formula can be used

for this countermeasure, it is preferred to use the optimized formulas since they require

less number of field operations such as using formula 7.7 for addition in E/GF(p) and 7.16

for addition in GF(2m) (see tables 8.2, 8.3, 8.9 and 8.10).

Algorithms 9.1 and 9.2 show the application of this countermeasure to the binary

ML and binary NAF algorithms (4.2 and 4.8) respectively (N is positive integer).

149

INPUT K, P
OUTPUT KP

7. xL = rand(1..N) , yL = rand(1..N), d = rand(3..N)
8. Set Z = 1 then compute P = (X,Y,1,1)
9. Initialize Q[2] = P
10. for i = n-2 down to 0
11. Q[0] = DPC_DBL(Q[2])
12. Q[1] = DPC_ADD(Q[0], P)
13. Q[2] = Q[ki]
14. end for
15. Convert Q[2] to affine coordinate.

 Return Q[2]

Algorithm 9. 1: Binary ML algorithm with countermeasure1

Input: An integer K an a point P = (x,y) ∈ E/GF(q)
Output: The point Q = KP ∈ E/GF(q)

1. Compute NAF(K) = (ul-1 … u1u0)
2. xL = rand(1..N) , yL = rand(1..N), d = rand(3..N)
3. Set Z = 1 then compute P = (X,Y,1,1)
4. Q = ∞
5. for j = l - 1 downto 0 do
6. Q = DPC_DBL(Q)
7. if ul = 1 then
8. Q = DPC_ADD(Q, P)
9. if ul = –1 then
10. Q = DPC_ADD(Q, – P)
11. Convert Q to affine coordinate.

 Return (Q)
Algorithm 9. 2: Binary NAF algorithm with countermeasure1

Security analysis of Countermeasure1:

The number of field operations in DPC_ADD and DPC_DBL is determined in the

beginning of the scalar multiplication when the values of xL , yL and d are initialized.

These numbers remain fixed during the whole scalar multiplication. In the next run of the

scalar multiplication, new values of xL , yL and d will be initiated and hence the number

150

of field operations in DPC_ADD and DPC_DBL will be changed accordingly. Based on

that, this countermeasure can resist DPA, DFA, DEMA and DA.

Also, any register used in DPC_ADD and DPC_DBL operations changes at each

execution. Hence this countermeasure is resistant against RPA, ZPA and PCL attacks.

Since countermeasure1 has nothing to do with addresses of variables, algorithm

9.1 is not immune against ABDPA. This is because there is still a direct correlation

between the register transfer operation in step 7 and the scalar bit value. On the other

hand, algorithm 9.2 is immune against ABDPA by its nature since the locations of

operands of DPC_ADD and DPC_DBL operations are independent of the scalar bit

values.

Finally, it is worth to mention that countermeasure1 resists SPA since it uses

double-and-add always method in algorithm 9.1. In algorithm 9.2, the addition operations

are not conditioned by the value of the scalar bit.

Complexity analysis of Countermeasure1:

As discussed in chapter 4, let the binary representation of the scalar K is

01
2

2
1

1 2.......22 kkkkK n
n

n
n ++++= −

−
−

− where n is the number of bits.

Let A and D denotes the number of field operations (multiplications + squaring) in

DPC_ADD and DPC_DBL respectively. In other words, A contains the number of

multiplications and squaring in DPC_ADD and D contains the number of multiplications

151

and squaring in DPC_DBL. Fore example, A = 12M + 2S and D = 8M + 5S in case of

using DPC-HHH system. Since the DPC_ADD and DPC_DBL operations are performed

in each iteration of algorithm 9.1 (double-and-add always), then its Expected Running

Time (ERT) is given by [52]:

 ERT(Algorithm 9.1) = An + Dn 9.1

With n being the bit length of the scalar K.

The values of A and D are given in tables 8.2 and 8.3 for E/GF(p) and in tables 8.9

and 8.10 for E/GF(2m). Note that the number of field operations in A and D differ from

one DPC formula to the other. For example, the ERT of algorithm 9.1 when using the

general DPC_ADD and DPC_DBL formulas is given by:

ERT(Algorithm 9.1) =

() ()() +++++ nMLSELSELRELRE y
d

x
d

y
d

x
d)),(()),((max11)),(()),,((max18 αααα

() ()()nSLSELSELRELRE y
d

x
d

y
d

x
d)),(()),((max4)),(()),,((max2 ββββ ++++

Where the letter E before alpha and beta functions means their expected values which are

given by equation 8.1 (see section 8.2). Note that M denotes multiplication and S denotes

squaring.

 Table 9.1 shows the expected running times of algorithm 9.1 when using some

specific DPC system.

152

Table 9. 1: Expected running times of algorithm 9.1 for specified DPC systems

Coordinate system ERT in case of E/GF(p) ERT in case of E/GF(2m)

Optimized DPC-HHH 20n M + 7n S 23n M + 4n S

Optimized DPC-JJJ 20n M + 8n S 20n M + 4n S

n = bit length of the recoded scalar, M = multiplication and S = squaring

 In case of algorithm 9.2, given that the binary representation of the recoded scalar

U = NAF(K) is given by:

01
2

2
1

1 2.......22 uuuuU l
l

l
l ++++= −

−
−

− 9.2

Then according to [52] the average density of non zero digits in U is l/3 where l is

the bit length of U. Based on that, the expected running time of algorithm 9.2 is:

ERT(Algorithm 9.2) = lDAl
+

3
 9.3

with A and D given in tables 8.2 and 8.3 for E/GF(p) and in tables 8.9 and 8.10 for

E/GF(2m). For example, the ERT of algorithm 9.2 when using the general DPC_ADD

and DPC_DBL formulas is given by:

ERT(Algorithm 9.2) =

()() ()() +⎟
⎠
⎞

⎜
⎝
⎛ ++++ MlLSELSElLRELRE y

d
x

d
y

d
x

d)),(()),((max11
3

)),(()),,((max18 αααα

() ()()SlLSELSELRELRE y
d

x
d

y
d

x
d)),(()),((max4)),(()),,((max2 ββββ ++++

153

 Table 9.2 shows the expected running times of algorithm 9.2 when using some

specific DPC systems.

Table 9. 2: Expected running times of algorithm 9.2 for specified DPC systems

Coordinate system ERT in case of E/GF(p) ERT in case of E/GF(2m)

Optimized DPC-HHH 12l M + 5.66l S 13l M + 2.66l S

Optimized DPC-JJJ 12l M + 6l S 11.33l M + 2.66l S

l = bit length of the recoded scalar, M = multiplication and S = squaring

Countermeasure 2: This countermeasure is based in using DPC in conjunction with

exponent (scalar) splitting (ES) method as follows:

1. ES splits the scalar K into two parts R and (K – R) using a random number R.

2. Computes RPP =1 , PRKP)(2 −= and then 21 PPKP += .

1P and 2P are computed using DPC with randomly initialized projecting

parameters. These parameters could be the same for both points (i.e. for 1P and 2P) or

be different. In case of different projecting parameters, the final addition to get

21 PPKP += , is performed either using a mixed addition formula that allows using

different projective coordinates, or performed using the affine coordinates since it is

the last operation and the final result should be presented in the affine coordinates.

Let the number of bits in R and (K – R) be 1n and 2n respectively. Then the binary

representation of R is given by,

154

01
2

2
1

1 2.......22 rrrrR n
n

n
n ++++= −

−
−

−

Algorithms 9.3 and 9.4 show the application of this countermeasure to the binary

ML and binary NAF algorithms respectively. Note that in case of binary NAF,

countermeasure2 splits the scalar before recoding and then R and (K – R) are recoded

separately. In this case, 1n and 2n become the bit length of U1 and U2 respectively.

However, note that the binary representation of the recoded scalar is

01
2

2
1

1 2.......22 uuuuU l
l

l
l ++++= −

−
−

− (see section 4.5.3) with bit length l equals to n

or grater by only 1.

Security analysis of Countermeasure2:

The security analysis of countermeasure1 is applicable to phase1 and phase2 of

countermeasure2. That is, each phase is immune against DPA, DFA, and DA since the

number of operations is randomized and immune against RPA, ZPA, and PCL since the

data manipulated is also randomized. Furthermore, countermeasure2 resists SPA and DPA

in the same way discussed in countermeasure1. Also, algorithm 9.3 does not resist

ABDPA for the same reason addressed in countermeasure1.

However, countermeasure2 has an additional security strength resulting from

random splitting the scalar into two scalars. This is because in each run of the scalar

multiplication the data and the number of operations will be randomized since R and (K –

R) will have different values in each run.

155

INPUT K, P
OUTPUT KP
 Phase 1:

1. R = rand(1..K-1)
2. xL = rand(1..N) , yL = rand(1..N), d =

rand(3..N)
3. Set Z = 1 then compute P = (X,Y,1,1)
4. Initialize Q[2] = P
5. for i = 1n -2 down to 0
6. Q[0] = Optimized_DPC_DBL(Q[2])
7. Q[1] = Optimized_DPC_ADD(Q[0], P)
8. Q[2] = Q[ir]
9. end for
10. 1P = Q[2]

 Phase 2:
11. K = K – R
12. xL = rand(1..N) , yL = rand(1..N), d =

rand(3..N)
13. Set Z = 1 then compute P = (X,Y,1,1)
14. Initialize Q[2] = P
15. for i = 2n -2 down to 0
16. Q[0] = Optimized_DPC_DBL(Q[2])
17. Q[1] = Optimized_DPC_ADD(Q[0], P)
18. Q[2] = Q[ik]
19. end for
20. 1P = 1P + Q[2]
21. Convert 1P to affine coordinate.

 Return (1P)

 Input: K , P
Output: The point Q = KP

1. R = rand(1..K-1)
 Phase 1:

2. Compute NAF(U) = (11−nu 21−nu … 0u)

3. xL = rand(1..N) , yL = rand(1..N), d =
rand(3..N)

4. Set Z = 1 then compute P = (X,Y,1,1)
5. Q = ∞
6. for i = 1n - 1 downto 0 do
7. Q = Optimized_DPC_DBL(Q)
8. if iu = 1 then
9. Q = Optimized_DPC_ADD(Q, P)
10. if iu = –1 then
11. Q = Optimized_DPC_ADD(Q, – P)
12. 1P = Q

 Phase 2:
13. Compute NAF(K-R) U = (12−nu 22−nu …

0u)

14. xL = rand(1..N) , yL = rand(1..N), d =
rand(3..N)

15. Set Z = 1 then compute P = (X,Y,1,1)
16. Q = ∞
17. for i = 2n - 1 downto 0 do
18. Q = Optimized_DPC_DBL(Q)
19. if iu = 1 then
20. Q = Optimized_DPC_ADD(Q, P)
21. if iu = –1 then
22. Q = Optimized_DPC_ADD(Q, – P)
23. 1P = 1P + Q
24. Convert 1P to affine coordinate.

 Return (1P)

Algorithm 9. 3: Binary ML algorithm with
countermeasure2

 Algorithm 9. 4: Binary NAF algorithm with
countermeasure2

156

Complexity analysis of Countermeasure2:

Countermeasure2 computes KP by almost the same cost as countermeasure1 since

each phase uses the double-and-add always method. However, there are an extra final

addition operation to compute 21 PPKP += . Also, computing K = K – R requires one

word-length subtraction operation which can be neglected.

Countermeasure3: A third countermeasure uses the ability of DPC to dynamically hop

from one coordinate system to another half the way in the scalar multiplication. This

hopping can be achieved by using general or optimized mixed addition and doubling

formulas. This kind of formulas have the ability to perform the addition and doubling

operations in totally different projective coordinates. Furthermore, these formulas do not

requires any inversion operation to change form one coordinate system to the other.

However, dynamic hopping can range from hopping in each iteration of the scalar

multiplication (full hopping) to non-hopping which is identical to the case of

countermeasure1.

Countermeasure3 can be performed as follows:

1. Randomly initialize the projecting parameters 1xL , 1yL , 2xL , 2yL , 3xL , 3yL and d

parameter. Note that we need to use all these parameters since the mixed formulas

are used.

2. Start the scalar multiplication.

157

3. In each iteration, based on the value of a random bit r, randomly select new

parameters 3xL , 3yL and d. i.e. if r = 1, then 3xL = rand (1..N), 3yL = rand (1..N),

and d = rand (3..N); otherwise keep the old values. This random selection is called

a hop.

Algorithms 9.5 and 9.6 show the application of this countermeasure to the binary

ML and binary NAF algorithms respectively.

INPUT K, P
OUTPUT KP

1. 1xL = rand(1..N) , 1yL = rand(1..N), d = rand(3..N)

2. 2xL = rand(1..N) , 2yL = rand(1..N)

3. 3xL = rand(1..N) , 3yL = rand(1..N)
4. Set Z = 1 then compute P = (X,Y,1,1)
5. Initialize Q[2] = P
6. for i = n-2 down to 0
7. if (r = rand(0..1) = 1) then
8. 3xL = rand(1..N) , 3yL = rand(1..N)
9. Q[0] = Mixed_DPC_DBL(Q[2])
10. Q[1] = Mixed_DPC_ADD(Q[0], P)
11. Q[2] = Q[ki]
12. end for
13. Convert Q[2] to affine coordinate.

 Return Q[2]

Algorithm 9. 5: Binary ML algorithm with countermeasure3

158

Input: An integer K an a point P = (x,y) ∈ E/GF(q)
Output: The point Q = KP ∈ E/GF(q)

1. Compute NAF(K) = (ul-1 … u1u0)
2. 1xL = rand(1..N) , 1yL = rand(1..N), d = rand(3..N)

3. 2xL = rand(1..N) , 2yL = rand(1..N)

4. 3xL = rand(1..N) , 3yL = rand(1..N)
5. Set Z = 1 then compute P = (X,Y,1,1)
6. Q = ∞
7. for j = l - 1 downto 0 do
8. if (r = rand(0..1) = 1) then
9. 3xL = rand(1..N) , 3yL = rand(1..N)
10. Q = Mixed_DPC_DBL(Q)
11. if ul = 1 then
12. Q = Mixed_DPC_ADD(Q, P)
13. if ul = –1 then
14. Q = Mixed_DPC_ADD(Q, – P)
15. end for
16. Convert Q to affine coordinate.

 Return (Q)
Algorithm 9. 6: Binary NAF algorithm with countermeasure3

Security analysis of Countermeasure3:

The security analysis of this countermeasure is similar to that of countermeasure1

except that it uses mixed DPC formulas in which each coordinate of each point has it own

different projecting parameters.

According to step1 of countermeasure3, the number of field operations and the

data manipulated will be randomized in each run of the scalar multiplication. Hence this

countermeasure has the same security as countermeasure1. i.e. it can defend the same

attacks defended by countermeasure1. Moreover, in any iteration of the scalar

multiplication, one or more of the projecting parameters 3xL , 3yL and/or d can hop to a

new random value. This introduces intermediate randomization inside execution of the

159

scalar multiplication where it can guard any similarity analysis of different blocks of the

scalar multiplication.

Since countermeasure3 has nothing to do with addresses of variables, algorithm

9.5 is not immune against ABDPA. This is because there is still a direct correlation

between the register transfer operation in step 11 and the scalar bit value. On the other

hand, algorithm 9.6 is immune against ABDPA by its nature since the locations of

operands of DPC_ADD and DPC_DBL operations are independent of the scalar bit

values.

Algorithm 9.5 resists SPA because of: First, it uses double-and-add always

method. Second, the projective coordinates hopping in the intermediate iterations is

applied to both the addition and doubling operations to prevent any distinguishably

between them. Recall that the addition and doubling operations are performed in each

iteration independently from the scalar bit value. Third, projective coordinates hopping

happens at random iterations without any correlation between this hopping and the scalar

bit value. i.e. the projective coordinates hopping is independent of the scalar bit values.

Also, algorithm 9.6 resists SPA because the addition operations are not

conditioned by the value of the scalar bit. Moreover, the "Third" argument above is valid

in case of algorithm 9.6 as well.

160

Complexity analysis of Countermeasure3:

The expected running time of algorithms 9.5 and 9.6 are given by 9.1 and 9.3

respectively with the values of A and D being the number of filed operations for addition

and doubling operations for the mixed DPC formulas only. The number of field

operations of such formulas are given in tables 8.2 and 8.3 for E/GF(p) and in tables 8.9

and 8.10 for E/GF(2m). For example, the ERT of algorithm 9.5 when using the general

mixed DPC_ADD and DPC_DBL formulas is given by:

ERT(Algorithm 9.5) =

()
()

()
() Mn

LZELZE

LSELSE

LTELTE

LRELRE

y
L

x
L

y
d

x
d

y
d

x
d

y
d

x
d

yy ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

+

+++
+

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ ++

)),(()),((max

)),(()),((max11

)),(()),,((max

)),(()),,((max18

3131

33

3131

33

11 αα

αα

αα

αα

()
()

()
() Sn

LZELZE

LSELSE

LTELTE

LRELRE

y
L

x
L

y
d

x
d

y
d

x
d

y
d

x
d

yy ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

+

+++
+

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ ++
+

)),(()),((max

)),(()),((max5

)),(()),,((max

)),(()),,((max2

3131

33

3131

33

11 ββ

ββ

ββ

ββ

Where the letter E before alpha and beta functions means their expected values which are

given by equation 8.1 (see section 8.2).

On the other hand, the ERT of algorithm 9.6 when using the general mixed

DPC_ADD and DPC_DBL formulas is given by:

ERT(Algorithm 9.6) =

()
()

()
() Ml

LZELZE

LSELSEl
LTELTE

LRELRE

y
L

x
L

y
d

x
d

y
d

x
d

y
d

x
d

yy ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

+

+++
+

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ ++

)),(()),((max

)),(()),((max11

3)),(()),,((max

)),(()),,((max18

3131

33

3131

33

11 αα

αα

αα

αα

()
()

()
() Sl

LZELZE

LSELSE

LTELTE

LRELRE

y
L

x
L

y
d

x
d

y
d

x
d

y
d

x
d

yy ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

+

+++
+

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ ++
+

)),(()),((max

)),(()),((max5

)),(()),,((max

)),(()),,((max2

3131

33

3131

33

11 ββ

ββ

ββ

ββ

161

9.3 Countermeasures for Address-Dependent Attacks

Since most of the scalar multiplication binary algorithms are vulnerable to

address-bit-DPA attack (ABDPA), it is desired to find an immune algorithm to such

attack. Here, we prose two ML algorisms called Add-Add algorithm and transition-based

algorithm that can be used in conjunction with DPC system. These algorithms can be used

to protect against class C attack. Fortunately, these algorithms can also be used to protect

against doubling attack. However, it is worth to mention that DPC can be plugged to any

of these algorithms. Hence, we will concentrate in describing the proposed algorithms

letting the use of DPC to be default argument.

 9.3.1 Add-Add Algorithm

This algorithm is a ML algorithm. It performs one ADD operation followed by

another ADD operation in each iteration of a scalar multiplication. In any iteration of the

scalar multiplication, the first ADD and the second ADD operations are performed in a

fixed sequence (ADD ADD). i.e. they will be performed in all iterations in the same

order independently of the scalar bit values. Note that we can get –P by simply negating

the y-coordinate of P in case of GF(p) and adding x to y coordinates in case of GF(2m).

Steps of algorithm Add-Add are shown in algorithm 9.7.

162

INPUT K, P
OUTPUT KP

1. Initialize Q[0] = P(or 2P); Q[1] = 2P(or P); Q[2] = P
2. for i = n-2 down to 0
3. Q[0] = ADD(Q[1],Q[0])
4. Q[1] = ADD((Q[0], (-1)1-ki Q[2])]
5. end for

 return Q[1- k0]
Algorithm 9. 7: Add-Add algorithm

The second ADD operation performs the addition operation on the contents of

Q[0] and Q[2]. The result is stored in Q[1]. The effect of ik−− 1)1(in step 4 of the algorithm

can be explained as follows. First, note that the contents of Q[2] is always P. If the current

bit ik is 1, P will be added to Q[0]. Otherwise (i.e. for ik = 0), –P is added to Q[0].

Figure 9.1 presents two examples of Add-Add algorithm. The upper table of the

Figure shows the values of Q[0], Q[1], and Q[2] in all iterations of calculating 173P. The

lower table shows all iterations of calculating 155P.

K 1 0 1 0 1 1 0 1
Q[2] 1 1 1 1 1 1 1 1
Q[0] 1 3 5 11 21 43 87 173
Q[1] 2 2 6 10 22 44 86 174

K 1 0 0 1 1 0 1 1

Q[2] 1 1 1 1 1 1 1 1
Q[0] 1 3 5 9 19 39 77 155
Q[1] 2 2 4 10 20 38 78 156

Figure 9. 1: Two examples of Add-Add algorithm.
Upper table calculates 173P. Lower table calculates 155P.

Add-Add algorithm resists doubling attack by its nature since no doubling

operation at all. It resists ABDPA since it reads its operands from a fixed locations

163

regardless of the scalar bit value. When –P is needed it is simply computed (it can be

computed all the times).

9.3.2 Transition-Based Algorithm

This algorithm is a ML algorithm. In any iteration, doubling and addition

operations are performed in a fixed sequence, denoted by DBL ADD. In other words,

DBL and ADD operations are always performed in all iterations in the same order

independently of the bit values of a scalar. The most important property of this algorithm

is that in the i-th iteration of calculating KP, the selection of the input operand of DBL

operation is dependant on the existence of a transition between bits ik and 1+ik of a scalar

K and it is not dependant directly on the value of ik . The steps of the transition-based

algorithm are shown in algorithm 9.8.

INPUT K, P
OUTPUT KP

1. Initialize Q[0] = P; Q[1] = 2P
2. for i = n-2 down to 0
3. Q[2] = DBL(Q[1 – (ki ⊕ ki+1)])
4. Q[0] = ADD(Q[1],Q[0]]
5. Q[1] = Q[2]
6. end for

 return Q[1- k0]
Algorithm 9. 8: Transition-based algorithm

The choice of input operand of DBL operation in step3 is based on existence of a

transition between ik and 1+ik bits of the scalar. If there is a transition from 0 to 1 or from

164

1 to 0 between bits ik and 1+ik , Q[0] is doubled and the result is stored in Q[2]; otherwise

(i.e. ik and 1+ik are both 1’s or both are 0’s and hence no transition) Q[1] is doubled and

the result is stored in Q[2].

Figure 9.2 presents two examples transition-based algorithm. The upper table of

the Figure shows the values of Q[0], Q[1], and Q[2] in all iterations of calculating 173P.

The lower table shows all iterations of calculating 155P.

K 1 0 1 0 1 1 0 1
Q[2] 2 6 10 22 44 86 174
Q[0] 1 3 5 11 21 43 87 173
Q[1] 2 2 6 10 22 44 86 174

K 1 0 0 1 1 0 1 1

Q[2] 2 4 10 20 38 78 156
Q[0] 1 3 5 9 19 39 77 155
Q[1] 2 2 4 10 20 38 78 156

Figure 9. 2: Two examples Transition-Based algorithm.
Upper table calculates 173P. Lower table calculates 155P.

Transition-based algorithm resists ABDPA in the sense that the same location

(address) is accessed either on a transition from 1 to 0 or from 0 to 1. Therefore, it is

difficult to detect whether this transition is from 0 to 1 or from 1 to 0. The same argument

can hold in the absence of a transition. In this case, an attacker cannot know whether the

previous bit was 1 and remains 1 or was 0 and remains 0 since the same address is used in

both cases.

Transition-based algorithm resists DA in the same scenario described above since

the operand of the doubling operation is chosen based on the existence/absence of a

165

transition. The same operand is doubled either on a transition from 1 to 0 or from 0 to 1.

Therefore, it is difficult to detect whether this transition is from 0 to 1 or from 1 to 0. On

the other hand, in the case of transition absence, the same operand is doubled whether the

previous bit was 1 and remains 1 or was 0 and remains 0.

Countermeasure4: Combining Add-Add and Transition-based Algorithms

The first iteration of transition-based algorithm is weak against ABDPA since the

most significant bit of the key, 1−nk , is always known to be 1. In this case, an attacker can

find the value of the second most significant bit 2−nk depending on whether the input

operand of DBL operation is Q[1] or Q[0] as stated in step 3 of the algorithm. To

overcome this difficulty we use the Add-Add algorithm to perform the initial iteration.

This is because it has the property that its initial step is independent of the content of Q[0]

and Q[1] which could be either the points P and 2P or 2P and P respectively. In other

words, when using Add-Add algorithm in the first iteration, an attacker can not detect the

value of the next most significant bit, 2−nk , even though the value of the most significant

bit, 2−nk , is always known to be 1. It is this property of Add-Add algorithm that is used to

overcome the possible leaking of information about 2−nk in the first iteration of transition-

based algorithm. This combination of Add-Add and transition-based algorithms is used to

prevent any leakage of information about 2−nk . Once the value of 2−nk is protected against

ABDPA in the first iteration, transition-based algorithm is used in subsequent iterations.

166

9.4 Conclusions

This chapter discussed the security of DPC. We have proposed and analyzed

countermeasures for operation-and-data dependent and address-dependent attacks.

All the proposed countermeasures are based on using the DPC system as the

coordinate system since it has the ability to lends itself to randomization simply by

randomizing the projecting parameters xL and yL and/or d-parameter. We conclude that

by randomizing the projecting parameters xL and yL and/or d parameter in any addition

and doubling DPC formula, both the data being manipulated and the number of operations

being performed are randomized.

Also, we conclude that all the proposed countermeasures can be applied to both

E/GF(p) and E/GF(2m).

167

CHAPTER 10

General Conclusions

10.1 Introduction

The main objective of this chapter is to summarize the results obtained in this

thesis. Another aim is to provide some suggestions for future work that may be carried out

based on the results obtained.

This chapter is subdivided as follows. Section 10.2 summarizes the work

undertaken in the thesis. Section 10.3 presents some suggestions for future research.

10.2 Overview and Summary of The Work in The Thesis

The work undertaken in this thesis is mainly in three parts: first, proposing the

new Dynamic Projective Coordinate (DPC) system. Second, analyzing performance of the

proposed DPC and discussing how it can be used. Third, developing DPC-based

countermeasures and algorithms that can cover all the classes of the side channel attacks

presented in chapter 6.

168

10.2.1 DPC System

10.2.1.1 Overview

In this thesis, a new approach, called Dynamic Projective Coordinate (DPC)

system was proposed. It allows the computing/encrypting device to select the projective

coordinate system either at random, or according to a certain rule.

DPC automates the selection of the projective coordinate system and uses a single

mathematical formulation/software code to implement different projective coordinate

systems. Different projective coordinates can be implemented by using two parameters

where one parameter defines the projection of the x-coordinate and a second parameter

defines the projection of the y-coordinate of an elliptic curve point. This allows different

projective coordinates to be used within the same mathematical formulation in calculating

the scalar multiplication.

10.2.1.2 Summary of The Results

In this part of the thesis, we obtained the following formulas for elliptic curve

defined over finite fields GF(p) and GF(2m):

1. General dynamic addition and doubling formulas that allow different projective

coordinate systems to be used within the same mathematical formulation. In these

formulas, xL and yL can be selected without any restriction. In other words no

relation between them.

2. Optimized dynamic addition and doubling formulas that use DPC system and

minimize the computation time through reducing the required number of filed

169

operations. In these formulas, xL and yL are selected according to certain rules to

minimize the number of required operations.

3. Mixed dynamic addition and doubling formulas in which each coordinate can be

projected using its own projecting parameter resulting in the most mixing degree

of coordinates ever. In this way, coordinates of the same point can be represented

in different coordinate systems

10.2.2 Performance of DPC System

10.2.2.1 Overview

The performance of DPC for addition and doubling operations in both E/GF(p)

and E/GF(2m) has been analyzed. We conclude that the number of field operations

required is a function of the projecting parameters xL and yL and the d-parameter.

Various tables that show the number for required operations for several coordinate

systems were presented.

10.2.2.2 Summary of The Results

In this part of the thesis, we obtained the following results:

First, in case of E/GF(p)

1. Addition using DPC-HHH has exactly the same number of computations as in

HHH.

2. Addition using DPC-JJJ is faster than JJJ by one squaring operation.

170

3. Addition using DPC-MMM is faster than MMM by one multiplication and 2

squaring operations.

1. Doubling using HH is faster than DPC-HH by one multiplication

2. Doubling using JJ has less multiplications and more squaring than DPC-JJ.

Second, in case of E/GF(2m)

1. Addition using DPC-HHH has exactly the same number of computations as in

HHH

2. Addition using DPC-JJJ is faster than JJJ by one multiplication and two squaring

operations.

3. Doubling using DPC-HH is higher than HH by one multiplication but lower by 3

squaring. Hence by considering S = 0.8M, as in [23], DPC-HH is in total faster

than HH.

4. Doubling using DPC-JJ is higher than JJ by two multiplications but lower by 3

squaring. Hence by considering S = 0.8M, as in [23], DPC-JJ is in total faster than

JJ.

5. Various dynamic mixed coordinates for E/GF(2m) for addition and doubling

operations. Note that the conventional mixed coordinates for E/GF(2m) are not

existed in the literature.

10.2.3 Using DPC System

In this thesis, we studied how the DPC can be used. DPC uses a single

mathematical formulation/software code to implement different projective coordinate

171

systems. Hence, we conclude that DPC system can be plugged into any scalar

multiplication algorithm. However, two possible modes for using DPC with any scalar

multiplication algorithm were discussed. First, initializing the coordinate system and

selecting the projecting and d parameters in the beginning of the scalar multiplication and

fixing that system for all scalar multiplication iterations. Second, is allowing projective

coordinates hopping at any time during the scalar multiplication.

10.2.4 Scalar Multiplication Security in Presence of DPC System

10.2.4.1 Overview

In this thesis, we proposed DPC-based countermeasures for each class of the

classes of attacks presented in chapter 6. A common property among the proposed DPC-

Based countermeasures is that the scalar multiplication can be randomized by simply

varying one of the projecting parameter used. We conclude that by randomizing xL , yL

and d parameters, we randomize both the data being manipulated and the number of

operations being performed in the scalar multiplication.

10.2.4.2 Summary of The Results

In this part of the thesis, we obtained the following results:

First, Proposed Countermeasures

Countermeasure 1: This countermeasure uses the DPC system with randomly initialized

projecting parameters, xL , yL and d. It randomizes xL , yL and d in the beginning of each

172

run of the scalar multiplication. Hence, each execution of the scalar multiplication has its

own coordinate system with different data values and different number of field operations.

Countermeasure 2: This countermeasure is based on using DPC in conjunction with

exponent (scalar) splitting (ES) method. ES splits the scalar K into two parts r and (K – r)

using a random number r . The scalar multiplication is then computed as,

21 PPKP += , where rPP =1 , PrKP)(2 −=

1P and 2P are computed using DPC with randomly initialized projecting

parameters. These parameters could be the same for both points (i.e. for 1P and 2P) or

be different.

Countermeasure 3: A third countermeasure uses the ability of DPC to dynamically hop

from one coordinate system to another half the way in the scalar multiplication. This

hopping can be achieved by using general or optimized mixed addition and doubling

formulas which have the ability to perform the addition and doubling operations in totally

different projective coordinates.

Second, proposed algorithms

 1. Add-Add Algorithm

It is a ML algorithm. It performs one ADD operation followed by another ADD

operation in each iteration of a scalar multiplication. In any iteration of the scalar

multiplication, the first ADD and the second ADD operations are performed in a fixed

173

sequence. The second ADD operation works as follows: If the current bit ik is 1, P will

be added. Otherwise (i.e. for ik = 0), –P is added.

2. Transition-based Algorithm

It is a ML algorithm. In this algorithm, DBL and ADD operations are always

performed in all iterations in the same order independently of the bit values of a scalar.

The most important property of this algorithm is that in the i-th iteration, the selection of

the input operand of DBL operation is dependant on the existence of a transition between

bits ik and 1+ik of a scalar K and it is not dependant directly on the value of ik .

Countermeasure 4: This countermeasure is based on Combining the Add-Add and

Transition-based Algorithms. The Add-Add algorithm is used to perform the initial

iteration of the scalar multiplication because the first iteration of the transition-based

algorithm is weak against ABDPA. It is this property of Add-Add algorithm that is used

to overcome the possible leaking of information about 2−nk in the first iteration of

transition-based algorithm. This combination of Add-Add and transition-based algorithms

is used to prevent any leakage of information about 2−nk . Once the value of 2−nk is

protected against ABDPA in the first iteration, transition-based algorithm is used in

subsequent iterations.

174

10.3 Suggestions for Future Work

 Since the proposed DPC enables the ECC designers to choose from many

combinations of DPC systems and/or various scalar multiplication algorithms, we propose

the following future work

1. This thesis provides dynamic addition and doubling formulas for E/GF(p) based

on the DPC system where these formulas are separate. A suggested future research

is to provide a unified dynamic formula for E/GF(p) that can be used for both

addition and doubling operations. i.e. getting one dynamic formula that can be

used for both addition and doubling operations at the same time. This unified

formula should be developed using the DPC transformation functions.

2. This thesis provides dynamic addition and doubling formulas for E/GF(2m) based

on the DPC system where these formulas are separate. A suggested future research

is to provide a unified dynamic formula for E/GF(2m) that can be used for both

addition and doubling operations. i.e. getting one dynamic formula that can be

used for both addition and doubling operations at the same time. This unified

formula should be developed using the DPC transformation functions.

3. Study the security-performance tradeoffs of the unified dynamic formula

suggested in (1) for different scalar multiplication algorithms for E/GF(p).

4. Study the security-performance tradeoffs of the unified dynamic formula

suggested in (2) for different scalar multiplication algorithms for E/GF(2m).

Appendices

176

Appendix A-I: Derivation of DPC General Addition Formula for E/GF(p)

Transformation functions 7.1 are used to get the dynamic projective coordinates

),,,(3333
yx LL ZZYX of the point R according to addition formula 3.4 (section 3.3 in chapter

3). The following subsections present the derivation of dynamic projective addition

formulas.

A-I.1 Derivation of Dynamic projective x-coordinate, 3X .

Let),,,(1111
yx LL ZZYXP = ,),,,(2222

yx LL ZZYXQ = and),,,(3333
yx LL ZZYXR = . Then the

dynamic projective coordinate 3X of the point R = P + Q can be derived as follows:

By applying the dynamic transformation functions 7.1 to the equation of 3x in 3.4,

we get:

xx

xx

yy

x LL

LL

LL

L Z
X

Z
X

Z
X

Z
X

Z
Y

Z
Y

Z
X

2

2

1

1

2

1

1

2

2

1

1

2

2

3

3 −−

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

−

−
=

Unify denominators to get,

xx

xx

xx

xx

yy

yy

LL

LL

LL

LL

LL

LL

ZZ
ZXZX

ZZ
ZXZX

ZZ
ZYZY

21

1221

2

21

2112

21

2112

+
−

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

−

−

=

xx

xx

yyxx

xxyy

LL

LL

LLLL

LLLL

ZZ
ZXZX

ZZZXZX
ZZZYZY

21

1221

2

212112

212112

))((
))((+

−⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−
−

=

Let yy LL ZYZYU 2112 −= and xx LL ZXZXV 2112 −= then,

xx

xx

yy

xx

x LL

LL

LL

LL

L ZZ
ZXZX

ZZV
ZZU

Z
X

21

2112
2

21
2

2
21

2

3

3

)(
)(+
−=

177

xxyy

xxyyxx

LLLL

LLLLLL

ZZZZV
ZXZXZZVZZU

21
2

21
2

2112
2

21
23

21
2

)(
)()()(+−

=

Let)(21
yy LL ZVZR = and xxxx LLLL ZXRZXRZZUX 21

2
12

23
21

2'
3)(−−= , then the above equation

can be written as,

xxx LLL ZZR
X

Z
X

21
2

'
3

3

3 = A-I.1

A-I.2 Derivation of Dynamic projective y-coordinate, 3Y .

By applying the dynamic transformation functions 7.1 to the equation of 3y in 3.4,

we get:

yxx

xx

yy

y LLL

LL

LL

L Z
Y

Z
X

Z
X

Z
X

Z
X

Z
Y

Z
Y

Z
Y

1

1

3

3

1

1

1

1

2

2

1

1

2

2

3

3 −⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

−

−

=

yxxyyxx

xxyy

LLLLLLL

LLLL

Z
Y

Z
X

Z
X

ZZZXZX
ZZZYZY

1

1

3

3

1

1

212112

212112

))((
))((

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

−
−

=

yxxyy

xx

LLLLL

LL

Z
Y

Z
X

Z
X

ZZV
ZZU

1

1

3

3

1

1

21

21

)(
)(

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

Unify denominators to get,

yxx

xx

yy

xx

y LLL

LL

LL

LL

L Z
Y

ZZ
ZXZX

ZZV
ZZU

Z
Y

1

1

31

1331

21

21

3

3

)(
)(

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

yxxyy

xxxx

LLLLL

LLLL

Z
Y

ZZZZV
ZXZXZZU

1

1

3121

133121

)(
))((
−

−
=

xyy

xyxxx

LLL

LLLLL

ZZZV
ZVZYZXZXUZ

321

32113312

)(
)(−−

=

Finally, the above equation can be written as,

178

x

xxyxx

y L

LLLLL

L RZ
ZUZXVZYXUZZ

Z
Y

3

12321123

3

3)(−−
= A-I.2

A-I.3 Choosing Common 3Z .

Let 213 ZZRZ d= , then we can write,

⎪⎭

⎪
⎬
⎫

=

=
yy

xx

LdL

LdL

ZZRZ

ZZRZ

)(

)(

213

213

Based on that, equation A-I.1 can be written as,

xxx

x

x LLdL

dL

L ZZR
RX

Z
X

21

2'
3

3

3
−

= A-I.3

Substitute for 3X = 2'
3

−xdLRX , obtained from A-I.3, in A-I.2 to get,

x

xxxyxx

y L

LLdLLLL

L RZ
ZUZRXVZYXUZZ

Z
Y

3

12
2'

321123

3

3)(−−−
=

Since xxxx LLdLL ZZRZ 213 = , xLZ3 can be taken as a common factor in the numerator and

canceled with xLZ3 in the denominator to get,

R
URXVZYXUZ

Z
Y yx

y

LL

L

2'
32112

3

3)(−−−
=

Multiply the right hand side by 22 / RR to get,

3

'
32112

2

3

3)(
R

UXVZYXUZR
Z
Y yx

y

LL

L
−−

=

Rearrange the numerator of the above equation to exploit the previously computed terms,

3
12

2'
312

2

3

3)(
R

VYZRXXZRU
Z
Y yx

y

LL

L
−−

=

179

According to the selection of 213 ZZRZ d= which result in yy LdL ZZRZ)(213 = , multiply the

right hand side of the above equation by
yy

yy

LL

LL

ZZ
ZZ

21

21 ,

()
yy

yxyy

y LL

LLLL

L ZZR
VYZRXXZRUZZ

Z
Y

21
3

12
2'

312
2

21

3

3)(−−
=

Let ()VYZRXXZRUZZY yxyy LLLL
12

2'
312

2
21

'
3)(−−= , then the above equation can be written as,

)(21

3'
3

3

3
yyy

y

y LLdL

dL

L ZZR
RY

Z
Y −

= A-I.4

From equations A-I.3 and A-I.4, we get the following general dynamic addition

formulas:

() ⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎭

⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎬

⎫

−−−=

−−=

===

−===

−===

=

=

=

=
−

−

)()(

,

,,

,,,

,,,,

2
2

1
2

2
'
32

2
2

'
3

2
2

1
23

1
'
3

2212211

21212121

21212121

23

13

3'
33

2'
33

VRVRUXVRUTY

VRVRUTX

VTRZZTZZT

VVVZXVZXV

UUUZYUZYUwhere

TRZ

TRZ

RYY

RXX

yyxx

xx

yy

yy

xx

y

x

LLLL

LL

LL

dLL

dLL

dL

dL

 A-I.5

Appendix B-I: Derivation of DPC General Doubling Formula for E/GF(p)

Transformation functions 7.1 are used to get the dynamic projective coordinates

),,,(3333
yx LL ZZYX of the point R according to doubling formula 3.5 (section 3.3 in chapter

3). The following subsections present the derivation of dynamic projective doubling

formulas.

180

B-I.1 Derivation of Dynamic projective x-coordinate, 3X .

Let),,,(1111
yx LL ZZYXP = and),,,(3333

yx LL ZZYXR = . Then the dynamic projective

coordinate 3X of the point R = 2P can be derived as follows:

By applying the dynamic transformation functions 7.1 to the equation of 3x in 3.5, we get:

x

y

x

x L

L

L

L Z
X

Z
Y

a
Z
X

Z
X

1

1

2

1

1

2
1

2
1

3

3 2
2

3
−

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛
+

=

x

y

x

x

L

L

L

L

Z
X

Z
Y

Z
aZX

1

1

2

1

1

2
1

2
1

2
1

2
2

3

−

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛ +

=

()
xx

yx

LL

LL

Z
X

YZ
ZaZX

1

1

2

1
2
1

1
2

1
2

1 2
2

3
−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛ +
=

Let xLaZXW 2
1

2
13 += , then

xx

y

x LL

L

L Z
X

YZ
WZ

Z
X

1

1
2

1
2
1

2
1

3

3 2
)2(

)(
−=

2
1

2
1

2
1

3
11

2
1

)2(
8)(

YZ
YZXWZ

x

xy

L

LL −
=

Let 1
2

12 YZS xL= , then

2
111

2
1

3

3 4)(
S

ZYSXWZ
Z
X xy

x

LL

L

−
=

Let xy LL ZYSXWZX 111
2

1
'
3 4)(−= , then

181

2

'
3

3

3

S
X

Z
X

xL = B-I.1

B-I.2 Derivation of Dynamic projective y-coordinate, 3Y .

By applying the dynamic transformation functions 7.1 to the equation of 3y in 3.5,

we get:

yxx

y

x

y LLL

L

L

L Z
Y

Z
X

Z
X

Z
Y

a
Z
X

Z
Y

1

1

3

3

1

1

1

1

2
1

2
1

3

3

2

3
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛
+

=

yxxx

y

LLLL

L

Z
Y

Z
X

Z
X

YZ
WZ

1

1

3

3

1

1

1
2

1

1

)2(
)(

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

Unify denominators to get,

yxx

xxy

y LLL

LLL

L Z
Y

ZYZ
ZXZXWZ

Z
Y

1

1

31
3
1

13311

3

3

2
))((
−

−
=

xyx

xxxxyy

LLL

LLLLLL

ZYZZ
ZYZYZXZXWZZ

311
3
1

31
3
11133111

2
2))((−−

=

which can be rearranged to get,

xyx

xyxyx

y LLL

LLLLL

L ZZSZ
ZWZXYSZZWXZ

Z
Y

311

1
2

1311
2

113

3

3)(−−
= B-I.2

B-I.3 Choosing a common 3Z

Let 13 ZSZ d= , then we can write,

⎪⎭

⎪
⎬
⎫

=

=
yyy

xxx

LdLL

LdLL

ZSZ

ZSZ

13

13

Therefore, B-I.1 can be written as,

182

xx

xx

x LdL

LdL

L ZS
ZSX

Z
X

1

1
2'

3

3

3
−

= B-I.3

Substitute for 2
1

'
33

−= xx dLL SZXX , obtained in D-I.3, in D-I.2 to get,

xyx

xyxxxyx

y LLL

LLdLLLLL

L ZZSZ
ZWZSZXYSZZWXZ

Z
Y

311

1
2
1

2
1

'
311

2
113

3

3)(−−−
=

Take xLZ3 as a common factor in the numerator and cancel it with xLZ3 in the denominator.

Note that xxx LdLL ZSZ 13 = ,

yx

xyxy

y LL

LLLL

L ZSZ
ZWZSXYSZZWX

Z
Y

11

1
2

1
2'

311
2

11

3

3)(−−−
=

Multiply the right hand side by 22 / SS to get,

yx

xyxy

y LL

LLLL

L ZZS
ZWZXYSZZWXS

Z
Y

11
3

1
2

1
'
311

2
11

2

3

3)(−−
=

Take xLZ1 as a common factor in the numerator and cancel it with xLZ1 in the denominator

(note that 1
2

12 YZS xL=),

y

yxyx

y L

LLLL

L ZS
WZXZSYXWZZSY

Z
Y

1
3

2
1

'
3111

2
111

3

3)(2 −−
=

Let yLWZT 2
1= . Then rearrange the numerator of the above equation to exploit the

previously computed terms.

y

xx

y L

LL

L ZS
ZSYXXZSYT

Z
Y

1
3

2
11

'
3111

3

3)(2)2(−−
=

Let 2
11

'
3111

'
3)(2)2(xx LL ZSYXXZSYTY −−= , then the above equation can be written as,

yy

y

y LdL

dL

L ZS
SY

Z
Y

1

3'
3

3

3
−

= B-I.4

183

From equations B-I.3 and B-I.4, we get the following general dynamic doubling

formulas:

⎪
⎪
⎪
⎪
⎪
⎪

⎭

⎪⎪
⎪
⎪
⎪
⎪

⎬

⎫

−−=

−=

===

=+=

=

=

=

=
−

−

2
1

'
32

'
3

2
'
3

112111
2

1

1
2

1
2

1
2

1

13

13

3'
33

2
1

'
33

2)(

2

2,,

,2,3,

TXTTY

TWTX

XTTZSYTWZT

YZSaZXWWhere

ZSZ

ZSZ

SYY

SZXX

xy

xx

yyy

xxx

y

xx

LL

LL

LdLL

LdLL

dL

dLL

 B-I.5

Appendix C-I: Derivation of DPC Optimized Addition Formula for E/GF(p)

From equation A-I.2 in appendix A-I, we have:

xxyy

xxyyxx

x LLLL

LLLLLL

L ZZZZV

ZXZXZZVZZU
Z
X

21
2

21
2

2112
2

21
23

21
2

3

3

)(

)()()(+−
=

Take 2
21)(yy LL ZZ as a common factor from the numerator and simplify,

xx

xxyx

x LL

LLLL

L ZZV
VZXVZXZZU

Z
X

21
2

2
21

2
12

23
21

2

3

3)(−−
=

−

Let 2
21

2
12

23
21

2'
3)(VZXVZXZZUX xxyx LLLL −−= − , then,

xxx LLL ZZV
X

Z
X

21
2

'
3

3

3 = C-I.1

From equation A-I.4 in appendix A-I, we have:

xyy

xxyxx

y LLL

LLLLL

L ZZZV

ZUZXVZYXUZZ

Z

Y

321

12321123

3

3

)(

)(−−
= C-I.2

184

Let 213 ZZVZ d= , then we can write,

⎪⎭

⎪
⎬
⎫

=

=
yy

xx

LdL

LdL

ZZVZ

ZZVZ

)(

)(

213

213

Based on that, equation C-I.1 can be written as,

xxx

x

x LLdL

dL

L ZZV
VX

Z
X

21

2'
3

3

3
−

= C-I.3

Substitute for 3X from C-I.3 in C-I.2 to get,

xyy

xxxyxx

y LLL

LLdLLLL

L ZZZV

ZUZVXVZYXUZZ

Z

Y

321

12
2'

321123

3

3

)(

)(−−−
=

Since xxxx LLdLL ZZVZ 213 = , xLZ3 can be taken as a common factor in the numerator and

canceled with xLZ3 in the denominator to get,

)(

)(

21

2'
32112

3

3
yy

yx

y LL

LL

L ZZV

UVXVZYXUZ

Z

Y −−−
=

Multiply the right hand side by 22 /VV ,

)(

)(

21
3

'
32112

2

3

3
yy

yx

y LL

LL

L ZZV

UXVZYXUZV

Z

Y −−
=

Rearrange the numerator of the above equation to exploit the previously computed terms,

)(

)(

21
3

2
3

1
'
3

2
12

3

3
yy

yx

y LL

LL

L ZZV

ZVYXVXZU

Z

Y −−
=

Let yx LL ZVYXVXZUY 2
3

1
'
3

2
12

'
3)(−−= , then the above equation can be written as,

)(21

3'
3

3

3
yyy

y

y LLdL

dL

L ZZV

VY

Z

Y −

= C-I.4

185

From equations C-I.3 and C-I.4, we get the following set of optimized dynamic addition

formulas: note that 2
2

1
2 VVVV −− = 2

23 2 VVV −−

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎭

⎪⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎬

⎫

−−=

−−=

==

−===

−===

=

=

=

=

=

−

−

−

−

3
2

'
32

2'
3

2
23232'

3

121

21212121

21212121

3

3

3

3'
33

2'
33

)(

,2

,

,,,

,,,,

)(

)(

VUXVVUY

VVVTUX

VTTZZT

VVVZXVZXV

UUUZYUZYUwhere

TVZ

TVZ

TVZ

VYY

VXX

yx

xy

xx

yy

yy

xx

y

x

LL

LL

LL

LL

LdL

LdL

d

dL

dL

 C-I.5

Appendix D-I: Derivation of DPC Optimized Doubling Formula for E/GF(p)

From equation B-I.1 in appendix B-I, we have:

2
1

2
1

2
1

3
11

2
1

3

3

)2(
8)(
YZ

YZXWZ
Z
X

x

xy

x L

LL

L
−

=

Take xLZ 2
1 as a common factor in the numerator and cancel it with xLZ 2

1 in the

denominator.

()
2

11

1111
22

1
2

3

3

)2(
))2(4)(

YZ
XYYZZW

Z
X

x

xxy

x L

LLL

L
−

=
−

Let 112 YZS xL= and)4)(11
22

1
2'

3 XSYZWX xy LL −= − , then we can write,

2

'
3

3

3

S
X

Z
X

xL = D-I.1

186

From equation B-I.3 in appendix B-I, we have:

xyxx

xyxxyx

y LLLL

LLLLLL

L ZZZYZ
ZWZXYZYZZWXZ

Z
Y

3111
2

1

1
2

13111
2

1
2

113

3

3

2
)2(−−

= D-I.2

Let dSZ =3 , then we can write,

⎪⎭

⎪
⎬
⎫

=

=
yy

xx

dLL

dLL

SZ

SZ

3

3

Therefore, D-I.1 can be written as,

x

x

x dL

dL

L S
SX

Z
X 2'

3

3

3
−

= D-I.3

Substitute for 2'
33

−= xdLSXX , obtained in D-I.3, in D-I.2 to get,

xyxx

xyxxxyx

y LLLL

LLdLLLLL

L ZZZYZ
ZWZSXYZYZZWXZ

Z
Y

3111
2

1

1
2
1

2'
3111

2
1

2
113

3

3

2
)2(−−−

=

Take xLZ3 as a common factor in the numerator and cancel it with xLZ3 in the denominator.

Note that xx dLL SZ =3 ,

yxx

xyxxy

y LLL

LLLLL

L ZZYZ
ZWZSXYZYZZWX

Z
Y

111
2

1

1
2

1
2'

3111
2

1
2
11

3

3

2
)2(−−−

=

Multiply the right hand side by 22 / SS to get,

yxx

xyxxy

y LLL

LLLLL

L ZZYZS
ZWZXYZYZZWXS

Z
Y

111
2
1

2
1

2
1

'
3111

2
1

2
11

2

3

3

2
)2(−−

=

Take yx LL ZZ 1
2

1 as a common factor in the numerator and cancel it with yx LL ZZ 1
2
1 in the

denominator (note that 112 YZS xL=),

x

xyxyxy

y L

LLLLLL

L ZYS
WZXYZYZZWXY

Z
Y

11
2

1
'
3111

2
111

2
1

3

3

2
)2(4 −− −−

=

187

3
1

'
3

2
1

2
1111)2(2
S

WZXZYWZXSY xyyxxy LLLLLL −−− −−
=

Let xy LLWZT −= 1 . Then rearrange the numerator of the above equation to exploit the

previously computed terms.

3

2
1

2
11

'
311

3

3)(4)2(
S

ZYSYXXSYT
Z
Y yx

y

LL

L

−−−
=

Let yx LLZYSYXXSYTY −−−= 2
1

2
11

'
311

'
3)(4)2(, then the above equation can be written as,

y

y

y dL

dL

L S
SY

Z
Y 3'

3

3

3
−

= D-I.4

From equations D-I.3 and D-I.4, we get the following dynamic optimized doubling

formulas:

⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎭

⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎬

⎫

−−=

−=

===

=+=

=

=

=

=

=

−

−

−

−

yx

xy

xx

yy

xx

y

x

LL

LL

LL

LdL

LdL

d

dL

dL

ZYTXTTY

TTX

XTTSYTWZT

YZSaZXWWhere

SZ

SZ

SZ

SYY

SXX

2
1

2
11

'
32

'
3

2
2'

3

112111

11
2
1

2
1

3

3

3

3'
33

2'
33

4)(

2

,2,,

,2,3,

)(

)(

 D-I.5

Appendix A-II: Derivation of DPC General Addition Formula for E/GF(2m)

Transformation functions 7.1 are used to get the dynamic projective coordinates

),,,(3333
yx LL ZZYX of the point R according to addition formula 3.7 (section 3.4 in chapter

188

3). The following subsections present the derivation of dynamic projective addition

formulas.

A-II.1 Derivation of projective x-coordinate, 3X .

Let),,,(1111
yx LL ZZYXP = ,),,,(2222

yx LL ZZYXQ = and),,,(3333
yx LL ZZYXR = . Then the

projective coordinate 3X of the point R = P + Q can be derived as follows:

By applying the transformation functions 7.1 to the affine x-coordinate equation,

3x , in 3.7, we get:

a
Z
X

Z
X

Z
X

Z
X

Z

Y

Z

Y

Z
X

Z
X

Z

Y

Z

Y

Z
X

xx

xx

yy

xx

yy

x LL

LL

LL

LL

LL

L +++

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

+

+

+

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

+

+

=
2

2

1

1

1

1

2

2

1

1

2

2
2

1

1

2

2

1

1

2

2

3

3

a
ZZ

ZXZX

ZZZXZX

ZZZYZY

ZZZXZX

ZZZYZY
xx

xx

yyxx

xxyy

yyxx

xxyy

LL

LL

LLLL

LLLL

LLLL

LLLL

+
+

+⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

+

+
+⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛

+

+
=

21

1221

212112

212112

2

212112

212112

))((

))((

))((

))((

Let yy LL ZYZYU 2112 += , xx LL ZXZXV 2112 += then,

a
ZZ

V

ZZV

ZZU

ZZV

ZZU
Z
X

xxyy

xx

yy

xx

x LLLL

LL

LL

LL

L +++=
2121

21
2

21
2

2
21

2

3

3

)(

)(

)(

)(

() ()
)()(

)()()()()(

21
2

21
2

21
2

21
2

2121
2

21
xxyy

xxyyyyxxxx

LLLL

LLLLLLLLLL

ZZZZV

ZZaVZZVZZVZZUZZU +++
=

Let yy LL ZVZR 21= and () ())()()(21
2

21
2

21
'
3

xxxxxx LLLLLL ZZaVRRZZUZZUX +++= , then

)(21
2

'
3

3

3
xxx LLL ZZR

X
Z
X

= A-II.1

A-II.2 Derivation of projective y-coordinate, 3Y .

189

By applying the transformation functions 7.1 to the affine y-coordinate equation,

3y , in 3.7, we get:

yxxx

xx

yy

y LLLL

LL

LL

L Z

Y
Z
X

Z
X

Z
X

Z
X

Z
X

Z

Y

Z

Y

Z

Y

1

1

3

3

3

3

1

1

1

1

2

2

1

1

2

2

3

3 ++⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

+

+

=

yxxxyyxx

xxyy

LLLLLLLL

LLLL

Z

Y
Z
X

Z
X

Z
X

ZZZXZX

ZZZYZY

1

1

3

3

3

3

1

1

212112

212112

))((

))((
++⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
+

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

+

+
=

yxxxyy

xx

LLLLLL

LL

Z

Y
Z
X

Z
X

Z
X

ZZV

ZZU

1

1

3

3

3

3

1

1

21

21

)(

)(
++⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
+⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛
=

Unify denominators to get:

()
yxxyy

xxx

LLLLL

LLL

Z

Y
Z
X

ZZVZ

ZXZXUZ

1

1

3

3

321

13312 ++
+

=

() ()
xyy

yyxxyxx

LLL

LLLLLLL

ZZVZ

ZVZZUZXZVYZUXZ

321

2121321213 +++
=

Finally,

() ()
x

xxyxx

y L

LLLLL

L RZ
RZUZXZVYZUXZ

Z
Y

3

21321213

3

3 +++
= A-II.2

A-II.3 Choosing Common 3Z .

Let xx LLd ZZRZ 213 = , then we can write,

⎪⎭

⎪
⎬
⎫

=

=
yxxy

xxxx

LLLdL

LLLdL

ZZRZ

ZZRZ

)(

)(

213

213

Based on that, equation A-II.1 can be written as,

190

xxxx

xxxx

x LLLdL

LLLdL

L ZZR
ZZRX

Z
X

)(
)(

21

1
21

2'
3

3

3
−−

= A-II.3

Substitute for 3X = 1
21

2'
3)(−− xxxx LLLdL ZZRX , obtained from A-II.3, in A-II.2 to get,

() ()
x

xxxxxxyxx

y L

LLLLLdLLLL

L RZ
RZUZZZRXZVYZUXZ

Z
Y

3

21
1

21
2'

321213

3

3)(+++
=

−−

Since xxxx LLLdL ZZRZ)(213 = , xLZ3 can be taken as a common factor in the numerator and

canceled with xLZ3 in the denominator to get,

() ()
R

RZUZZZRXZVYZUX
Z
Y xxxxyx

y

LLLLLL

L
+++

=
−−

21
1

21
2'

32121

3

3)(

Multiply the right hand side by)(/)(21
2

21
2 xxxx LLLL ZZRZZR to get,

() ()
)(

)(

21
3

21
'
3212121

2

3

3
xx

xxyxxx

y LL

LLLLLL

L ZZR
RZUZXZVYZUXZZR

Z
Y +++

=

According to the selection of)(213
xx LLd ZZRZ = which result in yxxy LLLdL ZZRZ)(213 = , the

above equation can be written as,

() ()()
yxxy

xxyxxxyxxy

y LLLdL

LLLLLLLLLdL

L ZZR
RZUZXZVYZUXZZRZZR

Z
Y

)(
)()(

21

21
'
3212121

21
21

3

3

3 +++
=

−−

Let () ()RZUZXZVYZUXZZRY xxyxxx LLLLLL +++= 21
'
3212121

2'
3)(, then the above equation can

be written as,

yxxy

yxxy

y LLLdL

LLLdL

L ZZR
YZZR

Z
Y

)(
)(

21

'
3

1
21

3

3

3
−−

= A-II.4

From equations A-II.3 and A-II.4, we get the following general dynamic addition

formulas:

191

()
() () ⎪

⎪
⎪
⎪
⎪
⎪
⎪

⎭

⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎬

⎫

+++=

+++=

===

+===

+===

=

=

=

=
−−

−−

RTXVUUVTY

aTVRRTTTX

UTTZZTZVZR

VVVZXVZXV

UUUZYUZYUwhere

TRZ

TRZ

TRYY

TRXX

xxyy

xx

yy

yy

xx

yy

xx

LLLL

LL

LL

LdL

LdL

LdL

LdL

1
'
3222

'
3

2
11

'
3

12121

21212121

21212121

3

3

13'
33

12'
33

),(

,,,

,,,

,,,,

)(

)(

 A-II.5

Appendix B-II: Derivation of DPC General Doubling Formula for E/GF(2m)

 Transformation functions 7.1 are used to get the dynamic projective coordinates

),,,(3333
yx LL ZZYX of the point R according to doubling formula 3.8. The following

subsections present the derivation of projective doubling formulas.

B-II.1 Derivation of projective x-coordinate, 3X .

Let),,,(1111
yx LL ZZYXP = and),,,(3333

yx LL ZZYXR = . Then the projective coordinate 3X

of the point PR 2= can be derived as follows:

By applying the transformation functions 7.1 to the affine x-coordinate equation,

3x , in 3.8, we get:

a

Z
X

Z

Y
Z
X

Z
X

Z

Y
Z
X

Z
X

x

yx

x

yx

x

L

LL

L

LL

L +

⎟⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜

⎝

⎛
+

+

⎟⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜

⎝

⎛
+

=

1

1

1

1
2
1

2
1

2

1

1

1

1
2
1

2
1

3

3

() ()
a

ZZX

ZYZX

ZZX

ZYZX
yx

xy

yx

xy

LL

LL

LL

LL

+
+

+
+

=
111

2
111

2
1

2
1

2
1

2
1

22
111

2
1

192

Let xy LL ZYZXW 2
111

2
1 += and yx LL ZZXS 111= , then we get:

()
2

2

3

3

S
aSSWW

Z
X

xL
++

=

Let () 2'
3 aSSWWX ++= , then

2

'
3

3

3

S
X

Z
X

xL = B-II.1

B-II.2 Derivation of projective y-coordinate, 3Y .

By applying the transformation functions 7.1 to the affine y-coordinate equation,

3y , in 3.8, we can get:

yxxx

x

yx

y LLLL

L

LL

L Z

Y
Z
X

Z
X

Z
X

Z
X

Z

Y
Z
X

Z

Y

1

1

3

3

3

3

1

1

1

1

1

1
2
1

2
1

3

3 ++⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛
+

=

yxxxyx LLLLLL Z

Y
Z
X

Z
X

Z
X

ZZX

W

1

1

3

3

3

3

1

1

111

++⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛
=

Unify denominators to get:

()
yxxyx

xx

y LLLLL

LL

L Z

Y
Z
X

ZZZX

ZXZXW

Z

Y

1

1

3

3

31
2
11

1331

3

3 ++⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ +
=

()
xyx

xxyxxx

LLL

LLLLLL

ZZZX

ZZXYZZXXZXZXW

31
2
11

3
2
1111

2
1131331 +++

=

Finally,

() ()
xx

xxx

y LL

LLL

L ZSZ
SWZXZYWZX

Z
Y

31

13
2

1131

3

3 +++
= B-II.2

B-II.3 Choosing a common 3Z

193

Let dSZ =3 , then we can write,

⎪⎭

⎪
⎬
⎫

=

=
yy

xx

LdL

LdL

SZ

SZ

)(

)(

3

3

Based on that, equation B-II.1 can be written as,

x

x

x dL

dL

L S
SX

Z
X 2'

3

3

3
−

= B-II.3

Substitute for 2'
33

−= xdLSXX , taken from B-II.3, in B-II.2 to get,

() ()
xx

xxxx

y LL

LdLLL

L ZSZ
SWZSXZYWZX

Z
Y

31

1
2'

3
2

1131

3

3 +++
=

−

Since xx dLL SZ =3 , xLZ3 can be taken as a common factor in the numerator and canceled

with xLZ3 in the denominator to get,

() ()
x

xx

y L

LL

L SZ
SWZSXZYWX

Z
Y

1

1
2'

3
2

111

3

3 +++
=

−

Multiply the right hand side by 2S / 2S to get,

() ()
x

xx

y L

LL

L ZS
SWZXZYWXS

Z
Y

1
3

1
'
3

2
111

2

3

3 +++
=

Take xLZ1 as a common factor in the numerator and cancel it with xLZ1 in the denominator.

(we expand 2S to))(111
yx LL ZZXS)

() ()
3

'
3

2
111

2
1

3

3)(
S

SWXZYWZXS
Z
Y xy

y

LL

L
+++

=

Let () ()SWXZYWZXSY xy LL +++= '
3

2
111

2
1

'
3)(, then the above equation can be written as,

194

3

'
3

3

3

S
Y

Z
Y

yL =

Which can be written as,

y

y

y dL

dL

L S
SY

Z
Y 3'

3

3

3
−

= B-II.4

From equations B-II.3 and B-II.4, we get the following dynamic general doubling

formulas:

()
()

()
() () ⎪

⎪
⎪
⎪
⎪

⎭

⎪
⎪
⎪
⎪
⎪

⎬

⎫

+++=

++=

=+===

=

=

=

=
−

−

SWXTWSTY

aSSWWX

ZZXSTTWZYTZXTWhere

SZ

SZ

SYY

SXX

yxxy

yy

xx

y

x

LLLL

LdL

LdL

dL

dL

'
321

'
3

2'
3

11121
2

1121
2

11

3

3

3'
33

2'
33

,,,,

 B-II.5

Appendix C-II: Derivation of DPC Optimized Addition Formula for E/GF(2m)

From equation A-II.2 in appendix A-II, we have,

() ()
)()(

)()()()()(

21
2

21
2

21
2

21
2

2121
2

21

3

3
xxyy

xxyyyyxxxx

x LLLL

LLLLLLLLLL

L ZZZZV
ZZaVZZVZZVZZUZZU

Z
X +++

=

Take 2
21)(yy LL ZZ as a common factor from the numerator and simplify,

() ()
)(

)()()()(
21

2
21

2
2121

22
21

3

3
xx

xxyyxxyx

x LL

LLLLLLLL

L ZZV
ZZaVVZZVZZUZZU

Z
X +++

=
−

Further simplification yields,

195

()
)(

)()(
21

2

3
21

2
21

23
21

3

3
xx

xxxyyx

x LL

LLLLLL

L ZZV
VZZaVZZVUZZU

Z
X +++

=
−−

Let () 3
21

2
21

23
21

'
3)()(VZZaVZZVUZZUX xxxyyx LLLLLL +++= −− , then the above equation

can be written as,

)(21
2

'
3

3

3
xxx LLL ZZV

X
Z
X

= C-II.1

From equation A-II.2 in appendix A-II, we have,

() ()
xyy

yyxxyxx

y LLL

LLLLLLL

L ZZVZ
ZVZZUZXZVYZUXZ

Z
Y

321

2121321213

3

3 +++
= C-II.2

Let 213 ZZVZ d= , then we can write,

⎪⎭

⎪
⎬
⎫

=

=
yy

xx

LdL

LdL

ZZVZ

ZZVZ

)(

)(

213

213

Based on that, equation C-II.1 can be written as,

xxx

x

x LLdL

dL

L ZZV
VX

Z
X

21

2'
3

3

3
−

= C-II.3

Substitute for 3X from C-II.3 in C-II.2 to get,

() ()
xyy

yyxxxyxx

y LLL

LLLLdLLLL

L ZZVZ
ZVZZUZVXZVYZUXZ

Z
Y

321

2121
2'

321213

3

3 +++
=

−

Since xxxx LLdLL ZZVZ 213 = , xLZ3 can be taken as a common factor in the numerator and

canceled with xLZ3 in the denominator to get,

() ()
yy

xyyx

y LL

LLLL

L ZVZ
ZZVUVXZVYZUX

Z
Y

21

21
2'

32121

3

3)(−− +++
=

Multiply the right hand side by 22 /VV ,

196

() ()
yy

xyyx

y LL

LLLL

L ZZV
ZZVUXZVYZUXV

Z
Y

21
3

21
'
32121

2

3

3)(−+++
=

Rearrange the numerator of the above equation to exploit the previously computed terms,

()
yy

xyyx

y LL

LLLL

L ZZV
ZZVXZYVXZXVU

Z
Y

21
3

21
'
321

3'
321

2

3

3)(−+++
=

Let () xyyx LLLL ZZVXZYVXZXVUY −+++=)(21
'
321

3'
321

2'
3 , then the above equation can be

written as,

)(21

3'
3

3

3
yyy

y

y LLdL

dL

L ZZV
VY

Z
Y −

= C-II.4

From equations C-II.1 and C-II.4, we get the following dynamic optimized addition

formulas:

()
() ⎪

⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎭

⎪⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎬

⎫

+++=

+++=

==

+===

+===

=

=

=

=

=

−

−

−

−

1
'
32

3'
32

2"
3

32
1

23'
3

121

11212121

11212121

3

3

3

3'
33

2'
33

,

,,,

,,,,

)(

)(

TXUVXVVUY

VTaVTUUTX

VTTZZT

VVVZXVZXV

UUUZYUZYUwhere

TVZ

TVZ

TVZ

VYY

VXX

xyx

xy

xx

yy

yy

xx

y

x

LLL

LL

LL

LL

LdL

LdL

d

dL

dL

 C-II.5

197

Appendix D-II: Derivation of DPC Optimized Doubling Formula for

E/GF(2m)

From equation B-II.2 in appendix B-II, we have:

()
2

111

2
111111

2
111

2
1

2
111

2
1

3

3

)(
)()(

yx

yxyxxyxy

x LL

LLLLLLLL

L ZZX
ZZXaZZXZYZXZYZX

Z
X ++++

=

Take yLZ 2
1 as a common factor in the numerator and cancel it with yLZ 2

1 in the

denominator.

()
2

11

2
1111

2
11

2
1

2
11

2
1

3

3

)(
)()(

x

xxyxyx

x L

LLLLLL

L ZX
ZXaZXZYXZYX

Z
X ++++

=
−−

Let xLZXS 11= , yx LLZYXW −+= 2
11

2
1 and '

3X = numerator of the above equation, then we

can write,

() 2'
3 aSSWWX ++= and,

2

'
3

3

3

S
X

Z
X

xL = D-II.1

From equation B-II.5 in appendix B-II, we have:

() ()
xxyx

yxxyxxxyx

y LLLL

LLLLLLLLL

L ZZZZX
ZZXZYZXZXZYZYZXZX

Z
Y

31111

111
2

111
2

113
2
11

2
111

2
131

3

3 +++++
= D-II.2

Let dSZ =3 , then we can write,

⎪⎭

⎪
⎬
⎫

=

=
yy

xx

LdL

LdL

SZ

SZ

)(

)(

3

3

Based on that, equation D-II.1 can be written as,

x

x

x dL

dL

L S
SX

Z
X 2'

3

3

3
−

= D-II.3

198

Substitute for 2'
33

−= xdLSXX , taken from D-II.3, in D-II.2 to get,

() ()
xxyx

yxxyxxxxyx

y LLLL

LLLLLdLLLLL

L ZZZZX
ZZXZYZXZSXZYZYZXZX

Z
Y

31111

111
2

111
2

11
2'

3
2
11

2
111

2
131

3

3 +++++
=

−

Since xx dLL SZ =3 , xLZ3 can be taken as a common factor in the numerator and canceled

with xLZ3 in the denominator to get,

() ()
xyx

yxxyxxxy

y LLL

LLLLLLLL

L ZZZX
ZZXZYZXZSXZYZYZXX

Z
Y

1111

111
2
111

2
11

2'
3

2
11

2
111

2
11

3

3 +++++
=

−

Multiply the right hand side by 2S / 2S to get,

() ()
xyx

yxxyxxxy

y LLL

LLLLLLLL

L ZZZXS
ZZXZYZXZXZYZYZXXS

Z
Y

1111
2

111
2

111
2

11
'
3

2
11

2
111

2
11

2

3

3 +++++
=

Take xLZ1 as a common factor in the numerator and cancel it with xLZ1 in the denominator.

(recall that xLZXS 11=)

() ()
yx

yxxyxxy

y LL

LLLLLLL

L ZZXS
ZZXZYZXXZYZYZXSX

Z
Y

111
2

111
2
111

2
1

'
3

2
11

2
111

2
1

2
1

3

3 +++++
=

Take yLZ1 as a common factor in the numerator and cancel it with yLZ1 in the denominator.

() ()
3

11
2
11

2
1

'
3

2
11

2
11

2
1

2
1

3

3

S
ZXZYXXZYZYXSX

Z
Y xyxyxyx

y

LLLLLLL

L
+++++

=
−−−

() ()
3

'
3

2
11

2
1

S
SWXZYWSX yx LL +++

=
−

Let () ()SWXZYWSXY yx LL +++= − '
3

2
11

2
1

'
3 , then the above equation can be written as,

3

'
3

3

3

S
Y

Z
Y

yL =

Which can be written as,

199

y

y

y dL

dL

L S
SY

Z
Y 3'

3

3

3
−

= D-II.4

From equations D-II.3 and D-II.4, we get the following dynamic optimized doubling

formulas:

()
()

()
() () ⎪

⎪
⎪
⎪
⎪
⎪

⎭

⎪
⎪
⎪
⎪
⎪
⎪

⎬

⎫

+++=

++=

=+==

=

=

=

=

=

−

−

−

SWXTWSXY

aSSWWX

ZXSTXWZYTWhere

SZ

SZ

SZ

SYY

SXX

xyx

yy

xx

y

x

LLL

LdL

LdL

d

dL

dL

'
3

2
1

'
3

2'
3

11
2

1
2

11

3

3

3

3'
33

2'
33

,,,

 D-II.5

200

References

[1] N. Koblitz, “Elliptic curve cryptosystems”, Mathematics of Computation, 48

(1987), 203–209.

[2] V. S. Miller, “Use of elliptic curves in cryptography”, Advances in Cryptology

Proceedings of Crypto’85, Lecture Notes in Computer Science, 218 (1986),

Springer-Verlag, 417–426.

[3] T. ElGamal, “A public key cryptosystem and a signature scheme based on

discrete logarithms”, IEEE Trans. Inform. Theory, IT-31 (1985), 469–472.

[4] “Proposed federal information processing standard for digital signature standard

(DSS)”, Federal Register, 56 No. 169, 30 Aug 1991, 42980–42982.

[5] R. Rivest, A. Shamir and L. Adleman, “A method for obtaining digital signatures

and public-key cryptosystems”, Communications of the ACM, 21 No. 2 (1978),

120–126.

[6] R. J. McEliece, “Finite Fields for Computer Scientists and Engineers”, Kluwer

Academic Publishers, 1987.

[7] D.E. Knuth, “The Art of Computer Programming, 2-semi-numerical Algorithms”,

Addison-Wesly, 2nd edition, 1981.

[8] A. Menezes, P. van Oorschot and S. Vanstone, “handbook of Applied

Cryptography”, CRC Press, 1997.

[9] I. Blake, G. Seroussi, and N. Smart, “Elliptic Curves in cryptography”,

Cambridge University Press, 1999.

[10] K. ltoh, M. Takenaka, N. Torii, S. Temma, and Y. Kurihara, “Fast

implementation of public-key cryptography on a DSP TMS320C6201'', In

Proceedings of the First Workshop on Cryptographic Hardware and Embedded

Systems (CHES'99), LNCS 1717, pp. 61-72, Springer-verlag, 1999.

201

[11] E. De Win, S. Mister, B. Prennel and M. Wiener, “on the performance of

signature based on elliptic curves”. In Algorithmic Number Theory, Proceedings

Third Intern. Symp., ANTS-III, LNCS 1423, pp. 252-266, Springer-verlag, 1998.

[12] T. Hasegawa, J. Nakajima and M. Matsui, “a practical implementation of elliptic

curve cryptosystems over GF(p) on a 16-bit microcomputer'', Public Key

Cryptography Proceedings of PKC'98, LNCS 1431, pp. 182-194, Springer-verlag,

1998.

[13] A. Menezes, “Elliptic Curve Public Key Cryptosystems”, Kluwer Academic

Publishers, 1993.

[14] N. Koblitz, “A Course in Number Theory and Cryptography”, 2nd edition,

Springer- Verlag, 1994.

[15] SEC 1, “elliptic curve cryptography'', Standards for Efficiency Cryptography

Group, September, 1999. Working Draft. Available at http//:www.secg.org.

[16] S.C. Pohlig and M.E. Hellman, “An improved algorithm for computing

logarithms over GF(p) and its cryptographic significance”, IEEE ransactions on

Information Theory, 24, pp. 106-110, 1978.

[17] J. Pollard, “Toronto Carlo methods for index computation mod p'', Mathematics

of Computation, 32, pp. 918-924, 1978.

[18] J. Solinas, “An improved algorithm for arithmetic on a family of elliptic curves

(revised)'', Technical report CORR 99-06, Department of Combinatorics &

Optimization, University of Waterloo, 1999. Available at

http//:www.cacr.math.waterloo.ca.

[19] IEEE 141363, “standard specifications for public-key cryptography'', ballot draft,

1999. Drafts available at http//:regrouped.ieee.org/groups/l363.

[20] J. Solinas, “Efficient arithmetic in Koblitz curves”, designs, codes and

Cryptography, 19, pp. 195 – 249, 2000.

[21] C. H. Lim and P. J. Lee, “more flexible exponentiation with pre-computation'', In

Advances in Cryptography - CRYPTO '94, LNCS 839, pp. 95-107, Springer-

verlag, 1994.

202

[22] Biljana Cubaleska, Andreas Rieke, and Thomas Hermann, “Improving and

extending the Lim/Lee exponentiation algorithm'', Proceeding of SAC'99, LNCS,

1999.

[23] Cohen, H., Miyaji, A. and Ono, T., “Efficient Elliptic Curve Exponentiation

Using Mixed coordinates”, Advances in Cryptology-Asiacrypt’98, Lecture Notes

in Computer Science, Vol. 1514. Springer-Verlag, (1998), pp. 50-65.

[24] H. Cohen, A. Miyaji and T. Ono, “Efficient elliptic curve exponentiation”,

Advances in Cryptology Proceedings of ICICS’97, Lecture Notes in Computer

Science, 1334 (1997), Springer-Verlag, pp. 282-290.

[25] D. V. Chudnovsky and G. V. Chudnovsky “Sequences of numbers generated by

addition in formal groups and new primality and factorization tests” Advances in

Applied Math., 7 (1986), pp. 385-434.

[26] Kocher, J. Jaffe and B. Jun “Differential Power Analysis”, Advances in

Cryptology: Proceedings of CRYPTO '99, LNCS 1666, Springer-Verlag, (1999)

pp. 388-397

[27] C. Kocher,“Timing attacks on Implementations of Diffi-Hellman, RSA, DSS, and

other systems”, Crypto’96, LNCS 1109, pp. 104–113, Springer-Verlag, 1996.

[28] L. Goubin, “A Refined Power-Analysis Attack on Elliptic Curve Cryptosystems”,

PKC2003, Lecture Notes in Computer Science, 2567(2003), Springer-Verlag, 199-

210.

[29] T. Akishita and T. Takagi “Zero-value Point Attacks on Elliptic Curve

Cryptosystem”, ISC2003, Lecture Notes in Computer Science, 2851(2003),

Springer-Verlag, 218–233.

[30] P.A. Fouque and F. Valette, “The doubling attack: why upwards is better than

downwards" In Cryptographic Hardware and Embedded Systems: CHES '03,

LNCS 2779, pp. 269-280, Springer-Verlag, 2003.

[31] Hideyo Mamiya, Atsuko Miyaji, Hiroaki Morimoto, “Efficient Countermeasures

against RPA, DPA, and SPA” In Cryptographic Hardware and Embedded

203

Systems: CHES 2004: 6th International Workshop Cambridge, MA, USA, 2004

Proceedings. LNCS, Vol. 3156, pp. 343 – 356, Springer, 2004.

[32] J. Coron, “Resistance against differential power analysis for elliptic curve

cryptosystem”, CHES ’ 99, Lecture Notes in Computer Science, 1717(1999),

Springer- Verlag, 292–302.

[33] Izu, T., and Takagi, T., “A fast parallel elliptic curve multiplication resistant

against side channel attacks” In Public Key Cryptography - PKC 2002 (2002), vol.

2274 of Lecture Notes in Computer Science, pp. 280 - 296.

[34] J. C. Ha and S. J. Moon, “Randomized signed-scalar multiplication of ECC to

resist power attacks" In Cryptographic Hardware and Embedded Systems - CHES

'02, LNCS 2523, pp. 551 - 563, Springer-Verlag, 2002.

[35] M. Joye and J. Quisquater, “Hessian elliptic curves and side-channel attacks," In

Cryptographic Hardware and Embedded Systems - CHES '01, LNCS 2162,

pp.402-410, Springer-Verlag, 2001.

[36] M. Joye and C. Tymen, “Protections against Differential Analysis for Elliptic

Curve Cryptography," In Cryptographic Hardware and Embedded Systems -

CHES '01, LNCS 2162, pp.377-390, Springer-Verlag, 2001.

[37] N. P. Smart, “An analysis Goubin's refined power analysis attack," Proc. of

Cryptographic Hardware and Embedded Systems - CHES '03, LNCS 2779, pp.

281- 290, Springer-Verlag, 2003.

[38] T. Messerges, E. Dabbish, and R. Sloan, “ Investigations of Power Analysis

Attacks on Smartcards“, preprint, USENIX Workshop on Smartcard Technology,

1999.

[39] Kouichi Itoh, Tetsuya Izu, and Masahiko Takenaka “Address-Bit Differential

Power Analysis of Cryptographic Schemes OK-ECDH and OK-ECDSA”,

Cryptographic Hardware and Embedded Systems: Proceedings of CHES '2002,

LNCS 2523, Springer-Verlag, (2002) pp. 129-143.

204

[40] D. May, H.L. Muller, and N.P. Smart, “Random Register Renaming to Foil PA”,

CHES 2001, LNCS 2162, pp. 28–38, Springer-Verlag, 2001.

[41] Kouichi Itoh, Tetsuya Izu, and Masahiko Takenaka “A Practical Countermeasure

against Address-Bit Differential Power Analysis”, Cryptographic Hardware and

Embedded Systems: Proceedings of CHES 2003, LNCS 2779, Springer-Verlag,

(2003) pp. 382–396.

[42] Nigel Smart, Jacques Stern and David Naccache, “Projective Coordinates Leak”,

In Advances in Cryptology - EuroCrypt 2004, pages 257-267. Springer Verlag

LNCS 3027, April 2004.

[43] D. Boneh, R. A. DeMillo, and R. J. Lipton. On the importance of checking

cryptographic protocols for faults. In Advances in Cryptology - Eurocrypt '97,

volume 1233 of LNCS, pp. 37-51. Springer-Verlag, 1997.

[44] S. P. Scorabogatov and R. J. Anderson. Optical fault induction attacks. In B. S.

Kaliski Jr., Ç. K. Koç and C. Paar, editors, Proceedings of 4th International

Workshop on Cryptographic Hardware and Embedded Systems (CHES), number

2523 of LNCS, pages 2-12, 2002, Springer-Verlag.

[45] I. Biehl, B. Meyer, and V. Muller, Differential fault attacks on elliptic curve

cryptosystems, Advances in Cryptology - CRYPTO 2000 (M. Bellare, ed.),

Lectures Notes in Computer Science (LNCS), vol. 1880, Springer-Verlag, 2000.

[46] Jean-Jacques Quisquater and David Samyde, A new tool for non-intrusive

analysis of smart cards based on electro-magnetic emissions: the SEMA and

DEMA methods, Eurocrypt rump session, 2000.

[47] Jean-Jacques Quisquater and David Samyde, Electromagnetic analysis (EMA):

measures and countermeasures for smart cards, Smart cards programming and

security (e-Smart 2001), Lectures Notes in Computer Science (LNCS), vol. 2140,

Springer, 2001, pp. 200-210.

[48] K. Gandol, C. Mourtel, and F. Olivier, Electromagnetic analysis: Concrete

results, Proc. of Cryptographic Hardware and Embedded Systems (CHES 2001)

205

(Cetin Kaya Koc, David Naccache, and Christof Paar, eds.), Lecture Notes in

Computer Science, vol. 2162, Springer, 2001, pp. 251{261.

[49] D. Agrawal, B. Archambeault, J. R. Rao, and P. Rohatgi. The EM Side-

Channel(s). In B. S. Kaliski Jr., Ç. K. Koç, and C. Paar, editors, CHES 2002,

volume 2523 of Lecture Notes in Computer Science, page 29. Springer-Verlag,

Berlin, 2003.

[50] NSA tempest series, Available at http://cryptome.org/#NSA--TS

[51] J.-J. Quisquater and D. Samyde, Automatic code recognition for smartcards using

a Kohonen neural network, USENIX Association (ed.), Fifth Working Conference

on Smart Card Research and Advanced Applications (CARDIS '02), 2002.

[52] D. Hankerson et al, “Guide to Elliptic Curve Cryptography”, Springer-Verlag,

2004.

VITAE

• Al-Gahtani, Theeb Ayedh

• Completed Bachelor of Science (B.Sc) degree in Computer Engineering from

King Saud University (KSU), Riyadh, Saudi Arabia in July 1991.

• Completed Master of Science (MS) degree in Computer Engineering from King

Saud University (KSU), Riyadh, Saudi Arabia in June 1997.

• Completed Doctor of Philosophy (Ph.D.) degree in Computer Science and

Engineering from King Fahd University of Petroleum & Minerals (KFUPM),

Dhahran, Saudi Arabia in May 2006.

