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practice, online measurements of all of the variables of a process are rarely available, 

and in such cases, reliable information on the immeasurable state variables is obtained 

by using the state estimator. This work presents the design, implementation and 

application of linear state estimators, which can infer the column composition from the 

temperature measurements or other process states in a reactive distillation process.  

The accuracy of the developed estimators is checked by comparing the estimated 

states to the actual states as predicted by the process model of a reactive distillation 

system. The robustness and reliability of the linear state estimators are demonstrated 

against erroneous initial conditions, the measurement noise and plant-model mismatch. 

The estimator-based control system is developed and implemented on a reactive 

distillation process. The control performance of the system that relies on the estimator is 
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CHAPTER 1 

1 Introduction 

1.1 Background 

The combination of reaction and distillation is an old idea that has received 

renewed attention recently. The importance and application of reactive distillation has 

captured the imagination of many because of the demonstrated potential for capital 

productivity improvements, increased reaction conversion, elimination of difficult 

separation, selectivity improvements, and reduced energy use through direct utilization of 

reaction heat. Therefore, reactive distillation technology has shown a significant growth 

in both patents and journal papers [1-5]. However, the reactive systems where the 

reactant and product volatilities differ considerably are ideally suited for reactive 

distillation [6].   

The rising demand for saving energy and the increasing product quality 

requirements necessitate a better and more effective control system. However, the control 

of reactive distillation system is challenging because of its complex dynamics resulting 

from its integrated functionality of reaction and separation. Al-Arfaj and Luyben [3] 

discussed many control schemes for an ideal reactive distillation. They concluded that an 

internal composition control is important to have an effective control of the system. In 

their study, they assumed that the internal compositions are available for the control 

system by an accurate composition analyzer.  

 1
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Although composition analyzers, like online chromatography have been used in 

the process industries for a long time, they usually suffer from many shortcomings. An 

online analyzer is expensive to acquire and requires a high investment. The reliability of 

online chromatography is not very good. Perhaps, the most important setback in the 

application of an online analyzer to measure process compositions in chemical process 

control is that it possesses a very large time delay and thereby lowers the achievable 

control performance [7]. Thus, it is of a major interest to develop an effective state 

estimator whenever a composition measurement is required in the control system.  

Most of the early work on reactive distillation focused on its design and process 

modeling [6, 8-13]. A limited number of papers have been published on control of the 

reactive distillation [3]. In the same vein, many research papers have discussed the 

application of the state estimators in the control of conventional distillation column [14-

20]. However, the application of the state estimators in the control of reactive distillation 

has not been reported in the open literature. Considering the numerous advantages of 

reactive distillation, and the effective application of the state estimation method to the 

conventional distillation system, this thesis work is aimed at developing the state 

estimators, which can infer the column compositions from the temperature measurement 

and other state of the process. The robustness and reliability of the developed state 

estimators are tested under a wide range of operating conditions. The developed state 

estimator is implemented in the feedback control system for reactive distillation process. 
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1.2 Previous Work 

1.2.1 Reactive Distillation Control 

Reactive distillation is the coupling of both physical separation and chemical 

reaction in one unit operation. It has been employed in industry for many decades, and its 

area of application has grown significantly. A reactive distillation column is usually split 

into three sections: reactive section, stripping section and rectifying section. In the 

reactive section, the reactants are converted into products, and where, by means of 

distillation, the products are separated out of reactive zone. The tasks of the rectifying 

and stripping sections depend on the boiling points of the reactant and product.  

Several researchers have worked extensively on the conceptual design, steady 

state multiplicity and process optimization of reactive distillation [1, 6, 8]. However, only 

a few papers have appeared that discuss the closed-loop of reactive distillation column. 

No research has appeared in the open literature that utilizes the state estimators in the 

feedback control of distillation column.  

Roat et al. [21] presented an industrial approach to the modeling and control of 

reactive distillation column systems. They proposed a control structure that uses two 

conventional proportional-integral (PI) temperature controllers to maintain two trays 

temperature in the two-product reactive distillation column by adjusting the two fresh 

feed streams. Sneesby et al. [22] proposed a two-point control scheme for ethyl tert-butyl 

ether (ETBE) reactive distillation column in which both product purity and conversion 

are controlled. They implemented conventional PI controller to control a temperature in 

the stripping section by manipulating the reboiler heat input and to the control conversion 

by manipulating the reflux flowrate.  
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Al-Arfaj and Luyben [3] studied the control of reactive distillation column that 

produced two products from a single reactive column by feeding exactly stoichiometric 

amount of the two fresh feed streams. They explored six alternatives control structures, 

all of which included the measurement of composition of one of the reactants inside the 

reactive section of the column. This composition is then used to adjust the appropriate 

fresh feed stream. They reported that unless an excess of one of the reactants in the 

column is incorporated in the design, the inventory of one of the reactants needs to be 

detected so that a feedback trim can balance the reactants feed stoichiometry. Therefore, 

the use of the compositional analyzer in the reactive zone was advocated. 

Luyben [23] presented a quantitative comparison of the steady-state economics 

and the dynamic controllability of two alternative reactive distillation systems. He found 

out that even though there is a significant steady state penalty in using the two-column 

process, but the use of online analyzer is eliminated. Although, the one-column is more 

efficient than the two-column, but its operation depends on having a reliable composition 

measurement. 

Al-Arfaj and Luyben [24] further investigated the control structures for tert-butyl 

ether (ETBE) reactive distillation column using the two different process configurations: 

a design with two fresh reactant feed streams and a design with a single reactant feed. 

They presented an optimum design for the double-feed case. In their study, several 

control structures were investigated, and their effectiveness in the ETBE case was 

compared with those in their previous study. Their results showed that the double-feed 

system requires internal composition control to balance the feeds stoichiometry, along 
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with the temperature control to maintain the product purity. They extended their work to 

more control structure alternatives for the methyl acetate reactive distillation [4].    

Al-Arfaj and Luyben [25] has also demonstrated that ethylene glycol reactive 

distillation columns can be controlled effectively by a simple PI control scheme. Their 

proposed control structure achieves the stoichiometric balancing of the reactants and 

maintains the product purity within reasonable bounds. In their work, only simple 

conventional PI loops are used, no composition analyzer is required and the structure 

shows that it can handle large disturbances. They reported that the structure can be 

generally applicable to other systems that are similar to the ethylene glycol system in 

stoichiometry, kinetics, vapor-liquid equilibrium (VLE), and design.  

Estrada-Villagrana et al. [26] employed a dynamic model to study the control of 

MTBE reactive distillation. The control structures were constructed to control reflux 

drum level, the base level and MTBE purity in the bottoms. The distillate and the reflux 

flowrate were considered as possible manipulating variables to control the drum level. 

The bottoms flowrate controls the base level. A temperature in the stripping zone was 

selected to be controlled by the reboiler heat input to ensure MTBE purity at the bottoms. 

Even though the reactive columns are known to be highly nonlinear, they demonstrated 

the use of the linearized control analysis tools in the controllability of reactive distillation. 

Vora et al. [27] presented the control of reactive distillation for the production of 

ethyl acetate. Utilizing the index two DAE model (i.e. Dynamic Algebraic Equation 

model), they analyzed the system from a steady-state and a dynamic point of view. Based 

on their results, they found that the process has two time scales caused by the liquid 

hydraulics. Motivated by this finding, a modified slow dynamics model was developed. 
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The nonlinear controllers were designed based on the two-time scale model. Those 

controllers performed well when the product purity setpoint was increased by 25%.       

Wang et al. [5] further investigated the effect of interaction multiplicity on the 

control system design for a MTBE reactive distillation column. They found out that 

despite the presence of steady state multiplicities in the column, a linear control is still 

possible because a controlled and manipulated variable-pairing scheme that exhibits a 

sufficiently large range of near relations can be found.   

Al-Arfaj and Luyben [28], in their recent study, presented a plantwide flowsheet 

that contains reactive distillation column for the production of tert-amyl methyl ether 

(TAME). The flowsheet consists of one reactor, one reactive column, two conventional 

columns and two recycles. They discussed the importance of the plantwide control and 

the role of reactive distillation. The reactive distillation column was found to be the 

central part of the whole flowsheet in terms of both the steady-state design and the 

dynamic controllability. 

Engell and Fernholz [29] investigated the general aspect of controlling the 

reactive separation processes, and gave the example of the control of a semi-batch 

reactive distillation process. Utilizing a neural network model, the authors demonstrated 

that that more complicated controller structures, sophisticated controller design methods, 

and alternative, model-based nonlinear controllers are needed for reactive distillation 

processes when compared to conventional processes. The necessity of an accurate 

process model in control system design was also emphasized. 

Huang et al. [30] explored a vapor-liquid-liquid equilibrium behavior of n-butyl 

propionate and presented a systematic procedure for the design and temperature control 
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of the heterogeneous reactive distillation. The authors showed that a reactive distillation 

exhibits unique temperature sensitivities. As a result, a Nonsquare Relative Gain (NRG) 

was used to identify the temperature-control trays, which resulted in an almost one-way 

decoupled system. Motivated by this, a decentralized PI controller was used at the 

regulatory level. Because maintaining constant tray temperatures does not imply the same 

quality specification in a kinetically controlled distillation column, the authors 

demonstrated that feed forward temperature compensation is necessary to maintain the 

desired product composition. The proposed design method for butyl propionate reactive 

distillation can be easily adapted to butyl acetate reactive distillation because of their 

similarities in VLLE and process characteristics.  

Luyben et al. [31] studied the design and control of two alternative processes for 

the production of butyl acetate from methyl acetate. The two process configurations are a 

conventional reactor/separator and a reactive distillation. The authors showed that despite 

both processes are capable of producing high purity butyl acetate and methanol without 

the use of an extractive agent, the reactive distillation process is more economical. 

Developing a plantwide control structure for each of the process, the authors showed that 

an effective control can be achieved by using conventional PI controllers.  

Noeres et al. [32] investigated the benefits of using dynamic models of different 

complexity and size for process design, optimal operation and control of catalytic 

distillation processes. They studied the heterogeneously catalyzed reactive distillation of 

methyl acetate as a case study. An experimentally validated rate-based model was 

developed for process design and scale up issues. However, for optimization and control 

purposes, the authors used a simplified model as the rigorous rate-based model, as 
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claimed, was not suitable for these tasks because of its complexity. A closed-loop 

optimization of the system was performed based on the developed linear control 

structure. The authors demonstrated that the linear controller performed well over a wide 

range of operating conditions. Because the developed linear controllers were not able to 

drive the process in arbitrary regions of operation, the use of nonlinear model-based 

controllers was suggested to be considered in future work.  

1.2.2 State Estimators and their Applications 

In most of the chemical, biochemical and petrochemical processes, effective 

monitoring and control is often difficult because of the absence of frequent and delay-free 

measurements of important process variables and the presence of unknown disturbances 

in the process, which cannot be modeled. As a result, the state estimator has been 

recognized as a tool that can be designed to estimate the values of these process variables 

from the available measurements. State estimators/observers can play a key role in the 

process control and monitoring wherein an early detection of hazardous conditions is 

needed for a safe operation. Several works have been done over a decade in the 

application of the state estimation method in the control of both batch and continuous 

distillation systems. Summarized below is the literature on the application of state 

estimator in conventional distillation system. 

Lang and Gilles [14] presented a full-order nonlinear observer for distillation 

columns. The temperatures are measured at different points of the column and compared 

to the observer’s output temperatures. Their results showed that it is possible to estimate 

temperature and concentration profiles for both binary and multicomponent distillation 

units by the nonlinear observer. The performance of the observer was tested through 
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numerical simulation and it was found to be very robust toward model errors, wrong 

parameters or uncertain inputs. 

Quintero-Marmol et al. [15] applied an Extended Luenberger Observers (ELO) to 

predict compositions in multicomponent batch distillation from temperature 

measurements. A general design procedure of an observer for a batch distillation column 

was presented. Even though, the linear observer in theory needs only Nc-1 measurements 

to be observable where Nc is the number of components in the mixture, it was found out 

that nonlinear observer needed at least Nc measurements to be effective. They presented 

two different observers: one using full order model and the other using reduced order 

model. They concluded that full order, though more complex to obtain, performed 

consistently better than the reduced order-model. But the reduced order is easier to 

implement. 

Ruokang et al. [33] presented a strategy for fault detection and diagnosis in a 

closed-loop nonlinear distillation system. An extended Kalman filter was applied inside 

the control loop to recover information from noisy measurement signal and provide 

estimates of the state variables and unknown parameters of the process. The state 

estimates produced by an extended Kalman filter are the input for the controller. 

Meanwhile, Mejdell et al. [19] implemented a static partial least-square regression 

estimator for product compositions on a high-purity pilot-plant distillation column. The 

estimator was found to be static and its application is straight forward. An experimentally 

based estimator, with logarithmically transformed temperatures and compositions, was 

reported to give excellent performance over a wide range of operating points. 
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Roberto et al. [17] developed a nonlinear extended Kalman filter (EKF) estimator, 

which predicts the composition of the outlet streams of a binary distillation column from 

the temperature measurements. The performance of the estimator was evaluated by 

comparison with data obtained from the several transient experiments performed in a 

pilot plant. The EKF estimator was reported to be robust with respect to the model errors, 

which affect its response. They extended their work to the multicomponent distillation 

column where they reported that when moving from the binary distillation system to the 

multicomponent system, the need for an accurate description of the vapor-liquid 

equilibrium is more stringent [18]. 

Oisiovici et al. [20] developed a discrete extended Kalman filter for binary and 

multicomponent distillation systems. They developed it to provide reliable and real-time 

column composition profiles from few temperature measurements. Unlike off-line design 

of Extended Luenberger Observer (ELO) proposed by Quintero-Marmol and Luyben 

[15], the gains of EKF are calculated and updated online. They reported that EKF has the 

ability to incorporate the effects of noise from both measurement and modeling. 

In a more recent work, Bahar et al. [34] recently developed an inferential control 

methodology, which utilizes an artificial neural network (ANN) estimator for a model 

predictive controller for an industrial multicomponent distillation column. The selection 

of the temperature measurement points for the inferential control is done by the help of 

singular value decomposition analysis together with the column dynamics information. A 

moving window ANN estimator is designed to estimate the product compositions from 

the tray temperature measurements. The composition predictions are further corrected 

with the actual composition data in 30-min intervals. A multi input multi output (MIMO) 
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model predictive controller (MPC) is used with the developed ANN estimator for the 

dual composition control of the column. The performance of the developed control 

system utilizing ANN estimator is tested considering setpoint tracking and disturbance 

rejection performances for the unconstrained and constrained cases. 

1.3 Scope and Objectives  

Lack of appropriate, inexpensive online sensors, high costs of measurement 

methods, and time consuming offline measurement analysis are some of the reasons that 

make continuous measurement of the important state variables of a process difficult. 

Even when online measuring devices are available, in some cases, measurements cannot 

be obtained frequently without time-delay. The challenge in obtaining such important 

state variables for control purposes is to design a state estimator, which is robust against a 

noisy measurement, erroneous initial conditions and model uncertainties.  

The present work describes the development, implementation and application of 

the linear state estimators in control of reactive distillation. Internal compositions which 

are needed in control system are estimated by the use of the state estimators instead of 

measuring them by an analyzer. The reliability of these estimators is examined and their 

impacts on the performance of the control system of reactive distillation are studied. The 

performance of the feedback control system using the state estimator is compared to that 

when a composition analyzer is used. The specific objectives of this work are: 

1. Developing the linear and nonlinear process models in the state-space form that 

describes the reactive distillation system. 

2. Investigating the impact of disturbance magnitudes and directions in the dynamic 

behavior of a reactive distillation. 
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3. Performing a closed-loop assessment of various control structures for reactive 

distillation using linear and nonlinear process models. 

4.  Developing the linear state estimators for composition estimation in reactive 

distillation system. 

5. Implementing a linear state estimator in a feedback control of reactive distillation 

and investigating the reliability and robustness of the estimator-based system 

against the plant-model mismatch, erroneous initial conditions and measurement 

errors. 

1.4 The Significance of this Work 

Reactive distillation has commercially gained a separate status as a promising 

multifunctional reactor and separator in most of the world leading chemical industries. 

Locally, reactive distillation technology is used in more than one Saudi Basic Industries 

Cooperation (SABIC) affiliate. Controlling these processes at the desired conditions is an 

essential requirement for a better operation at a higher profitability. An effective way of 

controlling this process requires the knowledge of the internal composition of one of the 

reactants. This is hard to implement because of the online analyzer unreliability. This 

research develops a technique to provide the online controller with this information by 

the use of a state estimator and eliminate the use of the unreliable composition analyzer. 
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CHAPTER 2 

2 Linearized State Space Formulation for Nonlinear 
Generic Reactive Distillation   

2.1 Introduction 

The growing application of reactive distillation processes has necessitated a better 

understanding of its process dynamics and control. Reactive distillation columns are 

generally being modeled by a set of highly nonlinear first order differential equations       

[1-4]. However, many model-based controllers use linear models. Linear models are 

easier to understand and analyze than nonlinear models. Nonlinear systems often have the 

same general phase-plane behavior as the model linearized about the steady state 

condition when the system is close to that particular condition. Therefore, it is important 

to derive a suitable linearized dynamic model that when used in model-based control 

applications could yield an effective and robust control system. 

Few papers have emerged on the development of a linear model for a typical 

distillation column. Marquardt and Amrhein [5] developed a linear distillation model for 

multivariable controller design of binary distillation columns. Their modeling idea draws 

on the wave propagation phenomena characterizing distillation column dynamics. The 

process nonlinearities were nicely averaged by using a 5th order linear model. Luyben [6] 

derived a simple but effective method to determine suitable linear transfer functions for 

highly nonlinear distillation columns. He presented an effective design procedure which 

uses Astrom’s method (relay feedback) to get critical gains and frequencies for each 
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diagonal element of the plant transfer matrix. He concluded by emphasizing the 

effectiveness of the method in handling highly nonlinear column efficiently.        

The use of linear transfer function becomes practically inapplicable when the 

knowledge of internal state variables is required because the method is based on input-

output model which gives no information about the internal variables. Recent 

publications on control of reactive distillation columns have emphasized the need to have 

the knowledge of internal composition profiles in order to design an effective control for 

reactive distillation [7-11]. Unless an excess of one of the reactants is incorporated in the 

process design, some detection of the inventory of one of the reactants in the column is 

required so that a feedback trim can balance the reactants feed stoichiometry [7]. In such 

situations, the application of state space technique will be most suitable. Linear state 

space model can be easily transformed into linear transfer function model without loss of 

any system information.  

The linearization of a nonlinear reactive distillation is challenging because of the 

reaction and separation combined in a single column. Complexity in its dynamics arises 

from the interaction of the reaction kinetics and distillation concept of vapor-liquid 

equilibrium in the system. A linearized state space model of reactive distillation system 

will help in investigating the stability, controllability and observability analysis of the 

system. Therefore, the objective of this present work is to develop a linearized state space 

model for a generic reactive distillation column.  
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2.2 Reactive Distillation System 

Among several chemical systems, two-reactant-two-product reactions have 

received a wide application in reactive distillation technology [12]. In this work, we 

considered an ideal two-reactant-two-product reactive distillation column proposed by 

Al-Arfaj and Luyben [7] as shown in Figure 2.1. It consists of a reactive section in the 

middle with nonreactive rectifying and stripping sections at the top and bottoms 

respectively. The elementary, reversible and exothermic liquid-phase reaction occurring 

in the reactive zone is given as                                          

A + B  C + D                                                                                                             (2.1) ⇔

The task of the rectifying section is to recover reactant B from the product stream 

C. In the stripping section, the reactant A is stripped from the product stream D. In the 

reactive section the products are separated in situ, driving the equilibrium to the right and 

preventing any undesired side reactions between the reactants A (or B) with the product 

C (or D). Therefore, reactants A and B are intermediate boilers while product C is the 

lightest and product D is the heaviest. This ensures that high concentration of the 

reactants A and B is maintained in the reactive zone, which is typical for reactive 

distillation application. The reactive section contains NRX trays. The rectifying section 

contains NR trays, and the stripping section below the reactive section contains NS trays. 

The column is numbered from the reboiler to the condenser. 
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                   Figure 2.1 (a) Reactive distillation column, (b) a reactive tray. 
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2.2.1 Nonlinear Process Model 

A rigorous dynamic model for a typical reactive distillation column consists of a 

large number of nonlinear differential equations and demands much information about 

the system (compositions, vapor and liquid flowrates, liquid hold up in all stages at every 

instant, tray hydraulics, energy balances, and vapor-liquid equilibrium data). However, 

the system at hand is an ideal generic reactive distillation with simple vapor-liquid 

equilibrium, reaction kinetics, and physical properties. The model assumptions are 

summarized as follows: 

1.  Ideal vapor-liquid equilibrium. 

2. Saturated liquid feed and reflux flowrate 

3. The energy equations are neglected by assuming constant molar overflow except in the 

reactive zone where the vapor flowrate increases because of the heat of reaction which 

vaporizes some liquid on each tray. 

4. Constant relative volatilities. The volatilities of the components are in such that 

CABD αααα 〈〈〈                                                                                                     (2.2) 

5. Fixed heat of reaction and vaporization and saturated liquid feed and reflux. 

The reactive distillation model is based on dynamic mass balance, while the 

energy equations are neglected by assuming constant molar overflow except in the 

reactive zone. Therefore, the nonlinear state space model can be described as follows:  
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Tray i vapor flowrate in reactive zone is given as:  
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while the vapor flowrate in rectifying section is expressed as: 
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Liquid flowrate is calculated from a linearized form of the Francis Weir formula:    

β
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where β  is hydraulic time constant. Net reaction rate of component j on tray i is:  

( )iDiCiBiBiAiFiji xxkxxkMR ,,,,,,, −=                                                                               (2.15) 

The forward and backward specific reaction rates (kmol.s-1.kmol-1) on tray i:  

iF RTE
FiF eak /

,
−=                                                                                                            (2.16)   

iB RTE
BiB eak /

,
−=   

where and  are the pre-exponential factors, and are the activation energies, 

and T

fa Ba fE BE

i is the absolute temperature on tray i. Liquid-vapor equilibrium equations are:                   
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Thus, nonlinear state space models would be of the form: 

));(),(),(()( θtdtUtXf
dt

tdX
=                                                                                      (2.19) 

))(( tXhY =                                                                                                                   (2.20) 

where X  is a vector of state variables, which are liquid mole fractions and holdup in all 

of the stages (including the reboiler and condenser); 

[ ]TNNNNN MMMxxxxxxxxxxxxX ,...,,...,,,...,,...,,..., 21,4,4,24,13,3,23,12,2,22,11,1,21,1=              (2.21) 

“U” is a vector of input variables, which are vapor boilup (VS) from the reboiler and 

reflux rate (R) from condenser; [ ]TS RVU ,= . “d” is a vector of  measurable disturbance 

variables, which are the fresh feed flowrates of reactant A and B with their feed 

compositions; . “Y” is a vector of measurable outputs, which can 

either be column temperatures or the products compositions;

[ T
BAjbja FFzzd ,,, ,,= ]

[ ]TqyyY ....1= . θ is the system 
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constant parameters, which are component relative volatilities, reaction kinetics data and 

the column pressure. Note that the linearized model formulation considers the 

configuration where the reflux and steam flowrate are only available as manipulative 

variables. In general, other control configurations could be easily incorporated.  

2.2.2 Linear State Space Model Formulation 

The linearization of the nonlinear equations 2.19 and 2.20 is carried out by using 

the Taylor series expansion. This implies that these sets of nonlinear equations are 

approximated by a truncated Taylor series approximation around the steady state 

operating conditions. Although, the Taylor series-based linearization method is a well 

established technique, however, the most challenging aspect of its application is the 

formation of the resulting Jacobian matrices of the multivariable states for a coupled and 

highly nonlinear dynamic model [13]. If the general form of equations 2.19 and 2.20 is 

given as: 
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then, the linearization version of the nonlinear functions is obtained by taking the first 

two terms of the Taylor series. 
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In equation 2.23, the derivative of  is a derivative of  5N ×1 vector with respect to   

5N ×1 state vector , P ×1 input vector and M × 1 disturbance vector. 

)(Xf

This results in: 

1.  5N ×5N Jacobian matrix “A” whose  element is thji ),(
j

i

x
f

∂
∂

 

2.  5N × P input matrix “B” with 
j

i

u
f

∂
∂

 coefficient as its elements 

3.  5N × M disturbance matrix “E” with element as thji ),(
j

i

d
f

∂
∂

 

4.  q × 5N output matrix “C” with 
j

i

x
h
∂
∂

 coefficient as its element. 

The steady state condition corresponds to 0),,( =θUXf and 0)( =Xh , and all the 

matrices elements are evaluated at steady state values. The deviation variables arise 

naturally out of the Taylor series expansion, and therefore, the linearized state space 

model in terms of deviation variable is:  

'''
'

EdBuAx
dt
dx

++=           (2.25) 

'' CxY =              (2.26) 

Formulation detail and entries of matrices A, B, C and E for a generic reactive distillation 

are given in the Appendix.  

2.3  Steady State Design Data. 

The formulation of a linearized model only requires the knowledge of the steady 

state design data, including the holdups and stationary concentration profiles.  

Considering the phenomena of steady state multiplicities of most reactive distillation 

systems as reported in the literature [14, 15], it is important to ensure that a unique and 

stable steady state conditions based on the desired specifications are obtained.   
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The kinetic, physical, and vapor-liquid equilibrium parameters for single-column 

reactive distillation were obtained from Luyben [16] and are summarized in Table 2.1. It 

is found that the design presented by Luyben [16] is stable only when the system is 

operated under closed-loop. Therefore, we modified this steady state design to ensure that 

the system is both open-loop and closed-loop stable. The procedure to obtain the 

modified design is the following: 

1. The desired purity and conversion is kept the same (95%). The flowrate of the 

fresh reactants A and B entering into the column is fixed at 0.0126 kmol/s. 

2. The initial holdups in all the trays are assumed to be 1 kmol and 10 s of holdup 

time is assumed in both the reboiler and condenser. 

3.  A dual composition control suggested by Al-Arfaj and Luyben [7] is 

implemented to obtain the desired manipulated variables. Composition of product 

C in the distillate is controlled by manipulating the reflux flowrate, while the 

vapor boilup is manipulated to control the bottoms composition of component D. 

The controllers automatically manipulated both the reflux flowrate and vapor 

boilup to the values that correspond to the desired conversion and purity.  

4. The resulted steady state parameters are used as initial conditions to check for 

open-loop stability. The open-loop dynamic simulation had to be run for 

significantly long time to ensure open-loop stability. Table 2.2 shows the results 

of steady state conditions for which the system is open-loop and closed-loop 

stable.   
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Table 2.1 Kinetic and physical properties 

forward 30000 activation energy 

(cal\mol) backward 40000 

forward 0.008 Specific reaction rate at steady state 

condition (kmols-1kmol-1) backward 0.004 

heat of reaction (cal/mol) -10 000 vapor pressure 

heat of vaporization (cal/mol) 6944 

 

component Avp Bvp 

Cα  8 A 12.34 3862 

Aα  4 B 11.45 3862 

Bα  2 C 13.04 3862 

 

 

relative 

volatilities 

Dα  1 D 10.96 3862 

 

 

 

 

 

 

 

 

 

 

 



 27

 

Table 2.2 Optimum steady state conditions 

 variables steady state values 

Column 

specifications 

pressure (bar) 

stripping section 

reactive section 

rectifying section 

9 

7 

6 

7 

Vs (kmol/s) 0.0285 

R (kmol/s) 0.0331 

D (kmol/s) 0.0126 

flowrates 

B (kmol/s) 0.0126 

A 0.0467 

B 0.0033 

C 0.9501 

Xdis

D 0.0000 

A 0.0009 

B 0.0445 

C 0.0000 

Xbot

D 0.9545 

 

 

 

 

 

 

 



 28

2.4  Model Linearity 

A linear system is one that satisfies both homogeneity and additivity property. For 

zero-state response, the model linearity can be assessed by  

02211

01

),()(
0)(

tttUtU
tX

>Φ+Φ
=          02211 ,)( ttYtY >Φ+Φ                                                       (2.27)   

where  and    are constants. 1Φ 1Φ

Before the applicability of a linearized model is assessed, it is important to 

demonstrate that this principle of superposition is satisfied. The linearity of the proposed 

model was tested by exciting the system with the various magnitudes of input step 

changes. For illustration purposes, ±2% and ±4% step changes in feed flowrate of 

reactant B are introduced into the system as disturbances. Figure 2.2 shows the steady 

state composition profiles in deviation forms under various magnitudes of step input 

changes in feed flowrate of reactant B. The uniformity in the deviations of the 

compositions in both directions is a clear indication of model linearity. The model 

linearity of the system is equally observed in the column temperature profiles as shown in 

Figure 2.3. The dynamic composition profile of the reactant A on the tray nf1, the 

reactant B on the tray nf2, the product C in the distillate and the product D in the bottoms 

with ±2% & ±4% change in  are presented in the Figure 2.4. The output changes are 

symmetric, with the same speed of response. The behaviors of these responses are clear 

indicative of a linear system. 

BF

2.5 System Stability  

Systems are generally designed to either process some signals or perform some 

tasks. Thus, if a system is unstable, it will grow unbounded, saturate and disintegrate 
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when a signal, no matter how small, is applied. Therefore, stability is a basic requirement 

for all systems. We demonstrated one among many advantages of a linear system by 

investigating the model stability near the steady state conditions through the eigenvalues 

of its Jacobian matrix. 

Because our system response is typical of zero-state, its stability can easily be 

verified using bounded-input-bound-output (BIBO) stability criteria. A multivariable 

process is open-loop stable if and only if all the eigenvalues of matrix A have negative 

real parts [17]. Table 2.3 shows the eigenvalues of matrix A for a linearized reactive 

distillation system with 20 trays, reboiler and condenser. As shown in Table 2.3, the 

system is stable because all the eigenvalues have negative real parts. This is inline with 

the dynamic stability test discussed earlier.  

2.6 Conclusion  

A linearized state space model for a generic reactive distillation has been 

formulated. The development of the model only requires information about the steady 

state design data, including the holdup in all the stages and the stationary composition 

profiles in the column. A detailed algorithm of the system sensitivity matrices is 

presented. The model obtained in this fashion is based on deviation variables. The 

developed approximate model is used to investigate the stability of the multivariable 

reactive distillation system. The linearity of the model is attested by the uniform and 

symmetric nature of the output responses to different magnitudes of the step inputs. 
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Figure 2.2 Steady state composition profile (in deviation form) of the reactant A on the 

tray nf1, the reactant B on the tray nf2, the product C in the distillate and the 

product D in the bottoms with ±2% & ±4% change in     BF
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(a) column temperature profiles in deviation form. (b) column temperature 
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Table 2.3 Eigenvalues of matrix A (5N X 5N), N=22, column configuration (NS/NRX/NR): 

7/6/7 column stages, 1 reboiler and 1 condenser. 

 -0.5221 -0.1592 + 0.0098i -0.0747 + 0.0083i -0.0323 + 0.0187i -0.0097 
-0.4483 -0.1592 - 0.0098i -0.0747 + 0.0083i -0.0458 -0.0074    
-0.3935   -0.1571      -0.0728          -0.0267 + 0.0174i -0.0001 
-0.3894 -0.1506       -0.0685 + 0.0011i -0.0267 - 0.0174i -0.0005   
-0.3564 -0.1267 + 0.0556i -0.0685 - 0.0011i -0.0398   -0.0011 + 0.0003i 
-0.3170    -0.1267 - 0.0556i -0.0588 + 0.0075i -0.0365 + 0.0017i -0.0011 - 0.0003i 
-0.3016 -0.1086 + 0.0429i -0.0588 - 0.0075i -0.0365 - 0.0017i -0.0046 + 0.0017i 
-0.2898      -0.1086 + 0.0429i -0.0595 + 0.0027i -0.0365 -0.0046 - 0.0017i 
-0.2502 -0.1308   -0.0595 - 0.0027i -0.0226 + 0.0152i -0.0013 
-0.2347 + .0496i -0.1285        -0.0554 + 0.0108i -0.0226 - 0.0152i -0.0053 
-0.2347 - 0.0496i  -0.1210 + 0.0130i -0.0554 - 0.0108i -0.0289 -0.0035 
-0.2369 + 0.0285i -0.1210 - 0.0130i -0.0515 + 0.0143i -0.0166 + 0.0119i -0.0034   
-0.2369 -0.0285i  -0.1222 + 0.0029i -0.0515 - 0.0143 -0.0166 - 0.0119i -0.0025     
-0.2016 + 0.0562i   -0.1222 - 0.0029i -0.0471 + 0.0167i -0.0249 -0.0025   
-0.2016 + 0.0562i   -0.1027   -0.0471 - 0.0167i -0.0214 -0.0046         
-0.2064 -0.0935 + 0.0215i -0.0547       -0.0153 + 0.0063i -0.1667     
-0.1792 + 0.0695i     -0.0935 - 0.0215i -0.0426 + 0.0187i -0.0153 - 0.0063i -0.1667    
-0.1792 - 0.0695i  -0.0973 -0.0426 - 0.0187i -0.0181 -0.1667   
-0.1941  -0.0868 + 0.0117i -0.0530     -0.0169   -0.1667     
-0.1562 +0.0633i -0.0868 - 0.0117i -0.0370 + 0.0193i -0.0134   -0.1667 
-0.1562 - 0.0633 -0.0836     -0.0370 - 0.0193i -0.0093 + 0.0050i -0.1667 
-0.1619 -0.0791    -0.0323 + 0.0187i -0.0093 - 0.0050i -0.1667 
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CHAPTER 3 

3 Dynamic Comparison of Linear and Nonlinear Models 
for Generic Reactive Distillation System   

3.1 Introduction 

An understanding of the dynamic behavior of reactive distillation system is 

important from both process design and control perspectives. Moreover, the primary 

objective of process control is the design of effective and robust control systems that will 

keep the process conditions close to its desired steady state value. Even though the 

reactive distillation system is highly nonlinear, the influence of effective regulatory 

control is to ensure that the deviations from this steady state will be small, in which case 

the behavior will be essentially indistinguishable from that of linear system. 

Nonlinear reactive distillation systems are notoriously difficult to analyze and 

solve, partially because they exist is such an infinite variety of forms, preventing any 

cohesive theory for analysis. Thus, it is very important to have an approximate linear 

model that will give good account of the process behavior near the desired operating 

conditions if we are to be able to use the powerful linear mathematical techniques in the 

system analysis and control. Nonlinearity in reactive distillation model arises because of 

complex processing configurations, which involves the interaction of the reaction kinetics 

and distillation concept of vapor-liquid equilibrium. Moreover, the desire for high 

conversion, selectivity and product purity increases the process nonlinearity. Luyben [1] 

pointed out that the response of distillation system becomes highly nonlinear as the purity 

level increases more than 98%. 

 36
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Although simplified modeling of distillation columns for design of linear 

multivariable controllers has a long tradition [2-4], there is still no consensus on what 

constitute an adequate linear model of reactive distillation, on the physical effects to be 

retained, and on a recommended approximation method that will not lead to a false 

conclusion. These questions can only be addressed by a quantitative comparison of an 

approximate linear model to that of nonlinear rigorous model. 

In the previous chapter, a linearized state space model for reactive distillation was 

formulated. The present work compares the performance of a linearized dynamic model 

of reactive distillation system with that of a nonlinear model with the sole aim to come up 

with some conditions and general guidelines under which a linear process model could be 

applied in model-based-control applications of reactive distillation. The effect of model 

stability on the performance of the approximate model is explored. The open-loop 

performance of both linear and nonlinear models in presence of an internal composition 

inventory control is demonstrated. An error index is developed to quantitatively analyze 

the accuracy of a linear process model. 

3.2 Error Index 

In order to quantitatively assess the performance and accuracy of a linear process 

model as compare to a nonlinear process model, an error index is defined in term of an 

Average Relative Error (ARE). The numerical values obtained from nonlinear model are 

considered as the real values for the system, while the values obtained from the linear 

model are taken as the approximate values. In this sense, an Average Relative Error is 

given as: 
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 is the real value from the nonlinear model at point k, is the approximate value 

from the linear model at the same point k. n is the number of data points. 

real
kγ

appr
kγ

3.3 Steady State Design Data 

An availability of stable steady state values at the desired operating conditions is a 

fundamental prerequisite to developing a successful linear model. In the present study, 

two steady state designs are used to examine the system sensitivity to input disturbances 

(see Section 3.4). They are termed as a low-conversion and a high-conversion steady 

state designs. A high conversion is the steady-state conditions presented in Chapter 2 and 

is taken as the base design throughout this study. A low-conversion design is considered 

here to justify the consistency of a linearized model as long as the deviation in process 

variables due to a disturbance is within the region of the base steady states around which 

the model is linearized. Table 3.1 shows the summary of the of two steady state 

conditions for open-loop reactive distillation system.   
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Table 3.1 Base steady state conditions for a high and low-conversion region. 

  Variables high-conversion   

region 

low-conversion 

region 

Vs (kmol/s) 0.0285 0.0281 

R (kmol/s) 0.0331 0.0328 

D (kmol/s) 0.0126 0.0119 

flowrates 

B (kmol/s) 0.0126 0.0133 

A 0.0467 0.0345 

B 0.0033 0.0008 

C 0.9501 0.9647 

Xdis

D 0.0000 0.0000 

A 0.0009 0.0519 

B 0.0445 0.0822 

C 0.0000 0.0000 

Xbot

D 0.9545 0.8658 
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3.4 Steady State Sensitivity 

The performance of a linear model is based on the sensitivity of the steady state 

values to disturbances. The deviation from the steady states when disturbance is 

introduced into the system must be small enough and also be within the region of the 

steady states used in developing an approximate model. Thus, linearization may lead to 

an inaccurate or a false conclusion if the original model exhibits a drastic deviation from 

the base steady state region. This would also be true if the nonlinear process model is 

unstable under certain disturbances. 

Figure 3.1a shows the composition profiles of the column comparing the linear 

and nonlinear models when component B fresh feed flowrate (FB) is increased by 2%. 

The linear and nonlinear models show a consistent deviation within the vicinity of the 

base steady state composition profiles. As more of the B is fed into the column, the two 

models predict the shifting of reactant A profile in the middle of the column downward 

and of reactant B profile upward. The shifting down of product D profile in the stripping 

section showed by the two models indicates an increase in impurity in the bottoms as a 

result of excess of reactant B. 

Figure 3.1b shows the steady state temperature profile of the linear and nonlinear 

models with 2% disturbance in FB. There is a consistent deviation from the base steady 

state temperature profile, which indicates that a linear model predicts the original 

nonlinear model well within the desired steady state region. Note that both the two 

models show that the temperature in the stripping section is reduced as a result of more 

reactant B in the bottoms, and temperature in the rectifying section is increased because 

of the reactant B, which is lost to the overhead.  
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Figure 3.1 (a) Composition profiles with 2% increase in FB, (b) temperature profiles with 

2% increase in FB: (---) base steady state profile with no disturbance; (— —) 

linear model; (——) nonlinear model.  
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Figure 3.2a compares the composition profile for both of the linear and nonlinear 

models when fresh feed flowrate of reactant A (FA) is increased by 2%. A linear model 

predicts the composition profiles in the vicinity of the base composition profile as it was 

developed around that profile. In contrast, a nonlinear model shows a significant 

deviation in composition profile from the base steady state values. When there is an 

excess of reactant A, the light reactant, there must be an increase in the heat duty to strip 

out an unreacted A from product D. Because the heat duty is kept constant in this steady 

state analysis, this resulted in reactant A flooding the stripping section as predicted by 

nonlinear model. Figure 3.2b shows the temperature profiles of both models under the 

same conditions, i.e., +2% in FA. The linear model shows a slight deviation around the 

base steady state, whereas the nonlinear model shows a significant change in the 

temperature profile along the column. The sharp drop in temperatures predicted by 

nonlinear model especially in the stripping section indicates excess of unreacted reactant 

A in the zone.  

The nonlinear model behavior indicates that the system is open-loop pseudostable 

when FA is increased by 2%. The system drifts to another low conversion state. It is 

expected that the linear model will not predict the drift since this is a nonlinear 

characteristics of the system. However, to verify the linear model applicability when the 

system is open-loop stable under a given disturbance, the low conversion state is taken as 

a new base (see Table 3.1) and the model is linearized around that design, then similar 

disturbance is introduced. Figure 3.3 shows the composition profiles at low conversion 

steady state region. Since the system of that state is stable under the same disturbance  
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Figure 3.2 (a) Composition profiles with 2% increase in FA,  (b) temperature profiles with 

2% increase in FA: (---) base steady state profile; (— —) linear model ;(——) 

nonlinear model.  
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Figure 3.3 Composition profiles with 2% increase in FA: (---) base steady state profile; 

(— —) linear model; (——) nonlinear model.  
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(+2%FA), both linear and nonlinear models show a good matching and consistent 

deviations from the low conversion base steady state profiles. This indicates that a linear 

model will give good predictions of a nonlinear model when the base steady state design 

is open-loop stable under a given disturbance. In contrast, it may lead to a false 

predictions whenever the disturbance from the base design is either significant or results 

in a drift to another steady state region.     

3.5 Robustness of a Linear Model 

Assessing the robustness of a linear model under various magnitudes of 

disturbances is very important before its applicability can be considered. In this Section, 

the performance of an open-loop dynamic linear model is compared to that of a rigorous 

dynamic nonlinear model. Two dynamic scenarios are investigated: 

1- Open-loop (OL): where only the pressure as well as the base and reflux drum level 

inventories are controlled while FA, FB, Za, Zb, Vs and R are fixed. 

2- Open-loop with internal composition control (OL+IC): in addition to level control 

loops, reactant A inventory is controlled through an the internal composition 

controller by manipulating the feed flowrate FA. 

The process variables considered as sources of disturbances are: feed flowrate of 

reactant B (FB), feed composition of reactant A (Za) and vapor boilup (Vs). The two 

models are excited by a step change of magnitudes 1%, 2%, 5% and 10%. The changes in 

Za are the percentage amount of reactant B in reactant A fresh feed. The average relative 

error of all the disturbances studied under various magnitudes is summarized in Table 

3.2-3.5. However, the system responses of the two models when FB is changed are 

presented in detail. 
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Table 3.2 The Average Relative Error (ARE) of open-loop model (OL), without internal 

controller  

SYSTEM Open Model (OL) 

VARIABLE FB %mol of B in feed A 

Magnitude 

Variable 

 

1% 

 

2% 

 

5% 

 

10% 

 

1% 

 

2% 

 

5% 

 

10% 

Xi,A 4.09 8.51 23.82 67.64 15.55 29.73 44.69 72.10 

Xi,B 2.46 6.62 15.16 45.21 9.64 12.93 16.14 39.63 

Xi,C 2.24 6.21 14.71 20.09 8.62 18.33 23.33 33.29 

Xi,D 1.42 4.77 10.97 18.38 6.51 12.17 26.72 58.81 

B
ul

k 
St

ea
dy

 st
at

e 

 

T 0.05 0.21 0.54 0.98 0.29 0.72 0.84 1.34 

D 0.02 0.06 0.67 2.60 0.02 0.26 4.24 11.87 

B 0.02 0.06 0.68 2.79 0.02 0.26 3.88 9.78 

Xbot,D 0.03 0.07 1.02 4.28 0.10 0.65 5.36 14.64 

Xdis,C 0.01 0.02 0.27 1.13 0.20 0.44 1.35 3.55 

Xnf1,A 3.37 10.55 18.74 23.89 14.21 23.24 32.09 36.30 St
ea

dy
 S

ta
te

 

Xnf2,BB

1.82 5.31 6.07 10.33 6.13 11.94 9.82 22.82 

D 0.03 0.09 0.62 2.58 0.02 0.24 3.90 11.38 

B 0.03 0.09 0.61 2.42 0.02 0.24 3.79 9.38 

Xbot,D 0.05 0.14 0.91 3.85 0.16 0.65 4.82 13.77 

Xdis,C 0.01 0.02 0.21 1.01 0.22 0.45 1.30 3.356 

Xnf1,A 2.31 7.30 16.41 17.76 10.29 27.23 30.84 35.75 

In
di

vi
du

al
 V

ar
ia

bl
es

 

D
yn

am
ic

 

Xnf2,BB

1.20 3.66 8.98 15.98 4.306 9.66 10.81 22.31 

 

 

 

 

  



 47

 

 

 

 

 

Table 3.3 The Average Relative Error (ARE) for open-loop model (OL), without internal 

controller  

SYSTEM Open Model (OL) 

VARIABLE Vs 

Magnitude 

Variable 

 

1% 

 

2% 

 

5% 

 

10% 

Xi,A 14.88 23.99 36.34 71.55 

Xi,B 11.48 15.41 23.83 38.82 

Xi,C 17.63 31.48 50.86 62.13 

Xi,D 11.13 14.74 21.97 23.78 

B
ul

k 
St

ea
dy

 st
at

e 

  

T 0.55 0.88 1.01 1.98 

D 0.06 0.67 3.01 6.85 

B 0.06 0.68 2.96 7.35 

Xbot,D 0.12 0.43 1.32 1.87 

Xdis,C 0.02 0.21 3.18 11.67 

Xnf1,A 17.21 23.12 33.12 59.34 St
ea

dy
 S

ta
te

 

Xnf2,BB

8.43 9.78 13.87 25.24 

D 0.07 0.67 2.96 6.58 

B 0.07 0.69 2.65 8.27 

Xbot,D 0.11 0.45 1.29 1.44 

Xdis,C 0.02 0.26 3.24 10.44 

Xnf1,A 15.80 21.08 32.23 58.68 

In
di

vi
du

al
 V

ar
ia

bl
es

 

 

D
yn

am
ic

 

Xnf2,BB

7.11 9.25 14.15 24.95 
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Table 3.4 The Average Relative Error (ARE) for open-loop model with internal 

composition controller (OL+IC) 

SYSTEM Open Model with Internal Controller (OL +IC) 

VARIABLE FB %mol B in feed A 

Magnitude 

Variable 

 

 1% 

 

 2% 

 

 5% 

 

 10% 

 

 1% 

 

 2% 

 

5% 

 

10% 

Xi,A 0.22     0.62     3.23      7.33 0.12 0.44 2.43 5.29 

Xi,B 0.18 0.64 3.00  8.35 0.12 0.44 2.17 6.02 

Xi,C 0.20 0.75 3.78  11.46 0.17 0.61 3.07 8.88 

Xi,D 0.19 0.54 2.91 10.60 0.10 0.32 1.42 6.67 

B
ul

k 
 S

te
ad

y 
st

at
e 

T 0.04 0.05 0.07  0.26 0.05   0.06   0.13  0.41 

FA 0.03 0.12 0.66 2.23 0.004 0.01 0.06 0.27 

D  0.03 0.11 0.61 2.05 0.01 0.05 0.32 1.20 

B 0.002 0.01 0.04 0.15 0.02 0.06 0.38 1.43 

Xbot,D 0.01 0.06 0.30 0.95 0.02 0.08 0.50 1.92 

Xdis,C 0.01 0.03 0.19 0.63 0.01 0.02 0.11 0.42 

Xnf1,A 0.01 0.07 0.39 1.34 0.001 0.01 0.04 0.20 

St
ea

dy
 S

ta
te

 

Xnf2,BB

0.09 0.33 1.82 5.96 0.02 0.07 0.45 1.61 

FA 0.02 0.09 0.48 1.67 0.01 0.02 0.13 0.51 

D 0.02 0.08 0.46 1.61 0.01 0.04 0.24 0.92 

B 0.002 0.006 0.04 0.13 0.02 0.06 0.36 1.40 

Xbot,D 0.01 0.04 0.25 0.87 0.02 0.07 0.42 1.68 

Xdis,C 0.005 0.02 0.10 0.37 0.002 0.01 0.07 0.26 

Xnf1,A 0.01 0.05 0.28 1.01 0.003 0.01 0.08 0.37 

In
di

vi
du

al
   

V
ar

ia
bl

es
 

D
yn

am
ic

 

Xnf2,BB

 0.06 0.25 1.36 4.54 0.01 0.05 0.28 1.03 
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Table 3.5 The Average Relative Error (ARE) for open-loop model with internal 

composition controller (OL+IC) 

SYSTEM Open Model with Internal Controller 

(OL +IC) 

VARIABLE Vs 

Magnitude 

Variable 

 

 1% 

 

 2% 

 

 5% 

 

10% 

Xi,A 2.69 8.99 34.75 55.65 

Xi,B 2.38 6.12 20.83 37.56 

Xi,C 3.20 10.83 43.06 59.55 

Xi,D 2.35 10.27 17.82 21.69 

B
ul

k 
 S

te
ad

y 
st

at
e 

T 0.08   0.28    0.71    1.21 

FA 0.26 0.92 1.30 0.37 

D 0.18 0.59 1.48 4.10 

B 0.07 0.34 0.25 5.62 

Xbot,D 0.06 0.12 1.17 1.21 

Xdis,C 0.09 0.34 2.21 10.44 

Xnf1,A 0.15 0.55 0.80 0.93 

St
ea

dy
 S

ta
te

 

Xnf2,BB

0.92 3.14 3.76 1.64 

FA 0.18 0.64 1.32 1.35 

D 0.15 0.48 1.48 3.93 

B 0.04 0.20 0.25 5.22 

Xbot,D 0.06 0.16 1.04 1.18 

Xdis,C 0.05 0.20 1.76 9.19 

Xnf1,A 0.11 0.40 0.84 0.92 

In
di

vi
du

al
   

V
ar

ia
bl

es
 

D
yn

am
ic

 

Xnf2,BB

0.64 2.22 3.91 3.98 
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3.5.1 Open-loop Model (OL) 

In this scenario, the inventory loops incorporated into the system are: the pressure 

(controlled by the heat removal from the condenser), the reflux drum level (controlled by 

the distillate flowrate) and the base level (controlled by the bottoms flowrate). Figure 3.4-

3.6 show the steady state composition and temperature profiles of the linear and nonlinear 

models with 1%, 5% and 10% change in FB. These results showed that the prediction of 

linear model becomes poor as the magnitude of the disturbance is increased. Note that 

both temperature and composition profiles along the length of the column show that the 

difference between the linear and nonlinear models is most significant at feed trays. This 

gives an indication of higher nonlinearity effect in feed trays than any other parts of the 

column. There are many reasons that could be responsible for this behavior. First, higher 

concentration of reactants in these trays indicates places with higher reaction rates than 

any other parts of reactive zone. Second, these trays serve as possible entrance of 

disturbances into the column. Third, these trays are the locations in the column with high 

interactive effect of reaction kinetics and separation. 

 Figure 3.7 shows the dynamic response of the bottoms flowrate (B) for both 

linear and nonlinear models to an increase with different magnitudes in FB. This is shown 

as an illustration of the output performance of the linear model as compared to that of 

rigorous model. The two models show an increase in the bottoms flowrate (B) with 

increase in reactant B due to the excess of unreacted B that goes down to the bottoms of 

the column. Figure 3.8 compares the dynamic performance of the composition of product 

D for the linear model to that of nonlinear model at different magnitude of increase in FB.  
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Figure 3.4 (a) Composition profiles with 1% increase in FB: (b) temperature profiles with 

1% increase in FB: (---) base steady state profile; (— —) linear model; (——) 

nonlinear model. 
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Figure 3.5 (a) Composition profiles with 5% increase in FB: (b) temperature profiles with 

5% increase in FB: (---) base steady state profile; (— —) linear model; (——) 

nonlinear model. 
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Figure 3.6 (a) Composition profiles with 10% increase in FB: (b) temperature profiles 

with 10% increase in FB: (---) base steady state profile; (— —) linear model;  

             (——) nonlinear model. 
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Figure 3.7 Dynamic responses of bottoms flowrate (B) to different magnitude of increase 

in FB: (— —) linear model; (——) nonlinear model.  

 

 

 

 

 

 

 

  



 55

 

 

 

0 2 4 6 8 10 12 14 16
0.88

0.89

0.9

0.91

0.92

0.93

0.94

0.95

0.96

X
bo

t,D

1% 

2% 

5% 

10% 

time h  

Figure 3.8 Dynamic responses of the composition of component D to different magnitude 

of increase in FB: (— —) linear model; (——) nonlinear model. 
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The two models show a decrease in the concentration of D due to increase in 

concentration of reactant B in the bottoms. 

In all of the dynamic comparisons that are carried out between the two models, 

the linear model shows a good performance at small magnitude of disturbance and the 

deviation between linear and nonlinear models increases with an increase in the 

magnitude of disturbances (see Table 3.2 an 3.3). The details of linear model accuracy 

are discussed in Section 3.6.   

3.5.2 Open-loop Model with Internal Composition Controller (OL+IC) 

Several papers have reported the use of an internal composition measurement in 

the closed-loop control of reactive distillation with multiple feeds to maintain the feeds 

stoichiometry [5-8]. The inclusion of an internal composition controller (to balance the 

reactants feed stoichiometry) is used to demonstrate the enhancement of open-loop 

performance of both linear and nonlinear models. The concentration of reactant A in the 

first tray of reactive zone (numbered from the bottoms) is controlled by manipulating the 

fresh feed flowrate of reactant A (FA). The P-only controller is used because the objective 

of this internal controller is to maintain reactant A inventory and not to fix the 

composition at that stage. 

Figure 3.9-3.11 show the steady state composition profiles for both linear and 

nonlinear models when an internal composition controller is included. The sources of 

disturbance are 1%, 2%, 5% and 10% increase in feed FB. The linear model demonstrates 

a better performance and approximation of nonlinear model when compares with the 

same results shown in Figure 3.4-3.6, where no internal composition controller is used.   
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Figure 3.12 compares the dynamic response of the internal composition controller 

(Xnf1,A and FA) for both linear and nonlinear models. The disturbances are various 

magnitudes of positive step changes in FB. The increase in the amount of reactant B fed 

into the column reduces the internal composition of reactant A. Controllers based on the 

two models respond adequately by increasing the feed flowrate FA to counteract the 

gradual buildup of reactant B in reactive zone. The response time of the two models is 

comparable at lower magnitudes of disturbance. However, as the magnitude of 

disturbance increases linear model responds slower and predicted higher amount of FA 

than that of the nonlinear model. The deviation between the two models increases with 

increase in disturbance magnitude. 

Figure 3.13 shows the dynamic response of bottoms flowrate (B) for both linear 

and nonlinear models to different magnitude of changes in FB, while the dynamic 

performance of the composition of product D for a linear model is compared to that of 

nonlinear model at different magnitude of changes in FB as shown in Figure 14. The 

linear system response when an internal composition controller is included shows a good 

approximation of rigorous nonlinear model.  

 

 

 

 

 

 

 

  



 58

 

 

 

 

 

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

X
i,j

N

D 

B 

C 

A 

1% FB 

Reboiler  Condenser  

Figure 3.9 OL+IC. Composition profiles with 5% increase in FB: (---) base steady state 

profile; (— —) linear model; (——) nonlinear model.  
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Figure 3.10 OL+IC. Composition profiles with 5% increase in FB: (---) base steady state 

profile; (— —) linear model; (——) nonlinear model.  
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Figure 3.11 OL+IC. Composition profiles with 5% increase in FB: (---) base steady state 

profile; (— —) linear model; (——) nonlinear model.  
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Figure 3.12 OL+IC. Dynamic responses of flowrate (FA) and composition of reactant A 

on tray nf1to different magnitude of increase in FB: (— —) linear model; (——) 

nonlinear model.  
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Figure 3.13 OL+IC. Dynamic responses of bottoms flowrate (B) to different magnitude 

of increase in FB: (— —) linear model; (——) nonlinear model. 
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Figure 3.14 OL+IC. Dynamic responses of the composition of component D to different 

magnitude of increase in FB: (— —) linear model; (——) nonlinear model. 
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3.6 Accuracy of a Linear Model 

In this Section, the accuracy of a linear model with and without internal 

composition controller is quantified using the error index defined in Section 3.2. The 

quantification of model error based on various magnitudes of disturbance in feed flowrate 

FB, feed composition of reactant A (reactant B in FA), and change in vapor boilup (Vs) are 

studied. Three major categories were used to classify the Average Relative Error (ARE) 

of the system. 

1. Bulk steady state: in this category, the ARE of a given variable is averaged out over 

the number of stages. For example, the bulk steady state temperature is the sum of 

temperature in all the stages divided by the total number of stages. 

2. Individual steady state: this is the ARE of a given variable at steady state. 

3. Individual dynamic variable: this is the average ARE of a given variable over the time 

required to reach steady state. 

Table 3.2 and 3.3 present the summary of the average relative error of the system 

without internal composition inventory. However, the ARE of the bulk steady state 

composition profiles with disturbance in FB is shown in Figure 3.15. The results indicate 

that an approximation of the rigorous model with the linearized model without internal 

composition controller could be acceptable when the magnitude change in feed flowrate 

is below 6%. Similar conclusion could be reached when the ARE of the system are 

quantified based on individual dynamic and steady state of the system variables (see 

Figure 3.16). The ARE of the bulk composition in the OC+IC scenario is around 10% 

when FB is increased by 10% while it is ranging between 20-40% if the internal 

composition is not included. The ARE of the system is significantly reduced when the 
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internal controller is included in the open-loop system (see Figure 3.16 and 3.17), which 

suggest that the performance of linear system is acceptable with disturbance magnitude 

more than 10% if the ARE tolerance is less than 20%. The details of average relative 

error for the OL+IC scenario are presented in Table 3.3 and 3.4.  

Figure 3.17 compares the impact of disturbance from different system variables 

(i.e. FB, Za and Vs) on the performance of the linearized model using their average 

relative error (ARE). We have used the bulk steady state temperature profiles for this 

comparison because it represents the cumulative effect of system dynamics. Introduction 

of disturbance from the feed composition (reactant B in FA) is shown to have higher ARE 

than from feed flowrate (FB). This suggests that disturbance in feed composition affect 

the internal composition and increases the system nonlinearity more than that made by 

disturbing the system from feed flowrate. Exciting the system by changing the vapor 

boilup shows the highest trend of error because it impacts both the reaction kinetics and 

the separation capacity of the system, and thus, the system nonlinearity.  

The critical performance comparison of the open-loop linear model with and without 

the internal composition controller reveals the following important points: 

1. The performance of a linear model is improved with the inclusion of an internal 

composition controller, which suggests the degree of nonlinearity in a nonlinear 

model is reduced when the stoichiometry balance of the feed flowrates entering the 

reactive zone is maintained. The average relative error of a linear model when 

compared to a nonlinear model is reduced even at higher magnitude of disturbance 

when the internal composition controller is included. (see Table 3.2-3.4). 
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2. The settling time of a linear model with an internal controller is shorter than that 

without an internal controller, which is an indication of better system stability. 

3. For implementation purposes, it is recommended to use the linearized model 

whenever the ratio of disturbance magnitude to the tolerable model error is not 

greater than 1 and that the system is open-loop stable under that magnitude of change. 

For example, if the tolerable model error is 20% then the linearized model could be 

used for disturbance magnitude up to 20%. 

4. It is expected that the closed-loop performance (with either single-end or dual-end 

quality control) based on a linearized model will be reasonably close to the nonlinear 

model.     
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Figure 3.15 The ARE of the bulk steady state composition profiles with disturbance in 

FB: OL (b) OL+IC.  
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Figure 3.16 The ARE of the individual dynamic (Dyn) and steady state (s.s) of bottoms 

flowrate (B) with disturbance in FB: (——) OL; (----) OL+IC. 
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Figure 3.17 The ARE of the bulk steady state temperature profiles with disturbances in 

Vs, FB, %mol B in FA: (—) OL; (---) OL+IC. 
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3.7 Conclusion 

In this study, we have compared the open-loop performance of a linearized 

dynamic model of generic reactive distillation system with that of a nonlinear model. An 

approximate linear model nicely averages the process nonlinearities when the magnitude 

of input change is small and becomes inadequate as the deviation from the base steady 

states increases with an increase in the magnitude of disturbance. The effect of various 

step input changes on the performance of an approximate model is explored. The linear 

model could be used to approximate the behavior of the system if the magnitude of the 

disturbance is less than 6% when there is no internal composition controller. When the 

internal composition controller is included, the linearized model could be used to 

approximate the nonlinear model up to a disturbance magnitude equals to the tolerable 

model error provided that the system is open-loop stable. If the system shifts from the 

base steady state to another under the influence of a disturbance, then linearizing around 

the base steady state will result in a model that provides false conclusion. The 

performance and robustness of a linear model is enhanced with the inclusion of an 

internal composition inventory control in the open-loop model of the system. 
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CHAPTER 4 

4 Impact of Disturbance Magnitudes and Directions on 
the Dynamic Behavior of Reactive Distillation  

4.1 Introduction 

Although reactive distillation might be an attractive alternative to the 

conventional multiunit processes, it can be effective for only a fairly small class of 

chemical systems because of some inherent limitations. Reactive distillation is 

particularly possible when reactants and products possess relative volatility such that a 

high concentrations of reactants and low concentrations of products are maintained in the 

reaction zone. The reaction rates must be comparable to those in the reactor at 

temperature suitable for distillation. The potential advantages of reactive distillation 

could be negated by improper choice of reactant to be run in excess in the reactive zone 

whenever it is needed to avoid substoichiometric balance. Thus, it is possible to decrease 

conversion by increasing the amount of catalyst under certain circumstances [1]. 

Increased separation capability could decrease process performance [2]. 

Successful commercialization of reactive distillation technology requires careful 

attention to the modeling aspects, including column dynamics, even at the conceptual 

design stage [3]. The design and operation issues for reactive distillation systems are 

considerably more complex than those involved for either conventional reactors or 

conventional distillation columns. The introduction of an in situ separation function
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 within the reaction zone leads to complex interactions between thermodynamic vapor-

liquid equilibrium, intra-catalyst dilution (for heterogeneously catalyzed processes) and 

chemical kinetics.  

Another area of concerns in the study of reactive distillation system is the impact 

of disturbance magnitudes and directions in dynamic behavior of both open-loop and 

closed-loop model of reactive distillation. In a typical reactive distillation column, the 

regions of intense mass transfer are in the middle of the column where the reactive zone 

is usually located, while the ends of column are essentially used for purification. These 

regions are more sensitive to disturbance directions as compared to the ends of columns. 

The effectiveness of disturbance suppression in a multivariable control system can 

depend strongly on the direction of disturbance [4].  

This work investigates the dynamic behavior of high-purity/high-conversion 

generic reactive distillation system. The effect of disturbance magnitudes and directions 

on the stability of both open-loop and closed-loop system of reactive distillation is 

quantitatively explored. The open-loop performance of the system is explored with and 

without the inclusion of internal composition inventory controller. The impact of certain 

inventory control loops on the dynamic stability of the system is studied. This 

investigation is essential to gain a better understanding of this generic class of reactive 

distillation and to examine the applicability of the developed process models in an 

advanced process control of the system.       
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4.2 Dynamic Scenarios 

Considering the same reactive distillation process shown in Figure 2.1, the effect 

of disturbances is studied to investigate the system dynamic performance. The dynamics 

of the system under these changes were studied for three scenarios:  

1- Open-loop (OL): Under this scenario, two cases are investigated: 

I. Open-loop dynamics I (OL-I): reflux rate is fixed by changing reflux ratio and 

reflux drum level is controlled by distillate flowrate.  

II. Open-loop dynamics II (OL-II): reflux ratio is fixed by changing the reflux rate 

and reflux drum level is controlled by distillate flowrate. 

2- only the level control loops are closed while FA, FB, Za and Zb, Vs and R could be 

sources of disturbance. 

3-  Open-loop with internal composition control (OL+IC): in addition to level control 

loops, the internal composition is controlled by feed flowrate. This reduces the 

number of disturbance by assigning one of the feed flowrates to control the 

composition 

4- Single-end control (CL): in addition to OL+IC loops, a composition loop is closed by 

manipulating either Vs or R to control one of the product compositions which, in turn 

reduces the disturbance variables by one more.     

The main process variables that are considered as sources of disturbances are: 

1- Feed flowrates (FA kmol/s, FB kmol/s) 

2- Vapor boilup (Vs kmol/s)  

The effect of feed compositions (Za and Zb) disturbance and reflux flowrate (R 

kmol/s) disturbance were studied and will be discussed briefly as they are somewhat 
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similar to those of flowrates and vapor boilup disturbances. The kinetic and physical 

properties as well as the steady state operating conditions for the system is the same as 

presented in the Chapter 2.  

This study considers the model configuration where vapor boilup and reflux 

flowrate could be the manipulated variables if the system is operated in closed-loop 

mode. In order to investigate the dynamic behavior of the system, three magnitudes (2%, 

5%, and 10%) in both positive and negative directions are studied for each of the process 

disturbance variables. 

4.3 Open-loop Model (OL) 

4.3.1 Feed Flowrates 

Figure 4.1 shows the responses of the system to different step changes in both 

magnitudes and directions of feed flowrate of reactant B (FB). In this case, the reflux rate, 

vapor boilup, feed flowrate of reactant A and feed compositions are kept constant at their 

steady state values. Figure 4.1a shows the impact of this disturbance in the kinetic region 

of reactive distillation. Excess of reactant B, the heavier reactant, in the reactive zones 

slightly increases the rate of product formation. This is primarily due to fact that reactant 

B will concentrate more in the liquid phase and will react with the available reactant A 

whenever it is available in excess. 

On the other hand, reducing FB (see Figure 4.1) has a severe impact on the 

dynamic behavior of the system, and consequently its stability. Reducing FB by 2% 

causes the total product formation rate to drift to another steady state. Further decrease in 

feed flowrate FB will result in an unstable operation as the bottoms flowrate will increase 

 



 74

 

unbounded (Figure 4.1) and consequently the distillate flowrate drops to zero. The impact 

of excess of reactant B concentration in the column is reflected by an increase in bottoms 

rate in similar proportions to the magnitude of disturbance as shown in Figure 4.1b. 

Increasing FB has the advantage of increasing the conversion and enhancing the system 

stability, yet it decreases products purity as shown in Figure 4.1c as well as reducing 

reactant A concentration in the reactive zone as shown in Figure 4.1d. 

Figure 4.2 shows the responses of the system when reactant A flowrate (FA) is 

changed. Figure 4.2a shows a sharp drop in total product formation rate when FA is 

increased. Increasing the flowrate of reactant A in the column seems to have the same 

effect as decreasing the flowrate of the reactant B (FB), i.e. drift to new steady state. The 

rapid buildup of reactant A concentration in the reactive zone decreases the system 

stability because an excess of a more volatile reactant A will demand an increase in heat 

duty of the system (which is fixed in this scenario) in order to strip out any unreacted A 

from product D. On the other hand, decreasing the feed flowrate of reactant A decreases 

the total product formation rate in reactive zone without drifting or destabilizing the 

system. 

Drifting the system either to another state or to completely unstable conditions when 

FA is increased or when FB is decreased is closely associated to the resulted 

substoichiometric balance of the reactants in the reactive zone. This is further studied by 

investigating the reaction kinetics on reactive trays by ±2% change in F

B

A and FB as 

disturbances.  shows the effect of disturbances on reaction rate in some 

selected reactive trays. The trays in reactive zone are numbered from bottoms to the top. 

Both decreasing   the feed F

Figure 4.3

B and increasing the feed FA in the column results in  
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Figure 4.1 Dynamic responses of the system to different magnitude changes in feed FB. 

(a) total reaction rate; (b) bottoms flowrate; (c) composition of product D in the 

bottoms; (d) internal composition of reactant A in tray nf1. 
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Figure 4.2 Dynamic responses of the system to different magnitude changes in feed FA. 

(a) total reaction rate; (b) bottoms flowrate; (c) composition of product D in the 

bottoms; (d) internal composition of reactant A in tray nf1. 
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Figure 4.3 Responses of the reaction rate in reactive trays to step changes in FB and FA. 

(a) reactive tray nf1; (b) reactive tray nf1+2; (c) reactive tray nf2. 
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insufficient concentration of reactant B, and consequently decreases the rate of products 

formation in the reactive zone. The effect becomes most significant in the first reactive 

tray (nf1) where the product formation rate is the highest at the base steady state before 

introducing any disturbances. The highest steady state reaction rate is in tray nf1 of 

reactive zone which is reasonable as that is where we have the highest concentration of 

reactant A, the limiting reactant in liquid phase. The effect of reactant B deficiency is the 

rapid accumulation of concentration of reactant A in the stripping section, which will 

require more heat to vaporize it. Since in this scenario (OL) the separation capacity is 

fixed by keeping both the reflux rate and vapor boilup constant, decreasing the feed FB or 

increasing the feed FA will result in flooding the stripping section with an unreacted 

excess A, which in turn destabilizes the system or shift it to another state. Figure 4.5 

shows how the temperature distribution in the column is affected with disturbance 

directions in feed streams. 

In general, increase in FB has similar effects as decrease in FA. One would expect 

the other way around is true, i.e. decrease in FB or increase the feed FA, would have the 

same effect, but it is not. Reducing the feed flowrate of reactant B more than 2% is 

intolerable as it makes the system unstable, while increasing FA up to 10% merely drift 

the system to another stable steady state. The reason behind that is as follows: when FA is 

increased at fixed vapor boilup, more reactant A will leave the bottoms of the column as 

excess reactant. On the other hand, when FB is reduced, less than the required amount of 

reactant B will be available, which upsets the reaction kinetics and thus destabilizes the 

system.  
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In order to assess the open-loop dynamics of the system when the reflux ratio is fixed, 

Figure 4.4a compares the total reaction rate responses of OL-I in the reactive zone to 

those of the OL-II when a 10% increase in feed flowrates is introduced. As can be seen, 

there is no much difference in the responses of OL-I and OL-II. On the other hand, Figure 

4.4b shows the effect of negative disturbances in feed flowrate of reactant B (FB) for the 

OL-I and OL-II cases. Introducing a negative disturbance in FB has a more severe impact 

on the dynamics of the system, and consequently its stability when reflux rate is fixed 

(OL-I) than when reflux ratio is kept constant. 

Generally, open-loop dynamics of reactive distillation will give a better 

performance when the reflux ratio is fixed instead of reflux rate. However, if fixing the 

reflux rate is preferable or needed, the inclusion of internal inventory composition 

controller and/or single-end controller (composition or temperature) as discussed in the 

next sections are expected to resolve most of the instability problems. 

 

 

 

 

 

 

 

 

 

 

 

 



 80

 

 

 

 

 

0 2 4 6 8
0.0114

0.0116

0.0118

0.012

0.0122

0.0124

0.0126

time (h)

To
ta

l r
ea

ct
io

n 
ra

te
 (k

m
ol

/s
)

+10% FB

+10% FA

 

               0 2 4 6 8
0.0105

0.011

0.0115

0.012

time (h)

To
ta

l r
ea

ct
io

n 
ra

te
 (k

m
ol

/s
)

To
ta

l r
ea

ct
io

n 
ra

te
 (k

m
ol

/s
)

0 2 4 6 8
0

0.005

0.01

0.015

-2% FB

-10% FB

 

Figure 4.4 Dynamic responses of total reaction rate to step changes in feed flowrates of 

reactant A and B. (—) OL-I; (---) OL-II. 
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Figure 4.5 Temperature distribution in the column with disturbance in feed streams:  

(a) ±2% FB; (b) ±2% FA 
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4.3.2 Feed Composition 

In the steady state design, the feed composition of FA is 100% A and similarly 

100% B for FB. In order to study the effect of feed composition, two cases are studied, in 

which feed composition is changed by introducing some impurities from the other 

reactant, i.e. impurity of reactant A in FB and impurity of reactant B in FA.   Below are the 

two feed compositions considered:  

1. 2%, 5% and 10% of  reactant B in feed FA 

2. 2%, 5% and 10% of reactant A in feed FB  

 Figure 4.6 shows the effect of change in feed compositions on the net reaction 

rate in the reactive zone. In general, introducing reactant B in FA is expected to be 

tolerable similar to increasing FB since both of these changes will result in more of 

reactant B in the system, but as they differ in the point where this increase is introduced, 

the dynamic behavior is different. The reaction rate decreases because of the reduction of 

reactant A in the reaction zone as a result of decrease in the amount of fresh reactant A 

entering the column.  

In general, introducing reactant B in FA is found to be tolerable similar to 

increasing FB since both of these changes will result in more of reactant B in the system, 

but as they differ in the point where this increase is introduced, the dynamic behavior is 

different. The reaction rate decreases because of the reduction of reactant A in the 

reaction zone as a result of decrease in the amount of fresh reactant A entering the 

column. On the other hand, introducing reactant A in feed FB is intolerable because of the 

same reason that makes a decrease in FB intolerable, namely the excess of reactant A in 
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the column while fixing separation capacity. The disturbance in feed compositions affects 

the system dynamics and increases its nonlinearity more than disturbance in feed 

flowrates.  

4.3.3 Vapor Boilup 

Figure 4.7 shows the dynamic responses of total product formation rate, bottoms 

flowrate and some compositions to different magnitude of changes in the vapor boilup 

from the reboiler. A small decrease in vapor boilup from its base steady state value makes 

the system unstable. This might be largely due to the interference effect of fractionation 

on the system’s reaction kinetics. Reducing the heat duty of the reboiler, while the reflux 

rate and the feed inputs remain constant adversely affect the separation capacity of the 

column. Thus, less heat is available to vaporize unreacted A to the vapor phase. This in 

turn decreases the concentration of reactant A in the reflux rate and causes 

substoichiometric balance of the two reactants in reactive zone.  

Increase in the amount of vapor flowrate at fixed reflux rate will increase the 

distillate flowrate and slightly decrease the bottoms product. In addition, the total reaction 

rate slightly decreases because the column fractionation capacity is affected, and more 

heat is available to enrich volatile components in vapor phase. This invariably increases 

bottoms product purity and leads to a gradual depletion of reactant A in the reactive zone 

as more of light reactant is being stripped out from the reactive zone. Thus, more of 

reactant A is lost in the overhead and the liquid concentration of reactant A is reduced. 

This suggests that increased separation capacity could decrease process performance (i.e. 

conversion and product purity). 
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Figure 4.6 Dynamic response of the total reaction rate (TR) of products in reactive zone 

to different magnitude changes in feed compositions. 
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Figure 4.7 Dynamic responses of the system to different magnitude changes in vapor 

boilup. (a) total reaction rate; (b) bottoms flowrate; (c) composition of product D 

in the bottoms; (d) internal composition of reactant A in tray nf1. 
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It is observed that decreasing the vapor boilup has the same effect on the open-

loop dynamics of the system as increasing the reflux flowrate at constant feed conditions 

as shown in Figure 4.8. Increasing the reflux rate with constant vapor boilup forces the 

bottoms flowrate to grow unbounded because it returns more volatile reactant A back into 

the reactive zone than needed. This will necessitate increase in energy consumption of the 

system. 

4.4 Open-loop Model with Internal Controller (OL) 

In a typical distillation column where the feed streams are considered to be set by 

upstream unit, and operating pressure is assumed fixed by heat removal from the 

condenser, the inventories that must be controlled are essentially the liquid level in the 

reflux drum and the base of the column. The investigation on the open-loop dynamics in 

the previous section has revealed the impact of stoichiometric imbalance of the reactants 

entering the column. Thus, the inclusion of internal composition inventory control is 

necessary to improve the system dynamics. 

In this study, the concentration of reactant A on the first tray of reactive section is 

controlled by manipulating the fresh feed of component A using a Proportional-only 

controller. The P-only composition controller is used not necessarily to keep the internal 

composition of reactant A at constant value but to manipulate the fresh feed flowrate of 

reactant A to balance the feeds stoichiometry. The effect of disturbance in feed flowrate 

of reactant B, feed composition, vapor boilup and reflux rate have been investigated in 

this Section but only the results for changes in feed flowrate of reactant B and vapor 

boilup are shown.  
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4.4.1 Feed Flowrates 

The responses of the system to different magnitudes of disturbances in feed FB are 

shown in Figure 4.9. The system is found to be open-loop stable when the flowrate of 

reactant B is increased or decreased. By comparing the results shown in Figure 4.9 to 

those shown in Figure 4.1, the clear improvement in the system dynamics is the result of 

including the internal composition controller which enforces the stoichiometric balance in 

the reactive zone. Similar results are obtained when disturbance in feed composition is 

introduced.  

Figure 4.10 summaries the steady state composition distributions in the column 

with different magnitudes of disturbance in feed flowrate of reactant B when the internal 

composition controller is included. As more of B is fed into the column, the internal 

composition of the reactant A is decreased and the controller responds appropriately by 

increasing FA to balance the increase in FB. The same argument is valid when FB is 

reduced as well. Note that the system responses take a longer time to reach steady state 

when FB is reduced as compare to when it is increased with equal magnitude. This 

indicates how the performance of any control structure on reactive distillation is 

dependent on the magnitude and direction of the disturbance. 
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Figure 4.8 Dynamic responses of total reaction rate (TR) of products in reactive zone (a) 

step changes in vapor boilup. (b)  step changes in reflux rate. 

 

 

 

 

 

 



 89

 

 

 

 

(a)
0 2 4 6

0.011

0.0115

0.012

0.0125

time (h)

TR
 (k

m
ol

/s
) +10%

-10%

(b) 
0 2 4 6

0.011

0.012

0.013

0.014

time (h)

B
 (k

m
ol

/s
)

+10%

-10%

 

(c)
0 2 4 6

0.9

0.92

0.94

0.96

0.98

1

time (h)

X
bo

t,D

+10%

-10%

(d) 
0 2 4 6

0.34

0.35

0.36

0.37

0.38

time (h)

X nf
1,

A

+10%

-10%

 

Figure 4.9 Responses of the system in presence of an internal composition controller to 

±10% change in feed FB. (a) total reaction rate; (b) bottoms flowrate; (c) 

composition of product D in the bottoms; (d) internal composition of reactant A in 

tray nf1. 
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Figure 4.10  Steady state profiles of composition of A, B, C and B with change in FB in 

presence of internal composition controller. 
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4.4.2 Vapor Boilup 

Figure 4.11 shows the responses of the bottoms flowrate the total reaction rate 

when the vapor boilup is increased up to 10% and when decreased by 2%. Similar to OL 

scenario, the results show that the inclusion of internal composition inventory is 

insufficient to handle the decrease in vapor boilup below its optimum condition. The 

inclusion of internal composition controller does not address the problem of disturbing 

the separation capacity of the column when either the vapor boilup or reflux rate is 

changed. Therefore, it is expected that this scenario would be similar to the OL scenario 

for this class of disturbances. 

In general, comparing the open-loop model with and without internal composition 

controller shows that disturbances in feed streams are better handled in presence of 

internal composition inventory controller because the controller acts to maintain the feeds 

stoichiometry. In addition, the settling time is generally far shorter when internal 

composition controller is included as compared to that without it. 
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Figure 4.11 Response bottoms flowrate (B) the total reaction rate (TR) to different                              

magnitudes change in vapor boilup in presence of an internal composition 

controller. 
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4.5 Single-end Control (CL) 

The introduction of internal composition inventory controller improves the 

performance of open-loop reactive distillation system under disturbances in feed flowrate 

and composition in both directions. However, controlling the internal composition alone 

is shown in the earlier section to be inadequate to sustain the system stability whenever 

there is decrease in vapor boilup or increase in reflux rate. Steady state rating analysis [5] 

suggests that a simple single-end control structure could be developed for the system 

because keeping the reflux ratio of the system and not reflux rate constant enhance a 

better performance [6]. The composition of C in the distillate is controlled at 95% by 

manipulating the reflux rate. With the inclusion of this control loop, we are able to 

increase or decrease the vapor boilup to study its impact on both system stability and 

dynamic behavior. 

Figure 4.12 shows the responses of the system when the vapor boilup is changed 

by ±10%. In this scenario, the system dynamics is improved to tolerate changes in vapor 

boilup as the overhead controller will adjust the reflux rate to maintain the required 

separation capacity. Changing the vapor boilup in either direction changes both the reflux 

and distillate flowrate in order to maintain the required separation capacity (i.e. 

maintaining the same reflux ratio). It is interesting to note that the total reaction rate does 

not change significantly from its base steady values of 0.01210 kmol/s when the vapor 

boilup is increased by 10%. (i.e., from 0.01210 kmol/s to 0.01211 kmol/s, which is about 

0.08% increase in total reaction rate). On the other hand, decreasing the vapor boilup by 

the same magnitude of 10%, leads to a significant reduction in total reaction rate from 

0.0121 kmol/s to 0.0112 kmol/s (i.e. 7.5% decrease in total reaction rate). This clearly 
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demonstrates that a negative change in vapor boilup has more impact on the system 

behavior and influence the performance of the controller more than a positive change in 

vapor boilup. Examining closely the response of the product compositions, it can be 

easily noticed that the controller response is slower and has a longer settling time with a 

negative change than a positive change in vapor boilup. The impurity in the bottoms 

product is very significant with a negative change in vapor boilup due to the presence of 

more unreacted component B.  

In general, the presence of single-end controller makes the system generally 

stable, but the effect of the disturbance magnitudes and directions as demonstrated in this 

work has a significant influence on the performance of the controller. Therefore this 

factor must be recognized and be considered in the designs and implementation of 

closed-loop reactive distillation system. 
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Figure 4.12 The responses of the system with single-end composition controller when 

step changes are made in the vapor boilup (VS).  
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Table 4.1 Effect of disturbance magnitudes and directions on the system stability 

Input Direction OL OL+IC CL 

+ Trigger the system sharply to  

another steady state     

FA

- Stable 

N/A N/A 

+ Stable Stable Stable FB

- OL-I: trigger the system to 

another state with small 

disturbance and unstable 

with high disturbance, 

 OL-II: stable      

Stable Stable 

+ Stable  Stable Stable Vs 

- OL-I: Unstable, OL-II: stable Unstable Stable 

+ OL-I: Unstable, OL-II: stable Unstable R 

- Stable Stable 

 

Stable  

Change in Zb   OL-I: Trigger the system 

sharply to another steady 

state and unstable at high 

disturbance , OL-II: Stable  

Stable Stable 

Change in Za  Stable Stable Stable 

 

Note: OL       = Open-loop  

          OL+IC = Open-loop with Internal Controller 

          CL       = Closed-loop 

          N/A     = Not a disturbance variable in this scenario 
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4.6  Conclusion 

The effects of disturbance magnitudes and directions on the dynamic behavior of a 

high-purity\high-conversion reactive distillation have been investigated. Table 4.1 

summarizes the dynamic responses of the system under the three scenarios and for the 

various disturbances that are investigated. This study demonstrates that open-loop 

reactive distillation system gives a better performance when operated with fixing reflux 

ratio instead of reflux rate. Excess of less volatile reactant in two-reactant-two-product 

generic reactive distillation has been found to enhance open-loop stability, but decreases 

the products purity. On the other hand, excess of more volatile reactant triggers the 

system to another steady state. Change in the manipulated variables (i.e. vapor boilup and 

reflux rate) in some directions in open-loop system is intolerable due to their effect on 

both the reaction kinetics and fractionation capacity of the column. 

The performance of the open-loop system is improved significantly with the 

inclusion of an internal composition inventory control to balance the reactants feed 

stoichiometry. However, this has been shown to be insufficient when there is a change in 

either vapor boilup or reflux flowrate in certain directions due to the disturbance this 

makes to the separation capacity of the system.  A single-end control along with internal 

composition controller is found to be the minimum required to ensure the systems 

stability. 
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CHAPTER 5 

5 Performance Assessment of Different Control 
Structure for Generic Reactive Distillation Using 

Linear and Nonlinear Process Models 

5.1 Introduction 

The main goal of process control is the design and implementation of effective 

control systems that will maintain the process conditions close to its desired steady-state 

value. Even though a reactive distillation system is inherently nonlinear, the essence of 

effective regulatory control is to ensure that deviations from base the steady state will be 

small, in which case the behavior will be essentially indistinguishable from that of a 

linear system. It is in this sense that the linear model-based controls could be applicable. 

The present availability of computer software and hardware, which has made it 

possible to utilize a rigorous dynamic model in process control, will tend to pose a 

question as to why do we need an approximate linear model?  The use of a linear model 

can enhance our understanding on the process observability and controllability. Without 

proper understanding, it is almost impossible to design a good control structure. The use 

of a linear model significantly reduces the speed of computation, which becomes very 

critical when a plant model, for instance, is needed for online control. Simple models are 

desirable in computer-based control for optimization and advanced regulatory control 

application, where online implementation limits the use of complex models. For proper 

control of reactive distillation, an internal composition needs to be obtained [1-3]. 
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Most of the established estimation techniques (i.e., Kalman filter and Luenberger 

observer) that could be applied to obtain the internal composition use a linear model. 

Therefore, the use of a linear model in model-based control is needed and will 

significantly reduce the complexity involved in the design and implementation stages as 

compared to when a rigorous nonlinear model is used. Even nonlinear estimators such as 

an extended Kalman filter and an extended Luenberger observer use a linear model 

approximation in their design procedure. [4, 5]  

The present work compares the performance of different control structures when 

implemented on a linearized process model to that when they are implemented on a 

nonlinear model for a generic reactive distillation. The idea is to investigate how good of 

a control can be achieved if a control structure is designed based on an approximate 

process model. This is an important assessment step before using the linearized model in 

model-based control applications. In this work, three control structures are implemented 

to assess the closed-loop performance of a linear process model compared to that of a 

rigorous nonlinear model. The control structures are dual-end composition control, 

single-end composition control and inferential composition control using temperature 

measurement. All of the control structures use a composition analyzer in the reactive 

zone to detect the inventory of one of the reactants so that a fresh feed can be 

manipulated to balance the feeds stoichiometry. 

5.2 The Process 

In this chapter, we considered the same reactive distillation system discussed in 

Chapter 2. An equal stoichiometric amount of fresh feed flowrate of 0.0126 kmol/s is 

used for both reactants A and B. The conversion and purity are fixed at 95%. The initial 
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holdup in each tray is 1 kmol. The column has seven stripping trays, six reactive trays 

and seven rectifying trays. The operating pressure is 9 bar.  

5.3 Control Structures      

The operation of a multivariable process like reactive distillation column has to 

satisfy several control objectives. Typical objectives are to ensure the stability of the 

process, to produce specified products, and to optimize the operation economically. 

Because the various objectives may be of quite different importance and normally require 

different control actions, it is usually desirable to explore a wide variety of control 

structures in order to meet different objectives. 

Three control structures are explored to compare and assess the closed-loop 

performance of a linearized model with that of a nonlinear model. All structures are 

single-input-single-output (SISO) structures with PI controllers except in level controls 

where P-only controllers are used. For each controller, a relay feedback test [6] is 

employed to obtain the ultimate gain and frequency. The controllers are tuned using the 

Tyreus-Luyben tuning method [7]. The design of inventory controllers is carried out first. 

The pressure is controlled by heat removal from the condenser. The assignment of 

manipulated variables for level controllers is based on the principle of choosing the 

stream with the most direct impact [8]. The base level is controlled by manipulating the 

bottoms flowrate, while the reflux drum level could either be controlled by manipulating 

either the distillate flowrate or the reflux flowrate. All of the valves are designed to be 

half open at the initial steady state. Two measurement lags of 30 s each are used in all 

composition or temperature loops.  
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All of the three control structures considered use a composition analyzer in the 

reactive zone as proposed by Al-Arfaj and Luyben[1] to detect the inventory of one of the 

reactants so that fresh feed can be manipulated to maitain the feeds stoichiometry. The 

concentration of reactant A on the first tray of the reactive zone (numbered from the 

bottoms) is controlled by manipulating the reactant A fresh feed flowrate. Three types of 

disturbances are investigated as follows: 

1. Change in feed flowrate of component B (FB): in this disturbance, FB is increased by 

10% and 20% and decreased by 20%. This disturbance is applied to all of the control 

structures.  

B

2. Feed composition of reactant B: the reactant B feed is 100% mol of B. This feed 

composition disturbance will introduce reactant A in the feed composition of reactant 

B (Zb). Two magnitudes are used: ∆Zb= 5% (where the feed of reactant B becomes 

95% mol of B and 5% mol of A). ∆Zb= 10% (where the feed of reactant B becomes 

90% mol B and 10% mol A). This disturbance is applied to all control structures. 

3. Setpoint changes: in this disturbance, the composition setpoint of the composition 

controller is changed from 95% mol of D in the bottoms to 92% and 98%. This is 

applied to the first two control structures (see sections 4.1 and 4.2). For the third 

control structure (section 4.3), temperature setpoint changes of ± 2 K are tested.  

5.3.1 Control Structure I 

Figure 5.1 shows a dual-end composition control structure. The reflux drum level 

is controlled by manipulating the distillate flowrate. The purity of both products is 

maintained at 95%. In the distillate products, the composition of component C in the  
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Figure 5.1 Dual-end composition control structure  
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distillate is controlled by manipulating the reflux flowrate from the condenser, while the 

bottoms composition of component D is controlled by manipulating the vapor boilup. 

Various magnitudes of disturbance in the feed flowrate and feed composition are 

studied to assess the closed-loop performance of this control structure based on linear and 

nonlinear models. Figure 5.2 shows the response of the system for -20%, +10% and 

+20% changes in the feed flowrate of reactant B (FB). Two curves are shown in each of 

the plots comparing the closed-loop performance of this control structure when a linear 

model is used to that when a rigorous nonlinear model is applied. The results show that 

this control structure is able to reject the load disturbance effectively with the two 

models. While the responses of controlled variables in both models show an excellent 

agreement, the responses of manipulated variables in linear model show a slight variation 

from that of a nonlinear model in an attempt to satisfy the same control objectives. This 

variation is seen to increase with an increase in the magnitude of the disturbance.  

Under open-loop operation where only level inventories are controlled, the 

process will drift from the base steady state to a lower conversion state when FB is 

decreased with small magnitude and will be unstable at higher magnitude of the 

disturbance [9]. The linearized model will not predict this drift because it is a nonlinear 

feature of the process. Even though the drift will not take place in the closed-loop 

scenario because the controllers will adjust the manipulating variables to maintain 

product purity, the process dynamics during transit region will not be properly described 

in the linear model. The open-loop stability of the nonlinear model must be investigated 

before the linearized model is used in model-based control applications. The use of a  
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linear model is inappropriate if the system is open-loop pseudo stable (drifts to another 

steady-state region) or unstable under disturbance. 

Figure 5.3 compares the closed-loop performance of a linear model to that of a 

nonlinear model when 5% and 10% impurities of A are introduced in the feed 

composition of FB. Under open-loop operation, introducing reactant A impurities in the 

reactant B feed allows the process to drift sharply to another state at lower impurity 

magnitudes and destabilizes the process completely at higher magnitudes of impurity [9]. 

Even though the composition controllers are able to meet the control objective of 

rejecting the feed composition disturbance, the response of a linear model is seen to be 

slower than that of a nonlinear model, thus making the time to reach the desired steady 

state longer than that when the controller is designed based on a linear model. The 

performance of this structure deteriorates with an increase in the magnitude of the 

disturbance when a linear model is used. Again, this shows the inapplicability of the use 

of linear models in control system design when the process is open-loop pseudostable or 

unstable under certain disturbances where the linear process model could not describe the 

nonlinear process behavior.  

Figure 5.4 shows the responses of composition controllers with setpoint changes 

in the composition of component D in the bottoms product for both closed-loop linear 

and nonlinear models. The results show that setpoint changes by decreasing the bottoms 

purity from 95% to 92% or increasing the purity from 95% to 98% can be handled. The 

composition controllers appear to be effective and robust with both linear and nonlinear 

models. The results shown in Figures 5.2-5.4 point toward an interesting observation. 
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The control system when controllers are designed based on a linear process model can 

achieve the control objectives but would typically underestimate some or all of the input 

characteristics (the magnitude, the rate, and the speed of change of manipulated 

variables) when the process is open-loop pseudo stable or unstable under the influence of 

disturbance. Even though the controlled variable will eventually settle to the required 

level, the manipulated variable may differ not only in the transit region but also in the 

amount required to get the controlled variable to the required level. If the resulting 

manipulated variables from the two models are comparable, then this underestimation in 

the input characteristics could be overcome by properly designing the control valves to be 

more aggressive than what would otherwise be designed based on the closed-loop 

performance of linear models. 

5.3.2 Control Structure II 

Although a dual-end composition control structure might have the advantage of 

energy savings, the additional expenses and the risk associated with designing and 

operating a more complex control system may not be justified in some systems where a 

single-end control system is feasible. The single-end composition control loop is a simple 

SISO system, so it can be easily tuned and give a faster response because of the reduced 

effect of loop interaction. 

To further assess the impact of open-loop stability on the extendibility of control 

systems designed based on linear models, various control arrangements of the reflux 

drum level are investigated when the distillate product is not controlled. Three level 

control schemes are considered as follows: 
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III. Scheme I: the reflux ratio is fixed, and the reflux drum level is controlled by the 

reflux flowrate. 

IV. Scheme II: the reflux ratio is fixed, and the reflux drum level is controlled by the 

distillate flowrate. 

V. Scheme III: the reflux flowrate is fixed, and the reflux drum level is controlled by the 

distillate flowrate. 

As discussed in section 4.1, a reduction on FB by 20% destabilizes the system under the 

open-loop operation when both the reflux flowrate and vapor boilup are kept constant. 

Scheme 3 is mimicking that open-loop scenario because the reflux flowrate is kept 

constant, while the other two schemes are not because the reflux flowrate will vary to fix 

the reflux ratio. Therefore, it is expected that the linear process model will be useful for 

schemes 1 and 2 but will not be appropriate to use for scheme 3 because the open-loop 

instability.  

Figure 5.5 shows the closed-loop response based on the two process models for 

the three schemes when a 20% reduction in FB is introduced. The result in Figure 5.5 

indicates that the process performance under schemes 1 and 2 are essentially similar and 

the control responses of both linear and nonlinear models are close and comparable. 

Therefore, which of the flowrates is used to control the drum level when the reflux ratio 

is fixed is not critical. This result also indicates that fixing the reflux ratio is more 

suitable when single-end control is used because it filters the disturbance impact on the 

system.  

When the reflux flowrate is fixed (Scheme 3) instead of the reflux ratio, a 

different behavior is observed. Fixing the reflux flowrate will not filter the disturbance 
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impact to the system and thus could destabilize the system if the process is operated at a 

critical region of stability. Similar to the observation in section 5.3.1 about the impact of 

open-loop stability on the closed-loop performance based on linear models, it is shown in 

Figure 5.5 that the response of the linear system when the reflux flowrate is kept constant 

is not matching the nonlinear response in the transit region. The prediction of the 

manipulated variable behavior from the linear model completely misses the trajectory 

suggested by the nonlinear model. The reason for this behavior is the fact that the system 

drifts to another state at this disturbance and the nonlinear model will calculate the 

required input to get the product purity to the required level from the new state. Because 

the linear model cannot predict the drift, the trajectory suggested by the linear model does 

not take this into consideration, which resulted in this inappropriate prediction of the 

transit behavior. In such a case, we cannot use the linear model as a basis for developing 

the control system of the process. On the other hand, when the change in FB is made in 

the positive direction, the system is open-loop stable even with the fixed reflux flowrate 

configuration, and consequently it is expected that the performance based on the linear 

model will be similar to that based on the nonlinear model. A comparison of the 

performance based on the two models for this disturbance is shown in Figure 5.6, which 

is in line with our expectations. 

The scheme 1 configuration is considered in detail to compare the closed-loop 

performance based on a linear model to that based on a nonlinear model for the single-

end composition control structure. Figure 5.7 shows the single-end composition control 

structure based on the scheme 1 configuration. The composition of component D in the 

bottoms product is controlled by adjusting the vapor boilup. Figure 5.8 shows the 
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performance of this control structure when FB is increased by 10% and 20% and reduced 

by 20%. The responses from both controlled and manipulated variables when an  

approximate linear model is used are in agreement with those when a rigorous nonlinear 

model is used. The results demonstrated that changes in throughput can be handled using 

a linear model. The response of the distillate product composition of component C 

exhibits some variation from that of a nonlinear model because it is not controlled, and 

this difference increases greatly with an increase in the disturbance magnitudes. This is 

expected because the two models are not identical. 

Figure 5.9 shows that a single-end composition control structure could also 

provide an effective regulatory control of the process when impurities of A are 

introduced in the feed composition of the reactant B stream. The linear process model 

demonstrates a better performance in feed composition disturbance rejection in a single-

end composition control structure than in the dual-end control (compare the results shown 

in Figure 5.9 to those shown in Figure 5.3). Figure 5.10 compares the closed-loop 

performance of the linear and nonlinear models based on changes in the setpoint of the 

bottoms purity specification. The results demonstrate that a very high purity of the 

bottoms product could be achieved with a single-end controller by changing the setpoint 

from 95% to 98%.  
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Figure 5.5 Three alternative control schemes for single-end control structure: (I) fixed 

reflux ratio and control level by the reflux flowrate; (II) fixed reflux ratio and 

control level by the distillate flowrate (D); (III) fixed reflux flowrate and control 

level by the distillate flowrate.   
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Figure 5.6 Single-end composition control responses base on Scheme 3 with -20%, +10% 

and +20% disturbances in FB: (---) linear model; (—) nonlinear model. 
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Figure 5.7 Single-end composition control structure.  
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Figure 5.8 Single-end composition control responses: -20%, +10%, +20% FB.  

(---) linear model; (—) nonlinear model. 
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Figure 5.9 Single-end composition control responses, 5%, 10% mol of A in Zb:  

(- - -) linear model; (—); nonlinear model. 
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Figure 5.10 Single-end composition control responses, setpoint changes Xbot, B from 95% 

to 92% and 98%: (- - -) linear model; (—); nonlinear model. 

 

 

 

 



 119

 

5.3.3 Control Structure III 

Because the direct composition control structures discussed in the above Sections 

inevitably require the use of an expensive and unreliable composition analyzer, it is 

important to study how the linear model will behave when a simple temperature control 

system is used. The temperature sensor is typically fast, inexpensive and reliable. It could 

provide an indirect measurement of composition. Figure 5.11 shows a single-end 

temperature control structure. The reflux drum level is controlled by adjusting the reflux 

flowrate, while the reflux ratio is kept constant by changing the distillate flowrate. 

Because the control objective of this structure is to maintain the product composition as 

close as possible to its desired specification, the temperature measurement is placed on 

the most sensitive tray in the stripping section. The temperature on tray 2 (numbering 

from the bottoms) is measured and controlled by manipulating the vapor boilup. 

Figure 5.12 compares the closed-loop performance of this control scheme using a 

linear model to that using a rigorous nonlinear model with different magnitudes of 

disturbance in the feed flowrate of reactant B. The results demonstrate that the 

temperature control performs well by keeping the purity of the bottoms product as close 

as possible to the desired value. The system responses under this control structure to feed 

composition disturbances are shown in Figure 5.13. Even though the bottoms purity is 

not maintained exactly at the desired level, this control structure is able to reject feed 

composition disturbances by keeping the bottoms purity within reasonable bounds using 

a linear process model. Note that there is a significant difference between the responses 

of linear and nonlinear process models for component C in the distillate product because 

it is not controlled. This signifies that the use of a linear model in a single-end control 
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structure could be restricted to a chemical system where the purity of one component is 

desirable. Alternatively, the process could be designed with higher uncontrolled product 

purity to compensate for any inferior control performance.  

The dynamic responses of the two models for ±2 K step changes in the 

temperature are shown in Figure 5.14. These results demonstrate that the temperature 

setpoint changes can be easily handled and the system responses of a linear model are 

comparable to those of a nonlinear model. An increase in the temperature causes the 

controller to increase the vapor boilup, and more heat is available to overpurify the 

bottoms product. The distillate purity changes in the opposite direction as expected. On 

the other hand, a decrease in the temperature results in a decrease in the amount of vapor 

boilup. The effects are an increase in impurity in the bottoms and overpurification of the 

distillate product.  

All of the responses of a linear model using this structure show a good agreement 

when compared to the responses of a nonlinear model under the same control structure. 

The exception is in the distillate purity, where the difference in the responses of the two 

models becomes increasingly significant with an increase in the disturbance magnitude 

because that purity is not controlled.       
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Figure 5.11 Single-end temperature control structure. 
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Figure 5.12 Single-end temperature control responses, -20%, +10%, +20% FB:  

(- - -) linear model; (—); nonlinear model. 
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Figure 5.13 Single-end temperature control responses, 5%, 10% mol of reactant A in Zb: 

(- - -) linear model; (—); nonlinear model. 
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Figure 5.14 Single-end temperature control responses, ±2 K degree changes in 

temperature on tray 2: (- - -) linear model; (—); nonlinear model. 
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5.3.4 General Comparisons and Observations  

Probably the most important finding of this work is the robustness and the 

extendibility of the control system when designed based on a linear process model. It is 

found that the linear process model could be used to develop a robust control system 

provided that the control valves are conservatively designed to compensate for the 

underestimation of the input characteristics by the linear model. That control system will 

be valid only if it is applied in the operating region where the model is linearized around 

and if the process is open-loop stable under disturbance. If the process shifts to another 

operating region for whatever reasons, then the process model must be linearized around 

the new operating region. This observation would be useful for the model-based control 

applications.  

Comparing the closed-loop performance of linear and nonlinear models in a 

single-end (composition or temperature) control structure with that of a dual-end 

composition control discussed in section 5.3.1 reveals that the use of a linear model in 

single-end control structure gives a better agreement with the nonlinear model than when 

the linear model is used in dual-end composition control. The responses of both 

controlled and manipulated variables for the two models in single-end control structure 

are in better agreement when compare to that in dual-end composition control. The 

responses of the system with single-end control are also faster than the responses of the 

system with dual-end composition control. This could be due to an increase of 

nonlinearity in the system with a dual-end control structure which results from increased 

loop interactions. The single-end control suffers the ability to precisely control the 

uncontrolled end, but this could be compensated for by overdesigning the process (design 
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at higher product purity). It is found that fixing the reflux ratio scheme in single-end 

control structure provides better disturbance filtration and process dynamics.  

5.4 Conclusion 

In this chapter, we have compared the closed-loop performance of three control 

structures when based on an approximate linear process model to that when based on a 

nonlinear process model for a generic two-product reactive distillation. The control 

structures examined are dual-end composition control, single-end composition control, 

and single-end temperature control. All of the structures use a composition analyzer in 

the reactive zone to detect the inventory of one of the reactants so that the fresh feed can 

be manipulated to balance the feeds stoichiometry. 

It is shown that an approximate linear model behaves reasonably well compared 

to a nonlinear model in a closed-loop system when a disturbance in the process variables 

is introduced provided that the system is open-loop stable under that disturbance. Most of 

the responses of a closed-loop linear model using three alternative control structures 

show good agreement when compared to the responses of a closed-loop nonlinear model 

under the same process conditions. It is also shown that the performance of a linear 

model is better in a single-end control system than in a dual-end control system. It is 

generally recommended to fix the reflux ratio and not the reflux flowrate in the single-

end control schemes.  
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CHAPTER 6 

6 Design and Implementation of Linear State 
Estimators in Reactive distillation  

6.1 Introduction  

The increasingly more aggressive global competition for the production of higher 

quality products at lower costs has placed considerable pressure on the process engineers 

to operate the existing plants more efficiently. Moreover, the effective control and 

monitoring of a process requires sufficient information on the state of the process, which 

is uniquely specified by the process state variables. In practice, online measurements of 

all the variables of a process are rarely available, and in such cases, reliable information 

on the immeasurable states is obtained by using the state estimator. The state observers/ 

estimators are dynamic models that are capable of inferring useful but inaccessible state 

variables from the available measurements. They can also play a key role in the process 

control and monitoring wherein an early detection of hazardous conditions is needed for a 

safe operation [1]. 

Several estimation techniques are available in the literature. These include the 

static partial least-square regression estimation [2], Kalman filtering [1, 3, 4], the state 

estimation through optimization formulation [5], high gain observers [6], Luenberger 

observer [7, 8], and a moving horizon state estimation [9]. Among these estimation 

techniques, the Kalman filter and the Luenberger observer, which have been in use since 

the early 60s have gained a wider application both in the academia and industry, though 
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they have undergone several modifications over the years. Because, this work is the first 

on the application of state estimation in reactive distillation system, it is reasonable to 

start with these two techniques and assess their applicability in reactive distillation 

control. 

In Chapter 5, we have presented different control structures for a generic reactive 

distillation using the linear and nonlinear process models. It is shown that an approximate 

linear model behaves essentially similar to a nonlinear model in a closed-loop system 

when the deviation of process variables resulting from the disturbance is within the 

region of the base steady state [10]. However, a composition analyzer was assumed 

available whenever a composition measurement is needed for control purposes. 

 This chapter focuses on developing and assessing the performance of the linear 

state estimators based on the Kalman filter and the Luenberger observer design methods 

for an ideal reactive distillation column. Internal compositions which are needed for 

proper control of reactive distillation will be estimated via the state estimator instead of 

measuring them by an analyzer. The design and implementation of linear observers are 

considered in the present work in order to give us a better insight and understanding on 

the feasibility of applying the state estimation techniques in the reactive distillation 

control.   

6.2 Reactive Distillation Models 

The development of a reliable and computationally efficient state estimator 

requires a mathematical model that is able to capture the main features of the system 

dynamics. Following the previous work on the reactive distillation shown in Figure 2.1, 
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we considered here a reactive distillation model with constant liquid holdup in all the 

stages, negligible energy balance, constant relative volatility, and an equimolar overflow 

except in the reactive zone where the vapor and liquid flowrate changes because of heat 

of the reaction. Mole balances on all of the components and the algebraic equations 

describing the liquid and vapor flowrates in the reactive zone give the reactive distillation 

models: 

[ ] iijjiijijijiijijiijijii
ij MxZFRyxVxyVxxL

dt
dx
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The nonlinear model of reactive distillation can be put in more compact vector 

form by decoupling all of the state variables in the models and represented it as nonlinear 

state space models    

));(),(),(()( θtdtUtXf
dt

tdX
=                                                                                        (6.4) 

)),(( θtXhY =                                                                                                                 (6.5)      

                                    (6.6) [ ]TNNNN xxxxxxxxxxxxX ,4,4,24,13,3,23,12,2,22,11,1,21,1 ,...,,,...,,...,,...,=

X is n-dimensional and it represents the liquid composition of all components in the 

column. The p-dimensional U is a vector of manipulated variables, which in this study 

are considered to be the vapor boilup and reflux flowrate. d is m-dimensional vector 

included to depict system measurable disturbances which are feed flowrates and 

compositions. θ represents the model constant parameters, such as the relative volatilities, 
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equilibrium constants and column pressure. Y is q-dimensional vector of the measured 

output variables (i.e. stage temperature measurements).  

For the linear estimator design purposes, the nonlinearity of the dynamic 

equations must be removed. To accomplish this, the following fundamental assumptions 

are introduced as remark I. 

Remark I: A nominal solution of the nonlinear differential equation of reactive 

distillation must exist. This solution must well approximate the actual behavior of the 

system. The approximation is acceptable if the difference between the nominal and actual 

solutions can be described by a system of linear differential equations. These equations 

shall be termed “linear process modes”. 

Linearizing the nonlinear process model of equation 6.4 and 6.5 using the Taylor 

series expansion method around the desired steady state operating conditions to yield   

)()()()( tEdtBUtAXtX ++=
•

                                                                                      (6.7) 

)(tCXY =                                                                                                                      (6.8) 

where the transition matrices A, B, C and E are evaluated at the desired steady state 

operating conditions (see the appendix for detail). The base steady state operating 

conditions considered in this work is given in Table 6.1. Taking into consideration the 

assumption given in remark I, the linear process model of equations 6.7 and 6.8 is 

assumed to be the plant model on which the design of estimators in this work is based.  
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Table 6.1 Optimum base steady state conditions. 

 variables steady state values 

Column 

specifications 

pressure (bar) 

stripping section (NS) 

reactive section (NRX) 

rectifying section (NR)  

  9 

  7 

  6 

  7 

Equilibrium 

data 

Relative volatilities: 

A/B/C/D 

 

4/2/8/1 

Feed rate of reactant A 0.0126 

Feed rate of reactant B 0.0126 

Vapor boil up  0.0285 

Reflux rate 0.0331 

Distillate  0.0126 

Flowrates 

(kmol/s) 

Bottoms 0.0126 

A 0.0467 

B 0.0033 

C 0.9501 

XD

D 0.0000 

A 0.0009 

B 0.0445 

C 0.0000 

XB

D 0.9545 
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6.3 Observability, Location and Number of Measurements 

6.3.1 Observability 

The concept of the observability is very important and a necessity in the 

estimators design. The state equation is said to be observable when there exist a set of 

measurable outputs that contain information on all the state variables. Thus, it indicates 

the possibility of estimating the state from the available output. The criteria for 

determining observability for a linear system are well defined in the literature [7]. A 

linear system is observable if the matrix 

O = [C CA CA2…CAn-1]                                                                                    (6.9) 

is full column rank (i.e. of rank n). O is termed the observability matrix. 

6.3.2 Measurement Location  

An appropriate location of the measurements in the reactive distillation column is 

an important factor in the successful design and implementation of a state estimator, and 

in the control of the system as a whole. In the control of distillation system for instance, 

locating the temperature measurements far from the column ends is usually desirable 

because the products may be of a high purity where the temperature variations will be 

insignificant [2]. On the other hand, if the measurement is located too far from the end of 

the column, the temperature will be strongly influenced by the composition of the feeds 

and the product at the other column end [2]. The use of singular value decomposition 

(SVD) to determine the best measurement location as reported in the literature suggests 

the most sensitive trays are generally located approximately one-forth from each end of 
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the column [11]. One major problem identified with this method is that it does not 

consider the load disturbance effects [11]. As the measurement location moves farther 

from the end of the column, the error in the overhead and bottoms compositions becomes 

greater, even when the measured variables remain constant, under load disturbances [11]. 

Therefore, the use of evenly spaced multiple measurements could provide an acceptable 

compromise and handle some of the interferences appropriately [2-4].  

6.3.3 Number of Measurements 

Intuitively, the more measurements there are, the more information and the 

greater the accuracy of the estimators. However, it is both technically and economically 

desirable to have small set of measurements. Yu and Luyben [12] established that a linear 

system of conventional distillation column is observable as long as the number of 

measurements is at least NC-1, where NC is the number of component. However, using 

the number of measurements more than the minimum required could increase the 

performance of the observer [12]. Unlike conventional distillation system, there are no 

specific guidelines from the literature on the minimum number of measurements required 

to make reactive distillation observable. Thus, it is part of this work to utilize the 

characteristics of a linear process model of reactive distillation to determine the number 

of measurements that will guarantee the observability of the system.   

Figure 6.1 gives the simple and effective algorithm to determine the number of 

measurements for a linear process model of reactive distillation that will make the whole 

states observable. This algorithm examined the linear process model of reactive 

distillation with constant number of components (NC = 4) but at varying total number of  
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Determine the number of state 
variables: n = N x Nc 

Obtain the desired steady state conditions

Pick q measurements and place the 
evenly through the column. 
Assume q = Nc-1 for a start 

Obtain the Jacobian matrix A  
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   q = q+1 
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No 

Obtain the observation matrix C  

Figure 6.1 Algorithm for determining the number of measurements needed for system 

observability.  
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stages N (from 16 to 37). The desired steady state operating conditions for the column at 

different number of stages were obtained using a steady state simulation program. 

Using the desired steady state conditions to evaluate matrices A and C, 

observability condition (Equation 6.9) was used routinely to determine the minimum 

number of measurements that makes the system a full column rank. Table 6.2 

summarizes the results obtained for different number of column stages. From these 

results, it can be concluded that the observability of a linear process model of reactive 

distillation depends strongly on the number of stages. Using only the temperature 

measurement evenly spaced in the reactive distillation column, the relationship between 

the number of measurement and the total number of stages is given by  

Number of measurement =
2
N                                                                          (6.10) 

This result perhaps has a strong antecedent from the literature on distillation 

system. Luyben [13] suggested the tracking of the temperature front by using an average 

of as many trays temperature. Whitehead and Parnis [14] used a weighted average of 

many differential temperatures in a C2 splitter. Mejdell and Skogestad [2] used 

temperature measurements in all the column stages in the development of static partial 

least-square regression estimator for product compositions on a high purity pilot-plant 

distillation column. The use of multiple temperature measurements by the estimators 

effectively counteracted the effect of pressure variations, measurement noise, off-key 

components, and the nonlinearity in the column [2].   
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Table 6.2  Number of the measurement versus the rank of the system. 

N NS/NRX/NR q Rank / n 

16 5/4/5 6 

7 

60/64 

64/64 

19 6/5/6 7 

9 

73/76 

76/76 

22 7/6/7 9 

11 

83/88 

88/88 

25 8/7/8 11 

13 

97/100 

100/100 

28 9/8/9 13 

14 

110/112 

112/112 

31 10/9/10 14 

16 

119/124 

124/124 

34 11/10/11 16 

17 

132/136 

136/136 

37 12/11/12 17 

19 

143/148 

148/148 

 

 

Remark II: Using N/2 number of measurements is a sufficient condition to observe the 

whole states (liquid compositions) of reactive distillation. 
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6.4 State Estimator Structure 

The linear estimators are developed by using a linearized state-space model 

presented in section 6.2. The two different types of estimator design are considered: a 

Luenberger observer (LO) and a Kalman filter (KF). The general structure of the two 

estimators is essentially the same as presented in Figure 6.2. The main difference 

between these techniques is the design method of the filter gains. The theory and 

mathematical formulation of Luenberger observer and Kalman filter are detailed in the 

literature [7, 15] and only the required equations as it is relevant to this work are 

presented. The components of a linear state estimator are:  

1.   A linearized dynamic system:                   (6.11)     )()()()()( twtEdtBUtAXtX +++=
•

2.    Measurement devices:             )()( tvtCXZ +=                                                   (6.12)  

3.    Initial conditions:                    errxXX 00)0( +=                                                (6.13) 

0X  is a vector of the actual initial condition of the system taking at the steady state.  is 

a vector representing the plant noise,  represents measurement error vector and is 

a vector of the initial condition error. Equation 6.12 implies that at each independent time 

t there are q measurements available (i.e. Z is q-dimensional) that are linearly related to 

the states and are corrupted by the additive noise. All of these components will be 

combined into a state estimator of the form: 

w

v errx0

errxXX 00)0(ˆ +=                                                                                                        (6.14) 

)(ˆ tXCY =                                                                                                                     (6.15) 
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))](ˆ())(([)()()(ˆ)(ˆ tXYtXZKtEdtBUtXAtX −+++=
•

                                            (6.16)               

where K is the estimator gains matrix. The estimator has two inputs U  and Z  with 

measurable disturbance d and its output yields the estimated state vector X̂ .  

6.4.1 Base Initial Condition Errors, Measurement and Plant Noise  

The development of an estimator usually assumes that the real initial conditions of 

the system are not known. Thus, a robust estimator should be able to start with 

approximate initial conditions. In this work, the guess initial conditions for the state 

estimator are defined as given in Equation 6.14. The initial condition errors are 

considered as the deviation from the actual initial conditions of the system obtained by 

solving the steady state model. The measurement noise  and the plant noise  are 

assumed to be uncorrelated (i.e. white noise) random sequence with known statistical 

properties. 

v w

0][ =kwE ,                                                                                                  (6.17) 0][ =kvE

kjk
T

jk QwwE δ=][                                                                                                         (6.18) 

kjk
T

jk RvvE δ=][                                                                                                           (6.19) 

0][ =T
jk wvE                                                                                                                 (6.20) 

where kjδ  is the Kronecter delta. Note that subscripts i and k refer to the particular 

elements in the parameters vector or matrix.  

In order to compare the performance of the two state estimators considered in this 

study, the same base initial condition errors, measurement noise and plant noise are used 
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in the design, implementation and simulation of the two state estimators. Figure 6.3 gives 

the base initial condition errors and measurement noise for the estimators. The standard 

deviation of the base plant noise (w) is 0.1%. Unless otherwise stated, these base initial 

condition errors, measurement noise and plant noise are always present in all the 

simulation carried out in this work.  

6.4.2 Luenberger Observer (LO)   

For a Luenberger observer, Equation 6.16 can be rewritten as 

KZtEdtBUtXKCAtX +++−=
•

)()()(ˆ)()(ˆ                                                               (6.21) 

The error between the actual state and estimated state is define as 

)(ˆ)()( tXtXte −=                                                                                                         (6.22) 

Differentiating e(t) and then substituting equation 6.10 and 6.20 into it, we obtain 

•••

−= XtXte ˆ)()(                                                                                                             (6.23) 

        )()()(ˆ)()()()( CXKtEdtBUXKCAtEdtBUtAX −−−−−++=

       XKCAtXKCA ˆ)()()( −−−=

)()()( teKCAte −=
•

                                                                                                      (6.24) 

The equation 6.23 governs the estimation error ( ). If all eigenvalues of matrix (A-

KC) can be assigned arbitrarily, then the rate of  to approach zero, or equivalently, 

for the estimated state to approach the actual state can be controlled. For example, if all  

)(te

)(te
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Initial condition 

errxXX 00)0(ˆ +=  

State estimator  

( )[ ])ˆ(ˆˆ XYXZKEdBUXAX −+++=
•

 

 XCY ˆ=  

State model 

wEdBUAXX +++=
•

 

Output data 

vCXZ +=  

Estimates 

 

Figure 6.2 Linear state estimator structure. 
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Figure 6.3 The base initial condition error ( ) and base measurement noise ( ). errx0 )(tv
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igenvalues of matrix (A-KC) have negative real parts smaller than –µ, then all the 

6.4.2.1 Design Procedure for a Luenberger Observer 

 the algorithm presented in Figure 6.1, pick the number of measurements (q) 

ty theorem [7]. The pair (A, C) is 

 

 of the gains (K) that place the selected eigenvalues at desired      

6.4.2.2 Tuning the Luenberger Observer 

The design of the suitable observer gains is a major prerequisite for a successful 

implem

e

entries of the estimation error ( )(te ) will approach zero at the rate faster than e-µ. 

The design procedure to obtain the gain matrix of the Luenberger observer is presented as 

follows: 

(1) Using

such that the whole system’s states are observable.  

(2) Design the gain matrix K by using the duali

observable if an only if (AT, CT) is controllable. If (AT, CT) is controllable, all 

eigenvalues of (AT- CTI) can be assigned arbitrarily by selecting a constant gain matrix I. 

The transpose of (AT- CTI) is (A- ITC).  If   K = IT, then (A- ITC) is the same as (A- KC). 

(3) Use Qunitero-Marmol method [8] to select suitable set of the eigenvalues for matrix

(A-KC). This is carried out by increasing the magnitudes of the slowest eigenvalues of 

the system matrix A because the response of the estimator is expected to be faster than 

that of the real system. 

(4) Evaluate the values

locations.  

entation of the Luenberger observer method. Selecting an inadequate set of the 

eigenvalues could lead to the poor performance of the observer. To illustrate this, the 

different sets of eigenvalues as shown in Figure 6.4 are used in the Luenberger observer 
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ark III: Because the gains of a Luenberger observer is designed offline, set 

the gai

design. The eigenvalues of system matrix A is taken as the first set of eigenvalues for the 

state observer. In the second illustration, the magnitudes of the two slowest eigenvalues 

of matrix A are increased while in the third example, the slowest seven eigenvalues of 

matrix A are shifted. Figure 6.4B presents the performance of a Luenberger observer as a 

function of these different sets of eigenvalues to estimate the bottoms mol fraction of 

component D when the feed flowrate of reactant B is increased by 10%. Throughout this 

work, the reactant A flowrate, column pressure, reflux flowrate, and vapor boil up are 

kept constant, while the reflux drum and column base levels are controlled by 

manipulating the distillate and bottoms flowrates respectively.  When the first set of the 

eigenvalues is used, it takes the observer estimate about 6 h to the approach the reference 

state, whereas using the third set, the observer estimate approaches the reference state in 

less than 20 min of the startup. Selecting higher magnitudes of the eigenvalues gives 

higher gains and faster response, but greater noise susceptibility, and often, lower margin 

of stability. Therefore, an appropriate selection of eigenvalues for the observer gains 

design is a key factor in the application of a Luenberger observer and should be selected 

carefully. 

Rem

ns as high as the margin of stability will allow.  
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Figure 6.4 [A] The eigenvalues of matrix (A-KC), [B] effect of the eigenvalues selection 

on the performance of Luenberger observer: (a) the same as eigenvalues of matrix 

A; (b) the slowest two eigenvalues are shifted to higher magnitudes; (c) the 

slowest seven eigenvalues are shifted to higher magnitudes: (–—) actual state 

profile; (----) estimated state profile. 
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6.4.3 Kalman Filter (KF)    

The Kalman filter is an approximate optimal estimator of the state vector X at a 

given time value, based on the predictions of a given model and the measurements 

available up to that time. The detailed formulation of a Kalman filter is contained in [15].  

Consider a continuous-time linear system derived previously and presented in the form 

)()()()()( tvtEdtBUtAXtX +++=
•

                                                                            (6.25) 

)()( twtCXZ +=                                                                                                           (6.26) 

Analogously to the assumption made previously, we have included in this model the two 

white, zero-mean, mutually uncorrelated noise signals v(t) and w(t) and they have the 

same properties as discussed in section 6.4.1. 

Again, we need to determine the estimator that best estimate the state of equation 

6.25, while rejecting the influence of the noisy inputs and initial condition errors. As 

before, the estimator design objective is to design the gain that will minimize an error 

criterion as established by the equation 6.24. 

  First, let   denote the state-transition matrix of the error system in equation 6.24, 

the complete solution of equation 6.24 is given as 

),( 0ttΦ

∫ −Φ+Φ=
t

t

dwvttettte
0

)]()()[,()(),()( 00 ττττ                                                               (6.27) 

Finding the error covariance P from this expression: 

)]()([)( τTeteEtP =                                                                                                       (6.28) 

By substituting equation 6.27 in equation 6.28 gives: 
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∫ Φ+Φ+ΦΦ=
t

t

TT dtRQtttPtttP
0

),(])[,(),(),()( 000 τττ                                              (6.29) 

Taking the derivative of equation 6.29 with respect to t to determine the dynamics 

of the error covariance P, and after simplification gives 

RQKCAtPtPKCAtP T ++−+−=
•

))(()()()(                                                             (6.30) 

This resulting equation is popularly known as differential matrix Riccati equation for the 

error covariance P(t) whose initial condition is P(t0)= P0. However, we have not yet 

optimized the norm of the error over all possible gain K (t). To perform the optimization, 

we will attempt to minimize the squared error at any time t. This squared error may be 

expressed as 

)]([)]()([ tPteteE T =                                                                                                     (6.31) 

Therefore, the matrix gain K that minimizes the error criterion as expressed above is 

given as 

0)(2)(2)]([ =+−=
∂
∂ RtKCtPtP
K

T                                                                            (6.32) 

which after further simplification gives the Kalman gain matrix  K 

1)()( −= RCtPtK T                                                                                                         (6.33) 

Using this equation of the gain, the error covariance dynamics simplify as well to 

                                                            (6.34) QtCPRCtPAtPtAPtP TT +−+= −
•

)()()()()( 1
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6.4.3.1 Kalman filter design procedure 

Consider that the first observation occurs at time t1. The Kalman filter design 

algorithm can be described by the following steps:   

(1) Initialize P, and Q at time t = t)0(X̂ 0, where P is a matrix of the estimate covariance 

error and Q is the covariance matrix of the measurement error. In this work, an arbitrary 

initial value to 10-5 is assumed for all of the elements of P, while Q is evaluated according 

to equation 6.18. 

(2) Project the estimate of the covariance estimate error by integrating the simplified 

form of Riccati equation from t0 to t1. 

QAtPtPAtP T ++=
•

)(ˆ)(ˆ)(ˆ                                                                                           (6.35) 

(3) Compute the gain matrix K at time t1

1)(ˆ)( −= RCtPtK T                                                                                                         (6.36) 

where R is the noise covariance matrix evaluated using equation 6.19 at time t1.  

(4) Estimate the state vector at t1 by integrating the equation 6.25 from t0 to t1

(5) Update the covariance for the error in the state estimate vector at time t1

)(ˆ][)( tPCKItP −=                                                                                                    (6.37) 

(6) Progress in time and move to step 2.  

Because of the simulation difficulty usually involved when a differential Riccati 

equation is used, a Kalman filter algorithm utilizing a steady state Riccati equation is also 

considered and the KF design procedure is modified as follows: 
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(1) Initialize R and Q, where Q is the covariance matrix of the measurement error and R 

is the covariance matrix of the process noise. 

(2) Obtain the covariance matrix P by solving the steady state Riccati equation as 

01 =+−+ − QCPRPCPAAP TT                                                                                   (6.38) 

 (3) Compute the gain matrix K  

1−= RPCK T                                                                                                                 (6.39) 

6.5 Results and Discussion  

6.5.1 The Estimators Performance 

The quality of the information to be derived from the estimators designed from 

the two methods can be judged from the results presented in Figure 6.5. The forcing 

function is a 10% increase in feed flowrate of reactant B. Note that the base initial 

condition errors and the measurement noise (in Figure 6.3) were added to the actual 

initial conditions and measurement data input into the state estimators. Following the 

heuristics stated in Remark III, the third set of eigenvalues (see Figure 6.4A) was used to 

design the estimator gains for Luenberger observer. The behavior of the two estimators is 

generally excellent with respect to the states from the linear process model. The results 

demonstrate that the estimators will be able to track asymptotically the reference states if 

the system is well described by a linear process model. 

When the responses of a Luenberger observer is compared with those obtained 

with a Kalman filter observer, it can be easily noticed that a Luenberger observer seems 

to track the reference state faster than a Kalman filter. This is expected because the 
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design of the gains for a Luenberger observer is carried out offline where the desired 

eigenvalues are suitably selected and the rate at which the estimation error is to approach 

zero is controlled. On the other hand, the gain matrix of a Kalman filter observer is 

calculated and updated online, thus making the response of the estimator a function of the 

system dynamics and nature of the disturbance input. As it will be discussed in the next 

sections, updating the gains online gives the Kalman filter the advantages of a better 

handling of plant-model mismatch and measurement errors.  

One major concern in the application of the state estimators is the complexity it 

adds to the system and the target of any designer is to reduce the computational 

complexity as much as possible. In our study, we found out that implementing a 

Luenberger observer in the system is easier and require less computational time than a 

Kalman filter.  It takes a Luenberger observer-based system less than one-forth of the 

time to simulate a Kalman-filter-based system under the same operating conditions. 

However, it is worth noting that using a steady Riccati equation in a Kalman filter design 

algorithm significantly reduces the computational time and at the same gives an 

acceptable result as shown in Figure 6.6 and 6.7.  

The major setback in the Luenberger observer is in the design of the observer law 

(i.e. the gain matrix) for multivariable system such as the reactive distillation. Selecting 

the desired set of eigenvalues that will make the Luenberger observer applicable over a 

wide range of operating conditions is not a trivial task. It depends on many performance 

criteria such as rise time, settling time and overshoot of the system [7].     
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Figure 6.5 Dynamic composition profiles: (–—) actual state profile; (----) LO estimated 

state profile; (— —) KF estimated state profile. 
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Figure 6.6 Kalman filter dynamic profiles : (–—) actual state profile; (----)  estimated 

state profile when a steady state Ricatti equation is used in KF design; (— —) 

estimated state profile when a differential Ricatti equation is used in KF design. 
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Figure 6.7 Kalman filter dynamic profiles : (–—) actual state profile; (----)  estimated 

state profile when a steady state Ricatti equation is used in KF design; (— —) 

estimated state profile when a differential Ricatti equation is used in KF design. 
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Remark IV: A Luenberger observer requires less computational resources than a 

Kalman filter and the rate at which estimation error approaches zero can be set as a fast 

as desired provided the accurate models and low-noise sensors are available.  

6.5.2 Effect of the Initial Conditions Errors 

In this section, the effect of the use of erroneous initial conditions on the 

estimators responses is studied. Figure 6.8A shows the three sets of initial condition 

errors used. These initial condition errors are added into the actual initial conditions 

(steady state values) of the system to serve as the initial estimator estimates. The first set 

of initial condition errors are the same as the base initial condition errors ( ) which 

were used in the previous section. The magnitudes of this base initial condition errors are 

increased by a factor of four (4 ) for the second illustration. The third set of the 

initial estimator estimates assumes an extreme case of equal composition of all of the 

components in all of the column stages (i.e. = 0.25/0.25/0.25/0.25). 

errx0

errx0

)0(X̂ Figure 6.8 

shows the performance of the two estimators to different set of the initial conditions. This 

result illustrates the capability of the estimators to start from the guessed or approximate 

initial conditions. However, it does show that the closer the initial estimates provided to 

the estimators to the actual initial conditions, the better the estimators performance. On 

the other hand, providing the estimators with the erroneous initial conditions could 

degrade their performance.  
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Figure 6.8 Effect of initial condition errors on the performance of the state estimators 

with a 10% FB disturbance, [A] initial condition errors; [B] response from the 

Luenberger observer; [C] response from Kalman filter, (I) ; (II) 4 ; 

(III)  = 0.25/0.25/0.25/0.25:(–—) actual state profile; (----) estimated state 

profile. 
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6.5.3 Effect of the Measurement Noise 

In order to demonstrate and assess the robustness of the two estimators to 

measurement noise as often the case in practical situation, the standard deviation of the 

base measurement noise is increased from 0.1% to 10%. Figure 6.9 shows the responses 

of both the Luenberger observer and Kalman filter. It can be clearly seen that Luenberger 

observer (Figure 6.9b) was unable to filter this high-frequency measurement noise when 

compared to the Kalman filter performance as shown in Figure 6.9c. This is expected as 

the Kalman observer filters the high frequency noise and was able to reduce the effect of 

the measurement uncertainty significantly.  

Remark IV: If the measurement is noisy as often the case in practical situation, 

then Kalman filter observer is preferable.   
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Figure 6.9 Effect of measurement noise on the performance of the estimators with a 10% 

FB disturbance, (a) measurement noise; (b) response of the Luenberger observer; 

(c) response of the Kalman filter: (–—) actual state profile; (----) estimated state 

profile. 
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6.5.4 Plant-model Mismatch 

Studies in this section examine how the state estimators behave in presence of 

errors in estimator models. In the previous discussion, the state estimators were 

developed assuming largely the availability of an accurate estimator model with 0.1% 

standard deviation errors. The most common source of model errors is the complexity 

involved in providing accurate vapor-liquid equilibrium relation in modeling real 

distillation system [4]. As a result, we have considered the effect of the errors in the 

components relative volatilities, which in practice, are usually known with some 

uncertainty. Two set of the erroneous relative volatilities (i.e. 1/2.8/2.2/2.4ˆ =α  

and 1/4.8/4.2/4.4ˆ =α ), which are different from the actual relative volatility 

(i.e., 1/8/2/4ˆ =α ) are used in the estimators models. Figure 6.10 shows the bottoms 

composition of reactant D, actual and as predicted by a Kalman filter and a Luenberger 

observer when the erroneous relative volatilities are used. The Kalman filter (KF) 

predictions are quite better than that of the Luenberger observer (LO), which indicates 

that KF observer is more robust toward plant-model mismatch than LO. The result also 

shows that an increase in the plant-model mismatch has a considerable effect on the 

performance of the state estimators.  

Remark V: Accurate models are a necessity for designing a good estimator. 

However, with proper adaptation of error covariance, the Kalman filter can efficiently 

cope with model uncertainties better than Luenberger observer. 
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Figure 6.10 Effect of plant-model mismatch on the performance of the linear state 

estimators with a 10% FB disturbance. (----) KF estimated state profile; (— —) 

LO estimated state profile; (–—) actual state profile. (I) 1/2.8/2.2/2.4ˆ =α ; 

(II) 1/4.8/4.2/4.4ˆ =α . 
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6.5.5 The Linear Estimators Using Measurement Data Predicted by the 

Nonlinear Equation 

In all of the previous sections, the performance of the linear estimators is assessed 

by comparing the state estimates from the estimators to the states as predicted by the 

linear process model with the assumption that both the plant noise and measurement error 

could be described by Gaussian white noise. The linear output equation is employed to 

model the noisy measurement data. We have used these assumptions in order to achieve 

the first goal of the estimators that is, if a linear process model could describe accurately 

the actual plant process, the desired states of the system can be estimated accurately using 

the state estimators. 

In a practical situation, the linearized process model will not be a perfect 

representation of the actual plant and the applicability of the linear estimators into a 

realistic system might be restricted (i.e. limited operating conditions and small magnitude 

of disturbance input). In order to investigate the feasibility of applying the linear 

estimators into a more practical system, the design of the two estimators is modified by 

using the measurement data predicted by nonlinear process model as an input into linear 

estimators. Therefore the measurement errors vector v  will no longer be assumed to be 

Gaussian white noise but will be determined by the difference between the actual output 

data from the plant as predicted by nonlinear output equation and the linearized output 

equation used in the design of the estimators. This is given by 

)())(( tCXtXhv −=                                                                                                      (6.27) 
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where  is a nonlinear function of output temperature measurement (from 

equation 6.5). By substituting equation 6.27 into equation 6.12, the new observation 

equation will now be given as: 

))(( tXh

))(( tXhZ =                                                                                                                  (6.28) 

This simply means that the nonlinear output equation (i.e, the equation 6.28 which is the 

same as the equation 6.5) will be used to simulate the measurement data that would have 

been provided by the physical sensors in the real situation.  

Figure 6.11 and 6.12 show the performance of the two estimators when the actual 

output data as predicted by nonlinear output model is used. The system is excited by a 

10% increase in fresh feed flowrate of reactant B. The result presented in Figure 10A 

shows that the gains of Luenberger observer were tuned and updated by shifting the 

fifteen slowest eigenvalues of matrix A. On the figures, the plot termed “a” is the actual 

composition profiles as predicted by the nonlinear process model; “b” is the composition 

profiles as predicted by the estimators using the nonlinear equation for output data; while 

“c” is the composition as predicted by the observers using the linearized output equation 

for the measurement data. Both of the observers more or less give the same response 

when the measured temperatures are obtained from the nonlinear model. 

Even though, the results give an indication of inadequate estimation from the 

observers when the magnitude of the excitation function is large, the results demonstrate 

a clear improvement in the performance of the observers toward estimating the actual 

plant states as predicted by the nonlinear process model when the output data to the linear 

estimators are modeled by nonlinear equation.  
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Figure 6.11 [A] The shifted eigenvalues for the Luenberger observer (LO) with a 10% FB 

disturbance, [B] Steady state composition profiles from LO as: (a) predicted by 

nonlinear process model; (b) predicted by LO using nonlinear equation for 

measurement; (c) predicted by LO using linearized equation for measurement.  
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Figure 6.12 Steady state composition profiles from Kalman filter (KF) as: (a) predicted 

by nonlinear process model; (b) predicted by KF using nonlinear equation for 

measurement; (C) predicted by KF using linearized equation for measurement. 

 



 164

 

 

6.6 Conclusion 

In this chapter, the design and application of a Luenberger observer and a Kalman 

filter in the composition estimation of reactive distillation are explored. A linear process 

model, which can approximate the actual plant model well, is ideally suited to designing 

a linear estimator. It is found that using N/2 number of measurements is a sufficient 

condition to observe the whole states (liquid compositions) of reactive distillation. 

Though Luenberger observer requires less computational resources and the rate at which 

estimation error approaches zero can be set as a fast as desired, the Kalman filter 

demonstrates its ability to cope efficiently with erroneous initial conditions, corrupted 

measurements and model uncertainty. 

In general, the linear estimators can be applied to estimate the states of the 

reactive distillation system using the actual output data from the process when: (1) the 

process is being operated under a small region of operating conditions where the system 

could be described by a linear process model, (2) accurate sensors are available where the 

effect of measurement noise may be negligible, and (3) the magnitude of the disturbance 

inputs is small. 
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CHAPTER 7 

7 The State Estimator-Based Control of Reactive 
Distillation System 

7.1 Introduction  

Estimator-based control application has received considerable attention over the 

past several years. Basically, this is the problem of controlling a process where imperfect 

or limited information is available describing the states of the system that change 

considerably during the interval in which control is required. Al-Arfaj and Luyben [1] 

suggested that the state estimator could be a suitable alternative to an expensive and often 

unreliable composition analyzer when there is need to measure the internal composition 

of reactive distillation system for control purposes. In the same paper, Al-Arfaj and 

Luyben [1] summarized the literature on control of reactive distillation system. Since 

then, several other papers have appeared in the literature that discussed the closed-loop 

reactive distillation. 

The main focus in this chapter is to demonstrate that a state estimator can be 

successfully designed and implemented in the feedback control of reactive distillation. 

The function of the state estimator is to estimate the desired state compositions that are 

required to be feedback into controller for necessary action. The control performance of 

the system that relies on the state estimator is examined and compared to that of the 

system which takes direct measurement from the process assuming the availability of 

 167
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perfect online analyzer. The effect of measurement errors, plant-model mismatch and 

erroneous initial conditions on the estimator-based system is investigated.  

7.2 The Process 

The process under consideration is the same reactive distillation system, which has 

been discussed in detail in the previous chapters. The reactive distillation column consists 

of 22 stages including a partial reboiler and a total condenser. The main column is further 

divided into three sections which are stripping section (7), reactive section (6) and 

rectifying section (7). A full-order linear process model presented in the previous chapter 

is considered to develop the state estimator-based system and is summarized in vector 

form as 

)()()()( tEdtBUtAXtX ++=
•

                                                                                      (7.1) 

)(tCXY =                                                                                                                      (7.2) 

where the n-dimensional vector X are state variables (liquid mole fractions in all the 

stages including partial reboiler and total condenser).  

7.3 State Estimator Structure 

 The most important component of the control structure studied in this work is the 

underlying state estimator. A Kalman filter (KF), which has been the most popular 

estimation technique available in the literature is considered. We have equally shown (see 

Chapter 7) that a Kalman filter estimator is more robust and reliable than a Luenberger 

observer. The theory behind KF is well established and its applications have grown 

significantly in the academics and industry [2-4]. In the previous work, we presented the 
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design procedure to develop this state estimator (KF). Therefore, the relevant equations 

describing the estimator are summarized as follows: 

))(ˆ(ˆ tXhY =                                                                                                                     (7.3) 

)()( tvtCXZ +=                                                                                                             (7.4) 

errxXX 00)0(ˆ +=                                                                                                          (7.5) 

))](ˆ())(([)()()(ˆ)(ˆ tXYtXZKtEdtBUtXAtX −+++=
•

                                                (7.6)      

The equations 7.1 to 7.6 can be combined to for the estimator-based system as 
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The state estimator has three inputs, which areU , and d Z  and its output yields 

the estimated state vector X̂ . The w and v are vectors of the plant and measurement noise, 

and L and G are the matrices of their coefficients respectively. K  is gain matrix of the 

sate estimator evaluated using the Kalman filtering algorithms [5]. In order to design a 

state estimator, it is necessary that the system is observable. Considerations based on 

simulated studies suggest that using not less than N/2 temperature measurements 

uniformly distributed in the column is a sufficient condition to observe all the 

components liquid compositions of reactive distillation under study. 
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7.4 Control System Configuration 

Al-Arfaj and Luyben [1] discussed many control schemes for the same system 

under study. In their study, it was assumed that perfect analyzer is available to measure 

the composition whenever it is needed for the control system. In this study, the control 

configuration of interest is the estimator-based control system, where the developed 

linear state estimator is implemented in the feedback control of reactive distillation 

column to estimate the inaccessible states. As shown in Figure 7.1, the estimates from the 

state estimator will serve as input to the controller and the decisions based on such 

feedback information are then implemented on the process. For illustration purposes, we 

considered the dual-end control structure shown in Figure 7.2 in which the purities of 

both products are measured and controlled. In the distillate product, the composition of 

component C is controlled by manipulating the reflux flowrate. In the bottoms, the 

composition of component D is controlled by manipulating the vapor boilup. The reflux-

drum level is controlled by the distillate flowrate while the bottoms level is controlled by 

manipulating the bottoms flowrate. 

Al-Arfaj and Luyben [1] stated the necessity to detect an internal composition of 

one of the reactants in two-reactant-two-product reactive distillation column so that 

feedbacks trim can balance the feeds stoichiometry. Therefore, the concentration of 

reactant A on the tray nf1 is measured and controlled by manipulating the fresh feed 

flowrate of component A. All of the composition controllers are PI except the internal 

composition controller which is P-only because it is aimed to only maintain the feeds 

stoichiometry. These loops are tuned by conducting relay-feedback tests to find ultimate 

gains and frequencies and then using the Tyreus-Luyben settings [6].  
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Figure 7.1 The estimator-based control system structure. 
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 173

 

All of the control valves are designed to be half open at the initial steady state. Therefore, 

all of the manipulated variables cannot increase more than twice their steady state values. 

In order to assess the performance of the estimator-based control system, two 

control configurations are developed and compared as follows: 

(I) CS-Analyzer: In this control system, the desired states (liquid compositions) feed into 

the controllers are assumed to be perfectly available at any desired time using online 

analyzers. This control structure is considered in this work only to serve as a reference to 

which the performance of the estimator-based control system is compared. The three 

composition controllers’ equations in CS-Analyzer are of the form 

)( ,1 AnfAA xfF =                                                                                                               (7.9) 

)( ,Dbotv xfVs =                                                                                                               (7.10) 

)( ,CdisR xfR =                                                                                                                (7.11) 

Therefore, equations 7.1, 7.2 and 7.9-7.11 make the closed-loop system with perfect 

online analyzer available for composition measurements. 

(II) CS-Estimator: This control structure is referred to as “the controller-estimator 

configuration”. The states of the process are being estimated by the state estimator and 

are provided into the controllers for necessary decisions (see Figure 7.1). Therefore, 

equation 7.9-7.11 will be replaced the following equations: 

)ˆ( ,1 AnfAA xfF =                                                                                                             (7.12) 

)ˆ( ,Dbotv xfVs =                                                                                                               (7.13) 

)ˆ( ,CdisR xfR =                                                                                                                (7.14) 
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where the  is the estimated state that comes from the estimator described by equation 

7.3-7.6. Note that the equations 7.7, 7.8 and 7.12 - 7.14 make the CS-Estimator system.  

x̂

7.5 Results and Discussion 

A constant liquid holdup of 1 kmol in all of the trays and 10 kmol in both the 

partial reboiler and the total condenser are assumed throughout the simulation. Table 7.1 

gives the summary of the steady state operating conditions of the system under study.  In 

this work, temperature measurements are evenly located on 11 stages out of the 22 stages. 

The noise-contaminated temperature measurements from the process are available to the 

state estimator at every 30 sec. The differential equations of the model were integrated 

using Euler method with a step size of 1 sec. Because the process model used in the KF 

algorithm is not perfect due to some simplifying assumptions that have been made, plant 

noise ( %1=pδ ) was present in all the simulations. The base initial condition errors and 

the measurement noise ( %10=mδ ) used in the design and implementation of for the 

state estimator are shown in Figure 7.3. The initial conditions error is the deviation of the 

initial condition estimates for estimators from that of the real plant model. 

7.5.1 Control Performance 

In order to examine the performance of the estimator-based control system when 

compare to that when the perfect analyzers are used in the feedback system, the following 

sources of disturbance into the system are considered: 

(1) ±10%, ±20%, step changes in feed flowrate of reactant B. 

(2) A Pseudo Rectangular Random Sequence (PRRS) forcing function shown in 

Figure 7.4.  
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Table 7.1 Base steady state conditions 

 variables steady state values 

column 

specifications 

pressure (bar) 

stripping section (NS) 

reactive section (NRX) 

rectifying section (NR)  

  9 

  7 

  6 

  7 

equilibrium 

data 

Relative volatilities: 

A/B/C/D 

 

4/2/8/1 

Feed rate of reactant A 0.0126 

Feed rate of reactant B 0.0126 

Vapor boil up  0.0285 

Reflux rate 0.0331 

Distillate  0.0126 

flowrates 

(kmol/s) 

Bottoms 0.0126 

A 0.0467 

B 0.0033 

C 0.9500 

Xdis

D 0.0000 

A 0.0018 

B 0.0482 

C 0.0000 

Xbot

D 0.9500 
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Figure 7.4 The Pseudo Rectangular Random Sequence (PRRS) forcing function on FB. 
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Figure 7.5 compares the control performance of the system that relies on the state 

estimator (CS-Estimator) to that when perfect analyzer is assumed available (CS-

Analyzer). The disturbance is a 10% increase and a 10% decrease in feed flowrate of 

reactant B. In this case, the composition of the component D in the bottoms, component 

C in the distillate and component A in the tray nf1 are being estimated (by the estimator) 

and feedback into the controllers for necessary actions. The results generally demonstrate 

that the controllers can successfully depend on the state estimates from the estimator for 

decision makings. The estimator-based system is able to reject the disturbance and drive 

the system to the desired operating specifications.  

The control performance of the estimator-based system is seen to be relatively 

poor a few moment after the start up when compare to the control performance using 

direct measurement from the online analyzer. The reason for this is because of large 

estimation errors at the start up as a result of the errors in the initial conditions, 

measurement noise and plant-model uncertainties which will require some times to be 

compensated out. Because the gain matrix of the KF is calculated and updated online the 

response of the state estimator largely depends on system dynamics and the nature of 

disturbance input (i.e. large estimated errors at the early stage when -10% FB is 

introduced). To further justify this and appreciate the use of the state estimator in the 

control system of reactive distillation, the system is excited by the function shown in 

Figure 7.4. The result of the CS-Estimator is compared to that of the CS-Analyzer in  

Figure 7.6. It can be seen clearly that after the state estimator overcomes the large 

estimation errors occurring at the early stage of the process, the response of the CS-
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Estimator system gives an excellent matching with that of CS-Analyzer, which indicates 

good control performance. 

 It is interesting to note that the same trend of disturbance in the first 6 h (i.e. 

+10% FB in the first 3 h and  -10% FB in the next 3 h of the operation was repeated 

between the time of 10 h to 16 h, but this time, the CS-Estimator responds adequately and 

the system is effectively controlled. This is because at the later time, the estimator has 

already overcome the effect of the initial estimate errors by updating the estimator gain 

based on the information from the updated estimated error covariance. Even if online 

analyzers are available and pose no problem in measuring the product composition at the 

two ends of the column, realistically the internal composition will be difficult to obtain 

using online analyzer and such a case could make the use of online estimator inevitable. 

Figure 7.7 illustrates that CS-Estimator performs well when the state estimator is used to 

estimate only the inaccessible internal composition for the internal composition 

controller. In this case, the product composition controllers use online perfect analyzers 

and the forcing function is a 20% increase and a 20% decrease in reactant B. The system 

generally demonstrates a better performance than when all the controllers depend on the 

state estimator. 
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Figure 7.5 Control performance when all the composition controllers rely on the KF. The 

base initial condition errors, %10=mδ  and %1=pδ are used for KF design. 

+10% and -10% FB disturbance. (–—) CS-Analyzer; (----) CS-Estimator. 
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Figure 7.6 Control performance when all the composition controllers rely on the KF. The 

base initial condition errors, %10=mδ  and %1=pδ are used for KF design. 

PRRS forcing function on FB. (–—) CS-Analyzer; (----) CS-Estimator. 
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Figure 7.7 Control performances when the only internal composition controller relies on 

the KF: the base initial condition errors, %10=mδ  and %1=pδ are used for 

KF design +20% and -20% FB disturbance, (–—) CS-Analyzer; (----) CS-

Estimator. 
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7.5.2 Effect of Erroneous Initial Conditions 

Because the actual initial conditions of the system is often not known in real 

situation, a state estimator must be designed to be able to converge to the actual column 

state on time when it is initialized with guessed initial conditions. In practice, what matter 

most are a few moments after a change is introduced into the system as the control 

system will intervene to reject introduced disturbance.  In order to investigate the impact 

of erroneous initial conditions on the performance of the estimator and in turn, the control 

system as a whole, two set of erroneous initial conditions are tested as shown in Figure 

7.8a. The first set of initial condition errors are taken to be four times in magnitude of the 

base initial condition errors (4 ), while the second set assumed an extreme case of 

equal composition of components in all stages (i.e. = 0.25/0.25/0.25/0.25). 

errx0

)0(X̂

At first, the performance of the estimator in predicting the actual state is examined 

by simulating the open-loop dynamics of the system. This is to demonstrate that even 

though the estimator might be able to converge to the actual state at the long run using 

the worst set of initial conditions, the estimator accuracy at the early stage of the start up 

is important to the control system that relies on the state estimator. In the open-loop 

dynamics, all of the composition controllers are on manual, while the level controllers are 

automatic. In this test, the forcing function is a 10% increase in feed flowrate of reactant 

B. Figure 7.8 shows the performance of the state estimator to different set of initial 

conditions. Though, this result illustrates the capability of the state estimator to start from 

a guess or approximate initial conditions, however, it does show that the closer the initial 

estimates provided to the estimator, the better the performance. 
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The same set of initial conditions is then used to simulate the CS-Estimator 

system. Figure 7.9  shows the control performance of the CS-Estimator to different set of 

initial conditions. The CS-Estimator behaves predictably well in disturbance rejection 

when the first set of erroneous initial conditions are used. However, it can be seen clearly 

that in spite of the fact that the estimator is able to converge to the actual state in the 

open-loop dynamics case when equal composition of components is assumed at the initial 

point, the CS-Estimator behaves poorly and unable to control the system. The system that 

relies on such state estimator with worst initial conditions is unstable because the 

controllers use extremely poor estimated states at the early stage and as such could not 

control the system. Therefore, it is important to reduce the difference between the actual 

data and the estimated data in the short time possible following a disturbance so that the 

estimated data that the control system will use will be close to the actual plant data and 

thus an effective control could be achieved. One of the ways to do this is to use 

approximate initial conditions close enough to the true initial conditions of the actual 

system for the state estimators. 
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7.5.3 Effect of Measurement Error 

In this Section, we are interested in assessing the effect of cyclical error in the 

temperature measurements. Unlike measurement noise, which is a stochastic and 

nondeterministic error of the sensors that cannot be predicted, cyclical errors are as a 

result of sensors imperfections and/or abnormal performance due to inaccurate settings. 

These types of errors are deterministic and repeatable. Figure 7.10 compares the control 

performance of CS-Estimator to that of CS-Analyzer when +1 0C and -1 0C measurement 

errors present in the sensors located in the reboiler, tray nf1 and the top plate. The forcing 

is a 10% increase in the feed flowrate of reactant B. The CS-Estimator performs 

reasonably well in resisting the effect of the disturbance with an acceptable error in the 

desired compositions.  

Generally, the end effect of the sensors errors depends on the error type. This can 

be best explained when considering how well the estimator is able to predict the actual 

column temperature based on the noise contaminated temperature data supplied by the 

sensors. This is illustrated in Figure 7.11, by comparing the tray nf1 temperature 

measured by the sensor (Tmeasured) and as predicted by the state estimator (Testimated) to the 

actual temperature profile (Tactual). It can be seen that the high frequency noise was 

effectively attenuated by the in built filter the state estimator, but the effect of the present 

10C bias in the measurement data was only reduced. Because the control systems are 

designed to follow the feedback signal from the state estimator (including its estimated 

errors) as well as possible, deterministic errors will carry through, at least in part, to the 

control system and corrupt the response output. Therefore, much effort must be given to 

using accurate sensors with minimal cyclical errors in building the estimator. 
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Figure 7.10 Effect of measurement error in the measurement data with a +10% FB 

disturbance. The base initial condition errors, %10=mδ  and %1=pδ are used for 

KF design. (–—) CS-Analyzer; (----) CS-Estimator. (a) no error (b) +1 0C (c) -1 
0C error located in 3 stages. 
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Figure 7.11 Temperature profile on tray nf1 of the CS-Estimator system. The 

measurement error of 1 0C present in the thermocouples located on the reboiler, 

the tray nf1 and the top plate. The base initial condition errors, %10=mδ and 

%1=pδ are used for KF design. +10% FB disturbance. 
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7.5.4 Plant-Model mismatch   

Though reactive distillation systems are generally known to have many 

advantages over the conventional multi-unit reaction/separation/recycle systems, they 

often possess complex dynamics and limited flexibility because of the interactive effect 

of reaction on separation. For a state estimator that relies heavily on such system 

dynamics, the effect of plant-model mismatch is essential to be investigated. Model 

mismatch has considerable effects on the performance of a closed-loop distillation 

system[7]. 

Uncertainties in relative volatility have significant effects on the design and 

performance of reactive distillation [8]. Therefore inaccurate modeling of the reaction 

kinetics and vapor-liquid equilibrium (VLE) relation can consequently affect the 

performance of the state estimators [2, 3, 8, 9]. To illustrate this, we have considered the 

effect of errors in the components relative volatilities, which in practice, are usually 

known with some uncertainties. The relative volatilities of the components in the real 

plant model are as given in Table 1. Two set of erroneous relative volatilities are tested as 

follows: 

(I) 1/9.7/9.1/9.3ˆ =α , where the error of -0.1 is made in the component relative 

volatilities.  

(II) 1/1.8/1.2/1.4ˆ =α , where the error of +0.1 is made in the component relative 

volatilities.  

Using these set of relative volatilities in the estimator model means that the 

system dynamics has been altered by inaccurate vapor-liquid relationship parameters. 

The resulting control performance of CS-Estimator under the effect of erroneous relative 
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volatilities is shown in Figure 7.12. It can be seen clearly that inaccurate vapor-liquid 

representation has a severe effects on the control performance of the CS-Estimator 

system. Therefore an adequate representation of the VLE relations is very important and 

a necessity to the successful application of the estimator in the control system of reactive 

distillation.  

7.6 Conclusion 

This chapter demonstrates that a state estimator can be successfully designed and 

implemented in the feedback control system of reactive distillation. The work of the state 

estimator is to provide the state compositions that are required to be used by the 

controller for necessary action. The control performance of the system that relies on the 

state estimator is examined and compared to that of the system which takes direct 

measurement from the process assuming the availability of perfect online analyzer. The 

robustness of the estimator-based system is investigated against measurement errors, 

model uncertainties and erroneous initial conditions.  
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Figure 7.12 Effect of errors in relative volatility. The base initial condition errors, 

%10=mδ and %1=pδ are used for KF design. +10%FB disturbance. (–—) CS-Analyzer; 

(----) CS-Estimator. 
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CHAPTER 8 

8 Conclusions and Future Research Directions 

8.1 Conclusions  

The design and implementation of the linear state estimators and their 

applications in reactive distillation control are explored in this thesis work. A state 

estimator is required to infer the useful but inaccessible liquid composition in the reactive 

distillation column from the available process variables. The state estimates from the 

estimator are provided to the online controllers without the use of the unreliable 

composition analyzers. 

First, a comprehensive formulation of the linear and nonlinear process models is 

presented for a generic two-reactant-two-product reactive distillation. The dynamic 

behavior of a linear process model is assessed by comparing its performance to that of a 

rigorous nonlinear process model. The impact of disturbance magnitudes and direction on 

the system dynamics are studied. It is found that operating two-reactant-two-product 

reactive distillation with excess of the heavy reactant enhances open-loop stability, but 

decreases the products purity. On the other hand, excess of more volatile reactant drifts 

the system to another state. 

Second, the closed-loop performance of the three alternative control structures 

when based on a linear process model is compared to that when based on a nonlinear 

process model for a generic two-product reactive distillation. It is shown that an
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 approximate linear model behaves essentially similar to a nonlinear model in a closed-

loop system when the deviation of process variables resulting from the disturbance is 

within the region of the base steady state. It is found that the linear process model could 

be used in the design of a robust control system when the control valves are designed to 

handle the underestimation problem of the manipulated variables. 

Third, two alternative state estimator design methods (i.e., a Kalman filter and a 

Luenberger observer) are explored and the accuracy of the developed state estimators is 

checked by comparing the state estimates with the actual states as predicted by the 

process model of the reactive distillation system. The robustness and reliability of the 

state estimators are demonstrated with respect to an erroneous initial condition, the 

measurement noise and plant-model uncertainties. 

 Lastly, it is demonstrated that a state estimator can be successfully designed and 

implemented in the feedback control system of reactive distillation. The work of the state 

estimator is to provide the state compositions that are required to be feedback into the 

controllers for the necessary actions. The control performance of the system that relies on 

the state estimator is examined and compared to that of the system which takes direct 

measurement from the process, assuming the availability of perfect online analyzer. The 

robustness of the estimator-based system is investigated against the measurement errors, 

model uncertainties and erroneous initial conditions. 

8.2 Future Research Directions 

New and challenging problems that have potential future research value are 

identified throughout this thesis work and are summarized as follows: 
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• Developing more accurate but complex nonlinear process model for a 

reactive distillation: In this work, we have used a simplified nonlinear process 

model to describe an ideal reactive distillation. Because the results in this work 

has shown us that the performance of  a state estimator is a strong dependant of 

the process model from which it is developed, there is need to formulate more 

accurate nonlinear process models by removing some of the assumptions made in 

this work. For instance, nonideal vapor-liquid equilibrium relation, tray efficiency 

and energy balance equation should be considered in the modeling stage of a 

reactive distillation. 

• Development of a nonlinear state estimator from a nonlinear process model: 

The complexity nature of a typical reactive distillation process and the desire to 

operate the system over a wide range of operating conditions will necessitate the 

study of nonlinear state estimators and their applicability in the reactive 

distillation control. The nonlinear state estimators can cope with the intrinsic 

nonlinearities when the system is operated under a wide range of operating 

conditions. Without doubt, the nonlinear estimators will severely increase the 

complexity of the system and demand effective computational resources.  

• The applicability of the developed estimator-based control system to a 

reactive distillation of a real chemical system: Future research work is required 

to apply the developed state estimators in the composition estimation of reactive 

distillation for a specific chemical system, such as the production of MTBE, 

ETBE and TAME. In the real chemical systems, introducing the complex kinetics 

relations of a specific chemical reaction and vapor-liquid equilibrium relation will 
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add complexity to the reactive distillation model and pose more challenge in the 

design and implementation of a state estimator.  

• Development of an adaptive state estimator: Although it is demonstrated that a 

Kalman filter is robust towards erroneous initial conditions, model uncertainties 

and measurement errors, it however assumes that the errors statistical 

characteristics are known. Thus future research is expected to focus on the design 

of “adaptive extended Kalman filter estimator” to take care of more practical 

situation of unknown errors statistics and disturbances.  

• Implementation of a state estimator on different types of control structures: 

The developed estimators can be further tested by implementing them on other 

control structures such as: a state feedback control where all of the estimated 

states are used by the controllers, a single-end composition control structure, and 

a cascade control system. 
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NOMENCLATURE 

A = reactant component 

A = matrix of state variables of the linearized process 

B = matrix of inputs of the linearized process 

B = reactant component 

B = bottoms flowrate (kmol/s) 

C = matrix of outputs of the linearized process 

C = product component 

CC = composition controller 

d = disturbance variables vector 

D = distillate flowrate (kmol/s) 

E = matrix of the disturbance input  

FA= fresh feed flowrate of reactant A (kmol/s) 

FB= fresh feed flowrate of reactant B (kmol/s) 

FC = Flow controller 

FT = Flow transmitter 

I = gain matrix 

I = unit matrix 

K = gain matrix 

KF = specific reaction rate of the forward reaction (kmol.s-1.kmol-1) 

KB = specific reaction rate of the reverse reaction (kmol.s .kmol ) B

-1 -1
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KF= Kalman filter 

L = liquid flowrate (kmol/s) 

LC = level controller 

iL  = liquid flowrate at the steady state 

LO= Luenberger observer 

Mi = liquid holdup in all stages (kmol) 

iM  = liquid holdup at the steady state 

Nc = total number of components  

N = total number of stages including reboiler and reflux drum 

n= total states variable (n=N x Nc) 

NR = number of stages in rectifying section 

NRX = number of stages in reactive section 

NS = number of stages in striping section 

nf1= first tray of reactive section (entrance of feed FA) 

nf2= last tray of reactive section (entrance of feed FB) 

P= covariance matrix for estimation error  

P̂  = estimated covariance matrix  

P = column pressure. 

q = number of output measurements 

Q  = model error covariance matrix. 

R = reflux flowrate (kmol/s) 

kR  = measurement error covariance matrix. 

Ri = rate of production on tray i (kmol /s) 
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t = time (s) 

Ti = temperature in stage i including reboiler (K) 

Tdev = temperature in deviation form 

TR = total reaction rate (kmol/s) 

U= input variables vector 

v = measurement noise  

Vi = vapor flowrate from the reactive tray i (kmol/s) 

VS = vapor flowrate from reboiler (kmol/s) 

w = plant noise  

xi,j = liquid mole fraction of component j on tray i 

X  = state vector of the variables. 

X̂  = state estimate vector. 

Xbot,D  = composition of  D in the bottom 

Xdis,C =  composition of  C in the distillate 

Xdev,A = composition of A in deviation form 

Xdev,B = composition of B in deviation form 

Xdev,C = composition of C in deviation form 

Xdev,D = composition of D in deviation form 

Xnf1,A  = composition of  A on tray nf1 

Xnf1,B =  composition of  B on tray nf2 B

xij = liquid mole fraction of component j in tray i  

X0 = initial state vector 

'x  = liquid mole fraction in deviation form 
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XB(D) = composition of D in the bottoms 

XD(C) = composition of C in the distillate 

Xnf1(A) = composition of A in tray nf1 

0X = initial conditions of the plant model 

errx0 =initial condition error vector  

Xset = Vector of the controlled variables setpoint 

Y = output vector 

Ŷ = observation vector 

Y = vector of the outputs  

'Y  = output variables in deviation form 

yi,j = vapor mole fraction of component j in tray i 

Z = measured output vector 

Za = composition of fresh feed FA  

Zb = composition of fresh feed FB 

Greek letters 

αj = relative volatility of component j with respect to heavy component 

α̂ = approximate relative volatilities 

VHΔ  = heat of vaporization (cal/mol) 

λ  = heat of reaction (cal/mol) 

δ = standard deviation 

mδ = of the measurement noise 

pδ = standard deviation of the plant noise 
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kjδ  = the Kronecter delta 

θ  = lumped model parameters. 

β        hydraulic time constant 

αj        relative volatility of component j with respect to heavy component 

VHΔ    heat of vaporization (cal/mol) 

λ         heat of reaction (cal/mol) 

θ        system constant parameters. 
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APPENDICES 

Appendix A 

Entries of Matrices A 

State vector:  
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The stages are numbered from bottom to top. 

The  elementsjia ,  of matrix A are given by: 
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A-2. Stripping Section (Tray i): 
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A-3. Reactive Section (tray i) 

 

 A-3.1. Feed tray for reactant A (i = nf1)  

 

11,11, −− ⎟
⎠
⎞⎜

⎝
⎛= i

i

S
ii dyM

Va                                                                     12,11, −−+ ⎟
⎠
⎞⎜

⎝
⎛= i

i

S
iNi dyM

Va  

13,112, −−+ ⎟
⎠
⎞⎜

⎝
⎛= i

i

S
iNi dyM

Va                                                                14,113, −−+ ⎟
⎠
⎞⎜

⎝
⎛= i

i

S
iNi dyM

Va  

21,11, −−+ ⎟
⎠
⎞⎜

⎝
⎛= i

i

S
iiN dyM

Va                                                                 22,11, −−++ ⎟
⎠
⎞⎜

⎝
⎛= i

i

S
iNiN dyM

Va  

23,112, −−++ ⎟
⎠
⎞⎜

⎝
⎛= i

i

S
iNiN dyM

Va                                                           24,113, −−++ ⎟
⎠
⎞⎜

⎝
⎛= i

i

S
iNiN dyM

Va  

31,11,2 −−+ ⎟
⎠
⎞⎜

⎝
⎛= i

i

S
iiN dyM

Va                                                               32,11,2 −−++ ⎟
⎠
⎞⎜

⎝
⎛= i

i

S
iNiN dyM

Va  

33,112,2 −−++ ⎟
⎠
⎞⎜

⎝
⎛= i

i

S
iNiN dyM

Va                                                         34,113,2 −−++ ⎟
⎠
⎞⎜

⎝
⎛= i

i

S
iNiN dyM

Va  

 



 205

41,11,3 −−+ ⎟
⎠
⎞⎜

⎝
⎛= i

i

S
iiN dyM

Va                                                              42,11,3 −−++ ⎟
⎠
⎞⎜

⎝
⎛= i

i

S
iNiN dyM

Va  

43,112,3 −−++ ⎟
⎠
⎞⎜

⎝
⎛= i

i

S
iNiN dyM

Va                                                        44,113,3 −−++ ⎟
⎠
⎞⎜

⎝
⎛= i

i

S
iNiN dyM

Va  

 

A-3.2. Reactive trays      (for i ≠ nf1) 

Subindex k is referring to reactive tray i. 

For k= 1 to i-(Ns+2) . 0)( =kδ  for all k, except when k =1 where 1)1( =δ     

( )
i

iikiiikiiki
kii M

yxVxyVdyVk
a

)(1)(1)( 1,1,)(1,1,1)(11,1)(
,

−Δ+−Δ+
= −−−−−

−

δ
 

( )
i

iikiiikiiki
kiNi M

yxVxyVdyVk
a

)(2)(2)( 1,1,)(1,1,1)(12,1)(
,

−Δ+−Δ+
= −−−−−

−+

δ
 

( )
i

iikiiikiiki
kiNi M

yxVxyVdyVk
a

)(3)(3)( 1,1,)(1,1,1)(13,1)(
2,

−Δ+−Δ+
= −−−−−

−+

δ
 

( )
i

iikiiikiiki
kiNi M

yxVxyVdyVk
a

)(4)(4)( 1,1,)(1,1,1)(14,1)(
3,

−Δ+−Δ+
= −−−−−

−+

δ
 

 
i

iiiiki
kiNi M

yxxyVM
a

)]()[( 1,1,1,1,1)(
4,

−+−Δ
= −−

−+  

( )
i

iikiiikiiki
kiiN M

yxVxyVdyVk
a

)(1)(1)( 2,2,)(2,2,1)(21,1)(
,

−Δ+−Δ+
= −−−−−

−+

δ
 

( )
i

iikiiikiiki
kiNiN M

yxVxyVdyVk
a

)(2)(2)( 2,2,)(2,2,1)(22,1)(
,

−Δ+−Δ+
= −−−−−

−++

δ
 

( )
i

iikiiikiiki
kiNiN M

yxVxyVdyVk
a

)(3)(3)( 2,2,)(2,2,1)(23,1)(
2,

−Δ+−Δ+
= −−−−−

−++

δ
 

( )
i

iikiiikiiki
kiNiN M

yxVxyVdyVk
a

)(4)(4)( 2,2,)(2,2,1)(24,1)(
3,

−Δ+−Δ+
= −−−−−

−++

δ
 

i

iiiiki
kiNiN M

yxxyVM
a

)]()[( 2,2,2,2,1)(
4,

−+−Δ
= −−

−++  

( )
i

iikiiikiiki
kiiN M

yxVxyVdyVk
a

)(1)(1)( 3,3,)(3,3,1)(31,1)(
,2

−Δ+−Δ+
= −−−−−

−+

δ
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( )
i

iikiiikiiki
kiNiN M

yxVxyVdyVk
a

)(2)(2)( 3,3,)(3,3,1)(32,1)(
,2

−Δ+−Δ+
= −−−−−

−++

δ
 

( )
i

iikiiikiiki
kiNiN M

yxVxyVdyVk
a

)(3)(3)( 3,3,)(3,3,1)(33,1)(
2,2

−Δ+−Δ+
= −−−−−

−++

δ
 

 

( )
i

iikiiikiiki
kiNiN M

yxVxyVdyVk
a

)(4)(4)( 3,3,)(3,3,1)(34,1)(
3,2

−Δ+−Δ+
= −−−−−

−++

δ
 

i

iiiiki
kiNiN M

yxxyVM
a

)]()[( 3,3,3,3,1)(
4,2

−+−Δ
= −−

−++  

( )
i

iikiiikiiki
kiiN M

yxVxyVdyVk
a

)(1)(1)( 4,4,)(4,4,1)(41,1)(
,3

−Δ+−Δ+
= −−−−−

−+

δ
 

( )
i

iikiiikiiki
kiNiN M

yxVxyVdyVk
a

)(2)(2)( 4,4,)(4,4,1)(42,1)(
,3

−Δ+−Δ+
= −−−−−

−++

δ
 

( )
i

iikiiikiiki
kiNiN M

yxVxyVdyVk
a

)(3)(3)( 4,4,)(4,4,1)(43,1)(
2,3

−Δ+−Δ+
= −−−−−

−++

δ
 

( )
i

iikiiikiiki
kiNiN M

yxVxyVdyVk
a

)(4)(4)( 4,4,)(4,4,1)(44,1)(
3,3

−Δ+−Δ+
= −−−−−

−++

δ
 

i

iiiiki
kiNiN M

yxxyVM
a

)]()[( 4,4,4,4,1)(
4,3

−+−Δ
= −−

−++  

 

A-3.3. Reactive trays (tray i)        

0=iF   except in i = nf1 where   Ai FF = and jaZjz ,)( =  , and in the  i = nf2 where Bi FF = , 

 jbZjz ,)( =

( )
i

iiiiiiiii
ii M

FRstoichyxVdyVVL
a

−Δ+−Δ+−+−−
= −+ 1)1()(11 1,1,11,11

,  

( )
i

iiiiiii
iNi M

RstoichyVdyVxV
a

2)1(22 1,12,1,
,

Δ+Δ+−Δ
=+  

( )
i

iiiiiii
iNi M

RstoichyVdyVxV
a

3)1(33 1,13,1,
2,

Δ+Δ+−Δ
=+  
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( )
i

iiiiiii
iNi M

RstoichyVdyVxV
a

4)1(44 1,14,1,
3,

Δ+Δ+−Δ
=+  

i

i
ii M

L
a 1

1,
+

+ =                   
βi

ii
iNi M

xx
a

)( 1,1,1
14,

−
= +

++  

 

( ) ( ) ( )[ ]
2

1,1,1,11,1,111,1,11
4,

))1((

i

iiiiiiiiiii
iNi M

xzFyxVxyVxxL
a

−+−+−+−
−= −−−++

+  

( )
i

iiiiiii
iiN M

RstoichyVdyVxV
a

1)2(11 2,21,1,
,

Δ+Δ+−Δ
=+  

( )
i

iiiiiiiii
iNiN M

FRstoichyxVdyVVL
a

−Δ+−Δ+−+−−
= −+

++

2)2()(21 2,2,22,11
,  

( )
i

iiiiiii
iNiN M

RstoichyVdyVxV
a

3)2(33 2,23,2,
2,

Δ+Δ+−Δ
=++  

( )
i

iiiiiii
iNiN M

RstoichyVdyVxV
a

4)2(44 2,24,2,
3,

Δ+Δ+−Δ
=++  

i

i
iNiN M

L
a 1

1,
+

+++ =                    
βi

ii
iNiN M

xx
a

)( 2,2,1
14,

−
= +

+++  

( ) ( ) ( )[ ]
2

2,2,2,12,2,112,2,11
4,

))2((

i

iiiiiiiiiii
iNiN M

xzFyxVxyVxxL
a

−+−+−+−
−= −−−++

++  

( )
i

iiiiiii
iiN M

RstoichyVdyVxV
a

1)3(11 3,31,3,
,2

Δ+Δ+−Δ
=+  

( )
i

iiiiiii
iNiN M

RstoichyVdyVxV
a

2)3(22 3,32,3,
,2

Δ+Δ+−Δ
=++  

( )
i

iiiiiiiii
iNiN M

FRstoichyxVdyVVL
a

−Δ+−Δ+−+−−
= −+

++

3)3()(31 3,3,)(33,11
2,2  

( )
i

iiiiiii
iNiN M

RstoichyVdyVxV
a

4)3(44 3,34,3,
3,2

Δ+Δ+−Δ
=++  

i

i
iNiN M

L
a 1

12,2
+

+++ =                       
βi

ii
iNiN M

xx
a

)( 3,3,1
14,2

−
= +

+++  

( ) ( ) ( )[ ]
2

3,3,3,3,3,113,3,11
4,2

))3((

i

iiiiiiiiiii
iNiN M

xzFyxVxyVxxL
a

−+−+−+−
−= −−++

++  
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( )
i

iiiiiii
iiN M

RstoichyVdyVxV
a

1)4(11 4,41,4,
,3

Δ+Δ+−Δ
=+  

( )
i

iiiiiii
iNiN M

RstoichyVdyVxV
a

2)4(22 4,42,4,
,3

Δ+Δ+−Δ
=++  

 

( )
i

iiiiiii
iNiN M

RstoichyVdyVxV
a

3)4(33 4,43,4,
2,3

Δ+Δ+−Δ
=++  

( )
i

iiiiiiiii
iNiN M

FRstoichyxVdyVVL
a

−Δ+−Δ+−+−−
= −+

++

4)4()(41 4,4,44,11
3,3  

i

i
iNiN M

L
a 1

13,3
+

+++ =                  
βi

ii
iNiN M

xx
a

)( 4,4,1
14,3

−
= +

+++  

( ) ( ) ( )[ ]
2

4,4,4,14,4,114,4,11
4,3

))4((

i

iiiiiiiiiii
iNiN M

xzFyxVxyVxxL
a

−+−+−+−
−= −−−++

++  

)1(4,4 i
v

iNiN Rm
H

a Δ
Δ

+−=++
λ

β
     

β
1

14,4 =+++ iNiNa                      i
v

iiN R
H

a 1,4 Δ
Δ
−

=+
λ

          

,,4 2 i
v

iNiN R
H

a Δ
Δ
−

=++
λ

                     i
v

iNiN R
H

a 32,4 Δ
Δ
−

=++
λ

         i
v

iNiN R
H

a 43,4 Δ
Δ
−

=++
λ

 

 

A-4. Rectifying Section  

 

       A-4.1 Tray i: (i = nf2+1)     

                                                                                              

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −Δ+
= −−−−

−+
i

iiiii
iNi M

yyVdyV
a

)(2 1,1,1)1(12,11
1,             ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −Δ+
= −−−−

−
i

iiiii
ii M

yyVdyV
a

)(1 1,1,1)1(11,11
1,  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −Δ+
= −−−−

−+
i

iiiii
iNi M

yyVdyV
a

)(3 1,1,1)1(13,11
12,              ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −Δ+
= −−−−

−+
i

iiiii
iNi M

yyVdyV
a

)(4 1,1,1)1(14,11
13,  

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −Δ+
= −−−−

−+
i

iiiii
iiN M

yyVdyV
a

)(1 2,2,1)1(21,11
1,             ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −Δ+
= −−−−

−++
i

iiiii
iNiN M

yyVdyV
a

)(2 2,2,1)1(22,11
1,  

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −Δ+
= −−−−

−++
i

iiiii
iNiN M

yyVdyV
a

)(3 2,2,1)1(23,11
12,          ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −Δ+
= −−−−

−++
i

iiiii
iNiN M

yyVdyV
a

)(4 2,2,1124,11
13,  
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⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −Δ+
= −−−−

−+
i

iiiii
iiN M

yyVdyV
a

)(1 3,3,1131,11
1,2          ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −Δ+
= −−−−

−++
i

iiiii
iNiN M

yyVdyV
a

)(2 3,3,1132,11
1,2                   

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −Δ+
= −−−−

−++
i

iiiii
iNiN M

yyVdyV
a

)(3 3,3,1133,11
12,2          ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −Δ+
= −−−−

−++
i

iiiii
iNiN M

yyVdyV
a

)(4 3,3,1134,11
13,2                  

 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −Δ+
= −−

−+
i

iinin
iiN M

yyVdyV
a

)(1 4,4,141,1
1,3         ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −Δ+
= −−

−++
i

iinin
iNiN M

yyVdyV
a

)(2 4,4,142,1
1,3               

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −Δ+
= −−

−++
i

iinin
iNiN M

yyVdyV
a

)(3 4,4,143,1
12,3           ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −Δ+
= −−

−++
i

iinin
iNiN M

yyVdyV
a

)(4 4,4,144,1
13,3           

        

   A-4.2. Tray i: (i = nf2+2: N-1) 

 

11,11, −− ⎟
⎠
⎞⎜

⎝
⎛= i

i

n
ii dyM

Va          12,11, −−+ ⎟
⎠
⎞⎜

⎝
⎛= i

i

n
iNi dyM

Va          13,112, −−+ ⎟
⎠
⎞⎜

⎝
⎛= i

i

n
iNi dyM

Va  

   14,113, −−+ ⎟
⎠
⎞⎜

⎝
⎛= i

i

n
iNi dyM

Va       21,11, −−+ ⎟
⎠
⎞⎜

⎝
⎛= i

i

n
iiN dyM

Va              22,11, −−++ ⎟
⎠
⎞⎜

⎝
⎛= i

i

n
iNiN dyM

Va      

23,112, −−++ ⎟
⎠
⎞⎜

⎝
⎛= i

i

n
iNiN dyM

Va        24,113, −−++ ⎟
⎠
⎞⎜

⎝
⎛= i

i

n
iNiN dyM

Va               31,11,2 −−+ ⎟
⎠
⎞⎜

⎝
⎛= i

i

n
iiN dyM

Va    

32,11,2 −−++ ⎟
⎠
⎞⎜

⎝
⎛= i

i

n
iNiN dyM

Va        33,112,2 −−++ ⎟
⎠
⎞⎜

⎝
⎛= i

i

n
iNiN dyM

Va          34,113,2 −−++ ⎟
⎠
⎞⎜

⎝
⎛= i

i

n
iNiN dyM

Va    

41,11,3 −−+ ⎟
⎠
⎞⎜

⎝
⎛= i

i

n
iiN dyM

Va     42,11,3 −−++ ⎟
⎠
⎞⎜

⎝
⎛= i

i

n
iNiN dyM

Va            43,112,3 −−++ ⎟
⎠
⎞⎜

⎝
⎛= i

i

n
iNiN dyM

Va     

44,113,3 −−++ ⎟
⎠
⎞⎜

⎝
⎛= i

i

n
iNiN dyM

Va  

                                                                                                           

A-4.3. Tray i: (i = nf2+1: N-1) 

         for k = 1 to Nrx 

kNsiikNsi Vyya ++−++ Δ−= 11,1,11, 1)(                 kNsiikNsNi Vyya ++−+++ Δ−= 11,1,11, 2)(  

kNsiikNsNi Vyya ++−+++ Δ−= 11,1,112, 3)(           kNsiikNsNi Vyya ++−+++ Δ−= 11,1,113, 4)(  

kNsiikNsNi VMyya ++−+++ Δ−= 11,1,114, )(          kNsiikNsiN Vyya ++−+++ Δ−= 12,2,11, 1)(                    

kNsiikNsNiN Vyya ++−++++ Δ−= 12,2,11, 2)(        kNsiikNsNiN Vyya ++−++++ Δ−= 12,2,112, 3)(              
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kNsiikNsNiN Vyya ++−++++ Δ−= 12,2,113, 4)(       kNsiikNsNiN VMyya ++−++++ Δ−= 12,2,114, )(  

kNsiikNsiN Vyya ++−+++ Δ−= 13,3,11,2 1)(            kNsiikNsNiN Vyya ++−++++ Δ−= 13,3,11,2 2)(  

kNsiikNsNiN Vyya ++−++++ Δ−= 13,3,112,2 3)(      kNsiikNsNiN Vyya ++−++++ Δ−= 13,3,113,2 4)(  

 

kNsiikNsNiN VMyya ++−++++ Δ−= 13,3,114,2 )(     kNsiikNsiN Vyya ++−+++ Δ−= 14,4,11,3 1)(                       

kNsiikNsNiN Vyya ++−++++ Δ−= 14,4,11,3 2)(       kNsiikNsNiN Vyya ++−++++ Δ−= 14,4,112,3 3)(                  

kNsiikNsNiN vyya ++−++++ Δ−= 14,4,113,3 4)(       kNsiikNsNiN VMyya ++−++++ Δ−= 14,4,114,4 )(  

( )
i

ini
ii M

dyVL
a 11,1

,

+−
= +           12,, i

i

n
iNi dyM

Va ⎟
⎠
⎞⎜

⎝
⎛−=+                 13,2, i

i

n
iNi dyM

Va ⎟
⎠
⎞⎜

⎝
⎛−=+  

14,3, i
i

n
iNi dyM

Va ⎟
⎠
⎞⎜

⎝
⎛−=+          

i

i
ii M

L
a 1

1,
+

+ =                                   
βi

ii
iNi M

xx
a

)( 1,1,1
14,

−
= +

++  

( ) ( )[ ]
2

1,1,11,1,11
4,

i

iiiii
iNi M

yyVxxL
a

−+−
−= −++

+  

21,, i
i

n
iiN dyM

Va ⎟
⎠
⎞⎜

⎝
⎛−=+          

( )
i

ini
iNiN M

dyVL
a 22,1

,

+−
= +

++          23,2, i
i

n
iNiN dyM

Va ⎟
⎠
⎞⎜

⎝
⎛−=++  

24,3, i
i

n
iNiN dyM

Va ⎟
⎠
⎞⎜

⎝
⎛−=++       

i

i
iNiN M

L
a 1

1,
+

+++ =                           
βi

ii
iNiN M

xx
a

)( 2,2,1
14,

−
= +

+++  

( )[ ]
2

2,2,112,2,11
4,

)(

i

iiiiii
iNiN M

yyVxxL
a

−+−
−= −−++

++    

31,,2 i
i

n
iiN dyM

Va ⎟
⎠
⎞⎜

⎝
⎛−=+           32,,2 i

i

n
iNiN dyM

Va ⎟
⎠
⎞⎜

⎝
⎛−=++        

( )
i

ini
iNiN M

dyVL
a 33,1

2,2

+−
= +

++  

34,3,2 i
i

n
iNiN dyM

Va ⎟
⎠
⎞⎜

⎝
⎛−=++      

i

i
iNiN M

L
a 1

12,2
+

+++ =                       
βi

ii
iNiN M

xx
a

)( 3,3,1
14,2

−
= +

+++  

( )[ ]
2

3,3,113,3,11
4,2

)(

i

iiiiii
iNiN M

yyVxxL
a

−+−
−= −−++

++    

41,,3 i
i

n
iiN dyM

Va ⎟
⎠
⎞⎜

⎝
⎛−=+               42,,3 i

i

n
iNiN dyM

Va ⎟
⎠
⎞⎜

⎝
⎛−=++       43,2,3 i

i

n
iNiN dyM

Va ⎟
⎠
⎞⎜

⎝
⎛−=++  

( )
i

ini
iNiN M

dyVL
a 44,1

3,3

+−
= +

++     
i

i
iNiN M

L
a 1

13,3
+

+++ =                     
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Appendix B 
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Appendix C 

Entries of Matrix C 

Output variables Vector: 

C-1. If output variables are considered to be composition of C in distillate and D in the 
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Appendix D 
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