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Residential buildings are characterized by being envelope-load dominated buildings, 
hence are greatly influenced by the outside climatic conditions. Due to the harsh climate 
of Saudi Arabia, residential buildings on average, consume more than half of the total 
consumed energy. The bulk of this energy is consumed by the air-conditioning system 
which is required to remove substantial amount of gained heat due to poor thermal 
envelope performance. Implementing proper envelope thermal and air leakage 
characteristics for residential buildings can significantly reduce energy consumption.   

The objectives of this research are to evaluate the thermal characteristics of building 
envelope and consequently define those that enhance the indoor thermal conditions and 
improve the energy efficiency of residential buildings. In order to achieve these 
objectives, a typical base case residential building was developed by conducting a 
questionnaire survey in Dhahran and Riyadh. Envelope design practices were defined and 
eight designs were selected to represent the wide variation of thermal characteristics.   

Energy simulation program; VisualDOE 4.1 was used to evaluate the impact of thermal 
performance of the selected envelope designs and air leakage characteristics in the 
residential building when no air-conditioning is used. Parametric analysis was performed 
in Dhahran and consequently ventilation strategies were developed for the eight envelope 
designs at various windows to wall ratio (WWR). The thermal comfort has significantly 
improved when outside cool air is introduced. The base case was also simulated under the 
climatic conditions of Riyadh and Dhahran when air-conditioning (cooling and heating) 
is utilized. A sensitivity analysis was performed for wall and roof designs, combination 
of wall and roof designs, glazing types, window to wall ratio (WWR), orientation and 
various air infiltrations. The most effective strategies were selected and simulated for the 
eight envelope designs. The total energy consumption of residential buildings in Dhahran 
and Riyadh was reduced by 20% when compared to International Energy Conservation 
Code (IECC) proposed design. The Dhahran case was further improved by incorporating 
combined ventilation and air-conditioning strategies. Finally, envelope thermal design 
guidelines were developed for residential buildings in hot climates of Saudi Arabia.   
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CHAPTER ONE  

INTRODUCTION  

1.1 Background  

In traditional buildings of Saudi Arabia, climatic thermal design of exterior building 

envelope was predominantly utilized to manipulate the indoor air temperature to achieve 

thermal comfort. Climatic thermal design such as thermal characteristics of building 

envelope and air leakage characteristics greatly influences the room air temperature and 

subsequently the energy consumption. Thermal characteristics are the principle properties 

of building materials such as heat transmission, heat storage, solar heat gain and air 

infiltration (Fazio et al., 1997). Givoni has identified these characteristics as thermo-

physical properties of building envelope which include thermal conductivity and 

subsequently thermal resistance, heat capacity, transparency to radiation of different 

wavelengths, surface convective coefficient, and surface radiation properties: 

absorptivity, reflectivity, and emmisivity (Givoni, 1976). To utilize the potential of the 

thermal performance of building envelope, these characteristics should be identified and 

properly considered at an early design stage to reduce the energy consumption required to 

achieve thermal comfort. The rapid development and prosperity of construction industry 

in the Kingdom of Saudi Arabia has contributed in introducing new building materials 

that are incompatible to the local harsh climate. On the other hand and in the Saudi 

design practices, materials for building envelope are seldom selected with proper 



   2   

considerations to thermal performance (Al-Hammad and Hassanain, 1996). New 

building s designs are developed to meet the client s requirements without much concern 

to the climate and with no objective to conserve energy. This has undoubtedly 

disregarded the climate as a design determinant in building envelope design process. As a 

result, these have contributed to an overall poor thermal performance of residential 

buildings which became more dependent on artificial means to provide comfortable 

thermal environment at high energy consumption.   

Residential buildings in Saudi Arabia consumed 51% of the total energy use in the year 

2002 as shown in Figure 1.1. Majority of the consumed energy is used for heating and 

cooling purposes to provide thermal comfort. The poor thermal performance of exterior 

building envelope is responsible for large portion of total cooling load which determines 

the energy consumption in hot climates. Harsh climatic conditions could increase the 

contribution of the building envelope to 77% of the total cooling load (Al-Mofeez, 2002).   

Air leakage characteristics on the other hand play major role in either enhancing or 

deteriorating the indoor thermal environment. The impact of air leakage on the indoor 

environment is dependent on the severity of outside climatic conditions. The poor 

construction practices including the workmanship, construction methods and lack of 

testing procedures for locally made building components and the incompatibility of 

imported building materials to the harsh climate in Saudi Arabia have presumably 

resulted in buildings with high air leakage rates. 
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Figure 1.1 Distribution of Sold Energy for All over the Kingdom in Year 2002 (SEC, 
2002)    

While the air leakage is advantageous in improving the indoor thermal environment when 

the outdoor temperature is within the thermal comfort limits, it can negatively impact the 

indoor thermal environment in hot-dry and hot-humid days. The severity of air leakage 

on indoor thermal environment may be more pronounced in hot-humid climate where 

humidity is the major cause of discomfort.   

Thermal performance of residential buildings under Saudi climate needs careful attention 

due to the diversity of the climatic conditions. This is particularly true for buildings in 

hot-humid climate where passive design concepts such as building thermal design, 

orientation, planning, material selection, window treatments, natural ventilation, 
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including proper facility planning and management are difficult to accomplish but 

imperative in improving the indoor thermal environment (Sreshthaputra, 2003). 

Considering these design concepts at the early design stage, it is strongly believed that an 

acceptable indoor thermal environment could be achieved with low energy consumption 

in developing countries where codes are not available. This is particularly important 

when thermal design concepts are intended to accomplish thermal comfort at low energy 

consumption. Although the potential of saving energy at national level in Saudi Arabia is 

still not quantifiable at this stage but some estimates show that the energy use in the 

future buildings could be reduced by as much as 20% compared to the existing available 

designs if proper code is implemented (Ishteeaque, 2002). Many efforts are currently 

under way to develop the first national Saudi Building Code.   

1.2 Statement of the Problem  

As envelope-load dominated buildings, residential buildings are greatly influenced by the 

climatic conditions. In Saudi Arabia, the thermal load of building envelope (i.e. walls, 

roof and windows) is responsible for more than 70% of the total thermal load in a single-

family house in Dhahran (Said and Abdelrahman 1989, Abdelrahman and Ahmed 

1991, Ahmed and Elhadidy 2002). Residential buildings on average consume more than 

51% of total consumed energy in Saudi Arabia in year 2002 with an annual growth rate 

of 8.1% (SEC, 2002). The majority of this consumption, measured to be more than 76% 

in hot-dry climate of Saudi Arabia (Al-Arfag, 2002) and more than 62% in hot-humid 
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climate (Al-Najem, 2002), is used by mechanical cooling and heating systems to provide 

thermal comfort. In addition, air leakage is an important parameter that influences the 

behavior of indoor air temperature. While the air leakage is advantageous in improving 

the indoor thermal environment when its temperature falls within the comfortable limit 

zones, it is unfavorable for cooling load in hot-dry and hot-humid days at which the 

infiltrated air temperature is out of the comfortable limit zones. Studies in hot-humid 

climate of Saudi Arabia, using DOE2 have shown that the peak cooling load in a single-

family house is very sensitive to air infiltration which represents 22% of the peak cooling 

load (Said and Abdelrahman 1989, Abdelrahman and Ahmed 1991, and Ahmed and 

Elhadidy 2002). The thermal load can significantly be reduced by considering climatic 

thermal design strategies. It might not be possible to completely avoid using mechanical 

systems in harsh climates of Saudi Arabia but the dependence on artificial means to 

provide a constant thermal comfort can be minimized.  

Despite the general awareness about the importance and relevance of envelope thermal 

design, practical guidelines on envelope thermal design and optimal utilization or 

mitigation of air leakage characteristics are not always available especially for a country 

such as Saudi Arabia that has variations on climatic conditions. Owners can also 

contribute to high energy consumption due their lack of awareness on the impact of 

outside air on their level of comfort. For example in hot-humid climate, as a first step to 

achieve thermal comfort, occupants tend to fully open windows and doors for quite long 

time. Consequently, hot-humid air is introduced to the environment which could cause 
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thermal discomfort. To remove this excessive heat, high cooling energy is required to 

bring the space back to a comfortable level.   

1.3  Significance of the Study  

In Saudi Arabia, the bulk of electrical energy in residential buildings is used by 

mechanical system to achieve thermal comfort. The high energy consumption is mostly 

related to poor thermal performance of building envelope. Therefore, the study of 

investigating the thermal performance of building envelope under hot-dry and hot-humid 

climates in Saudi Arabia will identify the most important thermal design parameters that 

could be implemented to reduce the dependence on mechanical means and achieve 

thermal comfort with reduced energy consumption. This study is beneficial to those who 

design residential buildings as well as those who approve them such as municipality 

engineers. The study will provide general requirements on the proper thermal 

characteristics of the exterior building envelope that are necessary to achieve thermal 

comfort at low energy consumption. Therefore, it will contribute to the current efforts of 

developing the first Saudi Building Code by providing general design guidelines that can 

be implemented to reduce energy consumption. The study will also be important to home 

owners who will use the results of this study to better utilize the natural outside air.     
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1.4 Objectives of the Study  

The objectives of the study are: 

1. To investigate the impact of the thermal characteristics of exterior building 

envelope and air leakage characteristics on the indoor air temperature of a typical 

residential building in Saudi Arabia.  

2. To define the suitable thermal design parameters for exterior building envelope and 

air leakage characteristics that enhance the indoor air temperature and 

consequently improve the energy efficiency of the residential building in Saudi 

Arabia.   

3. To develop design guidelines for envelope thermal design and air leakage 

characteristics that enhances the indoor air temperature and consequently improves 

the energy efficiency of a typical residential building in Saudi Arabia.   

1.5 Scope and Limitation  

The scope of the study will be limited to: 

1. A single family residential building (i.e. Villa) with its walls, windows and roofing 

systems that are in common use in Saudi residential construction environment. The 

size and number of occupancy with their activities will be defined for this building. 
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2. Two Saudi climates: hot-dry climate represented by Riyadh city and hot-humid 

climate represented by Dhahran city. 

3. A rectangular two-floor villa (i.e. ground and 1st floor) with two basic orientations: 

South-North and East-West major axis. 

4. The building under two cases:  

4.1 Unconditioned case to investigate the influence of thermal characteristics of 

building envelope including the air leakage characteristics on the indoor air 

temperature behavior. 

4.2 A conditioned case for the identified thermal design parameters to quantify 

the amount of energy required to achieve thermal comfort.  

1.6 Research Methodology  

Many important inputs are required to run the simulation program utilized in this study. 

Therefore, four main phases are found necessary and is carried out as follows as shown in 

Figure 1.2: 

1. Conducting a literature review and reviewing the related case studies: 

1.1. Thermal characteristics of building s exterior envelope and its impact on 

dynamic behavior of indoor thermal environment and energy consumption 

under hot-dry and hot-humid climates.  
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1.2. Influence of air leakage characteristics on dynamic behavior of indoor 

thermal environment and energy consumption. 

1.3. The international standard requirements for Human thermal comfort. 

1.4. Available simulation programs and the sources and types of weather data. 

2. Identifying practices of building envelope design: 

2.1. Developing and conducting a designer questionnaire to identify envelope 

thermal design parameters in Saudi construction environment and 

formulating a base case scenario for residential buildings. 

3. Conducting the simulation analysis utilizing the VisualDOE program: 

3.1. Simulating the base case scenario. 

3.2. A parametric study on unconditioned building using the indoor air 

temperature as a performance indicator. 

3.3. Identifying the effective envelope thermal designs that enhance the indoor 

air temperature. 

3.4. Simulating a conditioned building with the identified parameters to 

quantify the energy consumption. 

4. Preparing the envelope design guidelines, Conclusion and Recommendations: 

4.1. Formulating the envelope thermal design guidelines. 

4.2. Conclusions & Recommendations. 
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Figure 1.2  Flow Chart of Research Methodology  
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CHAPTER TWO 

LITERATURE REVIEW  

2.1 Building Envelope System and Components Configuration   

Building is composed of many systems that are categorized as either simple or 

sophisticated in their structure depends on the function and complexity of the building. 

These systems could be functionally categorized as passive or active systems. Passive 

systems are those that perform their intended function by utilizing their components 

properties whether these properties are natural or artificial made. On the other hand, 

active systems are those associated with using mechanical, electrical and electronic 

equipment to perform their intended function.   

Building enclosure or building envelope is a primary passive system that has many 

principal requirements such as control air flow, water vapor flow, rain penetration, and 

light, control solar and other radiation, noise, and fire, provide strength and rigidity, be 

durable, be aesthetically pleasing, be economical (Hutcheo, 1968). It influences the 

indoor air temperature and consequently the occupants comfort. It is defined as a physical 

means that selectively separates the interior of the building from the exterior. The 

building enclosure system consists of a group of individual systems such as walls, roof, 

foundation, floors, windows, and doors. These elements help to regulate the indoor 
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environment. The integration of all enclosure systems and their components is critical in 

controlling the inside environment at comfortable conditions during the winter and 

summer seasons. The building envelope system can be further categorized as: opaque and 

transparent envelope system. Opaque envelope system includes walls, roof, and floors 

while transparent envelope system includes windows, skylights and glass doors.   

 The wall and roof systems use a number of materials that are carefully located to achieve 

certain aesthetic, structural, and thermal purposes. Many building materials include 

wood, glass, steel, concrete; clay and thermal insulation are used to structure walling and 

roofing systems.  In developing countries, the basic building materials such as wood, 

concrete and clay are widely used in the construction of residential buildings. It is a 

common practice that these materials are combined to achieve specific function. Building 

materials can be assembled in many ways to form different types of building envelope. 

For walls, the materials can be arranged to create single-leaf solid walls with or with-out 

insulation. Insulation material is either located inside or outside relevant to the principle 

material. Other arrangements are also possible such as cavity walls with full air space or 

partially filled with an insulated material or with reflective material such as aluminum 

paper, and a sandwich or composite wall panel as shown in Figure 2.1 (a), (b) and (c).   

Roof system is the most important element of the exterior envelope. It can be flat or 

sloped (pitched). Flat roofs are widely used in hot climates where rain and water 
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accumulation is not significant. Similar to walling systems, many roof types can be 

generated with different arrangement of building materials.           

(a) 
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Figure 2.1  Basic Wall Systems in Residential Buildings, (a) Single-Leaf Solid Wall, 
(b) Cavity Walls and (c) Sandwich Walls  
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In many countries where no building codes are in place, traditional roofs without 

insulation are general practice in construction industry. In countries where energy codes 

are mandatory, roof systems can be classified into conventional warm roofs, inverted 

(protected membrane) warm roofs and cold roofs. These types are categorized relative to 

the positions of the thermal insulation and the waterproof membrane as shown in Figure 

2.2 (a), (b) and (c). In conventional warm roofs, insulation is placed on top of all roof 

materials except the waterproofing membrane.  In inverted roofs, the waterproofing 

membrane is located under the insulation but still the insulation is above all. For cold 

roofs, the insulation material is placed at the bottom of all roof materials.  

Many factors are influencing the selection of specific roof systems (Fishburn, 1989). 

These factors include: 

 

The code requirements such as structural loads, wind loads, drainage, fire 

protection, health and safety.  

 

Design considerations such as thermal considerations, vapor and air barrier 

protection, slope and drainage, building expansion and contraction, service 

temperature parameters, compatibility, deck type and ease of attachment, suitability 

of existing surfaces, surface contaminants, building use, interior considerations, 

aesthetics.  

 

Construction considerations: the availability of materials and labor, construction 

schedule and protection during construction, building location, building height and 

shape, roof size and number of projections. 
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(a)  

            

(b)  

            

(c)  

 

Figure 2.2  Basic Roof Systems in Residential Buildings, (a) Conventional Warm 
Roof, (b) Inverted Warm Roof and (c) Cold Roofs  
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Maintenance considerations: owner's preference and experience, susceptibility to 

damage and accessibility for inspection, life expectancy. 

 

Cost considerations: initial cost, life cycle cost. 

 

Other considerations: technical literature and support, warranty provisions, 

experience of designers.  

2.2 Thermal Characteristics of Opaque Building Envelope  

The continuous exchange of heat between the building envelope and its outdoor and/or 

indoor environment is much dependent on the thermal characteristics of the building 

envelope. The principal thermal characteristics that influence the indoor air temperature 

and subsequently the energy consumption include the heat transmission, heat storage, 

solar heat gain and infiltration rates (Fazio et al., 1997). Givoni, (1976) has identified 

many properties of building envelope that affect the rate of heat transfer in and out of the 

building and consequently influencing the indoor thermal conditions and comfort of the 

occupants. The properties of opaque building envelope include the thermal conductivity, 

thermal resistance, and heat capacity, transparency to radiation of different wavelengths, 

surface convective coefficient, and surface radiation characteristics such as absorptivity, 

reflectivity, and emmisivity.   

The thermal performance of a building envelope depends largely on how the thermal 

characteristics and material thicknesses are selected and arranged within the envelope. 
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The proper design of these parameters determine the thermal behavior of the building 

envelope with regards to its surface heat exchange mechanism with outdoor and indoor 

environments as well as the heat transfer mechanisms within the envelope. Opaque 

building envelope manages the heat exchange and heat flows by three important 

mechanisms: conduction, convection and radiation as shown in Figure 2.3. Normally, the 

three modes of heat transfer occur simultaneously. Thermal conduction is the transfer of 

heat energy between two objects at different temperature that are in contact. In thermal 

convection, heat is transferred by the movement of fluid from one region to another. The 

fluid motion could be driven by natural means such as wind force or buoyancy forces that 

are set up by temperature differences and is called natural or free convection. If the fluid 

motion is caused by some other mechanism, such as a fan or pump, it is called forced 

convection (Stephenson, 1964). Radiation is the transfer of heat between two surfaces by 

electro-magnetic waves. For most common building materials used in building envelope, 

all heat exchange and transfer mechanisms simultaneously occur. However, the degree of 

dominance of one mechanism over other differs from one material to another based on 

many factors such as the surface properties, thermal characteristics and the airflow 

characteristics. 
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Figure 2.3  Mechanisms of Heat Transfer in Exterior Opaque Building Envelope 
(NCFI, 1995)   

2.2.1 Surface Characteristics of Opaque Building Envelope   

From a thermal point of view, the main function of the building envelope is to mitigate 

the outside climate variables as well as those of the indoor environment to help 

accomplishing a comfortable environment for occupants to perform their day to day 

activities. The building envelope is dynamically responding to the fluctuation of climate 

variables particularly to the solar radiation and temperature variation. While both walling 

and roof systems are responding to the climate variables, roof systems are more sensitive 
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to solar radiation due to longer exposure time to the sun. The surface properties of both 

walling and roof systems can be used to reduce the effect of climatic conditions.  

At the exterior surface of opaque building envelope as shown in Figure 2.4, convection 

and radiation heat transfer mechanisms are predominant. Generally for the building 

envelope, the convection heat transfer is a function of wind speed and details of the 

surface roughness but for roof systems additional parameters such as the height of the 

roof above ground level and how the roof is exposed to the wind are also important 

(Berdahl and Bertz, 1997).   

 

Figure 2.4  Components of Heat Balance at an Opaque Surface (Stephenson, 1963)  

Surface roughness contributes to the effectiveness of convection heat transfer. Higher 

roughness increases the contact between the air and the surface and consequently 

increases the surface convective coefficients (Givoni, 1976). The surface convective 

coefficient determines the rate of heat exchange between the surface and the surrounding 

air. The higher the convective heat coefficient the closer is the surface temperature to 
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ambient temperature.  The surface roughness of the building material can be classified 

into six categories (Ely, 2001): 

 

Very Rough. e.g. stucco walls, wood shingle roofs, or built-up roof with stones 

 

Rough. e.g. brick or plaster. 

 

Textured. e.g. poured concrete walls, or asphalt shingle roofs. 

 

Flat. e.g. painted wood siding. 

 

Smooth. e.g. unpolished marble, smooth plaster, or metal. 

 

Polished. e.g. glass, polished marble, or chrome finished metal.    

The convective heat transfer at roof systems can also be affected by some special 

architectural features such as parapet. Parapet is very common roof feature in buildings of 

Middle East and in some cases can be more than 1.70 m for privacy purposes. This can 

reduce the air flow near the roof surfaces which reduces the convective heat exchange 

rate and consequently increases the roof temperature (Berdahl and Bertz, 1997).   

On the other hand, solar radiation heat exchange between the exterior surfaces and the 

environment is governed by three important properties of the building material: 

absorptivity, reflectivity and emmissivity (Givoni, 1976). These properties determine the 

thermal performance of exterior building envelope with respect to both shortwave and 

long-wave radiant heat exchanges. The absorptivity ( ) can be described as the ratio of 

the absorbed radiant flux to the incident radiant flux at a certain wavelength. The 
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reflectivity ( ) is the ratio of the reflected radiant flux at a certain wavelength to the 

incident radiant flux. The emmisivity ( ) is the relative power of a material to emit 

radiant energy (Givoni, 1976). It can be defined as ratio of radiative flux emitted at a 

certain wavelength and temperature to that emitted by a black body under the same 

conditions. Opaque building materials absorb some radiant heat and reflect the 

remainder, hence the relationship between the absorptivity and the reflectivity can be 

described by the following equation: reflectivity ( ) =1- absorptivity ( ). The emmisivity 

and absorptivity are numerically equal at the same wavelength and temperature as is 

stated by Kirchhoff s Law .   

At the exterior surface, solar radiation is selectively absorbed based on its wavelength 

(Givoni, 1976). Solar radiation (wave length: 0.1 

 

100 microns) can be divided 

according to its wavelength into: shortwave radiation or near-infrared (0.1 to 2.6 microns) 

and long-wave radiation or far-infrared (3 

 

100 microns). The shortwave radiations are 

received from the direct sun, sky radiations or reflected solar radiation from adjacent 

surfaces. The long-wave radiation is received from the nearby emitted surfaces. It is 

important to note that the shortwave solar absorptance is different from one building 

material to another but long-wave solar absorptance is similar for many building 

materials. Typical values of shortwave absorptivity and long-wave emissivity for various 

surface types and colors are listed in Table 2.1. It is noticed that the color (or visual 

appearance) is an indicator of the surface behavior with respect to shortwave radiation 

but it is not for long-wave radiation. For example, a white oil paint and a black color can 
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absorb 20% and 85% of the near-infrared radiation respectively but both colors have the 

same long-wave absorptivity for far-infrared radiation. This alludes to a fact that both 

colors will behave differently during the day but will have a similar behavior at night 

when only long-wave radiation exists.    

The absorbed heat increases the exterior surface temperature of the envelope. The 

magnitude of exterior surface temperature is a function of the outdoor air temperature, the 

received solar radiation and the surface radiant properties. This temperature is 

represented by an imaginary temperature which is referred to as Sol-air Temperature .  

Table 2.1 Absorptivity and Emissivity of Various Surfaces (Givoni, 1976) 
Material or Color Shortwave Absorptivity Long-wave Emissivity  

(Long-wave Absorptivity) 
Aluminum Foil, bright 0.05 0.05 
Aluminum Foil, oxidized 0.15 0.12 
Galvanized steel, bright 0.25 0.25 
Aluminum paint 0.50 0.50 
Whitewash, new 0.12 0.90 
White Oil paint 0.20 0.90 
Grey color, light 0.40 0.90 
Grey color, dark 0.70 0.90 
Green color, light 0.40 0.90 
Green color, dark 0.70 0.90 
Ordinary black color 0.85 0.90 

 

It can be mathematically represented by: te = to+
ho

R

ho

It
, Where; to: ambient air 

temperature, = solar absorption, It=incident solar radiation, ho: surface conductance 
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=17 W/m2.°C (convective coefficient(hc)+radiation coefficient(hr)) ,
ho

R
=correction 

factor

surfacesverticalfor

surfaceshorizontalfor

0

4

 

From this relationship, the peak surface temperature is directly proportional to 

absorptivity ( ) and is inversely proportional to the total surface conductance (hr+hc). 

Therefore, the exterior surface temperature can significantly be reduced by lowering the 

shortwave solar absorptance (i.e. increasing reflectivity). It can also be lowered by 

increasing the long-wave solar emissivity which increases the radiative cooling. Low sol-

air temperature (exterior surface temperature) influences the temperature gradient across 

the envelope by reducing the heat flows and consequently reducing the internal surface 

temperature which is the main cause of thermal discomfort.   

Studies have been conducted to measure the surface properties of building materials. 

Reagan and Acklam (1979) have studied the solar reflectivity of many opaque building 

materials that were available in USA.  The study has recommended a color-reflectivity 

classification for opaque building material as shown in Table 2.2. Many data for solar 

reflectance (albedo) of building materials has been collected and presented by (Taha et 

al., 1992) with results from field measurements. Spectral information on many building 

materials have been presented by (Parker et al., 1993) and (Touloukain et al., 1972). 

Yellott has presented the solar reflectance and the emmittence of many building materials 

in an indicative diagram as shown in Figure 2.5.  
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Table 2.2 Color-Reflectivity Classification for Opaque Building Materials 
(Reagan and Acklam, 1979) 
Color Code Solar Reflectivity Solar Absorptivity 
Very Light 0.75 0.25 
Light 0.65 0.35 
Medium 0.45 0.55 
Dark 0.25 0.75 
Very Dark 0.10 0.9 

 

Very Light: Smooth building material surfaces covered with a fresh or clean stark white paint or 
coating 

Light: Masonry, textured, rough wood, or gravel roof surfaces covered with a  white paint 
or coating 

Medium: Off-white, cream, buff or other light colored brick, concrete block, or painted 
surfaces and white-chip marble covered roofs 

Dark: Brown, red or other dark colored brick, concrete block, painted or natural wood walls 
and roofs with gravel, red tile, stone, or tan to brown shingles 

Very Dark: Dark brown, dark green or other very dark color pained, coated or shingled surfaces 

  

Figure 2.5  Solar Properties of Typical Building Materials (Yellot,1966)  
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Another study has characterized the solar reflectance of a number of roofing materials 

with spectral reflectance measurements (Berdahl and Bertz, 1997). The study has 

highlighted the importance of material selection, its surface roughness and the presence 

of impurities on effectiveness of the solar reflectance. The high surface roughness 

promotes multiple reflections of solar radiation on the surface which increases the 

probability of absorption.  

The surface characteristics of enclosed surfaces in a cavity of building envelope are as 

important as the characteristics of the exterior surfaces. The heat transfer mechanism in a 

cavity under specific condition (i.e. specific thickness and still air) is dominated by long-

wave radiation. The long-wave radiation relies on the effective emissivity of the enclosed 

building materials. Most common building materials, including glass and paints of all 

colors, have high emissivity which is near 0.9 as listed in Table 2.1. These materials 

absorb significant amount of far-infrared radiation and therefore have high capability of 

transferring the long-wave radiation energy (Fairey, 1994). Raidative materials are 

characterized by their low emissivity and high reflectivity and therefore have low 

capability to transfer long-wave radiation. Reflective materials can be utilized to create 

radiant barriers or act as reflective insulations (Swinton, 1991). A radiant barrier is a 

single sheet of reflective materials positioned on one side or both sides of a cavity.     
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2.2.2 Thermal Insulation Materials and Their Properties   

Thermal insulation is the most effective passive technique that is used to reduce heat flow 

and consequently reduce the energy consumption in buildings. Thermal insulation is 

functionally defined as a material or assembly of materials used to provide resistance to 

heat transmission. Many types of thermal insulation are available and broadly classified 

as capacitive, resistive and reflective. The capacitive insulation materials are 

characterized by their wide thickness and high capacity to store heat and restrict its flow. 

Capacitive insulation materials were primarily used in traditional buildings. Building 

materials such as stones and adobe are examples of capacitive insulation. Resistive 

insulations constitute of high porous and low density materials which reduce the 

conductive heat transfer due to the availability of air holes or gaps which have good heat 

resistance. The most important character of this type is the high thermal performance (i.e. 

R-value) it provides for thin layers of material compared to capacitive insulation.   

In modern buildings, insulated materials are commonly combined with normal building 

material to achieve high thermal performance. Insulation materials are available in 

different types according to their compositions as illustrated in Figure 2.6.   
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Figure 2.6  Generic Types of Insulation Materials (Barnatt, 1981)   

Insulation materials can take many forms such as batt-type, loose fill, rigid foam panels, 

and spray-type. Some insulation materials are specifically used in certain types of 

building envelope as depicted in Table 2.3.  

Additionally, insulated materials can be combined with the basic building materials to 

improve their thermal properties. For example, the insulation materials can be inserted in 

the cores of concrete masonry units (CMU) or brick units to improve their thermal 

performance and reduce the mass weight for structural purposes.    
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Table 2.3 Typical Application of Different Insulation Materials (DOE, 2002) 
Form Where Applicable 
Blankets, Batts or Rolls:   

Fiber glass    
Rock wool 

All unfinished walls, floors and ceilings 

Loose-Fill (poured in): 
    Vermiculite or Perlite 

Enclosed existing wall cavities or open new 
wall cavities 

Loose-Fill (blown-in):  
Rock wool  
Fiber glass     
Cellulose    

Spray-applied   
Polyurethane foam 

Unfinished attic floors and hard to reach 
places 

Rigid Insulation: 
Extruded polystyrene foam  
(XPS)      Expanded polystyrene 
foam (EPS or beadboard)    
Polyurethane foam    
Polyisocyanurate foam 

Basement  walls  
Exterior walls under finishing (Some foam 
boards include a foil facing which will act 
as a vapor retarder  

Un-vented low slope roofs 
Reflective Systems:    

Foil-faced paper    
Foil-faced polyethylene bubbles    
Foil-faced plastic film  
Foil-faced cardboard 

Unfinished ceilings, walls, 
and floors  

In walls, ceiling cavities.   

 

The chemical compositions of concrete masonry units (CMU) can be altered with the 

addition of insulation materials during the manufacturing process. Some other techniques 

are also available to improve the thermal properties of aggregate block concrete units by 

intentionally increasing the air gaps with the addition of special types of foams or agents.  

Precast autoclaved concrete masonry units are examples of these types and include 

autoclaved aerated concrete (AAC) which uses high-silica sand as an agent for increasing 

air gaps, and autoclaved cellular concrete (ACC) which uses fly ash as an agent for 

increasing air gaps. Some agents such as powdered aluminum are added to the concrete 
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mixture which generates small bubbles of hydrogen that fills the gaps and act as a 

thermal resistance in the concrete blocks (Hampshire, 1981).   

Air space can also be considered as an insulation medium which is used in cavity walls to 

reduce the conductive heat transfer. In order to increase its thermal performance, high 

reflective materials such as aluminum paper are used on envelope surfaces to reduce the 

effect of long wave radiation.  They don t have a thermal resistance; but must be 

positioned to face an air-space. Reflective insulations are composed of a system of 

reflective sheets that divides air spaces in to layers. The utilization of reflective foil 

insulation can help to reduce the radiative heat transmission by about two-thirds (Griffin, 

1974).   

The thermal performance of the insulation material is rated in terms of its thermal 

resistance, known as R-value or its metric equivalent RSI-values, which indicates the 

resistance to heat flow. The higher the R-value or RSI-value for a material, the more is its 

resistance to the heat flows. The reciprocal of the R-value is the U-value, which describes 

the rate of heat transmission. The thermal resistance (R= L/k, m2.K/W) of a material 

depends largely on its thickness (L) and thermal conductivity (k). The thermal 

conductivity (k, W/m.K) is defined as the heat flow in watts across a thickness of 1 m 

when there is a temperature difference of 1°C. It is measured in the laboratory under 

steady state and at constant climatic conditions (constant temperature and humidity). 
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Thermal properties of many building materials are listed in Chapter 28 of ASHRAE 

Fundamental Handbook (ASHRAE, 1997).  

2.2.3 Thermal Dynamic Behavior of Massive Envelope  

Thermal mass is a characteristic of building material that describes its ability to absorb, 

store and release heat depending on the surrounding climatic conditions. Traditional 

housings were built with heavy weight, massive constructions to reduce the extremes in 

temperature experienced in summer days. Massive constructions or thermal mass can 

significantly improve thermal comfort by moderating the average indoor air temperature 

in buildings. The massive materials in building envelope absorb and store heat and 

subsequently delaying or dampening the effect of peak exterior wall temperature. As a 

result, the peak interior wall temperature is reduced and delayed as shown in Figure 2.7.  

The flattened temperature curve shifts the peak cooling load (i.e. delayed and reduced) to 

times where either the energy demand cost is low or the outside air temperature is cool. 

This mechanism helps in achieving a thermally comfortable environment at a low energy 

cost. From Figure 2.7, two important characteristics of massive building envelope that 

determine its dynamic behavior can be defined: a decrement factor and a time lag (h). 

The decrement factor is the ratio between the maximum indoor and outdoor temperature. 

The time lag is the time between the occurrence of maximum outdoor and indoor 

temperature.   
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Figure 2.7  Influence of Thermal Mass on Diurnal Temperature  

The impact of the thermal mass on indoor air temperature has been investigated in South 

Africa (Richards, 1959). A serious of measurements on a warm day was carried out in a 

number of test houses in Pretoria, South Africa. The results indicated that heavy-weight 

construction have a great influence in reducing the daily indoor temperature variations 

than light-weight construction as shown in Figure 2.8.   

An experimental study has been carried out in Iraq during July to investigate the thermal 

behavior of light-weight timber structure having a 2-hours time lag and heave-weight 

brick structure (229 mm) having a 10 hours time lag, keeping the same overall heat 

transmission coefficient (U-value) (Olgayay , 1963). The study showed that although the 

total daily heat transmission is the same for the two structures, the amplitude and the 

period of transmission is different as indicated in Figure 2.9. 
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Figure 2.8  Influence of Thermal Mass on Indoor Air Temperature (Richards, 
1959)  

 

Figure 2.9  Dynamic Thermal Behavior of Heavy and Light Construction in Iraq 
(Olgayay, 1963) 
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The heat flow during daytime (from 7 a.m. to 7 p.m.) in heavy-weight structure is 26% 

lesser than that of the light-weight structure as shown in the figure. It has been concluded 

that in hot climates where the outdoor temperature is above that of the indoor during the 

full day cycle, the thermal mass is only delaying the peak cooling load rather than 

reducing the total amount of heat transmission.  

Roof is the most important elements of the exterior building envelope because it is 

exposed to the solar radiation for large portion of the time in a day. In buildings, roof is a 

major source of heat gain and therefore need to be heavy enough with long time lag. 

Traditionally in the Middle East, roof is covered with a layer of soil with a considerable 

capacity of heat storage. A mud layer of 102 mm on top of 102 mm of thick concrete slab 

can reduce ceiling temperature by as much as 10° C (Saini, 1980). However, this 

conclusion might be applicable when the soil layer is added on top of low massive roofs. 

An experimental study on a room of 3.45 m x 3.45 m x 3 m in Saudi Arabia has shown 

that an addition of 350 mm of dry natural soil on top of 225 mm roof (25 mm white 

cement tiles + 25 mm cement plaster + 50 mm sand+10 mm water proofing + 120 mm 

concrete slab+ 25 mm cement plaster) has a minor effect on indoor air temperature (Al-

Hemiddi, 1995). The indoor temperature drop between that of the control room (no sand) 

and that of the tested room (with sand) is only 0.6 ° C. However, the improvement is up 

to 4.6° C if some treatments are made to the soil layer such as increasing the moisture 

content, or adding a layer of gravel and/or applying shading.  Another study in Saudi 

Arabia has investigated the influence of adding a layer of gravel on top of a roof (Al-
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Turki et al., 1997). The study has been conducted on six concrete tiles of dimensions 20 

x 20 x 3 cm by using different gravel sizes and different gravel mass distribution. The 

gravel has delayed the effect of solar radiation by 3 hours. The study has concluded that 

the thickness of the gravel layer is more effective than the size of the gravel.  

A number of parameters and conditions, such as building material properties, building 

orientation and its effect on thermal mass location and distribution, thermal insulation, 

ventilation, climatic conditions and use of auxiliary cooling systems and occupancy 

patterns, are all parameters that determine the dynamic thermal behavior of massive 

construction (Balaras, 1996).  

Thermo-physical properties of building materials determine the effectiveness of thermal 

mass in influencing the indoor thermal environment. The combined effect of the basic 

thermo-physical properties: specific heat or heat capacity:  (J/kg.K), density:

  

(kg/m3) 

and conductivity: k (W/m.K) as well as the thickness (m) of building material define the 

characteristic magnitude of time lag and decrement factor (Ulgen, 2002). In literature, 

other properties are also used to theoretically compute the decrement factor and time lag. 

For example, thermal diffusivity ( , m2/h), which is the ratio between the thermal 

conductivity (W/m.K) and volumetric heat capacity (specific heat x density) (J/K. m2), is 

mainly used in theoretical computation of decrement factor and time lag (i.e. heat flow 

and temperature patterns) under periodic conditions (Givoni, 1976).  Building materials 

with high value of thermal diffusivity ( ) rapidly modify their temperature to that of 
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surroundings, because they conduct heat quickly in comparison to their volumetric heat 

capacity. In contrary, materials with small thermal diffusivity values have large 

volumetric heat capacity which in turns affect the decrement factor and increase the time 

lag. This consequently has a positive impact on the interior thermal conditions (Ulgen, 

2002). There is no specific material that gives all thermal properties needed; therefore, 

building envelope system is normally assembled with several materials to achieve certain 

thermal purposes.   

The effect of thermal diffusivity on interior wall temperature, the relationship between 

the thermal diffusivity and the decrement factor and the time lag has been studied in 

detail by (Asan and Sancaktar, 1998) using computational code. The study has shown 

that if the thermal diffusivity decreases (due to increases in volumetric heat capacity); the 

wall inner surface temperature goes to a constant value. As the thermal diffusivity 

approaches its lowest value (maximum heat capacity), the time lag exponentially goes to 

infinity and the decrement factor converges to zero (inverse exponential relationship). 

The same relationship has been found between the wall thickness (at constant 

diffusivity), the time lag and decrement factor. In contrary, if the thermal diffusivity goes 

to infinity (zero heat capacity) time lag converges to zero and decrement factor takes 

constant value.   

The study has quantified the limit values of the thermo-physical properties that affect 

both the time lag and decrement factor. For thermal conductivity of k=0.05 W/m.K, time 
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lag takes the value of 24h. For smaller values of thermal conductivity < 0.01 W/m.K, 

thermal lag is very high while decrement factor is zero. Thermal lag gets smaller with 

increasing value of thermal conductivity until a value of k>100 W/m.K where time lag 

takes a constant value of 2h. The decrement factor increases with increasing value of 

thermal conductivity until k>10 W/m.K where the increase is slow. Decrement factor, 

time lag of 42 roof assemblies and 41 walling assemblies are described in Chapter 28, 

Table 14 and Table 19 of ASHRAE Fundamental Handbook (ASHRAE, 1997).  

Thermal mass in building envelope interacts with the outdoor conditions as well as those 

of the indoor. The location of the thermal mass (i.e. interior or exterior) and its 

distribution around the building (south, north, east and west) must be properly considered 

based on the space usage/function and the desirable time lag (Balaras, 1996). Therefore, 

the heat gain should be characterized for all sides of the building envelope which is 

mostly related to outside climatic conditions. While the interaction of outdoor air 

temperature with buildings is independent of the building envelope orientation (i.e. 

similar for all four sides of the building), the effect of solar radiation varies from one side 

of the building to another and from one season to another. During summer, east and west 

sides receive higher solar radiation compared to other sides, with more solar heat 

received on west side from mid-to-late summer afternoon (Andersson et al., 1985). In 

contrary, the south side receives higher solar energy during winter in comparison with 

other sides. The impact of solar radiation on north side of the building are minimal in 

both summer and winter seasons. Therefore, the west and south sides of the building 
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envelope should be considered for a thermal mass with at least 8 hrs time lag while the 

other sides should be designed with low thermal mass (Balaras, 1996). For south wall in 

winter, thermal mass is used for heating while it is to delay the peak summer cooling load 

for the west wall. High thermal mass in east wall could have adverse effect on indoor 

conditions as the solar heat gain in the morning is stored, delayed and released at hottest 

afternoon hours which consequently cause thermal discomfort (Andersson et al., 1985). 

A desirable time lag using proper level of thermal mass should be considered for the 

space usage. For example, in rooms that are occupied during the day, a time lag of 8-10 

hrs is required but for a night-time living areas the time lag should be short (Saini , 

1980).   

The placement of the thermal mass within the envelope relative to the thermal insulation 

is important in the overall thermal performance of the building, yet highly dependence on 

the building operation strategy. Several studies have investigated the influence of both 

the thermal mass and thermal insulation placement within the building envelope. For a 

three-layered building envelope, a study using a computer program BRE-ADMIT has 

investigated the influence of layer distribution of insulation and masonry on the thermal 

behavior under different mode of building operation (Bojic and Loveday, 1997). The 

distributions of two layers were investigated: masonry/insulation/masonry and 

insulation/masonry/insulation. The study has concluded that for intermittent heating, the 

insulation/masonry/insulation structure performs better, but for intermittent cooling, the 

masonry/insulation/masonry structure is better. For a continuous cooling, the distribution 
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doesn t influence the energy consumption but influences the daily maximum cooling 

power demand. Using whole-building dynamic modeling DOE 2.1E, a study for a 

continuously used residential building in six USA climates has shown that walls 

containing massive internal layers are more preferable than those with internal insulation 

with regard to energy savings (Kossecka and Kosny, 2002).   

In Saudi Arabia, a study has investigated the effect of insulation location relative to 

thermal mass on the heat transfer characteristics of building wall elements for different 

wall orientations under initial transient conditions (Al-Sanea and Zedan, 2001). Using 

the climatic data of Riyadh, the results showed that the insulation layer location relative 

to thermal mass had significant effect on the instantaneous and daily mean loads. It was 

recommended that for spaces where the air-conditioning system is switched on and off 

intermittently, the insulation should be placed on the inside. Comparing the thermal 

performance of different roofs under climatic conditions of Riyadh, Al-Sanea, (2003) has 

found that a slightly better thermal performance is achieved by locating the insulation 

closer to the inside surface of the roof. A study in hot-humid climate of Dhahran using 10 

roofs and 14 walls assemblies have indicated that placing the insulation on the inside of 

the building envelope results in higher reduction of heat flow than placing it on the 

outside (Said et al., 1997).  

The significance of thermal mass is more pronounced in climates with a large diurnal 

temperature range and intense solar radiation. Poor thermal mass considerations at the 
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early design stage could cause thermal discomfort during the occupation which will result 

in high energy consumption. Careful attention should be given when considering thermal 

mass for the purpose of reducing energy consumption. As a rule of thumb, diurnal ranges 

of less than 6°C are insufficient; 7°C to 10°C can be useful depending on climate; high 

mass construction is attractive when diurnal ranges exceed 10°C (Reardon et al., 2004).   

The high thermal mass is of great advantage in hot-arid climate but unsuitable in regions 

of hot-humid climate (Givoni, 1976). The study conducted by (Kossecka and Kosny, 

2002) to evaluate the dynamic benefits of thermal mass in wall assemblies of residential 

buildings for six USA climates found that the most favorable climate for application of 

the massive wall systems is in hot-dry climate of Phoenix. In hot-humid climate of 

Miami, although the steady state R-value for both walls is the same and insulation 

material is kept on the interior side of the wall, light weight walls performed better 

compared to massive walls. In warm humid climate of Sri Lanka, a simulation study 

utilizing TRANSYS was conducted to investigate the influence of many passive design 

concepts to achieve thermal comfort in residential buildings (Ratnaweera and Hestnes, 

1996). Thermal mass in walls was found insignificant in improving thermal comfort. In 

hot humid climate of Saudi Arabia, Dhahran, a light walling system (i.e. insulated 100 

mm steel stud frame) had a better thermal performance compared to a thermally massive 

wall (i.e. 200 mm hollow core concrete masonry unit) (Said et al., 1997).   
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2.3 Air Leakage Characteristics in Buildings     

Air leakage influences many building performance indicators such as thermal 

performance, hygro-thermal performance, indoor air quality, smoke control and fire 

propagation, , HVAC design, thermal comfort and consequently energy consumption. It 

is often overlooked at the design stage when many aspects of building performance are 

determined. The exchange of air between the outdoor and indoor environment through 

building envelope can be divided into two broad classifications based on air flow driven 

mechanisms: ventilation and infiltration (ASHRAE, 1997). The air exchange rate is the 

sum of infiltration, natural ventilation (open windows), and mechanical ventilation. 

Ventilation is a controlled introduction of outside air into a building through designed 

openings (i.e. windows and doors) in the building envelope or by mechanical equipment. 

Infiltration is an uncontrolled flow of outdoor air into a building through cracks in walls, 

floors, and ceilings, and around windows and doors and other unintentional openings and 

through the normal use of exterior doors for entrance and egress. The air leakage area and 

air infiltration rate are two confusing terms that are often used interchangeably. The air 

leakage area is a measure of building airtightness which describes the physical property 

of a building that is determined by its design, its construction, and its deterioration over 

time (ASHRAE, 1997). It is one parameter that is necessary to calculate the air 

infiltration rate.  In addition to airtightness, air infiltration rate is influenced by other 

factors such as weather conditions including wind forces, thermal forces, site landscaping 

and occupants use patterns. 
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2.3.1 Mechanisms of Air Leakage in Buildings  

Air leakage is a complex mechanism that is induced by a pressure difference across the 

building envelope (i.e. between indoor and outdoor environment). Many parameters such 

as extreme weather conditions, poor workmanship, and building age, its operation 

strategies, and occupants activity patterns can influence the magnitude of air leakage. Air 

leakage is driven by three important mechanisms: wind forces, thermal forces (i.e. stack 

effect or buoyancy) and operation of appliances (ASHRAE, 1997).     

Wind forces act over and around buildings which causes variations in surface pressure. 

The pressure distribution around the building varies and depends on wind speed and 

direction, height and shape of the building, and surrounding terrain. Generally, positive 

pressure acts on windward side causing air infiltration into the building. On leeward, 

negative pressure (suction) is created which drives air out of the building (i.e. ex-

filtration). Wind force causes negative (uplift) pressure on flat roofs while positive 

pressures on windward and negative (suction) pressures on leeward is produced on 

pitched roofs as shown in Figure 2.10. The severity of wind forces on a building is 

influenced by the local terrain, the immediate shielding, and height of the building, 

location and flow resistance characteristics of envelope openings. 
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Figure 2.10 Effects of Wind Forces on Building Envelope (Straube, 2001)  

Under the thermal forces (i.e. stack effect), the difference between the indoor air 

temperature and outdoor temperature causes air leakage due to density differentials that 

promotes pressure differences.  The mechanism of air leakage in a building depends on 

seasonal variations. In winter when outside air temperature is below that of the indoor as 

depicted in Figure 2.11 (a), the warmer indoor air becomes less dense and rise towards 

ceiling where it ex-filtrates to the outside. This upwards movement produces negative 

indoor pressure at lower floor which causes the outside colder air to infiltrates near the 

base or floor. In summer, the process is reversed as illustrated in Figure 2.11 (b).   

Stack effect is influenced by many variables such as  temperatures difference, internal 

separation of floors (i.e. internal resistance to vertical airflow), level of air-tightness, and 

imbalance supply or exhaust of air by mechanical equipment. The pressure differences 

created by wind forces and stack effect across the building can be modified by the 

operation of mechanical equipment either to assist or counteract the air leakage. 

Mechanical equipment provides specific amount of air to compensate the lost air. It 
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applies internal pressure that balances the wind and stack induced pressure and 

consequently reduces the air leakage.  

 

Figure 2.11 Effects of Thermal Forces (Stack Effect) on Building   

2.3.2 Prediction Techniques of Air Leakage in Buildings  

Air leakage through channel flow is characterized by an indirect path from one side of the 

opening to another. This type normally occurs through electrical outlet, wiring holes and 

many other leakage paths in a building. The complexity of the air leakage makes it 

difficult to find or diagnose unless specific measurements are performed. However, 

theoretical models as well as some measurement techniques are used to predict the air 

infiltration rate of residential building as shown in Figure 2.12. The air infiltration s 

magnitude depends on the air leakage characteristics (i.e. airtightness) of a building, 

magnitude of stack and wind forces, mechanical appliances induced pressure differences 
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and occupant s activities. The airthightness of a building is one input parameter that is 

used in mathematical models to calculate the air infiltration. It depends on the leakage 

size, sources of leakage, building age, and workmanship.   

 

Figure 2.12 Alternative Methods for the Estimation of Air Change Rates (Liddament, 
1986)   

2.3.2.1 Theoretical Modeling of Air Leakage in Buildings  

Many research studies have been conducted to predict air infiltration in buildings. The 

studies range from a simple assumption on infiltration rate to very sophisticated 

theoretical models. Models include empirical, single zone and multi-zone infiltration 
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models. The selection of a specific model to estimate air infiltration varies according to 

the required level of accuracy, data availability and building type (Tuomaala, 2002).   

Infiltration rate can be estimated using simplified methods that are empirically derived 

such as Air Change Method and Crack Method. Air Change Method is based on an 

assumed number of air changes per hour based on experience. The number of air changes 

per hour (ACH) in a building is assumed according to building type and use patterns. Air 

change of 0.5/h can be assumed to be very low whereas 2.0 ACH is assumed to be very 

high (McQuiston and Parker, 1994).   

ACH can also be predicted using the residential method. Under this single zone method, 

the air change per hour (ACH) is defined in terms of wind speed, zone temperature T , 

and dry-bulb outdoor temperature T (DOE-2, 1982): ACH= a + b. T + c. V, Where: a, 

b, and c are default coefficients ( equals to 0.1, 0.011 and 0.009 for tight construction, 

and 0.1, 0.22 and 0.018 for loosely constructed houses) (Hutcheon and Handegord, 

1983), V: wind speed in Km/h, T: absolute indoor to outdoor temperature in °K. Then, 

the air infiltration rate (m3/h) can be calculated by multiplying ACH and space volume.   

Crack Method is based on the characteristics of windows, walls, and doors and the 

pressure difference between inside and outside. All cracks in the building can be 

represented by an effective leakage area which can be used to calculate the air infiltration 
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using the power law relationship: nPCAQ .. (McQuiston and Parker, 1994). The 

crack method can also be utilized by using a single zone empirical model (DOE-2, 1982). 

Under this method, the wind-generated pressure (PW), and the stack-generated pressure 

(PST), are added, and used in the pressure-flow relationship:  

Q= C x (PW+PST)n x A 

Where; 

PW = abs [a x V2 x cos ],  is the wind incidence angle,  

PST = d x P x [1/To -1/Ti] x ZHT, where ZHT is the vertical distance measured from the 

neutral plan, n=0.8 for delayed walls, n=0.66 for windows.  

LBL (Lawrence Berkeley Laboratory) model is a single zone model that predicts either 

hour-by-hour or long-term average infiltration (Sherman and Grimsrud, 1980). It has 

been adopted by ASHREA to estimate infiltration for residential buildings (ASHRAE, 

1997).  Many data inputs such as the amount and distribution of leakage in the structure, 

building height, local terrain and shielding characteristics is required to estimate the 

airflow due to the stack and wind effect. It can be simplified according to the following 

equation: 

Q = ELA (C1 * T + C2 * V2)1/2 

Where; 

ELA = Effective leakage area of the building at 4 Pa pressure differences, cm2 
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T    = Absolute value of the inside - outside temperature difference for the time interval 

of the calculation, °C 

V      = Average wind speed for the time interval of the interest, m/s 

C1     = Stack coefficient, (L/s)2/cm4/°C 

C2     = Wind coefficient, (L/s)2/cm4/(m/s)2  

The model parameters can either be empirically derived or found by conducting tests. 

The stack and wind coefficients for one, two and three stories residential building can be 

found in ASHRAE Handbook-Fundamentals (ASHRAE, 1997). The ELA can either be 

found by conducting blower door tests for whole house measurements or estimated by 

adding the individual building components leakage using tables of ELA values 

(ASHRAE 1997, Colliver et al. 1994).  

Sophisticated models such as Nodal Network Models (Multi-zone models) are also used 

to predict air flow (ventilation + infiltration) through leak paths connecting internal 

spaces and distribution networks in HVAC (Clarke, 2001). A set of detailed data is 

required to use the model including the characteristics of each individual opening. Air 

flow simulation programs such as COMIS, Clim2000, CONTAM and House-

II/ASHRAE SP43 use the Nodal Network model to estimate a complex air flow 

distribution in buildings (Zmeureanu, 1997).   
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2.3.2.2 Measurements Techniques of Air Leakage in Buildings  

Many measurement techniques have been developed over years to quantify the air 

leakage in buildings for many purposes such as indoor air quality and energy 

consumption. The application of measurement techniques vary according to the objective, 

accuracy, complexity and the type of building under examination. The measurement 

techniques currently available are tracer gas, fan pressurization, AC pressurization, 

infrasonic impedance, acoustic techniques, and quantified thermography (McWilliams, 

2002).   

Tracer gas techniques have been widely used to diagnose specific issues such as indoor 

air quality and air flow characteristics, energy consumption in single zone such as houses. 

Tracer gas can be either in transient or steady-state behavior.  Transient methods include 

Tracer Decay while steady-state methods include Pulse, Constant Injection, Long-Term 

Integral Method and Constant Concentration (Sherman, 1998a). Tracer gas is a reliable 

method to measure the air infiltration because of its capability to consider weather 

conditions such as wind and stack forces. The tracer gas combined with conservation 

laws allows determination of the tracer transport mechanism (i.e. air flow mechanism) 

(Sherman, 1998a). The high cost detection equipment of tracer gas makes this technique 

less common in determining the air leakage.   
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Pressurization technique (pressurizing or depressurizing) using Fan or Blower Door is a 

widely used measurement technique. It is intended to measure airtightness which is the 

main parameter in determining the leakage through building envelope. A single point test 

at 50 Pa is carried out to measure the air leakage. The air leakage rate at this pressure can 

be divided by the building volume where ACH50 is determined. As a rule of thumb 

(Sherman, 1998b) which relates Blower-Door data to seasonal air change data, the 

ACH50 can be divided by a factor of 20 to determine the natural air infiltration rate 

(ACHNat). A multiple point test can also be conducted using this technique where a curve 

of power law nPCQ . can be drawn and properly fit. Using this fit, the parameters C 

and n are characterized for a particular building.  

While the single zone techniques measure the air leakage for the whole building, other 

leakage test techniques are used to identify the components contribution to air leakage in 

a building. A method using a balanced fan approach for measuring component leakage 

area is proposed by (Reardon et al., 1987). The building is divided into segments or 

components and the air leakage for every component is separately measured.   

2.3.2.3 Measurement Indices for Air Leakage in Buildings  

Air leakage in buildings has been reported in many formats depending on whether it is 

reported for the whole building or specific building components. The data format has 
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been dictated by the measurement methods or/and prediction models used to quantify the 

air leakage. The total air leakage rate (Q) of a building can be obtained from a fan blower 

pressurization test at a reference envelope pressure difference normally at 50 Pa. In order 

to utilize this total rate for comparison between different buildings or with an air leakage 

standard, it is generally normalized with one of the three quantities: building volume, 

envelope area, and floor area (Sherman, 2004). When total air leakage rate (Q50) 

measured at 50 Pa is normalized to building volume, the air leakage rate is converted to 

units of air changes per hour ACH50.  This air leakage rate doesn t consider other factors 

that influence the natural air infiltration such as wind, stack forces and geographical 

location. However, it is the most widely used indicator of air leakage in buildings.   

Air leakage characteristics can also be expressed in one of the following formats 

(Edwards, 1999): 

 

Constants for the fit of the data to pressure versus flow power law equations (flow 

coefficient C and flow exponent n): nPCQ . Fan pressurization tests can be 

conducted at multiple pressure points where corresponding air leakage rate are drawn. 

The flow coefficient C and flow exponent n are derived from the relationship for 

that particular house. Then, the air leakage rate is mathematically correlated to the 

pressure differentials across the envelope using the power law. Rate of flow at a given 

differential pressure across the component or between the interior and exterior of the 

building: examples include the air leakage rate across doors, windows and other 

leakage paths or components. 
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Equivalent Leakage Area (ELA) of the opening, typically at a reference pressure of 

10 Pa with a discharge coefficient (Cd) of 0.611 (ELA10).  

Note:

 

ELA10 is most commonly used for reporting leakage characteristics in 

Canada and the Netherlands. 

 

Effective Leakage Area (ELA) of the component, typically at a reference pressure of 

4 Pa with a discharge coefficient (Cd) of 1.0 (ELA4).  

Note: ELA4 is most commonly used for reporting leakage characteristics in the 

United States. 

 

Equivalent or effective leakage area is normalized to: 

 

the area of the component (for example leakage area of interior partitions per m2 

of partition area), 

 

the length of the component or crack between components (for example leakage 

area of windows per crack length) 

 

the floor area of the suite or whole building 

 

Contribution of leakage of a particular component as a percentage of total leakage of 

the suite or whole building such as those reported in Chapter 25 (ASHRAE, 1997). 

 

Effective Leakage Area is normalized with the building floor area and a correction 

factor for the building height in to a factor called normalized leakage (NL)  (Chan, 

2003) as per the following relationship: 
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NL can also be correlated to ACH at natural conditions by using a Factor F : 

FH

NL

H

m
ACH

.
.

5.2
.48

3.0

 

, F (LBL) is a factor used to relate typical air 

exchanges per hour with the air exchange rate at 50 Pa (
F

ACH
ACH 50 ). It is a 

factor that varies from 10 to 30 for as per USA Zones (Sherman, 1987 and Energy 

Star, 2001).  

2.3.3 Typical Air Leakage Rates for Residential Buildings  

Air leakage in buildings is an important indicator of building performance. By using the 

available techniques, air leakage can be estimated and proper control measures can 

accordingly be applied. Many studies in developed countries have been carried out to 

evaluate the building performance in terms of its air leakage or airtightness. Studies in 

North America have indicated that an average rate of 0.2 ACH and 2 ACH for a tightly 

and loosely constructed housing respectively can be experienced (ASHRAE, 1997).  

Some other studies in North America have concluded that the air infiltration rates of 0.5 

ACH can be expected in new, energy-efficient houses while 0.9 ACH in low-income 

housing  (Grimsrud et al. 1982 , Grot and Clark 1979). Air leakage rates in terms of 

Effective Area Leakage (EAL) for building components in North America have been 

reported by (Colliver et al. 1994).  
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A recent report summarizes the state of the art literature on building air tightness 

(Sherman, 2004). This report has concluded that dwellings in severe climates such as 

Sweden, Norway, and Canada are known to be more air tight than those located in milder 

climate such as the US and the UK. In UK, a large database of air leakage measurements 

was analyzed by BRE (Stephen, 1998). The study has reported a mean air leakage rate 

value (Q50/envelope area) of 11.5 (m3/h per m2) for 384 dwellings. The Canadian houses 

showed an airtightness of 2 ACH under a test pressure difference of 50 Pa (Steel, 1982). 

Another study in Canada has been performed to evaluate air leakage of 35 windows 

(Henry and Patenaude, 1998). It was concluded that the majority of windows met or 

exceeded the highest levels of air leakage performance of Canadian window standards at 

normal temperatures.   

Studies in Sweden have shown that the ACH50 varies between 0.44 and 3.08 /h 

(Pettersen, 1994).  The air tightness of 6 low energy houses in Belgium was studied and 

found that the values of pressurized air infiltration ranged from 3.8 to 4.9 ACH50 

(Pittomvils et al., 1996). The natural air infiltration rate for 28 Denmark homes was 

quantified by (Kvisgaard and Collet, 1990). The measured air change rates for 17 

naturally ventilated houses, with all windows and doors closed, were found to be 0.1 to 

0.4 /h.  In Australia, a field study of nine houses in Perth indicated that the air infiltration 

rates are in the range of 0.05 to 0.41 ACH (Harrison, 1985). Natural infiltration rates of 

unoccupied houses in Melbourne were found to be 0.33 ACH (Biggs et al., 1987). In 41 

Sydney dwellings, a study demonstrated that air exchange rates ranged from 0.2 to 2.3 
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ACH (Ferrari, 1991).  An international comparison of airtightness with Australian 

houses (Air leakage rates at 50 Pa (ACH50)) was conducted as shown in Table 2.4 (Biggs 

et al., 1987).   

In Japan, the air infiltration of 8 dwellings in a housing complex with closed doors and 

windows have been investigated using Tracer gas method and showed that the ACH 

value varies from 0.8 to 3.1 ACH (Iwashita and Askasak, 1997). If doors and windows 

are opened, incremental increase of air change rates varies from 5.2-43.8 ACH.   

Table 2.4 Pressurized Infiltration rates (ACH50) in International houses  
Country Number of houses

 

Mean ACH50 

Australia  (sample 1) 10 26.3 
Australia  (sample 2) 12 12.2 
New Zealand 10 11.0 
Netherlands 130 12.0 
United Kingdom 19 13.9 
Canada    60 4.4 
Sweden  205 3.7 

 

The air leakage characteristics are sensitive to many factors such as climatic conditions, 

building age, level of construction and building components manufacturing 

workmanship. Despite the fact that many studies have been conducted to evaluate the air 

leakage characteristics in developed countries, few studies have been carried out in 

developing hot countries. In Kuwait, ten residential buildings with different volumes, 

configurations and occupant activities were tested using a tracer gas method to determine 

their air leakage characteristics (Bouhamra et al., 1998). The tests were conducted both 



55   

in winter and summer and under different modes of operation. For naturally ventilated 

buildings during winter, the air leakage ranged from 0.60 ACH to 1.35 ACH. For 

controlled buildings (i.e. under heating in winter or cooling in summer), the air leakage 

ranged from 0.25 ACH to 0.601 ACH. Another experimental study was also conducted in 

Kuwait to evaluate the influence of aluminum window characteristics on the air 

infiltration (Daoud et al., 1991). The study showed that aluminum windows have a mean 

infiltration rate of 13.48 m3/h/m at 75 Pa, which is about 3.4 times higher than the 

ANSI/AAMA maximum limit. Many windows types such as horizontal double slider, 

vertical single slider, vertically hinged single slider and double leaf, horizontally hinged 

single and double leaf, tilt-and-turn and fixed  were examined in this study. The 

infiltration rate for openable windows exceeded the ANSI/AAMA limit, whereas fixed 

windows meet the standard. Among the openable windows, horizontally hinged single 

window and vertically hinged double leaf slider window were the highest. Tilt-and-turn 

and double sliders were close to the standard limit and other windows fall in between the 

two categories. In conclusion, the natural air leakage rates can be categorized in terms of 

ACH as illustrated in Table 2.5.  

Table 2.5 Categories of Air Leakage Rates  
Category of Air Leakage

 

Proposed Value (ACH) 
Extremely Low 0.1 
Low 0.5 
Normal 1 
High 2 
Extremely High 3 
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2.4 Impact of Envelope Thermal Design on Energy Consumption    

2.4.1 Influence of Surface Properties on Energy Consumption  

The application of surface treatments such as light coatings, light color tiles on exterior 

surface of building envelope and low-emissive sheets on exterior/interior surfaces have 

significantly improved the overall thermal performance of buildings in hot climates. In 

air conditioned buildings, the surface treatment determine the cooling load while in 

unconditioned buildings, it determines the interior surface temperature which 

consequently influence the occupants thermal comfort (Givoni, 1976). Many 

experimental and numerical research studies have been conducted in USA, South Africa, 

Israel, and India and in some tropical warm and humid climates to investigate the impact 

of surface treatments on thermal performance of building envelope.  

An experimental field study investigating the thermal effects of black versus white 

membranes on an insulated roof was conducted in eastern Tennessee, USA (Griggs and 

Shipp, 1988). The study indicated that the peak summer surface temperature of the black 

roof was 10°C more than the white roof. Many studies in USA have been mainly carried 

out in hot climates especially in Florida and California to reduce the energy consumption 

of residential and small commercial buildings. In hot-humid climate of Florida, a study 

has investigated the impact of white tiles and black wood shingle on the summer attic 

thermal performance of six roof construction types (Parker and Sherwin, 1998). It was 

found that white tile roof performed better in controlling attic heat gain than black shingle 
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tile roof. White tile roof reduced the heat gain through the attic by 75% compared to 

black shingle tile roof. In another study in Florida, an average reduction of 19% in energy 

consumption (averaged over 9 monitored homes) was reported for 9 monitored homes 

when their roof solar reflectances were increased (Parker et al., 1995). The large 

reduction in energy consumption is more pronounced in poorly insulated roof assemblies. 

This conclusion was previously approved by field monitoring experiments that were 

conducted for two houses (one with insulated ceiling (R-11) and the other with un-

insulated flat roof) in Cocoa Beach, Florida. Substantial reductions in space-cooling 

energy use were achieved for the two houses, 25% for insulated roof and 43% for un-

insulated (Parker et al., 1994). For school buildings in Florida, a reduction of 10% in 

cooling energy has been realized when its roof reflectance increased from 0.23 to 0.67 

(Parker et al., 1998). The energy savings in California was found more pronounced than 

Florida. When a cool roof was applied to a house in Sacramento CA, the energy 

consumption was reduced by 80% (Akbari et al., 1997). In another study of non-

residential buildings in Sacramento CA, an energy saving of 17%- 39% was reported 

when cool roofs were used (Hildebrandt et al., 1998).   

A simulation study utilizing a transient model RESHEAT was conducted to study the 

thermal performance of a highly reflective paint applied to exterior insulated walls and 

roof of a residence in a hot and arid region of Las Vegas, Navada (Moujaes and 

Brickma, 2003). The study has shown a reduction of 33.3% in energy consumption when 

both walls and roof are coated with highly reflective paint. On the other hand, cooling 
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load was reduced by 41% when both walls and roof were painted, while it was reduced 

by 17% when the roof was painted. In an attempt to quantify the trade-off that the high 

roof reflectivity can offer to keep the annual energy use for a dark-colored roof at a 

constant level, a single residential one-storey building was simulated for 32 USA climate 

regions utilizing DOE-2 (Akbari et al., 2000). The roof reflectivity was increased from 

20% to 60% and the results indicated that the targeted annual energy-use can be achieved 

with half insulation thickness of that required by the base case.   

The potential benefits of using cool roofs on Federal buildings and facilities around the 

US states have been investigated using DOE-2 simulation program (Taha and Akbari, 

2003). The study has covered many building types, diversified USA climates and 

different scenarios but with a fixed insulated roof (R-11). For a moderate and a high solar 

reflectance, the energy savings were reported to be 3.8% and 7.5% of the base case 

scenario, respectively but with an increase in winter heating energy use.   

Thermal Analysis Research Program (TARP) was used to analyze the roof solar 

reflectance on annual and peak cooling/heating load, and exterior roof temperature of six 

climates that represent extreme to moderate climate conditions in USA (Zarr, 1998). It 

was found that there is linear decrease of cooling load requirements with increasing roof 

solar reflectance especially for buildings with an un-insulated ceiling. In hot climates, the 

exterior roof temperature was significantly reduced, by 27°C and 32°C in Miami, FL and 

Phoenix, AZ respectively when the roof reflectance increased from 0.10 to 0.8.  



59   

The outside surface temperature of a galvanized steel roof with different colors was 

measured in an experimental study in South Africa (Van Straaten, 1964). The roof 

surface temperature was reduced by 16 °C when painted with white color and increased 

by 10 °C when painted with black color. Studying lightweight horizontal panels with 

grey and whitewashed color in hot climate of Haifa, it was found that the exterior surface 

temperature of grey panel was 32 °C higher than the maximum air temperature while that 

of the whitewashed panel is only 1 °C higher than the maximum air temperature (Givoni 

and Hoffman, 1965). The indoor air temperature measured at 0.1 m from the ceiling of 

the white roof was found 3 °C lower than the grey roof.   

In hot dry climate of India, a study found that external surface color of a building 

envelope had a significant impact on the indoor air temperature in summer as well as in 

winter seasons even at high ventilation rates of 3 ACH (Bansal et al., 1992). In summer, 

the indoor air temperature of a white painted room was recorded to be 6°C lower than 

that of a black painted room. In winter, the temperature difference was found to be 4°C. 

In a similar climate of India, a test room was painted with white cement and showed that 

the indoor air temperature dropped by 5.4°C compared to unpainted reinforced concrete 

roof (Nahar et al., 2003).   

In warm humid climate of Sri Lanka, a simulation study using DEROP-LTH showed that 

a rise of 1°C in a room air temperature is resulted when a dark color roof is used 

compared to a light color roof (Jayasinghe et al., 2002). The indoor air temperature of a 
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poorly passive designed house reached 33°C when the building envelope was painted 

with dark color. However, the impact of the color of building envelope on indoor air 

temperature was found insignificant when the house is designed with desirable passive 

features such optimum orientation, windows in north or south, shading devices for 

windows and balcony for roof. The indoor air temperature of light color house was kept 

within 29°C which is assumed to consume very low energy for thermal comfort in Sri 

Lanka. Another simulation study in Sri Lanka has shown that the light color roof of a 

single house maintains the indoor air temperature within 29°C compared to 31°C for the 

dark color roof (Jayasinghe et al., 2003).  

In hot humid climate, a free running Thai Buddhist temple was simulated using a coupled 

DOE-2/HEATX(CFD) simulation program to investigate possible design and operation 

strategies for thermal comfort without mechanical equipment (Sreshthaputra et al., 

2004). The study has indicated that the low-absorption roof option performed better than 

R-30 ceiling insulation in terms of average indoor temperature, yet the peak indoor 

temperature for the two options were similar. The merit of utilizing the surface treatments 

have been found sensitive to thermal characteristics of building envelope such as thermal 

mass, thermal insulation (Givoni, 1976), rate of ventilation or infiltration and the direct 

solar radiation gain in buildings (Bansal et al., 1992).    
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2.4.2 Energy Performance of Insulated Building Envelope   

Thermal insulation offers many benefits to home owners such as improving thermal 

comfort, reducing the capacity of mechanical equipment, reducing the operation cost and 

lowering utility bills, and improving the resale value especially in regions where energy 

cost is high. Many studies have been conducted to evaluate the benefits of thermal 

insulation. The studies address the benefits of insulation materials in different 

performance measures such as: annual or peak heating and cooling loads, exterior surface 

temperature, economic cost benefits, annual energy consumption, and indoor air 

temperature.  

In harsh climates, heat transmission through building envelope is high, and therefore, 

thermal insulation is an important design concept to reduce heat flows and consequently 

reduce energy consumption. Several experimental and numerical studies have shown that 

thermal insulation in roof and walls can reduce the heat transmission and energy 

consumption. In hot-humid climate of Dhahran, Saudi Arabia, an experimental study 

using 10 roof and 14 wall assemblies have been carried out to investigate the impact of 

varying insulation and construction approaches on the annual net heat flow (Said et al., 

1997). The study has demonstrated that using 75 mm of extruded polystyrene in roof slab 

reduces the net heat flow by more than 80%. In wall assemblies, the reduction in net heat 

flow using 50 mm of thermal insulation ranges from 64-84% depending on the type of 

insulation and its placement within the building envelope. Annual energy consumption 
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for three 2-story villas, one w/o insulation and others with different insulation materials, 

has been monitored in hot-dry climate of Madina, Saudi Arabia (Al-Maimani, 2002). 

The study has shown that insulation in both walls and roof contributed to actual savings 

of 48-80% in annual energy consumption.   

Many simulation studies utilizing detailed energy simulation programs have been 

conducted to quantify the energy consumption as a result of using insulation in residential 

buildings. A parametric simulation analysis using DOE 2.1A for a single floor house in 

Dhahran has indicated that using thermal insulation for both roof and walls would 

contribute a reduction of 12.6% of the total annual energy consumption (Said and 

Abdelrahman, 1989). For the same climate, a similar study for a two-story detached 

single family house has shown that a reduction of 42% in total energy consumption can 

be utilized if walls and roof are insulated (Ahmed and Elhadidy, 2002). Utilizing PC-

DOE program, (AL-Maziad, 1999) has investigated the impact of many building 

envelope design parameters in eastern province of Saudi Arabia, Dammam. He found that 

with insulated walls, electrical consumption for cooling purposes could be reduced by 

23% compared to buildings without insulation.   

 Al-Homoud has investigated the impact of different level and types of thermal insulation 

on thermal performance of residential and office buildings in hot-dry climate of Riyadh 

and hot-humid climate of Dhahran in Saudi Arabia by utilizing the hourly building 

energy simulation program EnerWin (Al-Homoud, 2004). Thermal insulation 
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materials  used in this study are: Fiberglass insulation;  Rock Wool; Expanded 

Polystyrene;  Extruded Polystyrene;  Polyethylene;  Polyurethane; Siporex;  and Low-e 

Air Space (e=0.03, air space=90 mm). The study has indicated that residential buildings 

are more sensitive to the level of thermal insulation in reducing the energy consumption. 

For the residential buildings in Riyadh, the reductions in the annual energy consumption 

due to the use of walls and roof thermal insulation ranges from 23.69% to 45.51%, while 

in the climate of Dhahran, the reductions are more and ranging from 25.29% to 50.24%.  

Seeking an optimum thermal design of building envelope for a small two story residential 

building, it has been found that savings of as much as 37% and 28% in annual energy 

consumption can be achieved in hot-dry and hot-humid climates of Saudi Arabia, 

respectively (Al-Homoud, 1997).   

Al-Sanea has developed a numerical model under Riyadh climate and it was applied for 

six variants of a typical roof structure used in the construction of buildings in Saudi 

Arabia (Al-Sanea, 2002). In this study, he found that using 50 mm of insulation layer of 

molded polystyrene, extruded polystyrene and polyurethane in a roof can result into a 

heat transfer load of 32%, 27%, and 22% of the reference daily average heat transfer 

load, respectively.  

In order to point out the potential of ceiling insulation in achieving thermal comfort in 

summer of South Africa, a field study has been conducted using eight different houses in 

Pretoria (Taylor et al., 2000). The controlled houses without ceiling insulation showed 
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that indoor and outdoor temperatures are close to each other. On the other hand, the 

maximum indoor temperature in the insulated houses was found to be lower than that of 

the outdoor. The improvements in the temperature difference between the outdoors and 

indoors was found in the range of 1.9-4.5 K with an average of 3.1 K. Different 

thicknesses of fiberglass insulation (5,7 and 10 cm ) was investigated. It was concluded 

that the thickness of insulation doesn t have a significant influence on the comfort 

improvements.  

2.4.3 Impact of Air Leakage on Energy Consumption   

The exchange of air between the outdoor and indoor has equal benefits and drawbacks. In 

some climates, outside air is utilized for natural ventilation to accomplish thermal 

comfort and hence reduce energy consumption. Outside air is also used to dilute indoor 

generated pollutants and make buildings healthy. This amount has been specified at 0.35 

ACH by ASHRAE standard 62-1999 for controlling Indoor Air Quality. However, 

uncontrolled air leakage into buildings could have an adverse effect on energy 

consumption. In hot climates, air infiltration introduces excessive amount of heat that has 

to be removed by mechanical equipment. In hot-humid climate, this is more critical 

because hot humid air is the main cause of thermal discomfort. Therefore, uncontrolled 

air leakage rates should be kept at minimum for better control of indoor environment.   
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Few studies have been conducted to investigate the impact of air infiltration on the 

energy consumption of buildings. Considering the building stock of 13 countries, the total 

annual loss of delivered heating energy due to air change (assumed at 0.75 ACH) is 

estimated to be 53% of delivered space heating energy (Orme, 2001). If ACH is reduced 

to meet the minimum requirement of IAQ, a reduction of 30% in the heating air change 

energy loss can be achieved. In office buildings of USA, the impact of infiltration rates 

on energy use has been investigated using simplified infiltration assumptions and a 

simplified bin method for energy consumption (VanBronkhorst et al., 1995). The initial 

estimate has shown that infiltration is responsible for 18% of the total heating energy use 

and 2% of the total cooling energy use. While this study used a simplified infiltration 

assumption, another follow-up study has been conducted with improved estimating 

method of infiltration rates using multi-zone airflow modeling (Emmerich and Persily, 

1998). The study has shown that the infiltration is on average responsible for 13% and 

25% of the total heating load in old and new office buildings respectively while it is 

responsible for 3% and 4% of the total cooling load. It has also been shown that if the 

building envelope air leakage is reduced by 25-50%, an average energy saving of 26% in 

heating load and 15% in cooling load is realized.  

In hot-humid climate of Dhahran, Saudi Arabia, a simulation study using DOE 2.1A for a 

single floor house has assumed an infiltration rate close to 0.5 ACH (based on residential 

method) and indicated that the infiltration is responsible for 22.5 % of the peak cooling 

load (Said and Abdelrahman, 1989). A parametric evaluation of air infiltration was 
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made, varying the infiltration rate from 0.25 ACH to 1 ACH. When a lower level of 0.25 

ACH is assumed, the total energy consumption was reduced by 8.5% compared to the 

base case of 0.5 ACH. The total energy consumption was increased by 10% when air 

infiltration rate of 1 ACH is assumed. It was noticed that impact of air infiltration is more 

severe in heating season than in the cooling season. This observation was also supported 

by (Al-Homoud, 1997) in his optimization study when the optimum infiltration rates 

were found to the lower end of the specified boundary (0.5 ACH). He concluded that the 

infiltration loss (ex-filtration) is more sensitive in cold climates followed by temperate 

climate.  

 The energy use in residential buildings due to infiltration has received little attention. On 

contrary, many studies have been devoted to energy saving credits of utilizing the outside 

air change rates due to both natural ventilation and infiltration. Although, these studies 

are not directly related to this research but they indirectly show the negative or positive 

impact of utilizing outside air when the outdoor conditions are at specific conditions.    

A simulation study using TRANSYS in Cyprus has indicated that introducing the outdoor 

air during winter when the outdoor temperature is above that of the indoor is insignificant 

because of low duration of the availability of outside warm air (Florides et al., 2002). 

However, the indoor air temperature during summer is greatly influenced by introducing 

cool outside air. The indoor air temperature is dropped by 2°C with 1 ACH, 3°C with 2 

ACH, and 7°C with 11 ACH.  A maximum reduction of 7.7% in annual cooling load was 
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achieved when outside cool summer air is introduced. The indoor air temperature was 

46°C without ventilation.  

Using a validated computer program QUICK , different air change rates were 

investigated in low mass and heavy mass buildings in a hot climate region (Mathews et 

al., 1992). It was found that the indoor air temperature in low mass building is less 

sensitive to the increases in air change rates but rather follow the outdoor temperature 

regardless of increased ACH. However, a reduction of 1.5°C in indoor air temperature 

was achieved in the heavy mass building when the air change rates increased during night 

time. An increase of 2°C in indoor air temperature was observed when the air change 

rates increased both during day and night. An experimental study in hot climate has 

indicated that using a high air change rates in heavy mass buildings during night would 

keep the indoor air temperature 7.5 -10.5 K below the outdoor maximum temperature 

(Givoni, 1991). Givoni has further stated that as a rule of thumb it can be estimated that 

in arid and desert regions, with a diurnal temperature range of 15-20 K, the expected 

reduction of the average daytime indoor temperature is 2-3 K below the level of similar 

buildings without night ventilation . A field study in hot arid climate of Riyadh has 

concluded that a continuous day and night ventilation through outside windows is worse 

thermally than keeping the building closed without ventilation (Al-Hemiddi and Al-

Saud, 2001).     
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Givoni (1998) has studied the effect of air change rates on indoor air temperature of a 

low-mass room (conventional stud-wall construction) and a high-mass room (insulated 

concrete walls) with a similar thermal resistance in Pala, South California. In summer 

(average outdoor temperature was 25°C: max didn t exceed 37.5°C and min was 16°C), 

the night ventilation was introduced into the rooms from 7 p.m. to 7 a.m. by using fans 

with three speeds (30, 37 and 45 calculated ACH for low , medium and high fan speed 

respectively). The max indoor air temperature in the low mass room was following the 

max outdoor air temperature while the max indoor air temperature for the high mass 

room was below that of the outdoor max temperature.   

While most of the studies on utilizing the outside cool air assumes that the occupants will 

open the windows or doors to achieve thermal comfort, an experimental study using two 

test rooms (control and experimental room) have been conducted to evaluate the 

performance of an intelligent ventilation system (air change rate is allowed to float from 

0.7-3.9 ACH) to control the indoor air temperature within thermal comfort limits 

compared to a fixed infiltration rate system (0.7 ACH is kept constant) (La Roche and 

Milne, 2003). The smart ventilation controller operates under specific control limits (i.e. 

coupling the outside air conditions with the indoor thermal environment).  The increase in 

air change rates by the smart controller (varies according to the setting control limits) 

reduce the indoor air temperature by 3.1°C when additional mass is used, compared to 

the control room. The outside average maximum temperature was 26.5°C.  
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The impact of increasing air change rates have also been investigated in hot humid 

climates. In a ventilated courtyard house in the tropic climate of Japan, the indoor air 

temperature was dropped by 1.3°C with an air change rate range of 1.5 to 2.0 ACH 

(Rajapaksha et al., 2002). In a warm humid day of Sri Lanka, a simulation study 

utilizing TRANSYS was utilized to investigate the impact of natural air change rates to 

reduce the indoor air temperature in residential buildings (Ratnaweera and Hestnes, 

1996). It was found that if windows are opened from 17:00 hrs to the next morning 8:00 

hrs, the indoor air temperature is reduced from 30.2°C to 29.1°C.  

A simulation study using ENERGY was performed to investigate four level of night 

ventilation in different level of massive construction for a typical apartment building in 

hot-humid climate regions (Shaviv et al., 2001). The night ventilation levels assumed in 

this study were: natural infiltration rate of 2 ACH (base case), natural night ventilation 

rate of 5 ACH, forced night ventilation of 20 and 30 ACH. The study concluded that it is 

possible to achieve a reduction of 3-6°C in a heavy constructed building without air 

conditioner. The reduction of indoor air temperature depends on the amount of thermal 

mass, the rate of nigh ventilation and the temperature swings between the day and night.  

Another simulation study for free-floating building (Thai Buddhist Temple) in hot-humid 

regions indicated that the nighttime-only natural ventilation reduces both the peak indoor 

air temperatures and daily indoor temperature fluctuation during summer and hence 

improves the overall building performance (Sreshthaputra et al., 2004). 
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General conclusions could be drawn from these studies on the impact of high infiltration 

rates on the indoor thermal environment. In hot climates, the indoor air temperature 

follows the outdoor air temperature in light mass buildings regardless of high infiltration 

rates. On contrary, the indoor air temperature is more sensitive to air infiltration in high 

mass buildings. For thermal comfort, it is therefore important to keep the air infiltration at 

minimum rates when the outside air temperature is always above the indoor air 

temperature but rather beneficial at times when the outdoor air temperature is below that 

of the indoor and within the comfortable limits.  Givoni has given a temperature limit of 

using the outside air for thermal comfort (Givoni, 1991). He suggested that the comfort is 

not influenced by the outside air if its maximum temperature doesn t exceed 28-32 °C, 

assuming an indoor air speed of 1.5-2.0 m/s. From energy consumption point of view, 

infiltration rates are more sensitive in heating seasons compared to cooling seasons.   

2.5 Thermal Comfort Requirements and Studies in Hot Climates  

Thermal comfort is defined as that condition of mind which expresses satisfaction with 

the thermal environment (ASHRAE 1992, ISO 1984). Thermal comfort is a basic 

requirement for occupants to perform their day to day activities. Thermal comfort is 

influenced by many variables that can be divided into environmental parameters: air 

temperature, mean radiant temperature, humidity, relative air velocity and personal 
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parameters: clothing and activity (Fanger, 1972). In order to provide a thermally 

comfortable environment, proper combinations of the above variables have to be sought.   

Many laboratory and field studies have been conducted to define the thermal conditions 

that satisfy a wide range of occupants. Two widely used models developed in laboratories 

are the Fanger model and the Gagge two-node model (Jones, 2002).  The models are 

based on heat balance equations of human body with the surrounding environment. 

Among the two, Fanger model Comfort Equation is the widely accepted model that 

combines the six thermal comfort variables. For any type of clothing and activity, the 

comfort equation can calculate the combinations of air temperature, humidity, mean 

radiant temperature and relative velocity that creates the optimal thermal comfort 

condition (Fanger, 1970). Solving this equation by a computer program, Fanger has 

developed many thermal comfort charts that can be easily used by engineers.   

In order to evaluate the indoor thermal environment at a wider scale beyond that of the 

optimal, Fanger has introduced the concept of Predicted Mean Vote PMV and 

Predicted Percentage of Dissatisfied PPD to predict the actual thermal sensation 

(Fanger, 1970). PMV (Predicted Mean Vote) is an index that gives, on the ASHRAE 

seven-point thermal sensation scale (+3 hot, +2 warm, +1 slightly warm, 0 neutral, 1 

slightly cool, 2 cool, 3 cold), a mean value of the votes of a large group of persons 

exposed to a given combination of variables. PPD (Predicted Percentage Dissatisfied) 

expresses the percentage of thermally dissatisfied people. PPD is determined from PMV 
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and is graphically presented as shown in Figure 2.13. PPD index is based on the 

assumption that people voting ±2 or ±3 on the thermal sensation scale are dissatisfied, 

and it is symmetric around a neutral PMV (ASHRAE-55, 2004).   

 

Figure 2.13 Predicted Percentage Dissatisfied (PPD) as a function of predicted mean 
vote (PMV) (ASHRAE-55, 2004)  

2.5.1 International Standards for Indoor Thermal Comfort  

Fanger model (PMV-PPD) is adopted in international thermal comfort standards: ISO-

7730 (ISO, 1994), ASHRAE-55 (ASHRAE 55, 1992), and CR 1752 (CR 1752, 1998) to 

predict thermal comfort under steady state conditions. ISO-7730-94 and ASHRAE-55 -92 

specify the acceptable thermal comfort conditions based on a 10% PPD dissatisfaction 

criteria for general thermal comfort (Class B) and 10 % dissatisfaction due to local 

discomfort which makes the level of thermal acceptability at 80%.  On the other hand, 

CR 1752 is more flexible and recommends levels of acceptance for three classes of 

environment: Class A ( 0.2 < PMV < +0.2, PPD<6%), Class B ( 0.5 < PMV < +0.5, 
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PPD<10%) and Class C ( 0.7 < PMV < +0.7, PPD<15%) (CR 1752, 1998). However, 

the new ASHRAE standard (ASHRAE-55, 2004) includes all three classes as inclusion 

while it is expected that wider PMV range (Class C) will be included in ISO-7730 

revision (Olesen and Parsons, 2002).    

The old ASHRAE thermal comfort standard (ASHRAE-55, 1992) gives an ideal indoor 

thermal environment for two seasons: winter and summer at a specific combination of 

thermal comfort variables at 50% relative humidity: light activity level, typical summer 

and winter clothing habits, equal air and mean radiant temperature, and low relative air 

velocity. The shortcomings of the provided ideal thermal environment and new research 

findings in the field of thermal comfort under different climates have necessitated 

ASHRAE to update their old thermal comfort standards such as ASHRAE-55-92 and its 

amendment 55-95a.    

ASHRAE has recently released the new thermal comfort standard ASHRAE-55 2004 

(Olesen and Brager, 2004). Since both ISO-7730 standard and ASHRAE-55 2004 

uses the same approach for thermal comfort zone determination, ASHRAE-55 2004 is 

chosen to represent the international thermal comfort standard in this research. The 

major departure from the old standards is the addition of the PMV-PPD method of 

determining the comfort zone without specifying the minimum level for humidity. It also 

introduces a new optional method for determining acceptable thermal conditions in 

naturally ventilated buildings.  
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A range of operative temperatures or a simple average of the air temperature and mean 

radiant temperature defines the comfort zone that provides acceptable comfort thermal 

environmental conditions. It is determined by specifying the values of humidity, air 

speed, metabolic rate and clothing insulation. The temperature limits might be either 

determined graphically for many typical applications or by using a computer program 

based on a heat balance model (PMV-PPD model) to determine the comfort zone for a 

wider range of applications. The graphical method is also based on PMV-PPD model but 

assuming two different levels of clothing: 0.5 clo (typical for summer) and 1.0 clo 

(typical for winter), 10% PPD dissatisfaction criteria for general thermal comfort, 

metabolic rates between 1.0 to 1.3 met, and air speed less than 0.20 m/s. for these 

conditions, thermal comfort zones ca n be graphically presented as shown in Figure 2.14.  

 

Figure 2.14 Graphical Method for Determination of Thermal Comfort Zone (Olesen 
and Brager, 2004)  
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Computer program can also be used when the space conditions are different from those 

described in the graphical method. The specific values of humidity, air speed, clothing, 

and metabolic rate are the main input data to the program. Consequently, the operative 

temperature range can be determined based on a PMV range of 0.5 < PMV < +0.5, 

which corresponds to a PPD of 10%.   

2.5.2 Thermal Comfort Adaptive Concept  

Many recent field studies have questioned the validity of PMV-PPD in predicting the 

thermal comfort conditions in naturally ventilated buildings (Olesen and Parsons, 2002). 

Field studies have found that thermal comfort can still be met at higher temperature 

ranges than those predicted by PMV-PPD model. This discrepancy has led to a new 

concept of Adaptive Model (Humphreys and Nicol, 1998).   Humphreys has further 

defined this concept, which doesn t depend on the existence of acclimatization, as 

follows: If a change occurs such as to produce discomfort, people react to restore 

their comfort . However, other studies have also shown that the adaptation could be 

achieved by many ways: (1) behavioral adjustments (personnel, environmental, 

technological or cultural), (2) physiological (genetic adaptation or acclimatization) and 

(3) psychological (habituations or expectation) (Brager and deDear, 1998). Based on 

these variables, the term adaptation is broadly interpreted as the gradual diminution of 

the organism s response to repeat environmental stimulation (deDear et al., 1997).   
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According to many field studies, people can be comfortable at wider temperature range. 

ASHRAE has recognized the importance of updating its thermal comfort standard and as 

a result, a research project was initiated to review the up-to-date thermal comfort studies 

and incorporate them in a new recommended variable temperature standard (deDear and 

Brager, 2002). The project has collected a high number and quality data from field 

studies in 160 different office buildings located on four continents and covering a broad 

spectrum of climate zones. The database contains field studies from Bangkok, Indonesia, 

Singapore, Athens, Michigan, several locations in California, England and Wales, six 

cities in Australia and five cities in Pakistan. The database was statically analyzed for 

buildings with centralized HVAC and naturally ventilated buildings where occupants had 

access to operable windows. From the analysis, the observed data from field studies and 

predicted data from PMV were found well correlated in HVAC buildings. This shows 

that the PMV model can be confidently used to predict the thermal comfort in controlled 

HVAC buildings. However, no agreement was found in naturally ventilated buildings. 

This has indicated that the behavioral adaptations, physical (acclimatization) and physical 

components are the main reasons behind this difference which demonstrated the adaptive 

concept (Brager and deDear, 2000).  Therefore, the adaptive Comfort Standard has been 

derived from the statistical analyses and has been included in the new ASHRAE-55 2004 

as depicted in Figure 2.15.  

The range of acceptable operative temperatures is a function of mean monthly outdoor 

temperature and has been derived from the adaptive model of thermal comfort. This 
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range is applicable only for spaces where the thermal conditions are regulated by the 

occupants through opening and closing of windows, there is no mechanical cooling in 

operation (mechanical ventilation is allowed), and metabolic rates range from 1.0 to 1.3 

met (Olesen and Brager, 2004).   

 

Figure 2.15 Acceptable Operative Temperature Ranges for Naturally Conditioned Spaces 
(ASHRAE-55, 2004)            

Field experiments of controlled HVAC buildings have shown that Fanger PMV-PPD 

model is accurate enough to predict thermal comfort conditions in hot climate of Saudi 

Arabia. In a limited number of university classrooms in a hot humid climate of Saudi 

Arabia, a comparative study between field measurements, using B&K 1212 Comfort 

Meter instrument based on Fanger s method, and subjective assessment based on mean 

responses of 15 subjects in 6 different rooms has concluded that both are in good 
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agreement (Abdelrahman, 1991). Field experiments in the climate of Riyadh, Saudi 

Arabia consist of sixteen sets of measurements conducted in fully air-conditioned lecture 

theatres and design studios yielded 290 responses in the cool season, 515 responses in the 

hot season were carried out (Saeed, 1993). The data was statistically analyzed and found 

that the Fanger s equation correlated well at predicting subjective responses. A follow up 

study on 525 subjects exposed to hot environment in a mosque also confirmed the earlier 

findings (Saeed, 1996).  

2.6 Simulation of Thermal Performance of Building  

The thermal performance of a building should better be evaluated at the early design 

stage when many vital decisions related to building physics are taken. In many countries 

where designs are to comply with prescriptive standards, simplified methods are utilized 

for quick compliance purposes. Detailed energy simulation programs are however sought 

to accurately simulate the thermal performance with additional flexibility to identify 

design trade-offs for cost effectiveness, yet complying with performance based standards.   

2.6.1 Energy Simulation Programs for Building Evaluation   

Many detailed simulation tools are nowadays available to aid designers to implement new 

technologies and evaluate innovative ideas that increase the energy savings in their 

proposed designs. Detailed energy simulation tools use mathematical models to calculate 
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the envelope heat gains or loss, (annual and peak) space heat and cooling load, evaluate 

indoor thermal conditions, predict energy performance of buildings and analyze the life 

cycle costing. Detailed simulation tools perform their computation on hourly or sub-

hourly bases for better consideration of the dynamic interactions between all thermal-

based elements associated with comfort and energy consumption, including the building 

envelope, HVAC systems, lighting and control devices (Hong et al., 2000). It is difficult 

to categorize simulation programs because of their continuous development and 

improvement. Many building simulation tools are listed at the U.S. Department of Energy 

(DOE) web directory (http://www.eren.doe.gov/buildings/tools_directory). The most 

common detailed energy simulation programs that are considered accurate and capable of 

handling the dynamic behavior of building and its systems are DOE-2, BLAST, 

EnergyPlus, and ESP-r. However, a lot of data input is usually required for accurate 

results.  

DOE-2 is a public domain program that was developed by the Simulation Research 

Group at Lawrence Berkeley Laboratory (LBL). It performs an hourly simulation of the 

building thermal performance and is widely used to design energy-efficient buildings, to 

analyze the impact of new technologies and to develop energy conservation standards. 

The program needs a detailed input of weather data, building materials, operating 

schedules, and description of HVAC equipment. Many commercial user friendly 

programs using DOE-2 main code such as VisualDOE (Eley Associates) and EZDOE 

(Elite Software) have been developed to provide a graphical user interface. While these 

http://www.eren.doe.gov/buildings/tools_directory
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programs were intended to offer a graphical user interface of the DOE-2, they don t 

provide the full capabilities of DOE-2.   

BLAST (Building Load Analysis and System Thermodynamics) is a set of computer 

programs for predicting heating and cooling energy consumption in buildings, and 

analyzing energy costs. BLAST was developed by Department of Mechanical and 

Industrial Engineering, University of Illinois at Urbana Champaign and sponsored by the 

U.S. Department of Defense (DOD). BLAST can be used to investigate the energy 

performance of new or retrofit building design options.   

The main difference between DOE-2 and BLAST is their load calculation method; DOE

2 uses a room weighting factor approach while BLAST uses a heat balance approach. 

With many capabilities of the two and new added capabilities, a new building 

performance simulation program EnergyPlus was developed to combine the best 

capabilities and features of the two programs (Crawley, 1999). The major improvement 

in the EnergyPlus is the integrated solution of loads, system and plant.   

ESP-r (Environmental System Performance, European version) is a public domain 

transient energy simulation system capable of assessing problems related to several 

domains: air and moisture transport within physical spaces (typically buildings), fluid 

flow within HVAC systems, and electrical power flow within heterogeneous networks 

(Hand, 1998). ESP-r is based on a finite volume approach in which a building model and 
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its description are transformed into a set of conservation equations which are then 

integrated at successive time-steps in response to climate, occupant and control system 

influences.   

2.6.2 Program Selection for Energy Performance Evaluation  

Despite the availability of many energy simulation programs nowadays; many challenges 

are encountered when detailed simulation methods are sought. Designers are not able to 

select suitable program to carry out their analysis. It is perhaps difficult to set an explicit 

procedure for selecting a simulation program that suits every one. Many factors such as 

accuracy, sensitivity, speed and cost, reproducibility, usability, input complexity, output 

quality, weather data availability are generally considered during the selection process 

(ASHRAE, 1997). While these factors are related to the energy simulation programs, 

other factors related to the users should also be considered. There are three factors that 

the users need to consider: matching the need or the purpose to the program capability, 

the budget (to purchase, training, use, and maintain the software), and the availability of 

existing computer facilities (Hong et al., 2000).   

A high effort has been done in Canada to defining the methodology for the Next-

Generation HOT2000 Simulator (NRCan, 1998). The project work started by listing all 

potential software tools (about 31 simulation programs) that can be used for the 

HOTCAN-3000. A number of levels were developed to screen out the programs 
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according to specific conditions where only those programs passing a given screening 

level were considered at the next level. The levels considered for this task are listed as 

follows: 

Level 1: Preliminary review of modeling methods for 31 simulation tools 

Level 2: Availability, rights to use, technical collaboration and support (8 programs at 

this level were identified). 

Level 3: Technical documentation and source-code structure (6 programs were identified 

at this level) 

Level 4: Detailed review of modeling methods (3 programs were finally identified: 

Energyplus, ESP-r and TRNSYS)  

ESP-r was finally selected to be the base for developing the HOTCAN-3000. While this 

approach is applicable for a similar project task, the selection procedure can also be 

adopted with a shallower scope.  

2.6.3 Energy Simulation Program: VisualDOE   

VisualDOE is a Windows interface to the DOE-2.1E energy simulation program. 

VisualDOE provides a graphical user interface where users can construct their building 

model using the standard block shapes, using a built-in drawing tool, or importing DXF 

files. VisualDOE is useful for studies of building envelope and HVAC design 

alternatives. Many generations have been developed by Eley Associates such as version 
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VisualDOE2.6, 3.0, 3.1 and finally VisualDOE4.0 and its update 4.1 . VisualDOE uses 

the DOE2.1E calculation engine which uses the transfer function method to calculate the 

building heat and cooling loads assuming a constant indoor air temperature. The DOE-

2.1E energy simulation program has undergone extensive validation exercises and shown 

to be accurate with measurements (Sullivan, 1998). The old DOE2 code (DOE-2.1A) has 

also been validated for accuracy in Dhahran, Saudi Arabia (Bahel et al., 1989).  

VisualDOE requires many data inputs including floor plan, occupancy type, location, 

walls, roof and floor constructions; window area and type; HVAC system type and 

parameters; and lighting and equipment power density. Some databases are also available 

for easier input through the library and templates. Most data needed for creating the 

building model in the program can be easily retrieved from the building drawings or 

library databases. However, weather data is the most difficult to obtain in a format 

suitable to the simulation programs. Through the building energy simulation, a user can 

obtain an accurate estimate of the building s energy consumption, interior environmental 

conditions and energy operation cost.  The program can model conditioned and 

unconditioned spaces where indoor air temperature is freely floating. The program has 

been widely used in the world for building design and energy conservation studies (Hui 

and Allison, 2002).  The objective of developing the VisualDOE was to provide a user 

interface. Hence, VisualDOE implements about 95% of DOE-2.1E functionalities which 

is adequate for many common applications, yet the flexibility is available for advance 

applications by modifying the DOE-2 input files. 
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2.6.4 Sources of Weather Data for Saudi Arabia  

Weather data is an important input data element in the detailed simulation programs. The 

design of active system such as Heating Ventilation and Air Conditioning (HVAC) is 

only achieved after careful considerations of outdoor climatic conditions. The dynamic 

behavior of building and its system is influenced by the weather. The weather data is a 

prerequisite in the detailed simulation programs to analyze different energy conservation 

measures. It is also important in evaluation studies of indoor environmental indices and 

structural design strategies.  Therefore, it is important for engineers and researches to 

obtain this piece of information for their professional studies.     

In Saudi Arabia, many organizations keep the records of weather data. The data are 

normally recorded at stations in airports. The raw weather data includes the hourly values 

of dry-bulb temperature, wet-bulb temperature, relative humidity, cloud cover and wind 

speed. Some data are available for a period of 20 years like the one that are recorded in 

20 stations of Meteorology and Environmental Protection Administrations (MEPA) and 

Department of Water Resources under the Ministry of Agriculture (Said et al., 1996). 

Other organizations such as ARAMCO and Energy Research Institutes and centers at 

Universities are also recording the weather data but rarely available for long period of 

time (Said, 1992).    
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Hourly solar radiation is perhaps the most important parameter in the analysis of building 

thermal design but has received little attention by many worldwide metrological 

organizations. In Saudi Arabia, Meteorology and Environmental Protection 

Administrations (MEPA) and Department of Water Resources keep the records of hard 

formats of scattered daily average solar radiation data for limited cities in Saudi Arabia. 

Unfortunately this information is not measured for many cities in Saudi Arabia (Said et 

al., 2003). For the purpose of updating the Saudi Solar Radiation Atlas by King 

Abdelaziz City for Science and Technology (KACST), twelve locations in the following 

cities were selected to measure the global solar radiation: Riyadh, Gassim, Al-Ahsa, Al-

Jouf, Tabuk, Madinah, Jeddah, Qaisumah, Wadi Al-Dawasir, Sharurah, Abha, and Gizan. 

However, diffusive solar radiation is only recorded at four stations in the following cities: 

Gassim, Al-Ahsa, Wadi Al-Dawasir and the Solar Village which is 50 Km north-west of 

Riyadh (Alnaser et al., 2004).  

In the USA, International Surface Weather Observations (ISWO) keeps the records of 

weather data for many stations around the world including the Saudi s local stations.  The 

ISWO database contains many important weather variables such as dry-bulb and dew-

point temperatures, atmospheric pressure, wind speed and direction, and the amounts of 

cloud cover at various heights. However, solar radiation readings are not available in this 

database. The weather variables from local stations in the world are transmitted via 

Global Telecommunications System (GTS) and archived by Air Force Combat 

Climatology Center (AFCCC), National Climate Data Center (NCDC) in Ashevill, N.C. 
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(Zhang et al., 2002).  For many local stations in the world, the ISWO database contains 

readings at three hour interval.   

Researches normally use the cloud cover information in the weather data and utilize 

special algorithms to estimate solar radiation and its components (Thevenard and 

Brunger, 2002). At stations where these variables are not available at hourly bases, 

researches develop algorithms from the available limited measured data to create hourly 

weather data by filling the missing data.   

2.6.5 Weather Data for Energy Simulation Programs  

The weather data is available in raw data formats for many years, typically 20-30 years in 

developing countries. This raw data is not suitable for the detailed energy simulation 

programs. A typical weather year, representing many years of weather data, has to be 

selected for the energy analysis. In developing countries, this obstacle has hindered the 

use of energy simulation programs in the analysis of building thermal design.   

Many typical weather data sets are internationally recognized for use in detailed energy 

simulation programs. In North America, well known weather data sets available for 

energy simulation are: Typical Reference Year (TRY) (NCDC, 1976), Typical 

Metrological Year (TMY), Weather Year for Energy Calculation (WYEC), Canadian 

Weather for Energy Calculations (CWEC) (WATSUN, 1992), Typical Metrological 
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Year: Version 2 (TMY2) (Marion and Urban, 1995), and Weather Year for Energy 

Calculation Version: 2 (WYEC2) (Stoffel and Rymes 1998, Huang 1998). TMY2 are 

developed for 239 USA locations but California has its own weather data set (California 

Thermal Zone Version2: CTZ2) which is used for the state code compliance. For 

Canadian locations, CWEC weather data set is mainly used and 5 locations are developed 

with WYEC2 format.   

In Europe, the standard method of generating Test Reference Year (TRY) is proposed 

under ISO Standard prEN ISO 15927-4 (Thermal Performance of Buildings-Climate 

Data-Part 4: Data for Assessing the Annual Energy Demand for Cooling and Heating 

System) (Levermore and Doylend, 2002). Another form of TRY is proposed by 

Chartered Institution of Building Services Engineers (CIBSE) in UK (Holmes and 

Hitchen, 1978). The ISO TRY is proposed for near-extreme plant design or near-extreme 

performance assessment whereas the CIBSE-TRY format is for average energy 

estimation and analysis. Therefore, ISO TRY is more appropriate for HVAC Design and 

short term performance analysis.  

Except for the American version of TRY, all weather data sets TMY2, WYEC2, CWEC 

and CIBSE-TRY are a synthetic year that has an hourly weather data which represents 

the long term trend of weather variables. The methodology to select the representative 

monthly weather data is similar but different weights are applied to weather variables in 

the selection process.  The American version of TRY represents an actual historic year 
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weather data that is selected from a list of many years. The year weather data is rejected 

from the candidate years based on their extreme high or low temperature until only one 

actual mild year is selected (Crawely, 1998).   

Many efforts have been done to create suitable weather data files for energy simulation 

programs (Clarke, 2001). In 1997, ASHRAE technical committee 4.2 (Weather 

Information) decided to look for possibility to develop typical weather years called 

International Weather for Energy Calculation (IWEC) for international locations outside 

USA by using the database at National Climate Data Center (NCDC) in Ashevill, N. 

Carolina (Thevenard and Brunger, 2002). Due to the lack of solar radiation data, solar 

radiation algorithms were used to generate the IWEC. The weather data years are selected 

based on the standard methodology of TMY2 (Marion and Urban, 1995). IWEC files 

were developed for 227 selected sites outside US and Canada.   

In the kingdom of Saudi Arabia, the suitable weather data format for detailed energy 

programs is not available to conduct energy design analysis. The need for suitable 

weather data format in disseminating energy efficient designs in Saudi Arabia has been 

recognized by (Said et al., 2003). The breadth and depth of weather data are the main 

challenges. The breadth determines the number of years recording the weather data while 

the depth determines the detailed hourly coverage of the main weather variables. The 

main hourly weather variables required for detailed energy simulations includes: dry-bulb 

temperature, wet-bulb temperature and dew-point temperature or relative humidity, wind 
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speed, wind direction, global horizontal solar radiation or cloud cover information and 

atmospheric pressure.  Nevertheless, individual efforts continue to develop weather data 

sets. For example, Said and Kadry (1994) has processed the 22 years (1970-1991 

inclusive) weather data for 5 main cities (Dhahran, Riyadh, Jeddah, Khamis-Mushyt and 

Hail) to develop Typical Weather Years (TWY). These cities represent the climate 

conditions of Saudi Arabia. In the developed TWYs, solar data was not included due to 

the lack of solar radiation data. Although the development of TWY is not suitable for 

energy simulation programs but it is perhaps an important effort that helps to establish the 

methodology of developing typical weather years in Saudi Arabia. Under the project 

sponsored by ASHRAE to develop IWEC files for international locations, IWEC file was 

developed for Riyadh city.  Although the solar data disagree with the 1983 Saudi Solar 

Radiation Atlas but it does agree well with the recent measurements data that was taken 

by KACST (KACST and NREL, 2001). For other cities of Saudi Arabia, researches 

normally utilize the available hourly weather data of any actual year.     

The types of different weather data sets and the selection methodologies of a typical 

weather year have brought up many issues related to the reliability of estimating energy. 

This problem has been recently addressed (Crawley, 1998). In this study, simulation runs 

using different reference years (TRY, TMY, TMY2, WYEC, WYEC2) were compared 

with another simulation runs using the 30 years period of actual hourly weather data. A 

typical office building was simulated with DOE-2.1E program for eight U.S. locations. 

Crawley studied the impact of using various weather data sets on the annual energy use 
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and costs and annual peak electrical demand, heating load, and cooling load. He 

concluded that the American version of TRY-type weather data should be avoided since 

no single year can represent the typical long-term weather patterns. TMY2 and WYEC2 

were found more rigorous in predicting the energy consumption since improved solar 

models are used to estimate the solar data. Therefore, they are more closely matching the 

long-term average climatic conditions.  

Another study was conducted to study the influence of different sets of weather data on 

residential buildings and to compare them with 30 years of actual historical records by 

utilizing DOE-2.1E (Huang, 1998).  The study concluded that TMY2 and WYEC2 

weather data gives results within 5% of that for 30 years records. He justified the use of 

the typical weather year to simulate the peak building loads because the selection process 

doesn t eliminate the peak design conditions. He found that the American version of TRY 

is less reliable in replicating the average historical conditions.  
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CHAPTER THREE  

THERMAL AND PHYSICAL CHARACTERSTICS OF 

RESIDENTIAL BUILDINGS IN SAUDI ARABIA   

3.1 Introduction   

In Saudi Arabia, residential buildings have undergone a dramatic change in their design, 

construction materials used and electrical appliances utilized. Every region in Saudi 

Arabia has its own social, cultural, economical and climatic parameters that dominate its 

design characteristics. Studies have been conducted to evaluate design parameters 

adopted in different climates of Saudi Arabia (Talib 1984, Al-Haddad 1986 and Al-

Haddad 1988).  Talib (1984) has reviewed the design parameters of traditional housings 

for different climatic regions of Saudi Arabia. A questionnaire survey was distributed to 

16 Architectural Engineering offices to determine the use, location, types and typical 

thickness of thermal insulation in opaque envelope of residential buildings (Al-Haddad, 

1986). The study has concluded that many ways are available to place the insulation in 

the walling system such as placing 50 mm insulation in cavity walls, or placed at interior 

side and covered with gypsum boards, or filling the hollow masonry blocks with 

insulation material inserts. However, the roof insulation is followed a standard 

construction method where it is always placed on top of the roof slab. Another study has 
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conducted a field survey on more than 300 houses in major cities in Saudi Arabia 

including Al-Khobar and Riyadh to develop a typical villa for energy simulation studies 

(Al-Haddad, 1988). The summary outcome of this study is shown in Table 3.1.   

Table 3.1 Thermal and Physical Characteristics of Residential Buildings (Villa) in 
Saudi Arabia (Al-Haddad, 1988) 
Design Parameter Riyadh Al-Khobar 
1. Floor Area (m2) 244 252 

Windows Area (m2) >97% single 
glazing+ no exterior shading 

33.5 42.5 

2. Roof Construction Method 
a. Un-insulated Hourdi Slab 20.0% 84.5% 
b. Insulated Hourdi Slab 37.5% 5.7% 
c. Un-insulated Con. Slab 32.0% 4.9% 
d. Insulated Con. Slab 10.0% 4.9% 
3. Wall Construction Method 
a. Single Block Walls 79.0% (CMU: 51%, 

Clay: 28%) 
98.4%, (CMU: 79.4%, 
Clay: 19%) 

b. Double Block Walls 9.4% (CMU: 4.7%, 
Clay: 4.7%) 

0.0% 

c. Cavity Walls 11.6% (CMU: 
9.3%, Clay: 2.3%) 

1.6%, (CMU: 1.6%) 

4. Finishing Materials 
a. Paint 40.0% 20% 
b. Marble 3.7% 2% 
c. Combination of above or others 

(i.e. Natural Stone + Granolith) 
56.3% 78% 

5. Number of Floors 2 2 
6. Height (m) 3.5 m /Floor 7.0 7.0 
7. Shape of the Plan 
a. Rectangular 55.0% 56.0% 
b. L-Shape 10.0% 12.0% 
c. U-Shape 6.0% 4.0% 
d. Others 29.0% 28.0% 

 

During the last 15 years, the construction practices in Saudi Arabia have undergone major 

changes, therefore, it was found important to survey the current design practices of single 
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family houses in representative cities in eastern province (i.e. Khobar, Dammam and 

Dhahran) and Riyadh.   

3.2 Questionnaire Design  

The questionnaire design was developed to cover the main important design parameters 

that are required for the energy simulation program.   

3.2.1 Contents of Questionnaire  

The questionnaire as shown in APPENDIX-A is divided into four sections. The first 

section covers the general information about the respondent such as name, company, 

address, years of experience and the yearly average number of the designed houses. The 

second section contains the general characteristics of single-family house such as the 

average floor area, common geometrical shape and number of floors.    

The third major section is divided into four sub-sections covering the main building 

exterior envelope: wall, roof, type of insulation used, and windows. The first sub-section 

contains the generic wall designs and location of thermal insulation relative to the main 

building material, main building materials normally used in wall designs, exterior 

finishing and the surface colors. The second sub-section details the generic roof designs 

and location of insulation materials, main building material, flooring or exposed layer of 
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the roof construction, special features of roof systems, and roof s surface colors.  The 

third sub-section includes different types of insulation materials that are normally used 

for both walls and roofs and the required minimum level of thermal resistance. The fourth 

sub-section consists of window designs and its assembly including glazing types, exterior 

shadings, windows ratio and window types.  

The last part of the questionnaire covers the level of air leakage and measures that are 

taken to control the leakage rate, lighting requirements and open ended space for the 

respondents to add more design parameters that were not mentioned in the questionnaire.   

3.2.2 Data Collection  

The research survey questionnaires were initially faxed to design offices in eastern 

province (i.e. Dammam and Khobar) and Riyadh with follow-up telephone calls. The 

responses were quite below expectation. Therefore, the questionnaires were mailed to 

design offices. The completed questionnaires were requested to be dispatch or faxed to 

the researcher. In many instances, questionnaires were answered by the general managers 

or senior architects in the design offices. Over a period of six months after dispatching 

the questionnaires and contacting the consultants, the researcher collected 12 responses 

from Dammam and Khobar and 7 were responded by the designers in Riyadh. There was 

one questionnaire responded by a general contractor which was rejected.  The 
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questionnaires were then analyzed using an easy and simple frequency approach. The 

results are presented in the following sections.   

3.3 Analysis and Discussion of Results 

3.3.1 General Information   

The first section of the questionnaire includes general information about the design 

consultants. The design consultants are classified in terms of their years of experience in 

design of residential buildings. From the results of the questionnaires, the design offices  

can be classified in to four categories according to their number of years of experience in 

the design of single-family houses: with less than 5 years of experience, with 5 to 10 

years of experience, with 10 to 15 years of experience and with more than 15  years of 

experience. From Figure 3.1 (a), it is clear that the less experienced design offices design 

more houses than those with more experience in Dhahran. The average number of houses 

that are annually designed by the less experienced design offices is more than 120 

houses. Figure 3.1 (b) shows that all surveyed design offices in Riyadh are with more 

than 15 years of experience and they design an average number of 37 houses per year.  

The second section covers general information about the building including: average 

floor area, common geometrical shape and number of floors. The building area has been 

categorized into four groups: <250, 250-350, 350-450 and >400 m2. Many designers use 

a space area in the range of 250-350 m2. It was found that the average floor area of 
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houses in Dhahran and Riyadh are 301 m2 and 300 respectively as shown in Figure 3.2 

(a) and (b).   
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Figure 3.1 Annual Designed Houses by Different Design Office Categories in (a) Dhahran 
and (b) Riyadh  
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Figure 3.2  Frequency of Category Use and Average Floor Area in (a) Dhahran and (b) 
Riyadh  
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The common geometrical shape and number of floors are presented in Figure 3.3 (a) and 

(b). From these figures, the common geometrical shape in Dhahran and Riyadh is 

rectangular with a majority of houses are with two floors.  
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Figure 3.3  Geometrical Shape and Number of Floors in Residential Buildings in (a) 
Dhahran and (b) Riyadh   
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3.3.2 Building Envelope Design Parameters  

The third major section is divided into four sub-sections covering the main building 

exterior envelope: wall, roof, type of insulation used, and windows.   

3.3.2.1 Wall System Designs  

The first sub-section contains the common wall designs and location of thermal insulation 

relative to the main building material, main building materials normally used in wall 

designs, exterior finishing and the surface colors. This information is presented in Figure 

3.4 and Table 3.2.   

From Figure 3.4 (a), the most common wall types that are normally used in the design of 

single family house in descending order in Dhahran is the single leaf wall (83%), 

sandwich panel wall (58%), cavity wall (33%), and double walls (17%).The majority of 

single leaf walls are designed with no insulation and the rest with insulation material 

located to the exterior or to the interior of the main wall. Cavity walls are also designed 

with insulation materials that are located to the exterior side of the cavity. Similarly, 

double leaf walls are design with insulation on the exterior side of the wall.   

Similarly in Riyadh as shown in Figure 3.4 (b), the most common wall types that are 

normally used in the design of single family houses in descending order is the single leaf 
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wall (71%), cavity wall (57%), sandwich panel wall (43%), and double walls (43%). The 

majority of single leaf and double leaf walls are designed with no insulation. If insulation 

is used for single leaf walls, then majority will have insulation to the interior and the 

remaining to the exterior. Double leaf walls are design with insulation on the exterior side 

of the wall. Cavity walls are also designed with insulation materials that are located to the 

exterior side of the cavity.   

Table 3.2 shows the main building materials, exterior finishing and surface colors that 

are normally used for wall designs in single family houses in Dhahran and Riyadh 

respectively. In Dhahran, the main materials used in walls are the concrete masonry units 

(CMU), clay bricks, cast-in-place and pre-cast concrete and siporex blocks. Hollow CMU 

are the most widely used material. Design offices also use the hollow CMU with insert-

insulation material. Precast and cast-in-place concrete walls are becoming more popular 

in the design of single family houses. Clay bricks, siporex blocks and stones are the least 

used building material in wall designs.   



101   

(a) 

0

10

20

30

40

50

60

70

80

90

Normally used With No Insulation To the Exterior To the Interior Bounded by Two
Layers

%
 o

f 
D

es
ig

n
 O

ff
ic

es

  

(b) 

0

10

20

30

40

50

60

70

80

Normally used With No Insulation To the Exterior To the Interior Bounded by Two
Layers

%
 o

f 
D

es
ig

n
 O

ff
ic

es

 

Figure 3.4  Wall Designs and Location of Insulation used by (a) Dhahran and (b) Riyadh 
Design Offices  
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Table 3.2 Main Building Materials, Exterior Finishing and Surface Colors Normally used 
for Wall Designs in Dhahran and Riyadh  
Main Building Material Dhahran (%) Riyadh (%) 

1. Concrete Masonry Blocks (CMU):  
a. Solid   0 14 
b. Hollow   83 14 
c. Hollow with insulation material inserts  75 71 

2. Aerated Concrete Blocks  (e.g. Autoclaved, Siporex) 25 29 
3. Clay Bricks 

a. Solid   17 14 
b. Hollow   25 14 
c. Hollow with insulation material inserts  8 21 

4. Reinforced Concrete: 
a. Cast-in-Place     33 100 
b. Pre-Cast          58 14 

5. Stone 8 29 
6. Adobe 0 0 
Exterior Finishing for Walls 

1. Cement Plaster (e.g. Stucco) 83 86 
2. Stone Veneer 42 71 
3. Marble Cladding 17 43 
Surface Colors used for Walls 

1. Light Color   (white paint) 42 14 
2. Medium Color        (off-white, cream) 67 100 
3. Dark Color (Brown, red or other dark colored paints) 17 0 

 

Similarly in Riyadh, the main materials used in walls are the concrete masonry units 

(solid and hollow), clay bricks (solid and hollow), cast-in place and pre-cast concrete, 

siporex blocks and stone veneer. Hollow CMU and clay bricks with insert-insulation 

material are widely used by design offices in Riyadh. In Riyadh, solid CMU and clay 

bricks, siporex blocks and stones are the least used building material in wall design. For 

both Dhahran and Riyadh, it is clear from the table that the cement plaster is the most 
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common exterior finishing followed by stone veneer and marble cladding. The walls are 

normally painted with medium colors.   

3.3.2.2 Roof System Designs  

The second sub-section details the generic roof designs and location of insulation 

materials, main building material, flooring or exposed layer of the roof construction, 

special features of roof systems, and roof s surface colors as shown in Figure 3.5 and 

Table 3.3.  

Hourdi slabs are found to be the most widely used roof design in a single family housing 

in Dhahran (75%) and Riyadh (100%) as shown in Figure 3.5 (a) and (b). Pre-cast 

Hollow core slabs and reinforced concrete slabs are also used in single family houses in 

Saudi Arabia. In Riyadh, it is noticed that reinforced concrete slabs are more widely used 

than pre-cast concrete slabs when compared to Dhahran. Hourdi slabs and reinforced 

concrete slabs are either used with or without insulation. Based on the customer 

requirement, many design offices offers both hourdi designs: with or without insulation.  
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Figure 3.5  Roof Designs and Location of Insulation used by (a) Dhahran and (b) Riyadh 
Design Offices  
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In Riyadh, more than 70% of the designers use hourdi slabs without insulation compared 

25% in Dhahran. For hourdi slab in Riyadh, more than 25% of the designers use the 

insulation materials to the interior of the slab and more than 40% of them to the exterior 

insulation compared to less than 10% for interior insulation and 30% for exterior 

insulation in Dhahran. Additionally, insulation materials are filled into the hollow cores 

of the hourdi blocks. More than 40% of the designers in Riyadh use reinforced concrete 

slabs without insulation compared to 16% in Dhahran. If insulation material is used for 

reinforced concrete slab, it is normally placed to exterior of the slab. Pre-cast hollow core 

slabs are becoming more popular in single family houses as approximately 42% of the 

designers use them both in Dhahran and Riyadh.   

Many building materials can be used in the design of roof systems. Table 3.3 shows the 

most common materials, flooring exposed layers, features of roof system and surface 

colors that are commonly used with the main deck slab in Dhahran and Riyadh. Concrete 

screeds are used by majority of the designers for roof slope and drainage purposes. Foam 

concrete and plain concrete (sand/cement) are two types of concrete screeds that are 

normally used in roof designs. The average layer thickness of foam concrete is 131 mm 

and 85 mm for plain concrete in Dhahran compared to 73 mm for foam and 85 mm for 

plain concrete in Riyadh. Hollow CMU and clay bricks are widely used in hourdi slabs. 

In Dhahran, more than 67% of designers use hollow CMU hourdi blocks for Hourdi slabs 

compared to 43% of the designers in Riyadh. Hollow clay bricks are used by 29% of 

designers in Riyadh compared to 17% in Dhahran. More than 8% of designers use 
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siporex panels in the design of roof systems in Dhahran and no designers in Riyadh 

indicated the use of siporex in their roof system design.  

Table 3.3 Main Building Materials, Flooring Layer, Special Features of Roof Design and 
Surface Colors Normally used for Roof Designs in Dhahran and Riyadh  
Main Building Material Dhahran (%) Riyadh (%) 

1. Sloping Foam Concrete Screed 67 43 
2. Sloping Plain (sand/cement) Concrete Screed 50 29 
3. Sand Fill 0 14 
4. Hollow Clay bricks for hourdi Slab 17 29 
5. Hollow CMU blocks for hourdi Slab 67 43 
6. Others (Siporex)  8 0 
Flooring (Exposed) Layer of the Roof Construction: 

1. Tiles (i.e. Terrazzo, Cement)  83 86 
2. Gravel Layer 50 43 
3. Soil Layer 0 0 
Special Features of Roof System 

1. Shading (e.g. metal corrug. sheets, pergolas) 8 57 
2. False Ceiling 67 43 
Surface Colors used for Roofs 

1. Light Color   (white paint) 42 43 
2. Medium Color        (off-white, cream) 33 29 
3. Dark Color (Roofs with gravel, red tile) 17 29 

 

Cement and terrazzo tiles are widely used as flooring or exposed layer in roof system 

design as depicted from Table 3.3 for Dhahran and Riyadh. It is found that a gravel layer 

with an average thickness of 90 mm is used in Dhahran and 40 mm in Riyadh. In 

Dhahran, the false ceiling is used by more than 67% of the designers while shading is 

rarely specified at the design stage. In Riyadh, false ceiling is used by 43% of the 

designers and shading is common in the design of roof systems in Riyadh where it is used 

by 57% of the designers. While dark and medium colors are used by less than 33% of the 
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designers for roof system, light colors is used by more than 40% of the designers in 

Dhahran as well as in Riyadh.  

3.3.2.3 Insulation Materials for Walls and Roofs Design  

It is found that many types of insulation materials are used in roof and walling system as 

shown in Figure 3.6 (a) and (b). In Dhahran, the most common insulation materials used 

in walls are ranked in descending order according to its use: Rockwood, Expanded or 

molded polystyrene, Extruded polystyrene, and Polyurethane. Other insulation materials 

such as fiberglass, cellulose and low emissivity materials are used by less than 10% of the 

designers. Wide range of insulation materials are used for roofs. The most usable 

insulation materials ranked in descending order are lightweight concrete, fiberglass, 

expanded or molded polystyrene, extruded polystyrene and polyurethane. Other 

insulation materials are used by less than 10% of the designers in Dhahran. It is found 

that the allowable air gap that is normally used in cavity walls is 53 mm. Only two design 

offices in Dhahran mentioned the required minimum thermal resistance (R-Value) value 

for both walls and roof which are 1.35 m2. °C/W and 1.75 m2. °C/W for wall and roof 

design respectively.   
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Figure 3.6  Insulation Materials used for Wall and Roof System Design in (a) Dhahran and 
(b) Riyadh   

In Riyadh, the most common insulation materials used in walls are ranked in descending 

order according to its use: extruded polystyrene, fiberglass, polyurethane, polyethylene 
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and expanded or molded polystyrene. Other insulation materials are not used by the 

designers in Riyadh. The most usable insulation materials in Roofs are ranked in 

descending order: extruded polystyrene expanded or molded polystyrene, polyurethane 

and lightweight concrete. Other insulation materials are used by less than 15% of the 

designers. In Riyadh, it is found that the allowable air gap that is normally used in cavity 

walls is 40 mm. None of the design offices in Riyadh indicated any requirement of wall 

or roof resistance value.  

3.3.2.4 Fenestration System Designs  

The physical characteristics of windows including the windows and glazing types are 

listed in Table 3.4. In Dhahran, single and double clear glazing are the most widely used 

by the designers while single and double tinted, and double low-e glazing are the second 

widely used. Exterior shadings are rarely used by the designers. Only two designers have 

specified the exterior shadings where side fin and overhang projections are 200 mm and 

400 mm respectively. The average window to wall ratio (WWR) is found to be 21%.   

In Riyadh, single clear and tinted, double clear and tinted glazing are the most widely 

used by the designers while double low-e glazing and triple clear glazing are the secondly 

used glazing. It is observed that the designers in Riyadh also use triple glazing and high 

performance glazing. None of the designers in Riyadh use the exterior shadings for 

windows.  The average window to wall ratio (WWR) is found to be 20%. Majority of 
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designers in Riyadh (85%) and Dhahran (100%) use operable windows in residential 

buildings compared to only 17% of designers use fixed windows in Dhahran.   

Table 3.4 Physical Characteristics of Windows normally used in Residential Buildings in 
Dhahran and Riyadh  
Glazing Types Dhahran (%) Riyadh (%) 

1. Single-glazed layer: 
a. Clear  42 43 
b. Bronze/Gray/Green Tint 33 43 

2. Double-glazed layers: 
a. Clear  67 43 
b. Bronze/Gray/Green Tint 50 43 
c. Low-e with High-Solar-Gain (Pyrolitic or 

hard coat Low-E glass) 17 29 
d. Low-e with Moderate-Solar-Gain, 

(Sputtered or soft-coat products) 0 0 
e. Low-e with Low-Solar-Gain, (Spectrally 

Selective) 0 14 
3. Triple-glazed layers: 

a. Clear  0 29 
b. Low-e 0 14 

4. Average Window-to-Wall Ratio (WWR) 21 20 
5. Types Of Windows: 

a. Operable Windows 100 86 
b. Fixed Windows 17 0 

 

3.3.2.5 Air Leakage and Lighting Requirements  

Section four of the questionnaire has examined the level of air leakage and measures that 

are taken to control the leakage rate and lighting requirements as shown in Table 3.5. 

Majority of the designers in Dhahran (67%) as well as Riyadh (71%) feel that their 

buildings are air-tight as many control measures are applied. Air barrier are not used in 
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walls or roof in Dhahran compared to 28% of the designers in Riyadh who indicated that 

they are using air barrier in wall design. It is found that designers in Dhahran and Riyadh 

use air infiltration reduction measures such as weather stripping, caulking and gaskets for 

windows and doors. However, designers in Dhahran feel that no systematic measures are 

currently followed to control air infiltration. Designers use three main sources of lighting 

in residential buildings: fluorescent, incandescent and energy efficient lamps. In Dhahran, 

more than 92% of the designers use fluorescent lamps, 42% use incandescent and 8% use 

energy efficient lamps.  In Dhahran, the average lighting power density (LPD) in a single 

family house is 18 W/m2. In Riyadh, more than 86% of designers use fluorescent lamps, 

43% use incandescent and 29% use energy efficient lamps with an average lighting 

power density (LPD) of 13 W/m2.  

Table 3.5 Air Leakage and Lighting Requirements in Residential Buildings in Dhahran 
and Riyadh   

Dhahran (%) Riyadh (%) 

Level Of Air Tightness 
a. Air Tight 67 71 
b. Average Tight 33 43 
c. Air Loose 0 0 

Measures to Reduce Air Leakage  
a. Air barrier are installed in walls and roofs 0 29 
b. Weather-stripping is used in windows and 

doors  67 43 
c. Caulking and gaskets are used in windows 

and doors  67 43 
d. None is used  8 0 

Lighting Requirements  
a. Fluorescent lamps 92 86 
b. Incandescent lamps  42 43 
c. Energy efficient lamps 8 29 

Lighting Power Density (LPD) W/m2 18 13 
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3.4 Internal Loads and their Profile in Residential Buildings  

Internal heat gain emitted by people, lighting and appliances has a significant impact on 

total heat load and consequently energy consumption. Additionally, the occupant s 

activities and their schedule, lighting and equipment operation profiles have all to be 

determined for the whole building simulation. For the purpose of this study, the number 

of people, their schedules and activity, lighting and appliances and their operation 

schedules will be based on previous energy studies of residential buildings in Saudi 

Arabia (Aftab and Elhadidy 2002, Said and Abdelrahman 1989, Al-Maziad 1999 and 

Ahmed 1991).  Table 3.6 summarizes the internal loads that have been used in previous 

energy simulation studies.    

All previous simulation studies have agreed on the average number of individuals of a 

Saudi s family which is in the range of 6 members. These studies have also assumed the 

lighting and equipment power density in the range of 10-22 W/m2 and 1.6-32 W/m2 

respectively. Although no survey studies have been conducted to confirm the above 

figures, a recent case study on a one floor single family house in Dhahran has indicated 

that the lighting load is in the range of 11 W/m2 and equipment load varies from 26 to 46 

W/m2 (Al-Mofeez, 2002). Although the survey results in this study has shown that on 

average the lighting power density (LPD) is 18 W/m2 in Dhahran and 12 W/m2 in 

Riyadh, it is indicated by many  architectural firms that they use 4 fluorescent Lamps (4 x 

40 Watts) in a room of 4m x 4m (16 m2). This is equivalent to a lighting power density 
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(LPD) of 10 W/m2 for living zone. Considering 80% of this level in the sleeping zone 

will give a LPD of 8 W/m2.  This level is found appropriate for the simulation of the 

typical residential buildings.   

The schedules of occupancy, lighting and equipment are difficult to determine in 

residential buildings. The previous studies have assumed a representative schedules based 

on their personal experience or a logic judgment with the exception of Al-Maziad (1999) 

who did a field questionnaire.  Many of these assumptions have agreed well for the 

nighttime schedule. However, the main difference appears in the morning, afternoon and 

evening times where different activities are performed.  

3.5 Development of the Base Case Residential Building   

Based on the survey results, it is found that the architectural design of residential 

buildings in Dhahran and Riyadh is similar. However, the only difference found is the 

type of walling system that is commonly used in these two cities. In Dhahran, the most 

widely used wall design in Residential buildings is the single CMU hollow block 

compared to CMU hollow block with insert insulation material in Riyadh. Table 3.7 

shows the architectural system characteristics of residential building in Dhahran and 

Riyadh based on the survey results as well as literature review for the lighting and 

mechanical systems.  Based on the literature, representative schedules for occupancy, 

lighting, equipment profile are shown in Table 3.8 for both living and sleeping zones.  
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Table 3.6 People, Lighting and Equipment Profile used in Energy Simulation for Residential Buildings in Saudi Arabia  
Type of Internal Load 

Reference Schedule People Lighting (W/m2) Equipment(W/m2) 

 
6 people 19 11.4 

Week-

Days  

100%(1h-7h),  50% (8h-12h), 100% (13h) , 50% (14h-

16h), 100%(17h-19h), 80% (20h-22h), 100%(23h-24h) 

(Aftab and 

Elhadidy, 2002) 

Week-

Ends  

100%(1h-7h), 50% (8h-12h), 100%(13h), 90% (14h-

16h), 10% (17h-20h) , 100% (21h-24h) 

5%(1h-6h), 30% (7h), 10% (8h-

17h), 90% (18h-19h), 70% (20h-

22h), 5% (23h-24h) 

5%(1h-6h), 50% (7h), 30% (8h-17h),  

60% (18h-20h), 15% (21h-24h)  

Schedule 

 

6 people 19 1.6 

Week-

Days  

100%(1h-7h), 50% (8h-12h), 100%(13h),  50% (14h-

16h), 100%(17h-19h), 80% (20h-22h), 100%(23h-24h) 

(Said and 

Abdelrahman, 

1989) 

Week-

Ends  

100%(1h-7h), 50% (8h-12h), 100%(13h), 90% (14h-

16h), 10% (17h-20h) 100% (21h-24h) 

10%(1h-6h), 40% (7h), 10% (8h-

17h), 90% (18h-19h), 70% (20h-

22h), 10%(23h-24h)  

5% (1h-6h), 50% (7h), 30% (8h-

17h), 60% (18h-20h), 20% (21h-24h)  

Schedule 

 

6 people 10 32 

Week-

Days  

100%(1h-6h), 50% (7h-12h), 80%(13h-14h), 

100%(15h-16h), 80%(17h-21h), 100% (22h-24h) 

(Al-Maziad, 1999) 

Week-

Ends  

100%(1h-9h), 75% (10h-11h), 100% (12h-15h), 10% 

(16h-19h), 80% (20h-23h), 100% (24h) 

10% (1h-6h), 30% (7h), 20% (8h-

17h), 60% (18h-19h), 50% (20h-

22h), 40% (23h-24h)  

15% (1h-6h), 50% (7h), 15% (8h-

10h), 60% (11h-12h), 15% (13h-

20h), 50% (21h), 15% (22-24) 

Schedule 

 

7 people 22 15 

Week-

Days  

90% (1h-7h), 50%(8h-12h), 75%(13h-17h), 100% 

(18h-24h) 

5% (1h-5h), 50% (6h-9h), 25% 

(10h-17h), 100%(18h-20h), 

75%(21h-23h),50%(24h) 

0% (1h-5h), 50% (6h-17h), 

100%(18h-22h), 30%(23h-24h) 

(Ahmed, 1991) 

Week-

Ends  

90% (1h-8h), 50%(9h-21h), 100% (22h-24h) 5% (1h-6h), 40% (7h-17h), 

100%(18h-24h) 

0% (1h-6h), 70% (7h-17h), 

100%(18h-24h) 
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Table 3.7 Characteristics of Architectural System for the Typical Single-Family 
Residential Building in Dhahran and Riyadh 
Characteristics Description of the Base Case 
Location Dhahran (26.27 N latitude, 50.15 E longitude, and 17m 

above sea level), 
Riyadh (24.72 N latitude, 46.72 E longitude, and 612 m. 
above sea level), 

Orientation Front Elevation facing East 
Plan Shape Rectangular 
Number of floor Two 
Floor to Floor Height 3.5 m (7.0 m for the two floors) 
Floor Area 300 m2 

Floor Dimension 15 x 20 m  
Gross Wall Area 490 m2 

Window Area 20% of the gross wall area (98 m2), Uniformly Distributed 
Type of Glass 6 mm Single glazing   
Solar Absorbance (for 
Exterior Surfaces)  

0.55 for external walls (medium color) 
0.35 for the roof (light color) 

Exterior Walls Dhahran: 15mm Stucco  + 200 mm CMU Hollow Block + 
15mm Stucco (with no Insulation) 
Riyadh: 15mm Stucco  + 200 mm CMU Hollow Block 
(with insulation insert material) + 15mm Stucco 

Roof Tiles + 10 mm Mortar + 4 mm Membrane + 100mm LWC + 
200 mm Hourdi Slab + 15 mm Cement Plaster 

Floor 100 mm slab on grade 
Occupancy Density 6 People 
Lighting Power Density 10  W/m2 (lower level), 8 W/m2 (higher level)  
Equipment Power 
Density 

12 W/m2 (lower level), 5 W/m2 (higher level)  

Infiltration 0.5 ACH (Airtight) 
System Type Residential System (Constant-Volume DX AC) with 

Electric Heating 
Thermostat Two-Position with Cooling & Heating  
Thermostat Setting 25ºC for Cooling, 21ºC for Heating 
COP 2.87 
Weather File Dhahran:2002, Riyadh: TMY (1983-1999) 
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Table 3.8 Occupancy, Lighting, Equipment and Domestic Hot Water Profiles for Living and Sleeping Zones in Residential Buildings 
Occupancy Home Appliances Lighting Hot Water 

 
Weekdays Weekends Weekdays Weekends Weekdays Weekends All Days 

       
Living Area 

0% (23h-5h),  

33% (6), 67% (7h), 

50% (8h-12h) ,  

83% (13h-15h),  

67% (16h-17h), 

100% (18h-19h), 

67% (20h),  

33% (21-22h) 

0% (24h-8h),  

67% (9h),  

50% (10h),  

83% (11h),  

100% (12h-15h) , 

33% (16h-19h),  

67% (20h-23h) 

5% (23h-5h),   

50% (6h-7h),  

20% (8h-10h) ,  

50% (11h-12h),  

20% (13h-18h) , 

50% (19h-20h),  

10% (21h-22h) 

5% (24h-8h),   

50% (9h),  

20% (10h-12h) , 

50% (13h-14h),  

20% (15h-18h) , 

50% (19h-21h),  

20% (22h-23h) 

5% (23h-5h),   

50% (6h-8h),   

25% (9h-17h) ,  

100% (18h-20h),  

75% (21h-22h)  

5%(1h-8h),   

25% (9h-17h),  

100% (18h-20h), 

75% (21h-23h) 

      

Sleeping Area 

100% (23h-5h),  

67% (6), 33% (7h), 

0% (8h-15h) ,  

33% (16h-17h), 

0% (18h-19h),  

33% (20h),  

67% (21-22h) 

100% (24h-8h),  

33% (9h-10h),  

0% (11h-21h),  

33% (22h-23h) 

0% (23h-5h),  

20% (6h-7h), 

0% (8h-15h) , 

20% (16h-20h), 

10% (21h-22h)  

0% (23h-7h),  

20% (8h-10h), 

0% (11h-20h) , 

20% (21h-22h),  

5% (23h-5h),   

25% (6h-7h),   

5% (8h-15h) ,  

25% (16h-17h),  

100% (18h-20h), 

50% (21h-22h) 

5% (24h-7h),   

25% (8h-10h),   

5% (11h-21h) ,  

25% (22h-23h),   

5%(18h-4h),   

100% (5h-6h),  

30% (7h-15h) , 

100% (16h-17h) 
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3.6 Selection of Building Envelope for Energy Simulation in Residential 

Buildings   

From the questionnaire survey, a series of possible wall types that are normally used in 

the design practice of residential buildings in Saudi Arabia has been generated. This list 

consists of more than 202 possible wall designs with a variety of building materials and 

using many thermal insulation types and thicknesses. The thermal resistance and the 

thermal mass (heat capacity) of these walls and roofs designs are determined using the 

VisualDOE and listed in APPENDIX-B. The thermal characteristics of possible wall 

designs are shown in Figure 3.7.   
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Figure 3.7  Thermal Resistance & Heat Capacity for Possible Wall Assemblies  
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The figure also shows the minimum requirement for thermal resistance for walls 

assembly with various window-to-wall ratio based on International Energy Conservation 

Code and the super-insulated wall design based on literature (IECC, 2000 & Brenda, 

2000). These figures are taken as a reference benchmark to the survey results.   

In order to simulate walls that have different thermal characteristics, the generated wall 

designs have been categorized based on their thermal mass and thermal resistance. 

According to their thermal mass, walls are categorized into three levels: light thermal 

mass which have heating capacity from 0 to150 kJ/m2.ºC, medium thermal mass which 

have a heating capacity from 150 to 300 kJ/m2.ºC, and heavy thermal mass which have a 

heating capacity from 300 to 450 kJ/m2.ºC. Furthermore, the categorized walls are 

classified according to their thermal resistance based on the IEEC minimum R-value into: 

low thermal resistance walls that have R-value from 0 to 1.066 m2.ºC/W, standard 

thermal resistance walls that have R-value from 1.066 to 5 m2.ºC/W and super insulated 

walls that have R-value of more than 5 m2.ºC/W. Table 3.9 shows the categories of the 

generated wall designs according to their thermal characteristics.  

Table 3.9 Categorization of Generated Wall Designs in Saudi Arabia  
                               Thermal Mass (kJ/m2.ºC) 
Thermal Resistance 
 (m2.ºC/W) 

0-150  
(M1)**

 

150-300 
(M2) 

300-450 
(M3) 

0-1.066 (R1) * 1 3 3 
1.066-5 (R2) 10 85 88 
Above 5 (R3) 6 5 1 
Notes: 
*   R1, R2 and R3 represent the level of thermal resistance 
** M1, M2 and M3 represent the level of thermal mass  
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For the purpose of this study, five walls are selected to represent the wide range of the 

thermal characteristics of wall systems. The selected walls are shown in Figure 3.17 and 

their thermal characteristics are listed in Table 3.10.  

Table 3.10 Representative Wall Designs for Energy Simulation in Residential Buildings 
Wall 
No. 

Wall Description 

 

U-Value 
(W/m2.°C)

 

R-Value 
(m2.°C/W)

 

Heat Capacity 
(KJ/m2.°C) 

RSI 

 

Dhahran: Single 200 mm 
Hollow CMU Wall+ No 
insulation+ 15 mm Stucco 
finishes on both sides 

2.98 

 

0.34 

 

379.97 

 

2 

 

W#1 

   

Riyadh: CMU with insulation 
material insert 

1.63 

 

0.61 

 

379.97 

 

3.59 

 

W#2 

 

Single 245 mm Siporex Wall+ 
No insulation+ 15 mm Stucco 
finishes on both sides 

1.2 

 

0.83 

 

176.93 

 

5 

 

W#3 

 

50 mm Precast Concrete Panel 
on both sides+ 50 mm 
Polyurethane + + 15 mm 
Stucco on both sides 

0.41 

 

2.44 

 

237.78 

 

14 

 

W#4 

 

Cavity Hollow CMU Block 
Wall+50 mm Air Space+ 100 
mm Polyurethane (ext)+15 mm 
Stucco finishes on both sides 

0.2 

 

5.00 

 

442.18 

 

28 

 

W#5 

 

75 mm Polyurethane on both 
sides+ 50 mm Precast Concrete 
+ 15 mm Stucco finishes on 
both sides 

0.15 

 

6.67 

 

148.58 

 

38 

  

Similarly, many roof assemblies have been generated using the basic main building 

materials that are normally used in the design practice of residential buildings in Saudi 

Arabia. The list consists of more than 62 roof assemblies. The thermal resistance and heat 

capacity of generated roof designs are calculated using the VisualDOE and presented in 

Figure 3.8. 
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Figure 3.8  Thermal Resistance & Heat Capacity for Possible Roof Assemblies   

A similar procedure is also applied to roofs for the purpose of simulating a representative 

sample of roof assemblies. The roof assemblies have been categorized based on their 

thermal mass and thermal resistance as listed in Table 3.11. According to their thermal 

mass, roofs are categorized into three levels: light thermal mass which have heating 

capacity from 0 to 300 kJ/m2.C, medium thermal mass which have a heating capacity 

from 300 to 600 kJ/m2.C and heavy thermal mass which have a heating capacity from 

600 to 900 kJ/m2.C. Furthermore, the categorized walls are classified according to their 

thermal resistance in to: low thermal resistance walls that have R-value from 0 to 2.3 

m2.ºC/W, standard thermal resistance walls that have R-value from 2.3 to 6.67 m2.ºC/W 

and super insulated walls that have R-value of more than 6.67 m2.ºC/W.    
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Table 3.11 Categorization of Generated Roof Designs in Saudi Arabia  
                               Thermal Mass (kJ/m2.ºC) 
Thermal Resistance 
 (m2.ºC/W) 

0-300  
(M1)**

 
300-600 
(M2) 

600-900 
(M3) 

0-2.3 (R1)* 0 8 10 
2.3-6.67(R2) 0 24 18 
Above 6.67(R3) 0 2 0 
Notes: 
*   R1, R2 and R3 represent the level of thermal resistance 
** M1, M2 and M3 represent the level of thermal mass   

For the purpose of this study, four roofs are selected to represent the wide range of the 

thermal characteristics of roof systems. The selected roofs are shown in Figure 3.25 and 

their thermal characteristics are listed in Table 3.12.  

A combination of 4 roof designs and 5 wall designs make 20 possible designs. Some of 

this combination is not practical or the variation in the thermal characteristics is not wide. 

Therefore, only 8 envelope designs are considered for further study. Table 3.13 shows 

the 8 represented envelope designs that are used for further analysis study and analysis. 

Some of the selected wall designs (Table 3.10) and roof designs (Table 3.12) for energy 

simulation in Dhahran and Riyadh meet the minimum requirements for thermal 

insulation. According to International Energy Conservation Code (IECC, 2000) and Gulf 

Council Countries thermal insulation regulation (GCC, 1984), the thermal insulation 

requirements for building envelope in hot climates with Heating Degree Day 0-499 

(Riyadh: 263, Dhahran: 178) are listed in Table 3.14. 
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Table 3.12 Representative Roof Designs for Energy Simulation in Residential Buildings 
Roof No. 

 
Roof Description 

 
Roof Design U-Value 

(W/m2.°C) 
R-Value 

(m2.°C/W) 
Heat Capacity 

(KJ/m2.°C) 
RSI 

 
R#1 

      
15 mm Cement plaster +200 
mm CMU Hourdi Slab+ 
100mm Foam Conc.+4 mm 
water proof membrane+ 25 
mm Sand Fill+ 50mm 
Mortar +Terrazzo 

  
0.59 

     
1.69 

     
629.83 

     
10 

     

R#3 

      

15 mm Cement plaster+ 50 
mm Ext Polystyrene+ 200 
mm Clay Brick Hourdi + 
100 mm Plain Concrete+4 
mm water proof membrane+ 
25mm Sand+ 50 mm 
Mortar+ Tiles 

  

0.39 

      

2.56 

      

567.13 

      

15 

      

R#5 

      

15 mm Cement plaster+200 
mm Siporex Hourdi + 100 
mm Foam Concrete+ 50 mm 
Exp Polystyrene +4 mm 
water proof membrane+ 
25mm Sand+ 50 mm 
Mortar+ Tiles  

  

0.23 

      

4.35 

      

337.03 

      

25 

      

R#7 

      

15 mm Cement plaster+200 
mm CMU Hourdi Slab + 100 
mm Foam Concrete+ 100 
mm Polyurethane +4 mm 
water proof membrane+ 
25mm Sand+ 50 mm 
Mortar+ Tiles 

  

0.17 

      

5.88 

      

637.91 

      

35 
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Table 3.13 Representative Envelope Designs for Energy Simulation in Residential Buildings in Saudi Arabia 
Design # Design 

Description 

Qualitative Thermal 

Resistance 

Qualitative Thermal 

Mass 

Remark 

Wall #1 Poorly Insulated High Mass Design #1 

Roof#1 Poorly Insulated High Mass 

Base Case Scenario 

(Dhahran)* 

Wall#1 Poorly Insulated High Mass 

 

Design #4 

Roof#7 Highly Insulated  High Mass  

Wall#2  Poorly Insulated Low Mass 

 

Design #6 

Roof#5 Medium Insulated Medium Mass 

 

Wall#3 Standard Insulated  Medium Mass  Design #7 

Roof#1 Poorly Insulated High Mass 

 

Wall#3 Standard Insulated  Medium Mass 

 

Design #9 

Roof#7 Highly Insulated  High Mass 

 

Wall#4 Highly Insulated  High Mass  Design #10 

Roof#1 Poorly Insulated High Mass 

 

Wall #5 Super-Insulated Low Mass 

 

Design #13 

Roof#3 Standard Insulated High Mass 

 

Wall#5 Super-Insulated Low Mass  Design #15 

Roof#7 Highly Insulated  High Mass  

* For Riyadh: Wall#1 is CMU Hollow Block with insulation insert Material. 
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Table 3.14 Thermal Insulation Requirements for Building Envelope in Hot Climates (HDD: 0-499) (IECC 2000 & GCC 1984)  
International Energy Conservation Code (IECC, 2000)  GCC Thermal Insulation Regulation (1984) Heating Degree Days @ 

18°C  WWR 15% 15<WWR 18% 18<WWR 20% 20<WWR 25% NA 

Maximum Glazing U-

Value 

Any 0.8 0.8 0.7 NA 

Minimum Ceiling R-

Value  

R-13*  

(2.29 m2.ºC/W) 

R-19  

(3.35 m2.ºC/W) 

R-19 R-30  

(5.283 m2.ºC/W) 

1.75 m2.ºC/W 

Minimum Wall R-Value  R-11  

(1.94 m2.ºC/W) 

R-11 R-11 R-11 1..35 m2.ºC/W 

Minimum Floor R-Value 

 

R-11  

(1.94 m2.ºC/W) 

R-11 R-11 R-11 NA 

Massive Wall Assembly R-Value 

Interior or Integral Mass R-3.8  

(0.67 m2.ºC/W) 

R-6  

(1.066 m2.ºC/W) 

R-6 R-6 NA 

Exterior Mass R-9.7  

(1.71 m2.ºC/W) 

R-10 R-10 R-10 NA 

* R-value *0.1761=R (SI); U-value*5.687=U (SI) 
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CHAPTER FOUR  

INDOOR TEMPERATURE BEHAVIOR AND COMFORT 

CONDITIONS FOR NON-CONDITIONED RESIDENTIAL 

BUILDINGS   

4.1 Introduction  

Indoor thermal environment is one of the main important characteristics of buildings. A 

comfortable thermal environment is a prerequisite for a human to perform his day to day 

activities. In traditional buildings, a comfortable environment was solely achieved by 

utilizing a proper combination of building materials and natural resources. The 

availability of cheap energy resources and the lack of energy codes have promoted 

building houses with ineffective envelope designs and without considering the utilization 

of natural resources. This has resulted in a complete reliance on the mechanical means to 

manipulate the indoor temperature and finally achieve the thermal comfort at high energy 

consumption. Thus, it is important to evaluate the dynamic behavior of different envelope 

designs under different ventilation strategies to properly select the combination that 

minimize the dependence on mechanical means and reducing the energy consumption.  
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4.2 Performance Indicators for Building Thermal Evaluation  

Selecting a proper performance indicator to evaluate the effectiveness of a specific design 

strategy is an important activity. While the objective of using different performance 

indicators is the same, many performance indicators were quoted in literature. In the 

following sections, potential performance indicators are discussed.   

4.2.1 Representative Summer and Winter Week  

In many studies, a representative winter/summer week or day is used to evaluate the 

condition of indoor air temperature and compared to international standards on the 

thermal comfort zones (i.e. over-heated or under-cooled). This method is a good 

indicative tool to assess the thermal performance of buildings in a well characterized and 

stable climate. In this study, the winter and summer weeks were initially used to evaluate 

the performance of building envelopes. Utilizing the Dhahran weather data of year 2002 

and using VisualDOE weather summary data, a summer week was identified from 20-26 

July and a winter week from 13-19 January. A base case unconditioned residential 

building design in Dhahran is used to illustrate the use of this method. Figure 4.1 (a) and 

(b) show a typical week of summer/winter. From this figure, it is noticed that the 

performance of building envelopes depends on outdoor temperature as well as the 

internal generated heat within the space. In winter, the indoor air temperature for the 

poorly insulated designs: D#1 and D#4 is below the minimum thermal comfort zone. 
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Figure 4.1  Indoor Air Temperatures for (a) Typical Extreme Winter Week (13-19 Jan) 
and (b) Typical Extreme Summer Week (20-26 July) in a Non-Conditioned Residential 
Building in Dhahran   

On contrary, the super insulated designs: D# 13 and D#15 are overheated during the noon 

time. Other building designs (the standard designs: D#6, #7, #9 and #10) are within the 
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thermal comfort zones during the day. All designs are below the thermal comfort zones 

during the night time. In summer, the poorly insulated designs: D#1 and D#4   perform 

better in terms of their indoor air temperature when compared to super-insulated and 

standard insulated designs. The super-insulated designs (D#13 & D#15) have achieved 

the highest indoor air temperature. However, it is known that the super-insulated designs 

perform better in summer compared to the other designs when mechanical systems are 

used. According to this method, the mechanical means is needed in both summer and 

winter weeks to achieve the thermal comfort. This method can be better utilized when the 

indoor temperature swings below and above the thermal comfort zone under natural 

condition when the climate is stable throughout the year.   

4.2.2 Mean Hourly Indoor Air Temperature  

This method has been mostly used in literature to evaluate the thermal comfort under 

different conditions. It helps to make a quick and simple performance evaluation of 

buildings. However, much information is not clear especially when peak indoor air 

temperature occurs. For example, if the indoor air temperature of a space in two weeks of 

a month is within the thermal comfort zones and above or below the limit in the other two 

weeks of the month, then the average value will either be below or above the desired 

range of thermal comfort.  Figure 4.2 shows the average hourly of the indoor air 

temperature of the typical residential building under Dhahran climate for sample months.   
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Figure 4.2 Average Hourly Indoor Air Temperatures in a Non-Conditioned 
Residential Building in Dhahran  

This figure gives the flexibility to treat every month separately and therefore propose 

dynamic strategies throughout the year for the evaluated envelope design. This method is 



  
130

 
primarily used in this study to evaluate and identify different ventilation strategies and 

therefore the schedules of introducing the outside air for cooling. In this case, the hourly 

indoor air temperature of the first hour is averaged for the whole month.   

4.2.3 Cumulative Temperature Difference and the Comparison to Energy 

Performance  

The cumulative temperature difference between the indoor air temperature in a naturally 

operated building and the thermal comfort temperature should be directly related to the 

amount of cooling and heating energy required to achieve thermal comfort when 

mechanical system is used. The area under the curve represents the cooling and heating 

temperature difference as shown in Figure 4.3. This area should be compared to the 

amount of the energy required to bring the indoor air temperature to the level of cooling 

or heating setting point.   

Thermal Comfort Zone

 

Figure 4.3 Cumulative Temperature Difference Compared to Setting Temperature Points 
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In this study, this method was tried to assess its appropriateness to evaluate the building 

envelope design. Figure 4.4 (a) and (b) show the annual cumulative temperature 

difference of the base case non-conditioned house under Dhahran climate. Figure 4.4 (a) 

shows that the super-insulated designs (D#13 & D#15) have more temperature difference 

than the poorly insulated designs (D#1 & D#4). Therefore and according to this concept, 

the super-insulated designs needs more energy to keep the indoor air temperature within 

the thermal comfort than the poorly insulated designs.   

However, Figure 4.4 (b) shows that the super-insulated designs have lower energy 

consumption compared to the poorly insulated designs. Comparing the two figures, it is 

clear that there is no correlation between annual temperature difference and the annual 

cooling energy. The heating energy correlates well with the temperature difference. 

Therefore, this performance indicator is discarded from this study as an indicator for the 

evaluation of thermal performance of buildings.   

4.2.4 Annual Percentage of Thermal Comfort  

This concept is widely used in this study to evaluate the performance of different building 

envelopes at different ventilation strategies. The percentage of thermal comfort is the 

ratio of number of hours at which the indoor air temperature lies within the comfort zones 

to total hours in the year. The use of this method is illustrated in the following sections.  
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(a) Annual Cumulative Temperature for a Non-Conditioned Residential Building in 
Dhahran   
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(b) Annual Energy consumption for a Conditioned Residential Building in Dhahran  

Figure 4.4 Comparisons of the Cumulative Temperature Difference and the Total Energy 
Consumption for a Typical Residential Building in Dhahran   
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4.3 Effective Ventilation Strategies for Residential Building in Dhahran  

For this part of the study, the Hourly Average (Mean) Indoor Air Temperature is 

extensively used to evaluate the effectiveness of ventilation strategies on various 

envelope designs. Utilizing this method, it was possible to assess different ventilation 

strategies at different timings. Additionally, the resulted data is also manipulated to 

determine the percentage of thermal comfort achieved for different envelope designs at 

specific ventilation strategies.  In order to develop preliminary ventilation strategy, two 

conditions should be met to utilize the outside air for cooling: 

1. When the outdoor air temperature is within the thermal comfort zones and the indoor 

air temperature is outside the thermal comfort zones, then outside cool air is 

introduced to improve the indoor thermal conditions.  

2. When the indoor air temperature is above the outdoor air temperature, then outside air 

is considered cool enough to reduce the indoor air temperature and consequently 

improve the indoor thermal conditions.   

Two thermal comfort zone criteria are used in this study; the natural ventilation thermal 

comfort criterion, and the thermal comfort criteria for mechanically operated buildings.  

Both of these methods are approved in the recent version of ASHRAE standards 55 

(ASHRAE 55, 2004). The first method is applicable to the naturally ventilated buildings 

and is much dependent on the monthly average outdoor air temperature which is entered 

in the following equation: Tcomfort=0.31Toutdoor+17.8. The thermal comfort zone is 

dynamic and different form month to month as shown in Table 4.1 for Dhahran. 
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Although in the recent ASHRAE thermal comfort standard, the relative humidity is not 

considered as a major factor in thermal comfort in naturally operated buildings, it is listed 

in Table 4.1 for comparison purposes. The relative humidity ranges from 42% in 

transition months to 85% during winter months. Since the outside cool air is mostly 

utilized in transition months, the relative humidity is not considered as a major factor for 

thermal comfort.   

Table 4.1 Thermal Comfort Criteria as per ASHRAE Naturally Ventilated Buildings and 
Average Relative Humidity in Year 2002 for Dhahran 

Month Average Outdoor 
Temperature(ºC) 

Naturally Indoor Thermal Comfort 
Temperature (ºC) at 80% Accept. 

Average Relative 
Humidity (%) 

Jan 15.8 19.1-26.1 85 
Feb 17.4 19.7-26.7 78 

March 22.5 21.3-28.3 60 
April 25.9 22.3-29.3 60 
May 32.6 23.4-31.41 42 

Summer 34.8 Not Applicable Not Applicable 
September

 

33.2 24.6-31.6 55 
October 30.4 23.7-30.7 70 

November

 

22.7 21.3-28.3 69 
December 18.6 20.1-27.1 84 

 

The use of outside cool air is an effective way of reducing indoor air temperature. This 

can either be achieved through the natural force of wind and stack effect or by 

mechanical systems. The effectiveness of introducing a specific amount of outdoor air to 

produce an acceptable indoor environment will mainly depend on the behavior of 

envelope designs under the admitted solar radiation and the generated heat within the 

building.  Therefore, the impact of ventilation strategies is studied for the base case 0.2 

Window-Wall- Ratio (WWR), 0.1 WWR and windowless (0 WWR) building. Window-
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less building represents a building that has a high performance (its thermal insulation 

level is equivalent to or better than that of the wall) and a fully shaded glazing (no solar 

radiation is introduced to the indoor environment). Under this condition, the thermal 

performance of envelope designs is expected to behave differently when no solar 

radiation is present and therefore is found important to evaluate this building.   

4.3.1 Effective Ventilation Strategy for Window-Less Residential Building   

The window-less building was modeled to evaluate the impact of ventilation strategies on 

the indoor air temperature. The hourly indoor air temperature from Visual DOE is 

averaged for every month and the specific ventilation strategy is analyzed for a specific 

envelope design. Figure 4.5 shows the thermal performance of envelope designs when no 

ventilation is applied. In January, the winter month, the indoor air temperature of the 

poorly insulated designs D#1 and D#4 is outside the thermal comfort zone from 1:00 am 

to 12:00 noon. These two designs are also on the lower edge limit of thermal comfort 

zones in February and start to pick up when the outdoor temperature lies within the 

thermal comfort zones in afternoon. However, during December, the poorly insulated 

designs D#1 & D#4 are within the thermal comfort zones. On the other hand, other 

designs are within the thermal comfort zones in all three winter months; December, 

January and February. Due to the high thermal characteristics of insulated designs, the 

heat generated within the building is stored and utilized for heating purposes. It is 

concluded that in winter months the insulated designs for a window-less building can 

passively provide thermal comfort. 
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Figure 4.5 Average Hourly Indoor Air Temperatures in a Non-Conditioned Window-Less Residential Building in Dhahran 
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Figure 4.5 Average Hourly Indoor Air Temperatures in a Non-Conditioned Window-Less Residential Building in Dhahran (cont.) 
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Figure 4.5 Average Hourly Indoor Air Temperatures in a Non-Conditioned Window-Less Residential Building in Dhahran (cont.)  
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Outside air can be utilized during transition months (transition from winter to summer or 

vice versa); March, April, May, September, October and November. The utilization of 

outside air to reduce the indoor air temperature varies from one month to another. 

Because outdoor air temperature is almost within the thermal comfort zones during the 

cool transition months November & March, it can be introduced to the indoor 

environment at any time during the day. A careful consideration should be given when 

the outside air is introduced during the warm transition months; April, May, September 

and October. The outside air temperature of Dhahran is examined and Table 4.2 shows 

Preliminary timings for ventilation strategies in Dhahran for Window-Less residential 

building.  

Table 4.2 Preliminary Ventilation Strategies and Timings for Passive Cooling in 
Window-Less Residential Buildings in Dhahran  
Month No-Ventilation 

(Airtight) 
Ventilation 
Strategy#1 

Ventilation 
Strategy#2 

January, 
February 

0.5 ACH (24h) 0.5 ACH (24h) 0.5 ACH (24 h) 

March  0.5 ACH (24h) 2 ACH: 16:00-09:00 
0.5 ACH: 10:00-15:00 

Similar to S#1 

April 0.5 ACH (24h) 2 ACH (24 h) 3 ACH: 16:00-09:00 
0.5 ACH: 10:00-15:00 

May 0.5 ACH (24h) 5 ACH: 17:00-07:00 
0.5 ACH: 08:00-16:00 

Similar to S#1 

June, July, 
August 

0.5 ACH (24h) 0.5 ACH (24 h) 0.5 ACH (24 h) 

September 0.5 ACH (24h) 5 ACH: 22:00-07:00 
0.5 ACH: 08:00-21:00 

5 ACH: 14:00-05:00 
0.5 ACH: 06:00-1300 

October 0.5 ACH (24h) 5 ACH: 18:00-08:00 
0.5 ACH: 09:00-17:00 

5 ACH: 14:00-05:00 
0.5 ACH: 06:00-13:00 

November 0.5 ACH (24h) 2 ACH (24 h) 3 ACH (24 h) 

December 0.5 ACH (24h) 0.5 ACH (24 h) 0.5 ACH (24 h) 
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Table 4.2 Preliminary Ventilation Strategies and Timings for Passive Cooling in Window-Less Residential Buildings in Dhahran 
(cont.) 
Month Ventilation 

Strategy#3 
Ventilation 
Strategy#4 

Ventilation 
Strategy#5 

Ventilation 
Strategy#6 

Ventilation 
Strategy#7 

January, 
February 

0.5 ACH (24 h) 0.5 ACH (24 h) 0.5 ACH (24 h) 0.5 ACH (24 h) 0.5 ACH (24 h) 

March  Similar to S#1 Similar to S#1 Similar to S#1 Similar to S#1 Similar to S#1 

April 5 ACH: 16:00-09:00 
0.5 ACH: 10:00-15:00 

Similar to S#3 Similar to S#3 Similar to S#3 Similar to S#3 

May 10 ACH: 17:00-07:00 
0.5 ACH: 08:00-16:00 

15 ACH: 17:00-07:00 
0.5 ACH: 08:00-16:00 

20 ACH: 17:00-07:00 
0.5 ACH: 08:00-16:00 

30 ACH: 17:00-07:00 
0.5 ACH: 08:00-16:00 

40 ACH: 17:00-07:00 
0.5 ACH: 08:00-16:00 

June, July, 
August 

0.5 ACH (24 h) 0.5 ACH (24 h) 0.5 ACH (24 h) 0.5 ACH (24 h) 0.5 ACH (24 h) 

September 10 ACH: 16:00-07:00 
0.5 ACH: 08:00-1500 

15 ACH: 16:00-07:00 
0.5 ACH: 08:00-1500 

20 ACH: 16:00-07:00 
0.5 ACH: 08:00-1500 

30 ACH: 16:00-07:00 
0.5 ACH: 08:00-1500 

Similar to S#6 

October 10 ACH: 16:00-08:00 
0.5 ACH: 09:00-15:00 

15 ACH: 16:00-08:00 
0.5 ACH: 09:00-15:00 

20 ACH: 16:00-08:00 
0.5 ACH: 09:00-15:00 

30 ACH: 16:00-08:00 
0.5 ACH: 09:00-15:00 

Similar to S#6 

November Similar to S#2 Similar to S#2 Similar to S#2 Similar to S#2 Similar to S#2 

December 0.5 ACH (24 h) 0.5 ACH (24 h) 0.5 ACH (24 h) 0.5 ACH (24 h) 0.5 ACH (24 h) 

 



141   

The proposed ventilation strategies are applied to the window-less building in Dhahran. 

Figure 4.6 (b) show the effect of Ventilation Strategy #1 on indoor air temperature of the 

residential building in Dhahran during March. It is clear that the indoor air temperature 

has been enhanced for all envelope designs. When no ventilation is applied as shown in 

Figure 4.6 (a), there is a risk of overheating for standard and super-insulated designs in 

evening time after 20:00. In order to avoid the overheating effect, the outside cool air is 

utilized. It is noticed that introducing 2 ACH keeps the indoor air temperature within the 

comfort zones. It is also found that introducing the outside air during the day time 

enhances the indoor air temperature and reduces the risk of overcooling during the night. 

Therefore, a better strategy is to introduce the outside cool air during the day to avoid the 

over cooling in the evening.   

Figure 4.7 depict the effect of Ventilation Strategy #1, #2 and #3 on indoor air 

temperature of the residential building in Dhahran during April. When no ventilation is 

applied, the indoor air temperature for the poorly insulated designs D#1 and D#4 is 

within the thermal comfort zones during the early morning time as shown in Figure 4.7 

(a). During the daytime, the indoor air temperature of the poorly insulated designs (D#1 

& D#4) dynamically responds to the increases in outdoor air temperature and the internal 

generated heat.       
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Figure 4.6 Average Hourly Indoor Air Temperatures in March for a Window-Less 
Residential Building (R.B.) in Dhahran under (a) No Ventilation and (b) Ventilation 
Strategy #1 
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The indoor air temperature of the insulated designs (D#6 to D#15) has improved during 

the early morning time when outdoor air is introduced at 2 ACH as shown in Figure 4.7 

(b). A little improvement in indoor air temperature of the poorly insulated designs (D#1 

and D#4) is also observed. During the evening time (after 17:00) when the outdoor air 

temperature is within the thermal comfort zones, the insulated designs (D#6 to D#15) 

tends to respond more significantly than the poorly insulated designs (D#1 & D#4). A 

sharp increase in the indoor air temperature is observed during the evening after 20:00. In 

order to reduce this effect, selective ventilation is applied to introduce the outside cool air 

when the temperature is within thermal comfort zones.  

The indoor air temperature for envelope designs has improved when selective ventilation 

(Strategy#2: 3 ACH 16:00-09:00) is applied as shown in Figure 4.7 (c). Further 

improvement is noticed as depicted from Figure 4.7 (d) when more ACH is introduced 

(Ventilation Strategy#3: 5 ACH). It is clear that the indoor air temperature of different 

envelope designs can be further enhanced when the selective ventilation is applied. Since, 

the objective is to achieve thermal comfort; Ventilation Strategy #3 in April is found 

adequate to keep the indoor air temperature within the thermal comfort zones for all 

envelope designs. 
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Figure 4.7 Average Hourly Indoor Air Temperatures in April for a Window-Less R. B. in Dhahran under (a) No Ventilation, (b) 
Ventilation Strategy #1, (c) Ventilation Strategy #2 and (d) Ventilation Strategy #3 
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The indoor air temperature of the residential building in Dhahran during November under 

No Ventilation, Ventilation Strategy #1 and Ventilation Strategy (VS) #2 is shown in 

Figure 4.8 (a), (b) and (c) respectively.  The response of envelope designs in November 

is similar to that of other transition months, March and April. When no ventilation is 

permitted, the indoor air temperature of insulated designs (D#6 to 15) is outside the 

thermal comfort zones whereas the poorly insulated designs (D#1 & D#4) are within the 

thermal comfort during the early morning. As the outdoor air is introduced at a rate of 2 

ACH (Ventilation Strategy #1) for 24 hours continuously, the indoor air temperature 

decreases and is kept within the comfort zones. More ACH enhances the indoor air 

temperature. This shows that during the cooled transition months, the natural cooling 

energy associated with the outside air can be effectively utilized to achieve the thermal 

comfort and reduce the dependence on mechanical systems.  

Although, the outside air temperature is within the thermal comfort zones in early 

mornings and late evenings, Figure 4.9 (a) shows that the indoor air temperature is 

always outside the thermal comfort zones when no ventilation is used during May. The 

figure shows that there is a potential to use the outside air at specific timings. Selective 

ventilation strategies can be identified based on some criteria. The criteria in utilizing the 

outside air are either when the temperature is within thermal comfort zones (24:00-07:00) 

or when the outside air temperature is below the indoor air temperature (17:00-23:00). 

Figure 4.9 (b) to (g) shows the effect of different ventilation strategies (ACH) on the 

indoor air temperature. 
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Figure 4.8 Average Hourly Indoor Air Temperatures in November for a Window-Less R. B. in Dhahran under (a) No Ventilation, (b) 
Ventilation Strategy #1 and (c) Ventilation Strategy #2 
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The indoor air temperature for all envelope designs is reduced by 2.5 ºC when Ventilation 

Strategy#1 (5 ACH) is applied. Further increases of ACH to Ventilation Strategy # 7 (40 

ACH) decreases the indoor air temperature in the range of 1.4 ºC compared to Ventilation 

Strategy#1.  Although the reduction in indoor air temperature is small when more ACH is 

introduced, the indoor air temperature tends to be within thermal comfort zones during 

the early morning time (24:00 to 07:00) when VS#5 (20 ACH) is applied. At evening 

(17:00-23:00), the indoor air temperature is reduced and almost following the trend of 

outside air temperature. It is concluded that increasing the outside air beyond 20 ACH is 

not attractive in May. However, it is helpful during the startup period of the HVAC 

system when the space in not occupied. The HVAC systems can startup at a temperature 

of 30 ºC rather than 34-36 ºC when no ventilation is applied.   

During September, the effect of ventilation strategies on indoor air temperature of 

envelope designs is similar to that in May as shown in Figure 4.10 (a) to (g). The figures 

show that introducing the outside air at different volumes (5 ACH to 30 ACH) reduces 

the indoor air temperature. Nevertheless, the indoor air temperature will not be 

effectively reduced to the level of comfort. Therefore, introducing the outside air during 

the month of September doesn t help to achieve thermal comfort but can be used to 

reduce the indoor air temperature when the space is not occupied to reduce the energy 

consumption for the machine startup.     
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Figure 4.9 Average Hourly Indoor Air Temperatures in May for a Window-Less R. B. in Dhahran under (a) No Ventilation, (b) Ventilation 
Strategy #1, (c) Ventilation Strategy #3 and (d) Ventilation Strategy #4   
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Figure 4.9 Average Hourly Indoor Air Temperatures in May for a Window-Less R. B. in Dhahran under (e) Ventilation Strategy #5, (f) 
Ventilation Strategy #6 and (g) Ventilation Strategy #7 (cont.)    
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Figure 4.10 Average Hourly Indoor Air Temperatures in September for a Window-Less R. B. in Dhahran under (a) No Ventilation, (b) 
Ventilation Strategy #1, (c) Ventilation Strategy #2 and (d) Ventilation Strategy #3   
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Figure 4.10 Average Hourly Indoor Air Temperatures in September for a Window-Less R. B. in Dhahran under (e) Ventilation Strategy #4, 
(f) Ventilation Strategy #5 and (g) Ventilation Strategy #6 (cont.) 
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Figure 4.11 (a) to (g) show the impact of ventilation strategies on indoor air temperature 

of residential building in Dhahran during October. During this month, the indoor air 

temperature responds to the introduced cool air compared to the other transition months; 

May and September. At Ventilation Strategy#1 (5 ACH: 18:00-08:00), the indoor air 

temperature touches the upper limit of thermal comfort zone (30º C) at early morning 

(03:00 a.m. to 07:00 a.m.). During the evening (after 18:00), the indoor air temperature of 

insulated envelope designs decreases from 37.5º C (peak temperature at no ventilation) to 

33º C at 5 ACH.  When the air is introduced 4 hours early in evening (at 14:00) and 3 

hours early in the morning (at 05:00) as is in Ventilation Strategy #2, the indoor air 

temperature doesn t change during the evening but a slight change is observed in the 

morning as shown in Figure 4.11 (c).  Increasing the outside air to 10 ACH (Ventilation 

Strategy #3) brings the indoor air temperature to the thermal comfort zone during the 

early morning. However, the improvement in the indoor air temperature during the early 

morning is insignificant after 15 ACH (Ventilation Strategy #3) but is enhanced with 

more ACH (as in Ventilation Strategy #6: 30 ACH) in the evening (after 20:00) as shown 

in Figure 4.11 (g).    
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Figure 4.11 Average Hourly Indoor Air Temperatures in October for a Window-Less R. B. in Dhahran under (a) No Ventilation, (b) 
Ventilation Strategy #1, (c) Ventilation Strategy #2 and (d) Ventilation Strategy #3   
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Figure 4.11 Average Hourly Indoor Air Temperatures in October for a Window-Less R. B. in Dhahran under (e) Ventilation Strategy #4, (f) 
Ventilation Strategy #5 and (g) Ventilation Strategy #6 (cont.) 
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The thermal performance of different envelope designs under various ventilation 

strategies has been analyzed in a qualitative way in the earlier discussion. Figure 4.12 

show the percentage of thermal comfort of different envelope designs under different 

ventilation strategies. ASHRAE thermal comfort for naturally ventilated buildings is used 

to calculate the percentage of thermal comfort.   

It is clear from the figure that as the ACH increases the percentage of thermal comfort 

increases for both the living and sleeping zones. This is obvious when Ventilation 

Strategy #1 (5 ACH) and Ventilation Strategy #3 (10 ACH) is applied. However, the 

increases in thermal comfort are significant for the super-insulated designs (D#9 and 

D#15) as shown in Figure 4.12 (b). Although the sleeping area is exposed to solar 

radiation through the roof in the transition months, it is noticed that Ventilation 

Strategy#7 deteriorate the thermal comfort (over-cooling) in this zone but a little 

enhancement is observed for the living area. This is due to the fact that the living area is 

mostly occupied during the daytime.  Additionally, it is characterized by the high internal 

generated heat which needs more air to remove the generated heat.  

The degree of response of the envelope designs varies under various ventilation 

strategies. Therefore, a further analysis is performed to identify the proper ventilation 

strategy for every envelope design. The analysis involves a comparison between how 

much every ventilation strategy improves the thermal comfort and selects the one that 

achieves more thermal comfort. 
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Figure 4.12 Percentage of Thermal Comfort in (a) Living Area and (b) Sleeping Area of a 
Window Less R. B. in Dhahran under Various Ventilation Strategies  
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The thermal comfort under specific ventilation strategy for envelope designs is compared 

to the thermal comfort under the next ventilation strategy for the same envelope design. 

For example, the percentage of thermal comfort of Desgin#1 in April under Ventilation 

Strategy #1 is compared to the percentage of thermal comfort of Desgin#1 in April under 

Ventilation Strategy #2. This procedure is done month by month for every envelope 

design under various ventilation strategies. The result of this process helps to identify the 

combined ventilation strategy for every envelope design. Some of ventilation strategies 

are discarded due to their insignificance to enhance the thermal comfort. The impact of 

combined ventilation strategy on thermal comfort for different envelope designs in living 

and sleeping areas is shown in Figure 4.13 (a) and (b).   

The thermal comfort of envelope designs when no ventilation is applied varies from 31% 

for poorly insulated design (D#1) to 29-30% for super-insulated design (D#15) in both 

living and sleeping area. In living area, the thermal comfort increases with proper 

ventilation strategies to 39% for the poorly insulated design to 47% for the super-

insulated design as shown in Figure 4.13 (a).  

The improvement in thermal comfort is significant with the insulated designs (59%) 

compared to the poorly insulated design (28%) when the combined ventilation strategy is 

applied.  Figure 4.13 (b) shows the impact of the envelope designs and the combined 

ventilation strategies on the thermal comfort in the sleeping area. It is clear that the 

thermal comfort in the sleeping area is higher than that in the living area. The thermal 
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comfort under the super-insulated designs (D#9 and D#15) is high compared to other 

envelope designs. The thermal comfort improvement in the sleeping area ranges from 

34% for the poorly insulated designs to 89% for the super-insulated designs.   
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Figure 4.13 Impacts of Combined Ventilation Strategies on Thermal Comfort for Envelope 
Designs in the (a) Living Area and (b) Sleeping Area in a Window-Less R. B. in Dhahran  
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In VisualDOE, the values for the air change per hour are entered and then corrected for 

the effect of wind and stack. The entered values for the combined ventilation strategy for 

various envelope designs in transition months are included in APPENDIX-C. Table 4.3 

(a) lists the corrected combined ventilation strategies during transition months for the 

studied envelope designs when ASHRAE thermal comfort for naturally ventilated 

buildings is used. Table 4.3 (b) is developed based on the ASHRAE thermal comfort for 

mechanically operated buildings. It is clear that when using the ASHRAE thermal 

comfort for naturally ventilated buildings, the thermal comfort can be achieved during the 

nights of May and October. It is also obvious that when the ASHRAE thermal comfort 

for mechanically operated buildings is used, more air volume is required in April to 

achieve thermal comfort. In addition, it is not possible to achieve thermal comfort in 

warm transition months; May and October without using the mechanical systems. In 

winter (December, January and February), introducing the outside cool air for window-

less building deteriorates the thermal comfort. In summer (July, June and August, 

September), the outside air is always above the thermal comfort zone and therefore 

insignificant in achieving thermal comfort. However, it can be used to reduce the 

machine startup in summer since the indoor air temperature is always above the outside 

air temperature when the mechanical system is off.   
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Table 4.3 Actual Ventilation Strategies in Transition Months for a Window-Less R.B. in Dhahran Based on ASHRAE Thermal 
Comfort Criteria for (a) Naturally Ventilated Buildings and (b) Mechanically Operated Buildings  

(a)  
                      Month 

 

Design Alternative 

March April May October November 

Design #1: W#1, R#1 
(Base Case) 
Design #4: W#1, R#7 
Design #6:W#2, R#5 
Design #7:W#3, R#1 
Design #9:W#3, R#7 
Design #10:W#4, R#1 
Design #13:W#5, R#3 
Design #15:W#5, R#7 

1 ACH 08:00-18:00, 
0.28 ACH 19:00-07:00     

1.64 ACH 16:00-9:00, 
0.34 ACH 10:00-15:00     

8.72 ACH 20:00-6:00, 
0.45 ACH 7:00-19:00     

12.32 ACH 20:00-6:00, 
0.4 ACH 7:00-19:00     

1.78 ACH 07:00-18:00, 
0.36 ACH 19:00-06:00     

 

(b)  
                      Month 

 

Design Alternative 

March April May October November 

Design #1: W#1, R#1 
(Base Case) 
Design #4: W#1, R#7 
Design #6:W#2, R#5 
Design #7:W#3, R#1 
Design #9:W#3, R#7 
Design #10:W#4, R#1 
Design #13:W#5, R#3 
Design #15:W#5, R#7 

1 ACH 08:00-18:00, 
0.28 ACH 19:00-07:00     

3.26 ACH 16:00-9:00, 
0.34 ACH 10:00-15:00     

0.32 ACH (24 h)      0.21 ACH (24 h)      1.78 ACH 07:00-18:00, 
0.36 ACH 19:00-06:00     
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4.3.2 Effective Ventilation Strategy For 10% Windows Residential Building   

The residential building (R.B.) with 10 % of windows area is modeled to evaluate the 

effectiveness of ventilation strategies on the indoor air temperature. Table 4.4 shows the 

initial ventilation strategies that are used with different envelope designs to identify the 

suitable ventilation strategies for a residential building with 10 % single glazing window. 

A similar procedure is applied to identify the proper ventilation strategy as mentioned in 

the previous section.     

Table 4.4 Preliminary Ventilation Strategies and Timings for Passive Cooling in a 
10 % Single Glazing Window Residential Building in Dhahran  
Month Ventilation 

Strategy#1  
Ventilation 
Strategy#2 

Ventilation 
Strategy# 3 

January, 
February 

0.5 ACH (24 h) 1 ACH: 08:00-18:00 
0.5 ACH: 19:00-07:00

 

Similar to VS#2 

March  5 ACH (24) 10 ACH (24 h) 30 ACH (24 h) 

April 10 ACH: 16:00-09:00 
0.5 ACH: 10:00-15:00

 

20 ACH: 16:00-09:00 
0.5 ACH: 10:00-15:00

 

30 ACH: 16:00-09:00 
0.5 ACH: 10:00-15:00

 

May 10 ACH: 17:00-07:00 
0.5 ACH: 08:00-16:00

 

20 ACH: 17:00-07:00 
0.5 ACH: 08:00-16:00

 

30 ACH: 17:00-07:00 
0.5 ACH: 08:00-16:00

 

June, July, 
August 

0.5 ACH (24 h) 0.5 ACH (24 h) 0.5 ACH (24 h) 

September 10 ACH: 17:00-07:00 
0.5 ACH: 08:00-16:00

 

20 ACH: 17:00-07:00 
0.5 ACH: 08:00-16:00

 

30 ACH: 17:00-07:00 
0.5 ACH: 08:00-16:00

 

October 10 ACH: 16:00-08:00 
0.5 ACH: 09:00-15:00

 

20 ACH: 16:00-08:00 
0.5 ACH: 09:00-15:00

 

30 ACH: 16:00-08:00 
0.5 ACH: 09:00-15:00

 

November 3 ACH (24 h) 6 ACH (24 h) Similar to VS#2 

December 0.5 ACH (24h) 1 ACH (24 h) 1.5 ACH (24 h) 
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The thermal comfort in living area is enhanced by proper ventilation strategies as shown 

in Figure 4.14 (a). As the volume of cool air is increased, the thermal comfort increases. 

However, minor improvement is observed when high air change per hour is introduced 

throughout the day (Ventilation Strategy#3: 30 ACH for 24h). This implies that 

introducing high volume of outside cool air to living area is not significant.   

A similar behavior is observed in the sleeping zone as shown in Figure 4.14 (b). 

However, when high volume of outside cool air(Ventilation Strategy#3: 30 ACH) during 

the cooled transition months (March and November), the thermal comfort of poorly 

insulated designs (D#1 and D#4) and standard insulated designs (D#6 to D#10) 

deteriorates.   

Applying selective ventilation strategies such as daytime ventilation only during these 

two months can significantly enhance the indoor thermal environment without 

deteriorating the thermal comfort. These strategies take into account two basic concerns: 

overcooling due to the effect of cooled outside air during nights of cooled transition 

months (March and November) and overheating due to the effect of hot outside air during 

daytime of warm transition months (May and October).   

Taking in to account this observation, proper ventilation strategies are selected for 10% 

window single glazing building as listed in Table 4.5 (a) and (b) and Table 4.6 (a) and 

(b) for transition and winter months respectively. These ventilation strategies are 
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developed based on both thermal comfort criteria; naturally ventilated buildings and 

mechanically operated buildings. The entered values for ventilation strategies in 

VisualDOE are included in APPENDIX-C.   

During the warm transition months; May and October, air-conditioning systems are 

required to achieve thermal comfort when the criteria for mechanically operated 

buildings is considered. Using this criterion, more outside cool air is required to achieve 

thermal comfort in March. It is observed that night ventilation is more effective in 

achieving thermal comfort in May and October when the criterion of naturally ventilated 

buildings is considered. Utilizing the natural ventilation criterion in winter months, super-

insulated designs require outside cool air during February. However, other envelope 

designs require outside cool air when the mechanically operated buildings criterion is 

used. The developed strategies are also appropriate for double glazing.   
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Figure 4.14 Percentage of Thermal Comfort in (a) Living Area and (b) Sleeping Area of a 
10% Window R. B. in Dhahran under Various Ventilation Strategies  
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Table 4.5 Actual Ventilation Strategies in Transition Months for a 10% Windows R.B. in Dhahran Based on ASHRAE Thermal 
Comfort Criteria for (a) Naturally Ventilated Buildings and (b) Mechanically Operated Buildings  

(a) 
                      Month 

 

Design Alternative 

March April May October November 

Design #1: W#1, R#1 
(Base Case) 
Design #4: W#1, R#7 
Design #6:W#2, R#5 
Design #7:W#3, R#1 
Design #9:W#3, R#7 
Design #10:W#4, R#1 
Design #13:W#5, R#3 
Design #15:W#5, R#7 

2.56 ACH 08:00-18:00, 
0.38 ACH 19:00-07:00     

10.73 ACH 16:00-9:00, 
0.23 ACH 10:00-15:00     

11.86 ACH 20:00-6:00, 
0.3 ACH 7:00-19:00     

8.48 ACH 20:00-6:00, 
0.18 ACH 7:00-19:00     

3.56 ACH 07:00-18:00, 
0.24 ACH 19:00-06:00     

 

(b) 
                      Month 

 

Design Alternative 

March April May October November 

Design #1: W#1, R#1 
(Base Case) 
Design #4: W#1, R#7 
Design #6:W#2, R#5 
Design #7:W#3, R#1 
Design #9:W#3, R#7 
Design #10:W#4, R#1 
Design #13:W#5, R#3 
Design #15:W#5, R#7 

5 ACH 08:00-18:00, 
0.38 ACH 19:00-07:00     

10.73 ACH 16:00-9:00, 
0.23 ACH 10:00-15:00     

0.3 ACH (24 h)      0.18 ACH (24 h)      3.56 ACH C, 0.24 ACH 
19:00-06:00     
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Table 4.6 Actual Ventilation Strategies in Winter Months for a 10% Windows R.B. in 
Dhahran Based on ASHRAE Thermal Comfort Criteria for (a) Naturally Ventilated 
Buildings and (b) Mechanically Operated Buildings  

(a) 
                      Month 

 

Design Alternative 

December February 

Design #1: W#1, R#1 (Base Case) 
Design #4: W#1, R#7 
Design #6:W#2, R#5 
Design #7:W#3, R#1    

0.25 ACH (24 h)    0.26 ACH (24 h) 

Design #9:W#3, R#7 
Design #10:W#4, R#1 

0.61 ACH 07:00-18:00, 
0.25 ACH 19:00-06:00 

0.26 ACH (24 h) 

Design #13:W#5, R#3 
Design #15:W#5, R#7 

0.61 ACH 07:00-18:00, 
0.25 ACH 19:00-06:00 

0.67 ACH 08:00-18:00, 
0.26 ACH 19:00-07:00 

  

(b) 
                      Month 

 

Design Alternative 

December February 

Design #1: W#1, R#1 (Base Case) 
Design #4: W#1, R#7 
Design #6:W#2, R#5 
Design #7:W#3, R#1   

0.25 ACH (24 h)   0.26 ACH (24 h) 

Design #9:W#3, R#7 
Design #10:W#4, R#1 
Design #13:W#5, R#3 
Design #15:W#5, R#7 

0.61 ACH 07:00-18:00, 
0.25 ACH 19:00-06:00  

0.67 ACH 08:00-18:00, 
0.26 ACH 19:00-07:00  

    

Applying the combined ventilation strategy, the thermal comfort of envelope designs 

when no ventilation is applied varies from 30% for poorly insulated design (D#1) to 21% 

for super-insulated design (D#15) in both living and sleeping area. In living area, the 

thermal comfort increases when using proper ventilation strategies to 41% for the poorly 

insulated design and to 43-45% for the insulated designs as shown in Figure 4.15 (a). 

The improvement in thermal comfort is significant with the insulated designs (95%) 
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compared to the poorly insulated design (37%) when the combined ventilation strategy is 

applied.   

Figure 4.15 (b) shows the impacts of the combined ventilation strategy on building 

envelope designs in the sleeping area. In the sleeping area, it is clear that the thermal 

comfort is higher than that of the living area. The thermal comfort under the super-

insulated designs (D#9, D#13 and D#15) is high compared to other envelope designs. 

The thermal comfort improvement in the sleeping area ranges from 38% for the poorly 

insulated designs to 122% for the super-insulated designs.  

It can be noticed that although the buildings with 10% windows have a lower thermal 

comfort compared to Window-Less buildings when no ventilation is applied, its final 

thermal comfort improvement is higher than that for Window-Less buildings. This due to 

the fact that the high generated heat in 10% windows buildings can be significantly 

removed when ventilation strategies are properly applied.   
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Figure 4.15 Impacts of Combined Ventilation Strategies on Thermal Comfort for Envelope 
Designs in the (a) Living Area and (b) Sleeping Area in a 10 % Windows R. B in Dhahran    
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4.3.3 Effective Ventilation Strategy for 20% Windows Residential Building  

The residential building (R.B) with 20 % of windows (Base-Case) is modeled to evaluate 

the effectiveness of ventilation strategies on the indoor air temperature. Table 4.7 shows 

the initial ventilation strategies that are used with different envelope designs to identify 

the suitable ventilation strategies for a residential building with 20 % single glazing glass 

window.    

Figure 4.16 (a) shows that the thermal comfort in living area is enhanced by introducing 

proper ventilation strategies. As the volume of cool air is increased, the thermal comfort 

increases. However, the thermal comfort deteriorates with the high air change per hour 

(Ventilation Strategy#3: 30 ACH). This implies that introducing high volume of outside 

air randomly to living area in winter months (December, January and February) and cool 

transition months (March and November) results in thermal discomfort and therefore 

more energy consumption. A similar behavior is observed in the sleeping zone as shown 

in Figure 4.16 (b).   

Applying selective ventilation strategies such as daytime ventilation only during winter 

months (December, January and February) and cool transition months (March and 

November) and night ventilation only during warm transition months (April, May, and 

October) help to avoid the overcooling and overheating during cool and hot seasons 

respectively.
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Table 4.7 Preliminary Ventilation Strategies and Timings for Passive Cooling in a 20 % Single Glazing Window Residential Building 
in Dhahran 
Month Ventilation 

Strategy# 1 
Ventilation 
Strategy# 2  

Ventilation 
Strategy# 3 

Ventilation 
Strategy# 4  

January 2 ACH: 08:00-18:00 
0.5 ACH: 19:00-07:00

 

4 ACH: 08:00-18:00 
0.5 ACH: 19:00-07:00

 

6 ACH: 08:00-18:00 
0.5 ACH: 19:00-07:00

 

12 ACH: 08:00-18:00 
0.5 ACH: 19:00-07:00

 

February 4 ACH: 08:00-18:00 
0.5 ACH: 19:00-07:00

 

8 ACH: 08:00-18:00 
0.5 ACH: 19:00-07:00

 

12 ACH: 08:00-18:00 
0.5 ACH: 19:00-07:00

 

24 ACH: 08:00-18:00 
0.5 ACH: 19:00-07:00

 

March  10 ACH (24 h) 20 ACH (24 h) 30 ACH (24 h) 60 ACH (24 h) 
April 10 ACH: 16:00-09:00 

0.5 ACH: 10:00-15:00

 

20 ACH: 16:00-09:00 
0.5 ACH: 10:00-15:00

 

30 ACH: 16:00-09:00 
0.5 ACH: 10:00-15:00

 

60 ACH: 16:00-09:00 
0.5 ACH: 10:00-15:00

 

May 10 ACH: 17:00-07:00 
0.5 ACH: 08:00-16:00

 

20 ACH: 17:00-07:00 
0.5 ACH: 08:00-16:00

 

30 ACH: 17:00-07:00 
0.5 ACH: 08:00-16:00

 

60 ACH: 17:00-07:00 
0.5 ACH: 08:00-16:00

 

June, July, August 0.5 ACH (24 h) 0.5 ACH (24 h) 0.5 ACH (24 h) 0.5 ACH (24 h) 
September 10 ACH: 17:00-07:00 

0.5 ACH: 08:00-16:00

 

20 ACH: 17:00-07:00 
0.5 ACH: 08:00-16:00

 

30 ACH: 17:00-07:00 
0.5 ACH: 08:00-16:00

 

60 ACH: 17:00-07:00 
0.5 ACH: 08:00-16:00

 

October 10 ACH: 16:00-08:00 
0.5 ACH: 09:00-15:00

 

20 ACH: 16:00-08:00 
0.5 ACH: 09:00-15:00

 

30 ACH: 16:00-08:00 
0.5 ACH: 09:00-15:00

 

60 ACH: 16:00-08:00 
0.5 ACH: 09:00-15:00

 

November 10 ACH (24 h) 20 ACH (24 h) 30 ACH (24 h) 60 ACH (24 h) 
December 4 ACH: 08:00-17:00 

0.5 ACH: 18:00-07:00

 

8 ACH: 08:00-17:00 
0.5 ACH: 18:00-07:00

 

12 ACH: 08:00-17:00 
0.5 ACH: 18:00-07:00

 

24 ACH: 08:00-17:00 
0.5 ACH: 18:00-07:00
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Figure 4.16 Percentage of Thermal Comfort in (a) Living Area and (b) Sleeping Area of a 
20% Window R. B. in Dhahran under Various Ventilation Strategies  
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Proper ventilation strategies are selected for 20% window single glazing building as 

listed in Table 4.8 (a) and (b) and Table 4.9 (a) and (b) for transition and winter months 

respectively. When double glazing is used, similar strategies can be used with little 

modifications as highlighted in the tables.   

The thermal comfort of envelope designs when no ventilation is applied varies from 27% 

for poorly insulated design (D#1) to 16% for super-insulated design (D#15) in both living 

and sleeping area. Applying proper ventilation strategies in living area, the thermal 

comfort increases to 40% for the poorly insulated design and to 41% for the super-

insulated design as shown in Figure 4.17 (a). It is noticed that all envelope design 

achieves similar thermal comfort level. However, the improvement in thermal comfort is 

significant with the insulated designs (above 100%) compared to the poorly insulated 

design (45%) when the combined ventilation strategy is applied.    

Figure 4.17 (b) shows the impacts of the combined ventilation strategy on the thermal 

comfort in sleeping area. It is clear that the thermal comfort in the sleeping area for 

super-insulated designs (D#9, D#13 and D#15) is higher than that in the living area. The 

thermal comfort improvement in the sleeping area ranges from 47% for the poorly 

insulated designs to 229% for the super-insulated designs. 
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Table 4.8 Actual Ventilation Strategies in Transition Months for a 20 % Window R.B. in Dhahran Based on ASHRAE Thermal 
Comfort Criteria for (a) Naturally Ventilated Buildings and (b) Mechanically Operated Buildings  

(a) 
                      Month 

 

Design Alternative 

March April May October November 

Design #1: W#1, R#1 
(Base Case) 
Design #4: W#1, R#7 
Design #6:W#2, R#5 
Design #7:W#3, R#1 
Design #9:W#3, R#7 

Design #10:W#4, R#1 

4.93 ACH 08:00-18:00, 
0.27 ACH 19:00-07:00     

  

Single Glazing: 
5.36 ACH 16:00-9:00 
Double Glazing: 
10.73 ACH 16:00-9:00, 
 0.23 ACH 10:00-15:00 

 

11.86 ACH 20:00-6:00, 
0.3 ACH 7:00-19:00     

8.48 ACH 20:00-6:00, 
0.18 ACH 7:00-19:00     

5.94 ACH 07:00-18:00, 
0.24 ACH 19:00-06:00     

Design #13:W#5, R#3 
Design #15:W#5, R#7 

4.93 ACH 08:00-18:00, 
0.27 ACH 19:00-07:00 

10.73 ACH 16:00-9:00, 
0.23 ACH 10:00-15:00 

11.86 ACH 20:00-6:00, 
0.3 ACH 7:00-19:00 

8.48 ACH 20:00-6:00, 
0.18 ACH 7:00-19:00 

5.94 ACH 07:00-18:00, 
0.24 ACH 19:00-06:00 

 

(b) 
                      Month 

 

Design Alternative 

March April May October November 

Design #1: W#1, R#1 
(Base Case) 
Design #4: W#1, R#7 
Design #6:W#2, R#5 
Design #7:W#3, R#1 
Design #9:W#3, R#7 
Design #10:W#4, R#1 
Design #13:W#5, R#3 
Design #15:W#5, R#7 

5 ACH 08:00-18:00, 
0.38 ACH 19:00-07:00     

10.73 ACH 16:00-9:00, 
 0.23 ACH 10:00-15:00     

0.27 ACH (24 h)      0.18 ACH (24 h)      
11.87 ACH 07:00-
18:00, 0.24 ACH 
19:00-06:00     
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Table 4.9 Actual Ventilation Strategies in Winter Months for a 20 % Window R.B. in 
Dhahran Based on ASHRAE Thermal Comfort Criteria for (a) Naturally Ventilated 
Buildings and (b) Mechanically Operated Buildings  

(a) 
                      Month 

 

Design Alternative 

December January February 

Design #1: W#1, R#1 
(Base Case)   

Design #4: W#1, R#7 

Single Glazing: 
2.46 ACH 08:00-17:00, 
0.25 ACH 18:00-07:00 
Double Glazing: 
0.25 ACH(24 h) 

0.27 ACH (24 h) 0.26 ACH (24 h) 

Design #6:W#2, R#5 
Design #7:W#3, R#1 
Design #9:W#3, R#7 

2.46 ACH 07:00-18:00, 
0.25 ACH 19:00-06:00   0.27 ACH (24 h) 

2.66 ACH 08:00-18:00, 
0.26 ACH 19:00-07:00  

Design #10:W#4, R#1     2.46 ACH 07:00-18:00, 
0.25 ACH 19:00-06:00    

Single Glazing: 
1.32 ACH 08:00-18:00, 
0.25 ACH 19:00-07:00 
Double Glazing: 
0.25 ACH(24 h) 

2.66 ACH 08:00-18:00, 
0.26 ACH 19:00-07:00    

Design #13:W#5, R#3 
Design #15:W#5, R#7 

2.46 ACH 07:00-18:00, 
0.25 ACH 19:00-06:00 

1.32 ACH 08:00-18:00, 
0.25 ACH 19:00-07:00 

2.66 ACH 08:00-18:00, 
0.26 ACH 19:00-07:00 

 

(b) 
                      Month 

 

Design Alternative 

December January February 

Design #1: W#1, R#1 
(Base Case)   

Design #4: W#1, R#7 

Single Glazing: 
2.46 ACH 07:00-18:00, 
0.25 ACH 19:00-06:00 
Double Glazing: 
0.25 ACH (24h) 

0.27 ACH (24 h) Single Glazing: 
2.66 ACH 08:00-18:00, 
0.26 ACH 19:00-07:00 
Double Glazing: 
0.25 ACH (24h) 

Design #6:W#2, R#5 
Design #7:W#3, R#1 
Design #9:W#3, R#7 
Design #10:W#4, R#1 

2.46 ACH 07:00-18:00, 
0.25 ACH 19:00-06:00   

0.27 ACH (24 h) 
2.66 ACH 08:00-18:00, 
0.26 ACH 19:00-07:00   

Design #13:W#5, R#3 
Design #15:W#5, R#7 

2.46 ACH 07:00-18:00, 
0.25 ACH 19:00-06:00 

1.32 ACH 08:00-18:00, 
0.25 ACH 19:00-07:00 

2.66 ACH 08:00-18:00, 
0.26 ACH 19:00-07:00 
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Figure 4.17 Impacts of Combined Ventilation Strategies on Thermal Comfort for Envelope 
Designs in the (a) Living Area and (b) Sleeping Area in a 20 % Windows R. B in Dhahran     
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4.4 Impact of Passive Envelope Designs on Thermal Performance of the Base-

Case Residential Building  

VisualDOE is used to simulate the base case scenario (20% of windows) of a typical 

residential building in Dhahran without utilizing the mechanical air conditioning systems. 

The thermal performance of the typical residential building is shown in Figure 4.18. It is 

interesting to note that the poorly insulated designs D#1, D#4 are performing better in 

terms of thermal comfort than the super-insulated designs D#13 and D#15 when no 

ventilation is applied. The big difference in temperature between the indoor and outdoor 

temperature promotes the reverse heat exchange; from indoor to outdoor which 

subsequently makes the poorly insulated designs perform better in transition and winter 

months when no ventilation is applied. On contrary, the thermal characteristics of 

insulated designs don t allow the heat losses to the outside cooled environment. As a 

result, the indoor air temperature in the insulated buildings tends to be above the thermal 

comfort zones and consequently creates the thermal discomfort. 
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Figure 4.18 Thermal Performance of a Typical Unconditioned Residential Building in 
Dhahran without Ventilation   

This phenomenon occurs in winter and transition months; January, February, March, 

April, October, November and December as shown in Figure 4.19 (a) and (b) for 

February and November. In winter, the non-insulated designs performed better than the 

insulated designs. The figures show that there is a risk of overheating at 12:00 for the 

insulated designs while the non-insulated designs achieve thermal comfort throughout the 

day. This is true for other winter months: December and January. In transition months, 

there is a risk of overheating for all designs but it happens early in the case of insulated 

designs. This explains the reason behind the better performance of poorly insulated 

designs compared to insulated designs when no ventilation is applied.   
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Figure 4.19 Monthly Average Hourly Indoor Air Temperatures for the base case 
Residential Building in Dhahran in (a) February and (b) November  
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4.5 Impact of Window to Wall Ratio (WWR) On Thermal Performance of 

Envelope Designs  

The thermal performance of building envelopes can be greatly affected by the amount of 

solar radiation that is introduced through the fenestration system.  The generated heat 

within the indoor environment increases with the admitted solar radiation which is greatly 

dependent on the percentage of glazing area in the exterior building envelope. Different 

window to wall ratio (WWR) are evaluated; 0.20 (base case), 0.10 and window-less (0.0). 

Figure 4.20 shows the effect of reducing the WWR on the improvement of the thermal 

comfort of the occupants.  

Generally, the reduction of window to wall ratio has a positive impact on the thermal 

performance of the building. The thermal environment of the super-insulated and 

standard insulated designs has improved more than the non-insulated designs. Figure 

4.21 shows the improvement of thermal comfort due to the variation of WWR for every 

design alternative compared to the base case (0.2 WWR). At a ratio of 0.1 WWR, the 

thermal comfort improvements for the standard and super-insulted designs are from 28% 

to 38% compared to the base case scenario (0.2 WWR).  On the other hand, the 

improvement for the windowless (0 WWR) building varies greatly from 38% for D#6 to 

86% for D#15. The non-insulated designs don t have more than 15% improvement and 

no major improvement is observed when compared to the insulated designs.  
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Figure 4.20 Thermal Performance of Non Ventilated R.B. in Dhahran under Different 
WWR   
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Figure 4.21 Improvement of the Thermal Performance of Non-Ventilated R.B. in 
Dhahran under Different WWR    
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4.6 Impact of Glazing Types on Thermal Performance of Envelope Designs  

Glazing type plays an important role in the dynamic behavior of indoor thermal 

environment and subsequently, the thermal comfort. The recent development in 

fenestration system and windows technology has helped to improve the thermal 

performance of buildings. The thermal performance of windows depends largely on its 

U-value which represents the heat loss coefficient. The lower the U-value of a window, 

the better is its thermal performance. This coefficient can be improved by many methods 

including increasing the number of glazing layers, using specific coatings to control solar 

radiation and filling the spaces between the two layers with low thermal conductive gases 

such as argon or krypton. If all these measures are combined, the U-value can be reduced 

from 5.9 W/m2.K for a single glazing to 1 W/m2.K for a coated Double glazing with a gas 

fill. For a comparison purpose, the U-value of a concrete masonry unit (CMU) wall 

system is 2.98 W/m2.K.  

The objective of this part is to assess the effects of two common glazing types: single and 

double glazing on the thermal performance of residential building with different WWR 

(0.2, 0.1 and window-less) in Dhahran under unconditioned mode. The glazing types 

were concluded from the conducted survey and their thermal and physical characteristics 

are listed in Table 4.10.    
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Table 4.10 Thermal and Physical Characteristics of Typical Glazing Types used in 
Saudi Arabia 
Description Code

 
# of glazing Frame 

Type 
U-Factor 
(W/m2.K) 

SC SHGC Visible 
Transmittance 

(VT) 
Single Clear 6 mm SG 1 Al. 6.172 0.95 0.82 0.88 
Double Green 
Glazing 3/12/3 mm 

DG 2 Al. 2.788 0.71 0.613 0.743 

   

Figure 4.22 and Figure 4.23 show the thermal performance of the residential building at 

0.2 WWR (base case) and at 0.1 WWR in Dhahran with the two glazing types: single and 

double, compared with non-glazed building. The thermal comfort for all building 

envelope designs has improved when double glazing is used at 0.2 WWR and 0.1 WWR 

as shown in Figure 4.24. The improvement in thermal comfort for all envelope designs 

for 0.2 WWR follows a similar trend but with more improvement in poorly insulated 

designs (D#1 & D#4) and standard envelope designs (D#6, D#7, D#9 and D#10). On 

contrary, the thermal comfort of super-insulated designs (D#13 and D#15) at 0.1 WWR 

has increased by more than 7-8% compared to only 4-6% at 0.2 WWR.  Therefore, the 

double glazing was found more effective in improving the thermal comfort for super 

insulated design with low window wall ratio and more effective for poorly insulated 

deigns with high window wall ratio.   
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Figure 4.22 Thermal Performance of the Base Case R.B. in Dhahran for 
Two Glazing Types and Window-less  

Figure 4.23 Thermal Performance of 0.1 WWR Residential 
Building in Dhahran for Two Glazing Types and Window-less  
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Figure 4.24 Thermal Comfort Improvements of Residential Building in Dhahran at 0.2 WWR (Base Case) and 0.1 WWR due to Double 
Glazing 
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CHAPTER FIVE 

IMPACT OF ENVELOPE THERMAL DESIGN ON 

ENERGY PERFORMANCE OF RESIDENTIAL 

BUILDINGS   

5.1 Introduction   

Energy simulation programs have been successfully utilized to develop energy codes in 

many countries such as USA, Canada, UK and Australia. These programs have been used 

to evaluate the energy and thermal performance of different design alternatives. 

Subsequently, design guidelines have been incorporated in to energy standards and codes. 

The guidelines for energy simulation have also been developed to help engineers and 

architects to properly understand the energy and thermal performance of buildings for 

code compliance as well as for new technology implementation. In Saudi Arabia and 

particularly in Dhahran, energy simulation programs have been used to simulate energy 

and economic performance of building envelopes in single family houses. Many of these 

studies were done few years back. Since then, many practices are introduced into the 

design of residential buildings. In Riyadh, some approved mathematical models have 

been used to evaluate the thermal performance of individual components of building 

systems such as roof or walls. In Riyadh, no study was found to simulate the energy 

performance of residential building in an integral format with all building systems. In the



185   

following sections, energy performance of different envelope designs and the impact of 

their thermal characteristics are evaluated.   

5.2 Energy Simulation of the Base Case Residential Building   

The characteristics of the typical residential building in Dhahran and Riyadh have been 

identified in Chapter three of this research. In order to investigate the impact of envelope 

designs on energy consumption, the developed residential building was modeled and 

simulated using VisualDOE 4.1 energy simulation program. The simulation was 

performed using weather data file for the year 2002 for Dhahran and typical metrological 

year (TMY) from 1983 to 1999 for Riyadh which was developed for this study. The 

initial base case model was developed based on the conducted survey for the two cities 

and considering the following assumptions:  

1. The living area and sleeping area were assumed to be two separate zones and served 

by two different air conditioning systems.  

2. The air-conditioning system is continuously operating for 24 hrs a day for a constant 

thermal comfort. 

3. The building was assumed to be an air tight with a constant infiltration rate of 0.5 

ACH as interpreted from the survey. 

4. The thermostat setting was assumed to be fixed at 25 ºC for cooling and 21 ºC for 

heating throughout the year. 
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5.2.1 Simulation Results of Base Case Residential Building Model   

The annual energy consumption of the base case residential building model for Dhahran 

and Riyadh is presented in Table 5.1.  The table shows that the residential buildings in 

Dhahran consume 16% more energy than those in Riyadh. In terms of energy intensity, 

the energy index for residential building in Dhahran and Riyadh is 196 and 169 

kWh/m2/year respectively. For comparison purposes, studies in Dhahran show that the 

average energy intensity for poorly insulated residential buildings is 263 kWh/m2/year 

and for properly insulated buildings is 153 kWh/m2/year (Ahmed, 2004). The values 

obtained for the base case lies between these two figures. However, many different 

assumptions were found between this research and the literature. The thermostatic 

settings for the literature studies are 22 ºC for heating and 24 ºC for cooling compared to 

21 ºC and 25 ºC for heating and cooling respectively for this study. The window to wall 

ratio used in literature is 13% compared to 20% used as a base case in this study. The 

weather data used for the literature studies is for year 93 and the roof system selected is 

150 mm Normal Concrete Slab compared to weather data of 2002 and 200 mm Hourdi 

Slab with 100 mm lightweight concrete for this research study. Therefore, it is concluded 

that the no further calibration is needed since wide variations in building and weather 

characteristics are found.    
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Table 5.1 Annual Energy Consumption of the Base Case Residential Building in 
Dhahran and Riyadh 
Energy Use (kWh) Dhahran-Base Case D#1 Riyadh-Base Case D#1 
Lights 13,365 13,365 
Equip. 6,609 6,609 
Heating 3,459 1,123 
Cooling 58,062 49,018 
Fans 18,724 13,449 
Hot Water 17,531 17,886 
Total 117,750 101,450 

  

The monthly energy consumption for the typical residential building is shown in Figure 

5.1. The figure shows the diversity of the energy consumption in different months. It is 

clear that for the many months in the year the energy consumption for the residential 

buildings in Dhahran is more than those in Riyadh.    
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Figure 5.1 Monthly Energy Consumption of Base Case Residential Building in Dhahran 
and Riyadh  
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5.3 Impact of  Envelope Designs on Energy Performance of Residential Building   

The energy consumption of residential buildings can be reduced with proper selection of 

envelope designs. Since the residential buildings are envelope-load dominated buildings, 

they are significantly influenced by the climate characteristics. In this section, the energy 

performance of the typical residential building in Dhahran and Riyadh is evaluated under 

various envelope designs. Table 5.2 and Table 5.3 list the wall and roof designs that 

cover a wide range of thermal characteristics. The base case residential building 

(Design#1) in Dhahran and Riyadh is a combination of W#1 and R#1.   

Table 5.2 Wall Designs for Energy Simulation in Residential Buildings 
Wall 
No. 

Wall Description  U-Value 
(W/m2.°C) 

R-Value 
(m2.°C/W) 

Heat Capacity 
(KJ/m2.°C) 

RSI 

Dhahran: Single 200 mm Hollow 
CMU Wall+ No insulation+ 15 
mm Stucco finishes on both sides  

2.98   0.34   379.97   2   W#1

    

Riyadh: CMU with insulation 
material insert 

1.63  0.61  379.97  3.59  

W#2

  

Single 245 mm Siporex Wall+ No 
insulation+ 15 mm Stucco finishes 
on both sides 

1.2  0.83  176.93  5  

W#3

  

50 mm Precast Concrete Panel on 
both sides+ 50 mm Polyurethane + 
+ 15 mm Stucco on both sides 

0.41  2.44  237.78  14  

W#4

  

Cavity Hollow CMU Block 
Wall+50 mm Air Space+ 100 mm 
Polyurethane (ext)+15 mm Stucco 
finishes on both sides 

0.2  5.00  442.18  28  

W#5

  

75 mm Polyurethane on both 
sides+ 50 mm Precast Concrete + 
15 mm Stucco finishes on both 
sides 

0.15  6.67  148.58  38  
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Table 5.3 Roof Designs for Energy Simulation in Residential Buildings 
Roof 
No. 

Roof Description  U-Value 
(W/m2.°C) 

R-Value 
(m2.°C/W) 

Heat Capacity 
(KJ/m2.°C) 

RSI 

R#1     15 mm Cement plaster+200mm 
CMU Hourdi Slab+100mm Foam 
Conc.+4mm water proof 
membrane+25 mm Sand Fill+ 50mm 
Mortar +Terrazzo 

0.59     1.69     629.83     10     

R#3      15 mm Cement plaster+50mm Ext 
Polystyrene+200mm Clay Brick 
Hourdi+100mm Plain Concrete+ 
4mm water proof membrane+ 25mm 
Sand+ 50mm Mortar+ Tiles 

0.39    2.56    567.13    15    

R#5      15 mm Cement plaster+200 mm 
Siporex Hourdi + 100 mm Foam 
Concrete+50mm Exp Polystyrene + 
4mm water proof membrane +25mm 
Sand+ 50 mm Mortar+ Tiles  

0.23    4.35   337.03   25    

R#7      15 mm Cement plaster+200mm 
CMU Hourdi Slab+100 mm Foam 
Concrete+ 100 mm Polyurethane 
+4mm water proof membrane+ 
25mm Sand+ 50mm Mortar+ Tiles 

0.17    5.88    637.91    35    

 

5.3.1 Impact of Wall Designs on Energy Performance of Residential Building   

The base case scenario of the residential building has been modeled using VisualDOE 4.1 

to evaluate the energy consumption. Table 5.1 lists the energy consumption of the base 

case for both Dhahran and Riyadh. The energy consumption for the base case is 

evaluated under various wall designs.  Figure 5.2 (a) and (b) show the impact of wall 

designs on energy consumption of Residential Building in Dhahran and Riyadh 

respectively.  
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Figure 5.2 Energy Consumption of Base Case Residential Building in (a) Dhahran, (b) 
Riyadh under Various Wall Designs 
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Figure 5.2 (a) and (b) show that when the thermal resistance of the walls increases the 

energy consumption decreases. In Dhahran, increasing the thermal resistance of the base 

case wall (W#1) by 2.4 (W#2), 7.2 (W#3), 14.7 (W#4) and 19.6 times (W#5) decreases 

the energy consumption by 9%, 14%, 16% and 14% respectively as shown in Figure 5.3 

(a). Similarly in Riyadh, increasing the thermal resistance of the base wall by 1.4 (W#2), 

4 (W#3), 8 (W#4) and 11 times (W#5) decreases the energy consumption by 2%, 7%, 8% 

and 7%. The fact that the base wall design in Riyadh has a higher thermal resistance than 

that for Dhahran makes the reduction in energy consumption more in Dhahran.  Although 

the thermal resistance of W#5 (6.67 m2.°C/W) is higher than W#4 (5 m2.°C/W) by more 

than 25%, it is interesting to note that the energy consumption increases by 0.7% in 

Dhahran and 1.1% in Riyadh. The impact of W#5 on energy consumption can be related 

to the effect of heat capacity. The heat capacity (thermal mass) of W#5 is 3 times less 

than the W#4. Therefore, the light thermal mass in the wall design has a slight negative 

impact on the heat energy consumption when compared to a similar resistance wall.    
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Figure 5.3 Impact of Wall Designs on Energy Consumption of Base Case Residential 
Building in (a) Dhahran and (b) Riyadh  
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5.3.2 Impact of Roof Designs on Energy Performance of Residential Building   

The energy consumption for the base case is evaluated under various roof designs at fixed 

wall design.  For this building, the sleeping zone is influenced by the roof deigns. Hence, 

the impact of the different roof designs is not significant when taking into account the 

thermal characteristics of the base case roof design (R#1). Figure 5.4 (a) and (b) show 

the impact of roof designs on energy consumption of Residential Building in Dhahran 

and Riyadh respectively. In Dhahran, Figure 5.4 (a) shows that when the thermal 

resistance of the roofs increases, the energy consumption decreases.  

Increasing the thermal resistance of the roof by 1.5 times as in (R#3), 2.6 times as in 

(R#5) and 3.5 times (R#7) decreases the energy consumption by 0.1%, 0.9% and 1.2% 

respectively in Dhahran as shown in Figure 5.5 (a). It is also clear that when R#3 and 

R#5 are used, the heating energy has increased by 8% and 1% respectively. For R#3, the 

interior side of the slab is covered with insulation material which doesn t store the indoor 

generated heat for the heating purposes. Similarly for R#5, the thermal mass has 

decreased by more than 50% and therefore the potential to store some generated heat is 

reduced. For heating purposes in continuous operating buildings, low thermal mass 

material should be avoided. Additionally, the thermal insulation should be placed to the 

exterior of the heavy thermal mass material.   
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Figure 5.4 Energy Consumption of Base Case Residential Building in (a) Dhahran and (b) 
Riyadh under Various Roof Designs 
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Figure 5.5 Impact of Roof Designs on Energy Consumption of Base Case Residential 
Building in (a) Dhahran and (b) Riyadh 
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In Riyadh, Figure 5.4 (b) shows that when the thermal resistance of the roofs increases, 

the energy consumption decreases. However, the energy consumption increases when 

R#3 is used. For this particular roof design, the thermal insulation is on interior side of 

the thermal mass. Hence and similar to Dhahran, an increase of 18% in heating energy 

consumption is observed when the insulation is placed on interior side of the main roof 

material as shown in Figure 5.5 (b). The low roof thermal mass is not a concern when 

the thermal resistance and thermal mass for the wall is equate which consequently 

reduces the heat loss to outdoor as can be seen when R#5 is used with W#1. Since the 

thermal resistance of the base case wall in Riyadh is higher than that of Dhahran, this 

observation is supported.   

5.3.3 Impact of Combination of Wall and Roof Designs on Energy 

Performance of Residential Building   

In chapter three, eight envelope designs were proposed for further analysis as presented 

in Table 3.13. These designs are selected to represent a wide range of thermal 

characteristics of common wall and roof designs used in Saudi Arabia. In this section, the 

envelope designs are evaluated to analyze the combined effect of wall and roof designs 

on energy consumption. Figure 5.6 (a) and (b) show the impact of the wall and roof 

designs on the annual heating, cooling and total energy.   
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In Dhahran, the reduction in energy consumption ranges from 1.2% for D#4 to 15.9% for 

D#15 as shown in Figure 5.6 (a) whereas in Riyadh the reduction in energy consumption 

ranges from 0.5% for D#4 to 7.8% for D#10 as shown in Figure 5.6 (b). While all 

envelope designs reduces both the heating and cooling energy in Dhahran, some designs 

perform better in reducing the heating energy and others are better in reducing the 

cooling energy. The best designs in Dhahran are those that effectively reduce the heating 

and cooling energy and subsequently the total heat energy are Design#9 (Wall#3, 

Roof#7), Design#10 (Wall#4, Roof#1), and Design#15 (Wall#5, Roof#7). In Riyadh, the 

best envelope designs are Design#10 (Wall#4, Roof#1), Design#15 (Wall#5, Roof#7), 

Design#7 (Wall#3, Roof#1) and Design#9 (Wall#3, Roof#7). In Riyadh, the effect of 

both the low thermal mass in W#5 and interior thermal insulation in R#3 on increasing 

the heating energy (20%) is clear as shown in Figure 5.6 (b).   

It is interesting to note that although roof#1 is poorly insulated but performed very well 

when combined with insulated designs. It is worth considering that all roofs are 

considered with light color.  This good performance can be related to the high thermal 

mass which helps in reducing heating energy in winter and its light color which helps in 

reducing the cooling energy in summer and transition months.     
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Figure 5.6 Impact of Envelope Designs on Energy Consumption of Base Case Residential 
Building in (a) Dhahran and (b) Riyadh 
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5.4 Impact of Fenestration System on Energy Performance of Residential 

Building   

Glazed windows are becoming an important component of contemporary architecture. 

They allow natural light, offer a visual communication with outdoors, reduce a structural 

load and enhance aesthetic appearance of buildings. With many benefits that the glazed 

windows do offer to the occupants and the designers, they are not free of introducing 

problems if they are not properly selected. Poor thermal performance that leads to high 

energy cost and specific optical properties that deteriorate the color rendering are two 

issues that have to be considered during the design and selection process of window s 

system.  

In harsh climates, window is the weakest component of the building envelope if no 

special treatment is done. A thermally insulated opaque building envelope might be under 

performed if the window s system has poor thermal characteristics. Traditionally, the 

thermal performance of the window s system is improved by either using exterior or 

interior shadings or both. However, this solution might not be acceptable to some 

architects and occupants. Recent development in window s technology has offered many 

choices that are appropriate to specific application and various climates. Many driving 

factors have influenced the substantial improvements in the thermal performance of 

building fenestration system including the energy efficiency, decreased heating and 

cooling power demand and improving the occupant comfort. Many parameters in 
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fenestration system are important when energy performance is evaluated. However, two 

parameters; window to wall ratio and types of glazing are evaluated for energy 

performance for this study.   

5.4.1 Impact of WWR on Energy Consumption  

Based on the survey conducted in this research, window to wall ratio (WWR) ranges 

from 0.1-0.3 and the average is 0.2 in residential buildings in Saudi Arabia. The trend in 

using high windows area in the design practices of residential buildings in Saudi Arabia 

makes it important to evaluate the impact on the energy consumption. Figure 5.7 (a) 

shows the effect of window-wall ratio on energy consumption of the base case residential 

building in Dhahran. It is clear that the energy consumption increases with the increases 

in WWR. For insulated designs, energy consumption rises steadily with WWR (15% 

increase in energy consumption with every 0.1 WWR) while it rises smoothly with 

poorly insulated designs (10% increase in energy consumption with every 0.1 WWR). At 

higher WWR (>0.30), all envelope designs converge to a similar value regardless of the 

thermal characteristics of envelope designs. Figure 5.7 (b) shows the impact of WWR 

when high performance windows are used. For this case, a Double Tint Low-e4 Argon 

6/12/6 mm (e2=0.04) (Table 5.4) is used with different envelope designs and at various 

WWR. The figure shows that for poorly insulated designs, the effect of WWR on energy 

consumption is minimal (on average 2% increase in energy consumption with every 0.1 

WWR). When WWR increases for poorly insulated designs, the increase in energy cons- 
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Figure 5.7 Impact of WWR on Energy Consumption of (a) Single Glazed and (b) High 
Performance Glazed Base Case Residential Building in Dhahran  
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umption is not significant. Similarly for insulated designs, it is observed that the energy 

consumption smoothly increases with the increases in WWR (on average 7% increase in 

energy consumption with every 0.1 WWR).   

Figure 5.8 (a) shows the effect of window-wall ratio on energy consumption of the base 

case residential building in Riyadh. It is clear that the energy consumption increases with 

the increases in WWR. The base case of envelope design in Riyadh has high thermal 

characteristics when compared to the base case of Dhahran. Therefore, the base case of 

Riyadh is likely to behave similar to the insulated designs. This is clear form Figure 5.8 

(a) where the energy consumption for all envelope designs rises steadily with WWR (12-

15% increase in energy consumption with every 0.1 WWR). At higher WWR (>0.30), all 

envelope designs converge to a similar value regardless of the thermal characteristics of 

envelope designs. Figure 5.8 (b) shows the impact of WWR when high performance 

windows are used. For this case, a Double Tint Low-e4 Argon 6/12/6 mm (e2=0.04) 

(Table 5.4) is also used with different envelope designs and at various WWR. For 

Riyadh, the figure shows that for poorly insulated designs, the effect of WWR on energy 

consumption is minimal (on average 3-4% increase in energy consumption with every 0.1 

WWR). Similarly for insulated designs, it is observed that the energy consumption 

smoothly increases with the increases in WWR (on average 7% increase in energy 

consumption with every 0.1 WWR).    
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Figure 5.8 Impact of WWR on Energy Consumption of (a) Single Glazed and (b) High 
Performance Glazed Base Case Residential Building in Riyadh  
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5.4.2 Impact of Glazing Types on Energy Consumption  

The energy consumption can be greatly reduced with well designed and energy efficient 

windows. While many glazing types are available in market today, four glazing types are 

evaluated to assess the impact of their thermal characteristics on energy consumption. 

The thermal and physical properties are presented in Table 5.4.   

Table 5.4 Thermal and Physical Characteristics of Evaluated Glazing Types  
Description Code # of 

glazing 
Frame 
Type 

U-Factor 
(W/m2.K) 

SC SHGC VT 

Single Clear 6 mm  1 Al. 6.172 0.95 0.82 0.88 
DG 3/12/3 mm DG 2 Al. 2.788 0.71 0.613 0.743 
HiPDG Tint Low-e4 
Argon 6/12/6 mm 
(e2=0.04) 

HiPDG 2 Al. 1.317 0.32 0.278 0.407 

HiPTG-1 Clear 2Low-e1 
Argon 3/12/3/12/3 mm 
(e2=e5=0.1)  

HiPTG 3 Al. 0.772 0.55 0.471 0.656 

HiPTG-2 Tint HM33 
6/12/0/12/6 mm 

HiPTG2 3 Al. 1.198 0.17 0.149 0.168 

Notes: 
DG: Double Green Glazing HiPDG : High Performance Double Glazing SC: Shading Coefficient 
VT: Visible Transmittance HiPTG : High Performance Triple Glazing SHGC: Solar Heat Gain 

Coefficient  

Figure 5.9 (a) shows the percentage reduction of heating, cooling and total energy 

consumption when various glazing types are applied to the base case in Dhahran.  As the 

thermal resistance of the glazing increases, the total energy consumption decreases. 

However, the cooling and heating energy has to be balanced by the proper selection of 

thermal resistance and solar heat gain coefficient. The triple glazing-1 has a thermal 

resistance more than that of the double glazing but it admits more solar radiation to the 

space (high SHGC). As a result, triple glazing-1 performs better in terms of its heating 
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energy with poorly insulated design (Base Case) in winter due to the utilization of solar 

radiation for heating purposes. Although the thermal characteristics (R value) of triple 

glazing-1 is 50% more than that of double glazing, the improvement in cooling energy is 

less than that of double glazing. When the thermal resistance of triple glazing is reduced 

(case: HiPTG-2) to the level of Double glazing and solar heat gain coefficient (low 

SHGC) of the triple glazing is also reduced, the heating energy increases with a 

significant reduction in cooling energy. While the previous discussion considers the 

poorly insulated designs (Base case:D#1), Figure 5.9 (b) shows the impact of the glazing 

types on the energy consumption of the high insulated design (D#15). It is clear that the 

reduction in energy consumption of insulated design is more than that of the poorly 

insulated designs. Therefore, the high performance glazing is more efficient with 

insulated designs than the poorly insulated design. Similar to the base case, the 

domination of solar characteristics of glazing on the energy consumption is observed with 

the insulated designs.  

Figure 5.10 shows the percentage reduction of heating, cooling and total energy 

consumption when various glazing types are applied to the base case in Riyadh.  As the 

thermal resistance of the glazing increases, the total energy consumption decreases. 

Similar to Dhahran, with proper selection of thermal (R-Value) and solar characteristics 

(SHGC), the cooling and heating energy are balanced for maximum reduction in total 

energy consumption.  
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Figure 5.9 Impact of Glazing Types on Energy Consumption of (a) Base Case (D#1) and 
(b) Insulated Design (D#15) Residential Building in Dhahran   
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Figure 5.10 Impact of Glazing Types on Energy Consumption of Base Case Residential 
Building in Riyadh  

Form the previous discussion, it is concluded that the solar characteristics (SHGC) are 

more dominant than the thermal characteristics (R-value) of glazing for both poorly and 

high insulated designs. To achieve maximum reduction in total energy consumption, it is 

imperative to use high performance glazing that has low solar heat gain coefficient (low 

SHGC) and high thermal resistance (high R-value) even if it increases the heating energy. 

Since the winter season in Saudi Arabia is normally short and mild and the transition and 

summer season is long and harsh with high solar radiation, the heating energy is not a 

major component of total energy consumption. It is important therefore to control the 

solar radiation during the transition and summer months. Dynamic solar control is an 
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optimum strategy in Saudi Arabia climate where the solar radiation is admitted in winter 

but rejected in summer and transition months.    

5.5 Impact of Building Orientation on Energy Performance of Residential 

Building   

Many town planners ignore the effect of orientation on the energy consumption of 

buildings. The effect of building layout on energy consumption can be easily identified 

during the town planning activity. However, building plots are normally planned based 

on the streets layout. Energy studies have investigated the impact of orientation on the 

energy consumption of buildings. The severity of building orientation mainly depend on 

the windows area, type of glazing, solar shading in specific orientation and the wall 

design and its exposed area. In this study, the base case scenario is based on the 

assumption that the building entrance is to the north. In this section, the east-west 

orientation is addressed.   

Figure 5.11 (a) shows the percentage increases of heating, cooling and total energy 

consumption when east-west orientation is considered in Dhahran. It is clear from the 

figure that the heating, cooling and therefore the total energy consumption increases by 

1.8%. Similarly for Riyadh as shown in Figure 5.11 (b), the heating, cooling and 

therefore the total energy consumption increases by 2.2%.  It is concluded that for Saudi 

Arabia, the best orientation is the north-south.  
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Figure 5.11 Impact of Orientation on Energy Consumption of Base Case Residential 
Building in (a) Dhahran and (b) Riyadh    

5.6 Impact of Air Infiltration on Energy Performance of Residential Building   

Infiltration can be defined as an uncontrolled flow of outdoor air into a building through 

weak points in  buildings such as cracks in walls, floors, and ceilings, and around 

windows and doors and other unintentional openings and through the normal use of 

exterior doors for entrance and egress. While the infiltration is an important parameter 

that directly influences the thermal comfort and energy use, it has received little attention 
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in hot climates. The level of building airtightness depend on many parameters such as 

extreme weather conditions, poor workmanship, and building age, its operation strategies, 

and occupants activity patterns. All these parameters influence the magnitude of air 

leakage. It has been identified in this research s literature that the buildings can be 

categorized as low leaky buildings, normal leaky, high leaky and extremely leakage 

buildings when their ACH is 0.5, 1, 2, and 3 ACH respectively.  This section evaluates 

the impact of air infiltration (0.35, 1, 2, 3 ACH) of poorly insulated design (the base case) 

and the insulated design (D#15) residential building in Dhahran and Riyadh.   

Figure 5.12 (a) and (b) show the increases of heating, cooling and total energy 

consumption in poorly insulated (base case) and insulated design (D#15) residential 

building under different air infiltration. As the air infiltration increases the energy 

consumption increases. It is clear also that there are steadily increases in heating energy, 

cooling and total energy consumption. For every increases of 1 ACH there is an increase 

of more than 100%, 20% and 15% of heating, cooling and total energy consumption for 

the poorly insulated designs in Dhahran. For well insulated design (D#15), for every 1 

ACH increases in air infiltration there is an increase of more than 300%, 20% and 19% of 

heating, cooling and total energy consumption for the well insulated designs in Dhahran. 

It is clear that all envelope designs either poorly or well insulated designs) are very 

sensitive to air infiltration. For leaky buildings (3ACH) in Dhahran, the total energy 

consumption increases by 41% for poorly insulated designs whereas increases by 44% for 

the well insulated designs. The heating energy is more sensitive to air infiltration 
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especially for the well insulated designs. When the air infiltration is reduced in poorly 

insulated design (base case) to 0.35 ACH the heating, cooling and total energy 

consumption is reduced by 14%, 3% and 2% respectively. Similarly for insulated 

designs, when air infiltration is reduced the heating, cooling and total energy 

consumption reduced by 30%, 4% and 2% respectively. Therefore, reducing the air 

infiltration below the 0.5 ACH will significantly reduce the heating energy.   

Figure 5.13 (a) and (b) show the increases of heating, cooling and total energy 

consumption in poorly insulated (base case) and insulated design (D#15) residential 

building under different air infiltration in Riyadh.  As the air infiltration increases the 

energy consumption increases. It is clear also that there are steadily increases in heating 

energy, cooling and total energy consumption. In Riyadh, for every increases of 1 ACH 

there is an increase of more than 200%, 10% and 10% of heating, cooling and total 

energy consumption for the poorly insulated designs. Similarly for well insulated design 

(D#15) in Riyadh, for every 1 ACH increases in air infiltration there is an increase of 

more than 300%, 10% and 10% of heating, cooling and total energy consumption for the 

well insulated designs. It is clear that all envelope designs either poorly or well insulated 

designs are very sensitive to air infiltration. For leaky buildings (3ACH) in Riyadh, the 

total energy consumption increases by 21% for both poorly insulated designs and well 

insulated designs (D#15). The heating energy is more sensitive to air infiltration 

especially for the well insulated designs. 
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Figure 5.12 Impact of Air Infiltration on Energy Consumption of (a) Base Case (D#1) 
and (b) Insulated Design (D#15) Residential Building in Dhahran   
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When the air infiltration is reduced in poorly insulated design (base case) to 0.35 ACH 

the heating, cooling and total energy consumption is reduced by 18%, 2% and 1% 

respectively. Similarly for insulated designs, when air infiltration is reduced the heating, 

cooling and total energy consumption is reduced by 17%, 2% and 1% respectively. 

Therefore, reducing the air infiltration below the 0.5 ACH will significantly reduce the 

heating energy.   

5.7 Combined Effect of Envelope Design Parameters on Energy Consumption of 

Residential Building   

The impact of individual design alternatives on heating, cooling and total energy 

consumption has been investigated. This section evaluates the combined effect of the 

envelope designs and passive strategies on the energy consumption and is compared to 

the recommended envelope design requirements from the international energy 

conservation code and the Gulf Countries Cooperative Council (GCCC) thermal 

insulation requirement. The requirements from standards are listed in Table 3.14.  

Sensitivity analysis has indicated that the WWR has a minor impact on energy 

consumption when high performance glazing is used. Therefore, WWR of 0.2 is 

unchanged as in the base case. Air infiltration is reduced to 0.35 ACH for residential 

buildings. A high performance glazing with low solar gain coefficient and the eight 

envelope designs are used for comparison purposes as shown in Table 5.5.  
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Figure 5.13 Impact of Air Infiltration on Energy Consumption of (a) Base Case (D#1) 
and (b) Insulated Design (D#15) Residential Building in Riyadh   
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Table 5.5 Proposed and Benchmark Envelope Design Alternatives for Residential Buildings in Saudi Arabia  
Combined Design 

Alternative 

Dhahran & Riyadh Envelope Design (GCC Standard, 

1984) 

Envelope Design (IECC, 2000) 

Wall Design Single 200 mm Hollow CMU 
Wall+ 50 mm Rock Wall+ 15 mm 
Stucco finishes on both sides 
 (R Value= 1.43 m2.K/W)   

Single 200 mm Hollow CMU Wall+ 50 mm 
Rock Wall+ 15 mm Stucco finishes on both 
sides  
(R Value= 1.96 m2.K/W)   

Roof Design 

8 Envelope Designs 

(Combined Wall and 

Roof Designs) 

200 Reinforced Concrete-50 mm 
Concrete screeding +50 mm Fiber 
Glass insulation   

(R Value=2.041 m2.K/W) 

15 mm Cement plaster+200 mm CMU 
Hourdi Slab + 100 mm Foam Concrete+ 100 
mm Polyurethane +4 mm water membrane+ 
25mm Sand+ 50 mm Mortar+ Tiles 
 (R Value= 5.88 m2.K/W) 

Glazing HiPDG Tint Low-e4 
Argon 6/12/6 mm 
(e2=0.04),  (low 
SHGC) 

Single Clear 6 mm Glazing (Base 
Case)*    

Double Bronze IG 3/6/3 mm (U-Value=  
3.321 W/ m2.C )  

Note: Max. U-Value is 4.55 W/ m2.C  as per 
IECC 

WWR 0.2 0.2* 0.2* 

Air Infiltration 0.35 ACH  Base Case (0.5 ACH)* Base Case (0.5 ACH)* 

Notes: * No requirement as per standard 
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Table 5.6 shows the impact of envelope designs, high performance glazing, and reduced 

air infiltration on the reduction of heating, cooling and total energy consumption in 

Dhahran. The table shows that reducing the air infiltration to 0.35 ACH and using a high 

performance glazing can reduce the total energy consumption by 15% for poorly 

insulated design. For well insulated envelope design such as Design#15, the heating, 

cooling and total energy consumption is reduced by 91%, 53% and 38% respectively. 

The table also shows the energy intensity of the base case residential building and the 

evaluated 8 envelope designs. The energy intensity of the base case residential building is 

196 kWh/m2/year and for well insulated designs is 123 kWh/m2/year compared to 263 

kWh/m2/year for a typical non-insulated and well insulated residential housing in 

Dhahran (Ahmed, 2004). Additionally, the energy intensity of the residential building 

with envelope design recommended by GCC regulation and IECC is 172 and 153 

kWh/m2/year respectively. It is observed that when the GCC regulation is used as a 

benchmark for envelope design, the poorly insulated design Design#1 can meet the 

requirement with the use of high performance glazing and reduced air infiltration. The 

GCC regulation ignores the thermal characteristic of glazing and the air infiltration and 

therefore a major review is sought. When IECC envelope design is selected as a 

benchmark, the energy intensity is met with Design#6 onwards. For Dhahran, it is clear 

from the table that the envelope design can meet the IECC requirement (IECC requires 

that the roof R-value is 5.88 m2.K/W, wall R-value is 1.96 m2.K/W and a glazing U-value 

of 4.55 W/ m2.K) even when the roof is poorly insulated (R value=1.60 m2.K/W) as is the 

case for Design#7 and Design#10. However, the wall thermal resistance (R-value) has to 
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be at least equal or more than 2.44 m2.K/W with high performance glazing (U-value 

1.317 W/ m2.K) and reduced air infiltration (0.35 ACH).    

Table 5.7 shows the impact of envelope designs, high performance glazing, and reduced 

air infiltration on the heating, cooling and total energy consumption in Riyadh. The table 

shows that reducing the air infiltration to 0.35 ACH and using a high performance 

glazing increases the heating energy consumption by 82% for poorly insulated design. 

However, the cooling and total energy consumption reduces by 31% and 18% 

respectively. For well insulated envelope design such as Design#15, the heating, cooling 

and total energy consumption is reduced by 85%, 50% and 32% respectively. The energy 

intensity of the base case residential building is 169 kWh/m2/year and for well insulated 

designs is 115 kWh/m2/year. Additionally, the energy intensity of the residential building 

with envelope design recommended by GCC regulation and IECC is 161 and 145 

kWh/m2/year respectively. It is observed that when the GCC regulation and IECC are 

used as a benchmark for envelope design, the poorly insulated design Design#1 can 

easily meet the requirement of both requirements with the use of high performance 

glazing and reduced air infiltration. The GCC regulation and the IECC are prescriptive 

standards and ignore the credit of reducing the air infiltration. Similar to Dhahran, the 

envelope design in Riyadh can meet the IECC requirements even when the roof and wall 

are poorly insulated (Wall R value=0.61 m2.K/W & Roof R-value=1.69 m2.K/W) as is 

the case for Design#1. However, the poorly insulated design has to be with high 

performance glazing (U-value 1.317 W/ m2.K) and reduced air infiltration (0.35 ACH).   
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Table 5.6 Combined Effects of Thermal Envelope Design Parameters on Energy Consumption of Residential Building in Dhahran  
Alternative Heating 

Energy 
(kWh) 

% 
Reduction in 

Heating 

Cooling + 
Fan Energy 

(kWh) 

% 
Reduction in 

Cooling 

Total Energy 
Consumption 

(kWh) 

% 
Reduction 

in Total 
Energy 

Domestic 
Energy 

Intensity 
(kWh/m2/year) 

Design#1(W#1+R#1)-
Base Case (S. Glazing) 3459 

 

76786 

 

117750 

 

196* 
Design (GCC Standard) 1003 71 64689 16 103197 12 172 
Design(IECC) 443 87 54040 30 91988 22 153 
Design#1(W#1+R#1)+ 
Final Case 4004 -16 58999 23 100508 15 168 
Design#4(W#1+R#7)+ 
Final Case 3283 5 56788 26 97576 17 163 
Design#6(W#2+R#5)+ 
Final Case 1523 56 45119 41 84147 29 140 
Design#7(W#3+R#1)+ 
Final Case 881 75 40408 47 78794 33 131 
Design#9(W#3+R#7)+ 
Final Case 404 88 37864 51 75773 36 126 
Design#10(W#4+R#1)+ 
Final Case 590 83 38677 50 76772 35 128 
Design#13(W#5+R#3)+ 
Final Case 632 82 37205 52 75342 36 126 
Design#15(W#5+R#7)+ 
Final Case 307 91 35759 53 73571 38 123** 

 

* Energy Intensity of Typical non-Insulated Residential Building in Dhahran= 263 (kWh/m2/year) (Ahmed, 2004)  

** Energy Intensity of Typical insulated Residential Building in Dhahran= 153 (kWh/m2/year) (Ahmed, 2004) 
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Table 5.7 Combined Effects of Thermal Envelope Design Parameters on Energy Consumption of Residential Building in Riyadh 

 
Alternative Heating 

Energy 
(kWh) 

% 
Reduction in 

Heating 

Cooling + 
Fan Energy 

(kWh) 

% 
Reduction in 

Cooling 

Total Energy 
Consumption 

(kWh) 

% 
Reduction 

in Total 
Energy 

Domestic 
Energy 

Intensity 
(kWh/m2/year) 

Design#1(W#1+R#1)-
Base Case (S-Glazing) 1123 

 

62467 

 

101450 

 

169 
Design (GCC 
Standard) 567 50 58378 7 96805 5 161 
Design(IECC) 341 70 49048 21 87249 14 145 
Design#1(W#1+R#1)+ 
Final Case 2045 -82 43014 31 82919 18 138 
Design#4(W#1+R#7)+ 
Final Case 1291 -15 41517 34 80668 20 134 
Design#6(W#2+R#5)+ 
Final Case 1156 -3 38881 38 77897 23 130 
Design#7(W#3+R#1)+ 
Final Case 619 45 34142 45 72621 28 121 
Design#9(W#3+R#7)+ 
Final Case 215 81 32877 47 70952 30 118 
Design#10(W#4+R#1)+
Final Case 389 65 32708 48 70957 30 118 
Design#13(W#5+R#3)+
Final Case 448 60 31826 49 70134 31 117 
Design#15(W#5+R#7)+
Final Case 173 85 30936 50 68969 32 115 
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5.8 Energy and Thermal Performance of Residential Buildings under Combined 

Conditioned and Un-Conditioned Strategies  

In traditional buildings, outside cool air has been utilized to reduce the indoor air 

temperature and improves the thermal comfort conditions. The impact of introducing 

outside cool air for different envelope designs under unconditioned space has been 

investigated in Chapter Four of this study research. Ventilation strategies for every 

envelope designs were developed for maximum thermal comfort with the two accepted 

ASHRAE thermal comfort criteria; for naturally operated and mechanically operated 

buildings. The results presented in Chapter Five demonstrate that the energy performance 

of various envelope designs could be significantly enhanced with the application of high 

performance glazing and reduced air infiltration. The ventilation strategies developed in 

Chapter Four and the enhancement strategies for envelope designs in Chapter Five are 

combined to form a hybrid strategy that improve the thermal comfort and reduces the 

energy consumption in residential buildings. Table 5.8 show the developed combined 

ventilation strategy for the base case residential building in Dhahran with reduced air 

infiltration and high performance double glazing. It is clear from the table that there are 

three ventilation strategies proposed for various envelope designs. 
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Table 5.8 Developed Combined Ventilation Strategy for the Base Case Residential Building in Dhahran Based on ASHRAE Thermal 
Comfort Criteria for Mechanically Operated Buildings  
                      Month 

 
Design Alternative 

January February March April November December 

Design #1: W#1, R#1 
(Base Case) 

 

0.35 ACH (24 h) 0.35 ACH (24h)   10 ACH 08:00-
18:00, 0.35 ACH 
19:00-07:00 

20 ACH 16:00-
9:00, 0.35 ACH 
10:00-15:00 

20 ACH 07:00-
18:00, 0.35 ACH 
19:00-06:00 

0.35 ACH (24h)   

Design #4: W#1, R#7 

  

Similar to D#1 Similar to D#1 10 ACH 08:00-
18:00, 0.35 ACH 
19:00-07:00 

20 ACH 16:00-
9:00, 0.35 ACH 
10:00-15:00 

20 ACH 07:00-
18:00, 0.35 ACH 
19:00-06:00 

Similar to D#1  

Design #6:W#2, R#5 

  

Similar to D#1 4 ACH 08:00-18:00, 

 

0.350 ACH 19:00-
07:00 

10 ACH 08:00-
18:00, 0.35 ACH 
19:00-07:00 

20 ACH 16:00-
9:00, 0.35 ACH 
10:00-15:00 

20 ACH 07:00-
18:00, 0.35 ACH 
19:00-06:00 

4 ACH 07:00-
18:00, 0.350 
ACH 19:00-06:00

 

Design #7:W#3, R#1 

  

Similar to D#1 4 ACH 08:00-18:00, 

 

0.350 ACH 19:00-
07:00 

10 ACH 08:00-
18:00, 0.35 ACH 
19:00-07:00 

20 ACH 16:00-
9:00, 0.35 ACH 
10:00-15:00 

20 ACH 07:00-
18:00, 0.35 ACH 
19:00-06:00 

4 ACH 07:00-
18:00, 0.350 
ACH 19:00-06:00

 

Design #9:W#3, R#7 

  

Similar to D#1 4 ACH 08:00-18:00, 

 

0.350 ACH 19:00-
07:00 

10 ACH 08:00-
18:00, 0.35 ACH 
19:00-07:00 

20 ACH 16:00-
9:00, 0.35 ACH 
10:00-15:00 

20 ACH 07:00-
18:00, 0.35 ACH 
19:00-06:00 

4 ACH 07:00-
18:00, 0.350 
ACH 19:00-06:00

 

Design #10:W#4, R#1 

  

Similar to D#1 4 ACH 08:00-18:00, 

 

0.350 ACH 19:00-
07:00 

10 ACH 08:00-
18:00, 0.35 ACH 
19:00-07:00 

20 ACH 16:00-
9:00, 0.35 ACH 
10:00-15:00 

20 ACH 07:00-
18:00, 0.35 ACH 
19:00-06:00 

4 ACH 07:00-
18:00, 0.350 
ACH 19:00-06:00

 

Design #13:W#5, R#3 

   

2 ACH 08:00-
18:00, 
0.35 ACH 19:00-
07:00 

4 ACH 08:00-18:00, 

 

0.35 ACH 19:00-
07:00 

10 ACH 08:00-
18:00, 0.35 ACH 
19:00-07:00 

20 ACH 16:00-
9:00, 0.35 ACH 
10:00-15:00 

20 ACH 07:00-
18:00, 0.35 ACH 
19:00-06:00 

4 ACH 07:00-
18:00, 0.35 ACH 
19:00-06:00 

Design #15:W#5, R#7 

   

2 ACH 08:00-
18:00,  
0.35 ACH 19:00-
07:00 

4 ACH 08:00-18:00, 

 

0.35 ACH 19:00-
07:00 

10 ACH 08:00-
18:00, 0.35 ACH 
19:00-07:00 

20 ACH 16:00-
9:00, 0.35 ACH 
10:00-15:00 

20 ACH 07:00-
18:00, 0.35 ACH 
19:00-06:00 

4 ACH 07:00-
18:00, 0.35 ACH 
19:00-06:00 
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5.8.1 Energy Simulation of the Envelope Designs under Developed Ventilation 

and Air-Conditioning Strategy  

The energy and thermal performance of the base case residential building with high 

performance glazing and reduced air infiltration is investigated when ventilation strategy 

is combined with mechanical systems to achieve thermal comfort and reduce energy 

consumption. The percentage of thermal comfort for every envelop design in Dhahran is 

listed in Table 5.9. From the results, it is clear that introducing the outside air may 

deteriorate the thermal comfort if careful consideration is not taken. Generally, the 

thermal comfort is achieved in more than 90% of the time annually.  The results show 

that the in March and April the thermal comfort is achieved in less than 80% of the 

month time. Therefore, the ventilation strategy should be revised to achieve maximum 

thermal comfort in all months and at low energy consumption.    

Table 5.9 Percentage of Thermal Comfort of Envelope Designs in Living Zone under 
Combined Ventilation and Air-Conditioning Strategy in Dhahran 

Design Alternative 

 

Jan

  

Feb 

 

Mar 

 

Apr 

 

May, Jun, Jul, 
Aug, Sep, Oct

 

Nov 

 

Dec 

 

 Yearly % of 
Thermal 
Comfort 

Design #1: W#1, 
R#1(Final Case) 100

 

100 76 73 100 82 100 94.29 
Design #4: W#1, R#7 100

 

100 76 73 100 82 100 94.32 
Design #6:W#2, R#5 100

 

92 76 75 100 83 86 92.73 
Design #7:W#3, R#1 100

 

95 78 80 100 84 89 93.78 
Design #9:W#3, R#7 100

 

95 77 80 100 84 89 93.78 
Design #10:W#4, R#1 100

 

96 78 79 100 84 90 93.95 
Design #13:W#5, R#3 91 95 76 78 100 84 87 92.48 
Design #15:W#5, R#7 91 95 76 78 100 84 88 92.66 

  



223   

The ventilation strategy in March and April is revised to achieve more thermal comfort. 

In March several attempts were done to achieve high percentage of thermal comfort by 

changing the timings and volume of outside cooled air. It was found difficult to improve 

the thermal comfort with outside cooled air. The weather characteristic in March is not 

stable in the whole month. In early march, the outside air temperature is far below the 

thermal comfort zone and it quickly rises in the middle of the month. Additionally, in the 

middle of the month, the outside temperature is above thermal comfort during the day 

and below the thermal comfort during the night. Therefore, it was difficult to reach a 

suitable ventilation strategy as very complex analysis is required. In April, it was easier to 

improve the thermal comfort when the outside air is scheduled from 19:00 to 07:00 

instead of the proposed one from 16:00-9:00. The thermal comfort in April has improved 

from less than 80% to more than 85% for many design alternatives as depicted in Table 

5.10 (a) and (b) for living and sleeping zone respectively. The yearly percentage of 

thermal comfort for all envelope designs has increased by 3%.  It is clear that the thermal 

comfort in sleeping zone is more than that of the living area due the impact of low 

internal heat load.  

Table 5.11 shows the impact of the modified developed ventilation and air-conditioning 

strategies on heating, cooling and total energy consumption of the final design residential 

building in Dhahran. Based on the strategy proposed in this study, the introduced outside 

cool air increases the heating energy but the cooling energy has decreased. Subsequently, 

the total energy consumption is reduced. The total energy consumption is reduced by 
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19% for the poorly insulated design and by 41% for the well insulated design compared 

to 15% and 38% for poorly and well insulated design respectively when no ventilation 

strategy is applied. When ventilation and air-conditioning strategy is applied, the energy 

intensity of the poorly residential building is 161 kWh/m2/year and for well insulated 

designs is 117 kWh/m2/year compared to 168 kWh/m2/year for poorly insulated design 

and 123 kWh/m2/year well insulated design when no ventilation is applied.   

Table 5.10 Percentage of Thermal Comfort of Envelope Designs in (a) Living Zone and (b) 
Sleeping Zone under Modified Ventilation and Air-Conditioning Strategy in Dhahran 
(a)  

Design Alternative 

 

Jan

  

Feb 

 

Mar 

 

Apr 

 

May, Jun, Jul, 
Aug, Sep, Oct

 

Nov 

 

Dec 

 

Yearly % of 
Thermal 
Comfort 

Design #1: W#1, 
R#1(Final Case) 100

 

100 100 84 100 82 100 97.18 
Design #4: W#1, R#7 100

 

100 100 84 100 82 100 97.18 
Design #6:W#2, R#5 100

 

92 100 85 100 83 86 95.62 
Design #7:W#3, R#1 100

 

95 100 88 100 84 89 96.36 
Design #9:W#3, R#7 100

 

95 100 88 100 84 89 96.37 
Design #10:W#4, R#1 100

 

96 100 89 100 84 90 96.62 
Design #13:W#5, R#3 91 95 100 88 100 84 87 95.37 
Design #15:W#5, R#7 91 95 100 88 100 84 88 95.51 

 

(b) 

Design Alternative 

 

Jan

  

Feb 

 

Mar 

 

Apr 

 

May, Jun, Jul, 
Aug, Sep, Oct

 

Nov 

 

Dec 

 

 Yearly % of 
Thermal 
Comfort 

Design #1: W#1, 
R#1(Final Case) 100

 

100 100 86 100 85 100 97.63 
Design #4: W#1, R#7 100

 

100 100 86 100 85 100 97.63 
Design #6:W#2, R#5 100

 

92 100 87 100 85 87 95.95 
Design #7:W#3, R#1 100

 

93 100 89 100 87 89 96.58 
Design #9:W#3, R#7 100

 

97 100 90 100 87 90 97.00 
Design #10:W#4, R#1 100

 

94 100 90 100 88 89 96.80 
Design #13:W#5, R#3 90 94 100 89 100 85 87 95.34 
Design #15:W#5, R#7 94 97 100 90 100 86 90 96.48 
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Table 5.11 Impact of Ventilation and Air-Conditioning Strategy on Energy Performance of Envelope Designs in Residential 
Building in Dhahran 

Alternative Heating 
Energy 
(kWh) 

% 
Reduction in 

Heating 

Cooling + 
Fan Energy 

(kWh) 

% 
Reduction in 

Cooling 

Total Energy 
Consumption 

(kWh) 

% 
Reduction 

in Total 
Energy 

Domestic 
Energy 

Intensity 
(kWh/m2/year) 

Design#1(W#1+R#1)-
Base Case (S-Glazing)

 

3,459 

 

76,786 

 

117,750 

 

196 
Design (GCC 
Standard) 1003 71 64689 16 103197 12 172 
Design(IECC) 443 87 54040 30 91988 22 153 
Design#1(W#1+R#1)+ 
Final Case 4209 -22 55020 28 96734 18 161 
Design#4(W#1+R#7)+ 
Final Case 4490 -30 52965 31 94960 19 158 
Design#6(W#2+R#5)+ 
Final Case 2178 37 41747 46 81430 31 136 
Design#7(W#3+R#1)+ 
Final Case 1657 52 37297 51 76459 35 127 
Design#9(W#3+R#7)+ 
Final Case 1053 70 34622 55 73180 38 122 
Design#10(W#4+R#1)+
Final Case 1294 63 35550 54 74349 37 124 
Design#13(W#5+R#3)+
Final Case 1644 52 33220 57 72369 39 121 
Design#15(W#5+R#7)+
Final Case 1253 64 31660 59 70418 40 117 
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5.8.2 Ventilation and Air-Conditioning Strategies for Thermal Comfort and 

Reduced Energy Consumption in Residential Buildings  

The preceding sections have demonstrated the effectiveness of ventilation and Air-

Conditioning Strategy on heating, cooling and total energy consumption and the achieved 

thermal comfort for various envelope designs. The ventilation strategy in Table 5.8 is the 

entered values in Visual DOE and needs to be corrected for wind and stack effects. Table 

5.12 shows the corrected air change per hour which has the actual effect that was 

described in previous sections. The actual values were found dynamically fluctuating due 

to the effect of wind speed and therefore were averaged for proper application. Table 

5.13 shows the air-conditioning strategy at which the fan is on and off based on the 

introduced outside air. It is assumed that when the outside cool air is introduced the fan is 

off and on when the ventilation is not applied.  
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Table 5.12 Actual Ventilation Strategy for the Base Case Residential Building in Dhahran Based on ASHRAE Thermal Comfort 
Criteria for Mechanically Operated Buildings  
                      Month 

 
Design Alternative 

January February March April November December 

Design #1: W#1, R#1 
(Base Case) 
Design #4: W#1, R#7 

0.25 ACH (24 h)  0.35 ACH (24h) 0.35 ACH (24h)  

Design #6:W#2, R#5 
Design #7:W#3, R#1 
Design #9:W#3, R#7 
Design #10:W#4, R#1 

0.25 ACH (24 h) 

Design #13:W#5, R#3 

Design #15:W#5, R#7 

 

1 ACH: 
08:00-18:00, 
0.25 ACH: 
19:00-07:00 

3 ACH: 
08:00-18:00,  
0.26 ACH: 
19:00-07:00 

   

0.35 ACH (24h)       

11 ACH: 
19:00-7:00,  
0.23 ACH: 
08:00-18:00 

   

12 ACH: 
7:00-18:00,  
0.24 ACH: 
19:00-06:00 

   

2.5 ACH: 
7:00-18:00,  
0.25 ACH: 
19:00-06:00 

    

Table 5.13 Air-Conditioning Strategy for the Base Case Residential Building in Dhahran  
                      Month 

 

Design Alternative 

January February March April November December 

Design #1: W#1, R#1 
(Base Case) 
Design #4: W#1, R#7 

Fan On (24h) Fan On (24h) Fan On (24h) 

Design #6:W#2, R#5 
Design #7:W#3, R#1 
Design #9:W#3, R#7 
Design #10:W#4, R#1 

Fan On (24h) 

Design #13:W#5, R#3 

Design #15:W#5, R#7 

 

Fan Off: 
08:00-18:00,  
Fan On: 
19:00-07:00 

 

Fan Off: 
08:00-18:00,  
Fan On: 
19:00-07:00 

   

Fan On (24h)       

   

Fan Off: 
19:00-7:00,  
Fan On: 
08:00-18:00 

   

Fan Off: 
7:00-18:00,  
Fan On: 
19:00-06:00 

   

Fan Off: 
07:00-18:00,  
Fan On: 
19:00-06:00 
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CHAPTER SIX 

SUMMARY, CONCLUSION AND RECOMMENDATIONS   

6.1 Summary and Conclusion    

This research study has been carried out to evaluate the thermal and energy performance 

of residential buildings in hot-humid and hot-dry climate of Saudi Arabia utilizing energy 

simulation program VisualDOE 4.1. The objectives of the study were to investigate the 

impact of thermal performance of exterior envelope and air leakage characteristics on 

indoor air temperature in a typical residential building, subsequently to define those that 

enhance the indoor air temperature and improve the energy consumption, and finally to 

develop design guidelines for envelope thermal design and air leakage characteristics to 

achieve thermal comfort at reduced energy consumption.  In order to achieve these 

objectives, the study went through many phases including a literature review, conducting 

a survey questionnaire to identify the design practices of envelope designs in residential 

buildings, simulating the developed base case with and without the mechanical systems, 

and analyzing the simulation results.  

From the review of literature in many energy simulation studies in Saudi Arabia, it was 

found that the annual energy consumption is considered as a thermal performance 

indicator but no study has considered the indoor air temperature as a performance
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indicator for building envelope evaluation. The mechanical systems are used to control 

the indoor air temperature and energy conservation technologies and measures (ECMs) 

are then investigated in order to reach an energy conservative design. Additionally, 

studies have been carried out to evaluate individual building envelope system without 

considering the building as an integral system. The air leakage characteristics were not 

thoroughly investigated to be utilized for thermal comfort and reduce the energy 

consumption.   

For energy simulation program VisualDOE 4.1, many data input were required to 

simulate the base case residential building. A survey questionnaire was conducted to 

identify the base case residential building in hot-humid climate represented by Dhahran 

and hot-dry climate represented by Riyadh. From the results of the questionnaire, it was 

found that the characteristics of residential buildings in Dhahran don t vary much from 

those used in Riyadh. However, it was found that the wall design in Riyadh has more 

thermal resistance than those used in Dhahran but both were below the international 

energy conservation code (IECC) for the same climatic conditions. It was also found that 

many architectural design offices select the envelope design based on the client 

requirement and in many cases poorly insulated envelope designs are always used. One 

design office in Dhahran and another in Riyadh has identified the required thermal 

resistance of the wall and roof designs. This illustrated that the architectural firms are still 

unaware of the local or international requirements of thermal resistance in the design of 
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residential building. Therefore, the practice of envelope designs in residential building 

doesn t vary much from whatever found in literature.   

Based on the survey results, more than 202 wall possible assemblies and 62 roof 

assemblies were generated with a variety of building materials and using many thermal 

insulation types and thicknesses. The thermal resistance and heat capacity of these 

assemblies were calculated using the VisualDOE 4.1. Five wall designs and four roof 

designs were selected to represent the wide variation of thermal characteristics of the 

generated wall and roof designs. These assemblies were combined to form eight envelope 

designs that were evaluated throughout this study. The lighting level, equipment and 

occupancy profiles were defined based on the literature review. Accordingly, a base case 

residential building (Design#1) was defined for Dhahran and Riyadh.   

6.1.1 Indoor Temperature Behavior and Comfort Conditions for Non-

Conditioned Residential Buildings  

Many thermal performance indicators were tested to evaluate the performance of building 

envelope including the indoor air temperature profile in a representative summer and 

winter week or day, monthly mean hourly indoor air temperature, cumulative temperature 

difference and the percentage of thermal comfort. Among these performance indicators, 

the monthly mean hourly indoor air temperature and percentage of thermal commfort 

were found suitable to idenitfy the impact of envelope designs and ventilation strategies 
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on thermal comfort when no air conditioning system is used. Two thermal comfort zone 

criteria were used in this study; the thermal comfort criteria for naturally operated 

buildings, and the thermal comfort criteria for mechanically operated buildings.  

The developed base case (0.2 window wall ratio), 0.1 WWR and window-less residential 

building with various envelope designs were simulated in VisualDOE 4.1 when no 

ventilation and no air conditioning strategy is used. The thermal comfort for naturally 

operated building was used to evaluate the effectiveness of ventilation strategies. For a 

window-less residential building, the mean hourly indoor air temperature in December, 

January, and February were outside the thermal comfort zones for poorly insulated 

designs (Design#1 and Design#4) and within the thermal comfort zones for the insulated 

envelope designs. For all envelope designs, the hourly mean air temperature in other 

months was outside the thermal comfort zones. The annual percentage of thermal comfort 

of envelope designs when no ventilation was applied varied from 31% for poorly 

insulated design (Base Case: Design#1) to 29-30% for well insulated design (Design#15) 

in both living and sleeping area.  

Based on the profile of outdoor and indoor air temperature, Preliminary ventilation 

strategies were developed to identify the best schedule and volume of outside cool air that 

improves the thermal comfort. Many ventilation strategies were evaluated and 

consequently two effective ventilation strategies were developed for all envelope designs 
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considering both the thermal comfort criteria for naturally operated building and 

mechanically operated building.   

When ASHRAE thermal comfort criteria for the naturally ventilated building is 

considered, the thermal comfort has significantly improved in the living zone by 59% for 

the super-insulated design (Design #15) compared to 28% for the poorly insulated design 

(Design#1). In sleeping zone, the thermal comfort has improved by 34% for the poorly 

insulated design (Design#1) and by 89% for the super-insulated designs (Design#15). 

Due to low internal heat load in sleeping zone, the thermal comfort was found better 

compared to living zone. The effective ventilation strategy was based on the entered 

values in ViusalDOE 4.1 and a proper correction for wind and stack effects was applied. 

The corrected values were the hourly output data from VisualDOE and were averaged 

due to the fluctuation of wind speed. It was found that the thermal comfort can be 

achieved in the night of warm transition months; May and October.  

A similar procedure was applied to develop ventilation strategies for envelope designs 

when the ASHRAE thermal comfort for mechanically operated buildings is considered. 

Utilizing this criterion, more air volume was required in April to achieve thermal comfort 

and it was not possible passively to achieve thermal comfort in warm transition months; 

May and October. In winter (December, January and February), introducing the outside 

cool air for window-less building deteriorates the thermal comfort.    
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Preliminary ventilation strategies were developed for the residential building with 0.10 

window wall ratio. Similar to window-less building, many ventilation strategies were 

evaluated. When the ASHRAE comfort criteria for naturally operated building is 

considered, it was observed that introducing high volume of outside air continuously 

during warm transition months (May and October) beyond 30 ACH is not significant in 

improving the thermal comfort. The night ventilation in May and October was found 

more appropriate in improving the thermal comfort. On the other hand, introducing 

outside cool air continuously during cooled transition months; March and November 

deteriorated the thermal comfort. Therefore, day time selective ventilation was used to 

avoid the overcooling problem in these two months. It was also found necessary to utilize 

the outside cool air during the winter months of December and February to achieve 

thermal comfort for well insulated designs Design#9, Dsign#10, Design#13 and 

Design#15. When the ASHRAE comfort criterion for mechanically operated buildings is 

considered, the thermal comfort was not attained by passive means in May and October. 

Using this criterion, more outside cool air was required to achieve thermal comfort in 

March. Accordingly, two effective ventilation strategies were developed for all envelope 

designs considering both the thermal comfort criteria for naturally ventilated building and 

mechanically operated building.   

Utilizing the developed ventilation strategy and based on the ASHRAE thermal comfort 

criteria for the naturally ventilated building, the thermal comfort increased in living area 

when proper ventilation strategy is applied to 41% for the poorly insulated design 
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(Design#1) and to 43-45% for the insulated designs (43% for super-insulated Desgin#15). 

The improvement in thermal comfort was significant with the super-insulated design 

Design#15 (95%) compared to the poorly insulated design Design#1 (37%) when the 

combined ventilation strategy is applied. The thermal comfort improvement in the 

sleeping area ranged from 38% for the poorly insulated design (Design#1) to 122% for 

the super-insulated design (Design#15).  

The base case residential building (0.2 WWR) was evaluated under different ventilation 

strategies when single and double glazing are used. When the ASHRAE comfort criteria 

for naturally operated building is considered, it was observed that introducing high 

volume of outside air beyond 30 ACH continuously during winter months (December, 

January and February), transition months (March , April, May, October and November) 

deteriorate the thermal comfort for single glazed building. It was found that the 

application of selective ventilation strategies such as daytime ventilation only during 

winter months (December, January and February) and cool transition months (March and 

November) and night ventilation only during warm transition months (April, May, and 

October) improved the thermal comfort. For the double glazed building, it was found that 

more air volume is required in April to improve thermal comfort while no air is required 

in winter months. When the ASHRAE comfort criterion for mechanically operated 

buildings was considered, the thermal comfort in May and October was not attained by 

passive means. Using this criterion, more outside cool air is required to achieve thermal 

comfort in November. All designs require outside cool air to improve the thermal comfort 
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in winter months; December, January and February when single glazed is used while no 

requirement for outside air when double glazed is used. Accordingly, two effective 

ventilation strategies were developed for all envelope designs considering both the 

thermal comfort criteria for naturally ventilated building and mechanically operated 

building.   

Based on the ASHRAE thermal comfort criteria for the naturally operated building, the 

thermal comfort increased in living area when proper ventilation strategy is applied to 

40% for the poorly insulated design (Design#1) and to 41% for the insulated designs 

(Desgin#15). It was noticed that all envelope design achieves similar thermal comfort 

level. The thermal comfort improvement in the living area is significant with the 

insulated design Design#15 (above 100%) compared to the poorly insulated design 

Design#1(45%). In sleeping area, the thermal comfort improvement ranges from 47% for 

the poorly insulated design to 229% for the super-insulated designs.   

The thermal performance of envelope designs for the base case residential building in 

Dhahran was also evaluated when no ventilation is applied. It was interesting to find that 

the poorly insulated designs Design#1, Design#4 performed better in terms of thermal 

comfort than the super-insulated designs Design#13 and Design#15 when no ventilation 

is applied. It was found that the indoor air temperature for the insulated designs in winter 

and transition months is above the thermal comfort zones in winter due to their high 
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thermal characteristics. It was also found that there is a risk of overheating in transition 

months but happened early for the insulated designs.   

The base case residential building under different window to wall ratio (0.1 WWR and 

window-less) was investigated. It was found that reducing the WWR improves the 

thermal comfort of the building. This improvement was found more with well insulated 

designs. At a ratio of 0.1 WWR, the thermal comfort improvements for the standard 

(Design#6 to Design#10) and super-insulted designs (Design#13 and Design#15) were 

from 28% to 38% compared to the base case scenario (0.2 WWR).  On the other hand, 

the improvement for the windowless (0 WWR) building varied greatly from 38% for 

Design#6 to 86% for Design#15. The improvement in thermal comfort for the non-

insulated designs (Design#1 and Design#4) was found below 15%.   

The base case (0.2 WWR) and 0.1 WWR residential building was evaluated under two 

glazing types; single glazing panel and double green glazing panels. It was found that the 

thermal comfort has improved in all envelope designs but 5% improvement was noticed 

with the poorly insulated designs (Design#1 & Design#4) and the 6-7% improvement 

with standard insulated designs (Design#6, Design#7) when double glazing is used. The 

super-insulated design (Design#15) has improved the thermal comfort by 4%.  When the 

WWR is reduced to 0.1, the super-insulated designs (Design#13 and Design#15) 

improved the thermal comfort by 7-8%.  The double glazing was found more effective in 

improving the thermal comfort for super-insulated design with low window wall ratio and 
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more effective for poorly insulated deigns with high window wall ratio when no air 

conditioning is used.    

6.1.2 Impact Of Envelope Thermal Design On Energy Performance Of Residential 

Buildings   

The base case residential building was simulated under the climatic conditions of Riyadh 

and Dhahran when air conditioning (cooling and heating) is available throughout the 

year. It was found that the residential buildings in Dhahran consume 16% more energy 

than those in Riyadh. In terms of energy intensity, the energy index for residential 

building in Dhahran and Riyadh was found to be 196 and 169 kWh/m2/year respectively. 

For comparison purposes, studies in Dhahran showed that the average energy intensity 

for poorly insulated residential buildings is 263 kWh/m2/year and for well insulated 

buildings is 153 kWh/m2/year.  A sensitivity analysis was conducted for wall designs, 

roof designs, combination of wall and roof designs, glazing types, window wall ratio, 

orientation and various air infiltrations. Finally, the combined effect of all design 

parameters was simulated.   

It was found that when the thermal resistance of wall assembly increases, the energy 

consumption is reduced. However, it was interesting to find that the light thermal mass in 

wall design with poorly insulated glazing has a negative impact on energy consumption. 

Although, the thermal resistance of wall#5 (R-value= 6.67 m2.°C/W) was higher than 
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W#4 (R-value= 5 m2.°C/W), the energy consumption when wall#5 is used has increased 

by 0.7% in Dhahran and 1.1% in Riyadh. This observation was related to the effect of 

low heat capacity (low thermal mass) of wall#5 which was 3 times less than the wall#4. 

Similarly for roof designs, the energy consumption was reduced with the increases of 

thermal resistance. Although their thermal resistance has increased, it was interesting to 

find that when the thermal insulation is placed to the interior side of the roof slab such as 

the case in Roof#3, the heating energy consumption increases by 8% in Dhahran and 

18% in Riyadh. It was also found that when the thermal mass is reduced by 50% (case: 

Roof#5), the heating energy increased by 1% in Dhahran. This observation was not found 

in Riyadh due to the high thermal characteristics of their base case wall design which 

diminished the effect of roof thermal mass when compared to Dhahran case.   

The impact of eight possible combinations of wall and roof designs on energy 

performance of base case residential building in Dhahran and Riyadh was investigated. It 

was found that all envelope designs reduced both the heating and cooling energy but 

some designs performed better in reducing the heating energy and others are better in 

reducing the cooling energy. The best envelope designs in Dhahran are those that 

effectively reduce the heating and cooling energy and subsequently the total heat energy 

are Design#9 (Wall#3, Roof#7), Design#10 (Wall#4, Roof#1), and Design#15 (Wall#5, 

Roof#7). In Riyadh, the best envelope designs are Design#10 (Wall#4, Roof#1), 

Design#15 (Wall#5, Roof#7), Design#7 (Wall#3, Roof#1) and Design#9 (Wall#3, 

Roof#7). In Riyadh, the effect of both the low thermal mass in Wall#5 and interior 
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thermal insulation in Roof#3 was clear in increasing the heating energy by 20%.  It was 

interesting to note that although Roof#1 is poorly insulated, it performed very well when 

combined with insulated wall designs. This good performance was related to the high 

thermal mass which helps in reducing the heating energy in winter and its light color 

which helps in reducing the cooling energy in summer.    

The energy performance of the residential building with single clear 6 mm glazing and 

high performance double glazing Tint Low-e4 Argon 6/12/6 was evaluated under various 

windows to wall ratios (WWR).  In Dhahran, with every 0.1 increase in window to wall 

ratio (WWR) there was an increase of 15% and 10% in energy consumption for well 

insulated and poorly insulated designs respectively.  In Riyadh, with every 0.1 increase in 

window to wall ratio (WWR) there was an increase of 12-15% in energy consumption for 

all envelope designs. It was observed in both Dhahran and Riyadh that at higher WWR 

(>0.30), all envelope designs converged to a similar value regardless of the thermal 

characteristics of envelope designs.  When the high performance double glazing was 

used, the effect of WWR on energy consumption for the poorly insulated designs 

(Design#1 and Design#4) in both Dhahran and Riyadh was minimal. For these designs, 

with every 0.1 increase in WWR there was a 2% increase in energy consumption for 

Dhahran and 3-4% increase in energy consumption in Riyadh. Similarly for insulated 

designs, with every 0.1 increase in WWR there was a 7% increase in energy in both 

Dhahran and Riyadh.    
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The poorly insulated (base case: Dsign#1) and well insulated (Design#15) residential 

building were evaluated under four glazing types; double green 6mm, high performance 

double tinted low-e glazing, high performance triple clear low-e glazing and high 

performance triple tinted reflected glazing were evaluated in Dhahran and Riyadh.  It was 

noticed that as the thermal resistance of the glazing increases, the total energy 

consumption decreases. However, the cooling and heating energy should be balanced by 

the proper selection of thermal resistance and solar heat gain coefficient. It was found 

that the clear triple glazing performed better during the winter where more solar radiation 

is admitted and used for heating purposes. However, it was less effective than double 

tinted and triple glazing in the reduction of cooling energy. Therefore, proper balance 

between the thermal and solar characteristics is important in reducing the energy 

consumption. It was found that high performance glazing is more efficient with insulated 

designs than the poorly insulated design. It was concluded that to achieve maximum 

reduction in total energy consumption, it is imperative to use high performance glazing 

that has low solar heat gain coefficient (low SHGC) and high thermal resistance (high R-

value) even if it increases the heating energy. Since the winter season in Saudi Arabia is 

normally short and mild and the transition and summer season is long and harsh with 

high solar radiation, the heating energy is not a major component of total energy 

consumption. It is important therefore to control the solar radiation during the transition 

and summer months. Dynamic solar control is an optimum strategy in Saudi Arabia 

climate where the solar radiation is admitted in winter but rejected in summer and 

transition months.   
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The base case residential building was assumed to be on south-north orientation where 

the building faces north. The east-west orientation was investigated in Dhahran and 

Riyadh. The energy consumption increased by 1.8% and 2.2% in Dhahran and Riyadh 

respectively. It is concluded that south north orientation is best for residential building in 

hot climates.   

The leakage characteristics of the base case residential building was investigated in 

Dhahran and Riyadh climate. The building was assumed to be very air tight (0.35 ACH), 

normal leaky (1 ACH), high leaky (2 ACH) and extremely leaky (3 ACH). The energy 

performance was evaluated with poorly insulated design (Design#1) and well insulated 

design (Design#15). In Dhahran, for poorly insulated design (Design#1) in normal leaky 

building, it was found that for every increase of 1 ACH there was an increase of more 

than 100%, 20% and 15% of heating, cooling and total energy consumption for the 

poorly insulated designs. For well insulated design (Design#15) in normal leaky building, 

for every 1 ACH increases in air infiltration there is an increase of more than 300%, 20% 

and 19% of heating, cooling and total energy consumption for the well insulated designs 

in Dhahran. When the air infiltration was assumed to be very air tight (0.35 ACH), the 

energy consumption was reduced. The reduction in heating energy was significant in well 

insulated design (30%) compared to poorly insulated design (14%). It is concluded that 

the energy consumption is sensitive to air infiltration. However, the heating energy is 

more sensitive to air infiltration especially for the well insulated designs. The cooling 

energy in hot humid climate of Dhahran has increased due to infiltration.   
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In Riyadh, for every increases of 1 ACH there was an increase of more than 200%, 10% 

and 10% of heating, cooling and total energy consumption for the poorly insulated design 

(Design#1) and an increase of more than 300%, 10% and 10% of heating, cooling and 

total energy consumption for the well insulated designs in normally leaky buildings. 

When the air infiltration was reduced to 0.35 ACH (very air tight) the heating, cooling 

and total energy consumption was reduced by 18%, 2% and 1% in poorly insulated 

design (Design#1: base case) and is reduced by 17%, 2% and 1% in well insulated design 

(Design#15).   

The most effective strategies were selected and simulated as the final case for the eight 

envelope designs in Dhahran and Riyadh. The energy performance of the residential 

building was compared to the energy performance of the envelope design when the GCC 

thermal resistance regulations and the international energy conservation code (IECC) are 

considered. In Dhahran, the energy intensity of the base case residential building was 196 

kWh/m2/year and for well insulated design (Design#15) is 123 kWh/m2/year compared to 

263 kWh/m2/year for a typical non-insulated and 153 kWh/m2/year for well insulated 

residential housing in Dhahran. The energy intensity of the residential building with 

envelope design recommended by GCC regulation and IECC is 172 and 153 

kWh/m2/year respectively. Based on GCC requirement, the poorly insulated design 

Design#1 can meet the requirement with the use of high performance glazing and 

reduced air infiltration. However and according to IECC requirement, Design#6 and 

above meet this requirement. The comparisons showed that even poorly insulated roof 
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could meet the IECC if R-value of the wall is more than 2.44 m2.K/W (R-14) with high 

performance glazing in an airtight building. In Riyadh, the energy intensity of the base 

case residential building was 169 kWh/m2/year and for well insulated design (Design#15) 

is 115 kWh/m2/year compared to 161 and 145 kWh/m2/year for the GCC and IECC 

requirements respectively. The poorly insulated design (Design#1) could easily meet the 

requirement of GCC and IEC with use of high performance glazing and reduced air 

infiltration.   

The energy and thermal performance of the base case residential building with high 

performance glazing and reduced air infiltration was investigated when ventilation 

strategy is combined with mechanical systems to achieve thermal comfort and reduce 

energy consumption. The ventilation strategy was developed in Chapter four for the 

residential building with double glazed window. The ASHRAE thermal comfort criterion 

for the mechanically operated building was used in this investigation. Although, the 

thermal comfort was achieved in more than 90% of the time annually, it was found that 

introducing the outside cool air may deteriorate the thermal comfort if careful 

consideration is not taken. This was clear when the thermal comfort in March and April 

was achieved in less than 80% of the time. Therefore, the ventilation strategy was revised 

to avoid the overheating in these months. Several strategies were tested in March and 

there was no improvement in thermal comfort.  The thermal comfort was improved to 

more than 85% for many design alternatives in April when the outside air is scheduled to 
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16:00-9:00. It was observed that the thermal comfort in sleeping zone is more than that of 

the living area due the impact of low internal heat load.   

The impact of the modified ventilation and air-conditioning strategy on heating, cooling 

and total energy consumption was investigated. The introduced outside cool air increased 

the heating energy but the cooling energy was reduced. The results showed that the total 

energy consumption is reduced by 18% for the poorly insulated design and by 40% for 

the well insulated design compared to 15% and 38% for poorly and well insulated design 

respectively when no ventilation strategy is applied to the final case. When ventilation 

and air-conditioning strategy was applied in Dhahran, the energy intensity of the poorly 

residential building is 161 kWh/m2/year and for well insulated design is 117 

kWh/m2/year compared to 168 kWh/m2/year for poorly insulated design and 123 

kWh/m2/year well insulated design when no ventilation is applied. Based on the results, 

ventilation and air-conditioning strategy was developed to achieve thermal comfort and 

reduced energy consumption.            
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6.2 Recommendations  

Based on the conclusions of this study, the following recommendations are made to 

achieve thermal comfort at reduced energy consumption in residential buildings in hot 

humid and hot dry climates:  

1. Outside cool air should be utilized to achieve thermal comfort and reduce the energy 

consumption. Since the indoor air temperature is above the outside temperature in 

many months in the year, the outside air should be introduced during unoccupied 

period to reduce the mechanical system start-up energy consumption.  

2. The well insulated designs should always be used as it was found that they performed 

well when the passive, active or hybrid strategies are applied. 

3. In hot humid climate, when the building is under unconditioned mode, Table 6.1 

gives the general recommendations  for outside cool air requirements considering the 

ASHRAE thermal comfort criteria for naturally operated and mechanically operated 

buildings (for detail schedules refer to Table 4.3, Table 4.5 and Table 4.8).     
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Table 6.1 Recommendations for the Utilization of Outside Cool Air under Unconditioned Residential Building in Dhahran  
Residential 

Building 

Characteristics 

ASHRAE Thermal Comfort for Naturally 

Operated Building 

ASHRAE Thermal Comfort for Mechanically 

Operated Building 

Window-Less 

Building 

 

The night ventilation (20:00-6:00) should be 

utilized to improve the thermal comfort in May 

(9 ACH) and October (12 ACH). 

 

Avoid introducing outside cool air in winter 

months (December, January and February) to 

avoid thermal discomfort.  

 

Mechanical system is needed for thermal comfort 

in warm transition months: May and October 

 

More outside cool air is required in April to 

achieve thermal comfort. 

0.1 WWR Building

  

The night ventilation (20:00-6:00) should be 

utilized to improve the thermal comfort in May 

(12 ACH) and October (9 ACH).  

 

The day time selective ventilation should be 

used and the night ventilation should be 

avoided to achieve thermal comfort in March 

(3 ACH: 08:00-18:00) and November (4 ACH: 

07:00-18:00). 

 

The day time selective ventilation should be 

utilized for well insulated designs Design#9, 

 

Mechanical system is needed for thermal comfort 

in warm transition months: May and October 

 

The day time selective ventilation should be used 

to achieve thermal comfort in March (08:00-

18:00) and November (07:00-18:00). More 

outside cool air (5 ACH more) is required in 

March to achieve thermal comfort. 

 

The day time selective ventilation should be 

utilized for well insulated designs Design#9, 

Dsign#10, Design#13 and Design#15 in winter 
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Dsign#10, Design#13 and Design#15 in winter 

months of December (1 ACH: 07:00-18:00) 

and February (1 ACH:08:00-18:00).  

months of December and February. 

0.2 WWR Building

  

Single Glazed: Avoid high volume of outside 

cool air (>30ACH) continuously in winter and 

cooled transition months (March and 

November). Outside cool air should be utilized 

for all envelope designs (except for poorly 

insulated design in February) in December & 

February, well insulated designs in January to 

improve the thermal comfort. 

 

The day time selective ventilation should be 

used in winter and cooled transition months 

and the night ventilation in warm transition 

months (April, May, and October)  

 

Double Glazed: More cool air should be used 

in April and no requirement for outside air for 

poorly insulated designs. Outside air should be 

used for insulated designs in December and 

February. 

 

More outside cool air is required in November to 

achieve thermal comfort. 

 

Single Glazed: outside cool air should be utilized 

for all envelope designs in December & February, 

well insulated designs in January to improve the 

thermal comfort. 

 

Double Glazed: no requirement for outside air 

for poorly insulated designs. Outside air should 

be used for insulated designs in December and 

February.  
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4. To exceed the requirement of the International Energy Conservation Code (IECC), 

the building envelope of the residential buildings should be designed with high 

performance glazing (U-value<1.317 W/m2.K ) and be airtight (0.35 ACH). 

Additionally, it should meet the following thermal envelope design requirements: 

4.1. If the wall R-value is 0.83 m2.°C/W (RSI-5), the roof R-value should be 4.35 

m2.°C/W (RSI-25). 

4.2. If the wall R-value is 2.44 m2.°C/W (RSI-14), the roof R-value can be 1.69 

m2.°C/W (RSI-10). 

5. To reduce the heating energy in mild winter of Saudi Arabia, a medium thermal mass 

or heat capacity of > 200 kJ/m2.C should be at least provided in the design of walls in 

the single glazed poorly insulated buildings. Many building materials can provide this 

level of thermal mass.  

6. Similarly for roof, to reduce heating energy in mild winter of Saudi Arabia, the 

thermal mass or heat capacity of > 500 kJ/m2.C should be at least provided in the 

design of roofs in the single glazed poorly insulated buildings. 

7. The window-wall ratio should be less than 0.3 as more than this limit increase the 

energy consumption regardless of the thermal characteristics of building envelope.  

8. A balance between the thermal and solar characteristics of glazing should be 

considered seriously in hot climates of Saudi Arabia. A high performance glazing that 

has low solar heat gain coefficient (<0.4) and high thermal characteristics should be 
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considered to reduce the cooling energy in hot season and allow some solar in the 

mild winter.  

9. An external dynamic solar radiation protection should be used where it allows solar 

radiation in winter and protects the space in high solar season.  

10. A south-north orientation should be considered in the design practice of residential 

buildings in Saudi Arabia.  

11. The residential buildings should be air tight especially when the well insulated 

envelope designs are used as they are more sensitive to air infiltration in winter. Air 

infiltration should be limited in hot humid climates as it increases the cooling energy 

in addition to its increases effect on heating energy in winter. 

12. In order to reduce the air infiltration, improve the workmanship during the 

construction of new residential buildings, keep the indoor environment in positive 

pressure during the operation of the building especially in windy and hot climate to 

reduce the effect of wind and stack on infiltration.    

13. The envelope design should be designed with vapor retarders to reduce the air 

infiltration through the wall and roof structures. The windows, wall openings and 

cracks should be sealed with Weather-stripping and chalking material. The doors 

undercut should be minimized especially the external doors.   

14. Maximize the window size (but WWR should be <0.3) in the direction of dominant 

wind direction to utilize the natural ventilation and utilize the high performance 

glazing.  
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15. For GCC thermal regulation should be seriously revised to include the fenestration 

system and air leakage requirements in the hot climates.  

16. To reduce the total energy consumption by 24% from the IECC (envelope design 

requirement) energy intensity level and to achieve a reduction of 40% of total energy 

consumption compared to the base case, a combined well insulated envelope design 

(Design#15), air infiltration (0.35 ACH), solar (SHGC<0.4) and thermal 

characteristics (high thermal insulation) of fenestration system should be incorporated 

with the developed ventilation and air-conditioning strategy as in Table 5.12 and 

Table 5.13 respectively.   

6.3 Envelope Design Guidelines for Residential Buildings in Hot Climates of 

Saudi Arabia  

Based on the analysis, conclusions and recommendations in this research work and with 

the consultation of International Energy Conservation Code (IECC 2000) and with the 

series of design guidelines that were developed by Rocky Mountain Institute s Home 

Energy Brief (RMI, 2004), envelope design guidelines are developed as shown in Table 

6.2 for hot climates of Saudi Arabia.      
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Table 6.2 Envelope Design Guidelines for Residential Buildings in Hot Climates  
Envelope Design Guidelines 

Thermal Mass Requirements: 

 

A thermal mass or heat capacity of > 200 kJ/m2.C and > 500 

kJ/m2.C should be at least provided in the design of walls and 

roof respectively especially for poorly insulated buildings. 

 

Thermal mass should be located to the interior side of the 

building envelope (i.e. walls and Roofs) (in the space) as it is 

found that the heating energy is significantly reduced. 

 

In transition and summer months, the indoor thermal mass 

should be shaded from direct solar radiation. 

    

Walls  and Roof 
Thermal 

Characteristics                                   

Thermal Insulation Requirements: 

 

For poorly insulated roof buildings (R-value <1.69 m2.°C/W; 

RSI-10), the wall R-value should be greater than 2.44 

m2.°C/W (RSI-14). 

 

For poorly insulated walls in residential buildings (R-value 

<0.83 m2.°C/W; RSI-5), the roof R-value should be greater 

than 4.35 m2.°C/W (RSI-25).  

 

To reduce the energy consumption by more than 20% in 

Riyadh and Dhahran from the International Energy 

Conservation Code (IECC) design, the wall thermal 

resistance (R-value) should be greater than 6.67 m2.°C/W (R-

38) and roof thermal resistance (R-value) should be 5.88 

m2.°C/W (R-35).  

 

Thermal insulation should be placed to the exterior side of 

the building envelope with good moisture resistance and 

protection against weather conditions (rain, humidity, solar 

radiation). 

 

The exterior building envelope (walls and roof) should be 
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Walls  and Roof 
Thermal 

Characteristics 

painted with smooth and light color to reflect the solar 

radiation. The roof systems should be painted with light-

colored or installed with reflective top layers. Regular 

cleaning and maintenance is important to this layer. 

Glazing Thermal Characteristics:  

 

Use double glazing as it is found that using double green 

glazing reduces the energy consumption by 6% in poorly 

insulated buildings and by 10% for well insulated buildings.   

 

Consider low-e coated glazing which reduces the window s 

solar transferring characteristics, thereby saving energy 

consumption. Using high performance double low-e tinted 

glazing (U-value<1.317 W/m2.K, SHGC=0.278)) reduces the 

energy consumption by more than 10% for poorly insulated 

buildings and by more than 20% for well insulated buildings. 

 

Windows Characteristics: 

 

Frames and sashes should be designed with reasonable 

thermal insulated material such as vinyl, fiberglass or thermal 

break material should be provided with aluminum frames. 

 

Limit the window to wall ratio (WWR) to less than 30% for 

the well insulated buildings as it is found that with every 

10% increases in WWR there are increases of 10-15% in 

energy consumption in hot climates. 

 

Fenestration 
System                                 

General Design Considerations:  

Solar Characteristics: Solar Heat Gain Coefficient (SHGC) 

should be < 0.4 and the ratio of light transmittance to SHGC 

should be > 1 for better view and daylight utilization which 

reduces electrical lighting. 
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Fenestration 
System 

Shading Strategies: 

 
Allow solar radiation to pass in winter especially for the 

poorly insulated buildings to reduce heating energy.  

 

Provide exterior shading devices to allow solar in winter and 

shade in summer and transitions months. Fixed or movable 

(manual or motorized) devices located inside or outside the 

glazing should be used to control direct or indirect solar gain. 

 

Provide interior shading devices such as insulating blinds, 

shades, or curtains.  

Total Building 
Envelope Design 
Requirements  

If the above thermal resistance guidelines are not followed, then 

the following guidelines based on IECC 2000 should be 

minimum requirements for envelope design in hot climates for 

residential buildings with less than or equal 20% windows area: 

  

The wall thermal resistance (R-value) should be more than 

1.94 m2.ºC/W (R-11) for light thermal mass, 1.761 m2.ºC/W 

(R-10) for high exterior thermal mass and 1.066 m2.ºC/W (R-

6) for high interior or integral mass.  

 

The roof thermal resistance (R-value) should be more than 

3.35 m2.ºC/W (R-19). 

 

The U-value of glazing should be less than 4.55 W/m2.K 

with SHGC<0.4.  

Building 
Orientation  

 

Orient the building so that solar radiation in summer is 

minimal on side with large glass areas. South-North 

orientation is the best in hot climates of Saudi Arabia.   
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Air Ventilation and Air-conditioning Strategies: 

Poorly Insulated Envelope Designs (Wall: R-value<1.066

 
m2.ºC/W & Roof: R-value <2.29 m2.ºC/W):

  

Provide minimum air ventilation when air-conditioning is on 

(for indoor air quality) in winter months (December, January 

and February), cool transition month (March), in summer 

(June, July, August and September) and warm transition 

months (May and October). 

 

In April, the air ventilation should be allowed at a maximum 

rate of 11 ACH from 19:00-7:00 when no air-conditioning is 

use, and minimum rate of 0.35 ACH from 08:00-18:00 with 

air-conditioning. 

 

In November, the air ventilation should be allowed at a 

maximum rate of 12 ACH from 07:00-18:00 when no air-

conditioning is use, and minimum rate of 0.35 ACH 19:00-

06:00 with air-conditioning. 

Air Leakage and 
Air-Conditioning 

Strategies                                        

Standard Insulated Envelope Designs (Wall: 1.066 m2.ºC/W

 

<R-value< 5 m2.ºC/W & Roof: 2.29 m2.ºC/W <R-value <4.35

 

m2.ºC/W):

 

Similar to above except for the following months: 

 

In February, the air leakage should be allowed at a 

maximum rate of 3 ACH from 08:00-18:00 when no air-

conditioning is use, and minimum rate of 0.35 ACH from 

19:00-07:00 with air-conditioning. 

 

In December, the air leakage should be allowed at a 

maximum rate of 2.5 ACH from 07:00-18:00 when no air-

conditioning is use, and minimum rate of 0.35 ACH 19:00-

06:00 with air-conditioning. 



255   

Well Insulated Envelope Designs (Wall: R-value > 5 m2.ºC/W

 
& Roof: R-value >2.56 m2.ºC/W):

 
In addition to standard insulated envelope designs, the following 

should be applied: 

 

In January, the air leakage should be allowed at a maximum 

rate of 1.5 ACH from 08:00-18:00, and minimum rate of 0.35 

ACH from 19:00-07:00 with air-conditioning. 

 
Air Leakage and 
Air-Conditioning 

Strategies 

Air Infiltration Control Strategies for Envelope Designs: 

 

An effective way to reduce the energy consumption is to 

reduce the air infiltration through windows and doors by 

applying the weather-stripping and by applying caulk (such 

as expanding foam sealant) through cracks and openings.  

 

Continuous air barrier or vapor retarders should be provided 

for the building envelope to reduce the air leakage into or out 

of a building. 

Notes: 

It is found that with every 1 ACH increases in air infiltration in : 

 

Dhahran: there is an increase of 15% and 19% in total 

energy consumption for poorly and well insulated 

buildings respectively.   

 

Riyadh: there is an increase of 10% in total energy 

consumption for all types of buildings.   
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6.4 Recommendations for Future Research   

This study work has highlighted many findings that lead to future potential research. The 

followings are potential extensions for this research:  

 

Thermal and energy performance of building envelopes should be evaluated under 

various internal loads; lighting and appliances. 

 

The zoning concept of daytime areas in residential buildings should be investigated to 

define zone allocation strategies for occupancy to achieve thermal comfort and reduce 

the energy consumption.   

 

Minimum window area that is recommended for reduced energy consumption and 

maximum visual comfort as a function of orientation of the window façade and 

geographical location should be studied.  

 

Shading devices and solar characteristics of glazing should also be investigated for 

different orientations to reach an ideal window design for residential buildings in hot 

climates.  

 

The air infiltration (ACH) should be fully investigated in hot humid climates. The 

CFD modeling or other air leakage identification techniques should be conducted to 

quantify and properly define the air infiltration characteristics in residential buildings.  

 

The application of smart ventilators or residential type air conditioning with 

economizer should be assessed in the climates of Saudi Arabia to quantify the actual 

and effective ventilation strategies to achieve thermal comfort at low energy 

consumption.  



  

257 

REFERENCES 

1. Abdelrahman M. A. and Ahmed A., Cost Effective use of Thermal Insulation in 
Hot Climates , Building and Environment, Vol. 26, No.2, pp.189-194., 1991.  

2. Abdelrahman M. A., Field evaluation of a comfort meter , ASHRAE 
Transactions, Vol.96, pp.212-215, 1990.  

3. Ahmed A., Elhadidy M. A., Energy Conservation Measures for a Typical 
Detached Single Family House in Dhahran , in Proc. Of  The first Symposium on 
Energy Conservation and Management in Buildings Conference, Saudi Arabia, 5-
6 February,2002, vol. I, pp. 31-42.  

4. Ahmed A., Energy Simulation for A Typical House Built With Different Types 
of Masonry Building Material , The Arabian Journal for Science and 
Engineering, October, 2004, Volume 29, Number 2B, 113-126.    

5. Ahmed H. N., Thermal Insulation Economics for Saudi Residential Buildings , 
Master Thesis, King Fahd University for Petroleum and Minerals, 1991.  

6. Akbari H., Bretz S. E., Taha H. G., Kurn D. M., and Hanford J. W., Peak power 
and cooling-energy savings of high-albedo roofs , Energy and Buildings, 25(2), 
1997.  

7. Akbari H., Konopacki S. J., and Parker D. S. Updates on Revision to 
ASHRAE Standard 90.2: Including Roof Reflectivity for Residential Buildings . 
ACEEE 2000 Summer Study on Energy Efficiency in Buildings: Efficiency & 
Sustainability, Vol. 1, pp.1.1-1.11, 2000.  

8. Al-Arfag K. A., Thermal Insulation in Buildings and its contribution to conserve 
Electrical Energy Consumption in Proc. Of  The first Symposium on Energy 
Conservation and Management in Buildings Conference, Saudi Arabia, 5-6 
February,2002, vol. I, pp. 49-58. (In Arabic)  

9. Al-Haddad A., Development of a Typical Saudi Villa for Energy Conservation 
Studies , Senior Thesis, College of Environmental Design, King Fahd University 
of Petroleum and Minerals, 1988.   

10. Al-Haddad I., A Study of the Construction Methods for the Insulated External 
Wall and Roof Structures for Residential Buildings , Senior Thesis, College of 
Environmental Design, King Fahd University of Petroleum and Minerals, 1986.



258   

11. Al-Hammad A, and Hassanain M. A., Value Engineering in the Assessment of 
Exterior Building Wall Systems , Journal of Architectural Engineering, Vol.2, 
No. 3, September, 1996.  

12. Al-Hemiddi N. A. and Al-Saud K. A., The effect of a ventilated interior 
courtyard on the thermal performance of a house in a hot-arid region , Renewable 
Energy, 24, pp.581-595, 2001.  

13. Al-Hemiddi N. A., Passive Cooling Systems Applicable for Buildings in the Hot-
Dry Climate of Saudi Arabia, PhD Dissertation, University of California Los 
Angeles, 1995.  

14. Al-Homoud M. S., The Effectiveness of Thermal Insulation in Different Types 
of Buildings in Hot Climates , Journal of Thermal Envelope and Building 
Science, Vol. 27, No. 3, January 2004.  

15. Al-Homoud M. S., "Optimum Thermal Design of Air-Conditioned Residential 
Buildings", Building and Environment, 32(3), pp.203 210, 1997.  

16. Al-Maimani F., Reducing Electrical Energy in Residential Buildings by Cavity 
and Insulated Walls , in Proc. Of  The first Symposium on Energy Conservation 
and Management in Buildings Conference, Saudi Arabia, 5-6 February,2002, vol. 
I, pp. 69-78. (In Arabic)  

17. AL-Maziad F.,  The influence of Envelope Design Parameters on the Building 
Energy Performance for Housing Applications in Saudi Arabia, Eastern 
Province , MS Thesis, Ministry of Higher Education, Series of Publishing 1000 
Academic Theses (32), 1999.  

18. Al-Mofeez I. A., Electrical Energy Consumption PRE- and POST-Energy 
Conservation Measures: A case study

 

in Proc. Of  The first Symposium on 
Energy Conservation and Management in Buildings Conference, Saudi Arabia, 5-
6 February,2002, vol. I, pp. 209-222.  

19. Al-Mujahid A. M., Comparison of Thermal Performance of thermal Insulation in 
Buildings , AL-Mohandis Journal, 1996, Vol . 9, Issue 3, pp. 46-52.  

20. AL-Najem A. A., The Architectural Category and its importance to measure the 
electrical energy demand and to identify effective conservation measures in 
Proc. Of  The first Symposium on Energy Conservation and Management in 
Buildings Conference, Saudi Arabia, 5-6 February,2002, vol. I, pp. 99-110. (In 
Arabic)  



259   

21. Alnaser W. E., Eliagoubi B., Al-Kalak A., Trabelsi H., Al-Maalej M., El-Sayed 
H. M., Alloush M., Data bank:First solar radiation atlas for the Arab world , 
Renewable Energy, 29, pp.1085 1107, 2004.  

22. Al-Sanea S. A., Finite-volume thermal analysis of building roofs under two-
dimensional periodic conditions , Building and Environment, 38, pp. 1039-1049, 
2003.  

23. Al-Sanea S. A. and Zedan M. F., Effect of Insulation Location on Initial 
Transient Thermal Response of Building Walls , Journal of Thermal Envelope 
and Building Sceince, 24(4): 275 300, 2001.  

24. Al-Sanea S. A. Thermal Performance of Building Roof Elements , Building and 
Environment, 37, pp.665-675, 2002.  

25. Al-Turki A. M., Gari H. N. and Zaki G. M., Comparative Study on reduction of 
cooling loads by roof gravel cover , Energy and Buildings, 25, pp. 1-5, 1997.  

26. Andersson B., Place W., Kammerud R., and Scofield M. P. The Impact of 
Building Orientation on Residential Heating and Cooling , Energy and Buildings, 
8, pp. 205-224, 1985.  

27. Asan H. and Sancaktar Y. S., Effect of Wall s Thermo-physical properties on 
time lag and decrement factor , Energy and Buildings, 28, pp. 159-166, 1998.  

28. ASHRAE Handbook: Fundamentals. Atlanta, GA: American Society of Heating, 
Ventilating and Air-Conditioning Engineers, 1997.  

29. ASHRAE, ANSI/ASHRAE Standard 55-1992, Thermal Environmental 
Conditions for Human Occupancy, Atlanta: American Society of Heating, 
Refrigerating, and Air- conditioning Engineers, Inc., USA, 1992.  

30. ASHRAE, ANSI/ASHRAE Standard 55-2004, Thermal Environmental 
Conditions for Human Occupancy, Atlanta: American Society of Heating, 
Refrigerating, and Air- conditioning Engineers, Inc., USA, 2004.  

31. Bahel V., Said S. A. M. and Abdelrahman M, Validation and a microcomputer-
based hourly energy analysis computer program for a residential building , 
Energy-The international journal, Vol.14, No.4, pp.215-221, 1989.  

32. Balaras C. A., The role of thermal mass on cooling load of buildings: An 
overview of computational methods , Energy and Buildings, 24, pp. 1-10, 1996.  



260   

33. Bansal N. K., Garg S. N. and Kothari S. Effect of Exterior Surface Color on the 
Thermal Performance of Buildings , Building and Environment, 27, No.1, pp. 31-
37, 1992.  

34. Barnatt A., Foamed Phenolic Thermal Insulation Materials , Chapter 19, pp. 
415-436, Energy Conservation and Thermal Insulation, Edited by: R. Derricott 
and S. S. Chissick, John Wiley & Sons Ltd, 1981.  

35. Berdahl P., Bertz S. E., Preliminary survey of the solar reflectance of cool 
roofing materials , Energy and Buildings, 25, pp. 149-158, 1997.  

36. Biggs K. L., Bennie I. D. and Michell D., 'Air Infiltration Rates of Some 
Australian Houses , Australian Inst Build, vol. 2, pp. 49-61, 1987.  

37. Boji M. Lj., and Loveday D. L. The Influence on building thermal behavior of 
insulation/masonry distribution in a three-layered construction , Energy and 
Buildings, 26, pp. 153-157, 1997.  

38. Bouhamra W. S. , Elkilani A. S. and Abdul-Raheem M. Y., Predicted and 
Measured Air Exchange Rates , ASHRAE Journal, August 1998.  

39. Brager G. S. and deDear R. J., Thermal Adaptation in the Built Environment: a 
literature review , Energy and Buildings 27, pp. 83-96, 1998.  

40. Brager G. S., and deDear R. J., A Standard for Natural Ventilation , ASHRAE 
Journal, October 2000.  

41. Chan W. R., Price P. N., Sohn M. D., and Gadgil A. J., Analysis of U.S. 
Residential Air Leakage Database , Lawrence Berkeley National Laboratory, 
LBNL Report Number 53367, 2003.  

42. Clarke J. A., Energy Simulation in Building Design, 2nd Edition, Butterworth-
Heimemann: Reed Educational and Professional Publishing Ltd, 2001.  

43. Colliver D. G., Murphy W. E., and Sun W., Development of a Building 
Component Air Leakage Data Base , ASHRAE Transactions, Vol. (100), Pt.1, 
pp. 292-305, 1994.  

44. CR 1752, Ventilation for Buildings: Design Criteria for Indoor Environment, 
CEN, Brussels, 1998.  



261   

45. Crawely D. B., Which Weather Data Should You Use for Energy Simulations of 
Commercial Buildings? , ASHRAE Transactions, Vol. (104), pt.2, pp.498-515, 
1998.  

46. Crawley D. B., et al., Energyplus: A New-Generation Building Energy 
Simulation Program , Building Energy Simulation User News, Vol. 20, No. 1, 
spring 1999.  

47. Daoud O., Maheshwari G., and Al-Shami H., Measured Field Performance of 
Aluminum Windows in Kuwait , Energy and Buildings, 17, pp. 75-85, 1991.  

48. deDear R. J. and Brager G. S., Thermal Comfort in naturally ventilated 
buildings: revisions to ASHRAE Standard 55 , Energy and Buildings 34, pp. 549-
561, 2002.  

49. deDear R., Brager G.,  and Cooper D., Developing an Adaptive Model of 
Thermal Comfort and Preference , FINAL REPORT: ASHRAE RP- 884, March 
1997.  

50. DOE, Insulation Fact Sheet , Department of Energy, Energy Efficiency and 
Renewable Energy, Report # DOE/CE-0180, Prepared by the Oak Ridge National 
Laboratory, 2002.  

51. DOE-2., DOE-2 Engineers Manual: Version 2.1A , Building Energy Simulation 
Group, Lawrence Berkeley Laboratory and Solar Energy Group, Los Alamos 
National Laboratory, 1982.  

52. Edwards C., Modeling of Ventilation and Infiltration Energy Impacts in Mid and 
High-Rise Apartment Buildings , Report, Sheltair Scientific Limited, submitted 
to: Research Division, Canada Mortgage and Housing Corporation, 1999.  

53. Eley, VisualDOE 3.0 Program Documentation, Eley Associates 2001.  

54. Emmerich S. J. and Persily A. K., Energy Impacts of infiltration and ventilation 
in US office buildings using Multizone Airflow Simulation , Proceedings of IAQ 
and Energy 98 Conference, New Orleans, LA 22-27 October, 1998, pp. 191-203, 
1998.  

55. Energy Star, Home Sealing Specification , Version 1.0, 2001  

56. Fairey P., Radiant Energy Transfer and Radiant Barrier Systems in Buildings , 
Florida Solar Energy Center, FSEC Publication DN-6, 1994.  



262   

57. Fanger P. O., Thermal Comfort-Analysis and Applications in Environmental 
Engineering, McGraw-Hill Book Company, 1972.    

58. Fazio P., Athienitis A. K., Marsh C., Rao J.,  Environmental Chamber for 
Investigation of Building Envelope Performance , Journal of Architectural 
Engineering, Vol. 3, No. 2, June, 1997.  

59. Ferrari L., Control of Indoor Air Quality in Domestic and Public Buildings , 
Journal of Occupational Health and Safety-Australia and New Zealand, Vol. 7(2), 
pp. 163-167, 1991.  

60. Fishburn D., Factors in Roof System Selection , Building Science Insight (BSI-
89), National Research Council Canada, 1989.  

61. Florides G. A., Tassou S. A., Kalogirou S. A. , and Wrobel L. C., Measures used 
to lower building energy consumption and their cost effectiveness , Applied 
Energy, 73, pp. 299-328, 2002.  

62. Gagge A., Fobelets A., Berglund L., A standard predictive index of human 
response to the thermal environment , ASHRAE Transactions (92) (1), 1986.  

63. Givoni B. and Hoffman E., Experimental Study of thermal Characteristics of 
Curtain Walls in Warm Climates, Research Report to National Council for 
Research and Development, Building Research Station, Technion, Haifa, April, 
1965.   

64. Givoni B., Effectiveness of mass and night ventilation in lowering the indoor 
daytime temperature. Part I: 1993 experimental periods , Energy and Buildings, 
28, pp. 25-32, 1998.  

65. Givoni B., Performance and applicability of passive and low-energy cooling 
systems Energy and Buildings, 17, pp. 177-199, 1991.  

66. Givoni, B., Man, Climate, and Architecture, 2nd Edition, London: Applied 
Science Publishers, 1976.   

67. Griffin C. W., Energy Conservation in Buildings: Techniques for economical 
Design, the Construction Specifications Institute, Washington, D.C., 1974.  

68. Griggs E. I., and Shipp P. H., The Impact of Surface Reflectance on Roofs: An 
Experimental Study ASHRAE Transactions, Vol. 94, Pt. 2, pp. 1626-1642, 1988.  



263   

69. Grimsrud D. T., Sherman M. H., and Sonderegger R. C., Calculating infiltration: 
Implications for a construction quality standard , Proceedings of the ASHRAE-
DOE Conference on the Thermal Performance of the Exterior Envelope of 
Buildings II, p. 422. Las Vegas, NV, 1982.  

70. Grot R. A. and Clark R. E. Air leakage characteristics and weatherization 
techniques for low-income housing , Proceedings of the ASHRAE-DOE 
Conference on the Thermal Performance of the Exterior Envelopes of Buildings, 
p. 178. Orlando, FL, 1979.  

71. Gulf Countries Electric Energy Conservation Committee, Thermal Insulation 
Regulations, First Meeting of Gulf Ministers of Electricity, Doha, Qatar, Section 
II, Item 2, 30 31 October, 1984.  

72. Hampshire J. H., Thermal Insulating Blockwork , Chapter 17, pp. 381-392, 
Energy Conservation and Thermal Insulation, Edited by: R. Derricott and S. S. 
Chissick, John Wiley & Sons Ltd, 1981.  

73. Hand J. W., Removing Barriers to the use of Simulation in the Building Design 
Professions , PhD Dissertation, Energy Systems Research Unit, Department Of 
Mechanical Engineering, University Of Strathclyde, 1998.  

74. Harrison V. G., Natural Ventilation and Thermal Simulation Studies of West 
Australian State Housing Commission Houses, Master of Building Science 
Thesis, University of Western Australia, 1985.  

75. Henry R. and Patenaude A., "Measurements of Window Air Leakage at Cold 
Temperatures and Impact on Annual Energy Performance of a House , ASHRAE 
Transactions, Vol. 104 (1b), pp. 1254-1260, 1998.  

76. Hildebrandt E. W., Bos W., and Moore R. Assessing the Impact of White Roofs 
on Building Energy Loads , ASHRAE Transactions, Vol.104, Pt. 1B, pp. 810-
818, 1998.    

77. Holmes M. J., and Hitchin E. R., An Example Weather Year for the calculation 
of Energy Demand in Buildings , CIBSE Building Services Eng. Vol. (45), pp 
186-189, 1978.  

78. Hong T., Chou S. K., and Bong T. Y., Building Simulation: an overview of 
developments and information sources , Building and Environment, 35, pp. 347-
361, 2000.  



264   

79. Huang J., Impact of Different Weather Data on Simulated Residential Heating 
and Cooling Loads , ASHRAE Transactions, Vol. (104), pt.2, pp.516-527, 1998.  

80. Hue S. and Alsion, Research Report: Green Design and Construction of Site 
Offices , 2002. Available at <http://arch.hku.hk/~cmhui/report-
green_site_offices_content.pdf >    

81. Humphreys M. A. and Nicol J. F., Understanding the Adaptive Approach to 
thermal Comfort , ASHRAE Transactions (104) (pt.1B), 1998.  

82. Hutcheo N. B. Requirements for Exterior Walls , Canadian Building Digest, 
CBD-48, National Research Council, Division of Building Research, 
Canada, 1968.  

83. Hutcheon N. B. and Handegor D., Building science for cold climate, John Wiley 
& Sons, 1983.  

84. Ishteeaque E. M., The essentials of Energy Code and Making Buildings More 
Energy Efficient in Proc. Of  The first Symposium on Energy Conservation and 
Management in Buildings Conference, Saudi Arabia, 5-6 February,2002, vol. I, 
pp. 197-207.  

85. ISO 7730 Moderate Thermal Environments - Determination of the PMV and PPD 
indices and specification of the conditions for thermal comfort, 1st edition, 
International Standards Organization, Geneva, Switzerland, 1984.  

86. ISO 7730 Moderate Thermal Environments - Determination of the PMV and PPD 
indices and specification of the conditions for thermal comfort, 2nd edition, 
International Standards Organization, Geneva, Switzerland, 1994.  

87. Iwashita G., and Askasak H., The effects of human behavior on natural 
ventilation rate and indoor air environment in summer- a field study in southern 
Japan , Energy and Buildings, 25, pp. 195-205, 1997.  

88. Jayasinghe M. T. R., Attalage R. A., and Jayawardena A. I., Roof orientation, 
roofing materials and roof surface colour: their influence on indoor thermal 
comfort in warm humid climates , Energy for Sustainable Development, Vol. 
VII, No. 1, pp. 16-27, 2003.  

89. Jayasinghe M. T. R., Attalage R. A., and Jayawardena A. I., Thermal comfort in 
proposed three-storey passive houses for warm humid climates , Energy for 
Sustainable Development, Vol. VI, No. 1, pp. 63-73, 2002.  

http://arch.hku.hk/~cmhui/report-
green_site_offices_content.pdf


265   

90. Jones B. W., Capabilities and limitations of thermal models for use in thermal 
comfort standards , Energy and Buildings 34, pp. 653 659, 2002.  

91. Straube J. F., "Air Flow Control in Building Enclosures: More than Just Air 
Barriers", Proc. Of 8th Bldg Sci. & Tech. Conf., Toronto, Feb. 22-23, 2001, pp. 
282-302.  

92. KACST and NREL, NASA Remote Sensing Validation Data: Solar Village, 
Saudi Arabia, King Abdelaziz City for Science and Technology (KACST) and 
National Renewable Energy Laboratory (NREL), 2001. Avaialble at: 
http://rredc.nrel.gov/solar/new_data/Saudi_Arabia/

   

93. Kossecka E., and Kosny J.  Influence of Insulation configuration on heating and 
cooling loads in a continuously used building , Energy and Buildings, 34, pp. 
321-331, 2002.  

94. Kvisgaard B. and Collet P.F, The User s Influence on Air Change. In Air 
Change Rate and Airtightness in Buildings ; ASTM STP 1067; Sherman, M.H., 
Ed.; American Society for Testing and Materials: Philadelphia, PA, pp 67-76, 
1990.  

95. La Roche P., and Milne M., Effects of window size and thermal mass on 
building comfort using an intelligent ventilation controller , Solar Energy, Article 
in Press, 2003.  

96. Levermore G. J., and Doylend N. O. North American and European Hourly 
Based Weather Data and Methods for HVAC Building Energy Analyses and 
Design by Simulation , ASHRAE Transactions, Vol. (108), pt.2, pp.1053-1062, 
2002.  

97. Liddament M. W., Air Infiltration Calculation Techniques 

 

an Application 
Guide , Air Infiltration and Ventilation Centre, Bracknell, U.K, 1986.  

98. Marion W. and Urban K., User s Manual for TMY2s Typical Meteorological 
Years, NREL/SP-463-7668, National Renewable Energy Laboratory, June, 1995.  

99. Mathews E. H., Etzion Y., Erell E, Richards P. G. , and Rousseau P. G.,  
Simplified analysis of Naturally Ventilated Desert Buildings , Building and 
Environment, Vol. (27), No. (4), pp. 423-432, 1992.  

100. McQuiston F. C. and Parker J. D., Heating, Ventilation, and Air Conditioning: 
Analysis and Design , John Wiley &Sons, Inc., 1994.  

http://rredc.nrel.gov/solar/new_data/Saudi_Arabia/


266   

101. McWilliams J., Review of Airflow Measurement Techniques , Lawrence 
Berkeley National Laboratory, Report No: LBNL#49747, 2002.  

102. Moujaes S. F., and Brickma R., Thermal Performance Analysis of Highly 
Reflective Coating on Residences in Hot and Arid Climates , Journal of Energy 
Engineering, Vol. 129, No. 2, 2003.  

103. Nahar N. M., Sharma P., Purohit M. M., Performance of different passive 
techniques for cooling of buildings in arid regions , Building and Environment, 
Vol. (38), pp. 109-116, 2003.  

104. NCDC, Test Reference Year (TRY), Tape Reference Manual, TD-9706. 
Asheville, North Carolina: National Climate Data Center, U.S. Department of 
Commerce, 1976.  

105. NCFI, Principles of Heat Transfer , 1995. Available @http://www.NCFI.com.

  

106. NRCan, Phase One: Defining the Methodology for the Next-Generation 
HOT2000 Simulator, Task-3: Starting Point , Natural Resources Canada, 
February 15, 1998.  

107. Olesen B. W. and Brager G. S. A Better Way to Predict Comfort , ASHRAE 
Journal, August 2004.  

108. Olesen B. W. and Parsons K. C., Introduction to thermal comfort standards and 
to the proposed new version of EN ISO 7730 , Energy and Buildings 34, pp. 537-
548, 2002.  

109. Olgayay V., Design with Climate, Princeton University Press, New Jersey, 1963.  

110. Orme M., Estimates of the energy impact of ventilation and associated financial 
expenditure , Energy and Buildings 33, pp. 199-205, 2001.  

111. Parker D. S.,  Mcllvaine J. E. R. , Barkaszi S. F. and Beal D. J., Laboratory 
Testing of reflectance properties of roofing materials, Report No. FSEC-CR-670-
93, Florida Solar Energy Center, 1993.  

112. Parker D. S., and Sherwin J. R. Comparative summer attic thermal performance 
of six roof constructions. ASHRAE Trans., Vol. (104), pp.1084 1092, 1998.  

113. Parker D. S., Cummings J. B., Sherwin J. R., Stedman T. C., and McIlvaine J. E., 
Measured Residential Cooling Energy Savings from Reflective Roof Coatings in 

Florida , ASHRAE Transactions, Vol. 100, Pt. 2, pp. 36-49, 1994 

http://www.NCFI.com


267    

114. Parker D. S., Barkaszi S. F., Chandra S., and Beal D. J., Measured cooling 
energy savings from reflective roofing systems in Florida: Field and laboratory 
research results , Proceedings, Thermal Performance of the Exterior Envelopes of 
Buildings VI, ASHRAE, Atlanta, 1995.  

115. Parker D. S., Sherwin J. R., and Sonne J. K., 1998, Measured performance of a 
reflective roofing system in a Florida commercial building , ASHRAE Technical 
Data Bulletin, Volume 14, No. 2, pp. 7-12, January 1998.  

116. Pettersen T. D., Variation of Energy Consumption in dwellings due to climate, 
building and inhabitants , Energy and Buildings, 21, pp. 209-218, 1994.  

117. Pittomvils J., Hens H. and Van Bael F., "Evaluation of Ventilation System in 
Very Low Energy Houses , in Proceedings: Optimum Ventilation and Air Flow 
Control in Buildings, 17th Air Infiltration and Ventilation Centre Conference, 
Gothenburg, Sweden, September 17-20, 1996.  

118. Rajapaksha I., Nagai H., Okumiya M., Indoor Thermal Modification of a 
ventilated Courtyard House in the Tropics , Journal of Asian Architecture and 
Building Engineering, 94, March 2002.  

119. Ratnaweera C., and Hestnes A. G. Enhancing Cooling in Typical Sri Lankan 
Dwellings , Building and Environment, 23, pp. 183-190, 1996.  

120. Reagan J. A., and Acklam D. M.., Solar Reflectivity of Common Building 
Materials and its Influence on the Roof Heat Gain of Typical Southwestern USA 
Residences , Energy and Buildings, 2, pp. 237-248, 1979.  

121. Reardon C., McGee C., and Milne G., Your home: Design for Lifestyle and the 
Future , Technical Manual, Commonwealth of Australia (COA), 2004. 
Available@http://www.yourhome.gov.au/technical/index.htm

  

122. Reardon J T, Kim A K, and Shaw C Y, Balanced fan depressurization method 
for measuring component and overall air leakage in single and multi family 
dwellings , ASHRAE Transactions Vol. (93), pt. (2), 1987.  

123. RI/KFUPM, Testing of El-Maimani Red Clay Bricks To Determine Their 
Thermal Characteristics , Report prepared by Research Institute at King Fahd 
University (KFUPM) for El-Maimani Red Brick & Clay Products Factories, PN 
22036, March 1989.   

http://www.yourhome.gov.au/technical/index.htm


268   

124. RI/KFUPM, Simulation of Energy and Cost Effectiveness Studies For 
Residential Buildings Built From Clay Brick Versus Other Masonry 
Construction , Report prepared by Research Institute at King Fahd University 
(KFUPM) for Committee of Clay Brick Procedures in Saudi Arabia, PN 22037, 
April 1990.   

125. RI/KFUPM, Simulation of Energy and Cost Effectiveness For A Detached 
Single Family House Built with Siporex Materials , Report prepared by Research 
Institute at King Fahd University (KFUPM) for LCC-Siporex Riyadh, Saudi 
Arabia, SQ2089, January 1994.   

126. Richards S. J., Climate Control by Building Design , South African 
Architectural Record, Vol.44, No.1, 1959.  

127. Rocky Mountain Institute s (RMI s ), Home Energy Briefs , Series of Design 
and Operation Guidelines for Residential Buildings, 
http://www.rmi.org/sitepages/pid171.php , October, 2004.  

128. Saeed S. A. R., Thermal comfort requirements in hot dry regions with special 
reference to Riyadh, Part 1: For university students , International Journal of 
Ambient Energy, v. 14, pp.147-154, 1993.  

129. Saeed S. A. R., Thermal comfort requirements in hot dry regions with special 
reference to Riyadh, Part 2: For Friday prayer , International Journal of Ambient 
Energy, v. 17, pp.17-21, 1996.  

130. Said S. A. M., Al-Hammad A., and Grondzik W. Measured Annual Performance 
of 10 Roof and Wall Assemblies in Dhahran, Saudi Arabia , ASHRAE 
Transaction, Vol. (103), pt.2, pp 157-164, 1997.  

131. Said S. A. M. and Abdelrahman M. A., Energy Efficiency of a Building in the 
Eastern Province of Saudi Arabia: Parametric Analysis with DOE2.1A , 
ASHRAE Transaction, Vol. (95), pt.1, pp 147-152, 1989.  

132. Said S. A. M., Degree-Day Base Temperature for Residential Building Energy 
Prediction in Saudi Arabia , ASHRAE Transaction, Vol. (98), pt.1, pp 346-353, 
1992.  

133. Said S. A. M., and Kadry H. M., Generation of Representative Weather Year 
Data for Saudi Arabia , Applied Energy, 48, pp 131-136, 1994.  

134. Said S. A. M., Kadry H. M., and Ismail B., Climate Conditions in Saudi Arabia , 
ASHRAE Transaction, Vol(102),pt.1, pp.37-44, 1996. 

http://www.rmi.org/sitepages/pid171.php


269    

135. Said S. A. M., Habib M. A., and Iqbal M. O., Database for building energy 
prediction in Saudi Arabia , Energy Conversion and Management, Vol. (44), 
pp.191-201, 2003.  

136. Saini B. S., Building in Hot Dry Climates, John Wiley & Sons Ltd, 1980.  

137. Saudi Electricity Company (SEC), Annual Report, 2002.  

138. Shaviv E., Yesioro A., and Capeltuo I. G, Thermal Mass and Night ventilation as 
passive Cooling Design Strategy , Renewable Energy, 24, pp.445-452, 2001.  

139. Sherman M., Air Infiltration Measurement Techniques , Lawrence Berkeley 
National Laboratory, Revision of LBL#10705, 1998a.  

140. Sherman M., Building Airtightness: Research and Practice1 , Lawrence 
Berkeley National Laboratory, Revision of LBL#53356, 2004.  

141. Sherman M., Estimation of Infiltration for Leakage and Climate Indicators , 
Energy and Buildings, 10, p.81, 1987.  

142. Sherman M., The Use of Blower-Door Data , Lawrence Berkeley National 
Laboratory, Report No: LBNL#35173, 1998b.  

143. Sherman M. H. and Grimsrud D. T., Infiltration-pressurization correlation: 
Simplified physical modeling , ASHRAE Transactions Vol. (86), pt. (2), pp.778, 
1980.  

144. Sreshthaputra A., Haberl J., and Andrews M. J., Improving Building Design and 
Operation of a Thai Buddhist Temple , Energy and Buildings, 36, pp.481-494, 
2004.  

145. Sreshthaputra A., Building Design and Operation for Improving Thermal 
Comfort in Naturally Ventilated Buildings in a Hot-Humid Climate , PhD 
Dissertation, Texas A&M University, College Station, TX, U.S.A., 2003.   

146. Steel F., Airtight Houses and Carbon Monoxide , Canadian Building Digest, 
CBD-222, National Research Council, Division of Building Research, 
Canada, 1982.  

147. Stephen R. K., Airtightness in UK dwellings: BRE s test results and their 
significance , BRE Report BR 359. London, CRC Ltd, 1998.  



270   

148. Stephenson D. G., Heat Transfer at Building Surfaces , Canadian Building 
Digest, CBD-52, National Research Council, Division of Building Research, 
Canada, 1964.    

149. Stoffel T. L., and Rymes M. D., Production of the weather year for energy 
calculations version 2 (WYEC2) data files , ASHRAE Transactions, Vol. (104), 
pt.2, 1998.  

150. Sullivan R., Final Report: Validation studies of DOE-2 Building Energy 
Simulation Program , Lawrence Berkeley National Laboratory, Report No: 
LBNL#42241, 1998.  

151. Swinton M. C., Radiant Barriers and Reflective Insulation , Home Builder, 4(5), 
p. 25-26, 1991.  

152. Taha H. and Akbari H., Cool Roofs as an Energy Conservation Measure for 
Federal Buildings , Lawrence Berkeley National Laboratory, Report No. LBNL-
51895, Berkeley, California, 2003.  

153. Taha H., Sailor D., and Akbari H., High-albedo materials for reducing building 
cooling energy use , Lawrence Berkeley National Laboratory Report No. 31721, 
UC-350,1992.  

154. Talib, K., Shelter in Saudi Arabia , Academy Editions, 1984.  

155. Taylor P.B, Mathews E. H., Kleingeld M. and Taljaard G. W., The effect of 
Ceiling Insulation on Indoor Comfort , Building and Environment, 35, pp. 339-
346, 2000.  

156. Thevenard D. J. and Brunger A. P., The Development of Typical Weather Years 
for International Locations: Part I, Algorithms , ASHRAE Transaction, Vol. 
(108), pt.2, pp.376-383, 2002.  

157. Touloukain Y. S. , DeWitt D. P. and Hernicz R. S. , Thermal Radiative Properties, 
Coatings, Thermo-physical Properties of Matter, Vol.9, IFI/Plenum, New York, 
1972.  

158. Tuomaala P., Implementation and evaluation of air flow and heat transfer 
routines for building simulation tools , PhD Dissertation, Department of 
Mechanical Engineering, University of Technology, Finland, 2002.  



271   

159. Ulgen K., Experimental and Theoretical investigation of effects of wall s 
thermo-physical properties on time lag and decrement factor , Energy and 
Buildings, 34, pp. 273-278, 2002.  

160. Van Straatan J. F. Roof Insulation , South African Architectural Record, Vol.49, 
No. (2), 1964.   

161. VanBronkhorst D. A., Persily A. K., and Emmerich S. J., Energy Impacts of air 
leakage in U.S. office buildings , in Proceedings of Implementing the results of 
Ventilation Research, 16th AVIC Conference, Palm Springs, USA, 19-22 
September,1995.  

162. WATSUN Simulation Laboratory, Engineering Data sets of hourly weather 
observations in WYEC2 format (WYEC2 files) and Canadian weather for energy 
calculations (CWEC files), User s Manual, Prepared for Environment Canada 
Atmosphere Environment Service and National Research Council Canada. 
Waterloo, Ontario: Watson Simulation Laboratory, University of Waterloo, 1992.  

163. Yellot J. I., How Materials React to Solvent Energy , Architectural Record, Vol. 
139, No. 5, 1966.   

164. Zarr R. R., Analyzing Study of Residential Buildings with Reflective Roofs , 
National Institute of Standard and Technology, Report # NISTIR 6228, 1998.  

165. Zhang Q., Huang J. and Lang S., Development of Typical Year Weather Data for 
Chinese Locations , ASHRAE Transaction, Vol. (108), pt.2, pp.1063-1075, 2002.  

166. Zmeureanu R., Defining the Methodology for the Next-Generation Hot2000 
Simulator Report Submitted to Natural Resources Canada, CANMET Energy 
Technology Centre, 1997.     



 

272        

APPENDECES 

APPENDIX A: Data Collection Form ............................................................................ 273 

APPENDIX B: Thermal Characteristics of Developed Wall and Roof Designs............ 280 

APPENDIX C:  Entered Ventilation Strategies in VisualDOE in Dhahran ................... 298 



 

273 

APPENDIX A: Data Collection Form 



274   

SURVEY OF ENVELOPE DESIGN PARAMETERS IN RESIDENTIAL 
BUILDINGS IN SAUDI ARABIA  

TO DESIGN OFFICE MANAGER  

SUBJECT: QUESTIONNAIRE SURVEY FOR THESIS RESEARCH  

Dear Sir,  

Mr. Saleh Al-Saadi is a Graduate student in the Architectural Engineering 

Department. He is currently collecting data for his Master thesis titled Envelope 

Design for Thermal Comfort and Reduced Energy Consumption in Residential 

Buildings . He is conducting a questionnaire survey for his thesis research. The 

purpose of this survey is to identify the building envelope design parameters (i.e. 

roof, walls and windows) that are commonly used in the design practice of 

residential buildings in Saudi Arabia. Please distribute the questionnaire to the 

appropriate persons in your design office (e.g. Architects, Architectural 

Engineers, Construction Documents Developers or Specification Writers).   

I hope that you will extend any help you can to make his research successful. We 

always value your participation and appreciate your active contribution in this 

phase of the study.  

Thanks in advance for your positive cooperation.     

                                                  
         

Chairman, Architectural Engineering Department, KFUPM    

Dr. Ismail Budaiwi  
Thesis  Advisor,                                                                                       
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Questionnaire Survey   

INSTRUCTIONS: Please mark the answer that mostly reflects your design practice. (Respondent s 
information will remain anonymous and the data will be used for educational purpose only).   

Section I: Respondent s  General Information 

 

Name (Optional)  

Company Name:  

Job Title:  

Telephone No.:  

Facsimile:  

E-mail Address:  

 

Company Address:  

 

1. How many years of experience does your design office have in designing single-family houses in Saudi 
Arabia?  

2. What is the yearly average number of single-family houses that 
your design office normally designs? Number of houses=  

  

Section II: Building General Information  

 

1. On average, what is the floor area of a single-family 
house? Floor Area= ..m2 

 

Square Shape Rectangular  Irregular  2. What is the common geometrical shape you 
normally use for a single-family house? 

    

1-Floor 2-Floors 3-Floors 3. How many floors you normally design for a single- 
family house? 

            

a) less than 5 years 

  

b) 5-10 years 

 

c) 10-15 years 

  

d) Over 15 years 
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Section III: Building Envelope Design Parameters 

 
A) Exterior Walls Design 

 

The followings are common exterior wall designs and locations of the insulation material that are normally 
used in single-family houses, select one or more designs according to your design practice: (please Tick 

 

the empty boxes for the selected design)   

 

Location of Insulation Material Relative to the 
Primary Layer 

Wall Designs: Normally 
used 

With No 
Insulation 

To the 
Exterior 

To the 
Interior 

Bounded by Two 
Layers 

1. Single-Leaf  Wall 

     

2. Double Leaf Wall 

     

3. Cavity wall 

     

4. Sandwich Panel Wall 

  

(e.g. Main Layer/Insul./Main Layer or Insul./Main Layer/Insul.) 
5. Others, Please Specify: . 

 

Main Building Materials normally used for Exterior Walls Please Tick 

 

4. Concrete Masonry Blocks (CMU):  

a. Solid   

 

b. Hollow   

 

c. Hollow with insulation material inserts  

 

5. Aerated Concrete Blocks  (e.g. Autoclaved, Siporex) 

 

6. Clay Bricks:   

a. Solid   

 

b. Hollow   

 

c. Hollow with insulation material inserts  

 

7. Reinforced Concrete:  

a. Cast-in-Place     

 

b. Pre-Cast          

 

8. Stone 

 

9. Adobe 

 

10. Others, Please Specify: . 

Exterior Finishing normally used for Walls Please Tick 

 

1. Cement Plaster (e.g. Stucco) 

 

2. Stone Veneer 

 

3. Marble Cladding 

 

4. Others, Please Specify: . 
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Walls  Surface Colors that are normally used: Please Tick 

 
Light Color   
(white paint) 

 
Medium Color        

(off-white, cream) 

 
Dark Color (Brown, red or other dark 

colored paints) 

  

B) Roofing System Design 

 

The followings are common roof deck types and location of insulation materials that are normally used in 
single-family houses, select one or more designs

 

according to your design practice: (please Tick  the 
empty boxes for the selected design)  

 

Location of Insulation Material Relative to the 
Roof Slab 

Roofing  Deck Designs: Normally 
used 

With No 
Insulation 

To the 
Exterior 

To the 
Interior 

Filled in hollow-
Cores 

1. Reinforced Concrete Slab 

     

2. Hourdi Block Slab  

     

3. Pre-cast hollow-core 
concrete planks  

     

4. Others, Please Specify: . 

Building Materials that are normally used for Roofs: Please Tick 

 

1. Sloping Foam Concrete Screed, Thickness = .. mm 

 

2. Sloping Plain (sand/cement) Concrete Screed, Thickness = .. mm 

 

3. Sand Fill, Thickness = .. mm 

 

4. Hollow Clay bricks for hourdi Slab 

 

5. Hollow CMU blocks for hourdi Slab 

 

6. Others, Please Specify: 

 

Flooring (Exposed) Layer of the Roof Construction: Please Tick 

 

1. Tiles (i.e. Terrazzo, Cement)  

 

2. Gravel layer, Thickness = .mm 

 

3. Soil layer, Thickness     = .mm 

 

Special Features of Roofing System Please Tick 

 

1. Shading (e.g. metal corrug. sheets, pergolas)  is normally used to shade part of the Roof  

 

2. False Ceiling is normally used in Roofing System, Depth of plenum = . mm 

 

Roof s Surface Colors that are normally used: 
Light Color   
(white paint) 

 

Medium Color        
(off-white, cream) 

 

Dark Color                                  
(roofs with gravel, red tile) 
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C) Types of Insulation Materials in Walls and Roofing Systems 

 
The followings are common insulation materials that are normally used in walls and roofing systems, 
select

 
one or more

 
according to your design practice: (please Tick  the selected design for both wall 

and roof)  

Insulation Materials that are normally used for: Wall  Roof  

1. Rock wool  

  

2. Fiber glass     

  

3. Cellulose 

  

4. Vermiculite  

  

5. Perlite 

  

6. Extruded polystyrene (XPS)         

  

7. Expanded or Molded polystyrene (EPS) 

  

8. Polyurethane    

  

9. Polyethylene 

  

10. Light-weight Concrete 

  

11. Others, Please Specify: . 

12. Low emissivity material (i.e. aluminum paper) is used in: Wall Air cavity 

 

Ceiling Plenum 

 

13. Allowable air space or gap that is commonly used in your Wall design= ..mm 

14. Required Minimum R-value for insulation material in Wall Design is = . m2.°C / W 

15. Required Minimum R-value for insulation material in Roof Design is = . m2.°C / W 

 

D) Window Designs 

 

The followings are common glazing types that are used in single-family houses, select one or more

 

according to your design practice:  

Glazing Types or Components that are normally used: Please Tick 

 

1. Single-glazed layer: 

a. Clear  

 

b. Bronze/Gray/Green Tint 

 

2. Double-glazed layers: 

a. Clear  

 

b. Bronze/Gray/Green Tint 

 

c. Low-e with High-Solar-Gain (Pyrolitic or hard coat Low-E glass) 

 

d. Low-e with Moderate-Solar-Gain, (Sputtered or soft-coat products) 

 

e. Low-e with Low-Solar-Gain, (Spectrally Selective) 

 

3. Triple-glazed layers: 

a. Clear  

 

b. Low-e  

 

4. Others, Please specify: ... 
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Exterior Shadings 
1. Side Fins, Projection  = . mm 

2. Overhang, Projection = . mm  

3. Others, Please specify: . .

 

Window Ratio: 
What is the Window to Wall Ratio (WWR) that is normally used in your design? WWR= . 

Window Types that are normally used in single-family houses: (Please Tick ) 
Operable Windows   

 

Fixed Windows  

   

Section IV: Air Leakage and Lighting Requirements 

 

The followings are general air leakage and lighting requirements in single-family houses, select one or 
more according to your design practice:  

Air Leakage Requirements in single-family houses  (Please Tick ) 

1. Buildings are designed to be: Air Tight       

 

Average Tight  

 

Air Loose 

 

2. Measures that are normally used in your design

 

to reduce air leakage in single-family 
houses: 

Please Tick 

 

a. Air barrier are installed in walls and roofs e 

 

b. Weather-stripping is used in windows and doors  e 

 

c. Caulking and gaskets are used in windows and doors  e 

 

d. None is used  e 

 

Lighting Requirements in single-family houses    Please Tick 

 

3. Lighting sources that are normally used

 

:  
a. Fluorescent lamps 

 

b. Incandescent lamps  

 

c. Energy efficient lamps  

 

4. Lighting Power Density (LPD) used for residential buildings is = ..W/m2  

  

Please add any additional information about your building envelope design practice

 

that you think is 
important: 
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Table A.1 Thermal Characteristics of Common Building Materials Used in Envelope 
Design of Residential Buildings in Saudi Arabia 

Building Material 
Conductivity,  
k (W/m.°C) 

Heat Capacity 
(J/m2.°C) 

Density 
(kg/m3) Reference 

Rock Wool 0.0461 834 16 Al-Mujahid, 1996 
Expanded Polystyrene  0.036 1210 20 Said et al., 1997 
Polyurethane  0.023 1590 32 Al-Mujahid, 1996 
Extruded Polystyrene  0.029 1213 35 Al-Sanea, 2002  
200 mm Hollow CMU 
Block 1.389 840 1984 RI/KFUPM, 1990 
200 mm Hollow Clay 
Bricks 0.65 840 1419 RI/KFUPM, 1989 
245 mm Siprox Block 0.383 840 633 RI/KFUPM, 1994 
100 mm Hollow CMU 
Block 0.96 840 2324 RI/KFUPM, 1990 
100 mm Hollow Clay 
Bricks 0.44 840 1634 RI/KFUPM, 1990 
100 mm Precast 
Concrete Panel 1.355 840 2245 RI/KFUPM, 1994 
Fiber Glass 0.035 1210 32 Said et al., 1997 
Reinforced Concrete 
Slab 1.803 840 2243   
200 mm CMU Hourdi 
Slab 1.092 840 2303 RI/KFUPM, 1990 
200 mm Clay Hourdi 
Slab 0.603 840 1449 RI/KFUPM, 1990 
200 mm Siporex Hourdi 
Slab 0.144 840 550 RI/KFUPM, 1994 
200 mm Precast Hollow 
Core Slab 1.018 529 1289 

Calculated based 
on equivalent area 

50 mm Gravel 1.436 1670 881 
Hand. of ASHRAE 
Fundamental 1997 

4 mm Water Membrane 0.190 1675 1121 Al-Sanea, 2002  
20 mm Mortar Bed 0.720 840 1858 Al-Sanea, 2002  
Cement Paving Tiles 1.730 920 2243 Al-Sanea, 2002  
50 mm Sand Fill 0.330 800 1515 Al-Sanea, 2002  
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Table A.2 Thermal Characteristics of Generic Wall Types in the Design Practices of Residential Buildings in Saudi Arabia  

Wall 
No. 

Main Building Material Insulation Exterior 
Finish 

Interior 
Finish 

U-Value 
(W/m2.°C)

 
R-Value 

(m2.°C/W) 
R-Value 

(RSI) 
Heat Capacity 

(KJ/m2.°C) 
Single Leaf Walls 

1 Single Hollow CMU Block none cement 
plaster 

cement 
plaster 

3.06 0.33 2 347.14 

2 Single Hollow Clay Bricks none cement 
plaster 

cement 
plaster 

2.04 0.49 3 252.22 

3 Single Siprox Block none cement 
plaster 

cement 
plaster 

1.22 0.82 5 144.1 

4 Single Hollow CMU Block 50 mm Rock Wool Insulation 
(external) 

cement 
plaster 

cement 
plaster 

0.71 1.41 8 347.81 

5 Single Hollow CMU Block 75 mm Rock Wool Insulation 
(external) 

cement 
plaster 

cement 
plaster 

0.51 1.96 11 348.15 

6 Single Hollow CMU Block 100 mm Rock Wool Insulation 
(external) 

cement 
plaster 

cement 
plaster 

0.4 2.50 14 348.48 

7 Single Hollow CMU Block 50 mm Rock Wool Insulation 
(internal) 

cement 
plaster 

cement 
plaster 

0.71 1.41 8 347.81 

8 Single Hollow CMU Block 75 mm Rock Wool Insulation 
(Internal) 

cement 
plaster 

cement 
plaster 

0.51 1.96 11 348.15 

9 Single Hollow CMU Block 100 mm Rock Wool Insulation 
(Internal) 

cement 
plaster 

cement 
plaster 

0.4 2.50 14 348.48 

10 Single Hollow CMU Block 50 mm Expanded 
Polysterene (external) 

cement 
plaster 

cement 
plaster 

0.58 1.72 10 348.35 

11 Single Hollow CMU Block 75 mm Expanded 
Polysterene (external) 

cement 
plaster 

cement 
plaster 

0.42 2.38 14 348.96 

12 Single Hollow CMU Block 100 mm Expanded 
Polysterene (external) 

cement 
plaster 

cement 
plaster 

0.32 3.13 18 349.56 

13 Single Hollow CMU Block 50 mm Expanded 
Polysterene (Internal) 

cement 
plaster 

cement 
plaster 

0.58 1.72 10 348.35 

14 Single Hollow CMU Block 75 mm Expanded 
Polysterene (Internal) 

cement 
plaster 

cement 
plaster 

0.42 2.38 14 348.96 

15 Single Hollow CMU Block 100 mm Expanded 
Polysterene (Internal) 

cement 
plaster 

cement 
plaster 

0.32 3.13 18 349.56 

16 Single Hollow CMU Block 50 mm Polyurethane 
(external) 

cement 
plaster 

cement 
plaster 

0.4 2.50 14 349.69 

17 Single Hollow CMU Block 75 mm Polyurethane cement cement 0.28 3.57 20 350.96 
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Wall 
No. 

Main Building Material Insulation Exterior 
Finish 

Interior 
Finish 

U-Value 
(W/m2.°C)

 
R-Value 

(m2.°C/W) 
R-Value 

(RSI) 
Heat Capacity 

(KJ/m2.°C) 
(external) plaster plaster 

18 Single Hollow CMU Block 100 mm Polyurethane 
(external) 

cement 
plaster 

cement 
plaster 

0.21 4.76 27 352.23 

19 Single Hollow CMU Block 50 mm Polyurethane 
(Internal) 

cement 
plaster 

cement 
plaster 

0.4 2.50 14 349.69 

20 Single Hollow CMU Block 75 mm Polyurethane 
(Internal) 

cement 
plaster 

cement 
plaster 

0.28 3.57 20 350.96 

21 Single Hollow CMU Block 100 mm Polyurethane 
(Internal) 

cement 
plaster 

cement 
plaster 

0.21 4.76 27 352.23 

22 Single Hollow CMU Block 50 mm Extruded Polysterene 
(external) 

cement 
plaster 

cement 
plaster 

0.49 2.04 12 349.26 

23 Single Hollow CMU Block 75 mm Extruded  Polysterene 
(external) 

cement 
plaster 

cement 
plaster 

0.34 2.94 17 350.33 

24 Single Hollow CMU Block 100 mm Extruded  
Polysterene (external) 

cement 
plaster 

cement 
plaster 

0.26 3.85 22 351.39 

25 Single Hollow CMU Block 50 mm Extruded  Polysterene 
(Internal) 

cement 
plaster 

cement 
plaster 

0.49 2.04 12 349.26 

26 Single Hollow CMU Block 75 mm Extruded  Polysterene 
(Internal) 

cement 
plaster 

cement 
plaster 

0.34 2.94 17 350.33 

27 Single Hollow CMU Block 100 mm Extruded  
Polysterene (Internal) 

cement 
plaster 

cement 
plaster 

0.26 3.85 22 351.39 

28 Single Hollow Clay Bricks 50 mm Rock Wool Insulation 
(external) 

cement 
plaster 

cement 
plaster 

0.63 1.59 9 252.89 

29 Single Hollow Clay Bricks 75 mm Rock Wool Insulation 
(external) 

cement 
plaster 

cement 
plaster 

0.47 2.13 12 253.23 

30 Single Hollow Clay Bricks 100 mm Rock Wool Insulation 
(external) 

cement 
plaster 

cement 
plaster 

0.38 2.63 15 253.56 

31 Single Hollow Clay Bricks 50 mm Rock Wool Insulation 
(internal) 

cement 
plaster 

cement 
plaster 

0.63 1.59 9 252.89 

32 Single Hollow Clay Bricks 75 mm Rock Wool Insulation 
(Internal) 

cement 
plaster 

cement 
plaster 

0.47 2.13 12 253.23 

33 Single Hollow Clay Bricks 100 mm Rock Wool Insulation 
(Internal) 

cement 
plaster 

cement 
plaster 

0.38 2.63 15 253.56 

34 Single Hollow Clay Bricks 50 mm Expanded 
Polysterene (external) 

cement 
plaster 

cement 
plaster 

0.53 1.89 11 253.43 

35 Single Hollow Clay Bricks 75 mm Expanded cement cement 0.39 2.56 15 254.04 
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Wall 
No. 

Main Building Material Insulation Exterior 
Finish 

Interior 
Finish 

U-Value 
(W/m2.°C)

 
R-Value 

(m2.°C/W) 
R-Value 

(RSI) 
Heat Capacity 

(KJ/m2.°C) 
Polysterene (external) plaster plaster 

36 Single Hollow Clay Bricks 100 mm Expanded 
Polysterene (external) 

cement 
plaster 

cement 
plaster 

0.31 3.23 18 254.64 

37 Single Hollow Clay Bricks 50 mm Expanded 
Polysterene (Internal) 

cement 
plaster 

cement 
plaster 

0.53 1.89 11 253.43 

38 Single Hollow Clay Bricks 75 mm Expanded 
Polysterene (Internal) 

cement 
plaster 

cement 
plaster 

0.39 2.56 15 254.04 

39 Single Hollow Clay Bricks 100 mm Expanded 
Polysterene (Internal) 

cement 
plaster 

cement 
plaster 

0.31 3.23 18 254.64 

40 Single Hollow Clay Bricks 50 mm Polyurethane 
(external) 

cement 
plaster 

cement 
plaster 

0.38 2.63 15 254.76 

41 Single Hollow Clay Bricks 75 mm Polyurethane 
(external) 

cement 
plaster 

cement 
plaster 

0.27 3.70 21 256.04 

42 Single Hollow Clay Bricks 100 mm Polyurethane 
(external) 

cement 
plaster 

cement 
plaster 

0.21 4.76 27 257.31 

43 Single Hollow Clay Bricks 50 mm Polyurethane 
(Internal) 

cement 
plaster 

cement 
plaster 

0.38 2.63 15 254.76 

44 Single Hollow Clay Bricks 75 mm Polyurethane 
(Internal) 

cement 
plaster 

cement 
plaster 

0.27 3.70 21 256.04 

45 Single Hollow Clay Bricks 100 mm Polyurethane 
(Internal) 

cement 
plaster 

cement 
plaster 

0.21 4.76 27 257.31 

46 Single Hollow Clay Bricks 50 mm Extruded Polysterene 
(external) 

cement 
plaster 

cement 
plaster 

0.45 2.22 13 254.34 

47 Single Hollow Clay Bricks 75 mm Extruded  Polysterene 
(external) 

cement 
plaster 

cement 
plaster 

0.32 3.13 18 255.4 

48 Single Hollow Clay Bricks 100 mm Extruded  
Polysterene (external) 

cement 
plaster 

cement 
plaster 

0.25 4.00 23 256.47 

49 Single Hollow Clay Bricks 50 mm Extruded  Polysterene 
(Internal) 

cement 
plaster 

cement 
plaster 

0.45 2.22 13 254.34 

50 Single Hollow Clay Bricks 75 mm Extruded  Polysterene 
(Internal) 

cement 
plaster 

cement 
plaster 

0.32 3.13 18 255.4 

51 Single Hollow Clay Bricks 100 mm Extruded  
Polysterene (Internal) 

cement 
plaster 

cement 
plaster 

0.25 4.00 23 256.47 
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Wall 
No. 

Main Building Material Insulation Exterior 
Finish 

Interior 
Finish 

U-Value 
(W/m2.°C)

 
R-Value 

(m2.°C/W) 
R-Value 

(RSI) 
Heat Capacity 

(KJ/m2.°C) 
Double Leaf Walls 

52 Double Hollow CMU 
Block 

none cement 
plaster 

cement 
plaster 

2.56 0.39 2 404.26 

53 Double Hollow Clay 
Bricks 

none cement 
plaster 

cement 
plaster 

1.57 0.64 4 288.34 

54 Double Hollow CMU 
Block 

50 mm Rock Wool Insulation 
(external) 

cement 
plaster 

cement 
plaster 

0.68 1.47 8 404.93 

55 Double Hollow CMU 
Block 

75 mm Rock Wool Insulation 
(external) 

cement 
plaster 

cement 
plaster 

0.5 2.00 11 405.27 

56 Double Hollow CMU 
Block 

100 mm Rock Wool Insulation 
(external) 

cement 
plaster 

cement 
plaster 

0.39 2.56 15 405.6 

57 Double Hollow CMU 
Block 

50 mm Rock Wool Insulation 
(internal) 

cement 
plaster 

cement 
plaster 

0.68 1.47 8 404.93 

58 Double Hollow CMU 
Block 

75 mm Rock Wool Insulation 
(Internal) 

cement 
plaster 

cement 
plaster 

0.5 2.00 11 405.27 

59 Double Hollow CMU 
Block 

100 mm Rock Wool Insulation 
(Internal) 

cement 
plaster 

cement 
plaster 

0.39 2.56 15 405.6 

60 Double Hollow CMU 
Block 

50 mm Expanded 
Polysterene (external) 

cement 
plaster 

cement 
plaster 

0.56 1.79 10 405.47 

61 Double Hollow CMU 
Block 

75 mm Expanded 
Polysterene (external) 

cement 
plaster 

cement 
plaster 

0.4 2.50 14 406.08 

62 Double Hollow CMU 
Block 

100 mm Expanded 
Polysterene (external) 

cement 
plaster 

cement 
plaster 

0.32 3.13 18 406.68 

63 Double Hollow CMU 
Block 

50 mm Expanded 
Polysterene (Internal) 

cement 
plaster 

cement 
plaster 

0.56 1.79 10 405.47 

64 Double Hollow CMU 
Block 

75 mm Expanded 
Polysterene (Internal) 

cement 
plaster 

cement 
plaster 

0.4 2.50 14 406.08 

65 Double Hollow CMU 
Block 

100 mm Expanded 
Polysterene (Internal) 

cement 
plaster 

cement 
plaster 

0.32 3.13 18 406.68 

66 Double Hollow CMU 
Block 

50 mm Polyurethane 
(external) 

cement 
plaster 

cement 
plaster 

0.39 2.56 15 406.81 

67 Double Hollow CMU 
Block 

75 mm Polyurethane 
(external) 

cement 
plaster 

cement 
plaster 

0.27 3.70 21 408.08 

68 Double Hollow CMU 
Block 

100 mm Polyurethane 
(external) 

cement 
plaster 

cement 
plaster 

0.21 4.76 27 409.35 

69 Double Hollow CMU 50 mm Polyurethane cement cement 0.39 2.56 15 406.81 
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Wall 
No. 

Main Building Material Insulation Exterior 
Finish 

Interior 
Finish 

U-Value 
(W/m2.°C)

 
R-Value 

(m2.°C/W) 
R-Value 

(RSI) 
Heat Capacity 

(KJ/m2.°C) 
Block (Internal) plaster plaster 

70 Double Hollow CMU 
Block 

75 mm Polyurethane 
(Internal) 

cement 
plaster 

cement 
plaster 

0.27 3.70 21 408.08 

71 Double Hollow CMU 
Block 

100 mm Polyurethane 
(Internal) 

cement 
plaster 

cement 
plaster 

0.21 4.76 27 409.35 

72 Double Hollow CMU 
Block 

50 mm Extruded Polysterene 
(external) 

cement 
plaster 

cement 
plaster 

0.47 2.13 12 407.45 

73 Double Hollow CMU 
Block 

75 mm Extruded  Polysterene 
(external) 

cement 
plaster 

cement 
plaster 

0.34 2.94 17 407.45 

74 Double Hollow CMU 
Block 

100 mm Extruded  
Polysterene (external) 

cement 
plaster 

cement 
plaster 

0.26 3.85 22 408.51 

75 Double Hollow CMU 
Block 

50 mm Extruded  Polysterene 
(Internal) 

cement 
plaster 

cement 
plaster 

0.47 2.13 12 407.45 

76 Double Hollow CMU 
Block 

75 mm Extruded  Polysterene 
(Internal) 

cement 
plaster 

cement 
plaster 

0.34 2.94 17 407.45 

77 Double Hollow CMU 
Block 

100 mm Extruded  
Polysterene (Internal) 

cement 
plaster 

cement 
plaster 

0.26 3.85 22 408.51 

78 Double Hollow Clay 
Bricks 

50 mm Rock Wool Insulation 
(external) 

cement 
plaster 

cement 
plaster 

0.58 1.72 10 289.01 

79 Double Hollow Clay 
Bricks 

75 mm Rock Wool Insulation 
(external) 

cement 
plaster 

cement 
plaster 

0.44 2.27 13 289.35 

80 Double Hollow Clay 
Bricks 

100 mm Rock Wool Insulation 
(external) 

cement 
plaster 

cement 
plaster 

0.36 2.78 16 289.68 

81 Double Hollow Clay 
Bricks 

50 mm Rock Wool Insulation 
(internal) 

cement 
plaster 

cement 
plaster 

0.58 1.72 10 289.01 

82 Double Hollow Clay 
Bricks 

75 mm Rock Wool Insulation 
(Internal) 

cement 
plaster 

cement 
plaster 

0.44 2.27 13 289.35 

83 Double Hollow Clay 
Bricks 

100 mm Rock Wool Insulation 
(Internal) 

cement 
plaster 

cement 
plaster 

0.36 2.78 16 289.68 

84 Double Hollow Clay 
Bricks 

50 mm Expanded 
Polysterene (external) 

cement 
plaster 

cement 
plaster 

0.49 2.04 12 289.55 

85 Double Hollow Clay 
Bricks 

75 mm Expanded 
Polysterene (external) 

cement 
plaster 

cement 
plaster 

0.37 2.70 15 290.16 

86 Double Hollow Clay 
Bricks 

100 mm Expanded 
Polysterene (external) 

cement 
plaster 

cement 
plaster 

0.29 3.45 20 290.76 

87 Double Hollow Clay 50 mm Expanded cement cement 0.49 2.04 12 289.55 
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Wall 
No. 

Main Building Material Insulation Exterior 
Finish 

Interior 
Finish 

U-Value 
(W/m2.°C)

 
R-Value 

(m2.°C/W) 
R-Value 

(RSI) 
Heat Capacity 

(KJ/m2.°C) 
Bricks Polysterene (Internal) plaster plaster 

88 Double Hollow Clay 
Bricks 

75 mm Expanded 
Polysterene (Internal) 

cement 
plaster 

cement 
plaster 

0.37 2.70 15 290.16 

89 Double Hollow Clay 
Bricks 

100 mm Expanded 
Polysterene (Internal) 

cement 
plaster 

cement 
plaster 

0.29 3.45 20 290.76 

90 Double Hollow Clay 
Bricks 

50 mm Polyurethane 
(external) 

cement 
plaster 

cement 
plaster 

0.36 2.78 16 290.89 

91 Double Hollow Clay 
Bricks 

75 mm Polyurethane 
(external) 

cement 
plaster 

cement 
plaster 

0.26 3.85 22 292.16 

92 Double Hollow Clay 
Bricks 

100 mm Polyurethane 
(external) 

cement 
plaster 

cement 
plaster 

0.2 5.00 28 293.43 

93 Double Hollow Clay 
Bricks 

50 mm Polyurethane 
(Internal) 

cement 
plaster 

cement 
plaster 

0.36 2.78 16 290.89 

94 Double Hollow Clay 
Bricks 

75 mm Polyurethane 
(Internal) 

cement 
plaster 

cement 
plaster 

0.26 3.85 22 292.16 

95 Double Hollow Clay 
Bricks 

100 mm Polyurethane 
(Internal) 

cement 
plaster 

cement 
plaster 

0.2 5.00 28 293.43 

96 Double Hollow Clay 
Bricks 

50 mm Extruded Polysterene 
(external) 

cement 
plaster 

cement 
plaster 

0.42 2.38 14 290.46 

97 Double Hollow Clay 
Bricks 

75 mm Extruded  Polysterene 
(external) 

cement 
plaster 

cement 
plaster 

0.31 3.23 18 291.53 

98 Double Hollow Clay 
Bricks 

100 mm Extruded  
Polysterene (external) 

cement 
plaster 

cement 
plaster 

0.24 4.17 24 292.59 

99 Double Hollow Clay 
Bricks 

50 mm Extruded  Polysterene 
(Internal) 

cement 
plaster 

cement 
plaster 

0.42 2.38 14 290.46 

100 Double Hollow Clay 
Bricks 

75 mm Extruded  Polysterene 
(Internal) 

cement 
plaster 

cement 
plaster 

0.31 3.23 18 291.53 

101 Double Hollow Clay 
Bricks 

100 mm Extruded  
Polysterene (Internal) 

cement 
plaster 

cement 
plaster 

0.24 4.17 24 292.59 
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Wall 
No. 

Main Building Material Insulation Exterior 
Finish 

Interior 
Finish 

U-Value 
(W/m2.°C) 

R-Value 
(m2.°C/W) 

R-Value 
(RSI) 

Heat Capacity 
(KJ/m2.°C) 

Cavity Walls 
102 Cavity Hollow CMU Block 50 mm Air Space cement 

plaster 
cement 
plaster 

1.8 0.56 3 404.26 

103 Cavity Hollow CMU Block 50 mm Air Space cement 
plaster 

cement 
plaster 

1.24 0.81 5 288.34 

104 Cavity Hollow CMU Block 50 mm Air Space+ 50 
mm Rock Wool 
Insulation  

cement 
plaster 

cement 
plaster 

0.61 1.64 9 404.93 

105 Cavity Hollow CMU Block 50 mm Air Space+75 
mm Rock Wool 
Insulation  

cement 
plaster 

cement 
plaster 

0.46 2.17 12 405.27 

106 Cavity Hollow CMU Block 50 mm Air Space+100 
mm Rock Wool 
Insulation  

cement 
plaster 

cement 
plaster 

0.37 2.70 15 405.6 

107 Cavity Hollow CMU Block 50 mm Air Space+50 
mm Expanded 
Polysterene  

cement 
plaster 

cement 
plaster 

0.51 1.96 11 405.47 

108 Cavity Hollow CMU Block 50 mm Air Space+75 
mm Expanded 
Polysterene  

cement 
plaster 

cement 
plaster 

0.38 2.63 15 406.08 

109 Cavity Hollow CMU Block 50 mm Air Space+100 
mm Expanded 
Polysterene 

cement 
plaster 

cement 
plaster 

0.3 3.33 19 406.68 

110 Cavity Hollow CMU Block 50 mm Air Space+50 
mm Polyurethane 

cement 
plaster 

cement 
plaster 

0.37 2.70 15 406.81 

111 Cavity Hollow CMU Block 50 mm Air Space+75 
mm Polyurethane 

cement 
plaster 

cement 
plaster 

0.26 3.85 22 408.08 

112 Cavity Hollow CMU Block 50 mm Air Space+100 
mm Polyurethane 

cement 
plaster 

cement 
plaster 

0.2 5.00 28 409.35 

113 Cavity Hollow CMU Block 50 mm Air Space+50 
mm Extruded 
Polysterene  

cement 
plaster 

cement 
plaster 

0.44 2.27 13 406.4 

114 Cavity Hollow CMU Block 50 mm Air Space+75 
mm Extruded  
Polysterene  

cement 
plaster 

cement 
plaster 

0.32 3.13 18 407.45 

115 Cavity Hollow CMU Block 50 mm Air Space+100 cement cement 0.25 4.00 23 408.51 
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Wall 
No. 

Main Building Material Insulation Exterior 
Finish 

Interior 
Finish 

U-Value 
(W/m2.°C) 

R-Value 
(m2.°C/W) 

R-Value 
(RSI) 

Heat Capacity 
(KJ/m2.°C) 

mm Extruded  
Polysterene  

plaster plaster 

116 Cavity Hollow Clay Bricks  50 mm Air Space+ 50 
mm Rock Wool 
Insulation  

cement 
plaster 

cement 
plaster 

0.53 1.89 11 289.01 

117 Cavity Hollow Clay Bricks  50 mm Air Space+75 
mm Rock Wool 
Insulation  

cement 
plaster 

cement 
plaster 

0.41 2.44 14 289.35 

118 Cavity Hollow Clay Bricks  50 mm Air Space+100 
mm Rock Wool 
Insulation  

cement 
plaster 

cement 
plaster 

0.34 2.94 17 289.68 

119 Cavity Hollow Clay Bricks  50 mm Air Space+50 
mm Expanded 
Polysterene  

cement 
plaster 

cement 
plaster 

0.46 2.17 12 289.55 

120 Cavity Hollow Clay Bricks  50 mm Air Space+75 
mm Expanded 
Polysterene  

cement 
plaster 

cement 
plaster 

0.35 2.86 16 290.16 

121 Cavity Hollow Clay Bricks  50 mm Air Space+100 
mm Expanded 
Polysterene 

cement 
plaster 

cement 
plaster 

0.28 3.57 20 290.76 

122 Cavity Hollow Clay Bricks  50 mm Air Space+50 
mm Polyurethane 

cement 
plaster 

cement 
plaster 

0.34 2.94 17 290.89 

123 Cavity Hollow Clay Bricks  50 mm Air Space+75 
mm Polyurethane 

cement 
plaster 

cement 
plaster 

0.25 4.00 23 292.16 

124 Cavity Hollow Clay Bricks  50 mm Air Space+100 
mm Polyurethane 

cement 
plaster 

cement 
plaster 

0.19 5.26 30 293.43 

125 Cavity Hollow Clay Bricks  50 mm Air Space+50 
mm Extruded 
Polysterene  

cement 
plaster 

cement 
plaster 

0.4 2.50 14 290.46 

126 Cavity Hollow Clay Bricks  50 mm Air Space+75 
mm Extruded  
Polysterene  

cement 
plaster 

cement 
plaster 

0.29 3.45 20 291.53 

127 Cavity Hollow Clay Bricks  50 mm Air Space+100 
mm Extruded  
Polysterene  

cement 
plaster 

cement 
plaster 

0.24 4.17 24 292.59    
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Wall 
No. 

Main Building Material Insulation Exterior 
Finish 

Interior 
Finish 

U-Value 
(W/m2.°C) 

R-Value 
(m2.°C/W) 

R-Value 
(RSI) 

Heat Capacity 
(KJ/m2.°C) 

Sandwich Wall 
128 Sandwich Hollow CMU 

Block 
50 mm Rock Wool 
Insulation 

cement 
plaster 

cement 
plaster 

0.68 1.47 8 404.93 

129 Sandwich Hollow CMU 
Block 

75 mm Rock Wool 
Insulation  

cement 
plaster 

cement 
plaster 

0.5 2.00 11 405.27 

130 Sandwich Hollow CMU 
Block 

100 mm Rock Wool 
Insulation 

cement 
plaster 

cement 
plaster 

0.39 2.56 15 405.6 

131 Sandwich Hollow CMU 
Block 

50 mm Expanded 
Polysterene  

cement 
plaster 

cement 
plaster 

0.56 1.79 10 405.47 

132 Sandwich Hollow CMU 
Block 

75 mm Expanded 
Polysterene  

cement 
plaster 

cement 
plaster 

0.4 2.50 14 406.08 

133 Sandwich Hollow CMU 
Block 

100 mm Expanded 
Polysterene 

cement 
plaster 

cement 
plaster 

0.32 3.13 18 406.68 

134 Sandwich Hollow CMU 
Block 

50 mm Polyurethane cement 
plaster 

cement 
plaster 

0.39 2.56 15 406.81 

135 Sandwich Hollow CMU 
Block 

75 mm Polyurethane cement 
plaster 

cement 
plaster 

0.27 3.70 21 408.08 

136 Sandwich Hollow CMU 
Block 

100 mm Polyurethane cement 
plaster 

cement 
plaster 

0.21 4.76 27 409.35 

137 Sandwich Hollow CMU 
Block 

50 mm Extruded  
Polysterene 

cement 
plaster 

cement 
plaster 

0.47 2.13 12 406.39 

138 Sandwich Hollow CMU 
Block 

75 mm Extruded  
Polysterene 

cement 
plaster 

cement 
plaster 

0.34 2.94 17 407.45 

139 Sandwich Hollow CMU 
Block 

100 mm Extruded  
Polysterene 

cement 
plaster 

cement 
plaster 

0.26 3.85 22 408.51 

140 Sandwich Hollow Clay 
Bricks 

50 mm Rock Wool 
Insulation 

cement 
plaster 

cement 
plaster 

0.58 1.72 10 289.01 

141 Sandwich Hollow Clay 
Bricks 

75 mm Rock Wool 
Insulation  

cement 
plaster 

cement 
plaster 

0.44 2.27 13 289.35 

142 Sandwich Hollow Clay 
Bricks 

100 mm Rock Wool 
Insulation 

cement 
plaster 

cement 
plaster 

0.36 2.78 16 289.68 

143 Sandwich Hollow Clay 
Bricks 

50 mm Expanded 
Polysterene  

cement 
plaster 

cement 
plaster 

0.49 2.04 12 289.55 

144 Sandwich Hollow Clay 
Bricks 

75 mm Expanded 
Polysterene  

cement 
plaster 

cement 
plaster 

0.37 2.70 15 290.16 

145 Sandwich Hollow Clay 100 mm Expanded cement cement 0.29 3.45 20 290.76 
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Wall 
No. 

Main Building Material Insulation Exterior 
Finish 

Interior 
Finish 

U-Value 
(W/m2.°C) 

R-Value 
(m2.°C/W) 

R-Value 
(RSI) 

Heat Capacity 
(KJ/m2.°C) 

Bricks Polysterene plaster plaster 
146 Sandwich Hollow Clay 

Bricks 
50 mm Polyurethane cement 

plaster 
cement 
plaster 

0.36 2.78 16 290.89 

147 Sandwich Hollow Clay 
Bricks 

75 mm Polyurethane cement 
plaster 

cement 
plaster 

0.26 3.85 22 292.16 

148 Sandwich Hollow Clay 
Bricks 

100 mm Polyurethane cement 
plaster 

cement 
plaster 

0.2 5.00 28 293.43 

149 Sandwich Hollow Clay 
Bricks 

50 mm Extruded  
Polysterene 

cement 
plaster 

cement 
plaster 

0.42 2.38 14 290.46 

150 Sandwich Hollow Clay 
Bricks 

75 mm Extruded  
Polysterene 

cement 
plaster 

cement 
plaster 

0.31 3.23 18 291.53 

151 Sandwich Hollow Clay 
Bricks 

100 mm Extruded  
Polysterene 

cement 
plaster 

cement 
plaster 

0.24 4.17 24 292.59 

152 Sandwich 25 mm Rock 
Wool Insulation 

Single Hollow CMU 
Block 

cement 
plaster 

cement 
plaster 

0.71 1.41 8 348.4 

153 Sandwich 50 mm Rock 
Wool Insulation  

Single Hollow CMU 
Block 

cement 
plaster 

cement 
plaster 

0.4 2.50 14 347.81 

154 Sandwich 25 mm 
Expanded Polysterene  

Single Hollow CMU 
Block 

cement 
plaster 

cement 
plaster 

0.58 1.72 10 348.35 

155 Sandwich 50 mm 
Expanded Polysterene  

Single Hollow CMU 
Block 

cement 
plaster 

cement 
plaster 

0.32 3.13 18 349.56 

156 Sandwich 25 mm 
Polyurethane 

Single Hollow CMU 
Block 

cement 
plaster 

cement 
plaster 

0.4 2.50 14 349.69 

157 Sandwich 50 mm 
Polyurethane 

Single Hollow CMU 
Block 

cement 
plaster 

cement 
plaster 

0.21 4.76 27 352.23 

158 Sandwich 25 mm Extruded  
Polysterene 

Single Hollow CMU 
Block 

cement 
plaster 

cement 
plaster 

0.49 2.04 12 349.26 

159 Sandwich 50 mm Extruded  
Polysterene 

Single Hollow CMU 
Block 

cement 
plaster 

cement 
plaster 

0.26 3.85 22 351.39 

160 Sandwich 25 mm Rock 
Wool Insulation 

Single Hollow Clay 
Brick 

cement 
plaster 

cement 
plaster 

0.63 1.59 9 252.89 

161 Sandwich 50 mm Rock 
Wool Insulation  

Single Hollow Clay 
Brick 

cement 
plaster 

cement 
plaster 

0.38 2.63 15 253.56 

162 Sandwich 25 mm 
Expanded Polysterene  

Single Hollow Clay 
Brick 

cement 
plaster 

cement 
plaster 

0.53 1.89 11 253.43 

163 Sandwich 50 mm Single Hollow Clay cement cement 0.31 3.23 18 254.64 
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Wall 
No. 

Main Building Material Insulation Exterior 
Finish 

Interior 
Finish 

U-Value 
(W/m2.°C) 

R-Value 
(m2.°C/W) 

R-Value 
(RSI) 

Heat Capacity 
(KJ/m2.°C) 

Expanded Polysterene  Brick plaster plaster 
164 Sandwich 25 mm 

Polyurethane 
Single Hollow Clay 
Brick 

cement 
plaster 

cement 
plaster 

0.38 2.63 15 254.76 

165 Sandwich 50 mm 
Polyurethane 

Single Hollow Clay 
Brick 

cement 
plaster 

cement 
plaster 

0.21 4.76 27 257.31 

166 Sandwich 25 mm Extruded  
Polysterene 

Single Hollow Clay 
Brick 

cement 
plaster 

cement 
plaster 

0.45 2.22 13 254.34 

167 Sandwich 50 mm Extruded  
Polysterene 

Single Hollow Clay 
Brick 

cement 
plaster 

cement 
plaster 

0.25 4.00 23 256.47 

168 Sandwich Precast 
Concrete (100mm) 

50 mm Rock Wool 
Insulation 

cement 
plaster 

cement 
plaster 

0.71 1.41 8 391.66 

169 Sandwich Precast 
Concrete (100mm) 

75 mm Rock Wool 
Insulation  

cement 
plaster 

cement 
plaster 

0.51 1.96 11 392 

170 Sandwich Precast 
Concrete (100mm) 

100 mm Rock Wool 
Insulation 

cement 
plaster 

cement 
plaster 

0.4 2.50 14 392.33 

171 Sandwich Precast 
Concrete (100mm) 

50 mm Expanded 
Polysterene  

cement 
plaster 

cement 
plaster 

0.58 1.72 10 392.2 

172 Sandwich Precast 
Concrete (100mm) 

75 mm Expanded 
Polysterene  

cement 
plaster 

cement 
plaster 

0.42 2.38 14 392.81 

173 Sandwich Precast 
Concrete (100mm) 

100 mm Expanded 
Polysterene 

cement 
plaster 

cement 
plaster 

0.32 3.13 18 393.41 

174 Sandwich Precast 
Concrete (100mm) 

50 mm Polyurethane cement 
plaster 

cement 
plaster 

0.4 2.50 14 393.53 

175 Sandwich Precast 
Concrete (100mm) 

75 mm Polyurethane cement 
plaster 

cement 
plaster 

0.28 3.57 20 394.81 

176 Sandwich Precast 
Concrete (100mm) 

100 mm Polyurethane cement 
plaster 

cement 
plaster 

0.21 4.76 27 396.08 

177 Sandwich Precast 
Concrete (50mm) 

50 mm Expanded 
Polysterene  

cement 
plaster 

cement 
plaster 

0.61 1.64 9 203.62 

178 Sandwich Precast 
Concrete (50mm) 

75 mm Expanded 
Polysterene  

cement 
plaster 

cement 
plaster 

0.43 2.33 13 204.22 

179 Sandwich Precast 
Concrete (50mm) 

100 mm Expanded 
Polysterene 

cement 
plaster 

cement 
plaster 

0.33 3.03 17 204.83 

180 Sandwich Precast 
Concrete (50mm) 

50 mm Polyurethane cement 
plaster 

cement 
plaster 

0.41 2.44 14 204.95 

181 Sandwich Precast 75 mm Polyurethane cement cement 0.28 3.57 20 206.22 
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Wall 
No. 

Main Building Material Insulation Exterior 
Finish 

Interior 
Finish 

U-Value 
(W/m2.°C) 

R-Value 
(m2.°C/W) 

R-Value 
(RSI) 

Heat Capacity 
(KJ/m2.°C) 

Concrete (50mm) plaster plaster 
182 Sandwich Precast 

Concrete (50mm) 
100 mm Polyurethane cement 

plaster 
cement 
plaster 

0.22 4.55 26 207.5 

183 Sandwich 50 mm 
Expanded Polysterene  

Sandwich Precast 
Concrete (100mm) 

cement 
plaster 

cement 
plaster 

0.33 3.03 17 110.54 

184 Sandwich 75 mm 
Expanded Polysterene  

Sandwich Precast 
Concrete (100mm) 

cement 
plaster 

cement 
plaster 

0.23 4.35 25 110.75 

185 Sandwich 50 mm 
Polyurethane 

Sandwich Precast 
Concrete (100mm) 

cement 
plaster 

cement 
plaster 

0.23 4.35 25 113.2 

186 Sandwich 75 mm 
Polyurethane 

Sandwich Precast 
Concrete (100mm) 

cement 
plaster 

cement 
plaster 

0.15 6.67 38 115.75 

187 Sandwich 50 mm 
Expanded Polysterene  

Sandwich Precast 
Concrete (50mm) 

cement 
plaster 

cement 
plaster 

0.33 3.03 17 204.83 

188 Sandwich 75 mm 
Expanded Polysterene  

Sandwich Precast 
Concrete (50mm) 

cement 
plaster 

cement 
plaster 

0.23 4.35 25 206.04 

189 Sandwich 50 mm 
Polyurethane 

Sandwich Precast 
Concrete (50mm) 

cement 
plaster 

cement 
plaster 

0.22 4.55 26 207.5 

190 Sandwich 75 mm 
Polyurethane 

Sandwich Precast 
Concrete (50mm) 

cement 
plaster 

cement 
plaster 

0.15 6.67 38 210.04 

191 Sandwich Siporex Panel 
(50mm) 

50 mm Expanded 
Polysterene  

cement 
plaster 

cement 
plaster 

0.44 2.27 13 61.24 

192 Sandwich Siporex Panel 
(50mm) 

75 mm Expanded 
Polysterene  

cement 
plaster 

cement 
plaster 

0.34 2.94 17 61.84 

193 Sandwich Siporex Panel 
(50mm) 

100 mm Expanded 
Polysterene 

cement 
plaster 

cement 
plaster 

0.23 4.35 25 64.27 

194 Sandwich Siporex Panel 
(50mm) 

50 mm Polyurethane cement 
plaster 

cement 
plaster 

0.33 3.03 17 62.57 

195 Sandwich Siporex Panel 
(50mm) 

75 mm Polyurethane cement 
plaster 

cement 
plaster 

0.24 4.17 24 63.84 

196 Sandwich Siporex Panel 
(50mm) 

100 mm Polyurethane cement 
plaster 

cement 
plaster 

0.19 5.26 30 65.11 

197 Sandwich 50 mm 
Expanded Polysterene  

Sandwich Siporex 
Panel (50mm) 

cement 
plaster 

cement 
plaster 

0.3 3.33 19 39.35 

198 Sandwich 75 mm 
Expanded Polysterene  

Sandwich Siporex 
Panel (50mm) 

cement 
plaster 

cement 
plaster 

0.21 4.76 27 40.56 

199 Sandwich 100 mm Sandwich Siporex cement cement 0.16 6.25 36 41.77 
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Wall 
No. 

Main Building Material Insulation Exterior 
Finish 

Interior 
Finish 

U-Value 
(W/m2.°C) 

R-Value 
(m2.°C/W) 

R-Value 
(RSI) 

Heat Capacity 
(KJ/m2.°C) 

Expanded Polysterene  Panel (50mm) plaster plaster 
200 Sandwich 50 mm 

Polyurethane 
Sandwich Siporex 
Panel (50mm) 

cement 
plaster 

cement 
plaster 

0.2 5.00 28 42 

201 Sandwich 75 mm 
Polyurethane 

Sandwich Siporex 
Panel (50mm) 

cement 
plaster 

cement 
plaster 

0.14 7.14 41 44.56 

202 Sandwich 100 mm 
Polyurethane 

Sandwich Siporex 
Panel (50mm) 

cement 
plaster 

cement 
plaster 

0.11 9.09 52 47.1 

   

Table A.3 Thermal Characteristics of Generic Roof Types in the Design Practices of Residential Buildings in Saudi Arabia  
Roof 
No. 

Main Building 
Material 

Insulation Roof Components U-Value 
(W/m2.°C)

 

R-Value 
(W/m2.°C)

 

R-Value 
(RSI) 

Heat Capacity 
(KJ/m2.°C) 

Reinforced Concrete Slab 
1 200 mm RC Slab none Built up Roof (Tiles+Waterproofing 

Membrane+ Plain Concrete Screed) 
1.57 0.64 4 745 

2 200 mm RC Slab 50 mm Gravel Built up Roof (Gravel+Waterproofing 
Membrane+Plain Concrete Screed) 

1.51 0.66 4 787 

3 200 mm RC Slab 100 mm Light Weight 
Concrete 

Built up Roof (Tilesl+Waterproofing 
Membrane+LWC Concrete Screed) 

0.61 1.64 9 667 

4 200 mm RC Slab 50 mm Fiber Glass 
(external) 

Built up Roof (Tiles+Waterproofing 
Membrane+ Plain Concrete Screed) 

0.48 2.08 12 747 

5 200 mm RC Slab 75 mm Fiber Glass 
(external) 

Built up Roof (Tiles+Waterproofing 
Membrane+ Plain Concrete Screed) 

0.36 2.78 16 748 

6 200 mm RC Slab 100 mm Fiber Glass 
(external) 

Built up Roof (Tiles+Waterproofing 
Membrane+ Plain Concrete Screed) 

0.29 3.45 20 749 

7 200 mm RC Slab 50 mm Fiber Glass 
(internal) 

Built up Roof (Tiles+Waterproofing 
Membrane+ Plain Concrete Screed) 

0.48 2.08 12 747 

8 200 mm RC Slab 75 mm Fiber Glass 
(internal) 

Built up Roof (Tiles+Waterproofing 
Membrane+ Plain Concrete Screed) 

0.36 2.78 16 748 

9 200 mm RC Slab 100 mm Fiber Glass 
(internal) 

Built up Roof (Tiles+Waterproofing 
Membrane+ Plain Concrete Screed) 

0.29 3.45 20 749 

10 200 mm RC Slab 50 mm Expanded 
Polysterene (external) 

Built up Roof (Tiles+Waterproofing 
Membrane+ Plain Concrete Screed) 

0.49 2.04 12 746 

11 200 mm RC Slab 75 mm Expanded Built up Roof (Tiles+Waterproofing 0.37 2.70 15 747 
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Roof 
No. 

Main Building 
Material 

Insulation Roof Components U-Value 
(W/m2.°C)

 
R-Value 

(W/m2.°C)

 
R-Value 

(RSI) 
Heat Capacity 

(KJ/m2.°C) 
Polysterene (external) Membrane+ Plain Concrete Screed) 

12 200 mm RC Slab 100 mm Expanded 
Polysterene (external) 

Built up Roof (Tiles+Waterproofing 
Membrane+ Plain Concrete Screed) 

0.29 3.45 20 747 

13 200 mm RC Slab 50 mm Polyurethane 
(external) 

Built up Roof (Tiles+Waterproofing 
Membrane+ Plain Concrete Screed) 

0.36 2.78 16 747 

14 200 mm RC Slab 75 mm Polyurethane 
(external) 

Built up Roof (Tiles+Waterproofing 
Membrane+ Plain Concrete Screed) 

0.26 3.85 22 749 

15 200 mm RC Slab 100 mm Polyurethane 
(external) 

Built up Roof (Tiles+Waterproofing 
Membrane+ Plain Concrete Screed) 

0.2 5.00 28 750 

16 200 mm RC Slab 50 mm Extruded 
Polysterene (external) 

Built up Roof (Tiles+Waterproofing 
Membrane+ Plain Concrete Screed) 

0.42 2.38 14 747 

17 200 mm RC Slab 75 mm Extruded  
Polysterene (external) 

Built up Roof (Tiles+Waterproofing 
Membrane+ Plain Concrete Screed) 

0.31 3.23 18 748 

18 200 mm RC Slab 100 mm Extruded  
Polysterene (external) 

Built up Roof (Tiles+Waterproofing 
Membrane+ Plain Concrete Screed) 

0.24 4.17 24 749 

CMU Hourdi Block Slab 
19 200 mm CMU 

Hourdi Slab 
none Built up Roof (Tiles+Waterproofing 

Membrane+ Plain Concrete Screed) 
1.4 0.71 4 708 

20 200 mm CMU 
Hourdi Slab 

500 mm False Ceiling Built up Roof (Tiles+Waterproofing 
Membrane+ Plain Concrete Screed) 

1.06 0.94 5 692 

21 200 mm CMU 
Hourdi Slab 

50 mm Gravel Built up Roof (Gravel+Waterproofing 
Membrane+Plain Concrete Screed) 

1.36 0.74 4 750 

22 200 mm CMU 
Hourdi Slab 

100 mm Light Weight 
Concrete 

Built up Roof (Tiles+Waterproofing 
Membrane+LWC Concrete Screed) 

0.59 1.69 10 630 

23 200 mm CMU 
Hourdi Slab 

50 mm Expanded 
Polysterene (external) 

Built up Roof (Tiles+Waterproofing 
Membrane+LWC Concrete Screed) 

0.32 3.13 18 631 

24 200 mm CMU 
Hourdi Slab 

75 mm Expanded 
Polysterene (external) 

Built up Roof (Tiles+Waterproofing 
Membrane+LWC Concrete Screed) 

0.26 3.85 22 631 

25 200 mm CMU 
Hourdi Slab 

100 mm Expanded 
Polysterene (external) 

Built up Roof (Tiles+Waterproofing 
Membrane+LWC Concrete Screed) 

0.22 4.55 26 632 

26 200 mm CMU 
Hourdi Slab 

50 mm Polyurethane 
(external) 

Built up Roof (Tiles+Waterproofing 
Membrane+LWC Concrete Screed) 

0.26 3.85 22 632 

27 200 mm CMU 
Hourdi Slab 

75 mm Polyurethane 
(external) 

Built up Roof (Tiles+Waterproofing 
Membrane+LWC Concrete Screed) 

0.2 5.00 28 632 

28 200 mm CMU 
Hourdi Slab 

100 mm Polyurethane 
(external) 

Built up Roof (Tiles+Waterproofing 
Membrane+LWC Concrete Screed) 

0.17 5.88 33 635 
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Roof 
No. 

Main Building 
Material 

Insulation Roof Components U-Value 
(W/m2.°C)

 
R-Value 

(W/m2.°C)

 
R-Value 

(RSI) 
Heat Capacity 

(KJ/m2.°C) 
Clay Hourdi Block Slab 

29 200 mm Clay 
Hourdi Slab 

none Built up Roof (Tiles+Waterproofing 
Membrane+Plain Concrete Screed) 

1.16 0.86 5 565 

30 200 mm Clay 
Hourdi Slab 

100 mm Light Weight 
Concrete 

Built up Roof (Tiles+Waterproofing 
Membrane+LWC Concrete Screed) 

0.54 1.85 11 487 

31 200 mm Clay 
Hourdi Slab 

50 mm Expanded 
Polysterene (external) 

Built up Roof (Tiles+Waterproofing 
Membrane+LWC Concrete Screed) 

0.31 3.23 18 488 

32 200 mm Clay 
Hourdi Slab 

75 mm Expanded 
Polysterene (external) 

Built up Roof (Tiles+Waterproofing 
Membrane+LWC Concrete Screed) 

0.25 4.00 23 489 

33 200 mm Clay 
Hourdi Slab 

100 mm Expanded 
Polysterene (external) 

Built up Roof (Tiles+Waterproofing 
Membrane+LWC Concrete Screed) 

0.22 4.55 26 489 

34 200 mm Clay 
Hourdi Slab 

50 mm Polyurethane 
(external) 

Built up Roof (Tiles+Waterproofing 
Membrane+LWC Concrete Screed) 

0.35 2.86 16 566 

35 200 mm Clay 
Hourdi Slab 

75 mm Polyurethane 
(external) 

Built up Roof (Tiles+Waterproofing 
Membrane+LWC Concrete Screed) 

0.24 4.17 24 569 

36 200 mm Clay 
Hourdi Slab 

100 mm Polyurethane 
(external) 

Built up Roof (Tiles+Waterproofing 
Membrane+Plain Concrete Screed) 

0.19 5.26 30 570 

37 200 mm Clay 
Hourdi Slab 

50 mm Extruded 
Polysterene (external) 

Built up Roof (Tiles+Waterproofing 
Membrane+Plain Concrete Screed) 

0.39 2.56 15 567 

38 200 mm Clay 
Hourdi Slab 

75 mm Extruded  
Polysterene (external) 

Built up Roof (Tiles+Waterproofing 
Membrane+Plain Concrete Screed) 

0.29 3.45 20 568 

39 200 mm Clay 
Hourdi Slab 

100 mm Extruded  
Polysterene (external) 

Built up Roof (Tiles+Waterproofing 
Membrane+Plain Concrete Screed) 

0.23 4.35 25 569 

Siporex Hourdi Block Slab 
40 200 mm Siporex 

Hourdi Slab 
none Built up Roof (Tiles+Waterproofing 

Membrane+Plain Concrete Screed) 
0.52 1.92 11 414 

41 200 mm Sip. 
Hourdi Slab 

500 mm False Ceiling Built up Roof (Tiles+Waterproofing 
Membrane+Plain Concrete Screed) 

0.46 2.17 12 399 

42 200 mm Sip. 
Hourdi Slab 

50 mm Gravel Built up Roof (Gravel+Waterproofing 
Membrane+Plain Concrete Screed) 

0.51 1.96 11 456 

43 200 mm Sip. 
Hourdi Slab 

100 mm Light Weight 
Concrete 

Built up Roof (Tiles+Waterproofing 
Membrane+LWC Concrete Screed) 

0.34 2.94 17 336 

44 200 mm Sip. 
Hourdi Slab 

50 mm Expanded 
Polysterene (external) 

Built up Roof (Tiles+Waterproofing 
Membrane+LWC Concrete Screed) 

0.23 4.35 25 337 

45 200 mm Sip. 75 mm Expanded Built up Roof (Tiles+Waterproofing 0.2 5.00 28 338 



  

297

 
Roof 
No. 

Main Building 
Material 

Insulation Roof Components U-Value 
(W/m2.°C)

 
R-Value 

(W/m2.°C)

 
R-Value 

(RSI) 
Heat Capacity 

(KJ/m2.°C) 
Hourdi Slab Polysterene (external) Membrane+LWC Concrete Screed) 

46 200 mm Sip. 
Hourdi Slab 

100 mm Expanded 
Polysterene (external) 

Built up Roof (Tiles+Waterproofing 
Membrane+LWC Concrete Screed) 

0.18 5.56 32 338 

47 200 mm Sip. 
Hourdi Slab 

50 mm Polyurethane 
(external) 

Built up Roof (Tiles+Waterproofing 
Membrane+LWC Concrete Screed) 

0.2 5.00 28 338 

48 200 mm Sip. 
Hourdi Slab 

75 mm Polyurethane 
(external) 

Built up Roof (Tiles+Waterproofing 
Membrane+LWC Concrete Screed) 

0.16 6.25 36 340 

49 200 mm Sip. 
Hourdi Slab 

100 mm Polyurethane 
(external) 

Built up Roof (Tiles+Waterproofing 
Membrane+LWC Concrete Screed) 

0.14 7.14 41 341 

50 200 mm Sip. 
Hourdi Slab 

50 mm Extruded 
Polysterene (external) 

Built up Roof (Tiles+Waterproofing 
Membrane+Plain Concrete Screed) 

0.27 3.70 21 416 

51 200 mm Sip. 
Hourdi Slab 

75 mm Extruded  
Polysterene (external) 

Built up Roof (Tiles+Waterproofing 
Membrane+Plain Concrete Screed) 

0.22 4.55 26 417 

52 200 mm Sip. 
Hourdi Slab 

100 mm Extruded  
Polysterene (external) 

Built up Roof (Tiles+Waterproofing 
Membrane+Plain Concrete Screed) 

0.14 7.14 41 418 

Precast Hollow Core Slab 
53 200 mm Precast 

Hollow Core Slab 
none Built up Roof (Tiles+Waterproofing 

Membrane+Plain Concrete Screed) 
1.38 0.72 4 458 

54 200 mm Precast 
Hollow Core Slab 

500 mm False Ceiling Built up Roof (Tiles+Waterproofing 
Membrane+Plain Concrete Screed) 

1.04 0.96 5 443 

55 200 mm Precast 
Hollow Core Slab 

50 mm Gravel Built up Roof (Tiles+Waterproofing 
Membrane+Plain Concrete Screed) 

1.33 0.75 4 499 

56 200 mm Precast 
Hollow Core Slab 

100 mm Light Weight 
Concrete 

Built up Roof (Tiles+Waterproofing 
Membrane+Plain Concrete Screed) 

0.58 1.72 10 380 

57 200 mm Precast 
Hollow Core Slab 

50 mm Expanded 
Polysterene (external) 

Built up Roof (Tiles+Waterproofing 
Membrane+Plain Concrete Screed) 

0.47 2.13 12 459 

58 200 mm Precast 
Hollow Core Slab 

75 mm Expanded 
Polysterene (external) 

Built up Roof (Tiles+Waterproofing 
Membrane+Plain Concrete Screed) 

0.36 2.78 16 460 

59 200 mm Precast 
Hollow Core Slab 

100 mm Expanded 
Polysterene (external) 

Built up Roof (Tiles+Waterproofing 
Membrane+Plain Concrete Screed) 

0.29 3.45 20 460 

60 200 mm Precast 
Hollow Core Slab 

50 mm Polyurethane 
(external) 

Built up Roof (Tiles+Waterproofing 
Membrane+Plain Concrete Screed) 

0.34 2.94 17 460 

61 200 mm Precast 
Hollow Core Slab 

75 mm Polyurethane 
(external) 

Built up Roof (Tiles+Waterproofing 
Membrane+Plain Concrete Screed) 

0.25 4.00 23 462 

62 200 mm Precast 
Hollow Core Slab 

100 mm Polyurethane 
(external) 

Built up Roof (Tiles+Waterproofing 
Membrane+Plain Concrete Screed) 

0.2 5.00 28 463 
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Table C.1 Entered Values in VisualDOE for Combined Ventilation Strategy in Transition Months for a Window Less R.B. in Dhahran 
Based on ASHRAE Thermal Comfort Criteria for Naturally Ventilated Buildings 
                      Month 

 
Design Alternative 

March April May October November 

Design #1: W#1, R#1 
(Base Case) 
Design #4: W#1, R#7 
Design #6:W#2, R#5 
Design #7:W#3, R#1 
Design #9:W#3, R#7 
Design #10:W#4, R#1 
Design #13:W#5, R#3 
Design #15:W#5, R#7 

2 ACH 08:00-18:00, 
0.5 ACH 19:00-07:00     

3 ACH 16:00-9:00, 
0.5 ACH 10:00-15:00     

15 ACH 20:00-6:00, 
0.5 ACH 7:00-19:00     

30 ACH 20:00-6:00, 
0.5 ACH 7:00-19:00     

3 ACH 07:00-18:00, 
0.5 ACH 19:00-06:00     

 

Table C.2 Entered Values in VisualDOE for Combined Ventilation Strategy in Transition Months for a Window Less R.B. in Dhahran 
Based on ASHRAE Thermal Comfort Criteria for Mechanically Operated Buildings 
                      Month 

 

Design Alternative 

March April May October November 

Design #1: W#1, R#1 
(Base Case) 
Design #4: W#1, R#7 
Design #6:W#2, R#5 
Design #7:W#3, R#1 
Design #9:W#3, R#7 
Design #10:W#4, R#1 
Design #13:W#5, R#3 
Design #15:W#5, R#7 

2 ACH 08:00-18:00, 
0.5 ACH 19:00-07:00     

5 ACH 16:00-9:00, 
0.5 ACH 10:00-15:00     

0.5 ACH (24 h)      0.5 ACH (24 h)      3 ACH 07:00-18:00, 
0.5 ACH 19:00-06:00     

   



  

300

   
Table C.3 Entered Values in VisualDOE for Combined Ventilation Strategy in Transition Months for a 10 % window R.B. in Dhahran 
Based on ASHRAE Thermal Comfort Criteria for Naturally Ventilated Buildings 
                      Month 

 

Design Alternative 

March April May October November 

Design #1: W#1, R#1 
(Base Case) 
Design #4: W#1, R#7 
Design #6:W#2, R#5 
Design #7:W#3, R#1 
Design #9:W#3, R#7 
Design #10:W#4, R#1 
Design #13:W#5, R#3 
Design #15:W#5, R#7 

5 ACH 08:00-18:00, 
0.5 ACH 19:00-7:00     

20 ACH 16:00-9:00, 
0.5 ACH 10:00-15:00     

20 ACH 20:00-6:00, 
0.5 ACH 7:00-19:00     

20 ACH 20:00-6:00, 
0.5 ACH 7:00-19:00     

6 ACH 07:00-18:00, 
0.5 ACH 19:00-6:00     

  

Table C.4 Entered Values in VisualDOE for Combined Ventilation Strategy in Transition Months for a 10 % window R.B. in Dhahran 
Based on ASHRAE Thermal Comfort Criteria for Mechanically Operated Buildings 
                      Month 

 

Design Alternative 

March April May October November 

Design #1: W#1, R#1 
(Base Case) 
Design #4: W#1, R#7 
Design #6:W#2, R#5 
Design #7:W#3, R#1 
Design #9:W#3, R#7 
Design #10:W#4, R#1 
Design #13:W#5, R#3 
Design #15:W#5, R#7 

10 ACH 08:00-18:00, 
0.5 ACH 19:00-07:00     

20 ACH 16:00-9:00, 
0.5 ACH 10:00-15:00     

0.5 ACH (24 h)      0.5 ACH (24 h)      6 ACH 07:00-18:00, 
0.5 ACH 19:00-6:00     
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Table C.5 Entered Values in VisualDOE for Combined Ventilation Strategy in Winter Months for a 10 % Window R.B. in Dhahran 
Based on ASHRAE Thermal Comfort Criteria for Naturally Ventilated Buildings  
                      Month 

 
Design Alternative 

December February 

Design #1: W#1, R#1 
(Base Case) 
Design #4: W#1, R#7 
Design #6:W#2, R#5 
Design #7:W#3, R#1 

0.50 ACH (24 h) 0.50 ACH (24 h) 

Design #9:W#3, R#7 
Design #10:W#4, R#1 

0.50 ACH (24 h) 

Design #13:W#5, R#3 
Design #15:W#5, R#7 

1  ACH 7:00-18:00, 
0.50 ACH 19:00-6:00  1 ACH 8:00-18:00,      

0.5 ACH 19:00-7:00 

  

Table C.6 Entered Values in VisualDOE for Combined Ventilation Strategy in Winter Months for a 10 % Window R.B. in Dhahran 
Based on ASHRAE Thermal Comfort Criteria for Mechanically Operated Buildings 
                      Month 

 

Design Alternative 

December February 

Design #1: W#1, R#1 
(Base Case) 
Design #4: W#1, R#7 
Design #6:W#2, R#5 
Design #7:W#3, R#1 

0.50 ACH (24 h) 0.50 ACH (24 h) 

Design #9:W#3, R#7 
Design #10:W#4, R#1 
Design #13:W#5, R#3 
Design #15:W#5, R#7 

1  ACH 7:00-18:00, 
0.50 ACH 19:00-6:00   

1  ACH 7:00-18:00, 
0.50 ACH 19:00-6:00   
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Table C.7 Entered Values in VisualDOE for Combined Ventilation Strategy in Transition Months for a 20 % Window R.B. in 
Dhahran Based on ASHRAE Thermal Comfort Criteria for Naturally Ventilated Buildings 
                      Month 

 
Design Alternative 

March April May October November 

Design #1: W#1, R#1 
(Base Case) 
Design #4: W#1, R#7 
Design #6:W#2, R#5 
Design #7:W#3, R#1 
Design #9:W#3, R#7 
Design #10:W#4, R#1 

Single Glazing: 
10 ACH 16:00-9:00, 
Double Glazing: 
20 ACH 16:00-9:00, 
0.5 ACH 10:00-15:00 

Design #13:W#5, R#3 
Design #15:W#5, R#7  

10 ACH 08:00-18:00, 
0.5 ACH 19:00-07:00      

20 ACH 16:00-9:00, 
0.5 ACH 10:00-15:00 

30 ACH 20:00-6:00, 
0.5 ACH 7:00-19:00      

30 ACH 20:00-6:00, 
0.5 ACH 7:00-19:00      

10 ACH 07:00-18:00,  
0.5 ACH 19:00-06:00      

 

Table C.8 Entered Values in VisualDOE for Combined Ventilation Strategy in Transition Months for a 20 % Window R.B. in 
Dhahran Based on ASHRAE Thermal Comfort Criteria for Mechanically Operated Buildings 
                      Month 

 

Design Alternative 

March April May October November 

Design #1: W#1, R#1 
(Base Case) 
Design #4: W#1, R#7 
Design #6:W#2, R#5 
Design #7:W#3, R#1 
Design #9:W#3, R#7 
Design #10:W#4, R#1 

Design #13:W#5, R#3 
Design #15:W#5, R#7  

10 ACH 08:00-18:00, 
0.5 ACH 19:00-07:00      

20 ACH 16:00-9:00, 
0.5 ACH 10:00-15:00      

0.5 ACH (24 h)       0.5  ACH (24 h)       20 ACH 07:00-18:00,  
0.5 ACH 19:00-06:00      
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Table C.9 Entered Values in VisualDOE for Combined Ventilation Strategy in Winter Months for a 20 % Window R.B. in Dhahran 
Based on ASHRAE Thermal Comfort Criteria for Naturally Ventilated Buildings  
                      Month 

 
Design Alternative 

December January February 

Design #1: W#1, R#1 (Base Case)  

Design #4: W#1, R#7 

Single Glazing:  
4 ACH 08:00-17:00,    
0.5 ACH 18:00-07:00 
Double Glazing: 0. 5 ACH(24 h) 

0.50 ACH (24 h) 0.50 ACH (24 h) 

Design #6:W#2, R#5 
Design #7:W#3, R#1 
Design #9:W#3, R#7 

0.50 ACH (24 h) 

Design #10:W#4, R#1  

Single Glazing:  
2 ACH 08:00-18:00,  
0.5 ACH 19:00-07:00 
Double Glazing: 0.5 ACH(24 h) 

Design #13:W#5, R#3 
Design #15:W#5, R#7 

4 ACH 07:00-18:00,  
0.5 ACH 19:00-06:00     

2 ACH 08:00-18:00,    0.50 ACH 
19:00-07:00 

4 ACH 08:00-18:00, 
 0.5 ACH 19:00-07:00     

 

Table C.10 Entered Values in VisualDOE for Combined Ventilation Strategy in Winter Months for a 20 % Window R.B. in Dhahran 
Based on ASHRAE Thermal Comfort Criteria for Mechanically Operated Buildings 
                      Month 

 

Design Alternative 

December January February 

Design #1: W#1, R#1 (Base Case)  

Design #4: W#1, R#7 

Single Glazing:   
4 ACH 08:00-17:00,    
0.5 ACH 18:00-07:00 
Double Glazing: 0. 5 ACH(24 h) 

0.50 ACH (24 h) Single Glazing:  
4 ACH 08:00-18:00,  
0.50 ACH 19:00-07:00  
Double Glazing: 0.5 ACH (24h) 

Design #6:W#2, R#5 
Design #7:W#3, R#1 
Design #9:W#3, R#7 

Design #10:W#4, R#1 

4 ACH 07:00-18:00,  
0.5 ACH 19:00-06:00      0.50 ACH (24 h) 

4 ACH 08:00-18:00, 
 0.5 ACH 19:00-07:00     

Design #13:W#5, R#3 
Design #15:W#5, R#7  

2 ACH 08:00-18:00,    0.50 ACH 
19:00-07:00  
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