
KING FAHD UNIVERSITY OF PETROLEUM & MINERALS
DHAHRAN 31261, SAUDI ARABIA

DEANSHIP OF GRADUATE STUDIES

This thesis, written by SHAIK SIRAJUDDIN under the direction of his thesis advisor and

approved by his thesis committee, has been presented to and accepted by Dean of

Graduate Studies, in partial fulfillment of the requirements for the degree of MASTER

OF SCIENCE IN COMPUTER ENGINEERING.

Thesis Committee

 Dr. Mohammed H Sqalli (Advisor)

Dr. Mayez Al Muhammed (Member)

 Dr. Uthman Baroudi (Member)

Dr. Abdul Aziz Al Mulhem
(Department Chairman)

Dr. Mohammad Al- Ohali
(Dean of Graduate Studies)

Date

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by King Fahd University of Petroleum and Minerals

https://core.ac.uk/display/266101398?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 ii

ACKNOWLEDGEMENT

All praise and thanks are due to Almighty Allah, subhana-wa-taala, the most

Merciful; the most Benevolent, for bestowing me with the health, knowledge,

opportunity, courage and patience to complete this work. Thereafter, acknowledgement is

due to KFUPM for the support given to this research through its tremendous facilities and

for granting me the opportunity to pursue graduate studies with financial support.

 I acknowledge, with deep gratitude and appreciation, the inspiration

encouragement, valuable time and guidance given to me by my thesis Committee

Chairman, Dr. Mohammed Houssaini Sqalli.

Thereafter, I am deeply indebted and grateful to Dr. Mayez Al Muhammed and

Dr. Uthman Baroudi, my committee members, for their extensive guidance, continuous

support, and personal involvement in all phases of this research.

Special thanks are due to my friends Mazher, Abdul Qaiyyum, Baqtiyar, Yousuf,

Kashif, Ayub Azher, Hafeez, Basha, Khaja, Obaid, Rizwan Baba, Abbas, Ismail, Saqib,

Mujeeb, Humayun Baig and all others who provided wonderful company and good

memories that will last a life time. My special thanks to my uncle Mohammed Anwar and

his sweet little daughter Mariyam.

Family support plays a vital role in the success of an individual. I am thankful to

my entire family for their love, support and prayers throughout my life especially my

dearest mother, grandmother and my wife.

 iii

TABLE OF CONTENTS

Table of Contents.. iii

List of Figures ... vii

List of Tables... ix

List of Algorithms... xi

Thesis Abstract (English)... xii

Thesis Abstract (Arabic).. xiii

CHAPTER 1 INTRODUCTION... 1

1.1. Network Management... 2

1.2. Network Management Models ... 4

1.3. Problem Statement .. 5

1.4. Thesis Layout ... 7

CHAPTER 2 BACKGROUND ... 8

2.1. SNMP-Based Network Management... 8

2.1.1. Scalability ... 10

2.1.2. Processing Time ... 10

2.1.3. Large Amount of Data Transfer ... 11

2.2. XML Technologies For Network Management .. 11

2.2.1. XML Document ... 12

2.2.2. DTD.. 13

2.2.3. XML-Schema ... 13

2.2.4. XPATH... 15

2.2.5. XQUERY ... 16

 iv

2.2.6. XML Parsers... 18

2.2.6.1. DOM.. 18

2.2.6.2. SAX ... 19

2.2.7. XUPDATE ... 19

2.2.8. XSL/XSLT ... 20

2.2.9. Advantages of XML... 22

2.2.10. XML Manager and Agent Combinations ... 23

2.2.11. Interaction Translation Methods .. 25

2.2.11.1. Process Based Interaction Translation... 25

2.2.11.2. Message Based Interaction Translation... 25

2.2.11.3. Protocol Based Interaction Translation ... 26

CHAPTER 3 LITERATURE REVIEW .. 29

CHAPTER 4 FRAME WORK FOR EXTENSIONS TO XML-BASED
NETWORK MANAGEMENT .. 36

4.1. Motivation .. 36

4.2. Extensions to Existing XML-based Network Management........................... 37

4.2.1. Manager Sending One Request to Multiple Agents 38

4.2.1.1. Multihostget... 39

4.2.1.2. Example of Multihostget Request ... 43

4.2.1.3. Multiobjectget.. 45

4.2.1.4. Example of Multiobjectget .. 46

4.2.2. Manager Sending Multiple Requests to One Agent 47

4.2.3. Manager Sending Multiple Requests to Multiple Agents 49

4.3. Other Possible Extensions... 51

 v

4.4. Software Requirements... 51

4.5. Applications.. 53

4.6. Proposed Frameworks .. 54

4.6.1. Single DOM Tree-based Approach.. 54

4.6.2. CSV-based Approach ... 56

4.6.3. JPVM-based Approach... 57

4.6.3.1. JPVM Background .. 57

4.6.3.2. JPVM Interface.. 58

4.6.3.3. JPVM Architecture.. 59

4.6.3.4. Implementation of the Proposed Framework .. 61

4.6.3.5. JPVM Master Algorithm ... 62

4.6.3.6. Slave JPVM Algorithm ... 63

4.6.3.7. Contributions to JPVM.. 64

4.6.3.8. JPVM Task Allocation .. 65

4.6.3.9. Equal work to all Slave JPVM Gateways.. 65

4.6.3.10. Weighted Static Load Balancing ... 66

4.6.3.11. Dynamic Load Balancing .. 67

4.7. Implementation with variations ... 69

4.7.1. DOM Variations ... 69

4.7.1.1. Sequential Processing.. 70

4.7.1.2. Producer-Consumer Processing... 71

4.7.1.3. Producer-Consumer with Message Queue .. 72

4.7.2. JPVM Variations .. 75

4.8. Advantages ... 76

 vi

CHAPTER 5 PERFORMANCE EVALUATION AND COMPARISON 78

5.1. Response Time ... 79

5.1.1. Response Time Calculation.. 80

5.2. Experimental Setup ... 82

5.2.1. Experimental Setup-I.. 82

5.2.2. Experimental Setup-II .. 83

5.3. Experimental Results .. 84

5.3.1. DOM vs. CSV Results.. 84

5.3.2. JPVM-based Results... 89

5.3.3. Parallel Component Evaluation.. 106

5.3.3.1. Speedup ... 107

5.3.3.2. Efficiency .. 110

5.3.4. Network Traffic .. 111

5.3.5. Message Size .. 112

CHAPTER 6 CONCLUSION AND FUTURE WORK .. 116

Conclusion.. 116

Future Work ... 118

REFERENCES ... 121

ACRONYMS... 125

VITA .. 126

 vii

LIST OF FIGURES

Figure 1.1: SNMP-based Request .. 6

Figure 1.2: XML-based Requests... 7

Figure 2.1: Manager and Agent Combinations in the XML-based Network Management
.. 24

Figure 4.1: Hierarchical DOM tree of a Manager Sending a Single Request to Multiple
Agents... 40

Figure 4.2: Example of a Manager Sending a Single Request to Multiple Agents........ 40

Figure 4.3: Response from Agents after applying transformation. 45

Figure 4.4: Hierarchical representation of the Multiple Request to one agent............... 48

Figure 4.5: Hierarchical representation of the Manager sending Multiple Requests to
Multiple Agents .. 49

Figure 4.6: Single-DOM Tree based Framework... 55

Figure 4.7: CSV-based Framework.. 56

Figure 4.8: JPVM Framework for Parallel XML-based Netwrok Management............ 60

Figure 4.9: Implementation of the Proposed Framework... 62

Figure 4.10: Response Time for JPVM Slave Running on different CPU speeds 66

Figure 4.11: Sequential SNMP Request and Response.. 70

Figure 4.12: Request and Response of SNMP communication 73

Figure 4.13: Response of Time of Single DOM with Blocking, Non-Blocking............ 75

Figure 5.1: Frameworks for Experimentation .. 78

Figure 5.2: Response Time Calculation ... 81

Figure 5.3: Experimental Setup-I ... 82

 viii

Figure 5.4: Experimental Setup-II.. 83

Figure 5.5: Response Time of DOM and CSV for System Group MIB objects. 85

Figure 5.6: Various components present in the Response Time. 86

Figure 5.7: SNMP Communication component for DOM and CSV.............................. 88

Figure 5.8: Response Time Comparison for System Group MIB Objects with JPVM. 90

Figure 5.9: Response Time for DOM and JPVM with increasing number of Tasks with
one slave JPVM.. 91

Figure 5.10: Response Time for DOM and JPVM with varying slave JPVM gateways.
.. 93

Figure 5.11: Response Time for JPVM with increasing Tasks on single slave JPVM and
with two slave JPVM.. 94

Figure 5.12: Response Time for a Working Master with Varying JPVM...................... 96

Figure 5.13: Response Time POSTECH compared with Multiget Objects. 97

Figure 5.14: Response Time Increasing Number of MIB objects.................................. 98

Figure 5.15: SNMP Communication Time for Homogeneous and Heterogeneous Systems.
.. 101

Figure 5.16: Response Time for Heterogeneous and Static Weighted load balancing ..102

Figure 5.17: Dynamic Response Time with increasing Block Size 104

Figure 5.18: Response Time for Static and Dynamic Load Balancing 105

Figure 5.19: Response Time for Dynamic Load Balancing with increasing Block Size and
Processors ... 106

Figure 5.20: Speedup with increasing number of Processors and Tasks 109

Figure 5.21: Efficiency with increasing the Number of Tasks and Processors.............. 111

Figure 5.22: Network traffic of DOM, CSV and JPVM-NM of System Group 112

Figure 5.23: Multi Request and Single Request Format. .. 113

 ix

LIST OF TABLES

Table 2.1: ASN.1 OBJECT TYPE Macro in SNMP MIB .. 14

Table 2.2: XML Schema Representation of the OBJECT-TYPE Macro....................... 14

Table 2.3: An Example of XPath ... 16

Table 2.4: Example of XQuery .. 18

Table 2.5: Example of XUpdate... 20

Table 2.6: Example of XSLT ... 22

Table 2.7: Result of XSLT After Transformation .. 22

Table 2.8: Examples of using XPath, XQuery and XUpdate in HTTP Request 26

Table 2.9: SOAP Messages between the XML-based Manager and Gateway 27

Table 2.10: Summary of different Translation Methods .. 28

Table 4.1: General Structure of Multihostget Request. .. 41

Table 4.2: General Structure After Expansion of the Multi Get Host Request 42

Table 4.3: Example of Multihostget Request ... 43

Table 4.4: Example of Multihostget request after expansion... 44

Table 4.5: Example of Multi Get Host after updating with values 44

Table 4.6: General Structure of the Multiobjectget Request .. 45

Table 4.7: Example of Multiobjectget Request.. 46

Table 4.8: Example of Multiobjectget after updating .. 47

Table 4.9: Example of Multiple Requests to one agent.. 48

Table 4.10: Example of Multiple Requests to Multiple agents 50

Table 5.1 : Dissection of single DOM tree-based approach... 87

 x

Table 5.2: Quantitative Results for Parallelization of Tasks.. 91

Table 5.3: Response Time for single JPVM with increasing number of tasks with a
working master gateway in milliseconds. .. 95

Table 5.4: Quantitative Results for Distribution of Tasks for None Working Master ... 99

Table 5.5: Quantitative Results for Distribution of Tasks for Working Master............. 99

Table 5.6: Response Time values for Homogenous systems, Heterogeneous systems, and
Static weighted load balancing... 100

Table 5.7: Speedup with increasing number of Tasks.. 108

Table 5.8: Speedup with increasing number of Processors.. 109

Table 5.9: Message Size of Multiget Request .. 114

Table 5.10: Message Size of Multiget Request with one and ten agents 115

 xi

LIST OF ALGORITHMS

Algorithm 4.1: Master JPVM Gateway Algorithm .. 63

Algorithm 4.2: Slave JPVM Gateway Algorithm .. 64

Algorithm 4.3: Dynamic Load Balancing ... 69

Algorithm 4.4: Sequential Algorithm... 71

Algorithm 4.5: Producer Consumer Algorithms with out and With Message Queue.... 72

Algorithm 4.6: Producer and Consumer Algorithm without Message Queue 72

Algorithm 4.7: Producer and Consumer Algorithms with Message Queue................... 74

 xii

THESIS ABSTRACT (ENGLISH)

Name: Shaik Sirajuddin

Title: Extensions To XML-based Network Management

Major Field: Computer Engineering

Date of Degree: January 2005

XML-based integrated network management architecture consists of an XML-based

manager, an XML/SNMP gateway and SNMP agents. In this thesis, we present

frameworks for extensions to an existing XML-based network management, which can

reduce the processing time between the XML-based manager and the SNMP agents. The

extensions consist of new types of messages, including Multi-Get-Request and Multi-Set-

Request. These new types, for instance, allow a manager to send one or more requests to

one or more agents. We proposed three types of frameworks for the XML-based network

management namely Single DOM (Document Object Model) Tree-based approach, CSV

(Comma Separated Values) -based approach, and JPVM (Java Parallel Virtual Machine)

based approach. We present three JPVM work assignment methods for parallel network

management namely equal work for every JPVM gateway, Static weighted load balancing

based on processing capability of the JPVM gateway and dynamic load balancing for

heterogeneous network of stations. We have evaluated and compared our framework with

other frameworks. Our approach reduced the time by ~48%, ~71%, ~85% respectively

for CSV, JPVM with parallel tasks and JPVM with Distributed processors.

 xiii

THESIS ABSTRACT (ARABIC)

@ABC DEFGHEا

JـــــــــــــــGLا: KLM اجPQ RSTUا

 ijk WL_lUlgcm XML اfLgdhU اWcdeUت bدارة _TSTة إW\W]Uت و إWXWYت :اNOP DEFGHEان

 اpUq اoQW]U هfQTg : اQAREــــــــ@

STرFV جHــAREا : PSWgS 2005

rUّtum fjcLت ارةإد هWcdeUا fjvWcuhUا fhwWxUا ijk WL_lUlgcm XML Rv ٍبlQW{ تWcdejUPِSTv }ِwW\

ijk XML، ��gvXML/SNMP ، P�Wgkو fvT�u�v لlآlmوPdU .SNMP pX ه�ا ،�]dUم اTّx�

�ًcLت هWXWYb ت وW\W]Uة إTST_ pX ت إدارةWcdeUدة اl_lhUا WLUW{ fhwWxUوا ijk WL_lUlgcm XML،

 واijk XML P�Wg�U اWcdejU }wWxUت اPSThU اlQW]Uب �RL اf�UW�hU وّ\� RchS Rv �L��m وا�Uي

fvT�u�hUل اlآlmوPdU .SNMP rUّtum ت ه��WXWYbت اW\W]Ubوا Rv اعlة أ�TST_ Rv �wWQPUا Wh�

pX �Uذ oj�-�L�]m- دTّ�uv و oj�-PLL�m-دTّ�uv. Rv ت ه�� ��لWXWYbت اW\W]Ubة، واTST�Uا

RchS ��v PSThU تWcdeUل اWQإر oj� T{أو وا Pأآ� iUإ P�gk SNMP T{أو وا Pح .أآ�Pux� pX

 اfxSP�U :وijk WL_lUlgcm XML �hem اfhwWxU اWcdeUت bدارة اWL�Uآ� Rv أ�lاع ���f اdU[� ه�ا

fhwWxUا ijk ةP�M DOM ،دةP�ghUا fxSP�Uا fhwWxUا ijk CSV، fxSP�Uوا fhwWxUا ijk fU fLّj�X

fSازluv fhwW\ ijk لlآlmوP� .JAVA (JPVM) Whم آTّx� pX ه�ا �]dUا f��� قP� RLL�uU o_وا

�h�Uدارة اb تWcdeUا fSازluhUا �hemو: �h�Uوي اW�uhUا �ّcU ��gv JPVM، fاز�lhUا fu�W�Uء اo�jU

¤_ّPhUا fhwWxUا ijk رةT\ f�UW�hUا ��ghUJPVM، fاز�lhUوا fLّcLvWgSTUا fcdeU PL¥ f��W�uv Rv

 .أ�Pى ��WLآ� هWgjcL وWxvر�Wgh\ }LLxu� f اdU[�، ه�ا ��fSW وpX .اW�ّ]hUت

1

CHAPTER 1

INTRODUCTION

Today’s network has incompatible infrastructure including different information models,

information access methods, and management protocols. The administrator has no choice

but to use separate and incompatible management tools to manage the current

heterogeneous network. Currently available management tools and framework are based

on a centralized approach and confronted with scalability and efficiency problems when

the network expands.

When Java applets appeared in Netscape’s famous web browser [1] [2], in 1995, it

introduced the concept of embedded management application, and has the advantages of

using HTTP rather than SNMP to vehicle data between managers and agents. In 1996,

The Simple Times [3] reported different ways of integrating the HTTP, HTML, and

applets with standard IP network management platforms. The network management

companies and customers started using the web-based management interface with the use

of web browsers to display management data using Graphical User Interfaces (GUIs).

Managing the network components using web-based [3] [4] technology came into

existence when the vendors began embedding HTTP servers in their network equipment.

Many network equipment vendors, including Cisco, Nortel Networks and 3Com, now

routinely embed HTTP servers in their new equipment.

2

XML-based [5] network management applies XML technologies to network management.

In XML-based network management, the management information is defined using XML

and the management data is exchanged in the form of an XML document and processed

using the standard methods available for XML document processing.

In this section, we give a general background of network management, our problem

statement, and the thesis layout.

1.1. NETWORK MANAGEMENT

Network management models consist of four components, Network Management Stations

(NMSs) or Manager, agents running on managed nodes (Managed nodes can be router,

switch, pc, Unix server etc.), management protocols, and management information. A

manager is a server running some kind of software system that can handle management

tasks for a network. Managers are often referred to as Network Management Stations

(NMSs). An NMS is responsible for polling and receiving traps from agents in the

network. Agent is a piece of software that runs on the network devices we are managing.

It can be a separate program (a daemon, in Unix language), or it can be incorporated into

the operating system (for example, Cisco's IOS on a router, or the low-level operating

system that controls a UPS). Today, most IP devices come with some kind of SNMP

agent built in. The agent provides management information to the NMS by keeping track

of various operational aspects of the device. For example, the agent on a router is able to

keep track of the state of each of its interfaces: which ones are up, which ones are down,

3

etc. The NMS can query the status of each interface on a router, and take appropriate

action if any of them are down. When the agent notices that something bad has happened,

it can send a trap to the NMS. This trap originates from the agent and is sent to the NMS,

where it is handled appropriately. Some devices will send a corresponding "all clear" trap

when there is a transition from a bad state to a good state. An NMS uses the management

protocol to communicate with agents running on the managed nodes. The Structure of

Management Information (SMI) provides a way to define managed objects and their

behavior. An agent has in its possession a list of the objects that it tracks. One such object

is the operational status of a router interface (for example, up, down, or testing). This list

collectively defines the information the NMS can use to determine the overall health of

the device on which the agent resides.

The Management Information Base (MIB) can be thought of as a database of managed

objects that the agent tracks. Any sort of status or statistical information that can be

accessed by the NMS is defined in a MIB. The SMI provides a way to define managed

objects, while the MIB is the definition (using the SMI syntax) of the objects themselves.

Like a dictionary, which shows how to spell a word and then gives its meaning or

definition, a MIB defines a textual name for a managed object and explains its meaning.

An NMS collects real time data from network elements such as routers, switches, and

workstations. It interprets and analyzes the data collected, and presents this information to

authorized network operators. In addition, it proactively reacts, in real time, to

management problems.

4

1.2. NETWORK MANAGEMENT MODELS

The most important two network management models are the pull model and the push

model used for exchanging data between two distant entities [1]. The pull model is based

on the request/response paradigm (called data polling, or simply polling, in the SNMP

management framework). The client sends a request to the server (i.e. agent), then the

server answers, either synchronously or asynchronously. This is functionally equivalent to

the client “pulling” the data off the server. In this approach the data transfer is always

initiated by the client (i.e. manager). The push model is based on the

publish/subscribe/distribute paradigm. In this model agents first advertise what MIBs they

support, and what SNMP notifications they can generate. The administrator then

subscribes the manager (i.e. NMS) to the data he/she is interested in, specifies how often

the manager should receive this data and disconnects. Later on, each agent individually

takes the initiative to “push” data to the manager, either on a regular basis or via a

scheduler. The advantages of using the push model are to conserve network bandwidth

and move part of the CPU burden from managers to agents.

With the push model, the manager contacts each agent once, subscribes to an OID once

(push data definition), and specifies at what frequency (push frequency) the agent should

send the value of this OID (push data schedule). The push model introduces a new issue:

synchronization. If the manager and the agent have internal clocks that do not synchronize

regularly then they will probably drift apart.

5

Our approach with SNMP management framework is based on the request/response

paradigm, which is a pull model.

1.3. PROBLEM STATEMENT

The SNMP-based network management has limitations [6] [7] [8] [9] such as scalability,

efficiency, and large amount of data transfer. XML-based network management was

proposed to overcome some of these limitations. But the current XML-based network

management suffers from the following problems.

• Managing multiple network devices, i.e., sending XML-based request to a set of

SNMP agents is still not addressed.

• No generalized framework for the XML-based network management.

• Processing efficiency of the XML-based request, i.e., the time taken to process the

XML-based request is high.

• The XML/SNMP gateway results in an unexpected delay between managers and

agents, which might become a bottleneck when the network expands in the future.

In our extensions to XML-based network management, we propose to enhance on the

exiting XML-based network management. In this work, we provide a way to manage

multiple network devices. We present our framework to overcome the processing

overhead of the XML-based request. Then, we evaluate the performance of the proposed

framework and compare it with exiting frameworks. In our proposed extensions to the

existing XML-based network management, the manager can send more advanced requests

6

to the agents via an XML/SNMP gateway. A manager can, for instance, send one request

to multiple agents, multiple requests to one agent, or a combination of both.

Figure 1.1 shows the SNMP-based request, where the manager sends an SNMP-based

request and receives the corresponding SNMP-based response. The general format of the

SNMP request),...,,(21 nMIBMIBMIBAgentrequestSNMP =− consists of an agent name

followed by a list of MIB objects requested from that agent. The traffic between the

manager and the SNMP agents increases as the number of SNMP-agents grows.

SNMP-AgentSNMP-Manager

SNMP-Request

SNMP-Response

Router

Bridge

Server

NMS

Figure 1.1: SNMP-based Request

Figure 1.2 shows the extensions to the XML-based request, where the XML-based

manager communicates with SNMP agents via an XML/SNMP gateway. The format of

the extensions to the XML-based request

7

),...,,,...,(2121 nk MIBMIBMIBAgentAgentAgentrequestXML =− consists of a list of

agents followed by another list of MIB objects requested from the agents. Hence, the

manager can send a single request to multiple agents. This reduces the traffic between the

XML-based manager and the XML/SNMP gateway.

SNMP-AgentXML-MANAGER

SNMP-Request

SNMP-Response

XML/SNMP Gateway

XML-Request

XML-Response

Router

Bridge

Server

XNMS

Figure 1.2: XML-based Requests

1.4. THESIS LAYOUT

The thesis is organized as follows; Chapter 2 will address the limitations of the traditional

SNMP-based network management and describes the XML-based technologies with

respect to network management. Chapter 3 will present the current work on XML-based

network management. Chapter 4 will describe our proposed frameworks for the extended

XML-based network management. Chapter 5 will present the evaluation results and

comparison with previous work. Finally we conclude our work in Chapter 6.

8

CHAPTER 2

BACKGROUND

2.1. SNMP-BASED NETWORK MANAGEMENT

The Simple Network Management Protocol (SNMP) is the most widely used protocol to

manage network devices on the Internet. The Internet Engineering Task Force (IETF) first

standardized SNMP in 1990 [RFC 1157] [7] [8] [9]. A number of Requests for Comments

(RFCs) have been written to specify the different elements and versions of SNMP. SNMP

uses a general manager and agent interaction model (Request/Response). It uses the

Structure of Management Information (SMI) [RFC 1155, RFC 2578] to define managed

objects. The SNMP Management Information Base (MIB) [RFC 1213] uses a hierarchal

tree structure for organizing the MIB Object Identifiers (OIDs). The first version of

SNMP is referred to as SNMPv1. SNMPv1 supports GET-REQUEST, SET-REQUEST,

GET-NEXT-REQUEST and TRAP operations, and provides limited management

capabilities. SNMPv1 has few limitations including the lack of security, lack of bulk data

transfer capability, and lack of manager-to-manager communication.

These issues were addressed in SNMPv2 [RFC 3416], which was initially proposed in

1995. SNMPv2 supports GET_BULK_REQUEST, and INFORM_REQUEST. The major

changes in SNMPv2 are the addition of manager-to-manager message, enhancements to

SMI (SMIv2) [RFC 2578], textual conventions [RFC 2579], conformance statements

[RFC 2580], row creation and deletion in table [RFC 2579], MIB enhancements [RFC

9

3418], and transport mappings [RFC 3417]. One of the main limitations of SNMPv2 is

security, which included a community-based mechanism that uses a plain text string for

authentication and access control.

SNMPv3, introduced in 1999 [9], undertook the issue of security including authentication,

privacy and access control, as well as the definition of new architecture and framework

for SNMP [RFC 3410-3415]. [RFC 3584] described the coexistence between SNMPv1,

SNMPv2, and SNMPv3.

The SNMP framework is designed to minimize the number and complexity of

management functions by the agents. This makes it extensible to accommodate additional

and unanticipated aspects of network operations and management, and independent of the

implementation of a particular host or gateway. Thus, SNMP provides simplicity,

interoperability, and low footprint on agents. SNMP has wide support of IP equipment

vendors.

The SNMP-based network management is simple in nature but has few limitations. The

limitations of SNMP-based network management can be broadly categorized into three.

• Scalability

• Efficiency

• Large amount of data transfer

10

2.1.1. Scalability

The most important drawback of the SNMP-based network management is scalability to

support a large network [6] [7]. The main factor is network overhead. In an SNMP-based

the NMS network overhead is the proportion of a link capacity to transfer management

data. As the number of agents to be managed increases, the management data transmitted

over a single communication line from all the agents to the SNMP-based manager also

increases. The capacity of the manger local segment is limited due to the centralization of

management [5]. Data received from all the agents is accumulated at one single point.

Hence, the network management overhead must represent a small percentage of the

overall capacity of the link. The network capacity must be utilized for user data transfer,

and not for management data.

2.1.2. Processing Time

 In SNMP-based network management, processing time is nothing but latency. It is the

time taken between sending a request for the MIB variables and the time of receiving the

response from the agent. The latency must be low. If it is very high then operational

problems are detected very slowly and corrected lately. Latency can be divided into two

[5], End-host latency and Network latency. End-host latency is due to the marshaling and

unmarshaling of the data, compression and decomposition of the data, and security key

computation. Network latency is the time spent in the network links and network

equipments. It depends on the capacity and the error rates of the links, and on the speed of

11

the routers traversed between the agent and the manager. The amount of data moved on

the links has direct impact on the network latency.

2.1.3. Large Amount of Data Transfer

The traditional SNMP-based network management can support only up to maximum

message size of 1472 bytes [9] [10], and which can be transmitted over UDP protocol. In

the case of XML based network management the request is text based and has large

amount of bandwidth for transmission compared to SNMP-UDP packet.

2.2. XML TECHNOLOGIES FOR NETWORK MANAGEMENT

XML (Extensible Markup Language) is a Meta markup language, which was standardized

by the World Wide Web Consortium (W3C) for document exchange in 1998 [11] [12]

[13]. XML has many advantages for instance, we can define our own Structure of

Management Information in a flexible form using either Document Type Definition

(DTD) or XML Schema. XML documents can be transmitted on the Internet using HTTP

(Hyper Text Transport Protocol). XML offers many free APIs for accessing and

manipulating the XML data. XML separates the contents of a document and the

expression methods, i.e. the management data is stored in XML documents and the

presentation or format of the management data is stored in XSL (Extensible Style Sheet

Language) documents using XSLT representation [12] [13]. XML supports the exchange

of management data over all the hardware and software that supports HTTP. XML needs

12

low development cost, since all the APIs and development kits are freely available. XML

supports transfer of large amount of data in a single document. All these advantages of

XML make it a candidate to solve the problems of scalability and efficiency of existing

SNMP based NMS. In this section we explain the XML technologies with respect to

XML-based network management.

2.2.1. XML Document

An XML document consists of tags similar to those of a HTML document. The XML

document contains only data between the tags. We can define our own tags to represent

data. We can define our own data structures in way to suitable for our data representation.

SNMP SMI (Structure of Management Information) can be represented in the form of an

XML document.

XML is a text-based document, and we need a mechanism to structure, and validate the

contents present in an XML document. W3C proposed two ways to structure the XML

document contents.

• DTD (Document Type Definitions).

• XML-Schema.

13

2.2.2. DTD

DTD [13] is used to represent the structure of each element present in the XML

document. The content description is part of the element declaration in DTD, and

specifies the order and quantity of elements that can be contained within the element

being declared. DTD is used to specify a property for each element in addition to the

relationship between the elements. DTD does not support a complex information model,

so we need to convert each object of SNMP MIB into its equal element. To overcome the

limitations of DTD, W3C proposed another modeling mechanism, XML Schema. XML

Schema substantially revised and extended the capabilities found in XML DTDs.

2.2.3. XML-Schema

The XML schema [14] [15] [16] is machine readable and human readable. An XML

schema document is basically an XML document. XML Schema supports a variety of

data types (44 kinds of basic types), while DTD treats all data as strings or enumerated

strings. XML Schema also allows inheritance relationships between elements and

supports namespace integration. XML schema provides modularity XML schema offers

greater control and flexibility than the DTD. It is complete and more complex than the

DTD model.

XML schemas are used to define the Structure of Management Information and the

constraints that the MIB objects have to satisfy. SMI can be defined according to the user

14

requirement. Table 2.1 shows the code in ASN.1 notation of OBJECT TYPE macro in the

SNMP MIB [5].

Table 2.1: ASN.1 OBJECT TYPE Macro in SNMP MIB

ASN.1 Object Type Macro
NodeName OBJECT-TYPE
SYNTAX “SyntaxType”
ACCESS “AccessType”
STATUS “StatusType”
DESCRIPTION “DescriptionText”
REFERENCE “ReferenceType”
INDEX “IndexList”
DEFVAL “DefaultValue”
: : = {parentNodeName nodeNumber}

This macro is used to represent table nodes or the data node of the MIB. The equivalent

conversion of the OBJECT TYPE macro expressed in XML schema is shown in Table

2.2.

Table 2.2: XML Schema Representation of the OBJECT-TYPE Macro

XML Schema For Object Type Macro

<xsd:element name = “NodeName”>

<xsd:complexType> <xsd:simpleContent> <xsd:restriction base = “xsd:string”>

<xsd:sequence> (lower part node definition part) </xsd:sequence>

<xsd:attribute name = “oid” type =“xsd:string” use = “fixed” value =“OidValue” />

<xsd:attribute name =“Access” type =“xsd:string”use = “fixed” value =“AccessType”/>

 <xsd:attribute name = “Status” type =“xsd:string” use = “fixed” value =“StatusType” />

<xsd:attribute name = “Description”type = “xsd:string” use = “fixed”value = “DescriptionText” />

<xsd:attribute name = “Reference”type = “xsd:string” use = “fixed”value = “ReferenceType” />

<xsd:attribute name = “Index” type =“xsd:string” use = “fixed” value =“IndexList” />

<xsd:attribute name =“Defval” type =“xsd:string” use =“fixed” value =“DefaultValue” />

</xsd:restriction> </xsd:simpleContent> </xsd:complexType> </xsd:element>

15

2.2.4. XPATH

The primary purpose of Xpath [13] [17] [18], XML Path Language, uses an expression to

identify nodes in an XML document. An XPath pattern is a slash-separated list of child

element names that describe a path through the XML document. The pattern "selects"

elements that match the path is to address parts of an XML document. It also provides

basic facilities for manipulation of strings, numbers, and Boolean. XPath uses a compact,

non-XML syntax to facilitate use of XPath within URIs and XML attribute values. XPath

gets its name from the use of a path notation as in URLs for navigating through the

hierarchical structure of an XML document.

XP ath models an XML document as a tree of nodes. There are different types of nodes,

element nodes, attribute nodes and text nodes. XPath defines a way to compute a string-

value for each type of node [17].

One important kind of expression is a location path. A location path selects a set of nodes

relative to the context node. The result of evaluating an expression that is a location path

is the node-set containing the nodes selected by the location path. Location paths can

recursively contain expressions that are used to filter sets of nodes. A location path can be

absolute or relative.

If the path starts with a slash (/) it represents an absolute location path to an element. If the

path starts with two slashes (//) then all elements in the document that fulfill the criteria

will be selected (even if they are at different levels in the XML tree), and is a relative

path.

16

An example of XPath is given in Table 2.3, consider an XPath “/multiget” which selects

the type of operation. The XPath “ /multiget/host/@name” will select all the host names

from the given XML-based request. The XPath “/multiget/host/xpath/@MIB“ will select

all the MIB objects from the given XML-based request. The XPath “//value” will select

all the values from the given XML-based request.

Table 2.3: An Example of XPath

Example of XPath
 <?xml version="1.0" encoding="UTF-8" ?>
- <multiget>
 <version>0</version>
 <RCommunity>public</RCommunity>
 <Port>161</Port>
- <host name="172.16.104.230">
- <xpath MIB="sysDescr">
 <value>3Com SuperStack II</value>
 </xpath>
- <xpath MIB="sysContact">
 <value>netserv@ccse.kfupm.edu.sa</value>
 </xpath>
- <xpath MIB="sysLocation">
 <value>22-419</value>
 </xpath>
- <xpath MIB="sysName">
 <value>3Com419-90</value>
 </xpath>
</host> </multiget>

2.2.5. XQUERY

XQuery [18] [19] is an XML Query language, is a language for finding and extracting

(querying) data from XML documents, and is designed to support all type of XML data

sources like structured and semi structured documents, relational databases, and object

17

repositories. XQuery provides a powerful and structured facility. XQuery uses Xpath as a

subset and can easily express a complicated query.

XQuery also provides features such as filtering a document to produce a table of contents,

joining across multiple data sources, grouping and aggregating the contents, and querying

based on sequential relationships in the XML documents.

An example of XQuery is given in Table 2.4. This XQuery takes the XML-based response

document is shown in Table 2.4. The XQuery will get all the agent names that are located

in building “22-335-1”. The result we obtain from this XQuery is agent names

“196.1.64.255”, and “196.1.64.253”.

18

Table 2.4: Example of XQuery

Example of Xquery
for $x in doc("xml-request.xml")/multigethost/host
where $x/value=22-335-1
order by $x/host/@name
return $x/host/@name

XML-based Response Document (xml-request.xml)
<?xml version="1.0" encoding="UTF-8" ?>
- <multigethost>
 - <host name="172.16.104.230">
- <xpath MIB="sysLocation">
 <value>22-419</value>
 </xpath>
- <xpath MIB="sysName">
 <value>3Com419-90</value>
 </xpath>
</host> - <host name="196.1.64.255">
- <xpath MIB="sysLocation">
 <value>22-335-1</value>
 </xpath>
- <xpath MIB="sysName">
<value>Cat3550-335-1145</value> </xpath>
- <host name="196.1.64.253">
- <xpath MIB="sysLocation">
 <value>22-335-1</value>
 </xpath> <xpath MIB="sysName">
 <value>Cat3550-335-1145</value> </xpath>

- <host name="10.22.24.17">
- <xpath MIB="sysLocation">
 <value>aaa</value> </xpath>
- <xpath MIB="sysName">
 <value>ME-231A-24</value>
 </xpath>
- <host name="ics-abid">
- <xpath MIB="sysLocation">
 <value>23-16B</value>
 </xpath>
- <xpath MIB="sysName">
 <value>ICS-ABID</value>
 </xpath>
- <host name="coe-yousuf">
- <xpath MIB="sysLocation">
 <value>RA OFFICE</value>
 </xpath>
- <xpath MIB="sysName">
 <value>COE-YOUSUF</value>
 </xpath> </host>
 </multigethost>

2.2.6. XML Parsers

2.2.6.1. DOM

The Document Object Model (DOM) [20] [21] is a programming interface for XML

documents. It is also a platform and language independent interface, which allows

applications to dynamically access and manipulate the content, structure, and style of the

documents. The DOM represents a tree view of the XML document. The

documentElement is the top-level of the tree. This element has one or many childNodes

19

that represent the branches of the tree. The DOM provides a representation of a complete

XML document stored in memory, providing random access to the contents of the entire

document.

The node object represents a node in the node tree. A node can be an element node, a text

node, or any other of the node types. The nodeList object represents a node and its child

nodes as a node tree.

2.2.6.2. SAX

The Simple API for XML [12] [13] (SAX) is an event-driven and serial-access

mechanism for accessing XML documents. SAX reads the XML document in sequential

order and generates an event for a specific element. Hence if the application calls are of

sequential access to XML documents then the SAX parser can be much faster than DOM.

But it does not provide the hierarchical information that a DOM parser provides. While

accessing the XML document, the SAX parser generates events such as the start of an

element and the end of an element. By capturing the event, applications can process

operations on the XML document.

2.2.7. XUPDATE

XUpdate is an XML update language, which provides open and flexible update facilities

to insert, update, and delete data in XML documents. The XUpdate language is expressed

20

as a well-formed XML document, and uses XPath for selecting elements and conditional

processing.

An Example of XUpdate is shown in Table 2.5. The XUpdate makes use of XPath

expression. The select attribute of the update element contains an XPath expression. In

this example the update will select the sysName MIB for the host with name

“172.16.134.30”, and updates the value of the sysName MIB as “KFUPM-CCSE-NMG”.

Similarly we can have insert, delete functionality with the XUpdate.

Table 2.5: Example of XUpdate

Example of XUpdate
 <?xml version="1.0" encoding="UTF-8" ?>
- <xupdate version="1.0">
<update select="//multigethost/host[@name='172.16.134.30']/XPath[@MIB
='sysName']/value">KFUPM-CCSE-NMG</update>
 </xupdate>

2.2.8. XSL/XSLT

XML documents generally only convey information about the structure and semantics of

data. They do not usually carry information about how the information is to be viewed,

displayed or rendered [12] [13].

Given a particular XML document, there are different ways in which this information can

be rendered or viewed. A standard called Extensible Style Language (XSL) has been

proposed to address this issue. An XML style-sheet is a group of rules for transforming an

XML document. These transformations are used for the purposes of augmenting XML

21

document data with information about how to display or view the information. It can also

be used for other forms of transformation (for example defining a mapping to tab-

delimited format), i.e. an XSL style-sheet contains rules which recursively map XML

elements to some other structure (such as a presentation structure). XSL conforms to the

XML syntax [13].

In the transformation process, XSLT uses XPath to define parts of the source document

that match one or more predefined templates. When a match is found, XSLT will

transform the matching part of the source document into the result document. The parts of

the source document that do not match a template will end up unmodified in the result

document. Table 2.6 shows an example of XSLT. Table 2.6contains the XML response

document, and XSL style sheet document. The style sheet is written to produce HTML

representation of the XML response document. The result is shown in Table 2.7. The

XSLT produces HTML table representation for the XML response.

22

Table 2.6: Example of XSLT

Example of XSLT
XML Response Document XSL Style Document

 <?xml version="1.0" encoding="UTF-8" >
- <multigethost>
- <host name="172.16.104.230">
- <xpath MIB="sysContact">
<value>netserv@ccse.kfupm.edu.sa</value>
 </xpath>
- <xpath MIB="sysLocation">
 <value>22-419</value>
 </xpath>
</host>
- <host name="172.16.134.33">
- <xpath MIB="sysContact">
<value>yousuf@ccse.kfupm.edu.sa</value>
 </xpath>
- <xpath MIB="sysLocation">
 <value>RA OFFICE</value>
 </xpath>
</host>
 </multigethost>

<?xml version="1.0" encoding="ISO-8859-1" ?>
<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:template match="/">
<html><body><h2>Response From Agents</h2>
<table border="1">
<tr bgcolor="#9acd32"> <th>Host</th>
<xsl:for-each select="multigethost/host[1]/xpath">
<th> <xsl:value-of select="@MIB" />
</th> </xsl:for-each> </tr> <xsl:for-each
select="multiget/host">
<tr> <td gcolor="yellow">
 <xsl:value-of select="@name" />
 </td> <xsl:for-each select="xpath">
<td> <xsl:value-of select="value" />
</td> </xsl:for-each> </tr>
</xsl:for-each>
 </table> </body>
 </html>
 </xsl:template>
 </xsl:stylesheet>

Table 2.7: Result of XSLT After Transformation

Host SysContact sysLocation

172.16.104.230 netserv@ccse.kfupm.edu.sa 22-419

172.16.134.33 yousuf@ccse.kfupm.edu.sa RA OFFICE

2.2.9. Advantages of XML

XML has many advantages that can be summarized as follows:

• It supports structured document definitions (E.g. DTD or XML Schema).

23

• It can easily transfer structured documents on the Internet through HTTP protocol.

• It can be parsed using standard APIs such as DOM, and SAX.

• It separates the contents of the documents from the presentation of the data

through XSL.

• It can be transformed into HTML, text or XML using XSLT.

• It supports information exchange between all the hardware and software platforms

that supports HTTP.

• It needs low development cost since all the software packages are available for

free.

2.2.10. XML Manager and Agent Combinations

Figure 2.1 shows the manager and agent combinations in XML-based network

management Figure 2.1(a) shows the most widely used network management

combination. Figure 2.1 (d) is a total XML-based management combination, which is an

ideal network management paradigm since there is no XML/SNMP gateway. It gives the

maximum benefit compared to the other network management combinations Figure 2.1

(b) and Figure 2.1 (c) show approaches that need translation from XML to SNMP through

a gateway [5] [6]. Since most network devices have legacy SNMP agents installed in

them, the combination in Figure 2.1 (d) is very difficult to implement in the current

network environment. In order to do so, we need to deploy XML-based agents in the

network devices. Figure 2.1 (c) shows the most appropriate combination to implement in

the current network management framework. This, however, requires development of an

24

SNMP/XML gateway to exchange the messages between the XML-based network

manager and an SNMP agent.

Management Application SNMP Manager

Device

SNMP Agent

Device

XML-Based Agents

XML/HTTP

XML/HTTP

SNMP

(a) (b)

SNMP/XML
GatewaySNMP Manager

Web-MUI

SNMP

XML-Based M anager XML-Based M anager

Device

SNMP Agent

Device

XML-Based Agents

XML/HTTPSNMP/XML
Gateway

XML/HTTP

SNMP

(c) (d)

Figure 2.1: Manager and Agent Combinations in the XML-based Network Management

25

2.2.11. Interaction Translation Methods

2.2.11.1. Process Based Interaction Translation

DOM-based [5] interaction translation is a process-based interaction translation. In this

method DOM interfaces are used for manipulate the structure for information translation.

In this method interface call from the XML-based manager is translated into SNMP

operation. It will be very useful when we have an internal gateway, integrated with XML-

based management system. Here the manager directly accesses the management data in

the DOM using the DOM API provided by the gateway.

2.2.11.2. Message Based Interaction Translation

HTTP is a message based translation method. In [5][6]HTTP-based translation method,

XML/SNMP gateway translates the URI-based HTTP request from XML-based manager

to SNMP requests. The URI is extended with Xpath and Xquery. The Xpath and Xquery

in the URI string is used find the target objects. It is an efficient method to retrieve MIB

objects in XML/HTTP communication. Examples of the URI-based request with Xpath

and Xquery extensions are given in Table 2.8.

26

Table 2.8: Examples of using XPath, XQuery and XUpdate in HTTP Request

Example 1 of Using XPath
http://hostname:8080/gateway?XQuery=<XQuery><Query>
<DeviceIP>141.223.82.72</DeviceIP><Gateway>
<GatewayIP>141.223.82.56</GatewayIP>
<ReadCommunity>public</ReadCommunity>
<SNMPVersion>1</SNMPVersion>
<MibName>RFC1213-MIB</MibName></Gateway>
<XPath>device[@type=“server”]</XPath></Query>
<Query> … </Query><XQuery>

Example 2 of Using XQuery
<result> { Let $t := input() //ifTable/ifEntry/ ifType[contains(./text(), "6")]
RETURN
<totalInOutOctets count=”{count($t) }”><in> { sum($t/ifInOctets/text()) } </in>
<out> { sum($t/ifOutOctets/text()) } </out></totalInOutOctets> } </result>

Example 3 of Using XUpdate
<XUpdate><Query><DeviceIP>141.223.82.72</DeviceIP><Gateway>
<GatewayIP>141.223.82.56</GatewayIP>
<WriteCommunity>media</ WriteCommunity >
<SNMPVersion>1</SNMPVersion>
<MibName>RFC1213-MIB</MibName></Gateway>
<Modifications><Update select=”//sysContact”>admin</Update><Update>…</Update>
</Modifications></Query><Query> … </Query></XUpdate>

Example 2 in Table 2.8 shows the use of XQuery in the HTTP based interaction. This

example finds the total number of in/out octets of the interface group. Example 3 shows

the use of XUpdate to modify the MIB information present in the XML request document

[13].

2.2.11.3. Protocol Based Interaction Translation

SOAP-based translation [22] is an example of protocol based interaction translation.

SOAP is a protocol for exchanging XML-based messages over HTTP or SMTP. SOAP

can be used as a simple messaging protocol and can be extended to an RPC protocol.

27

SOAP-based communication is used as a translation mechanism between the XML-based

manager and the XML/SNMP gateway.

POSTECH defined three types of XML elements for the basic SOAP RPC messages

between the XML-based manager and an XML/SNMP gateway. The three messages are

described in Table 2.9.

Table 2.9: SOAP Messages between the XML-based Manager and Gateway

Message Examples
Get Request <m:getRequest xmlns:m=”http://example.org/gateway”>

<m:community>public </m:community> <m:version>1</m:version>
<m:path>// ifSpeed[1]</m:path>
</m:getRequest>

Set Request <m:setRequest xmlns:m=”http://example.org/ gateway”>
<m:community>media</m:community>
<m:path>//sysName</m:path>
<m:value>Coe-Siraj</m:value>
</m:setRequest>

Response <m:getResponse xmlns:m=”http://example.org/gateway”>
<rpc:result xmlns:rpc=”http://www.w3.org/2001/12/soap-
rpc”><ifSpeed>64000</ifSpeed></rpc:result>
</m:setResponse>

The “getRequest” and the “setRequest” messages have a “version” element, which

indicates the version of the SNMP, a “Community” element for authentication, and an

“oid” element for object identification or a “path” element for addressing one or more

object nodes in the DOM tree using the Xpath expression. A Query element is used to

contain the XQuery expression for a complicated query. The “setRequest” element uses

the “values” element to set a value of a node to be modified. There is “response “ element

for the “getRequest” and “setRequest”, and the response element has “result” element as

28

the only sub element. The manager finds the appropriate method to invoke and pass the

appropriate parameters to the method using the XML Schema. Table 2.10 presents a

summary of the advantages and disadvantages of the three interaction translation methods.

The DOM-based translation method is well suited for the internal gateway, interacting

with a manager directly. The HTTP-based translation method provides an efficient and

effective communication between the manager and the gateway, and reduces amount of

request messages and data transfer. It is also easy to implement. The SOAP based

approach has the advantage of the HTTP-based approach. In this approach the gateway

can receive the request from and send the response to the XML-based manager in a

standardized way and eliminates the pro

Table 2.10: Summary of different Translation Methods

Method Advantages Disadvantages
DOM-based
Translation

No need to have a request
handler a between gateway and a
manager.
It can be applied to both internal
gateway and external gateway.
Uses DOM as an intermediate
storage for the manager.

Imposes a burden on the
manager of invoking a series
of interfaces for a request
processing in appropriate
order.

HTTP-based
Translation

Easy to implement using the
HTTP message extension.
Provides an efficient mechanism
for querying managed objects.

Need of Xpath/Xquery
parsers

SOAP-based
Translation

Simple to implement SOAP over
HTTP.
Inherits advantages of the HTTP-
based translation.
Provides a standard way to
implement RPC.

Overhead of packaging
SOAP messages.

29

CHAPTER 3

LITERATURE REVIEW

“XML-based Network Management, in which the structure of management information

is defined using XML, the exchange of management data is in the form of an XML

document, and it uses standard XML document processing methods to process the

management data..”

J.P.Martin-Flatin [7] was the first person to propose using XML for network management

in his research work on Web-based integrated network management architecture. He

proposed two SNMP MIB to XML translation models.

• Model-level mapping: In this type of mapping there will be one DTD or XML

Schema for each specific type of SNMP MIB object. Each element of the DTD or

XML Scheme is represented to be the same as that of SNMP MIB variables or

Object Identifiers. An example of model level mapping is listed below.

<Interface>

<Bandwidth type=”string”> 100 Mbit/s </Bandwidth>

<Interface>

The advantage of the model level mapping is that the translated DTDs or XML

Schema and XML document are easily readable for the users. This mapping is

easy to parse and render graphically. The main disadvantage of the model level

mapping is that it needs many DTDs or XML Schemas (i.e. one per SNMP MIB).

30

• Meta model-level mapping: There will be one generic DTD or XML Schema for

all the SNMP MIB objects, that is there will be only one DTD or XML Schema

per meta model. The XML elements have generic names such as class, property,

and operation. These are the keywords defined for the meta model. An example of

the meta model level mapping is shown below.

<Class name=”interface”>

<Property name=”bandwidth” type= “string”>

<Value> 100 Mbit/s </Value>

</Property>

</Class>

The main advantage of this mapping is its simplicity, that is one DTD or single

XML Schema allows us to map all the SNMP MIBs. Its main disadvantage is that

DTD are difficult to read, which makes debugging, and rendering more complex.

J.P. Martin-Flatin [7] presented an idea to use XML for integrated management in his

research on web-based integrated network management architecture (WIMA) [5][22].

WIMA provides a way to exchange management information between a manager and an

agent through HTTP. HTTP messages are structured with a multipurpose Internet mail

extensions (MIME) multipart. Each MIME part can be an XML document, a binary file,

BER-encoded SNMP data, etc. By separating the communication and information models,

WIMA allows management applications to transfer SNMP, common information model

(CIM), or other management data. A WIMA-based research prototype, implemented

push-based network management using Java technology.

31

F. Strauss [23] [24] developed a library called “libsmi”, which can be used to access SMI

MIB information. It can even translate SNMP MIB to other languages, like JAVA, C,

XML, etc. This library has tools to check, analyze, dump, convert, and compare MIB

definitions. The tool used for this called “smidump”.

Network devices developed by the Juniper Network are equipped with the JUNOS

Operating system, which supports JUNOScript [25]. The JUNOSciprt allows the client

applications to connect to the Juniper network devices and exchange messages as XML

document. The request and response are represented as DTDs and XML Schemas. The

communication between the client and network devices is through RPC requests. An

XML-based RPC consists of a request and the corresponding response. It is transmitted

through a connection-oriented session using any transport protocols like SSH, TELNET,

SSL or a serial console connection.

Juniper network has already implemented a tool for mapping SNMP SMI information

modules to the XML Schema. This tool is an extension of a previously implemented tool

for converting SNMP SMI to Common Object Request Broker Architecture Interface

Definition Language (CORBA-IDL). Currently Juniper network is working on

implementation of XML document adapter for SNMP MIB modules using Net-SNMP

and XML-RPC libraries.

In the 54th IETF meeting in July 2002 [22], a birds of a feather (BOF) session concerned

with XML configuration (XMLCONF) was held. This BOF discussed the requirements

for network configuration management and how the existing XML technologies, namely

32

SOAP, WBEM, SyncML, and JUNOScript could be used to meet those requirements.

The Network Configuration (Netconf) Working Group was formed in May 2003. The

Netconf Working Group is chartered to produce a protocol suitable for network

configuration. The Netconf protocol uses XML for data encoding, because XML is a

widely deployed standard that is supported by a large number of applications. XML also

supports hierarchical data structures. The Netconf working group will take the

XMLCONF configuration protocol as a starting point.

Web-based enterprise management (WBEM) [22] is an initiative of the DMTF and

includes a set of technologies that enables the interoperable management of an enterprise.

WBEM consists of a CIM, a DTD to represent CIM in XML, and a specification for CIM

operations over HTTP. CIM provides a comprehensive object-oriented information

model, and the CIM schemas are implemented not only for managing servers but also for

network resources such as switches and routers. WBEM is currently being updated to

include emerging standards such as SOAP. DMTF is representation of and the access to

management data. DMTF is collaborating with OASIS to sponsor a new management

protocol technical committee and to develop open industry standard management

protocols.

The Alliance for Telecommunications Industry Solutions (ATIS) Technical Subcommittee

[23] T1M1 (Internetwork Operations, Administration, Maintenance and Provisioning) is

developing a Telecommunications Markup Language (tML) standard that would govern

telecommunications network management. The tML is a language derived from XML and

based on plain text tags that describe vocabulary used in the exchange of data between

33

telecommunications entities. The goal of the tML framework is to guide the development

of interoperable operations, administration, maintenance, and provisioning (OAM&P)

interfaces using XML for the telecom domain, to apply to various telecommunications

OAM&P functions, and to provide a common framework in developing network

management specifications by different groups. This recommendation is a framework

containing rules, guidelines, and objectives for developing telecommunications industry

standard tML schemas for OAM&P applications.

Jens Muller [23] implemented an SNMP/XML gateway as Java Servlet that allows

fetching of XML documents on the fly through HTTP. MIB portions can be addressed

through XPath expressions encoded in the URLs to be retrieved. The gateway works as

follows. When an MIB module to be dumped is passed to mibdump, an SNMP session is

initiated, and then sequences of SNMP GetNext operations are issued to retrieve all

objects of the MIB from the agent. Mibdump collects the retrieved data and the contents

of these data are dumped in the form of an appropriate XML document with respect to the

predefined XML Schema.

Avaya [23] research lab developed an XML-based management interface to communicate

with the SNMP enabled devices. They developed a tool for mapping SNMP MIB

definition to XML Schema definitions.

Avaya research group developed a protocol using XML-RPC to retrieve and modify MIB

information in SNMP enabled agents. In the mapping of the SNMP MIB to XML

34

Schema, most of the information that is not required is dropped from the XML Schema

definitions.

Martin-Flatin proposed a way to convert the SNMP MIB to XML [7], but there is no

algorithm for the conversion of SMI to XML. POSTECH developed an algorithm to

translate the SMI to XML [6], and also developed three interaction translation methods.

Today’s Network is equipped with legacy SNMP based agents, and it is difficult to

manage legacy SNMP agents through an XML-based manager. Conversion of the XML-

based request to an SNMP-based request through an XML/SNMP gateway provides the

interaction between the XML-based manager and SNMP-based agents.]. For validation of

the algorithm, POSTECH implemented an XML-based SNMP MIB browser using this

SNMP MIB to the XML translator. This gateway is developed by POSTECH at their

DPNM laboratory [4] [6]. This gateway provides modules to manage networks equipped

with SNMP agents [4]. The implementation of the gateway requires two types of

translations: specification translations and interaction translations. The specification

translation is concerned about the translation of the SNMP MIB to XML. POSTECH uses

an automatic translation algorithm for SNMP MIB to XML. The interaction translation

methods for XML/SNMP gateway are the process level interaction translation, the

message level interaction translation, and the protocol level interaction translation.

The Network Management Research Group (NMRG) [23] of the Internet Research Task

Force (IRTF) is a forum for researchers to discuss and develop new technologies to

improve Internet management. In the year 2004, NMRG organized a meeting to

35

investigate the advantages and disadvantages of using web services technology for

Internet management. In the meeting on web services, the participants discussed web

services technologies, including SOAP, WSDL, and universal discovery description and

integration, and compared them with SNMP. They also dealt with security in web

services. NMRG’s work in this area is in the early stage and has not yet produced any

substantial results.

In our proposed work, we are implementing the manager and agent combination shown in

[26] Figure 2.1(c), where we have XML-based manager communicating with SNMP

agents via an XML/SNMP gateway. This paradigm uses HTTP as the communication

protocol between the manager and the gateway, which is the interaction translation used is

the same as that of the POSTECH. In our work, we address the limitations of the current

XML-based network management. We provide a way to manage multiple network

devices. We also provide a way to distribute the management work among multiple

gateways thereby we will improve processing speed of the XML-based request. We also

provide a mechanism for parallel processing of the XML-based request with in the

gateway.

36

CHAPTER 4

FRAME WORK FOR EXTENSIONS TO XML-BASED

NETWORK MANAGEMENT

4.1. MOTIVATION

The main drawback of the SNMP-based network management is the lack of scalability

and inefficiency of processing the management data from the agents. We propose a

framework to increase the efficiency of processing management data, decrease the

communication cost and reduce the traffic between the XML-based manager and the

XML/SNMP gateway. It takes advantage of the XML, DOM, and Java servlets.

An SNMP Get-Request operation gets the value of MIB objects from one agent at a time.

If we want to get the same MIB value from n different agents then we need to execute the

SNMP Get-Request operation n times. The SNMP Get-Bulk-Request operation can get

the values of multiple MIB objects by traversing sequentially a MIB sub tree of one agent.

In addition, SNMP Get-Bulk-Request allow to get bulk of data from one agent but does

not allow to get the data from different agents in a single request. We propose a procedure

to get data from multiple agents using single message. Similarly one can set the same

MIB value to n different agents by means of single message.

In this framework, the XML-based manager can bundle one or more SNMP requests,

which can be sent to one or more agents using a single message. This type of messages

37

will be useful when we want to issue the same request to many agents, or a Get-Request

followed by a Set-Request to the same agent.

A manager may be required to get MIB objects from different agents that satisfy some

conditions. For instance, when a manager is interested to get the same value from n

different agents, it needs to execute n different SNMP get operations. This will increase

the traffic between the XML-based network manager and the agents. With the XML-

based network management, the gateway will check the conditions requested by the

manager and sends back only relevant information.

A manager may also be required to set a MIB object after checking some conditions. In

this case, it may need to first get the MIB value using an SNMP Get-Request operation

then issue an SNMP Set-Request operation. We can define a single message that bundles

multiple SNMP requests. This message will reduce the traffic between the XML-based

manager and the gateway. This will increase the efficiency of the XML-based manager.

4.2. EXTENSIONS TO EXISTING XML-BASED NETWORK

MANAGEMENT

In this section, we present the objectives of our work to the extensions to XML-based

network management. The proposed extensions are described in the following

subsections.

38

• Define a new message for a manager sending one request to multiple agents at the

same time.

• Define a new message for a manager sending multiple requests to one agent.

• Define a new message for a manager sending multiple requests to multiple agents.

• Define syntax and translation scheme to support these new types of messages.

• Design a framework to enhance the existing system while still using legacy SNMP

agents.

• Design and implement XML/SNMP Gateway for integration of SNMP and XML.

• Develop and implement the new framework and compare the results with existing

systems.

• Performance Evaluation of the XML/SNMP Gateway.

4.2.1. Manager Sending One Request to Multiple Agents

We have designed two types of multiget operation, namely XML-based multihostget and

XML-based multiobjectget. The general structure of these two XML-based multiget

requests has been described in this section, and the following section will present an

example.

• Multihostget: In this type of the multihostget operation, the values for the same

MIB objects will be requested from all the agents. We have only one list of MIB

objects for all the agents.

39

• Multiobjectget: In this type of multiobjectget operation, the values for different MIB

objects will be requested from different agents. In this case, we have a different set

of MIB objects for each host.

4.2.1.1. Multihostget

In this case, a request coming from the manager is addressed to multiple agents. The Java

Servlet running at the server side receives the request. The servlet module creates the

DOM tree representation of the multihostget request. The servlet module parses the XML

request, and it takes the Xpath part of the request to extract the MIB nodes referenced.

The hierarchical DOM tree representation of the manager sending one request to multiple

agents through HTTP-based protocol is shown in Figure 4.1. The example of a manager

sending one request to multiple agents is shown in Figure 4.2.

40

M u lt ig e t

M IB
N O D E

M IB
N O D E

M IB
N O D E

A g e n t /
H o s t

A g e n t /
H o s t

A g e n t /
H o s t

V A L U
E

V A L U
E

V A L U
E

Figure 4.1: Hierarchical DOM tree of a Manager Sending a Single Request to Multiple

Agents

M u lt ig e t

s y s L o c a
t i o n

s y s L o c a
t io n

s y s L o c a
t io n

1 7 2 .1 6 .
1 3 4 .3 5

1 7 2 .1 6 .
1 3 4 .3 4

c o e -
s i r a j

2 4 - 1 5 62 2 - 1 4 9
R a -

o f f i c e

Figure 4.2: Example of a Manager Sending a Single Request to Multiple Agents

41

The general structure of the XML-based multihostget request sent by the XML-based

manager to the gateway is shown in Table 4.1. The multihostget request has a required list

of SNMP agent names, a list of MIB objects, the version, the read community, the write

community, and the SNMP communication port for a group of agents. The hostlist

contains a list of hostname tags. A hostname tag represents a target host name, which can

be either the agent name or the IP address of that agent. The xpathlist contains a list of

xpath tags. The value between these tags represents the target MIB object. The target MIB

object can be either as scalar MIB object or a table MIB object or a column MIB object,

or a group MIB object. The XML-based multihostget request resembles the SNMP Get-

Request if we have only one agent in the hostlist. In this multihostget extension, we

preserve the general structure of the SNMP Get-Request. Hence, the multihostget request

can be used as the simple SNMP Get-Request with one host.

Table 4.1: General Structure of Multihostget Request.

General Structure of the XML-based Multihostget Request
<?xml version="1.0" ?>
-<multihostget>
- <Version>SNMPVersion</Version>
 - <WCommunity> Write Community String </WCommunity>
 - <RCommunity> Read Community String </RCommunity>
 - <Port> Port of SNMP Communication </Port>
- <hostlist>
 <hostname> agent name or IP address </hostname>
 <hostname> agent name or IP address </hostname>
 ……………………………………….
 <hostname> agent name or IP address </hostname>
 </hostlist>
- <xpathlist>
 <xpath> MIB name </xpath>
 <xpath> MIB name </xpath>
 ………………………………………..
 <xpath> MIB name </xpath>
 </xpathlist>
 </multihostget>

42

After Expansion of the multihostget request shown in Table 4.1, we get the XML-based

multihostget request shown in Table 4.2 at the XML/SNMP gateway. A multihostget

request has a list of child “host” tags and each host tag has a list of child “xpath” tags. All

the host tags have an attribute “name” whose value represents the target agent. All the

xpath tags contain an attribute named “MIB”, which represents the target MIB object. All

the xpath tags have a “value” tag, which is used to store the value for the MIB object of

this xpath tag. Initially, all the value tags have their value as “NONE”. After execution of

the multihostget operation the value tag will be updated with the received response value.

In the case of Table MIB objects the value tags are dynamically created according to the

number of rows in the table object, which is we add a list of child value tags to the column

MIB object. We will illustrate an example of a multihostget request in the following

section.

Table 4.2: General Structure After Expansion of the Multi Get Host Request

General Structure of the Multihostget Request
<?xml version="1.0" ?>
-<multihostget>
- <Version>1</Version>
 - <WCommunity> public </WCommunity>
 - <RCommunity> public </RCommunity>
 - <Port> 161 </Port>
-<host name="agent name or IP address">
-<xpath MIB="MIB Object Name">
<value>NONE</value>
</xpath>
-<xpath MIB=" MIB Object Name ">
<value>NONE</value>
</xpath> …………………
-<xpath MIB=" MIB Object Name ">
<value>NONE</value>
</xpath></host>
-<host name=" agent name or IP address ">
-<xpath MIB=" MIB Object Name ">
<value>NONE</value>

</xpath>
-<xpath MIB=" MIB Object Name ">
<value>NONE</value>
</xpath> ……………………..
-<xpath MIB=" MIB Object Name ">
<value>NONE</value>
</xpath>
</host> …………………. …………………..
-<host name=" agent name or IP address ">
-<xpath MIB=" MIB Object Name ">
<value>NONE</value>
</xpath>
-<xpath MIB=" MIB Object Name ">
<value>NONE</value>
</xpath> ……………….
-<xpath MIB=" MIB Object Name ">
<value>NONE</value>
</xpath>
</host></multihostget>

43

4.2.1.2. Example of Multihostget Request

An example of the XML-based multihostget request is shown in Table 4.3. The request

includes two agents, and requesting two MIB objects, namely “sysContact” and

“sysLocation”. This XML-based request is transmitted by the XMB to the gateway.

Table 4.3: Example of Multihostget Request

Example of Multihostget Request
 <?xml version="1.0" ?>
<multihostget>
- <Version>1</Version>
- <WCommunity> public </WCommunity>
 - <RCommunity> public </RCommunity>
 - <Port> 161 </Port>
- <hostlist>
 <hostname>172.16.134.30</hostname>
 <hostname>coe-yousuf</hostname>
 </hostlist>
- <xpathlist>
 <xpath>sysContact</xpath>
 <xpath>sysLocation</xpath>
 </xpathlist>
 </multihostget>

The XML-based multihostget request will be expanded for each agent and it looks as

shown in Table 4.4. The host tags represent the target hosts, which are “172.16.134.30”

and “coe-yousuf”. Each host has xpath child nodes that are used to represent the target

MIB objects of the request, and which are “sysContact” and ”sysLocation” in this

example. Xpath has a value tag that is initialized to a NONE value.

44

Table 4.4: Example of Multihostget request after expansion

Example After Expansion
 <?xml version="1.0" encoding="UTF-8" ?>
<multihostget>
- <Version>1</Version>
- <WCommunity> public </WCommunity>
 - <RCommunity> public </RCommunity>
 - <Port> 161 </Port>
- <host name="172.16.134.30">
- <xpath MIB="sysContact">
 <value>NONE</value>
 </xpath>
- <xpath MIB="sysLocation">
 <value>NONE</value>

 </xpath>
 </host>
- <host name="coe-yousuf">
- <xpath MIB="sysContact">
 <value>NONE</value>
 </xpath>
- <xpath MIB="sysLocation">
 <value>NONE</value>
 </xpath>
 </host>
 </multihostget>

Table 4.5 shows the final stage of the XML-based multihostget request after the received

SNMP response values are updated. The SNMP MIB values are updated according to the

agent name and MIB objects using XPath location expression.

Table 4.5: Example of Multi Get Host after updating with values

Example after Getting the values
 <?xml version="1.0" encoding="UTF-8" ?>
<multihostget>
- <Version>1</Version>
- <WCommunity> public </WCommunity>
 - <RCommunity> public </RCommunity>
 - <Port> 161 </Port>
- <host name="172.16.134.30">
- <xpath MIB="sysContact">
 <value>siraj@ccse.kfupm.edu.sa</value>
 </xpath>
- <xpath MIB="sysLocation.0">
 <value>23-16B</value>

 </xpath>
 </host>
- <host name="coe-yousuf">
- <xpath MIB="sysContact.0">
 <value>yousuf@ccse.kfupm.edu.sa</value>
 </xpath>
- <xpath MIB="sysLocation">
 <value>RA OFFICE</value>
 </xpath>
 </host>
 </multihostget>

Figure 4.3 shows the browser display for the XML-based response in HTML format. We

applied an XSL style sheet to convert the result from XML to HTML.

45

Figure 4.3: Response from Agents after applying transformation.

4.2.1.3. Multiobjectget

The general structure of the multiobjectget operation is given in Table 4.6 for multiple

agents. Here for every agent we need to specify the required list of MIB objects, the

version, the read community, the write community, and the SNMP communication port.

Table 4.6: General Structure of the Multiobjectget Request

General Structure of the XML-based Multiobjectget
<?xml version="1.0" ?>
-<multiobjectget>
 - <host name=” agent name or IP address “>
 <Version>SNMPVersion</Version>
 <WCommunity> Write Community String </WCommunity>
 <RCommunity> Read Community String </RCommunity>
 <Port> Port of SNMP Communication </Port>
 <xpath MIB=”MIB Object Name” > </xpath>
 <xpath MIB=”MIB Object Name” > </xpath>
 …………………………………………….
 <xpath MIB=”MIB Object Name” > </xpath>
 </host>
- <host name=” agent name or IP address” >
……………………………………………….
 </host>
 ……………………………………….
 - <hostn name=” agent name or IP address” </host>
- </multiobjectget>

46

4.2.1.4. Example of Multiobjectget

An example for multiobjectget request is shown in Table 4.7. It contains two agents. The

manager is requesting different lists of MIB objects from the two agents. The first agent

“172.16.134.30” is requesting three MIB objects whereas the other agent “coe-yousuf” is

requesting two MIB objects. The multiobjectget request for each agent has separate tags

for the version, the read community, the write community, and the SNMP communication

port.

Table 4.7: Example of Multiobjectget Request

Example of Multiobjectget Request
 <?xml version="1.0" encoding="UTF-8" ?>
- <multiobjectget>
<host name="172.16.134.30">
- <Version>1</Version>
- <WCommunity> public </WCommunity>
 - <RCommunity> public </RCommunity>
 - <Port> 161 </Port>
- <xpath MIB="sysContact">
 <value>NONE</value>
 </xpath>
- <xpath MIB="sysLocation">
 <value>NONE</value>
 </xpath>
- <xpath MIB="sysName">
 <value>NONE</value>

 </xpath>
</host>
<host name="coe-yousuf">
- <Version>1</Version>
- <WCommunity> public </WCommunity>
 - <RCommunity> public </RCommunity>
 - <Port> 161 </Port>
- <xpath MIB="sysContact">
 <value>NONE</value>
 </xpath>
- <xpath MIB="sysLocation">
 <value>NONE</value>
 </xpath>
 </host>
 </multiobjectget>

The servlet will first extract the agent list. Then using the name of the each agent, it will

extract the list of MIB objects, the SNMP port, the SNMP version, the read community,

and the write community from the request. Using this information, it will issue an SNMP

47

Get-request to every agent sequentially. The received response is updated. This is

repeated for each agent. The final XML-based response is given in Table 4.8.

Table 4.8: Example of Multiobjectget after updating

Example after Getting the values
 <?xml version="1.0" encoding="UTF-8" ?>
<multiobjectget>
- <Version>1</Version>
- <WCommunity> public </WCommunity>
 - <RCommunity> public </RCommunity>
 - <Port> 161 </Port>
- <host name="172.16.134.30">
- <xpath MIB="sysContact">
 <value>siraj@ccse.kfupm.edu.sa</value>
 </xpath>
- <xpath MIB="sysLocation.0">
 <value>23-16B</value>
 </xpath>
- <xpath MIB="sysName">
 <value>coe-siraj</value>

 </xpath>
 </host>
<host name="coe-yousuf">
- <Version>1</Version>
- <WCommunity> public </WCommunity>
 - <RCommunity> public </RCommunity>
 - <Port> 161 </Port>
- <xpath MIB="sysContact.0">
 value>yousuf@ccse.kfupm.edu.sa</value>
 </xpath>
- <xpath MIB="sysLocation">
 <value>RA OFFICE</value>
 </xpath>
 </host>
 </multiobjectget>

4.2.2. Manager Sending Multiple Requests to One Agent

In this case, the XML-based manager sends one request, which consists of different

SNMP operations to one agent. This request is passed to the XML request servlet, which

parses the request and forwards it to the XPath/ XQuery module, where the Xpath and

XQuery are separate. Then, a DOM tree is created as shown in Figure 4.4.

48

Q u e r y

M I B
N O D E

M I B
N O D E

G e t

V a l u e

S e t

M I B
N O D E

M I B
N O D E

A g e n t

V a l u e V a l u e V a l u e

Figure 4.4: Hierarchical representation of the Multiple Request to one agent

Table 4.9: Example of Multiple Requests to one agent

Example of Multiple Requests to one Agent
 <?xml version="1.0" encoding="UTF-8" ?>
- <multiple>
<host name="172.16.134.30">
- <Version>1</Version>
- <WCommunity> public </WCommunity>
 - <RCommunity> public </RCommunity>
 - <Port> 161 </Port>
- <get>
- <xpath MIB="sysDescr">
 <value>NONE</value>
 </xpath>
- <xpath MIB="sysName">
 <value>NONE</value>

</xpath>
</get>
- <set>
- <xpath MIB="sysContact">
 <value> coe@ccse.kfupn.edu.sa</value>
 </xpath>
- <xpath MIB="sysLocation">
 <value>23-016B</value>
 </xpath>
- </set>
 </host>
 </multiple>

An example of a manager sending multiple SNMP requests to one agent is given in Table

4.9. The example has one agent “172.16.134.30” requesting an SNMP Get-Request and

an SNMP Set-Request. The XML-based request has a get tag and a set tag. The get tag

has a list of XPath tags each representing a MIB object. Similarly, the set tag has a list of

49

XPath tags. The XPath tag of set has a value tag, which stores the value to be set for the

MIB object.

4.2.3. Manager Sending Multiple Requests to Multiple Agents

Similarly in this case, the XML-based manager sends one request message, which consists

of different SNMP operations to multiple agents. Figure 4.5 shows the general DOM tree

of a manager sending multiple requests to multiple agents.

Multiple

M IB

NODE

MIB

NODE

Get

Value

Set

M IB

NODE

MIB

NODE

Agent

Value Value Value

M IB

NODE

MIB

NODE

Get

Value

Set

M IB

NODE

MIB

NODE

Agent

Value Value Value

Agent

Figure 4.5: Hierarchical representation of the Manager sending Multiple Requests to

Multiple Agents

An example of a manager sending multiple SNMP requests to multiple agents is given

Table 4.10. The example has two agents “172.16.134.30”, and “172.16.134.230”. Both

the agents are requesting an SNMP Get-Request and an SNMP Set-Request. The XML-

50

based request has a get tag and a set tag for every agent. The get tag has a list of XPath

tags each representing a MIB object. Similarly, the set tag has a list of XPath tags. The

XPath of the set has a value tag, which stores the value to be set for the MIB object.

Table 4.10: Example of Multiple Requests to Multiple agents

Example of Multiple Requests to Multiple Agents
 <?xml version="1.0" encoding="UTF-8" ?>
- <multiple>
<host name="172.16.134.30">
- <Version>1</Version>
- <WCommunity> public </WCommunity>
 - <RCommunity> public </RCommunity>
 - <Port> 161 </Port>
- <get>
- <xpath MIB="sysDescr">
 <value>NONE</value>
 </xpath>
- <xpath MIB="sysName">
 <value>NONE</value>
</xpath>
</get>
- <set>
- <xpath MIB="sysContact">
 <value>NONE</value>
 </xpath>
- <xpath MIB="sysLocation">
 <value>NONE</value>
 </xpath>
</set>
 </host>

<host name="172.16.134.230">
- <Version>1</Version>
- <WCommunity> public </WCommunity>
 - <RCommunity> public </RCommunity>
 - <Port> 161 </Port>
- <get>
- <xpath MIB="sysDescr">
 <value>NONE</value>
 </xpath>
- <xpath MIB="sysName">
 <value>NONE</value>
</xpath>
</get>
- <set>
- <xpath MIB="sysContact">
 <value>NONE</value>
 </xpath>
- <xpath MIB="sysLocation">
 <value>NONE</value>
 </xpath>
</set>
 </host>
 </multiple>

In the manager sending multiple requests to one agent and in the manager sending

multiple requests to multiple agents, we first extract the agents present in the XML-based

request and then for each agent we extract all the SNMP requests present in the XML-

based request one after the other (get, set etc.). After extraction, the SNMP request will be

executed and the response is updated with the received values.

51

4.3. OTHER POSSIBLE EXTENSIONS

In this section, we present some other possible extensions to the XNM that we have not

implemented. These could be the subjects of some future work.

The communication between an XML-based manager and an RMON probe is similar to

that of the communication between an XML-based manager and SNMP agents, since the

RMON probe is going to be an agent for the top-level manager. The manager may request

RMON probes to do the same type of monitoring.

The gateway is going to receive many alarms from the agents but the manager could

request the gateway to send only the summary of the alarms by filtering the related

alarms, or to send those alarms that satisfy certain conditions. Thus the gateway could act

as a filter.

4.4. SOFTWARE REQUIREMENTS

Following are the required software to implement the extensions to the XML-based

network management.

• Java (JDK 1.4.3): JDK 1.4.3 is Sun’s software for developing java-based

applications.

• Apache Tomcat web server 5.0: [27] Tomcat is the servlet container, which is

used to run the Java Servlet and Java Server Pages. It is used in the gateway to

receive the HTTP based request from the XML-based manager.

52

• Xalan Xecers XML parser: [28] It is an XML Parser, which supports DTD,

Name Space, DOM API, SAX 2.0, JAXP 1.2, and XML Schema 1.0.

• IReasoning SNMP API package: [29] iReasoning Java SNMP API is the

industry leading SNMP library, which provides a high performance, cross

platform SNMP Java API for building network management applications. It is

written in Java, and designed from the ground up to support fully all SNMP

versions (SNMPv1, SNMPv2, and SNMPv3). All code bases are highly optimized

to maximize performance and minimize overhead. This package is used in our

system to implement the SNMP communication between gateways and SNMP

agents.

• SoftPerfect Protocol Analyzer: [30] is an advanced, professional tool for

analyzing, debugging, maintaining and monitoring local networks and Internet

connections. It captures the data passing through a dial-up connection or a network

Ethernet card, analyzes this data and then represents it in an easily readable form.

This tool is used to capture the traffic between the XML-based manager and

gateway, and between the gateway and SNMP agents. It is also used to find the

response time between the transmission of an XML-based request and the

reception of the corresponding XML-based response.

• Web Browser (Internet Explorer 6.0): It is a Microsoft product used to present

the network management data in a user friendly format.

• JPVM (Java Parallel Virtual Machine) source code: [31] JPVM is a PVM-like

library of object classes implemented in and for use with the Java programming

53

language. It is used to implement the JPVM master and slave gateways that

communicate with SNMP agents, and for the distribution management tasks.

4.5. APPLICATIONS

In this section we give the functional area where the multiobjectget and multihostget are

very useful such as configuration management and fault management. Configuration

Management [7] [8] [32] is concerned about monitoring and controlling (i.e. get and set)

parameters of managed devices. With the multi-get-request and multi-set-request we can

get and set many objects on many agents using a single message. Thus, this proposed

framework increases the efficiency of the processing, and thus the efficiency of the

configuration management process. The new extensions can be used, for instance, to set

an alarm threshold value in multiple agents or to find the location (i.e., sysLocation) of n

agents by means of a single message. It will be also useful when the manager is interested

in initializing many agents with the same value.

Fault Management [8] is concerned about detection and isolation of the problems that

cause failures in the network. This gateway can be used to isolate minor and major alarms.

The gateway can also be used to correlate different alarms and report to the manager a

summary of the status of a sub network.

54

4.6. PROPOSED FRAMEWORKS

Our framework is based on the XML/SNMP gateway architecture, which was shown in

Figure 2.1(c) [26], where communication is between an XML-based Manager, an

XML/SNMP gateway, and SNMP agents. We propose three frameworks for the XML-

based network management with XML/SNMP gateway.

• Single DOM Tree-based Approach.

• CSV-based Approach.

• JPVM-based Approach.

The functional description of these frameworks is presented in the following sections.

4.6.1. Single DOM Tree-based Approach

The proposed architecture for the single-DOM tree has three main components as shown

in Figure 4.6:

• XML-based Network Management Station.

• XML/SNMP Gateway.

• SNMP agents.

The XML-based request is represented as an XML document. The XBM prepares and

sends the XML-based request to the XML/SNMP gateway. The request is received by the

XML request servlet, which retrieves the number of target agents present in the request. It

extracts the Xpath component of the request and sends it to the Xpath/Xquery module,

55

which parses the XML-based request document. Parsing extracts the target MIB object

present in the XML-based request received from the XBM.

XML-based Network
Management Station

Router Bridge
Workstation

XML-Request Servlet

XPath/Xquery

DOM Tree Updation

Muti-Get and Multi-Set
Request

SNMP Communication

SNMP
Request/
Response

SNMP Request/
Response

SNMP
Request/
Response

XML-based Response

HTTP

XML Response

XML/SNMP Gateway

Figure 4.6: Single-DOM Tree based Framework

Using these target objects and the target hosts, the SNMP communication module will

send the SNMP-based request to the agents and receives the SNMP response. The DOM

tree is updated with the received response values. The updated response DOM tree can be

translated into any form according to the user requirements using the XSL style sheets.

Here in our approach we apply the XML style sheet to convert the response DOM tree

into an HTML format and it is transmitted over the HTTP protocol to the XBM.

56

4.6.2. CSV-based Approach

The proposed architecture for the CSV-based approach is quite similar to that of the

Single DOM Tree-based approach, and has the same three main components. The

framework for CSV-based approach is shown in Figure 4.7. The CSV-based approach is

different only at the updating of the SNMP response into an XML response. In CSV

instead of updating the response to the DOM tree we write the response to a CSV file.

XML-based Network
Management Station

Router Bridge
Workstation

XML-Request Servlet

HTTP

XPath/Xquery

CSV-Response
Generation

Muti-Get and Multi-Set
Request

SNMP Communication

SNMP
Request/
Response

SNMP Request/
Response

SNMP
Request/
Response

HTTP

XML-based Response
XML Response

XML/SNMP Gateway

XML-Response
Generation

Figure 4.7: CSV-based Framework

The CSV response generation module handles the SNMP response received from the

agents. Then, a CSV file for the received response values is created. Once the response is

57

received from all the agents the CSV file is converted into an XML document. The XML

document can be translated into any form according to the user requirement using the

XSL style sheets as described in the previous section

4.6.3. JPVM-based Approach

In this section we present the JPVM-based approach. First we give a general background

of the JPVM, and then we describe the proposed architecture and its implementation. We

also present the algorithms for load balancing and our contribution to JPVM.

4.6.3.1. JPVM Background

Adam J. Ferrari introduced JPVM [31] (Java Parallel Virtual Machine) library. The JPVM

library is a software system for explicit message passing based on distributed memory

MIMD parallel programming in Java. JPVM supports an interface similar to C and

FORTRAN interfaces provided by the PVM (Parallel Virtual Machine) system. The

JPVM system is easily accessible to the PVM programmers and has low investment target

for migrating parallel applications to a Java platform. JPVM offers new features such as

thread safety, and multiple communication end-points per task. JPVM has been

implemented in Java and is highly portable among the platforms supporting any version

of the Java Virtual Machine.

The JPVM system is quiet similar to that of a PVM system. JPVM has an added

advantage of the Java as a language for network parallel processing. In the case of PVM,

58

we divide a task into a set of cooperative sequential tasks that are executed on collection

of hosts. Similarly, in the case of JPVM, one has to code the implementation part into

Java. The task creation and message passing is provided by means of JPVM.

4.6.3.2. JPVM Interface

In this section we explore the JPVM interface that provides the task creation, and

execution. The most important interface of the JPVM package is the jpvmEnvironment

class. The instance of this class is used to connect and interact with the JPVM systems

and other tasks executing within the system.

An Object of this class represents the communication end-points within the system, and

each communication point is identified by means of a unique jpvmTaskId. In PVM, each

task has single a communication end-point (and a single task identifier), but JPVM allows

programmer to maintain logically unlimited number of communication connections by

allocating multiple instances of jpvmEnvironment.

First we need to set the JPVM environment on all the hosts that we are interested in

parallel communication. For this, we need to run the jpvmDaemon java program on all the

hosts. By running jpvmDaemon threads, we just initiate the JPVM environment. These

threads are not used until all the hosts know about their JPVM environment.

Next we need to start the Console on one of the jpvmDaemon running hosts. The console

program can be started running the jpvmConsole java program. Then, we have to register

or add the other jpvmDaemon hosts to the host running the console program. We add the

59

hosts by giving the name and the port at which the jpvmDaemon started. This port is used

during message passing between the JPVM hosts, and is the port through which the JPVM

communication takes place.

4.6.3.3. JPVM Architecture

The proposed JPVM architecture is shown in Figure 4.8. It has mainly 3 components,

namely an XML-based Manager, JPVM gateways, and SNMP agents. All the JPVM

gateways are configured to run daemon processes. There will be one JPVM gateway that

will run the jpvmConsole in order to notify all the hosts one another’s existence and this is

called the master JPVM gateway. The master JPVM gateway will communicate directly

with the XML-based manager. The other JPVM gateways are known as slave JPVM

gateways. These slave gateways communicate only with the master JPVM gateway.

Hence, the JPVM-based network management is based on a master-slave paradigm.

60

XML-Based Manager

MASTER JPVM
XML/SNMP Gateway

JPVM XML/SNMP Gateway

JPVM XML/SNMP Gateway

JPVM XML/SNMP Gateway

XML-Based Request
Over HTTP

Router
Printer

Flat screen
Router

Printer
Flat screen

Router
Printer

Flat screen

Router
Printer

Flat screen

XML-Based Response
Over HTTP

Figure 4.8: JPVM Framework for Parallel XML-based Netwrok Management

It has mainly 3 components, namely an XML-based Manager, JPVM gateways, and

SNMP agents. All the JPVM gateways are configured to run daemon processes. There

will be one JPVM gateway that will run the jpvmConsole in order to notify all the hosts

61

one another’s existence and this is called the master JPVM gateway. The master JPVM

gateway will communicate directly with the XML-based manager. The other JPVM

gateways are known as slave JPVM gateways. These slave gateways communicate only

with the master JPVM gateway. Hence, the JPVM-based network management is based

on a master-slave paradigm.

4.6.3.4. Implementation of the Proposed Framework

The JPVM-based framework is implemented as a master-slave architecture, where a

master JPVM is running at the web server since the XML-based request is send over

HTTP protocol and is received at the web server. The master JPVM gateway receives the

request from the XML-based manager. A jpvmDaemon program will be running on all the

JPVM gateways. The master JPVM gateway is connected to a number of slave JPVM

gateways, and will run the jpvmconsole program. The JPVM slave gateways have only the

slave programs running on them for communication with the master JPVM and SNMP

agents. The slave JPVM carries out the actual XML to SNMP translation and SNMP

communication with the SNMP agents. The master JPVM status can be either working or

not working. If the master has a working status, it can communicate with the SNMP

agents after dividing the tasks since the master will be running separate jpvmEnvirnment

task.

62

XML-Based Network Management Station

XML-based Request over
HTTP

XML-based Response over
HTTP

MASTER JPVM
XML/SNMPGATEWAY

Divide and Distribute the work
to slave JPVM XML/SNMP

gateways

JPVM XML/SNMP
Gateway

JPVM XML/SNMP
Gateway

JPVM XML/SNMP
Gateway

JPVM XML/SNMP
Gateway

SNMP Request
Response Handler

Agent AgentAgent

Agent AgentAgentAgent AgentAgent

Agent AgentAgent Agent AgentAgent

Receive Response
From all PVM XML/
SNMP Gateway

Generate the XML-
based Final Response

Figure 4.9: Implementation of the Proposed Framework

4.6.3.5. JPVM Master Algorithm

The JPVM master gateway algorithm is presented in Algorithm 4.1. The Master JPVM

algorithm has three stages: initialization, waiting for the work, and termination. In the

initialization stage, the master will start the JPVM environment, and create a pool of slave

JPVM gateways and the character of the slave JPVM gateways is described in the next

section. In the wait for request stage, the master will wait for the request from the XBM,

and upon receiving the request it divides the work among the available pool of slave

JPVM gateways, and dispatches the work to the slave JPVM gateways. It will wait for the

63

response from all the slave JPVM gateways, and after receiving all the responses, it joins

them into one response document. Then, it will apply XSL to the XML document before

transmitting the response over HTTP protocol to the XML-based manager. In the

termination stage, the master JPVM will send the stop command to the slave JPVMs, and

then exit from the JPVM environment.

Algorithm JPVM Master Gateway
Begin

Initialization:
Start the JPVM Environment
Create Pool of JPVM Slave Gateways.
Initialize the JPVM _Spawn for each Slave (Start of JPVM).

Wait For Request:
Divide the work.
Send the work to each Slave JPVM gateways.
Get the result from all the Slave JPVM gateways.
Join the work.

Termination:
Send to each Slave the Stop command.
Exit from the JPVM Environment.

End Master JPVM

Algorithm 4.1: Master JPVM Gateway Algorithm

4.6.3.6. Slave JPVM Algorithm

The slave JPVM algorithm is presented in Algorithm 4.2. The slave JPVM gateway starts

the JPVM environment and parses the RFC-1213 MIB objects during the master JPVM

initialization stage. The slave JPVM will wait for the work from the master JPVM

gateway. Once the work is received from the master, each slave JPVM performs the

Single DOM tree-based approach (i.e., Converting the XML-request into SNMP requests,

sending SNMP requests, receiving the SNMP response, and updating SNMP responses in

64

the DOM tree). All the slave JPVM gateways will pass the XML response document to

the master JPVM gateway. Then, all the slaves wait again for work from the master. This

repeats until the master sends the terminate command to all the slave JPVM gateways.

Algorithm JPVM Slave Gateway
Begin

Start the JPVM Environment.
Parse the RFC-1213.
While (true)
 Wait to receive the work from the Master.

 If (Stop)
 Exit from the JPVM Environment
 If (Work)

 Get the XML-Document.
 Do the Work.
 Else
 Break

 End While
 Exit from the JPVM Environment
End Slave

Algorithm 4.2: Slave JPVM Gateway Algorithm

4.6.3.7. Contributions to JPVM

JPVM supports basic data types like integer, long, string, character etc. The

communication (message passing) between the different JPVMs is through these data

types. XML-based network management requires communication by means of XML

documents. The JPVM does not support message passing of XML documents among the

different JPVM stations. In order to support message passing of XML documents, we

added new data types such as: XML document, NodeList, Node, and SnmpPdu to the

current JPVM source code.

65

4.6.3.8. JPVM Task Allocation

We classify the JPVM task allocation, based on the task or work from the master JPVM

gateway to the slave JPVM gateways, into three types.

• Equal work to all slave JPVM Gateways.

• Weighted Static Load-Balancing.

• Dynamic Load-Balancing.

4.6.3.9. Equal work to all Slave JPVM Gateways

In equal work assignment, the master JPVM receives the XML-based request from the

XML-based manager, and divides the request among slave JPVM gateways. Here the unit

of work is the agent. If there are N slave JPVM gateways and the request contains M

agents then the work for each slave JPVM gateway will be M/N.

Figure 4.10 shows the response time of two JPVM slaves, one with 350 MHz CPU, and

the other with 711 MHz CPU. It can be seen that the same request is taking different times

based on the processing capacity of the CPU. If we allocate the same amount of work to

every processor then the high processing capacity processor will be underutilized. In order

to maximize the utilization of the CPU processing capacity, we propose a weighted static

load-balancing algorithm. The next section will illustrate this algorithm.

66

Figure 4.10: Response Time for JPVM Slave Running on different CPU speeds

4.6.3.10. Weighted Static Load Balancing

The equal work (i.e. dividing the work based on the number of slave JPVM gateways

present in the pool) approach will provide good performance only for a homogeneous

network of workstations. In the weighted static load-balancing algorithm, we divide the

work based on the efficiency (processing speed of the workstations) of the workstations.

This means that we assign a weight to the workstations depending on their processing

speed, and during the work assignment it will be given work according to its weight.

67

The gateways may be busy serving some other requests. In such a case, efficiency of the

weighted static load-balancing algorithm will decrease, i.e., the response time will

increase. Instead of assigning the load based on a static weight, we assign the load based

on the current load present on the slave JPVM workstation, which is dynamically

assigning the load to the JPVM slave gateways. The next section will give brief

background information on load balancing in general and our load-balancing algorithm.

4.6.3.11. Dynamic Load Balancing

In this section, we first give a brief introduction to the dynamic load balancing, and then

we discuss our algorithm. Load balancing involves assignment of tasks to each processor

in proportion to its performance. The goal of load balancing is to assign a work

proportional to the performance of the node or processor thereby minimizing the

execution time of the application. In Dynamic load balancing the assignment of tasks is

done during runtime. The assignment of tasks is based on the current load on the

processors (based on the performance of the processors).

Centralized Dynamic Load Balancing: In this type of dynamic load balancing there will

be a centralized node, which is responsible for load balancing decisions. This centralized

node will assign the tasks to all the other nodes (work is dispatched by the centralized

master node). In our algorithm the master JPVM performs the assignment of work. Hence,

our algorithm is based on the centralized dynamic load balancing paradigm.

68

The dynamic parallel algorithm [33] [34] divides the workspace into a work pool

consisting of a large number of work blocks, each of which consists of a number of

contiguous rows. Each row can be thought of as a sub task within the work block. In this

dynamic load balancing approach, the master processor first creates the work blocks, and

then distributes one work block to each of the slave processors. When a slave finishes a

work block, it sends the computation back to the master and then the master sends the

location of the next work block from the work pool for the slave to compute.

One benefit of work pooling is that, for a heterogeneous network, faster processors can

request new work as soon as they are done without having to wait for slower processors.

The dynamic parallel algorithm is tested with two heterogeneous systems, namely a 350

MHz and 711 MHz processing speed processors.

 The Dynamic Load Balancing algorithm shown in Algorithm 4.3 has three stages:

1. Initialization: where the master JPVM creates a pool of slave JPVM gateways.

2. Wait for a request: where the master JPVM will wait to receive a request from the

XBM, and then it will create a pool of working blocks from the request. The

master processor then distributes one work block to each of the slave processors.

 When a slave JPVM finishes a work block, it sends the computation back to the

master and then the master sends the next work block from the work pool for that

XML/SNMP slave JPVM to compute. This repeats until all the blocks in the pool

are completed. At the end, the master joins all the responses from the slave JPVM

gateways.

69

3. Termination: where the master JPVM sends a STOP command to all slave JPVM

gateways. This command tells the JPVM slaves to exit from the JPVM

environment.

Dynamic Load Balancing-Master JPVM
Begin

Initialization:
Start the JPVM Environment
Get Pool of JPVM Slave Gateways
Initialize the JPVM _Spawn for each Slave (Start of JPVM)

Wait For Request:
Divide the work into Blocks
Send the Initial work to each Slave JPVM gateway
Do until Work Blocks Expires
 Get the result From the Slave JPVM gateways
 Send the work to Slave JPVM gateway
End Do
Join the work

Termination:
Send to Each Slave the Stop Command
Exit from the JPVM Environment

End Master JPVM

Algorithm 4.3: Dynamic Load Balancing

4.7. IMPLEMENTATION WITH VARIATIONS

4.7.1. DOM Variations

The SNMP communication between the gateway and SNMP agents can be classified into

two types, namely blocked and non-blocked. In the case of a blocked SNMP

communication, the gateway sends a request to SNMP agents, and waits for a response. In

70

a non-blocked communication, the gateway does not wait for the response from the agent

rather, it executes as a separate thread. The Single DOM Tree-based approach has been

implemented in both a blocking and a non-blocking fashion. The SNMP responses

received from the agents can be processed in three ways, sequential, producer–consumer,

producer-consumer with message queue. The details of these methods are explained in

the next subsections.

4.7.1.1. Sequential Processing

In this approach there will be only one thread running in the program. The program

sequentially issues SNMP requests to agents one after another, and then processes the

SNMP response from all the agents into an XML response. The sequential request and

response processing is shown in Figure 4.11.

Request1
Idle

Response1
Idle

Request2

Figure 4.11: Sequential SNMP Request and Response

The sequential algorithm is shown in Algorithm 4.4 where we parse the request document,

get the hostlist and MIB objects, and then communicate with the SNMP agents

sequentially one after the other. Finally, the SNMP response is updated to the XML

document to which the XSL is applied.

71

Algorithm Sequential

Begin
Parse the XML-document
Get the Hostlist
Get the Target Objects

 For I=0 to length (Hostlist)
 Send SNMP-Request
 Receive SNMP-Response
 Update the Response on the DOM Tree
 End For

 Convert DOM tree to XML Document
 Send the Result Over HTTP after Applying
 XSL.
End –Sequential

Algorithm 4.4: Sequential Algorithm

4.7.1.2. Producer-Consumer Processing

The Producer-Consumer processing is a thread-based approach in which one thread

produces (i.e., sends) SNMP requests and receives the values, while the second thread,

(i.e., consumer) waits. Once the SNMP response is available from the producer, the

consumer thread starts working on the received values. This continues for all the agents.

In this approach, the producer thread must wait until the consumer processes the

responses.

Algorithm 4.5 shows the producer consumer main algorithm with and without message

queue, where we start the producer and consumer threads. Algorithm 4.6 shows the work

for a producer and a consumer without message queue.

72

Algorithm Producer-Consumer Algorithm Produce-Consumer with
Message Queue

Begin
 Start the PRODUCER
 Start the CONSUMER

 Wait for Completion
 Convert DOM tree to XML

document
Send result Over HTTP after
applying XSL

End Prod-Con

Begin
 Initialize MQ
 Start the PRODUCER-MQ
 Start the CONSUMER-MQ
 Convert DOM tree to XML document
 Send result over HTTP after applying
XSL

End Prod-Con-MQ

Algorithm 4.5: Producer Consumer Algorithms with out and With Message Queue

Algorithm Producer Algorithm Consumer
Begin

Parse the XML-document
Get the Hostlist
For I=1 to Length (Hostlist)

 Send SNMP-Request
 Receive SNMP-Response
 Notify
 Wait for Consumer
End for

End Producer

Begin
 While (Producer has response)

 Receive the SNMP Response
 Update the DOM Tree

 Notify
 Wait for Producer

 End While
End Consumer

Algorithm 4.6: Producer and Consumer Algorithm without Message Queue

4.7.1.3. Producer-Consumer with Message Queue

In this approach, there will be two threads similar to the producer- consumer processing.

One thread will be working as a producer, and will get the values from the agents and the

other will work as a consumer, and will process the values produced by the producer

thread. In this approach, the producer thread does not wait until the received values are

73

processed. This approach employs one message queue where the produced values are

stored. Whenever values are available in the queue the consumer thread processes them.

The producer thread will be blocked when the queue is full. The consumer thread will be

blocked when the queue is empty. The advantage of this approach is that the consumer

thread is non-blocking when the producer thread is idle. And, the producer thread does not

wait for the consumer thread to process the received values. Figure 4.12 shows the

request/response of the SNMP operations. The producer thread has to wait for a response

from the agent after issuing the request. There will be some idle time after issuing the

request and before getting the response from the agent. This idle time is due to connection

(session) establishment, data transmission, and network traffic.

Request

Request

Request

Response

Response

Response

Idle

Idle

Idle

Figure 4.12: Request and Response of SNMP communication

74

Algorithm Producer with Message
Queue

Algorithm Consumer with Message
Queue

Begin
Parse the XML-document
Get the Hostlist
 For I=1 to Length (Hostlist)

If (MQ is Not Full)
 SNMP Request-Response.

Send the Response to
MQ.

 Else
 Wait for MQ-Empty
 End for

End Producer-MQ

Begin
Get the Hostlist
 For I=1 to Length (Hostlist)

If (MQ is NOT Empty)
Get SNMP Response from
MQ

 Update the DOM Tree
 Else
 Wait for MQ-Not Empty

 End for
End Consumer-MQ

Algorithm 4.7: Producer and Consumer Algorithms with Message Queue

The response times for the above methods are calculated but there is not much

improvement compared to the sequential blocking method as the number of agents

increases. The reason behind this behavior is that the paralliazation is only performed for

the SNMP communication part which is only consuming a small amount of time

compared to the XML to SNMP and SNMP to XML conversion. Hence, the result

obtained did not show any improvement. There is no improvement in the response times

whether the SNMP communication is blocking or non-blocking. The response times for

these implementations is shown in Figure 4.13. The experiment is conducted for 100 runs

on a Pentium IV process with 3.19 GHz CPU speed and 256 MB RAM.

75

Response Time Comparision

0

500

1000

1500

2000

2500

3000

0 10 20 30

Number of Agents

R
es
p
on
se
 T
im

e
in
 M

S

(
M
il
li
 S
ec
on
d
s) Block-Single

DOM

Non-block
Single-DOM

Block-Produce-
Consume-Que

Figure 4.13: Response of Time of Single DOM with Blocking, Non-Blocking

In the next section, we describe ways to improve on the response time by parallelzing all

the steps of an XML-based request

4.7.2. JPVM Variations

In one variation of the JPVM-based gateway implementation we got a high response time

compared to the single DOM tree based implementation. In this implementation, we have

the master JPVM running on the web server and the slaves running on other hosts.

Whenever a request comes to the master JPVM, it will create (start) the slave JPVM

gateways and then divide the work among them. This is repeated for every request

received by the master JPVM. The creation of the slave JPVM gateways consumes lot of

time due to the loading of the slave JPVM, creation of JPVM environment on the slaves,

and parsing of the RFC-1213 for every request. This has been solved by loading the slave

JPVM and creation of slave JPVM environment only once during first request from the

76

master JPVM. The slave JPVM will be executing continuously and waiting for work from

master JPVM.

4.8. ADVANTAGES

Our proposed frameworks provide many advantages and are listed below.

• Configuration Management: The proposed extensions can be used for

configuration management of multiple devices by sending a single request to

multiple agents.

• Processing time: The processing time to process the XML-based requests has

been reduced because of the distribution of management tasks among multiple

slave JPVM gateways.

• Length of the requests: The proposed multihostget and multiobjectget will have

shorter request message length than the POSTECH based get and set requests. It

has been shown in Table 5.9.

• Access to multiple agents: It will provide a way to access multiple agents and send

multiple requests in a single message. It has been shown in Figure 4.6, Figure 4.7,

and Figure 4.8.

• Distribution: We can achieve a distribution of management tasks among the slave

JPVM gateways. The slave JPVM gateways can then be assigned different

management tasks. The quantitative results for distribution of tasks have been

shown in Table 5.4 and Table 5.5.

77

• Parallelization: The same slave JPVM can be used to run many similar

management tasks in parallel. The quantitative results for parallelization of tasks

have been shown in Table 5.2

78

CHAPTER 5

PERFORMANCE EVALUATION AND COMPARISON

Our objective is to evaluate the effect of our approach on the scalability and efficiency of

the NMS, and compare our results with the work performed by the POSTECH team. For

this purpose, we will evaluate the response time, network traffic and message length of

the multi requests.

Figure 5.1 shows the taxonomy of the frameworks used in the experimentation. The three

approaches named single DOM, CSV, and JPVM are evaluated using both internal and

external gateways. When the XML-based manager and the gateway are on the same

machine, we refer to this as an internal gateway. And when the XML-based manager and

the gateway are on two different machines, we refer to this as an external gateway.

Frameworks

Single DOM CSV JPVM

Internal External Equalwork
Static Weight Load

Balancing
Dynamic Weight Load

Balancing

MGOMGH MJPVM MTASK

WMaster NWMaster

MGOMGH

Figure 5.1: Frameworks for Experimentation

79

The single DOM and CSV based approaches are evaluated against internal and external

gateways for both multihostget and multiobjectget XML-based requests. The JPVM-based

approach is further classified into three methods based on the way the work is allocated to

the slave JPVM gateways. The allocation can be either: equal work, static weighted load

balancing, or dynamic weighted load balancing. These methods are evaluated for multiple

slave JPVM gateways and multiple tasks running on a single slave JPVM gateway. These

methods are also evaluated for a working master and a master JPVM gateway with no

work. Two types of requests are used in the evaluation, namely multihostget and

multiobjectget.

The next sections will present how we compute the response time, the network traffic, and

the message length. Then, we will describe the experimental setup for the proposed

extended XML-based network management.

5.1. RESPONSE TIME

The time elapsed between issuing the XML-based request from the XBM to the gateway

and the time the response is received from the gateway back to the XBM is termed as the

response time. Our objective is to compute the response time of the XML- based

multirequest. The response time can be found by varying the following parameters:

1. The number of agents present in the multirequest.

2. The number of MIB objects present in the multirequest.

80

5.1.1. Response Time Calculation

The time elapsed between the issue of the XML-based request from the XML-based

manager to the XML/SNMP gateway and the time the response is received from the

XML/SNMP gateway back to the XML-based manager is termed as the response time.

The Response Time between the XBM and SNMP agents is divided into five components

as T1, T2, T3, T4, and T5 as shown in Figure 5.2.

• T1 is the time to send the XML-based request to XML/SNMP gateway over

HTTP.

• T2 is the time required to convert (Translate) the XML-based request into

SNMP based request. It includes building of the DOM tree for RFC-1213, and

XML-based request.

• T3 is the time required to send the SNMP-based request to SNMP agents and

get the SNMP based response from the agents. It is SNMP communication

time.

• T4 is the time required to process the received SNMP response to XML-based

response. It is the time required to convert the SNMP response to XML

response.

• T5 is the time required to send the XML-based response to the XBM.

The response time components T2, T3, and T4 can be combined together and is named to

be as SNMP-STACK communication. Finally we have the following components,

transmission of XML-over HTTP to the gateway, SNMP-STACK communication, and

81

XML-transformation and transmission to the XML-based manger. We recorded the

response total response time from using the SoftPerfect Protocol Analyzer from XML-

based manager to the SNMP agents, and subtracted the response time form the

XML/SNMP gateway to the SNMP agents to get the response time from XML-based

manager to the XML/SNMP gateway.

XML-based Query Over

HTTP

SNMP-COMM

XML-based Network Manager (XBM)

SNMP/XML Gateway

SNMP AGENTS

Router

Workstation Server

XML-Request Handler

SNMP-REQUEST-

HANDLER

SNMP-XML-CONVERSION

T3

XML-SNMP

CONVERSION

T2

T4

DOM CONVERION

T5

T1
XML-based Response

Over HTTP

XML-SNMP CONVERSION

Figure 5.2: Response Time Calculation

82

5.2. EXPERIMENTAL SETUP

5.2.1. Experimental Setup-I

The experiment is conducted in our University campus and the experimental setup is

shown in Figure 5.3. The XBM and XML/SNMP gateway are two PCs running Windows

2000. The XML/SNMP gateway has Apache TOMCAT 5.0 server running on it. The

experiment is conducted inside the campus, and all the SNMP agents are connected over

100Mbps network connection that is connected over a Gigabit Ethernet backbone. The

experiment is conducted for 25 runs. The maximum number of agents used in our

experiment is 200.

100 Mbps

1 Gbps

Router

Bridge

Switch

XML-based Manager
XML/SNMPGateway

SNMP-Agents

100 Mbps

100 Mbps
Intel Pentium I I

350 MH CPU Speed
256 MB RAM

Intel Pentium I I
350 MH CPU Speed

256 MB RAM

Gigabit Campus
Backbone

Figure 5.3: Experimental Setup-I

83

5.2.2. Experimental Setup-II

Figure 5.4 shows the experimental setup-II for JPVM-based network management.

The master JVPM gateway is connected to a number of slave JVPM gateways. All the

JPVM gateways are workstations running on Windows 2000 operating system. The

master JPVM gateway has TOMCAT 5.0 web server running on it. The same

experimental setup has been used with homogenous and heterogeneous systems. In the

case of homogeneous systems, the slave JPVM gateways are of equal processing

speed while in heterogeneous systems they are of different processing speed.

Managner / (Master JPVM
XML/SNMP gateway)

Slave JPVM

XML/SNMP Gateway

Slave JPVM

XML/SNMP Gateway

Slave JPVM

XML/SNMP Gateway

Slave JPVM

XML/SNMP Gateway

SNMP Agetns SNMP Agetns SNMP Agetns SNMP Agetns

Figure 5.4: Experimental Setup-II

84

The experiment is conducted from our campus, and all the SNMP agents are connected

over 100Mbps access network connection and a Gigabit Ethernet backbone. Each

experiment was conducted for 25 runs.

5.3. EXPERIMENTAL RESULTS

5.3.1. DOM vs. CSV Results

Figure 5.5 shows the response time of the single DOM tree-based approach and CSV-

based approach. The response is for system group MIB objects from RFC-1213. The

CSV-based approach requires about half the response time compared to that of the single

DOM tree-based approach.

85

Figure 5.5: Response Time of DOM and CSV for System Group MIB objects.

The main reason behind the reduction in the processing time of the CSV based approach

compared to the single DOM tree-based approach is that the DOM processing is used to

build a single in memory object model of the XML-based request document. The

advantage is that all the data can be accessed conveniently for whatever further processing

requirement exists. The main disadvantages with the single DOM tree-based approach

are:

• Time taken to process the whole model.

• Obvious resource problems when processing very large input files.

86

Figure 5.6 shows the various components present in the response time calculation of the

single DOM tree-based approach. As the number of SNMP agents increases the SNMP

communication component takes more percentage of time compared to the other

components. Hence, most of the time is consumed during the SNMP communication

between the gateway and the SNMP agents which includes the time for updating the

DOM tree.

Response Time Components

0%

20%

40%

60%

80%

100%

1 20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

Number of Agents

R
es
p
on
se
 T
im

e
P
er
ce
n
ti
le

XML_SNMP

XML_HTML

SNMP_COMM

Figure 5.6: Various components present in the Response Time.

Table 5.1 shows the dissection of the single DOM tree-based approach and shows the

response time at various stages. The first column shows the response time to communicate

87

with SNMP agents which is equal to the components of T3 shown in Figure 5.2 . This

communication includes sending SNMP requests from the gateway to the SNMP agents,

receiving the responses from all the agents and updating these responses into the XML-

based response i.e.., updating the DOM tree after receiving the responses. The second

column shows the response time required for transformation of the XML-based response

into HTML and also the transmission time required to send the XML-based response to

the XML-based Manager, which is equal to the components T4 and T5 shown in Figure

5.2.

Table 5.1 : Dissection of single DOM tree-based approach

 DOM 350

No
Agents

SNMP_COMM
(T3)

XML_HTML
(T4+T5)

XML_SNMP
(T1+T2)

1 135 71.32 316.88

10 1073.48 78.04 377.04

30 5235.88 115.44 366.56

50 11133.24 188.32 357.24

70 19540.04 177.48 400.2

90 30352.88 210.36 469

100 36715.6 227.12 538.8

120 51218.92 262.44 541.88

140 68162.44 281.12 730.68

160 86826.52 316.04 622.48

180 107837.6 356.8 671.8

200 133477 375.4 725.1

The third column shows the response time required to translate the XML-based request

into an SNMP based request, which is equal to the component of the T1 and T2 shown in

Figure 5.2 . It also includes the transmission time required to send the XML-based request

88

to the gateway. Table 5.1 shows that the communication time is the main component that

takes most of the response time.

Figure 5.7 presents the SNMP communication time of the single DOM tree based

approach and the CSV-based approach. We can conclude that by employing the CSV in

the gateway instead of updating directly the DOM tree we cut the response time to half.

This is mainly due to the reduction of the SNMP communication time.

DOM Vs CSV SNMP Communication Time

0

20000

40000

60000

80000

100000

120000

140000

160000

1 20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

Number of Agents

R
es
p
on
se
 T
im
e
(m

s)

DOM

CSV

Figure 5.7: SNMP Communication component for DOM and CSV

89

5.3.2. JPVM-based Results

Figure 5.8 shows the response time for the JPVM-based approach with a working master

and with a non-working master. The response time is shown for a single JPVM gateway

with only one task running on the gateway. The JPVM with no work for the master has a

slightly better response time compared to the working master gateway. The working

master JPVM has 10 % higher response time compared to the non-working master JPVM.

With a working master, the master gateway will be always busy and has to do more work

compared to the slave JPVM gateways. The working master approach will not be a good

approach as the number of slave JPVM gateways increases or when we adapt a

hierarchical management of JPVM gateways. Since, in the case of a working master, as

the number of slave JPVM gateways increases the work on the master JPVM increases

due to its assigned load in addition to the processing of the response from all the other

slave JPVM gateways. Hence, non-working mater JPVM will be suitable for hierarchical

scalable network management paradigm.

Figure 5.9 shows the response time for the single DOM tree-based and JPVM-based

approaches for the system group MIB objects with a single JPVM gateway and a varying

number of JPVM tasks. The work assignment for all the tasks is equal. The results are for

a 350 MHz processing speed processor with no work for the master JPVM gateway.

90

Figure 5.8: Response Time Comparison for System Group MIB Objects with JPVM.

The results are taken with 1, 2, 3, 4, and 5 parallel tasks running on the same JPVM

gateway. We notice the time reduction of 40%, 57%, 64%, and 71% respectively for 2, 3,

4, and 5 tasks running on the JPVM gateway compared to the single task assignment.

Hence, running parallel tasks on the single JPVM gateway will reduce the response time.

The quantitative results have been shown for parallelization of tasks in Table 5.2.

91

Table 5.2: Quantitative Results for Parallelization of Tasks

Number of
Parallel Tasks

Percentage of
Reduction

2 40%
3 57%
4 64%
5 71%

Figure 5.9: Response Time for DOM and JPVM with increasing number of Tasks with

one slave JPVM.

92

Figure 5.10 shows the response time of the single DOM tree-based and the JPVM-based

approaches with varying number of slave JPVM gateways, for the system group MIB

objects. The division of work is equal among the slave JPVM gateways. The experiment

is conducted on three slave JPVM gateways each with 350 MHz processing speed, and

using 200 agents with no work for the master JPVM gateway. The response time of a

single JPVM gateway compared with single DOM tree-based gateway is 5% higher due to

the extra time for task creation. The reduction in the time with two JPVM gateways and

200 agents will be equal to the time that a single JPVM takes with 100 agents. Similarly,

with three slave JPVM gateways, this time will be equal to the time for 67 agents running

on the single JPVM gateway. We notice 71% and 85% reduction of time with two and

three slave JPVM gateways respectively compared to the single JPVM gateway.

93

Figure 5.10: Response Time for DOM and JPVM with varying slave JPVM gateways.

Figure 5.11 shows the response time for system group MIB objects for the JPVM-based

approach with two slave JPVM gateways compared to a single JPVM gateway with

increasing number of tasks. The increase in the number of slave JPVM gateways from one

to two has shown significant reduction in response time compared to the increase of the

number of tasks running on a single slave JPVM gateway. The response time with two

JPVM gateways is better than that obtained with 2, 3, and 4 tasks running on a single

slave JPVM gateway. Hence, the increase of the number of parallel slave JPVM gateways

94

will provide a better performance than the increase in number of parallel tasks on a single

slave JPVM gateway.

Table 5.3 presents the total response time for the system group MIB objects as the number

of JPVM gateways increases. The experiment is conducted with four JPVM gateways,

one of which is the working master JPVM gateway. The third column shows the total

response time with two JPVM gateways, and the response time for 200 agents is 45645.4

milliseconds, which is approximately equal to the time for a single JPVM with 100 agents

(46917.4 milliseconds).

Figure 5.11: Response Time for JPVM with increasing Tasks on single slave JPVM and

with two slave JPVM.

95

Similarly, with 3 and 4 JPVM gateways, it will be equal to the time for running on a

single JPVM with 67 and 50 agents, respectively, in addition to the communication and

processing cost as the number of JPVM gateways increases. Figure 5.12 shows the graph

for the working master with a varying number of tasks running on it for the values in

Table 5.3.

Table 5.3: Response Time for single JPVM with increasing number of tasks with a

working master gateway in milliseconds.

 Gateways
Agents JPVM-1 JPVM-2 JPVM-3 JPVM-4

1 717.2 863.4 763 793.2
20 4542.2 2613.8 2441.4 2389.4
40 11116 5483.8 4158 3637.4
50 14609 5892.4 4915 3707.2
60 19446 7149.6 5780.2 4240
70 22187.8 8874.6 5896.6 5472
80 26816.6 10835.6 6493.4 5686.2
100 46917.4 16942.4 10393 8606.4
180 135076 39871.2 21551 15899
190 144984.6 42148.6 23449.8 16285.4
200 154966.8 45645.4 25214.2 17873.8

96

Figure 5.12: Response Time for a Working Master with Varying JPVM.

Figure 5.13 shows the response time for our XML-based multiobjectget compared with

the POSTECH XML-based request. The response time in our experiment is 16% more

compared to the POSTECH’s, because our experiment is conducted on a 711 MHz

processing speed Intel Pentium III processor whereas the POSTECH conducted the

experiment on the 800 MHz processing speed Intel Pentium III processor. However, we

have shown that with the CSV-based & JPVM-based approach we obtain better results

than the basic DOM-based approach. Thus, our frameworks provide better results than

POSTECH’s.

97

Figure 5.13: Response Time POSTECH compared with Multiget Objects.

Figure 5.14 shows the response time with varying number of MIB objects present in the

XML-based request. The response time is recorded for one agent varying the number of

MIB objects. The response time increases by ~ 500 milliseconds for every 10 additional

MIB objects. The response time increases linearly in function of the number of MIB

objects in the request.

98

Figure 5.14: Response Time Increasing Number of MIB objects.

Table 5.6 gives the response time values for homogeneous systems, heterogeneous

systems, and static allocation as the number of agent increases. Figure 5.15 shows the

response time for the homogeneous vs. heterogeneous systems for the system group MIB

objects in the case of equal work assignment. The experiment is conducted with two

homogeneous systems and then with two heterogeneous systems. The homogeneous

systems are of 350 MHz processing speed Intel Pentium II processors and the

heterogeneous systems are a 350 MHz processing speed Intel Pentium II processor and a

711MHz processing speed Intel Pentium III processor. The response time for both cases

99

are similar because the equal work assignment does not consider the processing speed of

the slave JPVM gateways. The equal work assignment will not give better performance

with heterogeneous systems i.e., systems having different processing speed capacity. In

case of heterogeneous systems higher capacity processors are underutilized in the case of

heterogeneous systems. The quantitative results for distribution of tasks have been shown

in Table 5.4 for none working master JPVM. The quantitative results for distribution of

tasks have been shown in Table 5.5 for working master.

Table 5.4: Quantitative Results for Distribution of Tasks for None Working Master

Number of
Distribution Tasks

Percentage of
Reduction

2 71%
3 85%

Table 5.5: Quantitative Results for Distribution of Tasks for Working Master

Number of
Distribution Tasks

Percentage of
Reduction

2 70%
3 83%
4 88%

100

Table 5.6: Response Time values for Homogenous systems, Heterogeneous systems, and

Static weighted load balancing

 350-JPVM 711-JPVM HOMO HETRO STATIC STATIC
 Agents SNMP_COM SNMP_COM SNMP_COM SNMP_COM SNMP_COM 350 711

1 1016.5 609.36 739.2 608.9 612.8 0 1
10 2174.1 1131.48 1694.8 1645.5 1244.2 3 7
20 4196.2 2369.36 2451.8 2283.1 1592.6 7 13
30 6697.5 3575.48 3637.2 3236.9 2752 10 20
40 10297.8 5226.72 4813 4128.8 3739.4 13 27
50 13405.3 6780.92 5451.8 4483.6 4953.2 17 33
60 18025.8 8949.72 6784 5749.1 6079 20 40
70 20401.4 9885.44 8836.6 7285.4 7064.4 23 47
80 25054.9 13035.88 10511.4 8956.9 8334 27 53
90 36357.2 18237.72 12123.6 11071.2 9782 30 60

100 44016.3 21733.76 15065.6 13507.5 11632.6 33 67
110 52698.6 25692.52 17280.8 15703.6 12035.2 37 73
120 61505.4 29940.32 19528 17794.8 13567.6 40 80
130 69715.1 33717.2 21881.4 19020.4 15696.8 43 87
140 78662.1 39770.32 22330 20245.2 19638.2 47 93
150 89115.1 42279.28 24779.4 23554.1 22195.8 50 100
160 98816 46633.88 27225.2 25744.9 24771.8 53 107
120 61505.4 29940.32 19528 17794.8 13567.6 40 80
170 111015.5 52791.44 31415.2 28009.3 26704.6 57 113
180 126682.25 59818.32 38639.6 35369 29342.2 60 120
190 145066.6 65247.44 41670.2 38172.9 32536.8 63 127
200 150031.8 70516.16 46034.2 42122.9 35984.2 67 133

101

Figure 5.15: SNMP Communication Time for Homogeneous and Heterogeneous Systems.

Figure 5.16 shows the response time for heterogeneous system vs. static weighted load

balancing for values in Table 5.6. In the case of the static weighted load balancing

approach, if we consider an XML-based request with 30 agents that has 2752 milliseconds

as the response time, then the allocation of the work to each JPVM gateway is 10 and 20

respectively for the 350 MHz and the 711 MHz. In the homogeneous systems, the 350

MHz PC takes 6697.5 milliseconds time when requesting 30 agents, the 711 MHz PC

takes 3,575.58 milliseconds response time when requesting 30 agents. The heterogeneous

102

systems are taking 3236.9 milliseconds response time, which is equal to requesting 15

agents by the 350 MHz PC. The static weighted load balancing will take 2,752

milliseconds response time, which is equal to requesting 20 agents by the 711 MHz PC in

addition to the communication time for data packing and unpacking due to the existence

of two slave JPVM gateways.

Figure 5.16: Response Time for Heterogeneous and Static Weighted load balancing

As the number of agents increases, the response time in the case of heterogeneous systems

with equal work will be dominated by the lower processing speed processor. As for the

case of static weighted load balancing, initially it will be good but gradually as the

103

number of agents increases the response time will be dominated by the higher processing

speed processor. There will be a little improvement in the response time with the static

weighted load balancing compared to the equal work approach.

Hence, in the case of static weighted load balancing with heterogeneous gateways, as the

number of agents increases the processor with the lower processing speed gets less work

and is underutilized. In the case of equal work allocation with heterogeneous gateways, as

the number of agents increases the processor with the higher processing speed gets less

work and is underutilized.

Figure 5.17 shows the response time for dynamic load balancing with two slave JPVM

gateways. The dynamic load balancing with two slave JPVM is shown with an increasing

block size of 5, 10, 20, and 50. The response time with block size 5 is higher compared to

block size 10 and 20 due to the communication overhead. As the block size increases over

30 the response time increases due to the unbalanced load among the slave JPVM

gateways. The unbalance occurs when the last processor executes the last work block. The

response time with block size 50 as shown in Figure 5.17 has higher response time

compared to block size 10 and 20. Hence, a lower block size (5-30) has a better response

time compared to a higher block size.

104

Figure 5.17: Dynamic Response Time with increasing Block Size

Figure 5.18 shows the response time for dynamic load balancing with increasing block

size and static weighted load balancing with two slave JPVM gateways. The response

time with block size 5, 10, and 20 is lower compared to static weighted load balancing.

The response time with block size 50 is higher and approaching the response time with

block size 5. The response time is better with dynamic load balancing compared to static

weighted load balancing in the case of a lower block size. The increase in the block size

increases the response time due to the unbalanced load among the slave JPVM gateways.

105

Figure 5.18: Response Time for Static and Dynamic Load Balancing

Figure 5.19 shows the dynamic response time for two and three slave JPVM gateways

with block size 5, 10, and 20. The response time is shown only for the block sizes with

lower response times. As the block size increases the response time increases for higher

block sizes.

Hence, the response time of dynamic load balancing with a smaller block size is better

compared to equal work and static weighted load balancing. The dynamic load balancing

106

allocates an optimal number of agents for each slave JPVM gateway to achieve the

maximum efficiency.

Figure 5.19: Response Time for Dynamic Load Balancing with increasing Block Size and

Processors

5.3.3. Parallel Component Evaluation

Parallel algorithms divide a program into parts so that a number of processors can work

on the problem at the same time. In an ideal situation, n processors should speed up a

program so that it is completed in (1/n) of the time taken by a single processor. All the

107

problems cannot be divided into perfectly even work, and communication is required

between the processors. This communication can reduce the speedup significantly. The

amount of parallelism exhibited by a problem can greatly determine the speedup that a

parallel implementation will offer.

The increase in computation speed from parallel implementations of problems is

described using the Amdahl's Law. It is a law governing the speedup of using parallel

processors on a problem, versus using only one serial processor.

5.3.3.1. Speedup

The speed of a program is the time it takes the program to execute. This could be

measured in any increment of time. Speedup [34] is defined as the time it takes a program

to execute in serial (with one processor) divided by the time it takes to execute in parallel

(with many processors). Let)(NT be the time required to complete the task on

N processors and)1(T be the time required to execute the task on single processors. The

speedup)(NS is the ratio as given below.

)(

)1(
)(

NT

T
NS =

In many cases the time)1(T has, as noted above, both a serial portion sT and a

parallelizable portion pT . The serial time does not diminish when the parallel part is split

up. If one is "optimally" fortunate, the parallel time is decreased by a factor of)/1(N .

The speedup becomes as below.

108

NTT

TT

NT

T
NS

ps

ps

/)(

)1(
)(

+

+

==

The above elegant expression is known as Amdahl's Law and is usually expressed as an

inequality. This is in almost all cases the best speedup one can achieve by doing work in

parallel, so the real speed up)(NS is less than or equal to this quantity.

Table 5.7 shows the speedup achieved with increasing number of parallel tasks running on

the single slave JPVM gateway with equal work to all the slave JPVM. The speedup with

increasing number of tasks has a linear increment in speedup.

Table 5.7: Speedup with increasing number of Tasks

Number of Tasks Speedup Efficiency
2 1.71766 0.85883
3 2.418656 0.806219
4 2.843945 0.710986
5 3.061021 0.612204

Table 5.8 shows the speedup achieved with increasing number of slave JPVM processor

or slave Table 5.8 gateways, with equal work to all the slave processors. The graph for the

increasing number of slave JPVM gateways and increasing number of JPVM tasks

running on a single JPVM gateway is shown in Figure 5.20 . We have observed linear

speedup in the case of increasing slave JPVM tasks on a single gateway and super linear

109

speedup in the case of increasing the number of JPVM processors with one task on each

processor.

Table 5.8: Speedup with increasing number of Processors

Number of
Processors

Speedup Efficiency

2 3.395015 1.697508
3 6.146013 2.048671
4 8.670053 2.167513

Figure 5.20: Speedup with increasing number of Processors and Tasks

110

5.3.3.2. Efficiency

The efficiency [34] of a parallel program is defined as the speedup, divided by the number

of processors used in the parallel execution.

nnSE /)(=

Where,)(nS is speedup with n parallel tasks. Column four in Table 5.7 and Table 5.8

shows the efficiency values respectively increasing the number of tasks running on single

slave JPVM gateway and increasing the number of slave JPVM processors. Figure 5.21

shows the efficiency with varying number of JPVM tasks running on a single slave

gateway and varying number of slave JPVM processors for the efficiency values given in

Table 5.7 and Table 5.8. The efficiency decreases by either increasing number of tasks

running on a single slave JPVM gateway or increasing the number of JPVM processors.

111

Figure 5.21: Efficiency with increasing the Number of Tasks and Processors.

5.3.4. Network Traffic

Figure 5.22 shows the network traffic between the XBM manager and SNMP agents

through the gateway. The traffic can be divided into two components, traffic between the

XML-based manager and the gateway, and traffic between the agents and the gateway.

The traffic between the gateway and the agents is only due to the SNMP communication

and the traffic between the XML-based manager and gateway is due to the exchange of

XML-based requests over the HTTP protocol. The graph shows a linear increment in the

traffic between the XBM manager and the gateway, and the traffic between the SNMP

112

agents and gateway. All the three approaches generate the same amount of network

traffic.

Network Traffic For DOM and CSV

0

20

40

60

80

100

120

140

160

180

0 50 100 150 200
Number of Agents

N
et
w
or
k
 T
ra
ff
ic
 (
K
B
yt
es
)

TOTAL Gateway-Agents Manager-Gateway

Figure 5.22: Network traffic of DOM, CSV and JPVM-NM of System Group

In the case of JPVM, the traffic between the manager and the slave JPVM gateways

remains the same. The traffic between the slave gateways and the SNMP agents will be

distributed based on the number of slaves.

5.3.5. Message Size

The message length (size) refers to the length of the XML-based SNMP message. A

single SNMP request contains only one agent and may contain more than one OID. A

multirequest contains multiple agents and more than one OID for each agent. A multi

113

request can be thought of as a collection (bundle) of single requests as shown in Figure

5.23.

Request

Request

RequestRequestRequest

RequestRequestRequest

Single Request

Multi Request

Figure 5.23: Multi Request and Single Request Format.

The message size can be classified into two types based on the request message size and

the response message size.

1. Multiget request message size: It is the size of a multiget request message PDU. It

includes multiple agents followed by a list of OIDs and other communication

parameters like: operation type, community, version, etc.

2. Multiget response message size: It is the size of a multiget response message PDU

for the given get request PDU. This PDU contains the response message received

from the agents for the corresponding MIB objects.

Table 5.9 shows the size for a multiget request message. It presents the message length for

the XML-based request of the sysDescr and sysContact MIB objects. It provides a

comparison of the message for Multihostget and Multiobjectget, for the legacy SNMP

114

based method, the POSTECH’s XBM and the POSTECH’s XML/SNMP gateway based

request.

Table 5.9: Message Size of Multiget Request

Get Request Message Size in Bytes

XML/SNMP, Single DOM,
CSV and JPVM

Management
Property

SNMP XBM XML/SNMP
POSTECH
 MGH MGO

SysDescr 82 508 666(584+82) 356(274+82) 341(259+82)
SysContact 83 510 678(586+82) 359(276+83) 344(261+83)

Table 5.10 shows the size for a Multiget request message with one and ten agents. It

presents the message length for the XML-based request for Multihostget and

Multiobjectget with 1 and 10 agents in the request. The Multihostget has much less

request size compared to the Multiobjectget as the number of agent increases in the XML-

based multi request. The advantage with the Multihostget is that the request size

increment decreases as the number of agent increases. The advantage of the Multihostget

is that it allows to use the same set of MIB objects for multiple agents. The advantage of

the Multiobjectget is that it can support a variable number of MIB objects in the request

for each agent.

115

Table 5.10: Message Size of Multiget Request with one and ten agents

Get Request Message Size in Bytes

XML/SNMP, Single DOM, CSV and JPVM

Management
Property

MGH MGO
Agents 1 10 1 10

SysDescr 356(274+82) 1420(600+820) 341(259+82) 3410(2590+820)
SysContact 359(276+83) 1428(598+830) 343(261+83) 3440(2610+830)

116

CHAPTER 6

CONCLUSION AND FUTURE WORK

Conclusion

SNMP has been widely used for monitoring network devices for the last 15 years due to

its simplicity. But, it is not successful in few areas of network management, and one such

area is configuration management. Since, SNMP-based network management does not

meet the current network management requirements, there have been many evolutionary

approaches to improve on the SNMP framework. One of such evolutionary approach is

the use of XML. However, Network management based on XML has also few drawbacks,

particularly the processing overhead of the XML-based requests. Our work’s objective is

mainly to improve the processing speed of the XML-based network management

operations.

In this thesis, we extended the work of POSTECH in the area of XML-based network

management. The framework we described allows a manager to access multiple agents.

We defined new types of messages that could be sent by a manager, namely Multi-Get-

Request, Multi-Set-Request, and Response. These messages can be widely used in

configuration management. The implementation for Multi-Get-Request and Multi-Set-

Request can be achieved through an HTTP-based interaction method and a SOAP-based

interaction method. We described how a manager can send in one message either one

request to multiple agents, multiple requests to one agent, or multiple requests to multiple

117

agents. The proposed single DOM Tree-based approach, CSV-based approach, and

JPVM-based approach are evaluated and the performances of these frameworks are

compared with the recent work on the XML-based network management.

The single DOM tree–based approach has been used in the literature with XML for

network management, but it is time consuming. CSV is a very simple and well known

format that has not been used with XML for network management. We presented a novel

approach that makes use of CSV in XNM. The comparison of these two approaches

shows that the CSV approach outperforms the DOM approach and provides ~50%

response time savings.

The JPVM-based approach has been used to achieve the distribution of management

tasks. In this approach, we divide the management work into a number of tasks that can be

assigned to a number of slave JPVM gateways. We can also have a number of tasks

running on the same slave JPVM gateway. With JPVM, we achieved distribution and

parallelism.

The experimental results show that the JPVM-based approach running with a number of

slave JPVM gateways gives better results compared to the approach where a number of

tasks are running on a single slave JPVM gateway.

The JPVM-based approach has been implemented with equal work, static weighted load

balancing and dynamic weighted load balancing. The equal work approach gives better

results with homogenous slave JPVM gateways, whereas the static weighted load

balancing gives a sub optimal response time with heterogeneous slave JPVM gateways.

118

The dynamic weighted load balancing gives better results with smaller block sizes

compared to the equal work and static weighted load balancing approaches.

Future Work

The results obtained in this thesis show that XML-based network management is an area

that can enhance the existing network management paradigms. We have contributed to

this area with many new approaches, but we believe that more work can be done to

improve even more on this work. In this section, we list some of our recommended future

research directions:

• The single DOM Tree-based approach can be improved by having multiple

lightweight DOM tree document fragments of the XML-based request.

• In the case of static weighted load balancing algorithm we have taken only the

processing speed of the slave JPVM as the metric to assign work to the slave

JPVM gateways. The performance of the algorithm can be still improved by

considering the other various parameters such as the current load on the processor,

the number of current threads running on the processor and the current network

bandwidth available for transmission over the network. We will get realistic

results by considering the above parameters for the assignment of the weights to

the slave JPVM gateways.

• Besides the Internet management community, there are many technologies

developed and are excellent for the Internet management, one of such interesting

technology is web services. It provides a single uniform software infrastructure to

119

support a wide range of distributed services. The World Wide Web Consortium

(W3C) has standardized web services. Research in this area has just begun and

one can investigate its merits in network management. Hence, these frameworks

can be extended to web services through SOAP, Web Services Description

Language (WSDL) and Universal Description Discovery and Integration (UDDI)

technology.

• XForms (XML Forms) are an upcoming XML technology. They are the next

generation web forms, and can be used at the XML-based manager to improve the

efficiency of processing the XML-based request at the gateway. These XForms

can also be used in conjunction with SOAP, WSDL and UDDI for web services

based network management.

• The JPVM-based approach can be extended with multiple master JPVM gateways,

where a manager communicates with multiple master JPVM gateways. And, each

master JPVM gateway communicates with a number of slave JPVM gateways.

This way, we can have a hierarchy of XML/SNMP JPVM gateways.

• The JPVM-based approach can be extended with multiple slave JPVM gateways,

running multiple JPVM tasks. The manager can then send work to multiple slave

JPVM gateways, each of which is running multiple JPVM tasks.

• Predictive dynamic load balancing: Study the behavior of the slave JPVM

gateways and then assign the load by predicting the capacity on the slave JPVM

gateways.

120

• Adaptive dynamic load balancing: first assign the load based on the processing

speeds of the JPVM gateways and then adapt it based on the response times of the

slave JPVM gateways.If we have agents with different SNMP versions and

different community names then the multirequest can be extended to support

multiple multirequests based on the version and community names.

121

REFERENCES

[1] J.P.Martin-Flatin, “Push vs. pull in web-based network management”. In Proceedings

of the 6th IFIP/IEEE International Symposium on Integrated Network Management

(IM'99), pages 3-18, USA.

[2] J.P.Martin-Flatin, Laurent Bovet and Jean-Pierre Hubaux, ”JAMAP: a Web-Based

Management Platform for IP Networks”, Proceeding 10th IFIP/IEEE International

Workshop on Distributed Systems: Operations & Management, Zurich, Switzerland,

October,1999.

[3] The Simple Times, “The Quarterly Newsletter of SNMP Technology, Comment, and

Events (sm)”, Volume 4, Number 3 July, 1996 http://www.simple-times.org/pub/simple-

times/issues/4-3.html

[4] James Won-Ki Hong; Ji-Young Kong; Tae-Hyoung Yun; Jong-Seo Kim; Jong-Tae

Park; Jong-Wook Baek; ”Web-based Intranet services and network management“,

Communications Magazine, IEEE, Volume: 35 Issue: 10, Oct. 1997, Page(s): 100–110.

[5] Jeong-Hyuk Yoon, Hong-Taek Ju and James W. Hong, "Development of SNMP-

XML Translator and Gateway for XML-based Integrated Network Management",

International Journal of Network Management (IJNM), Vol. 13, No. 4, July-August 2003,

pp. 259-276.

[6] Mi-Jung Choi, Hyoun-Mi Choi, Hong-Taek Ju and James W. Hong, "XML-based

Configuration Management for IP Network Devices", Special Issue on XML-based

Management of Networks and Services in IEEE Communications Magazine, Vol. 41, No.

7, July 2004. pp. 84-91. (SCI).

122

[7] J.P.Martin-Flatin, “ Web-Based Management of IP Networks and Systems”, Wiley

series in communications Networking and Distributed Systems, 2003.

[8] William Stallings, “SNMP, SNMPV2, SNMPv3, and RMON 1 and 2”, 3rd Edition,

Addison-Wesley Longman Publishing Co., Inc., Boston, MA, 1999.

[9] Mani Subramanian, “Network Management: Principles and Practice”, Addison-

Wesley, Hardcover, Published December 1999, 644 pages, ISBN 0201357429.

[10] J.P Martin- Flatin, Aiko Pras, Jurgen Schonwalder, “On the Future of Internet

Management Technologies”, IEEE Commmunication Magzine, Vol. 41, No. 10, October

2003.

[11] W3C, “Extensible Markup Language (XML) 1.0”, W3C Recommendation, October

2000.

[12] Brett McLaughlin, “Java and XML”, O’Reilly, Second Edition, 2001.

[13] “Professional Java XML”, Wrox Publications, 2001.

[14] W3C, “ XML Schema Part0: Primer”, W3C Recommendation, May 2001.

[15] W3C, “ XML Schema Part1: Structures”, W3C Recommendation, May 2001.

[16] W3C, “ XML Schema Part2: Data Types”, W3C Recommendation, May 2001.

[17] W3C, “ XML Path Language (XPath) Version2.0”, W3C Working Draft, April 2002.

[18] W3C, “ XQuery and XPath Functions and Operators Version2.0”, W3C Working

Draft, April 2002.

[19] W3C, “ XML Query Language (XQuery) ”, W3C Working Draft, April 2002.

[20] W3C, “Document Object Model (DOM) Level 2 Core Specification ”, W3C

Recommendation, November 2000.

123

[21] W3C, “Document Object Model (DOM) Level 2 Traversal and Range Specification”,

W3C Recommendation, November 2000.

[22] Hyoun-Mi Choi,Mi-Jung Choi, James W.Hong, “XML-based Network Management

for IP Networks”, ETRI Journal, Volume 25, Number 6, December 2003.

[23] Frant Strays, Torsten Klie, “Towards XML Oriented Internet Management”,

www.ibr.cs.tu-bs.de/papers/im-2003.pdf

[24] Straus, F. “A library to access SMI MIB information”,

http://www.ibr.cs.tubs.de/projects/libsmi/

[25] Phil Shafer “XML-Based Network Management” – White Paper, Juniper Networks,

Inc., 2001, http://www.Juniper.net/solutions/literature/white_papers/200017.pdf

[26] Sqalli H.M., Sirajuddin S., “Extensions to XML based Network Management”,

(ICICS-2004) 2nd International conference on information and computer sciences,

Dhahran, KFUPM, November 2004.

[27] Apache Software Foundation, “The Jakarta Project - Tomcat,”

http://jakarta.apache.org/tomcat/.

[28] Apache Software Foundation, “The Xerces Java XML parser”,

http://xml.apache.org/xerces2-j/

[29] IReasoning Networks, “SNMP API”, http://www.ireasoning.com/products.shtml

[30] SoftPerfect Research, “SoftPerfect Network Protocol Analyzer”,

http://www.softperfect.com/products/networksniffer/

[31] Adam J.Ferrari, “JPVM: The Java Parallel Virtual Machine”, Technical Report CS-

97-29 VA 22903, USA, December 8, 1997 http://www.cs.virginia.edu/jpvm/

124

[32] Rajesh Subramanyan, Jose Miguel-Alonso, and Jose A.B Fortes,“ A Scalable SNMP-

based Distributed Monitoring System for Heterogeneous Network Computing”,

proceedings of the 2000 ACM/IEEE conference on Supercomputing (CDROM), 2000,

Dallas, Texas.

[33] Thomas M. Chen, Stephen S. Liu, “A Model and Evaluation of Distributed Network

Management”, IEEE Journal on Selected Areas in Communications, Volume. 20, no. 4,

may 2002.

[34] Juliet A. Holwill and Sarana Nutanong,”Parallel Implementation of the Mandelbrot

Set“, www.cs.mu.oz.au/~aharwood/nppc-projects/03/e/index.html

125

ACRONYMS

SNMP Simple Network Management Protocol

API Application Programming Interface

CSV Comma Separated Values

DOM Document Object Model

DTD Document Type Definitions

HTML Hypertext Markup Language

RFC Request for Comments

SAX Simple API for XML

UI User Interface

XML Extensible Markup Language

XSL Extensible Style Sheet Language

XSLT Extensible Style Sheet Language Transformations

XPATH XML Path Language

XUPDATE XML Update Language

XQUERY XML Query Language.

JPVM Java Parallel Virtual Machine

PVM Parallel Virtual Machine

OID Object Identifier

MIB Management Information Base

126

VITA

Name: Shaik Sirajuddin

Date of Birth: 3rd April 1979

Nationality: Indian

Bachelor Degree: Bachelor of Technology in Computer Science and Engineering from

Jawahar Lal Nehru Technological University (2001), Hyderabad, AP, INDIA.

Masters Degree: Master of Science in Computer Engineering (December 2004), from

King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia.

Papers Published

1. Sirajuddin S, Sqalli H.M, “Distributed XML-based Network Management using

JPVM “, (IJNM) International Journal of Network Management, (Submitted).

127

2. Sirajuddin S, Sqalli H.M, ”Comparison of CSV and DOM Tree Approaches in

XML-based Network Management”, (ICT 2005) - 12th International Conference

on Telecommunications”, South Africa, June, 2005

3. Sqalli H.M., Sirajuddin S., “Extensions to XML based Network Management”,

(ICICS-2004), 2nd International conference on information and computer sciences,

Dhahran, KFUPM, November 2004.

