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 ملخص الرسالة
 

 شيخ فيصل زاهر    :الأسم
 شيفرات التفقد المتكافئة ذات النسبة التوافقية المنخفضة الكثافة للشبكات اللاسلكية     :العنوان 
 في الهندسة الكهربائية درجة الماجستير     :الدرجة 

 لأتصالاتا : التخصص الرئيسي
 2006حزيران : تاربخ الحصول على الدرجة 

 
 

  الال[ي  الأنظم[ة  الهجين[ة ذات الطل[ب المع[اد     انتاجي[ة عالي[ة ف[ي     على طاقة رموز النسبة المتوافقة مهمة للحصول   ة  آفاء
ه[ذه الرس[الة   . ) ARQ/FEC (ة حزمي[ة ق[  المعطي[ات بطري الت[ي تب[ث  في الشبكات    تصحيح الخطأ التقادمي المستخدمة   ب

  ).RC-LDPC(على مدى نسبي عريض ضة ت آثافة منخفارموز مراقبة متكافئة فعالة ذترآز على بناء 
 العادي[ة  LDPCفئ[ة ش[فرة ال   , "اولا: هما هاتان الفئتان  و :LDPCسيتم النظر في استخدام  فئتان  من فئات شفرة ال            
" مم[اثلا "  النصف عشوائية و التي تق[دم اداءا LDPCفئة ال , "ثانيا, و التي تتميز بالاداء الجيد و معدل حطأ منخفض       

-RC س[يتم بن[اء نظ[م تش[فير     .و التي تمكن من الحصول على فك تشفير منخفض التعقي[د         العادية   LDPCلفئة شفرة ال    
LDPC فعالة و سيتم تقييمها على انظمة ال ARQ/FEC . 

 ال  ش[فرة  الم[زود بفئ[ة  و ARQ/FEC وج[د ان نظ[ام ال   , "  المعم[ول به[ا حالي[ا      ARQ/FEC بالمقارنة مع انظم[ة ال      
LDPC ق[[يم  عل[[ى مرتفع[[ة نتاجي[[ة ك[[ون طاقت[[ه الات النص[[ف عش[[وائي يتمي[[ز بكون[[ه م[[نخفض التعقي[[د ف[[ي ف[[ك التش[[فير و
SNR القيمة ة  عالي  . 

, " سيتم البحث في استخدام شيفرات نصف عشوائية متوافقة النس[بة ف[ي انظم[ة تعتم[د تنوي[ع التع[اون المش[فر و اخي[را                       
 . النصف عشوائية LDPCال قوم ببناء خوارزمية لازالة الدوائر الصغيرة من فئة تشفير سن
 
 )ARQ(الطلب المعاد الالي , )LDPC(شيفرة التفقد المتكافئ المنخفض الكثافة ,  نسبة متوافقة  : ةـات دالـآلم
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Chapter 1

Introduction

A major concern in data communications is how to control transmission errors

caused by the channel impairments so that error-free data can be delivered to the

user. An approach to this problem is the use of channel coding, that is use of error-

detecting and/or error-correcting codes [1, 2]. There are two basic categories of

error-control schemes for digital communications: automatic repeat request (ARQ)

schemes and forward-error correction (FEC) schemes. ARQ combines error detec-

tion and retransmission strategies to ensure that data is delivered accurately despite

occurrence of errors during transmission. On the other hand FEC tries to correct

errors at the receiver.

Introducing channel coding in a communication system entails the transmission

of redundant information along with the user information. ARQ schemes require the

insertion of a small number of bits which can be used to detect errors (such as a CRC

1
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check bits [2]) to be transmitted along with the user information, while FEC schemes

require insertion of bits that can be used to correct errors. To maximize the system

throughput (defined as the ratio of user information bits to total transmitted bits)

the amount of redundant bits used in an ARQ or FEC system have to be minimized.

This entails the use of powerful error-correcting codes and efficient ARQ schemes.

Hybrid ARQ schemes combine both ARQ and FEC. This work is concerned with

the design of hybrid ARQ schemes based on low-density parity-check (LDPC) codes.

LDPC codes were introduced by Gallager [3]. They have been shown to offer - over

a variety of channels - performance comparable to or better than that offered by

other state-of-the-art codes such as turbo codes [4]. In fact, it is an irregular LDPC

code (for definition see Section 2.1) with block length 107 that currently holds the

distinction of being the world’s best performing rate-1/2 code, outperforming all

other known codes, and falling only 0.0045 dB short of the Shannon limit for the

AWGN channel [4]. Finite-length LDPC codes have also been shown to outpermform

turbo codes [5, 6]. This chapter introduces the basic background and the literature

review on the work related to the thesis. Furthermore, the main objectives of the

thesis are presented.



3

1.1 Background

The characteristics of wireless channels impose fundamental limits on the trans-

mission range, data rate and the quality of a wireless communication service. The

performance limits are influenced by several factors, most significantly the propaga-

tion environment and interference [7].

1.1.1 Characteristics of the Wireless Channel

The effects of the wireless channel on the received signal power are typically classified

into large-scale and small-scale effects [7]. Large-scale effects involve the variation

of the mean of the received signal power over large distances relative to the signal

wavelength. On the other hand, small-scale effects involve the fluctuations of the

received signal power over distances commensurate with the wavelength. Rapid

variations in the received signal are caused by the multipath reception resulting from

receiving different copies of the transmitted signal due to reflection, diffraction or

scattering of the signal off surrounding objects before arriving over different paths

at the receiver. These reflected signals arrive at the receiver at different delays

resulting in random phase and amplitude of the received signals. This phenomenon

is called multipath fading [7, 8].

Multipath fading is caused by superposition of the multiple versions of the trans-

mitted signal received at the receiver at a given delay. The delay spread of the
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channel is defined as the time delay between the first signal component received at

the receiver, and the component that takes the longest path from the transmitter to

the receiver. The delay spread is characterized by its standard deviation, called the

root mean square (RMS) delay spread of the channel. If the product of the RMS

delay spread and the signal bandwidth is much less than unity, the channel is said

to suffer from flat fading [8]. The discrete-time model of the received signal in a flat

fading channel is

rt =
√

Esαtst + ηt, (1.1)

where Es is the average signal energy, αt is the channel gain modeled as a zero-mean

complex-valued Gaussian random variable with unity variance, i.e., E[α2] = 1, and

ηt is a sample of a zero-mean additive white Gaussian noise (AWGN) with double-

sided power spectral density N0

2
. The quantity Es

N0
is called the signal-to-noise ratio

(SNR) per symbol. When the channel gain |αt| follows a Rayleigh probability density

function (pdf), the channel is said to be a Rayleigh fading channel. When a line-

of-sight (LOS) path is present between the transmitter and receiver in addition to

moving scatterers, the channel gain has a Rice distribution and the channel is said to

be a Rician fading channel [9]. Another probability distribution that has been used

extensively to model the envelop of fading channels is the Nakagami-m distribution

[10], which was shown to fit empirical measurements very well.

The relative motion between the transmitter and the receiver (or vice versa)

causes the frequency of the received signal to be shifted relative to that of the
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transmitted signal. The frequency shift, or Doppler frequency, is proportional to

the velocity of the receiver and the frequency of the transmitted signal [7]. A

signal undergoes slow fading when the bandwidth of the signal is much larger than

the Doppler spread (defined as a measure of the spectral broadening caused by

the Doppler frequency). The combination of the multipath fading with its time

variations causes the received signal to degrade severely. This degradation of the

quality of the recieved signal caused by fading needs to be counterbalanced by various

techniques such as diversity and channel coding.

1.1.2 Channel Coding

The fundamental theory of error-correcting codes is often traced back to Shannon

who proved the channel coding theorem in [11]. This theorem states that there

exists an explicit upper bound, called the channel capacity, on the rate at which

“information” can be transmitted reliably over a given communication channel. In

paticular, the capacity of a bandlimited AWGN channel with bandwidthW, is given

by

C =W log2(1 + Es/N0), bits per second (bps), (1.2)

where we assume perfect Nyquist signaling (i.e no inter-symbol-interference). The

AWGN channel model approximately models many practical digital communication

and storage systems. The proof of the theorem demonstrates that for any transmis-
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sion rate R less than or equal to the channel capacity C, there exists a coding scheme

that achieves an arbitrarily small probability of error. Conversely, if R is greater

than C, no coding scheme can achieve reliable communication. However, since this

is an existence theorem, it gives no guidance as to how to design appropriate coding

schemes or how complex they may be to implement.

Channel coding improves the performance by adding redundant bits to the in-

formation bit stream that are used by the receiver to correct errors introduced by

the channel, thus reducing the average bit error rate (BER). This approach enables

a reduction in the transmit power required to achieve a target BER. Conventional

FEC codes reduce the required transmit power for a given BER at the expense of

increased signal bandwidth or a reduced data rate [2].

Conventional FEC codes use block or convolutional code designs. In block codes,

parity bits are added to blocks of information bits. On the other hand, convolutional

codes map a sequence of information bits onto a sequence of coded bits in sequential

manner. Trellis codes combine channel code design and modulation to reduce the

BER without bandwidth expansion or rate reduction [2]. Recent advances in coding

technology, such as turbo codes [12] and LDPC codes [4] offer performance that

approaches the channel capacity of AWGN and fading channels.

Linear Block Codes

A binary block code uses an encoder that accepts a block of message bits, and

generates a block of coded bits (called a codeword) at the output. A code is linear
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if the addition of any two valid codewords results in another valid codeword. Simi-

larly, a code is cyclic if a cyclic shift of any valid codeword results in another valid

codeword [2]. In a binary code, each element of a codeword is a bit of value 0 or 1,

whereas each element of a codeword in a non-binary code is a symbol (e.g., bytes).

In this work we focus only on binary codes.

A block code is referred to as an (n,k) code if the size of the message is k bits, and

the size of the overall codeword is n bits. Therefore, the number of redundant bits

added to every k information bits is (n-k). The term systematic is used for codes

in which the codeword contains the message bits in unaltered form as in Figure 1.1.

Systematic codewords are formed by appending additional bits to the message bits.

These additional bits are called redundancy or parity bits. A systematic block code

is also specified by its generator matrix G = [Ik P ], where Ik is (k × k) identity

matrix and P is a k × (n-k) matrix that determines the (n-k) parity check bits.

The systematic block code can also be specified by a parity-check matrix H of the

form H = [P T In−k], where P
T is the transpose of the matrix P.

A (n,k) parity-check code is a linear block code whose codewords satisfy a set

Parity bits


Codeword is 
n
bits long


n-k
 bits
 k
 bits


Information bits


Figure 1.1: Codeword structure of a systematic linear block code
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of (n-k) linear parity-check equations. It is traditionally defined by its (n-k) × n

parity-check matrix H, whose (n-k) rows specify the (n-k) equations. For example,

if the first equation specifies that bits 3 and 7 of a codeword must be equal, then

the first row of H contains a one in columns 3 and 7 and zeros elsewhere. A

parity-check code C is the set of codewords satisfying all parity-check equations, i.e.,

C = {c : cHT = 0}, where c and 0 are vectors of n elements each. Because each

codeword of length n conveys k information bits, the code rate is defined as R =

k/n.

An example of the structure of a codeword is shown in Figure 1.1. Increasing

the number of parity bits (and thus increasing the value of n) will decrease the code

rate; but it will allow the code to correct more errors. The Hamming weight of a

codeword c denoted w(c), is defined to be the number of nonzero components of

c. For example, if c = (110101), then w(c) = 4. The Hamming distance between

two codewords c1 and c2, denoted d(c1, c2), is the number of positions in which

they differ [2]. For example if c1 = (110101) and c2 = (111000), then d(c1, c2) = 3.

Clearly, d(c1, c2) = w(c1 + c2) = w(c3) (addition is modulo-2), where c3 (for linear

codes) is a codeword. Therefore, the distance between any two codewords equals the

weight of one of the codewords and the minimum distance dmin for a linear block

code equals the minimum weight of its nonzero codewords.
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1.1.3 Codes Defined on Graphs

Since 1948, when Claude Shannon introduced the notion of channel capacity [11],

the ultimate goal of coding theory has been to find practical capacity-approaching

codes. Approaching the Shannon limit within a few decibels (dBs) was possible

with practical decoding complexity, by using convolutional codes. However, reduc-

ing this gap required impractical complexity until the discovery of turbo codes [12].

One of the important innovations in turbo codes was the introduction of a class of

low-complexity suboptimal decoding rules called the iterative message-passing algo-

rithms. Using an iterative message-passing decoder, turbo codes provide excellent

performance and a small gap to the Shannon limit with a low (practical) decoding

complexity. Fig. 1.2 [13] compares the typical performance of a turbo code and

a convolutional code over an uncorrelated Rayleigh fading channel. This amazing

performance of turbo codes drew a lot of attention to the field of study, which soon

extended to a more general class of codes called codes defined on graphs.

The advantage of codes defined on graphs is that they can be decoded using

message-passing algorithms. The two important features of message-passing decod-

ing which make codes defined on graphs so attractive, are its performance which

is (potentially) very close to the optimal performance and its practical complexity

which (for a fixed number of iterations) increases linearly with the length of the

code. This, in turn, allows for the use of very long codes. Therefore, about 50 years
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(5/7,5/7,1) turbo code and
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(5,7) convolutional code over an uncorrelated Rayleigh fading channel.

after Shannons work, coding specialists are now able to design codes which can per-

form close to the Shannon limit with a reasonable decoding complexity. Moreover,

for some channels, they have learned how the capacity can be achieved in principle,

although the decoder requires an increasing complexity as the codes performance

approaches capacity [14].

A Brief History of Codes Defined on Graphs

Interestingly, a graphical understanding of these cdoes was formed after the discovery

of some of the later-called codes defined on graphs. Not only has this understanding
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helped coding theorists in analyzing these codes and in designing decoding algo-

rithms for them, they also learned how to design their codes to get the best out of

a given decoding algorithm.

The graphical understanding of codes started with the Tanner graphs for lin-

ear codes [15]. Later, Wiberg discovered that turbo codes can also be represented

graphically [16]. Soon after this discovery, it was shown in [17] and [18] that the

turbo decoding algorithm on the graphical representation of a turbo code is a special

case of the belief propagation on the general Bayesian networks [19].

Parallel to the research on turbo codes and influenced by the focus on turbo

codes, in 1996 MacKay and Neal [20], and Sipser and Spielman [21] rediscovered a

long forgotten class of codes, i.e., LDPC codes. This class of codes was originally

proposed in 1962 by Gallager [3], but were considered too complex at the time of

their discovery. LDPC codes drew a lot of attention as they had an extremely good

performance. For example they can be designed to perform a few hundredths of a

decibel away from the Shannon limit over the AWGN channel. Another feature of

LDPC codes is their simple graphical representation, which is based on Tanner’s

representation of linear codes [15]. This simple structure allows for accurate asymp-

totic (n → ∞) analysis of LDPC codes [22] as well as the design of good irregular

LDPC codes, optimized under specific constraints.

Since the rediscovery of LDPC codes, there has been a lot of research activities

and improvements in the area of codes defined on graphs. Undoubtedly, research
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on LDPC codes has played and will continue to play a central role in this field, as

many of the new classes of codes which are defined on graphs are influenced by the

structure of LDPC codes. Examples of developments in the area of codes defined

on graphs include the following

• Irregular LDPC codes: As shown in [23], irregular LDPC (see Section 2.1)

codes can significantly outperform regular LDPC codes. All LDPC codes

which approach the Shannon limit on different channels are irregular LDPC

codes.

• Capacity achieving LDPC codes for the Binary Erasure Channel (BEC): Shokrol-

lahi et. al. found a family of irregular LDPC codes that could achieve the

capacity of the BEC [24, 25].

• Density evolution analysis of LDPC codes: An accurate asymptotic analysis of

LDPC codes under different decoding schemes was proposed in [22]. The idea

is to follow the evolution of the density of the messages in the decoder. Using

this analysis, the design of good irregular LDPC codes, which has already been

studied for the BEC became possible for other channel types.

• Gaussian approximation of the analysis of turbo and LDPC codes [26, 27]:

Due to the high computational complexity of the density evolution approach,

approximations of density evolution attracted many researchers. In particular,
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approximating the true message density with a Gaussian density seemed to be

very effective.

• Extrinsic Information Transfer (EXIT) chart analysis: EXIT chart analysis

[28] is similar to density evolution, except that it follows the evolution of a

single parameter that represents the density of messages. This evolution can

be visualized in a graph called an EXIT chart. EXIT charts have become very

popular, as they provide deep insight into the behaviour of iterative decoders

[14, 26, 29].

The research in the area of codes defined on graphs is still very active and there

are many open problems under study.

1.1.4 Automatic Repeat Request (ARQ)

In wireless networks transmission takes place in the form of packets, which are blocks

of information bits. Another way - in addition to channel coding - to reduce the

link errors prevalent in wireless systems is to implement retransmissions. Automatic

repeat request (ARQ) combines error detection and retransmission to ensure that

data is delivered accurately despite occurrence of errors during transmission. Based

on retransmission strategies, there are three basic types of ARQ schemes: stop-and-

wait ARQ, go-back-N ARQ, and selective-repeat ARQ [2].

The stop-and-wait scheme represents the simplest ARQ procedure and was im-
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plemented in early error-control systems. In a stop-and-wait ARQ error-control

system, the transmitter sends a codeword to the receiver and waits for an acknowl-

edgment. A positive acknowledgment (ACK) from the receiver indicates that the

transmitted codeword has been successfully received, and the transmitter sends the

next codeword in the queue. A negative acknowledgment (NACK) from the receiver

indicates that the transmitted codeword has been detected in error; the transmitter

then resends the codeword and again waits for an acknowledgment. Retransmissions

continue until the transmitter receives an ACK.

In the basic go-back-N ARQ scheme, the transmitter continuously transmits

codewords in order and then stores them pending receipt of an ACK/NACK for

each. The acknowledgment for a codeword arrives after a round-trip delay, defined

as the time interval between the transmission of a codeword and the receipt of an

acknowledgment for that codeword. During this interval, N - 1 other codewords

are also transmitted. Whenever the transmitter receives a NACK indicating that

a particular codeword, say codeword i, was received in error, it stops transmitting

new codewords. Then it goes back to codeword i and proceeds to retransmit that

codeword and the N - 1 succeeding codewords which were transmitted during one

round-trip delay. At the receiving end, the receiver discards the erroneously re-

ceived word i and all N - 1 subsequently received words, whether they are error-free

or not. Retransmission continues until codeword i is positively acknowledged. In

each retransmission for codeword i, the transmitter resends the same sequence of
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codewords. As soon as codeword i is positively acknowledged, the transmitter pro-

ceeds to transmit new codewords. In a selective-repeat ARQ error-control system,

codewords are also transmitted continuously. However, the transmitter only resends

those codewords that are negatively acknowledged (NACKed). After resending a

NACKed codeword, the transmitter continues transmitting the new codewords.

The combination of ARQ and FEC is a powerful method of increasing the sys-

tem efficiency. This combination is called Hybrid ARQ [2]. In type-I Hybrid ARQ,

a packet is encoded for both error detection and error correction. When the packet

arrives at the receiver it is first decoded by the FEC decoder and then checked for

errors [30]. If errors are detected, a retransmission request is sent back to the trans-

mitter. Otherwise the packet is accepted. Type-II Hybrid ARQ adapts to changing

channel conditions through the use of incremental redundancy [30]. Mandelbaum

[31] was the first to propose punctured codes (puncturing denotes deletion of parity

bits) for transmitting redundancy in incremental steps. A packet is encoded for

both error detection and error correction. In this scheme some of the parity bits are

punctured before transmission. At the receiver the packet is decoded by the FEC

decoder. If errors are detected then the transmitter sends a group of parity bits that

were not sent to the receiver. The receiver appends these bits to the received packet

allowing for increased error correction capability.
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1.1.5 Rate-Compatible (RC) Codes

In [32] the concept of punctured codes was modified for the generation of a family

of codes by adding a rate-compatibility restriction to the puncturing rule. The

restriction implies that all the coded bits of a high-rate punctured code are used

by the lower-rate codes. In other words, the high-rate codes are embedded into the

lower-rate codes of the family. If the higher rate codes are not sufficiently powerful

to decode channel errors, only supplemental bits which were previously punctured

(deleted) have to be transmitted in order to improve the code. For block codes,

rate-compatible codes can be obtained by puncturing, extending or a combination

of the two approaches. The range of code rates for a family of rate-compatible codes

is defined as

R =
P

P + l
, l = 1, . . . , l′, . . . , L. (1.3)

For a family of codes obtained from a mother code of rate P
P+l′

, the code rates P
P+1

to P
P+l′−1

would be obtained through puncturing, while the code rates P
P+l′+1

to P
P+L

would be obtained through extending.

Puncturing

A code is punctured by deleting parity bits (information bits can also be deleted

resulting in a shortened code [33]). The punctured code rate has a higher rate than

the original code. Puncturing enables higher bandwidth efficiency at the expense of
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degradation in performance [33].

Since we are interested in rate-compatible punctured codes, the following restric-

tion needs to be enforced: for a series of desired rates Rj+n > Rj+n−1 > ... > Rj > R,

where R is the rate of the mother (non-punctured) code, the punctured parity bits

that yield rate Rl+n have to form a subset of the punctured parity bits that yield

rate Rl+n−1 (the high-rate codewords are embedded in the low-rate codewords [32]).

Extending

A code is extended by annexing additional parity check bits. The extended code has

a lower rate than the original code. Extending leads to codes of increased minimum

distance [33] and better performance. If H is the matrix (of size m × n) representing

the original code, Hext (which is the extended version of size ((m+u) × (n+u)) will

contain additional rows and columns. These additional rows and columns have to be

added so that there is a strong dependency between the columns of the parity-check

matrix of the original code and the newly added columns [1, 5].

Extending builds RC codes from high rates to low rates by adding more parity

bits. For RC-LDPC codes built from extending, the initial transmission corresponds

to a LDPC code, which has a good FER in the first transmission. Then additional

parity bits are added to reduce the rate in such a way that the extended code

provides sufficiently better performance compared to the original code.

Another motivation for using extending concerns the encoding complexity. Un-
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Figure 1.3: The effect of Puncturing and Extending on a parity-check matrix H.

like puncturing where all parity bits are generated at the encoder regardless whether

they will be used, extending allows bits to be generated only as needed, thus avoiding

unnecessary computations at the encoder and the decoder.

For rate-compatible extended codes obtained through extending, the following

restriction needs to be enforced: for a series of desired rates Rj+n < Rj+n−1 < ... <

Rj < R, where R is the rate of the mother (non-extended) code, the additional

parity bits that yield rate Rl+n−1 have to form a subset of the parity bits that yeild

rate Rl+n (the high-rate codewords are embedded in the low-rate codewords [32]).

1.1.6 Coded Cooperation

Diversity is considered an effective tool for combating multipath fading [8]. Diver-

sity is achieved by effectively transmitting or processing independently faded copies

of the signal. Among diversity techniques, transmit diversity relies on the principle
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that signals transmitted from geographically separated transmitters experience in-

dependent fading, which results in a significantly improved performance compared

to systems with no diversity [34, 35]. Since most wireless networks operate in a mul-

tiuser mode, user cooperation [36, 37] can be employed to provide diversity. In user

cooperation, mobile units share their antennas to achieve uplink transmit diversity

as illustrated in Figure 5.1. Since signals transmitted by different users undergo

independent fading paths to the base station (BS), this approach achieves spatial

diversity through the partner’s antenna.

In conventional user cooperation the partner repeats the received bits (via either

forwarding or hard detection). Recently, a new framework for user cooperation was

proposed [38, 39, 40] and is called coded cooperation. Unlike conventional user co-

operation schemes, symbols in coded cooperation are not repeated by the partner.

Instead, the codeword of each user is partitioned into two parts: one part is trans-

mitted by the user, and the other part is sent by his partner. Coded cooperation

provides significant performance gains for a variety of channel conditions. In ad-

dition, by allowing different code rates through rate-compatible coding [32], coded

cooperation provides a great degree of flexibility to adapt to channel conditions.
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1.2 Literature Survey

1.2.1 Rate-Compatible Punctured Convolutional and Turbo

Codes

Punctured convolutional codes were first introduced by Cain et.al. [41] mainly for

the purpose of obtaining simpler Viterbi decoding. They obtained codes of rates

2/3 and 3/4 by puncturing rate-1/2 codes. These punctured codes were almost as

good as the best known codes.

In [42] a criterion was proposed for selection of the puncturing pattern for turbo

codes. The rate-compatible punctured turbo (RCPT) coded system of [42] was

shown to outperform the RCPC codes of Hagenauer [32]. In [43, 44] the authors

proposed a technique for finding the accurate weight distribution of punctured turbo

codes. This technique enabled the study and comparison of different puncturing

patterns and provided guidelines for designing good puncturing patterns. In [45]

the design criteria for search of good rate-compatible systematic turbo codes were

proposed and compared.

1.2.2 Rate-Compatible LDPC Codes

The conventional approach of puncturing achieves a range of higher code rates by

successively puncturing larger fractions of the codeword bits of a low-rate code.
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Using regular LDPC codes in [1] it was shown that puncturing has a larger adverse

impact when the mother code is of low rate than when the mother code is of high

rate. Hence, for a fixed desired rate (after puncturing), it is desirable to choose

the mother code such that the percentage of punctured bits is as small as possible.

However, this will result in a limited range of achievable code rates. To overcome

this problem, extending was used to build codes of lower rates. An ARQ system

employing the RC-LDPC codes of [1] was shown to perform on par with ARQ

systems from [42] using RCPT codes.

The work in [1] was extended in [5] to the case of irregular LDPC codes by

employing both puncturing and extending. An ARQ system employing this scheme

was shown to outperform the system of [1] and systems based on turbo codes [42]

by up to 0.5 dB. In [46] optimal puncturing distributions for irregular LDPC codes

were obtained from the perspective of minimizing threshold (defined as the SNR

value above which the probability of decoding error approaches zero, while for val-

ues of SNR lower than threshold the probability of decoding error is nonzero [4]).

The theoretical performance of punctured LDPC codes was analyzed with Gaussian

approximation [4]. Based on the analysis, a design rule for good puncturing distri-

butions was proposed. The results apply to LDPC codes of large block length (sim-

ulation results are given for a block-length of 131072 bits). The punctured LDPC

codes obtained using this approach were shown to outperform codes obtained using

random puncturing. Recently in [47], a systematic method has been proposed for
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finding good puncturing distributions for finite-length LDPC codes. The idea is

based on the fact that a punctured node will be recovered with reliable messages

when it has 1) more neighboring checknodes, and 2) each of the checknodes has

more reliable neighbors (variable nodes) except for the punctured one. For example,

a punctured variable node that has checknodes whose remaining neighboring vari-

able nodes are unpunctured will have nonzero messages from the checknodes in the

first iteration. The process for a punctured node to have messages from checknodes

is called recovery. The punctured node in the preceding example will be called a

one-step-recoverable (1-SR) since the node is recovered in the first iteration. The

1-SR nodes and unpunctured nodes will help recover some of the remaining punc-

tured nodes in the second iteration, and so on. In general, the punctured nodes

recovered in the ith iteration are called i -SR nodes. It is assumed that the more

iterations a punctured node needs for its recovery, the less statistically reliable the

recovery message is. Thus, it is better to puncture nodes that require a smaller

number of iterations, which results not only in less iterations to decode codewords

but also in better performance at a given code rate. This method enables the design

of punctured finite-length LDPC codes that outperform randomly punctured LDPC

codes.
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1.2.3 Coded Cooperation

In [39, 40], the performance of coded cooperation diversity employing RCPC codes

with two users is investigated. Furthermore, in [40],the application of turbo codes

to coded cooperation is also investigated. In [48], the error performance of coded

cooperation diversity employing RCPC codes with multiple (≥ 2) cooperating users

is analyzed.

1.3 Thesis Contributions

LDPC codes are one of the most important codes defined on graphs. This is due

to their excellent performance as well as their simple yet flexible structure. LDPC

codes offer the following advantages over turbo codes [49]:

• The complexity of (belief propagation) decoding is less than that of turbo-

codes [50, 51], and being fully parallelizable, can potentially be performed at

significantly greater speeds [52].

• Very low complexity decoders that closely approximate belief-propagation in

performance have been designed for these codes [22].

• LDPC decoding is verifible in the sense that decoding to a correct codeword is

a detectable event. Therefore the need for a error-detecting code is obviated

[1].
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Furthermore, LDPC codes have lower error floors [14, 53]. LDPC codes are already

used in some standards such as ETSI EN 302 307 for digital video broadcasting

[54] and IEEE 802.16 (Broadband Wireless Access Working Group) for coding on

orthogonal frequency division multiple access (OFDMA) systems [55].

As stated above, in this work we focus on the design of efficient Hybrid ARQ

schemes that utilize RC-LDPC codes. For such schemes it is desirable to use small

block lengths (specially for wireless systems that are designed for mobile use) due

to the following reasons

• Reduced encoding and decoding complexity.

• A reduced retransmission frame size in case of a frame error leads to an increase

in the throughput.

Therefore this work focuses on designing RC-LDPC codes for relatively small

block lengths in the range of 512-2048 bits. Furthermore, the existing RC-LDPC

codes for finite block-lengths (with the exception of [47]) use random puncturing.

In this work, we explore systematic puncturing techniques that result in punctured

LDPC codes with good performance. Additionally,

• We investigate the application of RC-LDPC codes for wireless networks em-

ploying coded cooperation diversity.

• Removal of small loops from a LDPC code improves the performance in terms
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of lower BER and reduced error floor [56]. In this work we develop an algorithm

for removing small loops from semi-random LDPC codes.

.

1.4 Thesis Outline

In Chapter 2 we provide the necessary background on LDPC codes and their de-

coding algorithms. In Chapter 3 RC-LDPC codes are designed based on the regular

family of LDPC codes. In particular, a heuristic algorithm is proposed for selecting

puncturing patterns that results in codes with low error floor.

In Chapter 4 RC-LDPC codes based on the Semi-Random family of LDPC codes

are developed. A puncturing pattern for this class of codes which offers good per-

formance for both the low and high SNR regions is proposed. In addition two

efficient methods of extending this class of codes are also proposed. The designed

rate-compatible LDPC codes outperform existing systems based on regular LDPC

codes.

In Chapter 5 the use of punctured semi-random LDPC codes for Coded Coop-

eration diversity is investigated. Furthermore, the effect of varying the cooperation

level is investigated for different interuser channels.

Small cycles degrade the performance of the LDPC decoder. In Chapter 6 an

alogrithm is developed for the removal of small cycles from a class of efficiently-
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encodable LDPC codes called Semi-Random LDPC codes [57]. The algorithm en-

ables the design of codes with low error floors.

In Chapter 7 we provide a summary of the conclusions drawn from this work,

and some suggestions for future work.



Chapter 2

LDPC Codes

LDPC codes are block codes defined by a sparse parity-check matrix. They were first

proposed in 1962 by Robert Gallager [3], along with an elegant iterative decoding

scheme whose complexity grows only linearly with the code block length. Despite

their promise, LDPC codes were largely forgotten for several decades, primarily

because the computers at that time were not powerful enough to use them. In 1993

Berrou et. al. [12] proposed turbo codes. This new encoding/decoding technique,

with complexity that is slightly larger than that of convolutional codes, enables

performance approaching the Shannon capacity of the AWGN channel within a

fraction of a decibel. The invention of turbo codes led the research community to

focus on iterative decoding algorithms.

In 1995 LDPC codes were rediscovered by MacKay and Neal [53], sparking a

flurry of further research on coding theory. Today the value of LDPC codes is widely

27
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recognized. Their remarkable capacity-approaching performance ensures that they

will not be forgotten again. In contrast to many existing coding schemes, LDPC

codes offer both better performance and lower decoding complexity.

2.1 Code Structure

A low-density parity-check (LDPC) code is defined by a parity-check matrix that is

sparse. A regular (j,l) LDPC code is defined by an (n-k) × n parity-check matrix

having exactly j ones in each column and exactly l ones in each row, where j < l

and both are small compared to n [2]. An irregular LDPC matrix is also sparse, but

not all rows and columns contain the same number of ones [2].

Figure 2.1 shows the parity-check matrix of a (3,6) LDPC code. By the definition

of regular LDPC codes, every parity-check equation involves exactly l bits, and every

bit is involved in exactly j parity-check equations. Observe that the fraction of ones

in a regular (j,l) LDPC matrix is l/n. The “low density” terminology derives from

the fact that this fraction approaches zero as n →∞ [58]. In contrast, the average

fraction of ones in a purely random binary matrix (with independent components

equally likely to be zero or one) is 1/2.

Any parity-check code (including an LDPC code) may be specified by a Tanner

graph, which is essentially a visual representation of the parity check matrix H

[2]. Recall that an (n-k) × n parity-check matrix H defines a code in which the
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n bits of each codeword satisfy a set of (n-k) parity-check equations. The Tanner

graph contains n “variable” nodes, one for each codeword bit, and (n-k) “check”

nodes, one for each of the parity-check equations. Figure 2.2 shows the Tanner

graph corresponding to the H matrix of Figure 2.1. The variable nodes are depicted

using circles, while the check nodes are depicted using squares. The check nodes

are connected to the variable nodes they check through edges. Specifically, an edge

connects a check node x to a variable node y if and only if the x -th parity check

involves the y-th bit, or more succinctly, if and only if Hx,y = 1, where Hx,y is

element corresponding to the x -th row and y-th column in a parity-check matrix

H. The graph is said to be bipartite since it contains two distinct types of nodes,

variable nodes and check nodes [2]. Note that in the bipartite graph there can be

no direct connection between any two nodes of the same type [2].

For the special case of a (j,l) regular LDPC code, each bit is involved in j parity

check equations. Hence, the number of edges emanating from a variable node is

always j and the variable node is said to be of degree j [2]. Similarly, because each

parity check equation involves l bits, the number of edges emanating from each

check node is always l and the check node is said to be of degree l.

j j

j j
H =









1 1 1 1 0 1 1 0 0 0
0 0 1 1 1 1 1 1 0 0
0 1 0 1 0 1 0 1 1 1
1 0 1 0 1 0 0 1 1 1
1 1 0 0 1 0 1 0 1 1









Figure 2.1: A regular (3,6) parity-check matrix H, the circled 1s show a 4-loop
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Figure 2.2: Tanner graph corresponding to H matrix of Figure 2.1, the bold edges
show a 4-loop

Since the minimum distance of a linear block code is the weight of the codeword

with the minimum Hamming weight, the sparse structure of LDPC codes ensures

large minimum distance. This can be explained as follows: dmin = min{wH(c) :

cHT = 0}. The operation cHT adds selected rows of HT and it would take a large

number of such rows to sum to 0 if H is sparsely populated with 1s [59].

In the bipartite graph representing a LDPC code, a loop (or cycle) is a closed

path with no repeated nodes, and must therefore be of even length [2]. There is at

most one edge between any two nodes, and so the shortest length a loop can have

is 4. Such loops are referred to as 4-1oops. In general a loop of length m is called

an m-loop. The girth of the graph is defined as the length of the shortest loop. A

Stopping set S is a subset of V, the set of variable nodes, such that all neighbors of S



31

are connected to S at least twice [60]. The stopping number of a code is the size of its

smallest stopping set, and the stopping number lower bounds the minimum distance

of the code [61]. The stopping number of a code can be increased by increasing its

girth, and hence codes with larger girth have lower error floors [61].

In the absence of loops, the iterative decoding algorithm converges to the maximum-

likelihood solution [62]. However, most random constructions of the parity-check

matrix contain loops of small lengths [56].

2.2 Semi-Random LDPC Codes

For the purpose of encoding, the parity-check matrix H has to be transformed into

the systematic form using Gaussian elimination [2]. The generator matrix G is then

obtained from the systematic form of the H matrix. This transformation usually

destroys the sparseness of the H matrix, resulting in a complex encoding process.

Recent contributions have shown that LDPC codes are also amenable to simple en-

coding structures [63, 64]. In [57], a method has ben proposed for the construction

of the parity-check matrix which enables simple encoding while at the same time

provides performance similar to regular random codes. These LDPC codes are called

semi-random codes (Figure 2.3). The parity-check matrix is obtained by concate-

nation of a deterministic sub-matrix with a randomly constructed sub-matrix.

The systematic codeword is expressed as c = [p d], where p is a vector containing
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H =











1 0
1 1
1 1

0 1 1
︸ ︷︷ ︸

Deterministic

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

1 0 0 1
0 1 1 0
1 0 1 0
0 1 0 1
︸ ︷︷ ︸

Random











Figure 2.3: A Semi-Random parity-check matrix

the parity bits and d is a vector containing the data bits. The parity-check matrix is

decomposed asH = [Hp Hd]. Since every codeword c should satisfy the parity-check

equations, we can write

[

Hp Hd

] [

p d

]T

= 0 (2.1)

From (2.1), the parity vector p={pi} can be calculated from the information se-

quence d={di} as [57]

p1 =
∑

j

hd1jdj and pi = pi−1 +
∑

j

hdijdj (mod 2). (2.2)

As shown by (2.2) the encoding can be carried out recursively, and the complexity

of the encoding grows linearly with the block-length.

2.3 Decoding

Decoding is preferred via the iterative sum-product algorithm (also known as the be-

lief propagation algorithm) [2]. This algorithm closely approximates the maximum-

likelihood decoding rule with a complexity that grows linearly with the code block
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length [3]. In the following the decoding process is described following the notation

given in [58].

2.3.1 Background and Terminology

The probability distribution for a binary random variable c ∈ {0, 1} is uniquely

specified by the single parameter p = Pr[c = 1], since Pr[c = 0] = 1 - p. Alternatively,

the probability distribution is also uniquely specified by the ratio given by

λ = log
Pr[c = 1]

Pr[c = 0]
. (2.3)

The sign of λ indicates the most likely value for c; λ is positive when 1 is

more likely than 0, and λ is negative when 0 is more likely than 1. Moreover, the

magnitude |λ| is a measure of certainty or reliability of λ. At one extreme, if λ =

0 then 0 and 1 are equally likely. At the other extreme, if λ = ∞ then c = 1 with

probability 1, and λ = - ∞ implies that c = 0 with probability 1.

Given a random bit c ∈ {0, 1}, let r denote an observation whose pdf depends

on c according to the function f(r|c). When c is fixed and f(r|c) is viewed as a

function of r, it is called a conditional pdf. On the other hand, when r is fixed, then

f(r|c) as a function of c is called the likelihood function [58].

Before making an observation, the a priori probabilities for c are Pr[c = 1]

and Pr[c = 0]. After making an observation, these probabilities change to the a

posteriori probabilities (APP) Pr[c = 1|r ] and Pr[c = 0|r ]. Because of the Bayes
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rule, the a posteriori probability is proportional to the likelihood function:

Pr[c = 1|r] = f(r|c)Pr[c = 1]
f(r)

. (2.4)

Hence the a posteriori probabilities can be expressed as:

log
Pr[c = 1|r]
Pr[c = 0|r] = log

f(r|c = 1)
f(r|c = 0) + log

Pr[c = 1]

Pr[c = 0]
. (2.5)

The first term on the right-hand side is called the log-likelihood ratio (LLR). Strictly

speaking, the second term on the right-hand side is a log-probability ratio, and the

left-hand side is a log-APP ratio. The second term on the right-hand side is more

commonly called the a priori LLR, and the left-hand side is called the a posteriori

LLR. If c is equally likely to be zero or one, then the a priori LLR is zero, and the

a posteriori LLR is equal to the LLR.

2.3.2 The Tanh Rule

Let φ(c)∈ {0, 1} denote the value of the parity bit of a vector c = [c1,. . . , cn] of n

bits, so that φ(c) = 0 if there are an even number of ones in c, and φ(c) = 1 if the

number of ones in c is odd. If the bits are independent, the a priori LLR for the

value of the parity bit φ(c) (i.e λφ(c)) obeys the tanh rule [4]

tanh

(−λφ(c)

2

)

=
n∏

i=1

tanh

(−λi
2

)

, (2.6)

where λi denotes the a priori LLR for the i -the bit in c (given in (2.3)).
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2.3.3 The Decoding Problem

Consider the problem of decoding a LDPC code with a parity-check matrix H over

a flat fading channel with AWGN at the receiver, so that the t-th element of the

receiver observation vector r = [r1,...,rn] is related to the transmitted codeword c

= [c1,...,cn] by

rt = −αt(−1)ct + ηt, (2.7)

where αt is the channel gain affecting the t-th bit in c and ηt is a zero-mean Gaussian

random variable with variance No

2
, where No

2
is the double-sided power spectral

density. The detector that minimizes the probability of error for the t-th bit would

calculate the aposteriori LLR:

λt = log
Pr[ct = 1|r]
Pr[ct = 0|r]

= log
Pr[ct = 1|rt, {ri6=t}]
Pr[ct = 0|rt, {ri6=t}]

, (2.8)

and then decide ct = 1 if λt > 0, and ct= 0 otherwise. Applying Bayes rule, the

numerator in (2.8) can be written as

Pr[ct = 1|rt, {ri6=t}] =
f(rt, ct = 1, {ri6=t})

f(rt, {ri6=t})

=
f(rt|ct = 1, {ri6=t})f(ct = 1, {ri 6=t})

f(rt|{ri6=t})f({ri6=t})

=
f(rt|ct = 1)Pr[ct = 1|{ri6=t}]

f(rt|{ri6=t})
(2.9)

The last equality exploits the fact that, given ct, rt is independent of ri6=t. The
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denominator of (2.8) can be similarly expressed. Hence (2.8) simplifes to

λt = log
f(rt|ct = 1)Pr[ct = 1|{ri6=t}]
f(rt|ct = 0)Pr[ct = 0|{ri6=t}]

= log
f(rt|ct = 1)
f(rt|ct = 0)

+ log
Pr[ct = 1|{ri 6=t}]
Pr[ct = 0|{ri 6=t}]

=
2

σ2
rtαt

︸ ︷︷ ︸

intrinsic

+ log
Pr[ct = 1|{ri6=t}]
Pr[ct = 0|{ri6=t}]

︸ ︷︷ ︸

extrinsic

, (2.10)

where we used the fact that

f(rt|ct) =
1√
2πσ2

exp
−(rt + αt((−1)ct)

2σ2
(2.11)

The first term in (2.10) represents the contribution from the t-th channel observa-

tion, and is called the intrinsic information, while the second term represents the

contribution from the observations in the other terms in rt, and is called the extrin-

sic information. Because the j parity-check equations of the code ensure that ct =

φ(c(i)) for all i = 1,...,j, we can rewrite (2.10) as

λt =
2

σ2
rtαt + log

Pr[φ
c(i) = 1, i = 1, . . . , j|{ri 6=t}]

Pr[φ
c(i) = 0, i = 1, . . . , j|{ri 6=t}]

, (2.12)

where c(i) denotes the set of codeword bits involved in the i
th parity check equation

excluding ct. If the graph is cycle-free, the vectors c(1), c(2),.., c(j) are conditionally

independent given {ri6=t} and furthermore, the components of c(i) are themselves
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conditionally independent given {ri6=t}. Hence, (2.12) reduces to

λt =
2

σ2
rt + log

j∏

i=1

Pr[φ(c(i)) = 1|{ri6=t}]
j∏

i=1

Pr[φ(c(i)) = 0|{ri6=t}]

=
2

σ2
rt +

j
∑

i=1

log
Pr[φ(c(i)) = 1|{ri6=t}]
Pr[φ(c(i)) = 0|{ri6=t}]

=
2

σ2
rtαt +

j
∑

i=1

λφ(c(i)) . (2.13)

If we introduce

λi,p = log
Pr[ci,p = 1|{ri6=t}]
Pr[ci,p = 0|{ri6=t}]

, (2.14)

where in λi,p, i denotes the i-the parity check equation which involves ct and p

denotes the p-th bit involved in the i-the parity check equation, then substituting

(2.6) in (2.13), the LLR of the t-th bit becomes

λt =
2

σ2
rtαt − 2

j
∑

i=1

tanh−1

(
l∏

p=2

tanh

(
λi,p
2

))

. (2.15)

With the aid of the Tanner graph, we may interpret (2.15) in terms of messages

passed from a bit-node to a check-node and vice versa. Suppose the variable node

associated with ci,p passes the “message” λi,p to the i -th check node. In turn,

the i -th check node collects the (k - 1) incoming messages from the other bits c(i)

involved (beside ct), computes the a posteriori LLR λφ(c) for the value of their parity

bit, and passes this “message” to the t-th variable node. Finally, the t-th variable

node computes λt according to (2.15) by summing all of the incoming messages and

adding 2
σ2 rtαt.
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The key result is that λi,p can be calculated iteratively, using an equation of the

form (2.13). A simplified form of the algorithm for each codeword is given as follows:

1. Compute variable node-to-checknode messages (first half of iteration).

2. Compute checknode-to-variable node messages (second half of iteration).

3. Update APP LLR for all variable nodes.

4. Apply hard decision on codeword bits, and check whether the decoded frame

is a valid codeword.

5. If not a valid codeword, repeat steps 1-4 for a number of iterations.

6. Stop if the codeword is valid or the maximum number of iterations reached.

Figure 2.4 shows the effect of the maximum decoder iterations for LDPC codes.

It can be seen that increasing the maximum number of decoder iterations leads to an

improvement in the average performance. It can also be seen that when iterations

are set to more than 5, the performance gain achieved by increasing the number

of maximum iterations reduces with the increase in the iterations. Increasing the

iterations from 2 to 5 leads to a gain of 1.5 dB at BER of 10−4, while increasing the

iterations from 5 to 10 leads to a gain of 0.33 dB at BER of 10−4.

The performance curves for LDPC codes can be categorized into two regions: the

waterfall and error floor regions, as shown in Figure 2.5. Decoding failures occur

when the LDPC decoder fails to converge to a valid codeword. These errors occur
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prevalently at lower SNR where a rapid improvement in the LDPC code performance

is observed (waterfall region). The suboptimality of the LDPC decoer is caused by

the presence of small loops. The LDPC decoder operates optimally at high SNR

region, since the reduction in the average number of decoder iterations required to

converge reduces the effect of loops. Maximum Likelihood decoding errors occur in

this region, and since the Maximum Likelihood performance is limited by the dmin

of the code, an error floor is observed in the high SNR region.

Density evolution [22] is a technique for tracking the pdfs of the messages in the

Tanner graph of an LDPC code, under the assumption that n → ∞. The notion

of convergence threshold was introduced, which is defined as the SNR value above

which the probability of decoding error approaches zero, while for values of SNR

lower than threshold the probability of decoding error is nonzero. Using density

evolution, given the initial pdf of LLR messages, the pdf of LLR messages at any

iteration can be computed. This allows for the design of irregular LDPC codes which

perform very close to the Shannon limit using density evolution as a probe, i.e.,

finding the convergence threshold of different irregular codes by density evolution

and choosing the best one. Density evolution requires intensive computations [22].

In [27], the density evolution algorithm was simplified by using the assumption that

at each iteration the pdf of the messages is Gaussian.
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girth 4, n=256.
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2.3.4 The Decoding Complexity of RC-LDPC Codes

The following table [1] shows the decoding complexity for regular RC-LDPC codes.

Table 2.1: Decoding complexity per iteration for regular RC-LDPC codes.

puncturing extending
addition 3jk/Ro 3j′k/Ri

tanh / tanh−1 2jk/Ro 2j′k/Ri

In the table, j denotes the column weight of the mother code, j ′ denotes the

column weight of the extended code, Ro denotes the code rate of the mother code,

and Ri denotes the code rate of the code obtained after extending the mother code

by i levels, given by Ri = k/

(

no +
i∑

v=1

Mv

)

, where no is the block length of the

mother code, and M is the number of parity bits added after one level of extension.

From the table it can be seen that for punctured regular LDPC codes, the de-

coding complexity is constant, since the mother code is used for decoding of the

punctured codes. This statement can be generalized to irregular LDPC codes. This

can be explained as follows: for the purpose of decoding, the punctured variable

nodes are initialized with erasures, while the non-punctured variable nodes are ini-

tialzed with LLRs corresponding to the respective channel observations. Therefore,

for any punctured regular or irregular LDPC code, the decoding complexity re-

mains constant since the total number of variable nodes, check nodes and edges

in the parity-check matrix remain constant. However, the decoding complexity of

extended LDPC codes increases with the levels of extension, since the number of
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variable nodes, check nodes and edges in the parity-check matrix increase.

2.4 LDPC Code Design Approaches

The construction of an LDPC code is achieved by constructing of a low-density

parity-check matrix with prescribed properties. A large number of design techniques

exist in the literature, and we introduce some of the more prominent ones in this

section.

2.4.1 Regular Codes

Gallager Codes

The original LDPC codes due to Gallager [3] are regular LDPC codes with an H

matrix of the form

H =















H1

H2

...

Hwc















, (2.16)

where the submatrices Hd have the following structure: for any integers µ and wr

greater than 1, each submatrix Hd is µ × µwr with row weight wr and column

weight 1. The submatrix H1 has the following specific form: for i = 1, . . . , µ the i
th

row contains all of its wr 1’s in columns (i − 1)wr to iwr. The other submatrices
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are simply column permutations of H1. It is evident that H is regular and has

dimensions µwc × µwr, and has row and column weights wr and wc respectively.

Gallager [3] showed that the ensemble of such codes has excellent distance properties

provided that wc ≥ 1 and wr > wc.

Mackay Codes

Mackay had independently discovered the benefits of binary codes with sparse H

matrices. He has proposed in [50] algorithms to generate sparse H matrices. A few

of these are listed below in order of increasing algorithm complexity:

1. H is created by randomly generating weight-wc columns and (as near as pos-

sible) uniform row weight.

2. H is created by randomly generating weight-wc columns, while ensuring weight-

wr rows, and no two columns having overlap greater than 1.

3. H is generated as in algorithm 2, and additionally short cycles are avoided.

2.4.2 Irregular codes

Richardson et. al. [49] and Luby et. al. [23] defined ensembles of irregular LDPC

codes parameterized by the degree polynomials λ(x) and ρ(x), defined as

λ(x) =

dl∑

i=2

λix
i−1 and ρ(x) =

dr∑

i=2

ρix
i−1, (2.17)
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where λi(x) and ρi(x) are the fractions of edges belonging to degree-i variable and

check nodes, and dl and dr are the maximum variable and check node degrees respec-

tively. They showed how to optimize these polynomials for a variety of channels.

Optimized in the sense that (assuming message passing decoding) a typical code

in the ensemble was capable of reliable communications in worse channel condi-

tions than codes that are outside the ensemble. The worse-case channel condition

is called the decoding threshold and the optimization of λ(x) and ρ(x) is found by

a combination of density evolution algorithm and an optimization algorithm. The

decoding threshold for a given λ(x)-ρ(x) pair is determined by evaluating the pdf’s

of the log-likelihood ratios of the code bits. The optimization algorithm optimizes

the design of H over the λ(x)-ρ(x) pairs. In general designs via density evolution

are best applied to codes of large block-length since density evolution assumes that

n→∞.

2.4.3 Finite-Geometry Codes

In [65], regular LDPC codes were designed using techniques based on finite-geometries.

These LDPC codes fall into the cyclic and quasi-cyclic classes of block codes and

lend themselves to simple encoder implementations via shift-register circuits.
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2.4.4 RA, IRA and eIRA Codes

A type of code, called a repeat-accumulate code, which has the characteristics of

both serial turbo codes and LDPC codes, was proposed in [66]. These codes have

been shown to be capable of operation near capacity limits, but they have the

drawback that they are naturally low-rate (rate 1/2 or lower).

The RA codes were generalized, yielding irregular repeat-accumulate codes [67].

These codes are capable of operation even closer to theoretical limits than RA codes,

and they permit higher code rates. A drawback to IRA codes is that they are non-

systematic, although they can be put in systematic form at the expense of lowering

the rate.

Yang and Ryan [68] have proposed a class of efficiently encodable irregular LDPC

codes which are called extended IRA (eIRA) codes. For these codes, the encoding

can be efficiently performed directly from the H matrix.



Chapter 3

Rate-Compatible Regular LDPC

Codes

This chapter is concerned with the design of punctured regular LDPC codes that

outperform randomly punctured regular LDPC codes. Regular LDPC codes were

introduced by Gallager in [3]. A regular (j,l) LDPC code is defined by an (n-k) ×

n parity-check matrix having exactly j ones in each column and exactly l ones in

each row, where j < l and both are small compared to n [2]. It was also shown

in [3] that for regular codes, the minimum distance increases linearly with block-

length if the column weight is greater than or equal to three. Hence the column

weight is typically chosen to be greater than or equal to three. The (3,6)-regular

LDPC ensemble is the best regular ensemble [49]. Therefore in this work (as in [1]),

the regular-(3,6) LDPC ensemble is employed for designing rate-compatible regular

47
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LDPC codes.

Although regular LDPC codes perform close to capacity, they show a larger gap

to capacity compared to turbo codes. The main advantage of regular LDPC codes

over turbo codes is their lower error floor. The error floor phenomenon arises at

high SNR values due to the small minimum distance of turbo codes [14]. Therefore,

turbo codes will experience an error floor even under maximum-likelihood decoding

[14]. On the other hand, LDPC codes have lower error floors [50]. In addition,

it is shown in [50] that LDPC codes can achieve the Shannon limit under optimal

decoding. Furthermore, regular LDPC codes have lower error floors as compared to

irregular LDPC codes [69].

Rate-Compatible LDPC codes based on (3,6)-regular LDPC codes were designed

in [1] by using random puncturing in order to obtain codes with rates higher than

that of the mother code. However the puncturing pattern(s) chosen were not op-

timized with respect to any criterion. One method of comparing the performance

of LDPC codes with different puncturing patterns would be through exhaustive

search using Monte Carlo simulation, which is very complex and time consuming.

Therefore approaches that compare different random puncturing patterns without

resorting to exhaustive search are required. In the following section a heuristic al-

gorithm for comparing random puncturing patterns is presented. We claim that a

search employing the proposed algorithm over an ensemble of puncturing patterns

will enable the selection of a pattern that outperforms a pattern chosen at random
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from the ensemble (with high probability).

3.1 The Heuristic Search Algorithm

For a given block length and a given degree distribution of the underlying Tanner

graph, the ensemble of short block-length LDPC codes can have considerable vari-

ation in performance, specially at high SNR [70]. An efficient heuristic algorithm

for finding good LDPC codes based on the girth distribution of the Tanner graph

was presented in [70]. In this chapter, we use this algorithm to obtain puncturing

patterns (needed to design RC-LDPC codes) that result in punctured codes with

good performance.

3.1.1 The Girth of a Graph

The girth of a LDPC code refers to the length of the shortest loop (or cycle) present

in the codes’ equivalent Tanner graph. In the absence of loops, the iterative decoding

algorithm converges to the maximum-likelihood solution [62]. In [70] this term is

used in a wider sense, where the girth at variable node u is defined as the length of

the shortest cycle that passes through u. The girth distribution, g(l), l = 4, 6, ..., lmax

of a Tanner graph refers to the fraction of the symbol nodes with girth l, where lmax

is the maximum girth in the graph. The girth average for a graph is defined as

∑lmax/2

k=2
g(2k).2k. (3.1)
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Intuitively, girth distribution is related to the sub-optimality of the iterative

decoder. It is well known that for a cycle-free Tanner graph, belief propagation

results in optimal decoding [62]. The girth of a symbol node indicates the length of

the shortest path, or equivalently the smallest number of iterations, for a message

sent by that node to propagate back to the node itself. Before this number of

iterations is reached, the “belief” associated with the node is “optimally” propagated

to the rest of the graph. To have a performance close to the optimal, it is therefore

favorable to make the girth of variable nodes as large as possible, or in other words,

to have more symbol nodes with larger girths [70].

The computation of girth at a given node u is carried out as follows: a tree is

“grown” step by step starting from the “root” node u. At step k, all the nodes at

distance k from u are included into the tree. This procedure is repeated until, at

step k, a node connected to at least two nodes included at step k - 1 is included.

This identifies the formation of the first cycle. The integer 2k is then the girth at

node u. The complexity of this algorithm is low and quite manageable for short

block lengths [70].

The computation of girth at a given node can also be done by using the adjacency

matrix [56, 71] of a parity-check matrix and powers of the adjacency matrix. This

is the method employed in this work, since it can be done efficiently using matrix

manipulation software such as Matlab. Denoting all the nodes of the codes’ graph

as v1, v2, ..., vp, and define the adjacency matrix A = [aij] to be the p × p symmetric
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binary matrix

aij =







1 if an edge connects vi with vj

0 otherwise

The natural ordering of the nodes for an LDPC graph results in the relationship

A =







0 H

HT 0






, (3.2)

For a matrix H of size (m× n), the girth of a variable node u is l iff

A
(l/2)
ij ≥ 2 and A

(l/2)−2
ij = 0, for any i, and j = u+m. (3.3)

In [70], the algorithm based on the girth average of codes was used to compare

randomly constructed codes of short block-length. A search was performed over a

finite number of randomly generated codes, and it was shown that the code with the

highest girth average performed better than all other codes included in the search.

As will be shown in the following, punctured codes can also be compared using the

heuristic search algorithm based on the girth average of the respective punctured

codes.

3.1.2 Heuristic Search for Good Puncturing Patterns

The puncturing (removal of parity bits) of a code results in a code of increased code

rate and reduced minimum distance [33, 72]. As shown in Figure 3.1, puncturing of

a linear block code involves the removal of columns and rows. The rows which are
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removed correspond to the nonzero values of the selected columns [72]. For example,

if a certain column to be removed has a ‘one’ in row number two, then when this

column is removed, only row number two can be removed. However, if the column

to be removed has ones in rows number two and three, then either row number two

or row number three can be removed when column this column is removed

The punctured code corresponding to a puncturing pattern would involve the

removal of the selected columns and rows corresponding to the nonzero values of the

selected columns. For (3,6)-regular codes, each column has three rows which could

possibly be removed (since the column weight is 3). Consider the case of puncturing

of one parity bit. Three different codes may be obtained since the removal of three

different rows (and the same column for each case) results in three different parity-

check matrices.

As the number of removed columns increases, the number of codes to be com-

pared increases exponentially, which renders the comparison of punctured codes

intractable. Hence the methodology employed for obtaining codes corresponding to

different puncturing patterns is as follows: the columns corresponding to the punc-

tured bits are removed from the H matrix, while none of the rows are removed. The

punctured codes thus obtained are then compared using the girth average criteria.

Removing only the punctured columns (and none of the rows) leaves a larger

number of ones in the matrix for which the average girth is being computed, as

compared to the actual punctured matrix (which has both columns and rows re-
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H =







1 1 1 1 1 1 1 1
0 1 0 0 1 0 1 1
0 0 1 0 1 1 1 0
0 0 0 1 0 1 1 1







?

?

¾

Puncturing

punctured column

removed row

H =





1 0 0 1 0 1 1
0 1 0 1 1 1 0
0 0 1 0 1 1 1





Figure 3.1: Puncturing of a linear block code (the first column - from the left - and
first row are removed).

moved). More ones mean more cycles and probabilistically speaking more small

cycles. Therefore it is possible that the girth of a node being computed will come

out to be smaller than it would be for the “actual” punctured matrix. Therefore the

value of average girth will be smaller than that of the “actual” punctured matrix

(this is what is observed through simulation). The important question is: how does

this approach affect the comparison between different puncturing patterns? The

answer to this question is two-fold:

• The number of ones removed from the original parity-check matrix for each

puncturing pattern is the same (since for regular codes the number of ones

removed = column weight × number of bits punctured). Therefore probabilis-

tically speaking, the number of variable nodes whose value of girth is affected

by this method is the same for all puncturing patterns. This would be sup-
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ported by the random construction of the code. Therefore if the “actual”

punctured code would give value of mean girth of x and this method gives

x − y, then the difference caused by this method (which is y) would be the

same for all patterns with high probability.

• It is easy to see that obtaining the “actual” punctured matrix is viable only for

systematic H matrices. For nonsystematic random matrices, the possibilities

for the punctured matrices are very large, and would increase with column

weight and number of bits punctured.

3.1.3 Simulation Results

To verify the algorithm based on the girth average criteria, a search was performed

over 500 random puncturing patterns (for a (3,6)-regular LDPC code of a block-

length 256 with 64 parity bits being punctured). Figure 3.2 shows the performance

over the AWGN channel of two puncturing patterns, one having the maxiumum

girth average and the other having the minimum girth average. There is a significant

difference in performance at high SNR, since large girth average leads to large dmin..

For low SNR values, the girth has little effect on performance, since the subtleties of

the loops’ effects on belief propagation are irrelevant when the noise level is high [56].

The puncturing pattern with the minimum girth average yields a code which has

a higher error floor as compared to the code resulting from the puncturing pattern
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with the highest girth average (there is 1 dB difference between the two curves at

BER of 10−6). It is therefore clear that the girth average criteria and the method

for comparing puncturing patterns is a viable method for selecting good puncturing

patterns from an ensemble of random puncturing patterns.

3.2 Rate-Compatible Punctured Codes

In this section, we present the RC-LDPC obtained using the heuristic search method

defined in Section 3.1. Consider a range of desired rates R1 > R2 > ... > RJ > R,

where R is the code rate of the mother code. Rate-compatible codes that utilize

puncturing patterns selected using the heuristic search criteria can be obtained by

the following method:

1. A code with rate Rj is obtained by puncturing pj bits from the mother code

with rate R.

2. Select the number of punctured parity bits p1 which yield a rate-R1 code.

Generate random patterns of size p1. Perform heuristic search to obtain the

best puncturing pattern corresponding to p1 punctured bits.

3. Puncturing patterns for obtaining the rate-R2 can be obtained by selecting

random subsets of size p2 from the pattern selected in the previous step (of

size p1), and performing heuristic search over them.
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Figure 3.2: Performance of regular LDPC codes with two different puncturing pat-
terns that result in the maximum and the minimum girth average, n=256 and 64
parity bits being punctured.
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4. The puncturing patterns required to obtain the codes with rates R3, .., RJ may

be obtained in a similar manner as in step 3.

The following figures show the performance of rate-compatible regular LDPC

codes of arbitratily selected rates 0.66 and 0.62 when simulated over the AWGN

and uncorrelated Rayleigh fading channels. For each code rate, heuristic search was

peformed over 500 random patterns. The mother code is a rate- 1
2
code of block-

length 256. The maximum number of decoder iterations is set to 25. In the figures,

“Heuristic” denotes the performance of a punctured code obtained by puncturing

with a pattern that was selected using the heuristic search algorithm, and “Random”

denotes the performance averaged over many random puncturing patterns (during

simulation the random pattern was changed after every 100 codewords transmitted

over the respective channel). It can be seen that codes punctured according to the

heuristic search algorithm perform better than codes punctured randomly, and the

difference in performance increases with increasing SNR. This is due to the larger

impact of the girth on the performance at high SNR than it is at low SNR: the dmin

of a code can be increased by increasing its girth, and hence codes with larger girth

have lower error floors [61].

Chapter Summary

In this chapter an algorithm has been presented for the selection of puncturing pat-

terns from an ensemble of random puncturing patterns. The algorithm is based on
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the concept of girth. Since increasing the girth of a LDPC code leads to improved

performance, the algorithm selects puncturing patterns that result in punctured

codes with large girth. Simulation results verify that the puncturing patterns se-

lected using this algorithm outperform randomly punctured codes.
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Figure 3.3: Performance of punctured regular codes of rate 0.66 over the AWGN
and Rayleigh fading channels (a) BER (b) FER
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Figure 3.4: Performance of punctured regular codes of rate 0.62 over the AWGN
and Rayleigh fading channels (a) BER (b) FER



Chapter 4

Rate-Compatible Semi-Random

LDPC Codes

Semi-random LDPC codes offer several advantages including efficient encoding and

good performance. In addition, it will be shown in this chapter that they have

several properties that make them good candidates for use in systems employing

rate-compatible codes. In this chapter we consider the design of rate-compatible

semi-random LDPC codes through puncturing and/or extending.

4.1 Punctured Codes

Puncturing constructs high-rate codes from low-rate codes by deleting parity bits

[33]. The transmitter does not transmit the punctured parity bits. For the decoding

61
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of a punctured LDPC code, the decoder inserts erasures where the parity bits are

punctured and performs the decoding algorithm as in a non-punctured case [1].

Figure 4.1 shows the structure of a semi-random parity-check matrix. The sub-

matrix on the left corresponds to the parity bits, and the submatrix on the right

corresponds to the data bits. To obtain punctured semi-random codes, the variable

nodes corresponding to the punctured parity bits are replaced with erasures at the

decoder. Figure 4.2 shows the location of decoder erasures corresponding to different

puncturing patterns that could be used at the decoder. In the figure, “alternate”

refers to puncturing of alternate parity bits, “successive” refers to puncturing of

successive parity bits and “random” refers to puncturing of a random pattern of

parity bits.

H =












1 0
1 1
1 1

0 1 1
︸ ︷︷ ︸

Parity

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

1 0 0 1
0 1 1 0
1 0 1 0
0 1 0 1
︸ ︷︷ ︸

Data











.

Figure 4.1: A Semi-Random parity-check matrix

Figure 4.3 shows the message passing during decoding of punctured codes, It

can be seen that for the case of successive or random puncturing, a successive group

of parity bits may be erased. As the decoding proceeds iteratively, after the first

(and successive) iteration(s) the LLR values of the punctured parity bits for the

case of alternate puncturing will be larger than the LLR values of punctured parity
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bits for the case of successive or random puncturing. A large LLR magnitude for a

variable node implies higher reliability as compared to the reliability of a variable

node with a smaller LLR magnitude [58]. Since the LLRs of the punctured parity

bits for the case of alternate puncturing converge in a smaller number of iterations

as compared to the other two puncturing schemes, the LLRs of information bits

will also converge to their correct values (in the probabilistic sense) in a smaller

number of iterations. The evolution of LLR magnitudes of the punctured bits for

the different puncturing shemes is illustrated in Figure 4.4, which confirms that

parity bits punctured “alternately” will converge in fewer iterations as compared to

other puncturing schemes. Therefore it is expected that the performance of semi-

random LDPC codes that are punctured “alternately” will perform better than other

puncturig schemes. This is confirmed by the simulation results shown in Figure 4.5.
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Figure 4.5: The performance of punctured semi-random LDPC codes, n=256,
R=1/2, max-iterations=50 (a) BER of rate-4/7 codes, (B) BER of rate-2/3 codes
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Simulation Results

Figures 4.6 and 4.7 show the performance of punctured semi-random and regular-

(3,6) codes over the AWGN and uncorrelated Rayleigh fading channels. The block

length n for the mother code and code rates obtained through puncturing corre-

spond to those used in [1]. For the semi-random codes, results for the alternate

and random puncturing patterns are shown, whereas for regular codes the results

are shown for the random puncturing pattern. In the figures ‘p’ denotes the num-

ber of punctured parity bits, ‘SR’ denotes semi-random, ‘Reg’ denotes regular-(3,6),

‘Alternate’ denotes alternate puncturing pattern and ‘Random’ denotes a random

pattern of parity bits. ‘p=0’ denotes the mother (non-punctured) code.

From the figures it can be seen that while the mother codes for both the regular-

(3,6) and the semi-random codes give similar performance, the performance of the

punctured regular (3,6) code is worse that that of the punctured semi-random code,

and the difference in performance increases with increasing number of punctured

parity bits. This difference in the performance can be explained as follows: for

the semi-random matrix, the punctured bits correspond to the parity bits which

are of degree two, while for the regular-(3,6) code the punctured bits are of de-

gree three. While one punctured bit of the semi-random code affects two check

nodes, the puncturing of one bit of the regular-(3,6) code affects three check nodes.

Therefore, semi-random rate-compatible codes obtained via puncturing outperform



69

regular rate-compatible codes obtained via puncturing, when the mother codes of

both have similar performance. Furthermore, the performance gain of alternately

punctured semi-random codes over the randomly punctured semi-random codes in-

creases with increasing the the number of punctured parity bits. This is due to the

reason illustrated in Figure 4.3, where the effect becomes more severe as the number

of punctured bits increase.
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Figure 4.6: Performance of punctured semi-random and regular codes over the
AWGN channel with rates - from left to right - 8/14, 8/13, 8/12 and 8/11, mother
code is of rate 8/14 with n=1792, ’SR’ denotes semi-random, ’Reg’ denotes regular,
max-iterations = 50, (a) BER (b) FER
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Figure 4.7: Performance of punctured semi-random and regular codes over the
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4.2 Extended Codes

Extending constructs low-rate codes from high-rate codes by adding parity bits.

At the decoder, the lowest rate code is used for decoding. To decode the higher

rate codes, missing parity bits are replaced by erasures [5]. For a matrix H of size

(m × n) representing the original code, each level of extension of size u (adding u

parity bits) will add u additional rows and u addtional columns to H. The extended

matrix Hext will be of size (m+u) × (n+u). The current literature does not contain

methods for the extension of semi-random codes. Figure 4.8 shows the structure of

a semi-random parity-check matrix, and the general procedure followed in extending

the code. For one level of extension, the following steps have to be implemented:

• Generate Hpnew
of size (m + u) × (m + u), with the particular “staircase”

structure that is required for the deterministic part of a semi-random parity-

check matrix (see Figure 2.3).

• Generate Hdnew
which is a concatenation of two matrices: Hd from the un-

extended matrix, and a matrix Hsparse of size (u)× (n−m).

• The concatenation of Hpnew
and Hdnew

yields a semi-random parity-check ma-

trix with one level of extension (see Figure 4.8).

Hsparse is the only part of the extended matrix that can be designed using dif-

ferent methods, since the rest of the matrix is either identical to parts of the un-



73

extended matrix, or follows a deterministic construction approach to comply with

the standard format of a semi-random parity-check matrix. We have investigated

two schemes for the design of the “Hsparse” matrix. One scheme is reffered to as the

“Extended-Identity” approach since it involves the use of Identity matrices, and the

other scheme is called the “Extended-Permuted” approach since it involves the use

of a matrix which is a random permutation of a particular matrix. The two methods

are discussed in the following sections.

4.2.1 The Extended-Identity Approach

In this approach, Hsparse is formed for each level of extension by the concatenation

of an identity matrix of size u×u and matrix of zeros of size u× (n−m−u), where

the size of the non-extended matrix is m × n. Figure 4.9 shows the extension of

a semi-random parity-check matrix using this approach for two levels of extension.

This method offers a simple and deterministic method of extending a semi-random

parity check-matrix. It maintains the sparseness of the extended matrix, and does

not lead to the creation of small loops.
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Figure 4.8: Extending of semi-random LDPC codes
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Figure 4.9: Extension of semi-random matrices using the Extended-Identity ap-
proach, H is the original non-extended matrix, H1

ext and H2
ext are the extended

matrices after one and two levels of extension respectively.
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4.2.2 The Extended-Permuted Approach

Another approach for constructing Hsparse is to use the permutation of a particular

matrix Hperm as the matrix Hsparse for each level of extension. This approach follows

the method of constructing regular codes introduced by Gallager [3], where a parity-

check matrix of an LDPC code is formed by the vertical concatenation of a number

of submatrices. An example of the matrix Hperm which gives good empirical results

is shown in Figure 4.10. We can see that it contains two ones in each row. Hsparse

for each level of extension corresponds to a particular column permutation of Hperm.

We have also tested extension with an Hperm that contains four ones in each row, but

the performance is very similar to the Hperm with two ones in each row, and therefore

the latter was preferred since it enables lower encoding and decoding complexity.

Hperm =









1 1 0 0 . .
0 1 1 0 . .
0 0 1 1 . .
. . . . . .
. . . . . .









Figure 4.10: Extended permuted approach

Simulation Results

Figures 4.12 and 4.13 show the performance of extended semi-random codes over

AWGN and Rayleigh fading channels using the “Extended-Identity” approach. Fig-

ures 4.14 and 4.15 show the performance of extended semi-random codes using the

“Extended-Permuted” approach. In the figures ‘ext’ denotes the number of parity
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Figure 4.11: Extension of semi-random matrices using the Extended-Permuted ap-
proach, H is non-extended matrix, H1

ext and H2
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bits added to the mother (non-extended) code. Also, ‘ext=0’ denotes the mother

code.

From the figures we can see that the “Extended-Permuted” approach offers a 0.2-

0.3 dB performance advantage over the “Extended-Identity” approach. However the

former approach creates four-loops during the extension process, which have to be

removed using the loop removal algorithm presented in Chapter 6 and hence the

code construction algorithm has higher complexity, while the latter approach has

lower complexity because the format for extension is deterministic and the extension

does not result in the creation of four-loops.

In addition, difference in performance between the “Extended-Permuted” ap-

proach and the “Extended-Identity” approach increases with increasing levels of ex-

tension. This can be explained as follows: an extended matrix resulting from exten-

sion using the ‘Extended-Permuted” approach is relatively denser (the parity-check

matrix has more ones) as compared to an extended matrix resulting from extension

using the “Extended-Identity” approach. This is due to the fact that “Extended-

Identity” approach adds a single one per row in Hsparse, while the ‘Extended-

Permuted” adds two ones per row Hsparse. This leads to a slightly larger average col-

umn weight for the “Extended-Permuted” approach as compared to the “Extended-

Identity” approach. From simulations, it was found that the average column weight

of the lowest rate matrices used in the simulations is 3.1 for the “Extended-Identity”

approach and 3.4 for the“Extended-Permuted” approach. The difference in the col-



79

−3 −2.5 −2 −1.5 −1 −0.5 0
10−6

10−5

10−4

10−3

10−2

10−1

E
s
/N

o
 (dB)

B
E

R

ext=0
ext=128
ext=256
ext=384
ext=512
ext=640
ext=768

(a)

−3 −2.5 −2 −1.5 −1 −0.5 0
10−4

10−3

10−2

10−1

100

E
s
/N

o
 (dB)

FE
R

ext=0
ext=128
ext=256
ext=384
ext=512
ext=640
ext=768

(b)

Figure 4.12: Performance of extended semi-random codes using the Extended-
Identity approach over the AWGN channel with rates - from right to left -
8/14,..,8/20, mother code is of rate 8/14 with n=1792 max-iterations = 50, (a)
BER (b) FER
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Figure 4.13: Performance of extended semi-random codes using the Extended-
Identity approach over the Rayleigh fading channel with rates - from right to left
- 8/14,..,8/20, mother code is of rate 8/14 with n=1792 max-iterations = 50, (a)
BER (b) FER
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Figure 4.14: Performance of extended semi-random codes using the Extended-
Permuted approach over the AWGN channel with rates - from right to left -
8/14,..,8/20, mother code is of rate 8/14 with n=1792 max-iterations = 50, (a)
BER (b) FER
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Figure 4.15: Performance of extended semi-random codes using the Extended-
Permuted approach over the Rayleigh fading channel with rates - from right to
left - 8/14,..,8/20, mother code is of rate 8/14 with n=1792 max-iterations = 50,
(a) BER (b) FER
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umn weight leads to slightly better performance for the “Extended-Permuted” ap-

proach, since columns of comparatively larger weight are connected to more check

nodes, which improves the performance of the iterative decoder.

4.3 Type-II Hybrid ARQ

ARQ combines error detection and retransmission to improve the reliability of data

delivery. A communication system that combines ARQ and FEC is called a Hybrid

ARQ system [2]. In type-I Hybrid ARQ, a packet is encoded for both error detection

and error correction. Upon reception of a packet, it is first decoded by the FEC

decoder and then checked for errors [30]. If errors are detected, a retransmission

request is sent to the transmitter. Type-II Hybrid ARQ adapts to changing channel

conditions through the use of incremental redundancy [30]. A system using this

ARQ scheme employs FEC with a range of code rates. The initial transmittion

corresponds to the code with the highest rate (minimum redundancy). At the re-

ceiver the packet is decoded by the FEC decoder. If errors are detected then the

transmitter sends additional parity bits (that were not sent yet), thereby reducing

the rate of the code. The receiver appends these bits to the received packet allowing

for increased error correction capability.

The rate-compatible LDPC codes designed via puncturing and extending in the

previous sections have been employed to design a type-II hybrid ARQ/FEC sys-
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tem. In type-II ARQ, a packet is first transmitted using the highest rate code.

If it is not deemed correctly decoded, an NACK (Negative ACKnowlegement) is

fed-back to the transmitter and a new set of parity bits is provided by the trans-

mitter (incremental retransmission). This new set of parity bits, combined with all

previous transmissions, is treated as a codeword of a lower rate code in the family

which provides stronger error correction capability. This is known as code com-

bining. This procedure continues until all supplemental parity bits are used up,

and then the procedure restarts with another “initial transmission”. When a new

copy of the same coded bits (either data or parity bits) are received, old copies are

not discarded, but are combined with the new ones to facilitate decoding. This

is known as packet combining. In general, packet combining is performed by av-

eraging the soft decision values obtained from multiple copies of the same packet.

Specifically for LDPC codes with the soft message-passing decoder, the input mes-

sage to the decoder (in log-likelihood ratio (LLR) form) of a bit si is obtained by
(

k∑

j=1

(

2r
(j)
i αj

i

σ2

))

/k,where r
(1)
i , r

(2)
i , ...., r

(k)
i are the multiple copies received for the

same bit si. The above strategy is optimal for achieving high throughput either in

stop-and-wait ARQ or selective-repeat ARQ systems, under the assumption that the

feedback channel is noiseless, that the buffer size is infinite, and that the transmis-

sion latency, the feedback channel traffic and the decoding complexity are negligible

[1].
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Simulation Results

Figures 4.16 to 4.18 show the throughput for the type-II hybrid ARQ scheme de-

scribed above that is based on rate-compatible LDPC codes. In the figures ‘SR’

denotes ARQ using semi-random LDPC codes, ‘Reg’ denotes ARQ using regular-

(3,6) LDPC codes, ‘Alternate’ denotes alternate parity puncturing and ‘Random’

denotes a random pattern of parity bits. Figure 4.16 shows the throughput for ARQ

schemes with rate-compatible LDPC codes employing only puncturing for AWGN

and Rayleigh fading channels. The mother code in each case is a rate-8/14 code

with blocklength of 1792 bits from which codes of rates 8/13, 8/12 and 8/11 are

obtained via puncturing. We observe that codes based on the semi-random family

of LDPC codes outperform codes based on the regular-(3,6) family. This is because

punctured semi-random LDPC codes outperfom punctured regular-(3,6) codes, as

was shown in Figures 4.6 and 4.7.

Figure 4.17 shows the throughput for ARQ schemes employing rate-compatible

semi-random codes designed using puncturing and extending for the AWGN and

Rayleigh fading channels respectively. The mother code is a rate-8/14 code with

blocklength of 1792 bits from which codes of rates 8/13, 8/12 and 8/11 are derived

via alternate puncturing. Codes with rates 8/15 to 8/20 and designed via extending.

The two curves differ in the the form of the extending approach employed. It can be

seen that the “Extending-Permuted” approach outperforms the “Extended-Identity”
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approach at low SNR, since at low SNR the low-rate codes obtained via extending

dominate the performance. At high SNR the curves overlap since at high SNR the

high rate codes obtained via puncturing dominate the performance.

Figure 4.18 shows the throughput for ARQ schemes employing the best-performing

rate-compatible semi-random codes designed in this work (using alternate punctur-

ing and “Extended-Permuted” extending), and regular codes from [1] for the AWGN

channel. The mother code is a rate-8/14 code with a blocklength of 1792 bits. There

are 1024 information bits in each frame. Codes of rates 8/13 to 8/11 are designed via

puncturing and rates 8/15 to 8/20 are designed via extending. The code rates that

are used for this figure correspond to those used in [1]. It can be seen that the ARQ

schemes employing semi-random codes outperform those employing regular codes

at high SNR by upto 0.3-0.4 dB. At high SNR the codes obtained via puncturing

dominate performance and punctured semi-random codes significantly outperform

punctured regular-(3,6) codes as shown in Figures 4.6 to 4.7 and 4.16. It can also

be seen that both curves reach the maximum throughput value of approximately

0.727 at the highest SNR. This is the maximum attainable throughput since this is

the maximum code-rate (8/11 ≈ 0.727) among the family of rate-compatible codes

being used. Note that although the ARQ scheme employing semi-random LDPC

codes achieves better performance by upto 0.4 dB as compared to that based on

regular LDPC codes, the former has the big advantage of low encoding complexity,

which does not exist for the latter system.
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Chapter Summary

In this chapter, methods for the design of rate-compatible semi-random LDPC codes

have been proposed. A puncturing pattern has been proposed for the design of rate-

compatible punctured semi-random codes that perform better than randomly punc-

tured codes. Furthermore, two approaches for designing extended rate-compatible

semi-random LDPC codes have been proposed. A type-II hybird ARQ scheme

based on the rate-compatible LDPC codes designed in this chapter has been shown

to outperform an existing scheme based on regular LDPC codes by upto 0.4 dB.

Additionally, the proposed hybrid ARQ scheme based on semi-random LDPC codes

offers the major advantage of low complexity encoding.
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Figure 4.16: Throughput comparison of ARQ schemes based on semi-random and
regular punctured codes, the mother code is a rate-8/14 code with n=1792, code
rates 8/13, 8/12 and 8/11 are obtained through puncturing, max-iterations = 50,
(a) AWGN channel (b) Rayleigh fading channel
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Figure 4.17: Throughput comparison of type-II ARQ scheme employing semi-
random RC-LDPC codes based on “Extended-Permuted” and “Extended-Identity”
approaches, the mother code is a rate-8/14 code with n=1792, code rates 8/13 to
8/11 are obtained through puncturing and code rates 8/15 to 8/20 are obtained
through extending, max-iterations = 50, (a) AWGN channel (b) Rayleigh fading
channel
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Chapter 5

LDPC Codes for Coded

Cooperation Diversity

As has been demonstrated in the Chapter 4, rate-compatible semi-random LDPC

codes outperform rate-compatible regular LDPC codes, and are therefore good can-

didates for systems employing rate-compatible LDPC codes. In this chapter the

application of rate-compatible - specifically punctured - semi-random LDPC codes

to systems employing coded cooperation diversity is investigated. The work presented

in this chapter is based on the system model presented in [48].

91
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5.1 System Model

5.1.1 Network Architecture

The coded cooperation scenario is illustrated in Figure 5.1. Coded cooperation

starts by forming clusters of users, where users in a cluster cooperate to transmit

their information to a common BS. The users within a cluster are called partners.

The selection of users to join or leave a cluster can be based on the quality of the

interuser channels or any other factor. Users in a cluster are assumed to operate in

a full-duplex mode, i.e., they can transmit and receive simultaneously.

BS


User 2
 bits   User 1 bits

User 2


User 1


User 1 bits 
 User 2 bits


Figure 5.1: Schematic diagram of a 2-user cluster employing coded cooperation.

Let J be the number of cooperating users in a cluster. For each user in the

cluster the transmission of each frame spans nT seconds, where n is the number
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of bits in the frame and T is the bit duration. A frame is formed by encoding

k bits (information bits and cyclic redundancy check (CRC) bits) into n = k/R

bits, where R is the code rate of the error-correcting code. Partners cooperate by

dividing their n-bit frames into J subframes containing n1, n2, . . . , nJ bits, where

n = n1 + n2 + . . .+ nJ . The distribution of coded bits over the subframes depends

on the coding technique used. In the first n1T seconds of each frame, each user

transmits his first subframe composed of n1 = k/R1 coded bits, where R1 is the

code rate of the codeword in the first subframe, obtained by puncturing the n-bit

codeword. Clearly, R1 > RJ = R. Upon the end of the first subframe, each user

decodes the rate-R1 codewords of his partners.

In the remaining J−1 subframes, each user in the cluster transmits one subframe

for each of his J − 1 partners. Each of these subframes contains parity bits of one

of his partners which were not sent yet to the BS. Figure 5.1 shows the contents

of the J subframes of each user in a 2-user cluster, i.e., J = 2. If a user was not

able to decode the first subframe of his partner, whom he should send his parity in

a given subframe, then he sends his next parity subframe, i.e., the parity subframe

that was not yet sent by any of his partners. Thus each user transmits a total of n

bits per source block over the J subframes. The cooperation level, β is defined as

the percentage of the total bits per each source block that each user transmits for

his partners, i.e., n−n1

n
.

The partitioning of the coded bits in the J subframes may be achieved through
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puncturing a mother code as in [38], where rate-compatible punctured convolutional

(RCPC) codes [32] were used to implement coded cooperation. In this work, the

rate-R code is selected from a semi-random LDPC code family designed in Chapter

4. High-rate codewords are obtained through puncturing a rate-R mother code.

The parity bits to be transmitted in each subframe are selected according to the

puncturing pattern of the code, which is known and fixed to all partners in a cluster.

The receiver combines all the received subframes for a user to produce a codeword

of a more powerful code (a lower code rate) [32]. The code rates corresponding to

different cooperation levels are R1 > R2 > . . . > RJ = R.

5.1.2 Physical Link

After encoding the information block, the coded bits are modulated using BPSK.

The matched filter output at user u due to user l in the time interval t in the first

subframe is modeled by

yl,u(t) =
√

Eial,usl(t) + zu(t), (5.1)

where sl(t) is the signal transmitted from user l in time instance t in the first

subframe and zu(t) is an AWGN sample at user u with a Normal distribution given

by N (0, N0

2
). Here, Ei is the average received energy through the interuser channel

and the average interuser signal-to-noise ratio (SNR) is γi =
Ei

N0
. The coefficient al,u

is the gain of the interuser channel between user l and user u. The interuser channels
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are assumed to be independent and identically distributed (i.i.d) with a Rician or

a Nakagami distribution. Rician fading channels arise if a line-of-site (LOS) exists

between the transmitter and the receiver [9]. In this model the received signal is

composed of two signal-dependent components; namely, the LOS and multipath

components. In this case, the pdf of the interuser SNR [73] is given by

fγ(γ) =
(1 + κ)

γi
exp

[

−κ− (1 + κ)γ

γi

]

I0

(

2

√

κ(1 + κ)γ

γi

)

, γ ≥ 0, (5.2)

where κ denotes the ratio of the LOS energy to the multipath energy and I0(.) is

the zero-order modified Bessel function of the first kind. Nakagami distribution was

shown to fit measurements in micro-cellular systems [74], where the received SNR

has the pdf [75]

fγ(γ) =

(
m

γi

)m
γm−1

Γ(m)
exp

(

−mγ
γi

)

, γ ≥ 0,m ≥ 0.5, (5.3)

where Γ(.) is the Gamma function and m =
γ2

i

Var[
√
γ]
is the Nakagami parameter that

indicates the fading severity.

When u = 0, the signal model in (5.1) represents the uplink channel from user

l to the BS, where the received average energy is denoted by Es and the average

uplink SNR is γs =
Es

N0
. The uplink channels from different users are assumed

to be i.i.d with a Rayleigh distribution. Moreover, the interuser channels and the

uplink channels are assumed to be mutually independent and slow enough such

that the fading process stays fixed within a frame. This is a reasonable assumption

for slowly moving mobile units that are separated enough in the space [76]. In
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addition, we assume that the interuser channels are reciprocal as in [36, 37]. At the

receivers of users and the BS, coherent detection is employed using perfect channel

side information.

5.2 Simulation Results

In the following, we consider coded cooperation with cluster sizes J = 1, 2. Each user

in the cluster employs a mother code of rate R = RJ =
1
4
. In all cases, the source

block is k = 128 information bits. The block-size and code rates used correspond to

those used in [48]. To minimize decoder complexity and decoding delay, the number

of maximum decoder iterations is limited to 10.

Figure 5.2 shows the results for the scenario when both users have the same

average SNR for their uplink channels. The BER curves are shown for various in-

teruser channel average SNR values. In the figure, ’Perfect interuser channel’ denotes

perfect Rayleigh interuser channels, i.e., infinite interuser SNR. Coded cooperation

clearly achieves impressive gains compared with the non-cooperative system. Even

when the interuser channel has an average SNR of 0 dB, much less than that of the

user uplink channels, coded cooperation still provides a gain of 1.5-2.25 dB, which

is quite significant.

For coded cooperation, two major factors affect the performance:

1. The average probability of cooperation defined as the average probability that
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Figure 5.2: Performance of coded cooperation employing semi-random RC-LDPC
codes for different values of the average SNR of the interuser channel.
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a user is able to decode his partner, which depends on the code rate used

during the first subframe and the quality of the interuser channel.

2. The diversity achieved through cooperation, which varies with the cooperation

level.

Increasing the cooperation level (and therefore increasing the code rate used during

the first subframe of transmission), reduces the probability that a partner will be able

to decode his partner and therefore reduces the average probability of cooperation.

However, in the event that cooperation occurs (i.e., a user decodes his partner),

increasing the level of cooperation increases the diversity available at the BS, which

improves the performance.

Figure 5.3 shows the performance for a 2-user cluster for different levels of co-

operation for the case of a perfect interuser channel. A perfect interuser channel

implies full cooperation, i.e, each user is always able to deocde his partner. Therefore

increasing the cooperation level leads to increased diversity and hence to improved

performance.

The average probabilities of cooperation for different interuser channels (obtained

from simulations) with an average interuser SNR of 5 dB corresponding to different

cooperation levels are shown in Table 5.2. Figure 5.4 shows the performance for a

2-user cluster for different levels of cooperation for the case of a Rayleigh interuser

channel with an average interuser SNR of 5 dB. It can be seen that a cooperation
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level of 37.5% (which implies that half the parity bits are punctured during the first

subframe) performs better than the cooperation levels of 25%, 50% and 62.5%. This

can be explained as follows. The cooperation level of 25% corresponds to the lowest

code rate (among the code rates corresponding to the different cooperation levels

used), and therefore leads to high average probability of cooperation (the value

obtained from simulation is 83%). However, it offers less diversity as compared

to the 37.5% cooperation level. On the other hand, the 62.5% cooperation level

offers the largest diversity advantage, but suffers from a low average probability of

cooperation. The 37.5% cooperation level provides the best performance since it

leads to good average probability of cooperation and offers good diversity.

Table 5.1: The average probabilities of cooperation over Rayleigh, Nakagami (m=3)
and Rician (κ=10 dB) interuser channels with average SNR of 5 dB, and cooperation
level of β.

β Rayleigh Nakagami Rician
25% 0.83 0.97 0.98
37.5% 0.78 0.96 0.97
50% 0.71 0.91 0.96
62.5% 0.56 0.77 0.8

The same trend can be observed for the case of the Nakagami interuser channel

with a Nakagami parameter ofm=3, as shown in Figure 5.5, and the Rician interuser

channel with a Rician factor κ=10 dB, as shown in Figure 5.6. For these two cases

the advantage offered by the 37.5% cooperation level over the other two cooperation

levels in more pronounced since the average probability of cooperation increases and
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in both cases is very close to the maximum that is observed over these two channels.

Chapter Summary

In this chapter rate-compatible punctured semi-random LDPC codes were used to

investigate the performance of coded cooperation diversity in wireless networks.

Simulation results show that coded cooperation achieves impressive gains compared

with the non-cooperative system. Furthermore, the effect of varying the cooperation

level for the 2-user cluster size has been investigated, and it has been shown that

for semi-random LDPC codes, the cooperation level corresponding to puncturing

half of the parity bits offers the best performance over a variety of interuser channel

conditions, since it leads to a high average probability of cooperation and provides

a good amount of diversity at the BS.
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Figure 5.3: Performance of coded cooperation for the perfect interuser channel and
varying levels of cooperation.
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Figure 5.5: Performance of coded cooperation for a 2-user cluster for the case of the
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104

0 5 10 15 20
10−5

10−4

10−3

10−2

10−1

E
s
/N

o
 (dB)

B
E

R

25% cooperation
37.5% cooperation
50% cooperation
62.5% cooperation
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Chapter 6

Loop removal from Semi-Random

Codes

Removal of small loops from a LDPC code improves the performance in terms of

lower BER and reduced error floor [56]. This chapter is concerned with the design of

an algorithm for removing small loops from semi-random LDPC codes. Most random

constructions of the parity-check matrix contain loops of small lengths [56]. During

decoding, small loops cause the values of incorrect bits propagate back around to

themselves, rapidly reinforcing their belief and resist the efforts of the algorithm to

correct them. In [56] an algorithm to remove loops from a randomly constructed

parity-check matrix was proposed. This algorithm is based on the adjacency matri-

ces [71] and has its roots in Graph theory.

For the case of the semi-random parity-check matrix, the deterministic part of
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the parity-check matrix is constructed such that it does not contain loops of any size.

However, it is the random part of the parity-check matrix which may be the source

of loops. Furthermore, the concatenation of the random part with the deterministic

part may lead to the creation of new loops. When the algorithm in [56] is used to

remove loops in a semi-random code, it will destroy the structure of the deterministic

part of the parity-check matrix which is needed for low-complexity encoding. Hence

the algorithm given in [56] needs to be modified before it can be applied to semi-

random LDPC codes. In the following the original loop-removal algorithm in [56] is

described, followed by the modified loop removal algorithm for semi-random LDPC

codes.

6.1 The Loop Removal Algorithm

The loop removal algorithm given in [56] uses the code’s adjacency matrix to locate

unwanted loops, and then certain edges within the graph are exchanged to eliminate

those loops (without simultaneously creating any others). The algorithm is com-

posed of two phases: namely the loop detection and loop removal phases. During

the first phase the existing loops in a parity-check matrix are detected, whereas

during the second phase the loops detected during the first phase are removed.
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6.1.1 Loop Detection

The adjacency matrix of the code can be used to locate loops of any length. Denoting

all the nodes of the codes’ graph as v1, v2, ..., vp, and define the adjacency matrix

A = [aij] to be the p × p symmetric binary matrix

aij =







1 if an edge connects vi with vj

0 otherwise

The natural ordering of the nodes for an LDPC graph results in the relationship

A =







0 H

HT 0






, (6.1)

which shows that A can be easily constructed from H. Consider the square of A, it

is given by :

A2 =







HHT 0

0 HTH






, (6.2)

where the elements of A2 can be calculated as

A2
ij =

p
∑

k=1

aikakj . (6.3)

Note that this sum represents the number of paths of length 2 between vi and vj,

because whenever aik = akj = l we have two edges joining vi to vk to vj. This

observation can be extended using induction to yield the following theorem [56].

Theorem 1 [56] The (i, j)-entry of An equals the number of paths of length n from

vi to vj.
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proof : see [56].

The diagonal elements An
ii represent the number of paths of length n starting

and ending at node vi. These paths include the n-loops that pass through vi, but

also other degenerate loops that repeat nodes and/or backtrack along edges. The

following theorem is used to avoid these unwanted cases when locating loops [56].

Theorem 2 [56] In a graph with girth n, the nodes vi and vj are said to be directly

opposite each other in an n-loop iff

A
n/2
ij ≥ 2 and (6.4)

A
(n/2)−2
ij = 0 . (6.5)

proof : see [56].

Consider a graph of girth 4, as most random graphs are. For two nodes vi and

vj to be opposite on a 4-loop (refer to Figure 6.3: nodes i and j or k1 and k2 are

opposite each other) we require that there are at least two paths of length 2 between

them, and so (6.4) is satisfied. The only situation where (6.4) does not automatically

result in vi and vj being on a 4-loop is when the paths are able to backtrack along

themselves, i.e., when vi = vj or i = j. Thus, all non-diagonal elements of A2 with a

value of at least 2 will correspond to nodes on a 4-loop. This is equivalent to (6.4),

because when n = 4 we have

A
4/2−2
ij ≥ A0

ij = Iij = 0 . (6.6)

Once all 4-loops are found, they can be removed using the algorithm explained
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below, resulting in a graph with a girth of 6. By induction we can now assume that

we have a graph with girth n, and wish to locate the n-loops in the graph. Again we

need to find at least two paths of length n/2 between vi and vj, and so Theorem 1

immediately gives us the condition in (6.4). Any vi and vj satisfying (6.4) are either

on a genuine n-loop or lie on smaller loops intersecting in a figure-of-eight shape

(which cannot be the case here as the graph has girth n), unless there are paths

between vi and vj with length less than n/2. The next shortest possible length is

(n/2) - 2, and so (6.5) ensures that no such shorter paths occur.

A loop located in this way can be removed, and the search is repeated until the

girth increases from n to n + 2. After that, larger loops can be removed if a larger

girth is required. Obviously, each loop can be defined in terms of multiple pairs (an

n-loop has n/2 opposite pairs), but any pair is sufficient for the removal algorithm.

6.1.2 Loop Removal

Once an unwanted loop is detected, the next task is to remove it from the graph.

It is always possible to destroy the loop by swapping around any edges composing

the loop. However we need to do this in a way such that no new loops are formed.

First, we need an edge from the loop. The above detection technique will give us

two nodes vi and vj. A node vk, of the loop adjacent to vj will be at distance n/2

- 1 from vi, and so we take any vk (the two directions around the loop give two
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possibilities) that satisfies

A
(n/2)−1
ik > 0 and ajk = 1 . (6.7)

This gives a loop-edge e = vjvk. We now find Ce, the set of all nodes at a distance

greater than n - 1 from e. This consists of the set of nodes {vc}, for which An−1
cj =

An−1
ck = 0.

An edge e′ with both end-points in Ce is randomly chosen. If there are no edges

with this property then e is not removable from the loop, and a different loop edge

will need to be selected. Let the end-nodes of e′ be vl and vm. Delete edges e and

e′ from the graph, and replace them with e2 = vjvm and e
′
2 = vlvk , as in Fig. 6.1.

Theorem 3 [56] Replacing e and e’ with the new e2 and e
′
2 will remove the original

loop that e was part of and create no new loops of size n or less.

proof : see [56].

We know from the definition of Ce that the edges e2 and e′2 did not exist be-

fore applying the loop removal algorithm, and hence it is possible to perform the

exchange. The result is that the old loop is definitely removed, since one of its

edges has been deleted. In order to confirm that no new n-loops could have been

produced, we examine the three possible cases:

1. A new loop comprising of e2 and other pre-existing edges would require a path

from vj to vm, of length n - 1 or less. But vm ∈ Ce, and by the definition of

Ce, this is not possible.
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Figure 6.1: Replacing the old edges e and e’ with the new e2 and e
′
2

2. Similarly vl ∈ Ce, so there can be no loop containing e
′
2 with other old edges.

3. The other potential way to form a new loop would be to include both e2 and e
′
2.

There is nothing in our selection criteria preventing vl and vm being connected

by a path of length 3. However we know that vi and vj were previously on

an n-loop, and so with e removed the shortest path between them must have

length n - 1. Therefore no new loops can be created with a length less than

(n - 1 ) + 1 + 3 + 1 = n + 4.

6.2 The Modified Algorithm

The loop-removal algorithm described in the previous section removes loops by

breaking any edge in a particular loop (while ensuring that no new loops are cre-

ated). However for the case of semi-random LDPC codes the respective loops have to

be broken while ensuring that the structure of the semi-random parity-check matrix

is maintained.
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H =











1 0
1 1
1 1

0 1 1
︸ ︷︷ ︸

Deterministic

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

1 0 0 1
0 1 1 0
1 0 1 0
0 1 0 1
︸ ︷︷ ︸

Random











.

Figure 6.2: A Semi-Random parity-check matrix

Figure 6.2 shows a parity-check matrix for a semi-random LDPC code. It is clear

that to maintain the structure (which enables efficient low-complexity encoding), the

deterministic part of the parity-check matrix should not be altered. It should be

noted that all check nodes are shared by both the random and the deterministic parts

of the matrix, while variable nodes are split between the two parts. There are two

types of loops which can be present in a semi-random LDPC code:

1. Loops formed only by variable nodes of the random sub-matrix.

2. Loops that involve variable nodes of both the random and the deterministic

sub-matrices.

Loops of the first kind do not place any restriction on the loop-removal algorithm,

since they do not affect the deterministic part. However loops of the second kind

must by removed by swapping edges only in the random part.

6.2.1 Loop Detection

The method for detecting loops is the same as that defined in Section 6.1.1 which

uses the adjacency matrix of the code and powers of the adjacency matrix. This
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implies that a loop is found if (6.4) and (6.5) are satisfied.

6.2.2 Loop Removal

Once a loop is found, it has to be destroyed while ensuring that no new loops are

formed and the structure of the semi-random code is maintained.

Proposition 1 The loop removal procedure involves the breaking of two edges and

the formation of two new edges (see Figure 6.1). To maintain the structure of the

code, the main restriction on the loop removal procedure for semi-random LDPC

codes is that both the edges being broken (one of these is a part of the loop to be

removed, while the other is not) must involve variable nodes in the random part of

the semi-random code.

The loop detection technique will give us two nodes vi and vj. A node vk, of the

loop adjacent to vj will be at distance n/2 - 1 from vi. There are two possibilities for

vk that satisfy (6.7) (the two directions around the loop give two possibilities), but

the vk chosen for the purpose of loop removal has to be a variable node belonging to

the random part of the semi-random code. The following example will further help

to clarify the concept.

Example: A semi-random LDPC code of rate 1/2 and block size 128 has a girth of

4. Therefore, there are a total of 64 check nodes and 128 variable nodes. Suppose

during the loop detection process, a loop of length 4 is encountered as shown in

Fig. 6.3. It is comprised of two check nodes (numbered 14 and 15) and two variable
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nodes (numbered 15 and 67). There are two possibilities for k that satisfy (6.7),

namely k1 = 15 and k2 = 67. However, to remove this loop we will chose k2 = 67

(which lies in the random part of the matrix) as vk so that the structure of the

semi-random code is maintained. The edge vlvm (that will be swapped with an

edge of the detected loop) must also be chosen such that the variable node vl lies

in the random part of the matrix. This ensures that the loop is removed while the

structure of the semi-random LDPC code is maintained.

i=14


k

1

=15


j=15


k

2

=67


i=14


k

1

=15


j=15


k

2

=67


v

m


v

l


v

m


v

l


Figure 6.3: A 4-loop before and after removal

An explicit statement of the algorithm suggested by the above is given in the Ap-

pendix.

6.3 Simulation Results

The effect of loop-removal from a LDPC code can by observed by obtaining the

histogram of the distribution of loops in the code, before and after removing loops.

However, to compare the performance of codes of different girth, Monte Carlo simu-
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lation has to be used. Figure 6.4 shows the performance results obtained by simulat-

ing rate-half semi-random LDPC codes over the AWGN and uncorrelated Rayleigh

fading channels. The block size (n=1000) and the code rate used correspond to

those used in [56]. For each SNR point, enough codewords are simulated to gen-

erate at least 50 codeword errors. The coded bits are modulated using BPSK. For

the Rayleigh fading channel, coherent detection is employed at the receiver using

perfect channel side informtion. Ten different semi-random codes of girth 4 were

generated, and then the modified loop removal algorithm was applied to obtain two

new sets of codes of girths 6 and 8. The average BER and FER (frame error rate)

over all the codes are shown in the figure.

We observe that removing short loops gives significant improvements in the per-

formance of the semi-random LDPC codes. For low SNR values, the loop removal

has little effect on performance. The subtleties of the loops’ effects on belief propa-

gation are irrelevant when the noise level is so high [56]. As the noise level decreases

a noticeable difference between the three lines emerges, and this difference increases

as the SNR increases.

It can be seen that the codes with larger girth have lower error floors. This

can be explained by the notion of stopping sets: a Stopping set S is a subset of V,

the set of variable nodes, such that all neighbors of S are connected to S at least

twice [60]. Stopping sets have special significance for the Binary Erasure Channel

(BEC) as the erased variable nodes which form a stopping set cannot be ‘estimated’
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by the iterative decoder (their APP LLR values remain at zero) [60]. The role of

stopping sets is easily translated to non-erasure scenarios where variables with poor

observation reliability are analogous to erasures [69]. The stopping number of a code

is the size of its smallest stopping set, and the stopping number lower bounds the

minimum distance of the code [61]. The stopping number of a code can be increased

by increasing its girth, and hence codes with larger girth have lower error floors [61].

Chapter Summary

In this chapter, an algorithm for the removal of small loops from semi-random LDPC

codes has been proposed. The removal of small loops leads to an increase in the

girth of the code, which consequently increases the dmin of the code. Hence, the

performance of the code improves, specially in the error floor (high SNR) region.

Simulation results verify that codes of high girth (hence larger dmin) perform better

in the error floor region as compared to codes of smaller girth.
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Chapter 7

Conclusion

In this chapter we first briefly review the main contributions of the thesis and then

propose some directions for future research.

7.1 Summary of Contributions

This thesis has contributed to the field of LDPC coding in a number of ways. In

particular, we have produced results applicable to the design of RC-LDPC codes

and their applications in wireless networks. The results apply to LDPC codes that

are decoded using the iterative belief-propagation algorithm.

First, we have proposed an algorithm for the design of good puncturing patterns

for regular LDPC codes that results in a punctured code with large girth. A major

factor that affects the performance of finite-length LDPC codes is the code’s girth.
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In the presence of loops, the sum-product algorithm becomes suboptimal even if

the block length is large. Increasing the girth by removing small loops improves

performance. We have shown that the punctured codes designed using this algo-

rithm outperform randomly punctured codes. In this direction, we have proposed

an algorithm for removing small loops from semi-random LDPC codes in order to

increase the girth of the code. It was shown that the application of the algorithm

leads to semi-random LDPC codes with low error floors.

As compared to regular LDPC codes, semi-random LDPC codes offer the major

advantage of low encoding complexity. Furthermore, the structure of the parity-

check matrix enables the design of rate-compatible codes that outperfrom rate-

compatible regular codes. We have proposed puncturing patterns for semi-random

LDPC codes which offer good performance both in the waterfall and the error floor

regions. In addition, we have also proposed two efficient methods for extending semi-

random LDPC codes. One of the methods proposed for extending offers good perfor-

mance, while the other method performs even better, albeit at a higher code-design

complexity. A Type-II Hybrid ARQ system utilizing rate-compatible semi-random

LDPC codes designed using the proposed puncturing and extending techniques was

shown to outperform an existing system based on regular LDPC codes.

Coded cooperation diversity achieves impressive gains over the non-cooperative

scheme by the sharing of antennas of users to achieve uplink transmit diversity. In

this work, we have investigated coded cooperation schemes based on rate-compatible
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semi-random LDPC codes and have shown that cooperation leads to improved per-

formance even when the interuser channel quality is worse than the quality of the

uplink channel. It was shown that the performance gains achieved via cooperation

improve as the quality of the interuser channel improves. Furthermore, the effect

of varying the cooperation level has been investigated, and a cooperation level has

been proposed for semi-random LDPC codes that leads to the best performance over

a variety of interchannel conditions.

7.2 Future Work

In continuation of this work, there are a number of problems that can be the subject

of future research. Below is a short list of some of the possible directions of research.

In Chapter 2 a stopping set was defined. The significance of stopping sets is

that if a set of variable nodes that form a stopping set are punctured (e.g if variable

nodes v1, v6, v10 in a particular parity-check matrix form a stopping set and all

these nodes are punctured), then the iterative decoder cannot correct them even

after an infinite number of decoder iterations [60]. Therefore, care must be taken

while puncturing to ensure that any stopping set is not punctured completely. This

requires the identification of unique stopping sets. However, there is no algorithm in

the literature that is able to identify all stopping sets in a parity-check matrix. The

development and application of an algorithm that is able to identify unique stopping
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sets would lead to a significant improvement in the performance of punctured LDPC

codes.

It was shown in [48] that increasing the cluster size for a system employing

coded cooperation diversity based on RCPC codes does not necessarily lead to an

improvement in the performance. The analysis showed that among the different

cooperation scenarios, the two extreme scenarios of no cooperation (no user is able

to decode any of his partners) and full cooperation (each user is able to decode all

of his partners) have the largest probabilities. It was shown that increasing the

cluster size leads to an increase in the probability of no cooperation, and a decrease

in the probability of full cooperation. However, the system utilized convolutional

codes and Maximum Likelihood decoding, and therefore the same results do not

necessarily carry over for the case of LDPC codes with iterative decoding. Therefore,

the effect of increasing the cluster size to more than two needs to be investigated

for the case of systems employing LDPC codes. Furthermore, coded cooperation

employing RC-LDPC codes can be compared with other cooperation strategies such

as decode-and-forward and amplify-and-forward [77].



Appendix

Algorithm 1 Removing all possible loops from a SR graph H of size (m× n)

n⇐ 4

repeat

A⇐ the Adjacency Matrix of H (from (6.1))

for all elements (i, j) of A do

if A
n/2
ij ≥ 2 and A(n/2)−2

ij = 0 then

choose a k such that A
n/2−1
ik > 0 and Akj = 1 and k > 2m+ 1

Ce ⇐ all columns {x : An−1
jx + An−1

kx = 0}

Ee ⇐ all edges of Hd (the random part of H) with both endpoints in Ce

if Ee 6= φ then

Choose an edge e′ which belong to Ee

Swap the check nodes of e and e′ in H

Return to repeat

end if

122



123

end if

end for

if no n-loops were found then

n⇐ n+ 2

end if

until no edges swapped since last repeat

Note: The ‘underlined’ portions are modifications to the algorithm given in [56].
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