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THESIS ABSTRACT

NAME : Khalid Saud Al-Zamil.

TITLE : On the Optimum Communication Cost Problem in Interconnection

Networks.

MAJOR FIELD : Computer Science.

DATE OF DEGREE : June 2005.

In the optimum communication spanning tree (OCST) problem, a tree that con-

nects all vertices for a complete graph has to be found. The spanning tree

found must satisfy the communication requirements needed by the vertices

with a minimum total cost. A special case of the OCST problem is the optimum

distance spanning tree (ODST) problem, where the requirements are restricted

to be constant. Both problems are known to be NP-hard. In this thesis, we

propose a randomized algorithm to efficiently solve two special cases of the

ODST problem. This can be achieved by randomly generating spanning trees

with certain properties. We conjecture that such an approach can yield near-

optimum solutions. An experiment has been conducted to evaluate the pro-

posed algorithm. The experiments involve testing the proposed algorithm to

solve these special cases using several randomly generated graphs, in addition

to the hypercube and butterfly network topologies to some specified dimen-

sion.
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Chapter 1

INTRODUCTION

Many researchers are currently interested in the design of optimum commu-

nication and transportation networks. These type of problems are formally

known as topology design problems. In topology design problems, it is re-

quired to effectively design a network such that the constraints are met and the

objectives are optimized. Topology design problems have many real world ap-

plications, an example of such are telecommunications, computer networking,

and oil & gas pipelines.

Different types of topology design problems have been studied, which re-

sulted in either exact solutions or heuristics [8, 20]. Some of the most popular

topology design problems are known as constrained minimum spanning tree

problems. Some examples are the optimum communication spanning tree (OCST)

problem, the degree-constrained minimum spanning tree problem, the mini-

mum steiner tree problem, or the capacitated minimum spanning tree problem

[27].
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The OCST problem was first introduced by Hu [17]. The problem states

that a tree that connects all vertices for a complete graph has to be found. The

spanning tree found must satisfy the communication requirements needed by

the vertices with a minimum total cost. Let T be a spanning tree for a given

graph G(V,E). The communication cost for T is defined as follows. Define a

pair of vertices x and y ∈ V (G) where x 6= y. The distance dx,y is the distance

between vertices x and y restricted on T . The communication requirement rx,y

for the pair x and y is provided. There is a unique path in T between x and

y. The distance of the path is the sum of distances of edges in the path. The

communication cost for the pair x and y is rx,y multiplied by the distance of the

path. Summing over all
(

n

2

)

pairs of vertices, we have the communication cost

for T .

Hu also formulated a special case for the OCST problem and called it the

optimum distance spanning tree problem. In the ODST problem, the communica-

tion requirement between each pair of vertices is constant, while the distances

between each pair of vertices is arbitrary. Both the OCST problem and the

ODST problem have been shown to be NP-hard in [18].

The objective of this thesis is to attempt to find an efficient randomized

algorithm to solve a special case of the ODST problem. This special case is dif-

ferent than the original ODST problem in two ways. First, rather than limiting

the ODST problem to finding solutions for complete graphs only. We propose

to solve the ODST problem for general graphs. Second, this special case re-

stricts the distance of each edge to be constant and equal to one. This is in

contrast to the original ODST problem where the distances of the edges are ar-

bitrary. We will refer to this special case as the optimum congestion cost problem.

We also solve the case where only the distances between vertices that share an

edge in the graph are included in the computation. We will refer to this special
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case as the optimum stretch cost problem, which up to our knowledge has no

research history.

In our approach, we attempt to generate the spanning trees for a given

graph randomly. The proposed algorithm generates spanning trees that are bi-

ased towards shortest-path spanning trees with higher probability. A shortest-

path spanning tree can be obtained by performing a breadth-first search on the

given graph. By generating spanning trees with such properties, we are capa-

ble of scoping the search space of possible solutions efficiently. We conjecture

that we can find near-optimum solutions by following this approach.

An experimental study has been performed to evaluate the performance of

the proposed algorithm. The experiments were conducted using several types

of special graphs. The special graphs selected for these experiments include

three randomly generated graphs, in addition to the hypercube and butterfly

network topologies to some specified dimension. The experiments involve

finding an optimum solution for the previously mentioned special graphs.

The thesis is organized as follows. Chapter 2 is dedicated to the explana-

tion of some preliminaries. This is followed by chapter 3, which is a literature

survey on the different deterministic algorithms that exist for enumerating all

spanning trees of a graph. In chapter 4, a literature survey is given about the

OCST problem in addition to some of it applications. The literature survey

will mainly focus on the different approaches that currently exist, which try

to find an optimum solution for the ODST problem. The proposed algorithm

is discussed in chapter 5, along with the experiment setup and results. The

conclusion is in chapter 6, where the contribution of this thesis will be listed,

as well as to highlighting some potential areas for future work.



Chapter 2

PRELIMINARIES

2.1 Graphs and Multigraphs

A graph G can be defined as a triple (V (G), E(G), ϕ(G)). Where V (G) is

a nonempty set of vertices, E(G) is a set of edges, and ϕ(G) is a mapping

E(G)→ V (G)× V (G) which maps an edge into a pair of vertices called end-

vertices of the edge.

A graph G is called to be empty if E(G) = 0. It is also called trivial if

V (G) = 1 and nontrivial otherwise. The graph G is finite if both V (G) and

E(G) are finite. It is possible under ϕ(G), to have more than one edge mapped

into a single element V (G) × V (G). Edges that undergo such a mapping are

referred to as parallel edges. An edge with identical end-vertices is called a

loop. A simple graph is a graph with no parallel edges or loops.

In the case of a simple graph G, the mapping is ϕ(G) injective. This means

that for each edge e, there exists a unique pair of vertices that connect the

edge. Therefore, it is convenient to only use a subset V (G) × V (G) instead of

the edge set E(G). The graph G can be written as G = (V (G), E(G)) instead of

(V (G), E(G), ϕ(G)).

4



5

A graph G is called directed (also known as a digraph) if V (G) × V (G) is

considered as a set of ordered pairs. For a directed edge e in the directed graph,

if ϕG(e) = x, y, then vertex x is called the tail and vertex y is called the head.

The edge is called an outgoing edge of x and an incoming edge of y.

A graph G is called undirected if V (G) × V (G) is considered as a set of

unordered pairs. The edges of the graph G are called undirected edges. An

unordered pair of vertices can be denoted as xy or yx, instead of using the

notation {x, y}.

A graph G can be drawn on the plane by representing each vertex of G as

a small circle. In the case of the graph G being a digraph, then each directed

edge connecting two vertices is represented as a directed line (or curve) seg-

ment pointing from the tail x to the head y. However, if the graph G was an

undirected graph, then each undirected edge is represented as a line (or curve)

segment joining the two vertices x and y. Such drawings help show the inci-

dence relations that hold between the vertices and edges of a graph G.

In this paper, a graph G denotes a nontrivial, nonempty, finite, undirected

and simple graph. This definition is assumed throughout the rest of this paper.

Suppose a graph G (termed to the conditions specified earlier) has

two vertices x and y. An xy-walk of length k in G is a sequence

W = (x, x1, x2, . . . , xk−1, y). The vertices x and y are called the origin and termi-

nus respectively. The other vertices are called intermediate vertices.

If the edges in W are all distinct, then it is called a trail. If W is a trail and

the vertices are also distinct then it is called a path. If the origin and terminus

are identical for a walk, then it is known as a closed walk. A closed trail is a

circuit, and a closed path is a cycle. A path that contains every vertex of G is

called a Hamiltonian path. A cycle that contains every vertex of G is called a

Hamiltonian cycle. A graph is Hamiltonian if it contains a Hamiltonian cycle.
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A graph H is called a subgraph of a graph G if H ⊆ G, i.e. if V (H) ⊆ V (G)

and E(H) ⊆ E(G). A graph H is called a spanning subgraph if V (H) = V (G).

Two vertices x and y of the graph G are said to be connected if there is an xy-

path in G. It should be noted that the “is connected” is an equivalence relation

on V (G). Thus, there exists an equivalence partition {V1, . . . , Vw} of V (G) for

w = |V (G)|. The subgraph G[Vi] is known as a connected subgraph or as a

connected component. In other words, if C is a connected component of the

graph G, then all vertices of the graph G are reachable using the edges of C.

2.2 Trees

Trees are considered to be very fundamental graph-theoretic models. They

have particular interest to the fields of: computer graphics and visualiza-

tion, artificial intelligence, information theory, data structure and analysis,

and combinatorial optimization. A connected graph that contains no cycles

is known as a tree. A spanning subgraph of G is called a spanning tree if it is

a tree. Any connected graph must contain a spanning tree. A spanning tree

with n vertices has exactly n − 1 edges, that is, the total number of edges in a

spanning tree is less than the total number of vertices by one.

Theorem 1 : Let G be a connected graph, then

1. G is a tree.

2. G has exactly n− 1 edges.

3. If one edge is added to G then a cycle is created.
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The tree, as defined, is sometimes referred to as a free tree. It is a math-

ematical object. This is to be contrasted with a rooted tree, in which there is

one distinguished vertex called the root and implicit directions from and to the

root. A tree that has a path that contains all the vertices for the Graph G is

known as a hamiltonian spanning tree.

2.3 Interconnection Networks

A system can be defined informally as a collection of components, which are

connected to form a coherent entity with a well defined function or purpose.

The function performed by the system is based on the function of its compo-

nents in addition to how these components are interconnected [16].

Examples of interconnection networks are computer systems, computer

networks, communication systems and transportation systems. In the case of

a computer system, the components might be the processors, storage units and

I/O equipment. The function of the computer system is to basically transform

a set of input information into a set of output results.

A Multiple Processor System is a system that contains two or more au-

tonomous processors as its components. It is quite natural to model an in-

terconnection network as a graph G. Where the vertices represent the com-

ponents of the interconnection network, and the edges represent the commu-

nication links between them. A graph of this type is known as a topological

structure. In the next sections, a discussion about Multi Processor Systems is

going to be given followed by a discussion on topological structures and the

basic principles of network design.
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2.3.1 Multiple Processor Systems

A Multiple Processor System (MPS) is a system that contains two or more au-

tonomous processors as its components. These processors cooperate to achieve

a particular task. MPS’s that consist of thousands of processors can execute

parallel algorithms, resulting in solving large problems in real time.

According to [29], MPS architectures can be classified in to two broad

classes. The first class of MPS’s are systems consisting of n number of identical

processors that are interconnected through a switch to n number of memories.

The MPS’s in this class are also known as tightly coupled systems. All the pro-

cessors share the same global memory and have the same address space. The

shared memory is used for intercommunication and synchronization amongst

the processors.

The main benefit of these types of architectures is that the data access is

transparent to the user. The data is held in a large memory accessible by all

the processors. However, there are two main drawbacks to this class of MPS

architectures. First, the memory sharing architecture, adopted by these MPS’s

architectures, cannot take advantage of some inherit properties in some prob-

lems. Second, the switching network becomes more complicated as the num-

ber of processors increase in the system.

The second class of MPS’s are systems where each processor has its own

local memory, and the processors are interconnected according to some pat-

tern. The MPS’s in this class are also known as loosely coupled systems. There is

no global synchronization or shared memory. The computation is data driven,

and the intercommunication and synchronization amongst the processors is

achieved through message passing. The main advantage of this type of archi-

tectures is the simplicity of their design. The processors are identical or are of
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a few different kinds.

2.3.2 The Topological Structure

An interconnection network (or network for short) can be defined as the connec-

tion pattern of the components in a system. The interconnection network of a

system provides logically a specific mechanism to connect all the components

of the system. The interconnection network can be modeled as a graph G. The

vertices of the graph represent the components of the system and the edges

represent the physical communication links between them. Such a graph is

called the topological structure for the interconnection network (or network

topology for short). The terms network topology and graph G are going to be

used interchangeably in this paper.

Network topologies can be classified into two main groups: static and dy-

namic. The first class of MPS architectures are dynamic systems. The com-

munication links can be reconfigured by setting the networks active switching

elements. The second class of MPS architectures are static systems. In this case,

the communication links are passive and can not be altered. Several examples

of static systems are given in the following sections.

2.3.3 Basic Principles of Network Design

There are a number of fundamental principles that should be conformed to

when designing an interconnection network. A network topology, as dis-

cussed earlier, is a graph. That is why graph theory is used to explaining some

of these principles, as far as the topological structure is concerned. These prin-

ciples as stated by [7] can be summarized as follows:



10

1. Small and fixed degree: The degree of a network topology can be defined

as the maximum number of connections to a component. A larger degree

will compromise the overall scalability of the system, it also means more

wiring. Thus a small or fixed maximum degree is desirable.

2. Small transmission delay: The diameter of a network topology can be

defined as the maximum distance between any two components. A small

diameter is desirable since it is proportional to sending a message from

one component to another.

3. Maximum fault tolerance: The network should function properly re-

gardless of an edge or vertex failure. The maximum connectivity is de-

sirable because it is the maximum fault tolerance of the network.

4. Easy routing algorithm: Routing is considered to be an important func-

tion in communication networks. It is responsible for specifying a fixed

route between two components for communication.

5. Embeddability of other topologies: This is a crucial issue that deals with

the ability of an architecture to take advantage of an algorithm developed

for a different type of architecture.

6. Large bisection width: The bisection width is defined as the minimum

number of edges, whose removal will result in two connected compo-

nents of approximately the same size. A large bisection width is desir-

able, because it will result in more data traveling in parallel between the

two connected components. In other words, a larger bisection width will

mean faster communication and higher fault tolerance.
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0 1 2 3 4

Figure 2.1: The linear array network topology LA5.

7. Extendibility: It should be possible to concatenate two or more networks

in to a single network. When extending a network, some desirable prop-

erties should be remained while other useful parameters should be cal-

culated easily.

Examples of Popular Network Topologies

Several network topologies have emerged with respect to the previously listed

basic principles of network design. In the following sections, some of the pop-

ular network topologies are going to be discussed. The linear array and the

mesh network topologies will be briefly explained. This will be followed by

a discussion on the hypercube and butterfly network topologies, which are of

particular interest to the research conducted in this paper.

The Linear Array The linear array network topology, denoted as LAn, is ba-

sically a set of n components which are connected in a linear fashion [22]. Fig-

ure 2.1 illustrates an example of LA5. The LAn has a degree = 2, since each

component is connected to at most two components. It is obvious that the

diameter = n− 1, and that the bisection width = 1.

The Mesh The mesh network topology (also known as the grid network

topology) is defined as the Cartesian product Pl × Pm of undirected paths Pl

and Pm denoted by G(l,m) [22]. In the literature, G(l,m) is usually called an

l ×m mesh. Figure 2.2 shows an 8× 4 mesh. For a mesh with n components,

the degree = 4, the diameter = 2
√
n, and the bisection width = sqrt(n).
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000

001

010

011

100

101

110

111

00 01 11 10

Figure 2.2: The mesh network topology G(8, 4).

The Hypercube The hypercube network topology, as suggested by [32], is one

of the most popular and efficient network topologies. It is considered to be

the first choice for a network topology for parallel processing and computing

systems [21].

Let us define a d-dimensional hypercube denoted as Hd, where d ≥ 1. In

graph theory, Hd can be represented as a graph with the vertex set V (G)

that consists of all the binary sequence of length d on the set {0, 1}, i.e.:

0 1

00 01

10 11

000 001

010 011

111

101100

110

H2H1 H3

Figure 2.3: The hypercube network topology for dimensions 1, 2 and 3.
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1000 1001

1010 1011

1111

11011100

1110

0000 0001

0010

0111

01010100

0110

0011

Figure 2.4: An H4 created by merging two H3.

V = {x1x2 . . . xn|xi ∈ {0, 1}, i = 1, 2, . . . , d}.

Two vertices x = x1x2 . . . xd and y = y1y2 . . . yd are linked by an edge if and

only if the two vertices differ in exactly one position, i.e. |xi − yi| = 1. Exam-

ples for the first three dimensions of the hypercube are shown in Figure 2.3.

Properties of the Hypercube The hypercube has many attractive proper-

ties; some of these properties are summarized in the following:

1. The number of nodes in Hd is n = 2d, and has d2d−1 edges. Hd has a

diameter = d, degree = log d, and bisection width = n
2
.

2. The hypercube can be constructed recursively from lower dimensional

cubes. Suppose that a hypercube Hd is required. To construct such a

cube, we start with two cubes Hd−1. Then, an extra bit is added to the

binary sequences of each cube. The bit added is set to one for all binary

sequences of one cube, and reset to zero for the other. The final step is to

link the nodes that match in the lower d− 1 bits together. The hypercube

H4, displayed in Figure 2.4, was generated by merging two hypercubes

of dimension = 3.
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3. The distance between two vertices x = x1x2 . . . xd and y = y1y2 . . . yd can

be obtained by starting with x and changing its bits continuously until

y is reached. For example, suppose x = 01000 and y = 10101, then by

starting with x, the following can be made:

x = 01000→ 11000→ 10000→ 10100→ 10101 = y. This is a shortest

path between x and y, and the distance between them is equal to the

number of bits changed (distance = 4 in our example). The distance be-

tween the two vertices x and y is often referred to as the Hamming distance

of x and y, denoted by H(Hd, x, y).

4. A shortest path between any two nodes in the hypercube can be achieved

by changing the bits of one of the nodes continuously. However, the

shortest path obtained using this method is normally not unique. This

is because changing the bits can occur from left-to-right and vice versa.

Hence, a routing algorithm can be found that finds the distance between

two nodes of the hypercube efficiently.

5. A Hamiltonian cycle Cd of Hd represents a ring sequence on n-bit

binary numbers such that any two successive binary numbers differ

in one bit only. A sequence of binary numbers that adhere to this

property are called n-bit Gray codes denoted as Gn. For example,

G4 = {000, 001, 011, 010, 110, 111, 101, 100}.

From the properties mentioned previously, the hypercube satisfies most of

the requirements of the basic principles of network design. The hypercube is

considered to be a good tradeoff between the different objectives of an inter-

connection network. One of these tradeoffs is that the diameter of a hypercube

is large. Several variations to the hypercube have been proposed in the lit-

erature to overcome this limitation. An example of such are the crossed cube
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Figure 2.5: A butterfly network topology BF3.

[10, 12] and the folded cube [11]. Another disadvantage to the hypercube is

that the node degree increases with its size. This lead to devising intercon-

nection networks that have similar computational properties as the hypercube

but with bounded degree. The butterfly is a variation to the hypercube with

degree = 4.

The Butterfly The butterfly network topology is a bounded-degree deriva-

tive of the hypercube [22]. Let BFd denote a d-dimensional butterfly, where

d ≥ 1. In graph theory, BFd can be represented as a graph having the vertex

set V = {(x; i)|x ∈ V (Hd), 0 ≤ i ≤ d}. Two vertices (x; i) and (y; j) are linked

by an edge in BFd if and only if j = i+ 1 and either:

1. x = y, or

2. x differs from y in precisely the jth bit.
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An example of BF3 is shown in Figure 2.5

An edge is said to be straight if x = y, otherwise it is called a cross edge. For

a fixed i, the vertex (x; i) is a vertex on level i. The total number of edges is

d2d+1. The BFd has d+ 1 levels with 2d vertices in each level which results in a

total number of nodes n = (d+ 1)2d.

Properties of the Butterfly The butterfly has several interesting proper-

ties; some of these properties are listed below:

1. Each vertex has a degree 2 or 4. This makes the butterfly a bounded-

degree network of degree 2 or 4.

2. As in the hypercube, the butterfly has a large bisection width. The n-

node butterfly has a bisection width = n
log n

.

3. One of the useful properties of theBFd is that the level 0 node in any row

is linked to the level d node in any other row by a unique path of length

d. The path traverses each level exactly once, using the cross edge from

level i to i + 1 if and only if x and y differ in the (i + 1) bit. As a conse-

quence, it is easy to see that the n-node butterfly has a diameter = log n.

4. The butterfly and hypercube are very similar to each other in structure.

In fact, Hd can be obtained from BFd by merging all the butterfly nodes

that are in the same row, and then removing the extra copy of each edge.

In effect, the hypercube is just a folded up butterfly.
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Figure 2.6: Two BF2 are obtained by eliminating level 0 nodes from BF3.

5. The butterfly has a simple recursive structure. This is due to the fact

that it is quite similar to the hypercube. Removal of the level 0 nodes

from BFd will result in two BFd−1. An example of obtaining two BF2

by eliminating the level 0 nodes of BF3 is demonstrated in Figure 2.6.

Alternatively, the level d nodes can be removed which will give a similar

result.

2.4 NP-Complete Problems

Computational complexity theory is part of the theory of computation deal-

ing with the resources required during computation to solve a given problem.

The most common resources are time (how many steps does it take to solve a

problem) and space (how much memory does it take to solve a problem).
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The class P consists of all those decision problems that can be solved on

a deterministic sequential machine in an amount of time that is polynomial

in the size of the input; the class NP consists of all those decision problems

whose positive solutions can be verified in polynomial time given the right

information, or equivalently, whose solution can be found in polynomial time

on a non-deterministic machine.

A problem is NP-hard if an algorithm for solving it can be translated into

one for solving any other NP-problem (nondeterministic polynomial time)

problem. NP-hard therefore means ”at least as hard as any NP-problem” al-

though it might, in fact, be harder. Examples of NP-hard problems include the

Optimal Communication Spanning Tree problem, the Hamiltonian cycle problem,

and the traveling salesman problem.

A problem which is both NP (verifiable in nondeterministic polynomial

time) and NP-hard (any other NP-problem can be translated into this prob-

lem) is known as NP-complete. The NP-complete problems are the hardest

problems in NP, in the sense that they are the ones most likely not to be in P.

The reason is that if you could find a way to solve an NP-complete problem

quickly, then you could use that algorithm to solve all NP problems quickly.



Chapter 3

ENUMERATING ALL SPANNING

TREES OF A GRAPH

Several algorithms for enumerating all possible spanning trees of a given

graph currently exist. Many algorithms for solving this problem have been

developed and can be classified into two main categories.

The first category of algorithms uses a technique called backtracking. This

technique is useful for enumerating all the spanning trees of a graph in ad-

dition to listing all the kinds of subgraphs (e.g. cycles, and paths). The al-

gorithms introduced by [26, 33] were later redefined by [14]. The redefined

algorithm uses O(N |V |+ |V |+ |E|) time and O(|V |+ |E|) space, where N is

the number of all spanning trees, |V | is the number of vertices and |E| is the

number of edges for the graph G(V,E). If the spanning trees of a graph are

enumerated by outputting all edges of each spanning tree, then this algorithm

is optimal in terms of time and space complexities.

The second category of algorithms depends on another technique instead

of using backtracking. They depend on finding a new spanning tree by ex-

changing a pair of edges. Moreover, if all spanning trees of a graph are enu-

19
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merated by outputting only relative changes of edges between spanning trees,

then the size of the output can be compressed to O(N + |V |). Hence, the total

time complexity may be reduced.

An algorithm proposed by Kapoor and Ramesh [19] adopts such a compact

output and uses O(N + |V |+ |E|) time and O(|V |.|E|) space. This algorithm is

optimal in the sense of time complexity. Another algorithm was proposed by

Matsui [23] that usesO(N |V |+ |V |+ |E|) time andO(|V |+ |E|) space. This al-

gorithm enumerates all spanning trees explicitly, by applying the reverse-search

scheme [6]. The reverse search is a scheme for general enumeration problems

(see [4, 5]). Shioura and Tamura [30] also proposed an algorithm that uses a

compact output and depends on the reverse-search technique. This algorithm

has the same time and space complexities as the Kapoor-Ramesh algorithm.

However, the Kapoor-Ramesh algorithm and the Shioura-Tamura algorithm,

are not efficient in terms of space complexity. That’s because both algorithms

require O(|V |.|E|) space.

Later, Uno [34] introduced a new approach for speeding up general enu-

meration algorithms. This approach relied on manipulating the data structures

needed by the different enumeration algorithms. As a result, the space com-

plexity for the Shioura-Tamura algorithm was enhanced and became known as

the Shioura-Tamura-Uno (STU) algorithm [31]. The STU algorithm has a space

complexity O(|V |). In the following, a deeper look at the STU algorithm will

be given. The focus will be on the mechanism of enumerating all the spanning

trees of a given graph. Not much attention will be paid towards manipulating

the data structures.
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3.1 Compact Output

To discuss the STU algorithm we need to first define a compact out-

put. Consider a graph G (not necessary simple) with the vertex set

V (G) = {v1, v2, . . . , vn} and the edge set E(G) = {e1, e2, . . . , em}, where n = |V |

and m = |E|. The STU algorithm relies on two types of edge sets, which are

known as fundamental cuts and fundamental cycles. Let T be a spanning tree of

G, then we can represent T by its edge set E(G) of size m = |V | − 1.

For any edge f ∈ T ; the deletion of f from T yields two connected com-

ponents. The fundamental cut associated with T and f is defined as the set of

edges connecting these components and is denoted by Cut(T/f). The funda-

mental cycle associated with T and g /∈ T as the set of edges contained in the

unique cycle of T ∪ g, this will be denoted as Cyc(T ∪ g).

By definition, T\f ∪ g is a spanning tree for any f ∈ T and any

g ∈ Cut(T\f). Similarly, for any g /∈ T and any f ∈ Cyc(T ∪ g); T ∪ g\f is also

a spanning tree. These properties are used by the STU algorithm because by

using fundamental cuts or cycles, different spanning trees can be created from

a given one by only exchanging one edge.

Let S(G) = (τ, A), where τ is the set of all spanning trees of G, and A con-

sists of all pairs of spanning trees that are obtained from each other by ex-

changing exactly one edge using some fundamental cut or cycle. The STU

algorithm finds all spanning trees of G by implicitly traversing some spanning

tree T of S(G). To output all the |V | − 1 edges for each spanning tree, then

θ(τ.|V |) = θ(N.|V |) time is required. On the other hand, if all the edges for

the first spanning tree are output and then only the sequence of exchanged

edge pairs of G (that are obtained by traversing T ), then this will reduce to

θ(τ + |V |) = θ(N + |V |) time.
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From the previous discussion we can see that all the spanning trees for a

given graph can be constructed by scanning such a compact output. Therefore,

the objective is to find a spanning tree from a current one efficiently in constant

time.

3.2 Basic ideas

Let us define the total orders over the vertex set V (G) = {v1, v2, . . . , vn}

and the edge set E(G) = {e1, e2, . . . , em} of the graph G by their indices as

v1 < v2 < . . . < vn and e1 < e2 < . . . < em. The smallest vertex v1 is called the

root.

For each edge e, let ∂+ denote the smaller incident vertex (called the tail)

and let ∂+ denoted the larger incident vertex (called the head). Relative to a

spanning tree T of G; if the unique path in T from the vertex v to the root v1

contains a vertex u, then u is called an ancestor of v and v is a descendant of

u. Similarly, for two edges e and f in T ; we call e an ancestor of f and f a

descendant of e if the unique path in T from f to the root v1 contains e. A

depth-first-search spanning tree of G is a spanning tree which is found by some

depth-first search of G. A depth-first spanning tree is defined as a spanning

tree such that for each edge of G; its one incidence vertex is an ancestor of the

other. There are five main assumptions used by the STU algorithm, which are:

1. Assumption 1: T 0 is a depth-first spanning tree of the graph G.

2. Assumption 2: T 0 = {e1, e2, . . . , em}.

3. Assumption 3: Any edge in T 0 is smaller than its proper descendants.

4. Assumption 4: Each vertex v is smaller than its proper descendants rela-

tive to T 0.
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Figure 3.1: Graph G1 and two spanning trees T 0 and T c.

5. Assumption 5: For any two edges e and f /∈ T 0; if e < f , then ∂+e ≤ ∂+f .

By applying Tarjan’s depth first search [33], it is easy to generate a depth-

first-search spanning tree T 0 of G with its vertices and edges sorted to satisfy

the above assumptions. This can be performed in O(|V |+ |E|) time. It is im-

portant to note that Assumptions 1, 2 and 3 are sufficient for the correctness

of the algorithm. However, Assumptions 4 and 5 are required for an efficient

implementation.

For any nonempty subset S of the edge-set E(G), let Min(S) denotes the

smallest edge in S. For convenience, assume that Min(0) = em. The STU al-

gorithm depends on the following lemmas for enumerating all the spanning

trees for a given graph:

Lemma 1 Under Assumptions 1 and 3, for any spanning tree T c 6= T 0; if

f =Min(T 0\T c), then Cyc(T c ∪ f) ∩ Cut(T 0\f)\f contains exactly one edge.

Given a spanning tree T c 6= T 0 and the edge f =Min(T 0\T c); let g be the

unique edge in Cyc(T c ∪ f) ∩ Cut(T 0\f). Clearly, T p = T c ∪ f\g is a spanning

tree. The tree T p is called the parent of T c, and T c is a child of T p.

For example, consider the graph G1 displayed in Figure 3.1. Two spanning
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Figure 3.2: Spanning tree child-parent relationships in S(G2).

trees are displayed which are T 0 = {e1, e2, e3, e4} and T c = {e4, e5, e6, e7}. Now,

f = Min{e1, e2, e3} = e1

Cyc(T c ∪ f) = {e1, e5, e7}

Cut(T 0\f) = {e1, e5, e6}

Therefore, Cyc(T c ∪ f) ∩ Cut(T 0\f) = {e5}.

Lemma 1 guarantees that each spanning tree other than T 0 has a unique

parent. Since |T p ∩ T 0| = |T c ∩ T 0|+ 1 holds, then T 0 is the ancestor of all

spanning trees. Figure 3.2 shows a graph G2 and all the spanning tree child-

parent relationships. The arrows point from a child spanning tree to its parent.

Lemma 2 Let T p be an arbitrary spanning tree of G; and let f and g be two dis-

tinct edges. Under Assumptions 1, 2, and 3, T c = T p\f ∪ g is a child of T p,

if and only if f and g satisfy the following conditions: f < Min(T 0\T p) and

g ∈ Cut(T p\f) ∩ Cut(T 0\f)\f).
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Suppose that ek is the largest edge less than Min(T 0\T p). Then,

from Lemma 2, all the children of T p can be found if the edge sets

Cut(T p\ej) ∩ Cut(T 0\ej) for j = 1, 2, . . . , k are known.

For example, consider the graph G1 displayed in Figure 3.1. Let T p = T 1,

then e1 and e2 are the only edges smaller than Min(T 0\T 1) = e3. This leads to

the following:

Cut(T 1\e2) ∩ Cut(T 0\e2)\e2 = {e2, e4} ∩ {e2, e4}\e2 = {e4}

Cut(T 1\e1) ∩ Cut(T 0\e1)\e1 = {e1, e3, e4} ∩ {e1, e4, e5}\e1 = {e4}

Therefore, T 1 has two children: T 1\e2 ∪ e4 and T 1\e1 ∪ e4. The STU-

algorithm is shown in the next page. The algorithm uses O(N + |V |+ |E|)

time and O(|V |) space.

In the STU-algorithm, the findchildren procedure is used to find all the chil-

dren for each spanning tree. The findchildren procedure is called with the two

arguments T p and k. It then finds all the spanning trees for T p not containing

the edge ek. Whenever a child spanning tree T c is found, it recursively calls

itself again to find all the children for T c. The arguments at this stage are set to

T c and k − 1. That is because if k > 1, then ek−1 becomes the largest edge less

than Min(T 0\T c.
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Algorithm STU

input: a graph G(V,E) with a vertex set V (G) = {v1, v2, . . . , vn} and an

edge set E(G) = {e1, e2, . . . , em}, where n = |V | and m = |E|.

output: The set of edges for each spanning tree of G.

1. find a depth-first spanning tree T 0 for G.

2. sort vertices and edges to satisfy Assumptions 2, 3, 4, and 5.

3. output T 0

4. findchildren(T 0, |V | − 1)

Procedure findchildren(T p, k)

1. if k ≤ 0 then return

2. for each g ∈ Cut(T p\ek) ∩ Cut(T 0\ek)

3. T c = T p\ek ∪ g

4. output T c

5. findchildren(T c, k − 1)

6. end for

7. findchildren(T p, k − 1)
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Figure 3.3: Enumeration of all spanning trees for G2.

If all the children for T p not containing ek have been found, then it recur-

sively calls itself again to find all the children of T p not containing ek−1 The

arguments in this case are T p and k − 1. The findchildren procedure is initially

invoked with arguments T 0 and V − 1 which results in enumerating all the

spanning trees for the input graph. An example of the output generated by

the STU-algorithm is displayed in Figure 3.3.

Lemma 3 Algorithm STU outputs each spanning tree exactly once.



Chapter 4

THE OPTIMUM

COMMUNICATION SPANNING

TREE PROBLEM

There exists a significant amount of literature interested in the design of opti-

mum communication and transportation networks that satisfy a given set of

requirements. Many different variants, with or without additional constraints

have been studied, which resulted in either exact solutions or heuristics [8, 20].

Several constrained minimum spanning tree problems currently exist. An

example of some are the optimum communication spanning tree (OCST) prob-

lem, the degree-constrained minimum spanning tree problem, the minimum

steiner tree problem, or the capacitated minimum spanning tree problem [27].

The OCST problem (also known as the minimum communication cost

problem) was first introduced by Hu [17]. The problem states that a tree that

connects all vertices for a complete graph has to be found. The spanning tree

found must satisfy the communication requirements needed by the vertices

with a minimum total cost.

28
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4.1 Problem Description

The communication cost of a spanning tree T for a given graph G(V,E) is de-

fined as follows. Define a pair of vertices x and y ∈ V (G) where x 6= y. The

distance dx,y is the distance between vertices x and y restricted on T . The com-

munication requirement rx,y for the pair x and y is provided. There is a unique

path in T between x and y. The distance of the path is the sum of distances of

edges in the path. The communication cost for the pair x and y is rx,y multiplied

by the distance of the path. Summing over all
(

n

2

)

pairs of vertices, we have

the communication cost for T .

In order to calculate the optimum communication cost for a graph G the

following objective is required:

min
T∈=





∑

(x,y)∈V
rx,ydx,y



 (4.1)

Where = is the set of all possible spanning trees for the graph V (G). In the

case that V (G) is a complete graph, the number of possible spanning trees is

|=| = nn−2 as shown in [9].

The goal is to find a spanning tree T such that the average delay of com-

municating between any pair using T is minimized. The delay between a pair

of vertices is the sum of the delays of the edges in the path between them in

T . Minimizing the average delay is equivalent to minimizing the total delay

between all pairs of vertices using T .
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4.2 Applications of the OCST problem

Topology design problems for broad band communication networks has at-

tracted the interest of many researchers in this area. The problem is to effec-

tively design a network such that the constraints are met and the objectives are

optimized. This problem is extremely important for many real world applica-

tions. An example of such are telecommunications, computer networking, and

oil & gas pipelines.

In some cases, the communication network systems are designed with fiber

optic cable. Fiber optic cable has many advantages such as having a huge

bandwidth, low signal attenuation, low signal distortion, low power require-

ment, and small space requirement. However, the disadvantage to fiber optic

cable is that it is expensive. Therefore, it is desirable to design the network

architecture as a spanning tree.

It is important to find the best layout of components when designing the

topology of a communication network system. A best layout can be reached

by optimizing a performance criteria, such as cost, message delay, traffic and

reliability. The performance criteria of these systems are important and rely

heavily on the network topology. The OCST problem can also be considered

as a performance criteria with the objective of optimizing the total communi-

cation cost of the network topology.

Besides the obvious application of the OCST problem to topology design

problems. The OCST problem has applications to other disciplines as well,

such as in the field of computational biology. Computational biology relies

heavily on the methodologies of multiple sequence alignments (MSA). MSA is

important for detecting patterns common to a set of genetic sequences.

Let S = {s1, s2, . . . , sk} be a set of strings, where k > 1. The number of
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characters for each string si ∈ S is variable for 1 ≤ i ≤ k . A multiple alignment

of S is performed by inserting gaps in to the strings si ∈ S and then arranging

the strings into a (k × l) matrix M . Each si is input into row i of M with some

blanks possibly inserted between the characters. The following is an example

of an alignment of the three strings ATTCGAC, TTCCGTC, and ATCGTC:

A T T C G A C

T T C C G T C

A T C G T C

To identify common patterns amongst several sequences, it is required to

arrange the strings in M such that all the characters for every column match,

as much as possible. Therefore, the MSA problem has typically been formal-

ized as an optimization problem in which some explicit objective function is

minimized or maximized. One of the most popular objective functions for the

MSA problem is a generalization of the pairwise-alignment problem [35].

In the pairwise-alignment problem, two sequences need to be aligned opti-

mally. Therefore, a minimum mutation path between the two sequences needs

to be found. In this problem, the costs for inserting, deleting and substituting

one character of the alphabet for another are given. It is required to find a

minimum-cost mutation path from one sequence to the other. The cost of this

path is the edit distance between them.

The generalization of the pairwise-alignment problem to MSA leads to the

sum-of-pairs objective. The sum-of-pairs objective for MSA is to minimize the

sum, over all pairs of sequences, of the pairwise distance between them in the

alignment. The distance of two sequences in an alignment with l columns is

obtained by adding up the costs of the pairs of characters appearing at posi-

tions 1, 2, . . . , l.
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4.3 Existing Approaches

Hu did not tackle the original OCST problem but chose to solve two special

cases of the problem instead. The first case is when the distances for all the

edges are equal to one (dx,y = 1), while the requirements are arbitrary. This is

known as the optimum requirement spanning tree (ORST) problem. Hu showed

that the ORST problem is solvable in polynomial time using the Gomory-Hu

spanning tree algorithm [15, 17].

The second case is when all the requirements are equal to one (rx,y = 1)

while the distances are arbitrary. This is known as the optimum distance span-

ning tree (ODST) problem. Hu derived a weak condition under which the op-

timum solution is a star if the distances satisfy the triangular inequality. It was

proven in [18] that only cases of the ODST problem, where the distances satisfy

the triangular inequality, can be solved in polynomial time. Hence, all other

versions are NP-hard.

Wong [38] developed a 2-approximation algorithm for the ODST problem.

This approximation algorithm considers the shortest path tree rooted at every

vertex in turn, and picks the one with the optimum communication cost. For

graphs with metric distances obeying the triangle inequality, every shortest

path tree is isomorphic to a star. Wong proved that spanning trees generated

by this algorithm have a cost at most twice the total cost of the graph itself.

Later, [40, 39] introduced another polynomial-time approximation scheme

for the ODST problem. This approach was influenced by the observation,

noted earlier by Hu, regarding the optimum solution being a star. The authors

demonstrate how simple generalizations of stars are sufficient to guarantee

any desirable accuracy in approximating optimum spanning trees.
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The trees generated by [40, 39] approximate an optimum cost spanning tree

by a restricted class of trees called k-stars. For any fixed size k ≥ 1, a k-star is

a tree in which at most k vertices have degree greater than one. The authors

also rely on special subtrees called separators. The separators are used to break

a tree into sufficiently small components.

For a given accuracy parameter ε, all d 2
ε
− 1e-stars are considered and

the minimum cost spanning tree is output. As a result, this algorithm

is a (1 + ε)-approximate solution. The running time for this algorithm is

O(n2d 2

ε
e−2). It is important to note that this approximation algorithm is bound

to the optimal spanning tree cost. This is opposed to Wong’s proof that shows

that his approximation algorithm is bound to twice the communication cost of

the input graph.

Peleg [25] showed that the the ODST problem is reducible to a problem

called the minimum average stretch spanning tree (MAST) problem. Since both

problems are equivalent to each other, then the approximation algorithms for

the MAST problem can be used for the ODST problem. In the MAST problem,

which was introduced in [2], a graph G and a distance weights matrix W are

given and a spanning tree T has to be found that minimizes the average stretch

of the edges.

Formally, let G(V,E) be a connected graph on V , with edge set E, distance

weights wu,v ≥ 1 and multiplicities mu,v ≥ 0, for every edge (u, v) ∈ E. Let

M =
∑

(u,v)∈E
mu,v. For a spanning tree T of G, the stretch over the vertex pair u

and v is defined as du,v
wu,v

, where du,v is the distance between the vertices u and v

restricted on T . The average stretch S̄(T ) of T is:

S̄(T ) =
1

M

∑

(u,v)∈E
mu,v.

du,v
wu,v
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The randomized approximation algorithm given by [2] constructs a span-

ning tree with average stretch O(2
√

logn). This implies an approximation algo-

rithm with the same ratio for the ODST problem.

Several genetic algorithms (GA) have also been proposed to solve the ODST

problem. Such methods do not construct a tree according to an algorithmic

method, but search through the search space consisting of all possible trees.

It is well known that the proper choice of a representation is crucial for the

performance of metaheuristics. A representation determines how trees are en-

coded such that search operators can be applied. Commonly, trees are encoded

as vectors or lists of strings where different strings encode different trees.

One of the first GA approaches for the ODST problem was presented by

Palmer [24]. He recognized that the design of a proper tree representation

is crucial for the performance of the GA. Palmer compared different types of

problem representations for trees and developed a new representation, the link

and node biased (LNB) encoding.

It is stated in [20] that the cost of a spanning tree strongly depends on the

distances of the edges used from the graph. In other words, spanning trees

that are composed of low distance edges tend to have on average lower overall

costs. When focusing on 2-dimensional grids (resulting in Euclidean distance

weights), the weights of edges near the gravity center of a graph are lower

than the weights of edges that are far away from the gravity center. Therefore,

it is useful to run more traffic over the vertices near the gravity center of a

tree rather than over vertices at the edge of the tree. Consequently, vertices

are characterized as either interior (some traffic only transits) or leaves (all

traffic terminates). The more important an edge is and the more transit traffic

that crosses one of the two vertices, the higher is on average the degree of the

vertex. Vertices near the gravity center tend to have higher degrees than leaf
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vertices.

This observation inspired Palmer in designing the LNB encoding. The LNB

encoding considers the relative importance of vertices in a tree and the more

important a node is, the more traffic transits over it. The LNB encoding is an

illustrative example of how properties of good solutions for the ODST problem

can been used for the design of a high-quality representation. The GA using

the LNB encoding showed good results in comparison to a greedy star search

heuristic ([24], chapter 5).

A more recent GA is the work of [28, 27]. A statistical analysis was per-

formed on the properties of optimal solutions for randomly generated ODST

problems. They compared the average distances of randomly created trees to-

wards the minimum spanning tree (MST), to the average distances of the op-

timal solutions towards the MST. The results showed that the average dis-

tance between the optimal solution spanning tree and the MST is significantly

smaller than the average distance between a randomly created tree and the

MST. Therefore, optimal solutions for the ODST problem are biased towards

the MST. The authors proposed a new representation called the link biased (LB)

encoding. The LB encoding makes use of the problem specific property of the

ODST problem and encodes solutions similar to the MST with higher proba-

bility.

Another special cases for the OCST is the work of [1]. The authors proposed

polynomial time algorithms for two constrained cases for the general OCST

problem. The first constrained case is when a spanning tree must contain spec-

ified vertices as leaves. The second constrained case is when the spanning tree

has to contain a specified set of edges from the input graph. It is shown that

there exists at most (n− 1) optimum spanning trees that can be constructed in

O(n4).
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Table 4.1: Summary of algorithms for solving the Optimum Distance Commu-

nication Spanning Tree problem.

Author Resource Algorithm

Type

Complexity /

Ratio

Description of Algorithm

Hu (1974) [17] Poly. Poly. Solution is a star only if costs

obey the triangle inequality

Wong

(1980)

[38] Deter.

Approx.

2 Considered the shortest path

tree rooted at every vertex

Wu et al.

(1998)

[40, 39] Rand.

Approx.

(1 + ε) Restricted the solution to

k−stars

Peleg

(1997)

[25] Rand.

Approx.

O(2
√

logn) Reduced the MAST to the

ODST

Palmer

(1994)

[24] GA N/A Designed the LNB-encoding

(biased towards Gravity-

Center)

Rothlauf et

al. (2004)

[28, 27] GA N/A Designed the LB-encoding (bi-

ased towards MST)

Table 4.1 gives a summary of the approaches that are used for solving the

ODST problem.



Chapter 5

THESIS WORK

In this thesis work, we attempt to find an efficient randomized algorithm to

solve a special case of the ODST problem. This special case is different than

the original ODST problem in two ways. First, rather than limiting the ODST

problem to finding solutions for complete graphs only. We propose to solve

the ODST problem for general graphs. Second, this special case restricts the

costs of the edges to be constant and equal to one. This is in contrast to the

original ODST problem where the costs of the edges are arbitrary.

An experimental study has been conducted to measure the performance

of the proposed algorithm using several special graphs. The graphs selected

for the experimental study are: three randomly generated graphs, the hyper-

cube and butterfly network topologies. The experiments involve finding an

optimum solution for the previously mentioned special graphs.

37
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5.1 Problem Description

Let T be a spanning tree for a given graph G(V,E). Then, the special case of

the ODST problem, that we consider, can be formally defined as the following:

• Minimum Congestion Cost in G(V,E), denoted by ψ(G) is the sum of all

distances over all pairs of vertices in G. That is,

ψ(G) =
∑

u,v∈V (G)

du,v (5.1)

where du,v is the distance between vertices u and v restricted on T .

• Minimum Stretch Cost in G(V,E), denoted by φ(G) is the same as ψ(G),

except that the sum of edges is taken over those pairs of vertices that are

connected by an edge e ∈ E(G). That is,

φ(G) =
∑

(u,v)∈E(G)

du,v (5.2)

where, again, du,v is the distance between vertices u and v restricted on

T .

The maximum number of routes that go through an edge is formally

known as the congestion. This definition can be further extended to spanning

trees. The congestion cost is referred to in biochemistry as the Wiener index

[36], which has been extensively studied for more than half a century. The con-

gestion cost of T can be computed by including all the pairs of vertices for G

in the computation; or by including only a subset of the pairs of vertices for G

in the computation. When all pairs of vertices are included in the computation

then this is referred to as the congestion cost for T . However, if only those pairs

of vertices that share en edge in G are included in the computation, then we

will refer to this as the stretch cost for T .
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The minimum stretch cost problem has been formulated based on a prob-

lem called the minimum average stretch spanning tree (MAST) problem [2]. In

the MAST problem, a graph G and a distance weights matrix W are provided.

The objective is to find a spanning tree T that minimizes the average stretch of

the edges.

Formally, let G(V,E) be a connected graph on V , with edge set E, distance

weights wu,v ≥ 1 and multiplicities mu,v ≥ 0, for every edge (u, v) ∈ E. Let

M =
∑

(u,v)∈E
mu,v. For a spanning tree T of G, the stretch over the vertex pair u

and v is defined as du,v
wu,v

, where du,v is the distance between the vertices u and v

restricted on T . The average stretch S̄(T ) of T is:

S̄(T ) =
1

M

∑

(u,v)∈E
mu,v.

du,v
wu,v

(Note that the term optimum congestion cost problem will be used to refer

to both the minimum congestion cost problem and the minimum stretch cost

problem unless otherwise specified).

In this thesis, we propose an algorithm that can find a spanning tree for a

given graph randomly. The spanning trees found by this algorithm have prop-

erties that may minimize their congestion costs. We believe that the proposed

algorithm can be used to find the optimum solutions for the ODST problem

for general graphs. To justify our claim, an experimental study has been con-

ducted on three randomly generated graphs in addition to the hypercube and

butterfly topologies to a certain dimension. In the next section, the proposed

algorithm will be explained. The experiment setup will be discussed and the

results of the experiments will be listed.
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5.2 The Proposed Algorithm

The efficiency of a specific optimization method decreases with the number of

problems that should be solved. In [37], the authors state that if an optimiza-

tion method is designed to solve all possible optimization problems that can

be designed on a specific search space, then this method does not perform on

average better than random search. However, optimization methods can per-

form better than random search if they focus only on a subset of all possible

optimization problems.

In the the optimum congestion cost problem, a spanning tree T that min-

imizes the total congestion cost for a given graph G is required. Let T r be a

rooted shortest-path spanning tree for the graph G that is rooted at the vertex

r ∈ V (G). T r can be obtained by performing a breadth-first search on the graph

G. A well-known property for T r is that the path from r to any other vertex

u ∈ V (G) has the least number of edges. Therefore, T r minimizes the conges-

tion cost between r and any other vertex u ∈ V (G).

In our approach, we attempt to randomly generate the spanning trees for

a given graph. However, unlike other methods that randomly generate span-

ning trees with equal probability. The proposed algorithm generates spanning

trees with properties similar to the shortest-path spanning trees with higher

probability. The spanning trees generated are grown starting from a given ver-

tex in a fashion similar to Prim’s algorithm for finding a minimum spanning

tree.

Initially, the proposed algorithm starts by randomly selecting a vertex

v ∈ V (G) and adds it to the set SelV , which is initially empty. Next, a ver-

tex u ∈ V (G) that is adjacent to v is randomly selected and added to SelV .

The edge (u, v) is selected as an edge for the spanning tree T that is being
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constructed. The algorithm then proceeds to grow T by randomly picking a

vertex x ∈ SelV and then selecting a vertex w ∈ V (G) that is adjacent to x. If

w /∈ SelV , then it is added to SelV and the edge (x,w) is selected as an edge for

T . However, if w ∈ SelV , then this means that the edge (x,w) will introduce a

cycle in T , and hence will not be considered. The algorithm continues to grow

T by randomly selecting the vertices that are adjacent to SelV until T is fully

constructed. We will refer to this method as the RandomSpan algorithm. The

algorithm is shown more formally in the next page.

The RandomSpan algorithm randomly constructs a spanning tree in a fash-

ion similar to breadth-first search. In breadth-first search, a vertex is first vis-

ited then the vertices that are adjacent to it are visited next. In the RandomSpan

algorithm, whenever a vertex is visited, it is added to the set SelV . The next

vertex to be visited will be any vertex that is adjacent to one of the vertices

in SelV . The RandomSpan algorithm is similar to breadth-first search in the

sense that it randomly chooses a vertex that is adjacent to a set of vertices.

Therefore, the spanning trees generated by the RandomSpan algorithm are bi-

ased towards shortest-path spanning trees with higher probability.
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Algorithm RandomSpan

input: a graph G(V,E) with a vertex set V (G) = {1, 2, . . . , n} and an edge

set E(G) = {e1, e2, . . . , em}, where n = |V | and m = |E|. Let γ(v) be

all the vertices that are adjacent to v.

output: The set of edges T for a spanning tree of G.

1. T ← {}; SelV ← {};

2. randomly pick v ∈ V (G) {pick a vertex to grow the spanning

tree}

3. SelV ← SelV ∪ {v} {add v to the set of selected vertices}

4. while (|T | < (n− 1))

5. randomly pick v ∈ SelV

6. randomly pick w ∈ γ(v)

7. if (w /∈ SelV )

8. T ← T ∪ {(w, v)}

9. SelV ← SelV ∪ {w}

10. end if

11. end while

12. output the set T
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One advantage of the RandomSpan algorithm is that it is a simple, yet pow-

erful, algorithm. However, a quick analysis of the RandomSpan algorithm

reveals that lots of time might be spent in step 7. That is because it might

be the case that w ∈ SelV for a large number of consecutive iterations. The

probability of finding a new vertex is inversely proportional to the size of the

current size of T . When |T | is large, the probability of finding a new vertex ap-

proaches 1
n

. This means, the expected number of iterations before a successful

hit is O(n). As a result, the running time of the algorithm is n.O(n) = O(n2).

However, this anomaly can be overcome if all the edges for a vertex that has

been randomly selected are stored. This is essentially what we did to improve

the algorithms performance. Initially, the ContractedRandomSpan algorithm

has two empty sets ConV and ConE. The algorithm starts by randomly se-

lecting a vertex v ∈ V (G) and adds (contracts) it to the set ConV . Next, all the

edges that are connected to v are added to ConE. The algorithm then proceeds

to grow T by randomly picking an edge (x, y) ∈ ConE for x, y ∈ V (G). If one

of the vertices x or y /∈ ConV , then this vertex is added to ConV and the edge

(x, y) will be added as an edge for T . Otherwise, the edge is discarded and

the algorithm proceeds to select another edge from ConE. It is important to

note that it is never the case that both x and y /∈ ConV . That is because an

edge is always added to ConE when at least one of the vertices connected to it

∈ ConV . However, it is possible to have both x and y ∈ ConV . In this case, the

edge (x, y) should be discarded from ConE because it will introduce a cycle in

T . The ContractedRandomSpan algorithm is shown more formally in the next

page.
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Let us analyze the ContractedRandomSpan algorithm by focusing on the

for loop from step 7 to 14. In the worst case, step 8 will have to pick all the

edges, and is either added to T or is discarded. This step will take at most

O(|E|) time. Step 9 & 13 can be performed in constant time. The for loop in step

10-12, takes at mostO(2.|E|) time. That is because an edge is examined at most

twice, once for each time one of the vertices it is connected to is contracted.

Therefore, the ContractedRandomSpan algorithm takes at most O(|E|) time.

The ContractedRandomSpan algorithm is much more efficient than the

RandomSpan algorithm in terms of the number of iterations required to find

a new edge for T . As we have seen, the RandomSpan algorithm may spend a

long time in step 7. On the other hand, the ContractedRandomSpan algorithm

almost always finds a new edge for T in each iteration.

Figure 5.2 shows a comparison between the performance of the Ran-

domSpan algorithm and the ContractedRandomSpan algorithm when trying

to find a spanning tree for the hypercube and butterfly topologies up to di-

mension = 10. The results have been obtained as an average of 10 runs for

each dimension. It is evident that the ContractedRandomSpan algorithm is

much more efficient than the RandomSpan algorithm since it requires a fewer

calls to the random function.
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Algorithm ContractedRandomSpan

input: a graph G(V,E) with a vertex set V (G) = {1, 2, . . . , n} and an edge

set E(G) = {e1, e2, . . . , em}, where n = |V | and m = |E|. γ(v) means

the set of vertices that are adjacent to v and /∈ ConV , where ConV is

the set of contracted vertices.

output: The set of edges T for a spanning tree of G.

1. T ← {}; ConV ← {}; ConE ← {};

2. randomly pick v ∈ V (G) {pick a vertex to grow the spanning

tree}

3. ConV ← ConV ∪ {v} {add v to the set of contracted vertices }

4. for each vertex w ∈ γ(v)

5. ConE ← ConE ∪ {(w, v)}

6. end for

7. for (i← 1 to (n− 1))

8. randomly pick (w, v) ∈ ConE and w /∈ ConV , v ∈ ConV

9. T ← T ∪ {(w, v)}

10. for each vertex u ∈ γ(w)

11. ConE ← ConE ∪ {(w, u)}

12. end for

13. ConV ← ConV ∪ {w}

14. end for

15. output the set T
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5.3 Experiment Setup

In this section, we investigate the congestion cost of spanning trees for sev-

eral special graphs. A spanning tree can be generated randomly by using the

ContractedRandomSpan algorithm. Therefore, we can use this algorithm to

generate several spanning trees and then compute their corresponding con-

gestion costs. We conjecture that the spanning trees found with the lowest

congestion cost are near-optimum solutions. Clearly, the quality of these re-

sults will improve as the number of spanning trees generated increases. By

adapting such a technique then the search space of available solutions can be

scoped efficiently.

Three graphs G1, G2 and G3, with V (Gi) = 10 for i = 1, 2 and 3, have

been randomly generated to test our proposed algorithm. See Figure 5.2 for

an illustration of these graphs. The experiments also include finding op-

timum solutions for the hypercube (dimension = 1, 2 . . . , 10) and the butter-

fly (dimension = 1, 2 . . . , 8). Table 5.1 shows the number of possible span-

ning trees for G1, G2 and G3. The number of possible spanning trees for

H1, H2, . . . , H10 and BF1, BF2, . . . , BF8 are shown in Table 5.2 and Table 5.3,

respectively.

In order to measure the performance of the ContractedRandomSpan al-

Table 5.1: The number of possible spanning trees for the randomly generated

graphs G1, G2 and G3.

Graph # of spanning trees

G1 379185

G2 1212519

G3 823415
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Figure 5.1: A comparison between the RandomSpan algorithm and the Con-

tractedRandomSpan algorithm when finding a spanning tree for the hyper-

cube and butterfly topologies up to dimension = 10.
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Figure 5.2: The graphs G1, G2 and G3 that were randomly generated for the

experiments.

Table 5.2: The number of possible spanning trees for the hypercube (dimen-

sion = 1, 2 . . . , 10).

Dimension # of possible spanning trees

1 1

2 4

3 384

4 4.25× 107

5 2.08× 1019

6 1.66× 1045

7 1.54× 10101

8 1.74× 10220

9 6.8× 10470

10 2.1× 10994
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Table 5.3: The number of possible spanning trees for the butterfly (dimen-

sion = 1, 2 . . . , 8).

Dimension # of possible spanning trees

1 4

2 1024

3 1.291010

4 5.01× 1028

5 2.87× 1074

6 8× 10182

7 2.66× 10433

8 3.06× 101001

gorithm, an optimum solution for the graph being experimented has to be

known in advance. This is required so that the results generated by the Con-

tractedRandomSpan algorithm can be compared against the optimum solution

found. A naive approach to finding a solution to the congestion cost problem

is to use the brute-force method. This can be achieved by enumerating all

the spanning trees for a given graph and then computing their corresponding

congestion costs. Any spanning tree with the minimum congestion cost is an

optimum solution. The STU-algorithm (see chapter 3) can be used to enumer-

ate all the spanning trees, and the all-pair shortest path algorithm [13] can be

used to compute their communication costs.

Therefore, the brute-force method was developed to allow us determine

the optimum solutions for the graphs we were experimenting on. The STU-

algorithm was implemented using the Mathematica package and was used to

enumerate all the spanning trees for the graphs. It was chosen because it is an
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Figure 5.3: Two spanning trees for H4.

intelligent algorithm that efficiently enumerates all the spanning trees by ex-

changing edges. By using the brute-force method, we managed to enumerate

all the spanning trees for the randomly generated graphs G1, G2 and G3. The

minimum and maximum values for the congestion costs and stretch costs for

the spanning trees generated were recorded. The congestion costs for G1, G2

and G3 are given in Table 5.4.

Unfortunately, we had little success with the brute-force method when us-

ing it to find the congestion cost values for the hypercube and butterfly topolo-

gies. The brute-force method is not practical even when trying to solve this

problem for low dimensions of these topologies. The maximum dimensions
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Table 5.4: The congestion costs for the for the randomly generated graphs G1,

G2 and G3. (The results are produced using the brute-force method).

Graph Stretch Cost Congestion Cost

min. cost max. cost min. cost max. cost

G1 53 118 88 165

G2 47 102 88 165

G3 51 114 88 165

Table 5.5: The congestion costs for the hypercube (dimension = 1, 2 . . . , 10).(The

results are produced using the brute-force method).

Dimension Stretch Cost Congestion Cost

min. cost max. cost min. cost max. cost

1 1 1 1 1

2 6 6 4 10

3 24 28 68 84

that the brute-force method managed to solve 3 for the hypercube and 2 for the

butterfly. Moreover, it took around 10 days to generate %25 of the total num-

ber of spanning trees for H4. Therefore, a more efficient method was required

to determine the optimum solutions. The congestion costs for the hypercube

and butterfly that were successfully obtained by the brute-force method are

listed in Table 5.5 and Table 5.6.

The reason for selecting the hypercube is because it enjoys several desir-

able properties. The most important properties are its recursive structure and

symmetry. These properties can be used to help determine the optimum con-

gestion cost for the hypercube. In [3], it has been shown that, in the case of



52

Table 5.6: The congestion costs for the butterfly (dimension = 1, 2 . . . , 8). (The

results are produced using the brute-force method).

Dimension Stretch Cost Congestion Cost

min. cost max. cost min. cost max. cost

1 6 6 10 10

2 34 34 212 244

the hypercube, a shortest-path spanning tree is always an optimum solution

for the optimum congestion cost problem. Since the hypercube is vertex tran-

sitive, doing a breadth-first search starting at one vertex is equivalent to per-

forming a breadth-first search at any vertex, as all resulting spanning trees will

be isomorphic.

Since the optimum solutions for the hypercube can be easily obtained,

which means that the ContractedRandomSpan algorithm can be evaluated for

higher dimensions of the hypercube. Hence, the hypercube is used as a bench-

mark, in our experimental study, to accurately measure the performance of the

ContractedRandomSpan algorithm. Figure 5.3 shows two spanning trees for

H4. The spanning tree displayed on the top is a shortest-path spanning tree.

On the other hand, in order to represent a possibly maximum solution, we

resort to finding a spanning tree that has all of its edges highly congested. It is

well-known that the hamiltonian path Pn exhibits the spanning tree of order n

with maximum congestion.

The congestion costs collected for both the shortest-path spanning trees and

the hamiltonian spanning trees for the hypercube can be used to indicate the

range of possible solutions. This will help in giving an indication of how far

the results obtained from the ContractedRandomSpan algorithm are from the
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Table 5.7: The congestion costs for a shortest-path spanning tree (SPT) and

hamiltonian spanning tree (HT) for the hypercube (dimension = 1, 2 . . . , 10),

where ratio = HTcost
SPTcost

.

Dimension Stretch Cost Congestion Cost

SPT cost HT cost ratio SPT cost HT cost ratio

1 1 1 1 1 1 1

2 6 6 1 10 10 1

3 24 28 1.2 68 84 1.2

4 80 120 1.5 392 680 1.7

5 240 502 2.1 2064 5456 2.6

6 672 2110 3.1 10272 43680 4.3

7 1792 8500 4.7 49216 349504 7.1

8 4608 34046 7.3 229504 2796160 12.2

9 11520 138482 12 1048832 22369536 21.3

10 28160 568054 20.2 4719104 178956800 37.9

optimum solutions.

Table 5.7 shows the congestion costs for the shortest-path spanning trees

and hamiltonian spanning trees for H1, H2, . . . , H10. The table also displays

the ratio between the congestion costs for the hamiltonian spanning tree and

the shortest-path spanning tree, for the specified dimensions. The ratio is ba-

sically the percentage ratio between the minimum and presumably maximum

congestion cost values. These values can assist in evaluating the performance

of the ContractedRandomSpan algorithm.

In the case of the butterfly, we found that the congestion costs for the

shortest-path spanning trees generated for each dimension might vary. This
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Table 5.8: The congestion costs for a shortest-path spanning tree (SPT) for the

butterfly (dimension = 1, 2 . . . , 8).

Dimension SPT Stretch Cost SPT Congestion Cost

1 6 10

2 34 212

3 130 2576

4 434 23664

5 1266 183200

6 3538 1266112

7 9554 8055296

8 30202 48676096

might be due to the fact that a vertex might have degree = 2 or 4. We believe

that a shortest-path spanning tree on the butterfly can approximate the opti-

mum congestion cost spanning tree to some degree. The butterfly, however,

does not have a hamiltonian spanning tree for dimension > 1. Therefore, it is

difficult to determine the maximum congestion costs for this topology.

We were able to generate all the shortest-path spanning trees for

BF1, BF2, . . . , BF6 and record the minimum congestion cost value for each di-

mension. However, only one shortest-path spanning tree was generated for

BF7 and BF8 and was assumed to be the minimum. Table 5.8 shows the

congestion costs for the minimum shortest-path spanning tree gathered for

BF1, BF2, . . . , BF8.
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5.4 Experiment Results

The experiments performed were conducted using several types of special

graphs. The special graphs used were: three randomly generated graphs

G1, G2, and G3, in addition to the network topologies H1, H2, . . . , H10 and

BF1, BF2, . . . , BF8. The ContractedRandomSpan algorithm was used to gen-

erate several spanning trees for these special graphs. The corresponding con-

gestion costs for the spanning trees were calculated, and the ones with the

lowest congestion costs were recorded.

Let Tlow be a spanning tree with the lowest congestion cost amongst all the

spanning trees generated using our approach for a particular graph. Let Topt

be a spanning tree that has the optimum congestion cost. As discussed in the

experiment setup, Topt has been obtained for the graphs G1, G2, and G3 by

using the brute-force method. In the case of a hypercube, Topt is considered to

be any shortest-path spanning tree for the required dimension. We extend this

observation to the butterfly and assume that a shortest-path spanning tree is a

good approximation for an optimum solution. We have recorded the values of

Topt for H1, H2, . . . , H10 and BF1, BF2, . . . , BF8 which are listed earlier.

The performance of our approach can be evaluated by calculating the

performance ratio = Tlow

Topt
. The performance ratio can be used to show how

far a specific spanning tree is from the optimum solution for a given graph.

Using our approach, we managed to get near-optimum solutions for both the

optimum congestion cost problem and the optimum stretch cost problem for

the graphsG1,G2, andG3. The results are displayed in Table 5.9 and Table 5.10.

Similar results have been obtained in the case of the hypercube and butterfly.

The results for the hypercube are shown in Table 5.11 and Table 5.12, and the

results for the butterfly are shown in Table 5.13 and Table 5.14.
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Table 5.9: The congestion costs for the randomly generated graphs G1, G2 and

G3. (The results are produced by the ContractedRandomSpan algorithm)

Graph min. cost max. cost # of trees generated ratio

G1 103 165 26930 1.17

G2 108 165 44800 1.23

G3 108 165 10700 1.23

Table 5.10: The stretch costs for the randomly generated graphs G1, G2 and G3.

(The results are produced by the ContractedRandomSpan algorithm)

Graph min. cost max. cost # of trees generated ratio

G1 57 101 24860 1.08

G2 66 118 4900 1.4

G3 60 111 1700 1.17
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Table 5.11: The congestion costs for the hypercube (dimension = 1, 2 . . . , 10)

generated by the ContractedRandomSpan algorithm.

Dimension min. cost max. cost # of trees generated ratio

1 1 1 1 1

2 10 10 1 1

3 68 84 28 1

4 392 680 11500 1

5 2294 4682 15000 1.1

6 13112 23084 8000 1.3

7 70088 126620 8000 1.4

8 404774 506280 100 1.8

9 1959320 2532534 100 1.9

10 9747306 12122242 30 2.1
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Table 5.12: The stretch costs for the hypercube (dimension = 1, 2 . . . , 10) gener-

ated by the ContractedRandomSpan algorithm.

Dimension min. cost max. cost # of trees generated ratio

1 1 1 1 1

2 6 6 1 1

3 24 30 36 1

4 80 156 11500 1

5 284 570 15000 1.2

6 946 1650 8000 1.4

7 2878 5154 8000 1.6

8 9736 11972 100 2.1

9 26248 34164 100 2.3

10 74548 93462 30 2.6

10 74548 93462 30 2.6

Table 5.13: The congestion costs for the butterfly (dimension = 1, 2 . . . , 8) gen-

erated by the ContractedRandomSpan algorithm.

Dimension min. cost max. cost # of trees generated ratio

1 10 10 1 1

2 212 244 60 1

3 2568 4124 10000 0.99

4 25678 37774 4000 1.1

5 214424 299212 1000 1.2

6 1599808 2051166 200 1.3

7 11216140 12541424 10 1.4

8 71365298 74727996 2 1.5
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Table 5.14: The stretch costs for the butterfly (dimension = 1, 2 . . . , 8) generated

by the ContractedRandomSpan algorithm.

Dimension min. cost max. cost # of trees generated ratio

1 6 6 1 1

2 34 34 1 1

3 130 182 40 1

4 438 646 4000 1.01

5 1382 1948 1000 1.1

6 4363 5620 200 1.2

7 12790 14250 10 1.3

8 35372 36730 2 1.2

From the experiments conducted, we find that the ContractedRandomSpan

algorithm can be used to generate near-optimum solutions. During the exper-

iments, it was noticed that a near-optimum solution can be found quickly by

only generating a few number of spanning trees. It was also observed that the

quality of the results improve, to some extent, as the number of spanning trees

generated increase. The experiment results support the fact that not all the

spanning trees for a given graph need to be enumerated in order to find an op-

timum solution. From the results obtained, it is clear that we managed to scope

the whole search space of possible solutions by only generating a small frac-

tion of the possible solutions. The reason behind this is because the amount of

possible spanning trees is large compared to the range of possible congestion

cost values. From table Table 5.12, it is clear that the minimum and maximum

congestion cost values have been generated for H4 by only generating a small

number of spanning trees. As a result, our approach could have been used
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instead of the brute-force method for finding the extreme congestion costs for

a particular graph.

Another point worth mentioning is regarding the assumption that a

shortest-path spanning might be an optimum solution for the optimum con-

gestion cost problem on the butterfly. It turns out that this assumption is in-

valid and has been proven by counter example. From the experimental re-

sults, it is clear that the solution obtained from the ContractedRandomSpan

algorithm for BF3 is less than the congestion cost of any of the shortest-path

spanning trees for BF3. Therefore, an optimum solution for the butterfly can’t

be obtained using a shortest-path spanning tree, like the hypercube.



Chapter 6

CONCLUSION

The ODST problem is a special case of the OCST problem and has been proven

to be NP-hard. Several approaches currently exist that try to find an optimum

solution for the ODST problem. Some of these approaches consider approx-

imating the optimum solution by using either deterministic or randomized

approximation algorithms. Other approaches attempt to reduce the ODST

problem to other well known NP-hard problems that already have algorithms

implemented for them. Lately, several approaches take advantage of genetic

algorithms to find an optimum solution for the problem. In the genetic algo-

rithms approach, it is necessary to generate spanning trees that are biased, in

some way, in order to efficiently scope the search space.

6.1 Contribution

In this thesis work, we proposed a randomized algorithm that can generate the

spanning trees for a given graph randomly. The proposed algorithm is biased

towards generating shortest-path spanning trees. It is biased in the sense that it

does not generate random spanning trees with equal probability, but generates

61
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spanning trees that are similar to the shortest-path spanning trees with higher

probability. We believe that the proposed algorithm has the potential of being

applied to help solve a variety of problems, especially those that deal with

spanning trees for finding their solutions. An example of such problems is the

ODST problem.

The work presented in this thesis demonstrates how randomization can be

harnessed to efficiently solve two special cases of the ODST problem. The

results obtained from the experimental study illustrate the fact that near-

optimum solutions can be obtained by only performing a few runs. The find-

ings of this thesis support the fact that randomized algorithms can efficiently

solve complex problems in a simple manner. The experiment results also prove

that the assumption regarding a shortest-path spanning tree being a possible

optimum solution for the butterfly is invalid by counter example.

6.2 Future Work

The algorithm proposed in this thesis has been applied to efficiently solve the

optimum congestion cost problem. In this problem, the costs of the edges for

a given graph are constant and equal to one. This is in contrast to the ODST

problem where the costs of the edges are arbitrary. However, it would be in-

teresting to solve the more general case, where the costs for the edges are arbi-

trary. In this case, the problem would be similar to the ODST problem except

that it would be applicable to general graphs opposed to limiting it to complete

graphs only.

In our approach, we randomly generate spanning trees that are biased to-

wards shortest-path spanning trees. By generating spanning trees with such

properties, we manage to scope the search space of possible solutions, for the
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optimum congestion cost problem, efficiently. It might be useful to adapt other

biasing techniques to help solve other types of problems, such as the OCST

problem. In the OCST problem, in addition to the arbitrary costs of the edges,

there are arbitrary requirement variables between each pair of vertices. In this

case, it might be useful to generate spanning trees that are biased to the mini-

mum cost spanning tree. The requirement variables between the vertices could

be used to compute the minimum cost spanning tree.

The objective of the experimental study performed in this thesis is to mea-

sure the performance of the proposed algorithm when trying to solve the op-

timum congestion cost problem. The experiments were conducted using three

randomly generated graphs, in addition to the hypercube and butterfly topolo-

gies. By knowing the optimum solutions for the hypercube in advance, we

managed to precisely measure the performance of the proposed algorithm for

high dimensions for this topology. However, other types of network topolo-

gies might exist with properties that might help reveal their optimum solu-

tions. An example of a popular network topology is the cube-connected cy-

cle [22]. Therefore, it is encouraged to explore the properties of other network

topologies and try to determine their optimum solutions. This will be of signif-

icant value to the work presented in this thesis, as well as having the potential

of influencing the work of other researchers interested in the area of topology

design problems. Additional future work is to analyze the proposed algorithm

and find the expected number of runs needed to get the optimum solution.



APPENDIX

Source Code
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