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0.1 INTRODUCTION

The theory of purity for modules (in the sense of Cohn [6]) and the corresponding
class of pure-injective modules were studied and developed by many authors (for
example Cohn [6], Warfield [28], Stenstrom [26], Fuchs [12]). The existence and
uniqueness (up to isomorphism) of pure-injective hulls was established by Maranda
[19] for abelian groups, and by Fuchs [12] and Warfield [28] for modules. In [28]. the

following important result was proved using a topological argument.

Theorem 1 An R-module M is pure-injective if, and only if, it is algebraically

compact.(]

This result was first proved for general algebraic systems by Weglorz [29] using the
equational chéiacterization of purity, and was independently proved for modules over
noetherian rings by Fuchs [12], and for modules over general rings by Stenstrom [26] .
Shorter algebraic proofs were given subsequently by Azumaya [2] using homological
algebra, and by Laradji [16] using equations. Weglorz [29] proved that pure-injective
general algebras are precisely the equationally compact ones (for a definition of equa-

tional compactness of general algebras, see Mycielski’s seminal paper [21]).

Cyclic purity for modules was studied by Simmons [25] over commutative domains.
He defined a submodule N of an R-module M to be cyclically pure, if every coset
a+ N € M/N can be represented by an element whose annihilator is the same as

that of the coset, that is, if for each a+ N € M /N there exists b € N such that
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anng(a —b) = anng(a+ N). Equationally, this is equivalent to saying that: any

system of equations

T;T =a; (a.,-eN, r; €ER, jEJ) (0.1)

that is solvable in M is also solvable in N .

Simmons [25] discussed the basic properties of cyclic purity, its relationship to pu-
rity and to the weaker rd-purity, and also gave some homological aspects associated
with it. He discoveréd that the cyclically-pure-projective modules (i.e., mod-
ules that have the projective property relative to all cyclically-pure-exact sequences
0 — A— B — C — 0 of R-modules) are summands of direct sums of cyclics,
but as he pointed out, he did not obtain any result for cyclically-pure-injective
modules (i.e., modules that have the injective property relative to all cyclically-pure-
exact sequences 0 — A — B — C — 0 of R-modules). He established rela-
tionships between purity, rd-purity and cyclic purity over special classes of rings (for
example, Priifer domains, noetherian rings and Dedekind domains), and succeeded in
characterizing those modules that are cyclically pure in any rd-pure extension (that
is any module that contains them as rd-pure submodules). He called them totally

pure modules.

A concept similar to cyclic purity was studied by Azumaya [3] over an arbitrary
ring with identity, which he called single splitness. More precisely, he defined a
submodule N of an R-module M to be singly split in M, if for every submodule M,

of M which is a single extension of N (i.e, M,/N is cyclic), N is a direct summand of
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M. Various characterizations of these modules were given in (3]. Azumaya obtained
many results on his singl-pure-projective modules (i.e., modules C such that for
every pure-exact ‘sequence 0 —A-—B—C—0of R-modules, 4 is singly
split in B) and deduced some consequences from that. However, the only result he
obtained for singl-pure-injective modules (i.e., modules A such that for every pure-
exact sequence 0 — A — B — C — Q of R-modules, A is singly split in B) is
the equivalence of the following statements.
(a) M is singly-pure-injective.
(8) M is singly compact.
(c) For any R-module B and a single-pure-extension A of B, every homomorphism
B — M can be extended to a homomorphism A — M.
This clearly implies that every singly split submodule of a singly-pure-injective mod-

ule is single-pure-injective too.

As can be observed, not much has been done about singly-pure-injective modules as
compared to their homological duals the singly-pure-projective ones. The question
that naturally arises is whether it is possible to develop a theory of singly-pure-

injective modules parallel to the theory of pure-injective modules.

We have seen that, all notions of purity discussed here can be characterized equation-
ally. Although most proofs of results on the various types of purity for modules and
related concepts that have appeared in the available literature involved homological

and even topological arguments, we believe that by using equations, we can in many
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cases, get shorter and more direct proofs of the same results. As an illustration, let

us state the following result, for which a short equational proof was given in [16].

Theorem 2 Let M be an (R, S)-bimodule and let C be an algebraically compact right

S-module. Then Hom, (M, C) is an algebraically compact right R-module.(]

It should be noted that other injective properties have also been characterized in
terms of equations (see for example [15] for injectivity, [22] for rd-injectivity and

cyclically-pure-injectivity, and [17] for quasi-injectivity).

It is in view of this, that it was decided to use equational approaches in this work,
which is an attempt to discuss the following problems:

(1) Generalize as much as possible, the work of Simmons [25] on cyclic purity and
total purity to modules over arbitrary rings.

(2) Compare cyclic purity and total purity as defined by Simmons (25] with Azumaya's
single splitness and single pure-injectivity, respectively.

(3) Characterize some specific rings using total purity.

The work is organized as follows:

In Chapter 1, we give basic definitions and preliminary results that will be used in the
subsequent chapters. This will include terms used but not defined in this introduction.
In Chapter 2, we define compatibility and solvability of a system of equations. A
relationship between injectivity and solvability of certain systems of equations is es-

tablished. We conclude the chapter with equational proofs of some results on purity



(1}

and absolute purity for modules.

In the third chapter, basic properties of cyclic purity are proved using equations, and
some results in Simmons [25] are extended to arbitrary rings. Also rings all of whose
modules are singly compact are characterized.

In Chapter 4, coflat modules are defined equa'tionally, it is shown that this definition
coincides with the one given by Damiano [9]. The results we established in the
previous chapters are used to extend, and also to obtain equational proofs of some
results. We end the chapter by characterizing rings in which every singly compact

module is injective.



Chapter 1

PRELIMINARIES

In this chapter we give some basic definitions and preliminary results which are used
in the subsequent chapters. For the basic ring and module theoretic notions (for
example, modules, submodules, rings, subrings and ideals, rings and modules ho-
momorphisms efc.) we refer to any standard rings or modules text (for example
(1, 23, 24,27]).

Throughout this work, unless stated otherwise, R is an associative ring with identity.
An R-module, without further qualification, will always denote a left unital R-module.
For any set I, M’ and M) denote respectively the direct product and direct sum of

I copies of M, and their elements are represented by column vectors.

Definition 3 By a system of equations over an R-module M, we mean a set of
linear equations
Az =) (1.1)
where A = [ 4] il is a row-finite I x J matriz over R (I, J are indez sets of arbitrary
j€

6



cardinalities), b € M, and z is the column vector of unknowns tndezed by J.

Definition 4 The system (1.1) is said to be solvable in M if there ezists m € MY,
such that Am = b. The system (1.1) is said to be finitely solvable in M if any finite

subsystem of (1.1) is solvable in M.
Definition 5 Let M be an R-module. M is called free if M admits a basis.

Proposition 6 An R-module M is free if, and only if, M is isomorphic to RY) for

some I.00

Let {M;},; be a family of R-modules. The direct product, denoted by [] M;, is
iel

the module whose underlying set is the cartesian product of the M;, that is all vectors

m = (my),c; where m; € M;, and with module operations defined by (m;) + (n:) =

(m; +ny), and r(m;) = (rmy) for all r € R. The direct sum of the M; denoted

by g M;, is the submodule of 161'[IM, consisting of all (m;) such that all but a finite

number of m; are zero.

For each i € I, we can define canonical injections ¢; : M; — [[IM,-, and canonical
i€

projections m; : [[ Mi — M;. If m; € M;, we set ¢; (m;) to be the element of [] M;
iel iel

having m; in the i** coordinate and zero elsewhere, and 7; (Mi)iey) =mj (7 € I).

We note that
idy, fi=3j
77:'453' =
0 ifi#7.
These maps are also defined when the direct product is replaced by the direct sum, in

this case Y_ ¢;m; =1id @ M> this means that for each m in €@ M;, almost all 7; (m) =0
iel i€ iel



and Y} ¢;m; (m) = m.
i€l

Let A, B, C be R-modules, and suppose we have homomorphisms as shown below
! 9
A—B—=C (1.2)

then (1.2) is said to be an exact sequence if Im f = ker g. It follows that the sequence
0 — A L4 B is exact if, and only if ker f = O (that is if f is a monomorphism).
Similarly, the sequence B —Z+ C — 0 is exact if, and only if Ing = C (that is if g
is an epimorphism). An exact sequence of the form 0 — A B4 c—ois

called short exact sequence.

Definition 7 Let M be an R-module. M is called finitely generated if there exists
an ezact sequence R* — M — 0 for some positive integer n. In particular, M is
cyclic if there ezists sequence R — M —— 0 that is ezact. M is said to be finitely
presented if there ezists an ezact sequence R™ — R™ — M — 0 for some posi-

tive integers n and m.

Let V;, V2 and M be left R-modules, we denote the set of R-homomorphisms from V;
to Va by Homg (Vi, V2) or, for short, Hom (V1,V2) . Let a be a homomorphism from
Vi to V. Consider the mapping a, from Hom (M, V;) to Hom (M, V) defined by
setting a. (f) = af for all elements f of Hom (M, V;) . Similarly, we define o* from
Hom (Va, M) to Hom (Vy. M) by a*(g) = ga, for all elements g of Hom (V,, M).

These mappings are Z-homomorphisms, and are said to be induced by a. Now let
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0 — A L4 B -2, C — 0 be a short exact sequence of left R-modules, and let M

be a left R-module. Then the sequences:

0 — Hom(M,A) L+ Hom (M, B) 2+ Hom (M, C)

0 — Hom(C, M) L5 Hom (B, M) <> Hom (A, M)
are exact (see [1,5,27]).

Definition 8 An R-module M is said to be projective if for every short ezact se-
quence 0 — A L, B 2. ¢ — 0 of R-modules and R-homomorphisms, the

induced Z-homomorphism Hom (M, g) : Hom (M,B) — Hom (M, C) is surjective.

Definition 9 An R-module M is said to be injective if for every short ezact sequence
00— A .BLc—o0 of R-modules and R-homomorphisms, the induced Z-

homomorphism Hom (f, M) : Hom (B, M) — Hom (A, M) is surjective.

Remark 1 We shall discuss injective modules further in the next chapter.

Now let U and V be left and right R-module, respectively, and let A be a free Z-
module generated by the set U x V' (that is the set {(u,v) : u € U, v € V}). Consider

the submodule B of A generated by all elements

(u 4+ ,v) — (u,v) — (v, v)
(u,v +v') — (u,v) — (u. )

(ur,v) — (u,rv)
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where u, v € U, v, v € V, and r € R.
There is a mapping f : U x V — T (where T = A/B is a Z-module) obtained by
taking the inclusion mapping g : UxV — A, followed by the natural homomorphism
h : A — T. This mapping f is linear in both U and V, for the generating set of
B is chosen to ensure this. Now let W be any Z-moduleand let a : U x V — W
be any mapping that is linear in both U and V. then there corresponds a unique
Z-homomorphism 3 : T — W such that a = 8f (see [7, 23, 27]). The Z-module T
with these properties is called a tensor product of U and V' and is denoted by U®rV
or, for short, U ® V. This module always exists, and is unique up to isomorphism (see
[7, 23, 27]).
Let f: M — M’ and g : N — N’ be R-homomorphisms, vhere M and M’ are
right R-modules and N and N’ are left R-modules. This induces a homomorphism
f®g:M®N — M ® N’ given by (f®g) (m®n) = f(m) ® g(n) (where
f®ge€ Homzg(M®N,M'®N')). (Note that M ® N is generated by the elements
m®n, m € M,n € N). In particular, given a left R-module M and a submodule
N of M, the inclusion N C M induces a homomorphism V® N — V' @ M for any
right R-module V. This induced map in general need not be injective (see (7, 27]).
However, if 0— A L, B %, C — 0is a short exact sequence of left R-modules,

and M is a right R-module, then this sequence induces an exact sequence
MAM MeB ™M MeC —0

of Z-modules and Z-homomorphisms (see [27]).
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In [6], Cohn defined an exact sequence 0 — N — M —s C — 0 of left R-modules
as pure, if the induced sequence 0 — A®r N — A@rM — ARrC — 0
of Z-modules is exact for every right R-module A (see also [27]). 'I:here is no loss of
generality if NV is considered to be a submodule of M and N — M is the canonical
injection in the above exact sequence, in this case, the submodule N is said to be
pure in M. This was shown by Cohn [6] to be equivalent to the following equational

characterization.

Theorem 10 A submodule N of an R-module M is pure in M, if any finite set of
equations

n
Y ryzi=a; (i=1, 2, .., m) (1.8)

i=1

over N which is solvable in M is also solvable in N.C]

A weaker form of purity is given by

Definition 11 4 submodule N of an R-module M is said to be rd-pure in M (rd

here refers to relatively divisible), if tN = NN rM for allT € R.

Equationally, this is equivalent to saying that the equation
rt=a€N (1.4)

is solvable in N whenever it is solvable in M.

Remark 2 It can clearly be observed that, pure submodules are rd-pure.
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Let us also list some injective properties corresponding to the cited versions of purity.

In the following, M always denotes an R-module.

Definition 12 M is called rd-injective if it has the injective property with respect

to all ezact sequences 0 — B — A, with B an rd-pure submodule of A.

Remark 3 The concept rd-injectivity was shoun by Naudé, Naudé, and Pretorius to

be equivalent to a certain equational property (see [22]).

Definition 13 A submodule N of an R-module M is called a direct summand of

M if there exists a submodule N’ of M such that M = N @ N'.

Definition 14 M is said to be pure-injective if for any R-module B and a pure-
extension A of B (thatis A contains B as a pure submodule), every homomorphism
B — M can be extended to a homomorphism A — M, or, equivalently, if M is a

direct summand of any R-module in which it is pure.

Remark 4 It has been shoun by Puchs [12] and Warfield [28] that for any R-module

M, there erists a pure-injective module M such that:

(1) M is pure in M, and
(2) for any pure-injective R-module N containing M as a pure submodule, if « :
M — M and 8 : M — N are the inclusion maps, there erists a pure monomor-

phismf:M—-stuchthatﬂ:fa.

Definition 15 The R-module M in the above remark is called pure-injective hull

or pure-injective envelope of M.
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The following definition has been introduced by Maddox [18].

Definition 16 We say that M is absolutely pure if it is pure in every R-module

containing it as a submodule.

Pure-injective and singly pure-injective modules (see p. 3) are closely related to

algebraically compact and singly compact modules as defined below:

Definition 17 M is algebraically compact if any set of equations over M which
is finitely solvable in M is solvable in M. M is called singly compact if any set of

equations over M in one unknown which is finitely solvable in M is solvable in M.

Before stating the next theorem, obtained by Warfield [28], we give the following

definition:

Definition 18 A left R-module M is topologically compact if there is a compact
[ausdor{f topology on M making it a topoloical group and such that the left multi-

plications by elements of R are continuous.

Theorem 19 (Warfield 28, Theorem %) The following conditions on a left R-module

M are equivalent:

(1) M is pure-injective.

(2) M is a summand of a compact R-module.
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(3) M is algebraically compact.C]

As an illustration to our method, we give an equational proof of the following well-

known result:

Proposition 20 Let {M:},., be a family of left R-modules, the Jollowing are equiv-

alent:

(1) The direct product g M; is algebraically compact.

(2) Each M; is algebraically compact.

Proof. Let {M;},., be a family of left R-modules, put M = g M;, and let the
canonical injections and the canonical projections, associated with this direct product,
be respectively denoted by ¢; : M; — M and m; : M — M; (i € I).

(1) => (2): Suppose that M is algebraically compact. We show that for each i € [ ,

M; is algebraically compact. For a fixed i € I, let
Y ez =be (k€ K) 1)
jeJ
be any finitely solvable system of equations over M;. Then the system
Y riizi=¢:(be) (k€ K) (2)
i€d
is finitely solvable in M. Since M is algebraically compact, (2) is solvable in M by

(say) (m;)jes- So, Y riym; = ¢; (b) (k € K). This implics that m; (Z Tkjmj) =
i€l i€l

2 Tigmi(my) = 3 rgmyi = mig; (bi) = be (k € K) (where m;; is the i** component

€7 i€J

of m;). Since (mj;)jes is in M7, we have that (1) is solvable in M,. Hence M; is

algebraically compact.
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(2) = (1): Conversely, suppose that each M; (i € I) is algebraically compact. We

show that the direct product M is also algebraically compact. For this, consider the

system
Zrkaj = l)L. (k € ’() (1)
jeJ

over M. Suppose that (1) is finitely solvable in M. For cach i € [ this system gives

rise to the system
Zrkaj = m; (b)) € M; (k € K) (2)
jeJ

which is finitely solvable. By hypothesis M; is algebraically compact, it follows that

(2) is solvable in M;. So, there exists m;; € M; (j € J) such that Yo Trimy; =
j€J

i (bx) = by (for each i € I, k € K). Now let m; = (my;)ies be in M, then clearly
2 Ty = X Tij(Myj)ier = (Z Tkjmij) = (mi(b));ic; = (bri);e; = bi- Hence,
i€ j€J j€J er

the system is solvable in M and so, M is algebraically compact.O]

Example 21 Z is not algebraically compact. To show this, consider the following

system of equations, 2zo+3z) = 1, 2x9+3%z, = 1, 2z +3%z3 = 1, ..., 259+ 3"z, = 1,

..... over Z. We claim that this system is finitely solvable, but not solvable. For an

1-3"
2

solves the subsystem consisting of the first n equations. However, suppose that the

& = sn-l’ I = 31!—2, ceey T = 3: Ip = 1

arbitrary n in N, the set g =

system is solvable in Z. Then 2zy + 3z, = 1 implics that 3z, = 1 — 29 = 3%z, =
Bzz=...... Now suppose that aq, a,, ay, as, ..... is a solution of the system in Z, then
we have that 3a; = 3%a; = 3%a3 = ...., s0 that 3" | @, for all n in N. This implies
that a; = O (otherwise |3*| < |a;] for all n € N), from which it would follow that

1 ) . .
ag = 3 € Z, a contradiction. Hence, the system is not solvable in Z.03
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Remark 5 We shall see later that Z is a singly compact abelian group.

Now we define some specific rings that will be referred to later in this work.

Let R be a ring. An eiement x € R is called a right zero divisor if there exists
a non-zero element y € R such that yz = 0. One can similarly define a left zero
divisor. An element of R is called a zero divisor if it is both a right and a left zero
divisor. An integral domain is a commutative ring with no non-zero zero divisor.
A ring R is called principal ideal domain if it is an integral domain in which every
ideal is generated by only one element in R, that is, for every ideal L of R, L = Rr

for some r € R.

Definition 22 A ring R is left (respectively right) noetherian if every left (respec-

tively right) ideal of R is finitely generated.

Remark 6 It is a well-known fact that R is left noetherian if and only if every
ascending chain of left ideals of R is stationary, if and only if every non-empty set of

left ideals of R has a marimal element.

Definition 23 A ring R is Von Neumann regular if for each a € R, there is an

element a’' € R with aa’'a = a.

Definition 24 A ring R is left coherent if every finitely generated left ideal is

finitely presented.

Definition 25 A ring R is left semihereditary if every finitely generated left ideal

is projective. A semihereditary domain is called Priifer ring.
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Definition 26 A ring R is left hereditary if every left ideal is projective. A hered-

itary domain is called Dedekind Ting.



Chapter 2

ON SYSTEMS OF EQUATIONS

OVER MODULES

Here we give some basic definitions and preliminary results on systems of equations
over modules and some related concepts. In Section 2.1, we define compatibility as
a necessary condition for solvability. Some important characterizations of compati-
bility and solvability are also given. In Section 2.2, an equational characterization of
injective modules is given. We also give equational proofs of some results related to
injectivity. We end the section by defining, as well as equationally characterizing a
weaker notion of injectivity, that is divisibility of modules. A relationship between
injectivity and divisibility is also given. In Secction 2.3, a result given by Fuchs in
{13, p.115] on purity for abelian groups is extended to modules, and the result is
proved using equations. We end the section with equational proofs of some results
on absolutely pure modules, as well as stating without proof some results that char-
acterize rings in terms of absolute purity.

18
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2.1 COMPATIBILITY AND SOLVABILITY

Definition 27 The system of equations
Az =b (2.1)

over an R-module M (where A = [ ;] il i3 a row-finite I x J matriz over R, I, J are
indez sets of arbitrary cardinalities, b = [b],, is in M', and x is the column vector of
unknouns indezed by J) is said to be compatible, if when a linear combination of left
members of the equations vanishes, then it remains zero when the corresponding right
members are substituted. More precisely if given any element A € R\, the equation

AT A =0 implies that \Tb = 0.

Let us consider the following example. Oz = 1 is a system of one equation over Z.

Clearly the system is not compatible and also not solvable in Z.

The following result shows that finite solvability of any system of equations is stronger

than compatibility of the system.

Proposition 28 Let M be an R-module, then every finitely solvable system of equa-

tions over M is compatible.

Proof. Suppose that the system (2.1) is finitely solvable. We show that it is com-
patible. For this, let « € R, and let I, be the support of & (that is, the set

{i € I: a; #0}). Suppose that a” A = 0. Since the system Y r;;z; = b; (where i € I,)
i€t
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is finite, by hypothesis, the system is solvable by (say) (m;);cs, and so, 3~ rijm; = b;
i€J
(for all i € I,). This implies that 0 = 3~ a; " r;jm; = ¥ a:b; = aTb (since for all
i€l,  jel i€l, .
i € I'\ I,, a; = 0). Hence, the system is compatible.(J

Remark 7 The converse of the above proposition is not always true. For example,
consider the equation 2z = 1 over Z, then for any r in Z, r2 = 0 implies that r =0,
and so rl =0, hence, the equation is compatible. However, the equation is clearly not
solvable in Z. In general, let R be any domain, end L be any non-zero proper ideal of
R. Consider the system of equations rz = r (r € L\ {0}) indezed by L. Clearly, the
system 1is compatible, but it is not solvable in L. This, together with Proposition 28,
shows that compatibility is a necessary but not sufficient condition for the solvability

of a system of equations.

The concept of compatibility and solvability defined above can be looked at from

another direction. Following Kertész [15], the left members of (2.1) can be thought

of as elements of the free R-module X (X is isomorphic to R™)) over the set (z;);es

of unknowns. Let Y be the submodule of X generated by all the left members

fi= %rgj:c,- of (2.1). The next two results are due to Kertész [15] . We now give their
J

equational proofs.

Proposition 29 Let X, Y be as above, then the correspondence f; v b; (i € I)

induces a homomorphismn : Y — M if, and only if, the system (2.1) is compatible.

Proof. Suppose that f; — b; induces a homomorphism 7 : Y — M, we show that

(2.1) is compatible. Let @ € R, and suppose that ¥~ a; f; = 0 (almost all a; are zero) .
i€l
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Since 7 is a homomorphism, we have 0 = 7§ (Z a; f,—) = Y a;n(f:). By hypothesis
i€l i€l

EZI an(fi) = g a;b;. This implies that %;a.-b,- = 0. Hence the system is compatible.
Conversely, suppose that (2.1) is compatible, since Y is generated by f; = _ezlr,-,-z_.,-,
it follows that forally € Y, y = 3 i f; for some r; € R (almost all r; are zerJo) . Now
defineamapn:Y — M, by g (Z:r,-f.-) = > _7ib;, and let rrifi= >_ sifs, it fol-
lows that Z_(r,- — 8;) fi = 0. Since the system is compatible, we have Z(r,- —3;)b; =0,
and so, Zrib,- = Zs,-b,—. Hence, n is well-defined, and for any y;, 1 in Y, with
n = Z:r,-f.-, Y2 = Z:s,-f,- for some r;, s; € R (almost all r;, s; are zero), n (y; +12) =
1S+ Sah) = (S0+ 005) = Slrvksidbe = Sriit o =n () +
7 (y2) . Similarly, for all 7 in R, n(ry;) = ¢ (rzi:r‘-f,-) =1 (;rr,-f.-) = zi:rr,-b,- =

r Z r;:b; = r1 (y1) . Hence 7 is a homomorphism.Od

Proposition 30 Let X, Y be as above, then (g;)jes is a solution of (2.1), if, and only
if, the correspondence z; v g; (j € J) extends to a homomorphism 0 : X — M

whose restriction to Y is 1.

Proof. Suppose that (g;)jcs is a solution of (2.1), we show that the correspon-
dence z; — g; (j € J) extends to a homomorphism § : X — M whose restric-
tion to Y is 7. Since X is freely generated by the set (z;);cs, for each z € X, z

can be written uniquely as z = }_ s;z;, for some s; € R (almost all s; are zero).
j

Now define a map 8 : X — M by @ (Es,-x,-) = Y sjg;, and let Y s;z; =
J J J

Y_riz;, it follows that Y (r; — sj)z; = 0, and so, from the uniqueness above we
j J
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have r; = s; for all j. This means that }_(r; — s;)g; =0, and so, _rjg; = Y s;g;
i b] 7

Hence, § is well-defined. For any z), z; € X, 2y = Y rjz;, 20 = 3 s;z; for
7 7
some s;, 7; € R (almost all s;, r; are zero) . 8 (z; + o) = 4 (E TiTi + Zs,-z,-) =
7 7
0| 2(rj + s5)z5 ) = 3(rj + 55)g; = 2ori9; + X 5595 = 0(z1) + 6(x2). Similarly, for
2 J 7 7

all 7in R, 8 (rz,) =40 (rerz,-) =8 (er,-zj) =) rrigi =71y Tig; =10 (T1).
J J j J

Hence, 6 is a homomorphism. Now for ally € Y, y = 3 s; ) ryjz; for some
T jed

i jeJ

(si)iel € R([), it follows that O(y) =0 (Z Si z T L5 ) = Zs,-ﬁ (Z rijxj) =
J i jeJ

> 8i ) Tijg; = D sib; (since (g;);es is a solution of (2.1)) . This means that ¥~ s;6; =
{ jeJ i i

1

> s (f)=n (; Sifi) =7 (; 3:';:}?:'511) =1 (y) - Hence, 6 [y=1n.

Conversely, suppose that z; — g; (j € J) extends to a homomorphism 6 : X —s M

whose restriction to Y is 7, we show that (g;);es is a solution of (2.1). For each 1,

we have ) rig; = D ri0(z;) =6 ( r,-,-xj) =0(f;) =n(f:) = b; (since § is a
jeJ i€t i€J

homomorphism and ¢ [y= 7). Hence (g;)jes is a solution of (2.1).00

Remark 8 As observed above, compatibility is only a necessary but not sufficient
condition for solvability of a system of equations. In the next section we shall see

under what condition will compatibility imply soluvability.



23
2.2 EQUATIONAL CHARACTERIZATION OF

INJECTIVITY

Injective modules have been defined in the previous chapter (see Definition 9) as
modules that have the injective property relative to all short exact sequences. The

next result gives various characterizations of injective modules.

Proposition 31 (See for ezample [24].) An R-module M is said to be injective if it

satisfies any of the following equivalent conditions

(1) For any R-modules A and B with A containing B as submodule, if «: B — A
is the canonical inclusion, then given any homomorphism f : B — M, there eTists
a homomorphism B : A — M such that f = Po.

(2) For any left ideal I of R, if a : I — R is the canonical inclusion, then given
any homomorphism f : I — M, there exists a homomorphism 8 : R — M such
that f = fa.

(3) Given any exact sequence 0 — A — B — C — 0 of R-modules, the sequence

0 — Homg (C,M) — Homg (B, M) — Hompg (A, M) — 0 is ezact.

Remark 9 The second condition of the above definition is known as Baer’s criterion

for injectivity.

Theorem 32 (See [24].) Let {M;},., be a family of injective left R-modules. Then,

[T M; is injective.3
iel
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Theorem 33 (See [24].) Let {M;},., be a family of left R-modules. If the direct sum

€ M; is injective, then each M; is injective.(3
iel

Remark 10 The converse of the above theorem is true in general only if the index

set I is finite, as the following result shows:
Theorem 34 The following statements are equivalent:

(1) R s a left noetherian Ting.

(2) Every direct sum of injective R-modules is injective.(J

Remark 11 The above theorem is knoum as Bass’ theorem. We shall restate and

prove this theoremn in Chapter 4.

Remark 12 For any R-module M, there ezists an injective R-module E (M) such

that:

(1) M is a submodule of E (M),
(2) for any injective R-module A with A containing M as a submodule, if a: M —

E(M) and B : M — A are the inclusion maps, there exists a monomorphism

f:E(M)— A such that B = fa.

Definition 35 The R-module E (M) in the above remark is called injective hull or

injective envelope of M.

Remark 13 For any R-module M, the injective hull E (M) exists and is unique up

to isomorphism (see for example [24]).
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We now prove the following equational characterization of injective modules.
Theorem 36 For an R-module M, the following are equivalent:

(1) Every compatible system of equations over M is solvable.

(2) Every compatible system of equations over M in one unknoun is solvable.

(3) M 1is injective.

Proof. (1) = (2): If every compatible system of equations over M is solvable, then
clearly every compatible system of equations over M in one unknown is solvable.

(2) == (3): Suppose that every compatible system of equations over M in one
unknown is solvable, we show that M is injective. For this, let L be any left
ideal of R, and let £ : L — M be an R-homomorphism. Consider the Sys-
tem rz = £(r) (r€L). Let a;, a3,..., @, € R, and suppose that ia,-r,- =0

t=1

(n€L,i=1,2, .., n), it follows that 0 = £ (f;l a,-ri) - anaif (r:), which im-
plies that the system is compatible. By hypothesis, the system is solvable by some
m € M. Now define a mapping 3: R — M by 3 (r) = rm, and suppose that r = s
(r, s € R). Then clearly rm = sm for all m in M, and so, 3 is well-defined. For all
r, T2 in R, B(r1+12) = (m+r)m =rym + ram = B8(ry) + B(r2) . Similarly, for
all s € R, B(sr) = srm = sf(r). So, B is an R-homomorphism. Now for all r € L,
B(r) =rm =§£(r), so B extends €. Hence by Baer’s criterion, M is injective.

(3) => (1): Suppose that an R-module M is injective and let (2.1) be any compati-
ble system of equations over M. Let X and Y be as in Proposition 29, since (2.1) is
compatible, the correspondence )" r;;z; — b; induces a homomorphism 7 : Y — M.

jeJ

Since M is injective,  extends to a homomorphism 6 : X — . Therefore, it follows



from Proposition 30 that the system is solvable.[]

It is a well-known fact that an R-module M is injective if, and only if, it is a direct
summand of every module containing it as a submodule (see for example [24]) . Along

this direction we prove the following.

Proposition 37 A submodule N of an R-module M is a direct summand of M (that
is, the canonical homomorphism f : N — M splits) if, and only if, every compatible

system of equations over N solvable in M is also solvable in N.

Proof. Suppose that NV is a direct summand of M, and let erijzj =b; (i€ be
j€
any compatible system of equations over V. Suppose that the system is solvable in
M by (say) m; (j € J). Then, %:Jr,-jmj =b; € N. Now let f : M — N be the
J
projection map, then b; = f(b;) = f (%rijmj) = %r,—,— f(m;). Since f (m;) € N
7 7
(for all j € J), the system is solvable in N.
Conversely, suppose that every compatible system of equations over N solvable in M
is also solvable in N. We show that NV is a direct summand of M. For this, consider

the system of equations

T1Zm, + ToZTm, — Trimy+rome = 0

over N (for all r, 72 € R, my, my € M, n € N), where the unknowns (Zm)mear are
indexed by M. This system is clearly solvable in M by z,, =m (m € M) . By hypoth-

esis, it has a solution n,, (m € M) in N. Consider the mapping f : M — .V given
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by f(m) = nn. Clearly f is well-defined, and for any m;, m, in M, f(my +my) =
Tom, +mg = T, + Nm, (by taking 7y = r, =1 in the first equation, and using the fact
that n,, is a solution of the system), and so we have f (m; +m,) = f (my) + f (my) .
Similarly, for all 7 € R, f(rmi) = nem, = rngm, = rf (m;) (by taking r, = r and
r2 = 0 in the first equation and using the fact that n,, is a solution of the system).
Hence f is an R-homomorphism. Also for alln’ € N, f (n') = ny = n’ ( by the second

equation), which implies that f is a projection, and so, V is a direct summand of M.[J

The next two results are modifications of Fuchs [13, p. 103, Exercises 1 and 2] from

abelian groups to modules.

Proposition 38 Let M be an injective R-module, then any system of equations over

M is solvable in M whenever it is solvable in an R-module containing M.

Proof. Suppose that the system (2.1) is solvable in N, where N is an R-module
containing M, this implies that there exists n € N7 such that An = b. We show that
the system is solvable in M. Since M is injective, by Theorem 36, it suffices to show
that the system is compatible. For this, let & € R'), and suppose that oTA = 0,
then 0 = (oTA) n = a7 (4n) . It follows from above that aTb = 0. Hence, the system

is compatible. So, the system is solvable in M.(J

Proposition 39 A system of equations over an R-module M is compatible if, and

only . it is solvable in some R-module containing M.
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Proof. Suppose that the system (2.1) is compatible, and let E (M) be the injective
hull of M, then M is a submodule of E (M) and the system is solvable in E (M) by

Theorem 36.

Conversely, if (2.1) is solvable in some R-module N containing M, then there exists
n € N7 such that An = b. Now let a € R(D, and suppose that T A = 0. Then we
have that (o A)n = aT(An) = 0. It follows from above that a”h = 0. Therefore, the

system (2.1) is compatible.[]

Let us now introduce a weaker form of injectivity.

Definition 40 Let M be an R-module. An element m € M is said to be divisible
if for every r € R with v not a right zero-divisor, there exists m' € M such that

rm/ =m. M is called divisible if every element m € M is divisible.

One can easily show that M is divisible if each compatible equation of the form

rc=be M

is solvable in M.

Remark 14 Since the system rz = b (with r not a right zero-divisor) is compatible,
it follows that every injective module is divisible. The two concepts, injectivity and

divisthility, coincide if R is a principal ideal domain (see [24]).



2.3 PURITY FOR MODULES

Different types of purity have been defined for modules. The definitions and a brief
discussion about some of these types with their equational characterizations were
given in the previous chapter. Although these are the forms of purity mostly referred
to, there are various other types of purity for modules (see [3,13,22,25 and 26]). In
this section we prove more results in this subject using equations.

We first give the equational proof of the following important result. It is a general-

ization of Lemma 26.1 [13, p. 115] to modules.

Proposition 41 Let A, B be submodules of an R-module M such that B C A C M.

Then we have:

(1) If B is pure in 4, and A is pure in M, then B is pure in M.

(2) If A is pure in M, then A/B is pure in M/B.

(3) If B is pure in M, and A/B is pure in M/B, then A is pure in M.

Proof. Suppose that Zn: r4T; = b; (i =1, 2, ..., m) is any finite system of equations

=1
over B that is solvable in M, since B is a submodule of A, we have that b; € A

(i =1, 2, ..., m). By hypothesis, the system is solvable in A. Since B is pure in A.
it follows that the system is solvable in B. Therefore, B is pure in M and so we have

(1).

To show (2), suppose that the system ) rjz; =ai+B € A/B (i=1, 2, ... m)

=1
is solvable in M/B, then }_ ri; (m; + B) = a; + B (for some m; + B € M/B) . This

=1

implies that 3~ riym; + B = a; + B, so that }_ r;m; — a; = b; (for some b; € B).
J=l j=1
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Hence, )  r;jm; = a; + b; € A. By hypothesis A is pure in M, so there exist a;eA
=1

n n
(1 <j <n) such that )_ rya; = a; + b; € A, which implies that Y, T —a; = by
=1 =1

So, jX::lr,-ja.;- + B =a; + B € A/B, which shows that glr,-j(a; +B)=a;+Bec A/B.
Hence, A/B is pure in M/B.

For (3), let ilrij:z:j =a; € A(i=1, 2, .., m) be solvable in M, then there exist

=
m; € M (1 < j<n) such that ilrijmj =a; € A, and so _ilr,-,-(mj-{-B) =a; +
3= i=

B € A/B. Since A/B is pure in M/B, there exist a; € A (1 < j < n) such that
ﬁ;lr,-j(a;.+3) = a; + B. This means there exist b; in B (1 <i <m) such that
=

; rija = a; + by, and it follows that Ji;l ri (&) —m;) =b; € B. As B is pure in M

and a; —m; € M, there exist b; € B (1 < j < n) such that 3 78} = b;. Therefore,
Jj=1

n
we have y_ r;; (af — b;) = a; € A. Since a;—b e Aforj=1,2, .., n, it follows that
Jj=1

the system ) ri;z; = a; is solvable in A. Hence A is pure in M.O]
j=1

Remark 15 It can be observed from (2) and (3) of the above proposition that the
natural correspondence between submodules of M/B and submodules of M containing

the pure submodule B preserves purity.

The next result shows that every direct summand N of an R-module M is pure in

M.
Proposition 42 If N is a direct summand of an R-module M then N is pure in M.

Proof. Suppose that N is a direct summand of an R-module M. We show that .V is
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pure in M. For this, consider the system of equations
Z’”z‘j%‘ =g (i=1, 2, .., m) (2.2)
j=t
over N, solvable in M by say m; (j =1, 2, ..., n). It implies that Yrymj=a; € N
i=1

(i=1,2, .., m).If f: M — N is the projection map, it follows that a; = f(a;) =

f (Z r,jmj) = Y riif (m;) . Since f(m;) eN(j=1, 2, ..., n), we have that the
j=1 i=1

system is solvable in V. So N is pure in M.0J

Absolutely pure modules have been defined in the previous chapter as modules that
are pure in every module containing them as submodules.

We now prove some results about absolute purity. First we establish a proof of the
equational characterization of absolutely pure modules, stated (without proof) by

Megibben {20, Theorem 1].

Theorem 43 An R-module M is absolutely pure if and only if every compatible finite

system of equations over M is solvable in M.

Proof. Suppose that M is absolutely pure and let the system (2.2) be any compatible
finite system of equations over M, by Proposition 39, the system is solvable in some
R-module N containing M. Since M is absolutely pure, we have that M is pure in
N, so the system is solvable in M.

Conversely, suppose that every compatible finite sy§tem of equations over M is solv-
able in M. We show that M is absolutely pure. For this, let N be any R-module

containing M as a submodule, and suppose that (2.2) is any finite system of equations



32
over M solvable in N. It follows from Proposition 39 that the system is compatible. By

supposition, it is solvable in M, and so M is pure in N. Hence, M is absolutely pure.(J

The following results are due to Maddox [18] . We now give their equational proofs.

Proposition 44 Any pure submodule (and hence any direct summand) of an ab-

solutely pure module is absolutely pure.

Proof. Suppose that N is a pure submodule of an absolutely pure left R-module
M. We show that V is absolutely pure. For this, consider the system of equations
_z'":l riiZ; =a; (i =1, 2, ..., m) over N, suppose that the system is compatible. Since
i=

N is a submodule of M, it follows that the system is over M , and so, by Theorem
43 the system is solvable in M (M being absolutely pure). Since N is pure in M, we
have that, the system is also solvable in N, and so, by Theorem 43, N is absolutely

pure.[]

Proposition 45 An R-module M is absolutely pure if and only if M is pure in

E(M).

Proof. If M is absolutely pure, then clearly M is pure in E (M).

Conversely, let M be pure in E (M), we show that M is absolutely pure. Let (2.2)
be any compatible finite system of equations over M. We show that this system is
solvable in M. Since the system is compatible, it follows from Theorem 36 that the

system is solvable in E (M) . Also since the system is finite and M is pure in E (M).
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we obtain that the system is solvable in M. So, by Theorem 43, M is absolutely

pure.[]

Remark 16 In the above proposition, the injective hull can be replaced by any injec-

twe module containing M as a submodule.

Remark 17 It has been shown in [18] that any direct sum of absolutely pure modules
is absolutely pure. Also it is a well-known fact (see Theorem 34) that e ring is left
noetherian if, and only if, any direct sum of injective modules is injective. Hence,
if the ring R is not left noetherian, then, there exist absolutely pure left R-modules
which are not injective (for examples of absolutely pure modules that are not injective,
see Maddox [18]). If the ring R is left noetherian, the two concepts injectivity and

absolute purity coincide, as the following result shows:

Theorem 46 (Megibben [20, Theorem ) A ring R is left noetherian if, and only if,

every absolutely pure R-module is injective.]]

Remark 18 We shall give a proof of a generalized version of this result in Chapter 4.

In the same order of ideas, we state without proof some results that characterize rings

in terms of absolute purity.

Theorem 47 (Maddoz (18, Theorem 1}) If M is an R-module over a Dedekind do-

main R then the following statements are equivalent:

(1) M is absolutely pure.
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(2) M is injective.

(3) M is divisible.CI

Theorem 48 (Megibben [20, Theorem 5)) A ring R is regular if, and only if, every

R-module is absolutely pure.(]

Theorem 49 (Megibben (20, Theorem £2]) For a ring R the following conditions are

equivalent:

(1) R is semihereditary.
(2) Each finitely generated submodule of a projective R-module is projective.

(3) The homomorphic image of an absolutely pure R-module is absolutely pure.(d

Theorem 50 (Megibben [20, Theorem 6)]) Let R be a commutative integral domain.

Then R is a Priifer ring if and only if every divisible R-module is absolutely pure.dd



Chapter 3

ON CYCLIC PURITY

We now concentrate more on the main theme of this thesis. In this chapter, we prove
some of the basic properties of cyclic purity using equations. Some results in Simmons
[25] are extended to arbitrary rings. This leads us to a new definition of total purity.
It is shown that: cyclic purity as defined by Simmons [25] coincides with Azumaya's
single splitness, and singly compact modules as defined by Azumaya [3] coincide with
our newly defined totally pure modules. Also injective modules are characterized in
terms of absolute purity and single compactness. We state without proof some results
that show how the coincidence of different notions of purity characterizes some classes
of rings. We end the chapter by characterizing rings all of whose modules are singly

compact.
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3.1 CYCLIC PURITY

We recall that a cyclically pure submodule NV of an R-module M is defined by Sim-
mons [25] as a submodule, in which every coset a+N can be represented by an element
whose annihilator is the same as that of the coset. That is, for each a+ N € M /N

there exists b € N such that anng (@ — b) = anng (a + N).

We now give the following alternative definition of cyclic purity.

Lemma 51 Let N be a submodule of an R-module M. The following statements are

equivalent:

(1) N is cyclically pure in M.

(2) For all a € M, there ezists b € N such that if ra € N (where r € R) . then
ra = rb.

Proof. (1) = (2): Suppose that V is cyclically pure in M, and let a + N € M/N
for some a € M. By (1), there exists b € NV such that anng (a — b) = anng (a + N).
Now suppose that ra € N, it follows that r(a+ N) = N. This implies that r €
anng(a+ N) =anng(a —b), and so r (a — b) = 0. Hence ra = 7b.

(2) = (1): Suppose that a + N € M/N where a € M, and let r € anng (a + N).
It follows that ra € N. So, by (2) there exists b € N such that ra = rb, this im-
plies that r(a —b) = 0. Consequently, r € anng(a —b), and so anng(a+ N) C
anng (a — b) . Clearly for all r € anng(a —b) with b in N, r € anng (a + V). Hence

anng(a+ N) =anng(a —b). So, N is cyclically pure in M.0J
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Now we prove the following important result that gives various useful characteriza-
tions of cyclically pure submodules. It is a generalization of Simmons [25, Proposition 1]

to arbitrary rings.

Proposition 52 For a submodule N of an R-module M, the following are equivalent:

(1) N is cyclically pure in M.
(2) For any a € M and any left ideal L of R with La C N, there erists b€ N such
that L(a —b) =0.

(8) Any system of equations
riz=b;eN (jeJ),

with r; € R and one unknown z, is solvable in N whenever it is solvable in M.

(4) All cyclic modules possess the projective property relative to the eract sequence
00— N—M— M/N—0.

Proof. (1) => (2): Suppose that N is cyclically pure in M. Let a € M., and let L
be any left ideal of R such that La C N. Then ra € N for all r € L. It follows that
r(a+ N) =N for all r € L. This implies that r € anng(a + N) = anng (a - b) for
some b € N (since N is cyclically pure in M) . Hence, r (e —b) = 0 for all r € L, so
that L (a —b) = 0.

(2) => (3): Assume (2) and consider the system rjz = b; € N (j € J). Suppose
that the system is solvable in M, then there exists m € M such that ;m =b; € N
(jeJ).Nowlet L = {re R:rm e N} = anng(m+ N). Then L is a left ideal

of R with Lm C N. So by (2), there exists n € N such that L(m —n) = 0. Since
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r;m=2b;isin N forall j € J, it follows that r;isin L forall j € J. This implies that
rim =rmn=>b; € N for all j € J, and so, the system is solvable in N by n.

(3) => (4): Suppose that every system of equations in one unknown over N solv-
able in M is also solvable in N. Consider the exact sequence 0 — N — M -1
M/N — 0. Let g : P — M/N be a homomorphism, where P is any cyclic
R-module generated by (say) p. Since f is an epimorphism, there exists m € M
such that f(m) = g(p). Now let L = {r€ R:rm € N}, and consider the sys-
tem rz = rm € N (for allr € L). This system is clearly solvable in M by m €
M, so by hypothesis, there exists n € N, such that rm = ™ for all r € L.
This implies that 7 (m ~n) = 0 for all r € L. Define a map ¢ : P — M such
that ¢ (p) = m — n, and let rp = sp for some r, s € R, then this implies that
(r—s)p=0, and so, 0 = g((r — s)p) = (r ~ s)g (p) = (r — s) (m + N) . This shows
that (r — s)m € N, it follows that r — s € L. Hence (r — s)m =(r — s)n, so that
r(m —n) = s(m —n). Hence p is well-defined. Now for any p;, p» in P, p, = rip
and ps = rp for some ry, 2 in R. So ¢ (p1+p2) = @ (rp+rap) = @ ((ry +12)p) =
(ri +12)(m~n)=r (m—n)+r2(m —n) = (p)+¢ (p2) - Similarly for any r € R,
@ (rp1) = ¢(rrip) = rri(m —n) = r(p1). Hence ¢ is a homomorphism. Since
¢(p) =m—n, fo(p) = f(m—n) = f(m) - f(n) = f(m) = g(p). Since P is
generated by p, by linearity we have fy = g.

(4) = (1): Assume (4), then for any a + N € M/N,let L = {r € R:ra € N},
which is a left ideal of R. Consider the cyclic module R/L and the exact sequence
0 — N— M L M/N — 0. Let g : R/L — M/N be defined by g (1 + L) =

a + N, suppose that ry + L = ry + L (for some ry, r5 € R). then r; — ro € L. This
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implies that (r, — rp)a € N, and so ria + N = ra + N. Hence g is well-defined.
For any ri, 72 in R, g((n+L)+(r2+L)) = g((ri+m)+L) =(r; + ro)a + N
=mna+ra+ N =(ria+N)+(r.a+ N) =g (r; + L) + g(r + L). Similarly, for any
r€R,g(r(n+L)=g(rrn+L)=rra+N =r(ria+N) = rg(ri+ L). Hence g is
a homomorphism. So by hypothesis, there exists a homomorphism ¢ : R/L — M,
such that fo =g. Hence, f(a) =a+N=g(1+L) = fo(1+1L) =f(e(l+ L)) =
f(d') = o' + N (where ¢’ = ¢ (1 + L)) . This implies that a — ¢’ € N. Now for all
re€Ll,rd =rp(1+L)=¢(r+L) =0.It follows that with b = a—a, ra=rb,
and so r(a—0b) = 0 for all  in L. Hence, anng(a+ N) C anng (e — b) . Simi-
larly, if » € anng(a —b), thenra = rb € N, and so r € anng(a+ N). Hence,

anng(a —b) = anng(a + N). So N is cyclically pure in M.0O

Remark 19 The equivalence of (1) and (3) can be proved directly using equational
arguments. Hence, (3) is the equational characterization of cyclic purity. It is now

clear that cyclically pure submodules are necessarily rd-pure.

"The following result was given by Simmons [25, Remark C] for commutative domains.
We prove it for arbitrary rings. We first say that an R-module M is torsion-free if,

and only if, M # 0 and anng(m) =0 forall m € M \ {0}.

Corollary 53 If N is a submodule of M with M/N torsion-free. then N is cyclically

pure in M.

Proof. Let M/N be torsion-free. This implies that annp(a +N)=0forall a € M

with a € N. It follows that, for all b € N, anng(a — b) = 0. Since V is a submodule.
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0 € N. Hence, forall a + N € M/N, anng(a — 0) = anng(a + N). This shows that

N is cyclically pure in M.O

The next result shows that a direct summand is always cyclically pure.

Proposition 54 If N is a direct summand of ean R-module M then N is cyclically

pure in M.

Proof. Exactly the same as in Proposition 42 replacing the finite system (2.2) with

an arbitrary system of equations in one unknown.(J

Now we show that a cyclically pure submodule N of an R -module M is also cyclically

pure in any submodule of M containing it.

Proposition 55 Let N be cyclically pure in M, and let M’ be any submodule of M

containing N. Then N is cyclically pure in M'.

Proof. Suppose that N is cyclically pure in M, and let M’ be any submodule of
M containing N. Consider the system of equations r;z = a; € N (j € J, T; €R).
and suppose that it is solvable in M’. Since M’ is a submodule of M , the system is
solvable in M. By hypothesis NV is cyclically pure in M, so the system is solvable in

N. Hence N is cyclically pure in M'.[J

Now we show that every cyclically pure submodule splits in all its single extensions,

before then. let us recall the following definition.
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Definition 56 (Azumaye [3]) For any submodule N of an R-module M, M 1is said
to be a single extension of N if the factor module M/N is cyclic, that is, if there
is a cyclic submodule M, of M such that M = M, + N. If, in addition, N is pure in

M, then M is said to be a single pure extension of N.

Proposition 57 If M is a single extension of N, and N is cyclically pure in M, then

N is a direct summand of M.

Proof. Suppose that M is a single extension of N, this implies that
M/N = (Rmg+ N)/N, for some m, € M.

The system rz = rmq (for all 7 € R such that rmg € N) is clearly solvable in M by
mg. Since N is cyclically pure in M, there exists ng € N such that ™My = TNy
(for all 7 € R, with rmg € N) . Now define f : Rmg + N — N by f(rmg+n) =
rno+n (where r € R and n € N). Suppose that rmg+n = smg+n’ (for some r, s in
R and n, n’ in N). This implies that (r — s)mg =n’ —n € VN, and so (r—s)mg € N.
It follows that (r — s)mg = (r — s)ng (since N is cyclically pure in M). This shows
that rng + n = sng + n’, and so f is well-defined. Now for all m;, m, in Rmg + N,
my = rymg + Ny, Ma = romy + ny (for some vy, ro € R and ny, n» € N). It follows
that f (m; +mg) = f((rimo +ny) + (ramo +ng)) = f((ry +12) mg + (ny +n2)) =
(r1+72) no + (n1 + n2) = (ring +n1) + (reno +n2) = f (rimg +ny) + f (ramg + na).
Similarly, for all ' € R. f[7/(rmo+n)] = f(F’rmg+rn) = (Pr)ng + ’n =

r'(rng +n) = r'f (rmg+ n). Hence, f is an R-homomorphism. Now for all n € i\,
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f(n) = f(0.mg +n) = 0.ng +n = n. This shows that f is a projection map. So N is

a direct summand of M.O

The following definitions are found in Azumaya [3], first suppose that A and C are

left R-modules and f : A — C is an epimorphism with kernel B, then:

Definition 58 The epimorphism f is pure if Hom (M, f) : Homg(M,A) —

Hompg (M, C) ts an epimorphism for all finitely presented left R-modules M.

Definition 59 f is M-pure if Hom (M, f) : Homg (M, A) — Homg (M,C) is an

eptmorphism for the left R-module M.

Definition 60 f s said to be singly split if f is M -pure for all cyclic left R-modules

M.

Remark 20 With the same A, B, C as above, Azumaya (3] observed that by Warfield
[28, Proposition 3| f is pure if and only if B is pure in A. This is equivalent to the

equational characterization of purity we gave in Chapter 1.

Definition 61 If u = [r;;] il 15 any row-finite I x J matriz over R, then the sub-
J

module B of an R-module M is said to be u-pure if a system of linear equations

pz =b (where b € M' and z is the column vector of unknowns indezed by J) over B

is solvable in B whenever it is solvable in M.

Definition 62 A submodule N of an R-module M is said to be singly split in M.

if N is a direct summand of all its single extensions in M.
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Azumaya [3] gives the following characterizations of singly split submodules of an

R-module.

Theorem 63 Let M, N be left R-modules and f : M — N be an epimorphism with

kernel B. Then the following are equivalent:

(1) f is singly split.

(2) B is singly split in M.

(3) B is p-pure in M for all matrices p of single column over R.

(4) If M, is any cyclic submodule of M then there is a homomorphism M, — B

which fizes M,(| B element-wise.

We now show that cyclic purity of Simmons [25] and single splitness of Azumaya [3]

coincide.

Proposition 64 Let M be any R-module, and N be any submodule of M, the fol-

lowing are equivalent:

(1) N is cyclically pure in M.

(2) N is singly split in M.

Proof. (1) == (2): If N is cyclically pure in M, then by Propositions 55 and 57, N
is singly split in M.

(2) = (1): Suppose that N is singly split in M. Let the system r;z = b; € N
(j € J) be solvable in M by (say) mg € M, then the submodule M’ = Rmg+ N of M

is a single extension of N. Since N is singly split in M, there exists a homomorphism
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f : Rmg+ N — N such that f(n) = n (for all n € N). By hypothesis r;my € N
(for all j € J), it follows that, b; = r;mg = f (rjmg) = r;f (mo) . Since f (mg) € N,

the system is also solvable in N. This shows that N is cyclically pure in M.00

3.2 TOTAL PURITY

We recall that Simmons in [25] defined a submodule N of an R-module M (where R
is commutative domain) to be totally pure if N is cyclically pure in any R-module
containing it as an rd-pure submodule.

He characterizes the totally pure modules for Priifer domains [25, Theorem 6] as fol-

lows:
Theorem 65 For a Prifer domain R, the following are equivalent:

(1) M is totally pure.
(2) M is cyclically pure in its pure injective hull M.
Using this result, Simmons [25] deduced the following result connecting divisibility

and injectivity of modules over Priifer domains.

Theorem 66 Let R be a Prifer domain and D a divisible R-module. The following

are equivalent:

(1) D is totally pure.

(2) D s injective.

On the other hand, let us recall the following definition.
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Definition 67 (Azumaya [3]) An R-module M is said to be singly pure-injective,
if for every pure ezact sequence 0 — M —— B — C — 0 of R-modules, M is

singly split in B.
Azumaya [3] gives the following important result:

Theorem 68 (Azumaya (3, Theorem 10}) The following conditions on a left R-module

M are equivalent:

(1) M is singly pure-injective.

(2) M is a singly split submodule of a topologically compact R-module.

(3) M is singly compact.

(4) For any R-module B and a single pure extension A of B, every homomorphism

B — M can be eztended to a homomorphism A — M.

Remark 21 Since in this work we are concerned with purely algebraic espects, we

are not going to refer to (2) in Theorem 68, we mention it only for completeness.

In order to extend some of Simmons’ results to arbitrary rings, we next give the

following definitions.

Definition 69 A submodule N of an R-module M will be called singly pure in M

if every finite system of equations
iz =b; (b; € N, J finite)

in one unknoun which is solvable in M is also solvable in N.
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Definition 70 An R-module M will be called totally pure, if M is cyclically pure

in any R-module containing it as a singly pure submodule.

Remark 22 Since clearly every singly pure submodule is necessarily rd-pure, and
since rd-purity coincides with purity over Prifer domains [28, Corollary 5], our de-
finition of total purity is weaker than Simmons’ total purity but coincides with it for
modules over Prifer domains. Also it is clear that, each of purity and cyclic purity

implies single purity.
We give the following characterizations of total purity.
Theorem 71 Let M be an R-module. The following are equivalent:

(1) M is totally pure.

(2) M s a direct summand of all its single extensions containing it as a singly pure
submodule.

(3) M is cyclically pure in its pure injective hull M.

(4) Every finitely solvable system of equations over M with one unknown is solvable
mn M.

Proof. (1) = (2): Suppose that M is totally pure. Let N be a single extension of
M containing M as a singly pure submodule, then M is cyclically pure in ¥ (since
M is totally pure). It follows from Proposition 57 that M is a direct summand of V.
(2) = (3): Suppose that M is a direct summand of all its single extensions containing
it as a singly pure submodule. We show that M is cyclically pure in its pure injective

hull M. For this, let the system r;z = b; € M (j € J) be solvable in M by (say)
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mg € M. Then the submodule ¥ = Rmg+ M of M is a single extension of M, and
the system is also solvable in V. Since M is pure in M, then clearly, M is singly
pure in N, and so, by hypothesis, M is a direct summand of N. So there exists a
homomorphism f : Rmg + M — M such that f(m) = m (forall m € M). By
hypothesis r;mq € M, and so, b; = r;mp = f (r;mg) = r; f (my) for each j € J. Since
f (mo) € M, the system is also solvable in M. This shows that M is cyclically pure
in M.

(3) => (4): Let M be cyclically pure in M. Suppose that r;z = b; (j € J) is any
finitely solvable system of equations over M. It follows from Theorem 19 that, the
system is solvable in M (M being algebraically compact). Since M is cyclically pure
in M, we have that, the system is solvable in M. So, every finitely solvable system of
equations over M is solvable in M.

(4) = (1): Suppose that every finitely solvable system of equations over M is
solvable in M. Let N be any R-module containing M as a singly pure submodule.
Let r;z = b; (7 € J) be any system of equations over M that is solvable in V. Then
the system is finitely solvable in M, M being singly pure in N. By hypothesis the
system is solvable in M, so that M is cyclically pure in N. It follows that M is totally

pure.[]

Remark 23 The above is a generalization of (a) <= (b) of Simmons [25, Theorem 6.
Also. as can be observed from (4), totally pure modules over arbitrary rings coincide

with Azumaya’s singly compact modules.
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The next result characterizes injective modules in terms of absolute purity and single

compactness.
Proposition 72 Let M be an R-module, the following are equivalent:

(1) M is injective.

(2) M is singly compact and absolutely pure.

Proof. (1) = (2): Suppose that M is injective, and let ilr,-ja:j =a; € M
i=

(i =1, 2, ..., m) be any compatible finite system. Since M is injective, the system is

solvable in M, by Theorem 43, M is absolutely pure. Also. if s,z =a;€ M (j € J) is

any finitely solvable system of equations over M. Then by Proposition 28, the system

is compatible. Since M is injective, by Theorem 36, the system is solvable. Hence,

M is singly compact.

(2) => (1): Suppose that M is singly compact and absolutely pure, we show that

M is injective. For this, let r;z = b; (j € J) be any compatible system of equations

over M. Since M is absolutely pure, the system is finitely solvable. Also M is singly

compact, it follows that, the system is solvable. By Theorem 36, M is injective.(]

Remark 24 We shall see in the next chapter that absolute purity can be replaced in

the above proposition by a weaker property (coflatness).

3.3 ACTION OF RINGS ON PURITIES

In general the different notions of purity for modules discussed earlier are different

concepts, and sometimes incomparable, but a restriction on the class of rings will
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allow a comparison of these different concepts.

As has been observed by Warfield {28, Corollary 5], rd-purity and purity coincide for
Priifer domains. It follows that purity, rd-purity and single purity coincide for Priifer
domains.

We now state more results that show how the coincidence of different notions of purity

characterizes some classes of rings. The next three results are found in Simmons [25] .

Theorem 73 (Simmons [25, Theorem 2|) A domain R is Prifer if, and only if,

cyclically pure submodules are pure.

Theorem 74 (Simmons [25, Theorem 3|) For a domain R, the following are equiv-

alent:

(1) R is noetherian.

(2) Pure submodules are cyclically pure.

Remark 25 We shall give an equational proof of this result in the next chapter in a

more general form.

From the last two theorems, Simmons [25] deduced the following:

Theorem 75 (Simmons (25. Corollary 4]) A domain R is Dedekind if, and only if,

purity and cyclic purity coincide.
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Remark 26 It follows from Theorem 75 that single purity, purity and cyclic purity

coincide for Dedekind domains.
We now give a characterization of rings all of whose modules are singly compact.
Theorem 76 For a ring R, the following are equivalent:

(1) R is left noetherian.
(2) Euvery left R-module is singly compact.
Proof. (1) = (2): Suppose that a ring R is left noetherian, and let M be any left

R-module. Suppose that the system
rz=b;eM (je€lJ) (1)

is finitely solvable in M. For each finite subset L of J, let I = 3~ Rr;, so that I is
j€L

a left ideal of R. Since R is left noetherian, the family
{IL : L is a finite subset of J}

has a maximal member Iy, = k; Rrj. (Lo = {j1, J2, -- Jn} say) and for all j,
=1
Ity + Rrj = Ip,. So, for each j, r; = ¥~ a;iry,, for some ajx € R. Since (1) is finitely
k=1

solvable, we have that the system
75T = b; (§ € Lo) (2)

is solvable. Now, let my be a solution of (2), and let f : R — M be an R-
homomorphism given by f (1) = mo. Then for all j € Ly, f (r;) = r;f (1) = rymg = b;.

n
Now for all ¢ € J, since g = 3~ agr;,, for some ay € R, it follows that f(r,) =
k=1
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f (Z aq,:rjk) = 3 agf (r3) = X agbj, (since ji € Lg). Now let m, be a solution
k=1 k=1 k=1
of the system r;z = b; (j € LoU {q}) - Then b; = r;m, = Y QqkTj Mg = i Qqkb;, -
k=1 k=1

It follows that, rgmg = o f (1) = f (r;) = b,. This shows that, the system is solvable
by mg. So, M is singly compact.

(2) = (1): Suppose that every left R-module is singly compact, we prove that R is
left noetherian. By Theorem 46, this is equivalent to showing that every absolutely
pure left R-module is injective. To do this, let M be any absolutely pure module. By

hypothesis, M is singly compact, it follows from Theorem 72 that M is injective. So

R is left noetherian.[]



Chapter 4

COFLATNESS AND SINGLE

COMPACTNESS

In this chapter, coflat modules are defined equationally, it is shown that this definition
coincides with the one given by Damiano [9] . The relationship between single purity
and coflatness is established. Simmons [25, Theorem 3], Simmons [25, Corollary 7],
Megibben [20, Theorem 3] are all generalized. Injective modules are characterized in
terms of coflatness and single compactness. The notions of injectivity, absolute purity
and coflatness are compared. Similarly, we compare injectivity, algebraic compactness
and single cormpactness. We also show that singly compact modules share some
properties with injective modules. An equational proof of Bass’ Theorem is also given.
Finally, we characterize rings in which every singly compact module is injective as

precisely those that are Von Neumann regular.
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Definition 77 We say that an R-module M is coflat if every compatible finite sys-
tem of equations

riz=a; (j=1, 2, ..., n)

over M in one unknown is solvable in M.

Definition 78 (Damiano [9]) An R-module M is said to satisfy the R-Baer crite-
rion if for every finitely generated left ideal I of R. every R-homomorphism f : | —

M extends to an R-homomorphism g: R — M.

Damiano [9] defined an R-module M to be coflat if it satisfies a certain property,
and he established that this property is equivalent to the satisfiability of the X-Baer

criterion.

Now we show that this definition coincides with our Definition 77.
Proposition 79 For an R-module M, the following are equivalent:

(1) M is coflat.

(2) M satisfies the R-Baer criterion.

Proof. (1) == (2): Suppose that M is coflat. Let I be a left ideal of R finitely
generated by 1, 72, ..., 7, and let f : I — M be an R-homomorphism. Consider
the system of equations r;z = f(r;) (1 < j < n) over M. Let a:. as, .... @, € R. and

j=1

suppose that > a;r; =0, then 0 = f (Z aj-rj) = ) a;f(r;)- Hence, the system

Jj=1 J i=t
is compatible. Since M is coflat. the system is solvable in M by (say) m € A{. and

so. ry;m = f(r;) (1 £j<n). Now define a mapping 3 : R — M by 3(r) = rm.



o4
clearly B is well-defined. Forall ri, o in R, B(ri +1m) = (rmi+m)m=rm+r.m =
B(r1) + B(rz). Similarly, forall s € R, 8(st) =srm =s(rm) = s8(r). So, B is an

R-homomorphism. Now for each a € I, a = ) Ajr; (for some A; in R). It follows
=i

that G (a) = am = ilz\jrjm = ilf\jf("j) = f (Zn: ’\J'rj) = f(a), so 8 extends f.
j= j=

j=1
Hence M satisfies the N-Baer criterion.

(2) => (1): Suppose that M satisfies the R-Baer criterion. Let rjz =a; (1 < j <n)
be any compatible finite system of equations over M. We show that the system is

solvable in M. For this let [ = ) Rr;, then I is a finitely generated ideal of R.

=1
Consider a mapping f : I — M given by f (z ajrj) = Y aja;, and sup-
Jj=1 Jj=1
pose that Y_ a;r; = Y Ajrj (for some a;, A\; € R, 1 < j < n), this implies that
i=1 j=1

> (aj — Aj)r; = 0, since the system is compatible, it follows that Zn:(aj —Aj)a; =0,

j=1 j=1

and so, Y_ aja; = Y Aja;, therefore, f is well-defined. For all vy, r € I, with
Jj=1

=1

n n
ry = Y. a;rj, T2 = » Ajr; (for some a;, A\; € R), it follows that f(r; + ro) =
i=t Jj=l1

<Z a;r; + Z’\ "J) f (Z(QJ +25) ) }_:I(C’J"'A Ja; = Zayarf-z/\ a4 =

=1 i=1 j=1

f(r1) + f(r2). Similarly, for all r € I, f(rr) = ( Z a,r,) =f (Z rajrj) =

Jj=1

S raja; =71 aja; =rf(r;). So fis an R-homomorphism. By hypothesis, there
j=1i j=1
exists an R-homomorphism g : B — M that extends f. and so, r;g (1) =g (r;) =

f(rj)=a; (1 £ j < n).So. the system is solvable in M by g (1). Hence, M is coflat.(J

Remark 27 It can easily be observed that coflat modules are exactly those that Fklof
and Sabbagh [10] called No-injective, and also that Cohn {7 called finitely divisible,

Gupta (14} f-injective and Colby [8] R-injective.



The following result gives us a relationship between coflatness and single purity that

we defined in Chapter 3.

Proposition 80 For an R-module M, the following are equivalent:

(1) M 1is cofiat.

(2) M is singly pure in every R-module containing it as a submodule.

Proof. (1) = (2): Suppose that M is coflat, and let V be any R-module containing
M as a submodule. Consider the system of equations r;z =b; € M (=1, 2, ..., n)
over M solvable in V. We show that the system is also solvable in A{. By Proposition
39, the system is compatible. Since M is coflat, the system is solvable in M, and so.
M is singly pure in V.

(2) = (1): Suppose that M is singly pure in every R-module containing it as sub-
module. We show that M is coflat. For this,let rjz=b;e M (=1, 2, ..., n) be
any compatible system of equations over M. Since the system is compatible, by Propo-
sition 39, the system is solvable in some R-module N containing M as a submodule.
Hence, by hypothesis M is singly pure in N, and so, the system is solvable in M.

Therefore, M is coflat.(d

The next result characterizes injective modules in terms of coflatness and single com-

pactness.

Proposition 81 For any R-module M. The following are equivalent:



(1) M tis injective.
(2) M is both coflat and singly compact.
Proof. Same as the proof of Proposition 72. restricting the first system of equations

there to a system in one unknown.[]

Remark 28 This generalizes (a) <= (c) of Simmons [25, Corollary 7. Also. with
appropriate modification of the proof of this result one can easily show that an R-
module M is injective if, and only if, M is both absolutely pure and algebrnically

compact.

To compare the notions of injectivity, absolute purity, and coflatness, we clearly have:

injectivity == absolute purity = coflatness.

The first arrow is not always reversible. For an example of a coflat module that is not
injective see [9, Example 1.12]. As has been observed (see Theorem 46), injectivity
and absolute purity coincide precisely if the ring R is left noetherian. If the ring R
is left coherent, then we have that every coflat module is absolutely pure (Eklof and
Sabbagh [10, Proposition 3.23]). It is not yet known for what largest class of rings is

every coflat module absolutely pure.

Remark 29 Since Von Neumann regular rings are coherent (see for ezample [27]),
it follows that. a ring is Von Neumann regular if, and only if every R-module is coflat

(Eklof and Sabbagh (10, Proposition 3.23}).



Now we restate and prove the following result.
Proposition 82 For a ring R, the following are equivalent:

(1) R is left noetherian.

(2) Every direct sum of injective left R-modules is injective.

Proof. (1) = (2): Suppose that R is left noetherian. and let {Af;},., be any family
of injective left R-modules, we show that the direct sum € M; is injective. Since each

el

M is absolutely pure, @ M; is absolutely pure (see Remark 17) . Also, by hypothesis.
il '

R is left noetherian, it follows from Theorem 76 that @ M; is singly compact, and
i€
so by Proposition 72, % M; is injective.
(2) = (1): Conversely, suppose that every direct sum of injective left R-modules
is injective. We show that R is left noetherian. For this, let ), C L C I C ...
be an ascending chain of left ideals of R, put F = @( E(R/IL,) (where E(R/IL,) is
ne
the injective hull of R/I,). For each r € L = {J I,, there exists k € N such that

neN

r € |J I., hence, the system
n>k

re=(r+hL.r+0h, ..)(rel)

is clearly solvable in nl;L E(R/L) by (1+1I, 1+, ..). By Proposition 39, the
system is compatible. Since E is injective by hypothesis, there exists a = (a; + I,
as + I, ...,ae +1;,0,0,...) € Esuchthat ra=(r+I;, r+ 1, ...) foreach r € L.
Hence for each r € L, 7+ I;4, = 0, that is r € [,,. This proves that L = I,,,, and

so R is left noetherian.(]

Remark 30 The above is an equational proof of Bass’ theorem (see Theorem 34 and

Remark 11).



The following two results are found in [9]. We now give their equational proof.

Proposition 83 Let {M;},., be a family of left R-modules, the following are equiv-

alent:

(1) The direct product _I;[[z\/[i is coflat.

(2) Each M; is coflat.

Proof. Let {M;},.; be a family of left R-modules put M = ['[[M,-, and let the
i€

canonical injections and the canonical projections, associated with this direct product,

be respectively denoted by ¢; : M; — M and m; : M — M; (i € I).

(1) = (2): Suppose that M is coflat. For a fixed i € I, let
re=a;(j=1, 2, ... n) (1)
be a compatible finite system of equations over M;. Consider the system
riz=¢.(a;) (=1, 2, . n) 2)

over M, let a1, @, ..., @, € R, and suppose that 3 a;r; = 0. Since (1) is compatible.
j=1

we have that Y aja; = 0, which implies that 0 = ¢, (Z a,—aj) = Y a;é;(a;) .
=1 j=1 =1

therefore, (2) is compatible too. Since M is coflat, (2) is solvable in M, by (say)
m € M, and so, r;m = ¢, (a;) (j € J). This implies that «; (r;m) = rjm; (m) =

rim; = mi¢; (a;) = a; (j € J) (where m; is the i** component of m). Since m; is in

M;. we have that (1) is solvable in M;, and hence M; is coflat.
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(2) = (1): Conversely, suppose that each M; (i € I) is coflat. We show that the

direct product M is also coflat. For this, consider the system
riz=a; (=1, 2, ..., n) (1)

over M. Suppose that (1) is compatible. For each ¢ € I. this system gives rise to the

system

TiT = Wy (Gj) € A’[t (j = 1, 2, ey n) - (2)

n
Now let ¢, as, ..., @, € R and suppose that )~ a;r; = 0. Since (1) is compatible,
i=1 '

_Zl aja; = 0. This implies that 0 = =; (21 a,-aj) =) o;mi(a;), and hence (2) is
j= = j=1

compatible. Since M; is coflat, (2) is solvable in M; by (say) m; € M;. It follows that
r; (Ma)ier = (7i(a5));er = aj- So if welet m = (mu), ., € M, thenrym =a; (j € J ).

Thus, the system is solvable in M, and so, M is coflat.CC

Proposition 84 For every family {M;},., of left R-modules, the following are equiv-

alent:

(1) The direct sum @ M; is coflat.
i€l

(2) Each M; is coflat.

Proof. Let {M;:},.; be a family of left R-modules, put M = @ M;, and let the
i€l

canonical injections and the canonical projections, associated with this direct sum,

be respectively denoted by ¢; : M; — M and 7; : M — M; (i€ I).

(1) = (2): This is the same as the proof of {1} = (2) of Proposition 83, repiacing

M =T M; by M =B M.
iel el
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(2) = (1): Conversely, suppose that each M; (i € I) is coflat. We show that M is

coflat. For this let

rnz=a; (j=1, 2, ..., n) (1)
be any compatible finite system of equations over M. For each i € I, consider the
system

riT = T; (aj) € M; (j =1 2, ... TI..) (9)

r4

n
Let @i, a2, ..., &, € R and suppose that )~ a;r; = 0. Since (1) is compatible,
i=1

>~ aja; = 0. This implies that 0 = =; (Z a,-aj) =) a;n;(a;), and hence (2) is
i=1 i=1 i=1
compatible. Since M; is coflat, (2) is solvable in M; by (say) m; € M;. Tt follows that

rjm; = m; (@;) = aj. Now for each j =1, 2, ..., n, let 5 (a;) be the support of a;, and

n

let I, = {J s(a;), since a; € M, we have that I, is a finite subset of I. Now define n;

Jj=1
in M; by
m; ifi€l,
n; =
0 ifigl,
then m = (n;);, isin € M;. For alli € I,

il
rm; if i€,
mi(a;) = aj =rym: =
0 ifigél,
that is, a;; = ;jn;. Hence, rym = (7i(a;));c; = (@j:)ier = a;. It follows that the system

(1) is solvable in M. Hence M is coflat.0]

Remark 31 With small appropriate modifications to the above proofs, one can easily
show that an arbitrary direct sum or direct product of absolutely pure modules is

absolutely pure, and thereby providing an equational proof of Maddoz [18. Corollary] .
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We now prove the following result. It is a stronger version of Megibben {20, Theorem 3].

Theorem 85 The following assertions are equivalent:

(1) Every coflat module is injective.

(2) Every coflat module is singly compact.

(3) Every absolutely pure module is injective.

(4) R is left noetherian.

Proof. (1) = (2): Suppose that M is coflat, then by hypothesis M is injective, and
so singly compact.

(2) = (3): Suppose that every coflat module is singly compact. Let M be any
absolutely pure module, then M coflat. So by hypothesis M is singly compact. Hence
by Proposition 81. M is injective.

(3) = (4): Suppose that every absolutely pure module is injective. We show that
the ring R is left noetherian. For this, let {M;},.,; be any family of injective left
R-modules. Since every injective module is absolutely pure, it follows that for each
i € I, M; is absolutely pure, and so by Remark 17, @ M; is absolutely pure. By

i€l

hypothesis, € M; is injective. It follows from Proposition 82 that R is noetherian.
i€l

(4) = (1): Suppose that R is noetherian, and let M be coflat. Since R is noetherian,

it follows from Theorem 76 that M is singly compact. So by Proposition 81, M is

injective.3

Next we show that singly compact modules share some basic properties with the

injective modules.
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Proposition 86 Let {M;},., be a family of left R-modules, the following are equiv-

alent:

(1) The direct product [| M; is singly compact.
i€l
(2) Each M; is singly compact.
Proof. The proof is the same as the proof of Proposition 20 by replacing each of the

arbitrary systems of equations there by a system of equations in one unknown.]
Proposition 87 For a ring R, the following are equivalent:

(1) R is left noetherian.

(2) Every direct sum of singly compact R-modules is singly compact.

Proof. (1) => (2): Suppose that R is left noetherian, and let {M;},_, be any family

of singly compact left R-modules. By Theorem 76, the left R-module @ M; is singly
il

compact.

(2) = (1): Conversely, suppose that, the direct sum of every family of singly com-

pact left R-modules is singly compact. We show that R is left noetherian. For this,

let {M;},c, be any family of injective left R-modules. Since clearly, every injective

module is coflat and singly compact, {M;},, is also a family of coflat, singly compact

left R-modules. So by hypothesis, the direct sum % M; is singly compact. Also by

Proposition 84, @ M; is coflat. Hence, it follows from Proposition 81 that @ M; is

iel e

injective. By Proposition 82, R is noetherian.[]

To compare the notions injectivity, algebraic compactness, and single compactness.

we clearly have:
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injectivity = algebraic compactness = single compactness

The arrows are not always reversible. For instance, Z is a noetherian ring (see for
example [23]). If we consider Z as Z-module, by Theorem 76, Z is singly compact,
but we have shown in Chapter 1 that Z is not algebraically compact.

Similarly, consider Z/2Z as Z-module. Since Z/2Z is a finite Z-module, then Z/2Z
is a compact Z-module (in the discrete topology), and so, by Theorem 19 (Warfield
[28. Theorem 2]), Z/2Z is algebraically compact. However, consider the equation
2z = 1 over Z/2Z. Clearly the system is compatible, but not solvable in Z/2Z.
Hence, by Theorem 36, Z/2Z is not injective.

We shall show later that if the ring R is Von Neumann regular. then the three con-
cepts, injectivity, algebraic compactness and single compactness coincide. Before

then, let us prove the following result:

Theorem 88 For a ring R, the following conditions are equivalent:

(1) R is left noetherian.

(2) Every singly pure submodule is cyclically pure

(3) Every pure submodule is cyclically pure.

(4) For any family {M;},c, of R-modules, % M; is cyclically pure in l'[! M;.
Proof. (1) = (2): Suppose that R is left noetherian, and let IV be ;. singly pure

submodule of an R-module M. By Theorem 76, M is singly compact. Hence, N is

cyclically pure in .M.
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(2) == (3): Suppose that every singly pure submodule is cyclically pure, and let
N be a pure submodule of an R-module M, then N is singly pure in M. Hence, by
hypothesis N is cyclically pure in M. So every pure submodule is cyclically pure.
(3) = (4): Suppose that every pure submodule is cyclically pure. Let {M;}, , be

any family of R-modules. Let ) r¢;z; = b (k=1, 2, ..., q) be any finite system

=1
of equations over @ M; (where b = (bx;)ier) Suppose that the system is solvable
el
in HI M; by (say) u#; = (myj)ier (1 <j <n). Then it follows that Y Teimy = by
ic ij=1
(i€l,andk=1, 2, .., q.) Now let s () be the support of by (k=1, 2, ..., q,)

q
and let I, = {J s(b), since by is in @ M;, I, is a finite subset of I. Now for each
k=1 il

1 < j < n define n;; in [] M; by
i€l

my; if tel,
Nij =
0 ifigl
and let A; = (nij)ier, then \; is in @ M;. For each i € I we have
i€l
n Y Tesmy; if i€,
bei = Trjma = q 31 ;
=t 0 ifigl

that is, br = 3 Tijny;- So, 3 TigAj =be (k =1, 2, ..., q). Hence, the system is also

=t =1

solvable in €) M;, and consequently, € M; is pure in [1 M:;. By hypothesis &P M;is
iel icl icl el

cyclically pure in [] M;.
iel
(4) = (1): Suppose that for every family {M;},., of R-modules, @ M; is cyclically
i€l
pure in [] M;. We show that R is left noetherian. For this, let {M;},o; be any
i€l

family of injective left R-modules. Consider the system of equations riz=a; (j€.J)
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over @ M;. Suppose that the system is compatible. Since the direct product [] M;
is injective (see for example Theorem 32), it follows that the system is solva'l;lle in
ie]'[[ M;. Since by hypothesis g M; is cyclically pure in ];[I M;, we have that the

system is also solvable in P M;. It follows from Theorem 36 that € M; is injective,
i€l i€l

and so by Proposition 82, R is noetherian.(J

Remark 32 This is o generalization of (a) <=> (b) <= (c) of Simmons [25. Theo-

rem 3] (see Theorem 74 and Remark 25).

Now we characterize rings in which every singly compact module is injective.
Theorem 89 For a ring R, the following are equivalent:

(1) R s Von Neumann regular.

(2) Pvery singly compact module is coflat .

(3) Every singly compact R-module is injective.

Proof. (1) = (2): Suppose that a ring R is Von Neumann regular, and let M/ be
any singly compact R-module. Since R is Von Neumann regular, by Remark 29. M
is coflat.

(2) = (3): Let M be any singly compact module, then by hypothesis M is coflat.
It follows from Proposition 81 that M is injective.

(3) == (1): Suppose that every singly compact R-module is injective. We show that
R is Von Neumann regular. By Remark 29, it suffices to show that every R-module

is coflat. To show this, let M be any R-module, then M is pure in M (the pure



66
injective hull of M). Since M is singly compact, it follows from hypothesis that A
is injective, and so, absolutely pure. Hence, M is a pure submodule of an absolutely
pure module, it follows from Proposition 44 that M is absolutely pure, and so, coflat.

Hence, R is Von Neumann regular.(]

We now end this work with the following remarks:

Remark 33 [t follows from the above theorem that if the ring R is Von Neumann

regular, then injectivity, algebraic compactness and single compactness coincide.

Remark 34 One can show that: Every singly pure submodule of a coflat module is
coflat. The proof is the same as that of Proposition 44 except that we restrict the
system of equations there to a system in one unknown. Similarly, one can show that:
Every cyclically pure submodule of an injective (respectively singly compact) module

is injective (respectively singly cornpact).
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