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CHAPTER 1

BACKGROUND

§1 The Laplace Transform

1.1 Preliminaries and Definitions

Let Q0 = {f|f is Lebsegue measurable for t > 0, f is real or complex valued }

and let the parameter s be real or complex.

Definition 1.1.1 If f is in Q) then the Laplace transform of f denoted £ fis

defined by the function F(s)

F(s):=Lf = /0°° e~ f(t)dt (L.1)

for all s for which this improper integral converges.

Definition 1.1.2 The set of all complex numbers s such that the integral in (1.1)

converges is called the set of convergence of the integral and denoted C(f).

Remark 1.1.1 If the Laplace integral (1.1) of some function f converges at a
point sp then it converges in the right-half plane Re s > Re sq [1]. Therefore the

function F(s) is well defined.



Clearly, there exist functions (such as f(t) = 8‘2) such that C(f) is empty. A
sufficient condition for C(f) not to be empty can be easily seen to be the existence

of constants p and 4 such that
I[f@)] < pe™ forall t>0. (1.2)
Functions f with this property are said to be of bounded exponential growth.

Definition 1.1.3 The greatest lower bound of all 4 such that & exists and (1.2)

holds is called the growth indicator of f and is denoted ;.
v += inf{] |f(H)] < e, for some p > 0}.

If no such v exists, we set 7; = co. It may happen that vy = —oo, for

instance, if f(t) =0 for all sufficiently large t.

If 75 < oo, then for ¥ > 7y there exists u such that (1.2) holds. Consequently,

if s=0+iw and ¢ > 7 then,
e f()] < pe~e="

and hence the integral (1.1) exists. Thus, for functions in € such that v < 00,
the domain of convergence C(f) certainly contains the half plane Res > ¥s-

It may also contain some or all s such that Res = y; ( for example, f(t) =

1/(1+14%),7; =0).

The following Lemma plays a basic role in the determination of the set C(f).



Lemma 1.1.1 [30] Let f € Q, 0 < B < 3. If the point sy belongs to

C(f), then the Laplace integral (1.1) converges uniformly on the sector Sp =

{s]Arg(s — s0)| < B}.

Theorem 1.1.1 [30] The set of convergence of a Laplacian integral, if not empty,
is either the full plane or a right half-plane, possibly including some or all of its

boundary points.

Lemma (1.1.1) implies, in particular, that if sp € C(f), then any s such that
Res > Re sp also belongs to C(f), for any such s is contained in an angular domain

Arg(s — so) < B where 8 < .

Definition 1.1.4 The infimum a; of all real numbers a such that C(f) contains

an s with Res = « is called the abscissa of convergence of the Laplace integral

(1.1).

If C(f) is empty, we set ay = oco. if a; is finite, then C(f) contains all s such
that Res > ay, and no s such that Res < a;. No general statement can be made

concerning the convergence of the integral for Res = aj.
1.2 Analyticity and Analytic Continuation of Lf.

One of the basic facts about the Laplace transformation is analyticity. It makes
it possible to apply the powerful tools of complex analysis to the solution of real

variable problems. See [30].



Theorem 1.2.1 Letf € Q, a; < oo. Then F = Lf is analytic in the interior of

C(f), that is, at all points s such that Res > aj.

The growth parameter measures the overall growth of a function of exponential

type. We now introduce a measure for the growth in particular directions.

Definition 1.2.1 For real ¢, let the function v(¢) denote the infimum of all real

numbers a such that for all sufficiently large ¢ > 0,
|f (e“’t)l < e,
The function thus defined is called the indicator function of f.

If the growth indicator of f is v, then clearly 7(¢) < 7 for all 4. It can happen

that 7(¢) < v, and even that y(¢) < 0 for certain values of ¢.
Example: f(z) = €.
for t >0, |f(e®)|=e'**, thus 7(¢)= cosg.

The growth indicator of v, defined by (1.1.3) for arbitrary function f € Q of

exponential growth clearly equals v(0).

Theorem 1.2.2 [30] Let f € T's where Ty is the totality of entire functions
of exponential type with growth indicator v,y > 0, and let 4(¢) be the indicator
function of f. Then F = Lf can be extended to a function which is analytic in the

union of the two region sets |s| > v (including s = 0o) and Res > 7(0).
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Theorem 1.2.3 Under the hypotheses of theorem (1.2.2), F = Lf can not be
continued analytically into any half-plane Res > ay where ag < 4(0); that is, F

has a singular point on the straight line segment Res = v(0), ls| < 7.
1.3 Asymptotics of f and Lf.

Let f € Q and let oy < oo. It is clear that ' = Lf as an analytic function is

continuous at all interior points of the set of convergence C(f). This implies that

lim F(s) = F(so) (13)



holds for all s € C(f), and the following theorem illustrate the behavior of £ f on

the boundary of C(f).

Theorem 1.3.1 [18] (Abelian Theorem): Let f € Q and F = Lf. If C(f)

contains the boundary point sy, then for every 8 such that 0 < 8 < %

lim F(s) = F(sp)

s—Sp
where the approach of s to so is restricted to the angular domain Sz = {s||Arg(s — So)|

< B}.
Now, for the behavior of £f near infinity we recall the following theorem

Theorem 1.3.2 [18] Let f € Q, F = Lf, and let so be any complexr number.
Then for any B such that 0 < B < Z, sl_i_{‘go F(s) = 0 provided that s tends to infinity

in the angular domain  Sp = {s| |Arg(s — s0)| < 8).

The following theorem displays the relation of asymptotic behavior of both f

and its image Lf = F.

Theorem 1.3.3 [18] When the original function f(t) has the asymptotic property:
f(t) ~ Ae®t* as 1 — oo (t — 0).

A and sy are complex, and Re ) > —1.

Then, L(f(t))(s) = F(s) exists for Res > Resy and it has. for A # 0, a singular

point at so, and F(s) can be asymptotically represented by

T(A+1)

e A S

as s — 8o (s — 00)



in the angular region |Arg(s — so)| <

[

Theorem 1.3.4 [18] Suppose that L(f(t))(s) = F(s) exists and that f(t) has a

limit A ast — 0, then sF(s) has the same limit A as s — oo in the region

T
IAlg Sl < o’

f(ot) = lim sF(s)

1.4 General Properties of Lf.

Let f,g € Q satisfy the following:
i) ay <00, a < oo.
i) F(s) = L(f(B)(s).

i) G(s) = L(9(1))(s).

Then for Re s > max {ay, a,}.

The following properties of the Laplace transform hold:

I. Linearity ;

for a, b constants

L(af(t)+bg(t)) (s) = aF'(s) + bG(s).

II. Laplace of the integral of a function ;

c ( / ’ f(t)dt) (s) = %F(s)

(1.4)

(1.5)



III. Laplace of the derivatives of a function;

L(f™W)(s) = s"F(s) = s"f(0%)

=" TE0) = = fHI(0),

IV. The similarity theorem ;

V. Translation in the t — plane;
LIF(t=b))(s) = e F(s)
VI. The attenuation theorem
L (e‘"f(t)) (s)=F(s—a)
VII. The multiplication theorem
L{Ef(1)(s) = (=1)"F")(s)

VIII. The division theorem

t
Suppose & has a finite abscissa of convergence . Then
pp ; g

L (f_(:_)) (s) = /:0 F(u)du, Res> a

IX. The convolution theorem

Suppose that y = f * g and that U(s) = L(y(t))(s),

(1.7)

(1.10)

(1.11)

(1.12)



where the convolution of f with g is defined by

frg= [ fellt - 2)de.

Then if G = Lg and F = L[ converge absolutely for s = sq, then so is ¥

and we have

U(s) = G(s)F(s) (1.13)

for all s such that Re s > Re s,.

§2 The Inverse Laplace Transform

2.1 Existence of the Inverse

Since we are in 2, recall that f; = f, almost everywhere means that m{z|f,(z) #

f2(z)} = 0, where m denotes the Lebesgue measure.

Theorem 2.1.1 [30] Let f, € Q, Fy = Lfi(k =1,2). If Fy(s) = Fy(s) for all

s in some half-plane, then fi and f, are equal almost everywhere.

Given a function F, we wish to know if it represents the Laplace transform of

some function.

Theorem 2.1.2 [81] Let s = o +i7, and suppose that F satisfies the following:

i) F(s) is analytic in the half-plane o > «.

ii) F(ao +1y) is Lebesgue integrable (—oo < y < o0) for each o¢ > a.
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iii) Ilim F(s) =0, where |Args| < Z. Then 3 f € Q such that

s|—o0
F(s) = /O " et (t)dt.

Moreover, the integral converges absolutely in o < o < 0.

2.2 Analytical Inversion of Lf

The basic problem concerning the Laplace transform is the problem of inver-

sion, i.e., given the value of £Lf = F as a function of s, how do we find the values

of f as a function of . Unfortunately, we can stress that there is no single method

to answer this question. Instead, there are many particular methods geared to

appropriate situations.

I

IL

The simplest method is the availability of a table of Laplace transforms and

inverses. But this is very limited and often suited for textbook exercises.

If, as happens sometimes, F(s) = L(f(t))(s) is known as a function of a
complex variable over various regions of the s-plane, we can use a complex

inversion formula

c+1i0o
=  F(s)eds, for t>0
f(t) = e-ico (1.14)
0, for t<0

where c is chosen sufficiently large so as to have all singularities of F to the

left of the vertical line Re s = ¢. [81].



II1.

11

A particular version of (1.14) is for ¢ > 0.

f(t) = 3';7 [ F(s)etds (1.15)

where C is a carefully chosen contour.

A number of analytic properties of f(¢) can be deduced from (1.14). Using
the classical techniques of contour shifting and residue evaluation, we can
obtain important information concerning the asymptotic behavior of f (t) as
t — 0o. The drawback to this general approach is that the knowledge of F(s)
is required in the complex plane. In many of our applications and certainly
in the most important cases, we possess information concerning F(s)
only on the positive part of the real axis, or only at a discrete set
of points i.e., the real inversion of the Laplace transform. Moreover,
the integrand e* being too oscillatory for large values of I s on the line of

integration may be untractable.

There is a number of real inversion formulae, of which the best known is the

Post-Widder. Under appropriate assumptions one has [81]

ko 7\ k1 .
omia [ (G (] e

But, this has the disadvantage of the risky differentiation, when it comes to

numerical approximations.



IV. Expanding the original function into power series

Theorem [42]). If F(s) is analytic at the point at infinity and in that

neighborhood has a Laurent series expansion
F(s) = iZ " (1.17)
c=1

Then, the original function f(t) can be recovered by the formula

flt) = fv:] (kikl)! =1, (1.18)

V. Heaviside Expansion Theorem. Let F(s) satisfy the following conditions

1. F(s) is meromorphic
2. F(s) is analytic in some half-plane Re s > a.

3. there exists a sequence of circles
C”lz{sllslan}, R1<R2<"'(Rn—)00)

on which F(s) converges uniformly to zero with respect to Arg s.

4. For any ¢ > « the integral

/:Hoo F(s)ds

—100

converges absolutely.
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Then for the original function f(¢) we have

f()=>" res F(s)e™ (1.19)

s Ok
where the residues are computed with respect to all poles of the function
F(s), and the summation is over group of poles lying in the annual re-
gions between adjacent circles C,. A special case of this is the case where
A
F(s) = %, where the polynomial A(s) has less degree than that of B(s),
s

i.e. F(s) is a proper rational function. Then the original function f(t) can

be recovered by

n ng~1
fy=3 ———l—lim a™
k=

= (g — 1)V s—se dsmem?

[F(s)(s — si)e!] (1.20)

where s;'s are the poles of F(s), and the n;’s are their multiplicities, and

the sum is taken over all distinct poles.

§3 Numerical Inversion of the L.T.

We have seen in the previous section that procedures for direct (analytical in-
version) of the Laplace transform are deficient and disadvantageous; in fact, they
can only be used in few special cases and with some computational difficulties en-
countered. It therefore seems inevitable to employ the powerful tools of numerical
analysis. Unfortunately, the numerical inversion of the Laplace transform falls in

the category of ill-posed problems.
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3.1 Ill-posed Problems

Let A be an operator from a metric space X to a metric space Y. Consider
the problem of determining an f € X, such that the equation Af = g is satisfied
for some given g € Y. This problem is called well-posed (in the Hadamard sense)

if the following conditions are satisfied:
i) for each ¢ € Y 3 a solution f € X
ii) this solution is unique
iii) this solution depends continuously on the data g.

If one or more of these conditions is not satisfied, the problem is called ill-posed

(incorrectly, improperly posed).

In our problem, condition (iii) is not satisfied and hence ill-posedness arises.
From numerical point of view, this is equivalent to the concept of instability which
can be interpreted from Riemann Lebesgue lemma. A change h(t) = Asinwt, in
the original function f(t) in (1.1) with a very large frequency w produces a very
small change in the data function F(s). It is then clear that one has no choice

but to go to the regularization methods proven to be effective ways of treating

ill-posed problem [77].
3.2 Regularization

Regularization of ill-posed problems [2,53,77] is a phrase that is used for various
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approaches to overcome the lack of continuous dependence (as well as to bring
about existence and uniqueness if necessary). Roughly speaking, this entails an
analysis of an ill-posed problem via an analysis of an associated well-posed problem,
or a family (usually a sequence, or a filter) of well-posed problems, provided this

analysis yields meaningful solutions to the given problem.

We note that the various approaches to regularization involve one or more of

the following intuitive ideas:
(a) a change of the concept of solutions
(b) a change of the space of solutions
(c) a change of the topologies of the spaces
(d) a change of the operator itself

(e) the concept of regularization operators.

Two of these concepts (b, e) will be employed in our work (see chapters II and

IIn).
3.3 Survey of Literature

An extensive list of papers concerning the inversion of the Laplace transform,
starting as early as 1934, has been collected and published by R. Piessens [57],

and R. Piessens and N.D.P. Dang [59] covering the literature of this topic up to
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1976. For a comprehensive overview of the theoretical and computational aspects
of the subject one may consult the remarkable handbook of V.I. Krylov [42], and
R.E. Bellman, R.E. Kalaba and J.A. Lockett [4], with the latter one geared toward

physical and engineering applications of the problem.

More recently, Davis and Martin [16] have published a good paper of survey

and comparison of methods with testing and evaluation of 16 different transforms.

We can categorize the numerical methods of inversion the Laplace transform

as follows:
I. Methods which compute a sample.
The computing sample is of the form
L(t) = /ON’ 0 (t,u) Fu)du
where the function 8,(¢,u) form a delta convergent sequence [26,81,71,74,83,14].
II. Methods which expand f(¢) in exponential functions.

That is by representing f(t) with exponential functions by introducing e="* as
a new independent variable in some set of orthonormal functions such as Lagurre,
Legendre, Jacobi, Chebyshev, etc. [21,44,49,4,56,71,80,45,35,8,9,10,13,48,22 55].
Most of these methods are known sometimes as methods of moments or Galerkin’s

or collocation.
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III. Gaussian Numerical Quadrature of the Bromwich Integral.

Gaussian quadrature is a well-known method for the approximation of integrals,
based on ensuring that the rules are exact for polynomials. Such a rule has been
developed for the inversion integral, designed to invert exactly Laplace transforms
of the form s™*®(s™') where ®(s™!) is a polynomial in s~. [68,72,71,58]. More
recently, [41] have developed an inversion technique by conformally mapping the
Bromwich contour onto the unit circle. Talbot’s method has also been investigated
by [50] for the contour integration of the Bromwich integral. V.I. Ryabov [65] had
studied the behavior of the coefficient of approximating this integral by Gauss

quadrature methods of highest accuracy.
IV. Methods Based on Fourier Series.

In the cases when f(t) is a real function the Bromwich integral yields

Re[F(c+iw)] = /0“’ e f(t) coswt dt

Im[F(c+iw)] = ——/00 e™% f(t) sinwt dt.
0

The inversion theorems for Fourier sine and cosine transforms yields an alternative

to the above equations

&,’
=
I

1 0o
— e / Re F(c+ iw)] cos wt dt
27 0

) = %e“ / " Im Flc+ iw)] coswt dt

in all these relations ¢ > ay.
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These transforms have been investigated by [20,19,11,15,46], and more recently
[34,75,33].

V. Padé Approximations.

A considerable number of papers have been using Pade’ approximations, where
F(s) is replaced by its Pade’ approximation [44] and its references, [39,2]. Then

the Heaviside theorem may be employed.
VI. Methods of real Inversion.

These methods utilize the classical real inversion formulae of the Laplace trans-

form due to post and Widder [65]

f(t) = lim (=1)" sl " Fs)

n—oo  pl dsm

s=(n+1)/t

These formulae have been receiving much attention in the past few years [82,23,40].
VII. Methods of Regularization.

The previous methods do not include regularization techniques which are known
to be the best methods to invert the laplace transform in the presence of noisy

data. Regularization methods have been considered by [22,1,79,47,38]

The concept of regularization and in particular of constructing a sequence of

regularizing operators and the choice of an optimal Tikhonov regularization param-
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eter involved has been a subject of active research, and was discussed thoroughly

in Ph.D. dissertation of Bakker [2].
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CHAPTER 2

NUMERICAL INVERSION
BY THE USE OF
LEGENDRE POLYNOMIALS

2.1 Introduction

A method for approximating the inverse Laplace transform numerically is pre-
sented, using a finite series of the classical Legendre polynomials. The method
recovers a real-valued function f(¢) in a finite interval of the positive real axis
when f(t) belongs to a certain class of functions of the type Wz and requires
the knowledge of its Laplace transform F(s) only at a finite number of points on
the real axis s > 0. The choice of these points is connected to some parameters
a, 3,7, c to be introduced in the method. We shall test the method in some ex-
amples, with particular emphasis on the estimation of the error bounds and how
much these bounds are affected by the total variations of the original function in

question, as well as its least upper bound.

In the sequel, we intend to carry our work as follows:

(i) We start with mapping the interval [0, 00) to the interval [—1,1). this enables



us to use the Legendre polynomials defined over the interval [—1,1).
(ii) We, then, introduce a class of functions of the type Wj in the interval [—1, 1).

(iii) We show that the class W is large by showing that it includes a practical

and more familiar class D,.
(iv) We shall discuss some properties of the Legendre polynomials.

(v) We introduce a method of approximating inverse Laplace transforms when

they belong to the class Wy using Legendre polynomials.

(vi) Aninversion theorem together with error bounds will be proven, emphasizing
how the parameter 3, A are important to minimize the number of polynomials

needed when they are chosen optimally.

2.2  Functions of the Type W;

Let f(t) be defined at each point of the positive real axis. Then for A > 0, the

following change of variable will map the interval [0, c0) to the interval [-1,1).

x: [0,00) = [-1,1)



8]
[ 8]

Given f(t), define

h(t) = e f(t), for arbitrary > A >0

Definition 2.2.1 A real valued function f(t) is said to be of type Wp if f(t) = 0
for t < 0, and if the corresponding g(z) (as defined above) has a derivative of

bounded variations in the interval [—1,1), i.e.

total variation of ¢' in [-1,1) = V!, ¢'(z) < oo.

Remark 2.2.1 If f(t) € W, then the corresponding g(z) is bounded and

absolutely continuous and hence of bounded variation.

At the first glance, one may think that our hypothesis above is too restrictive
and yields a relatively small class of functions for practical purposes. On the
contrary, the following lemma will show that our class of functions of the typeWs

is a large one indeed.

2.3 Functions of the Type D,

Definition 2.3.1 We say a real valued function f(t) is of type D, if:
(i) f(t) is twice continuously differentiable in [0, 00).

(ii) For every f(t), 3¢ >0 and o € R such that |f(t)| < ce®® for t > 0.
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Lemma 2.3.1 Let # > max{}, a + A}, where A > 0, then any function of type

D, is also of type Wy.

Proof: The differentiability of the associated g(z) defined above follows immedi-
ately from part (i), and we only prove that ¢g'(z) is of bounded variation. For this,
it suffices to show that g"(z) is absolutely integrable in [—1,1). Now, changing

variables again yields

/ 11 lg"(2)ldz = % L HBB= 210 + (=28 ()4 7(1)} €O, (*)

This equation requires bounds for |f’| and |f], and to obtain such estimates, we

observed that part (i) of definition (2.3.1) implies the existence of f(0) and f'(0).

Define

y(t) = f(t) = Lf'(0) — f(0) (2.1)

Hence,

Now, consider the following cases:
Case (i): a =0, ie, |f'(t)] = |y"(t)| < e

Integrating both sides of the inequality —c < () < ¢ yields,

(2.2)



Using equation (*) together with (2.1) and (2.2) implies

[ @l < sz (8= {10~ 28)7'0) + 86 = NSO +)
+ oB+c(26—3)+ BB~ MO 23)

Case (ii): |a| >0, ie., [¢"(1)] < ce*.

Again, integrating both sides of the inequality —ce® < y"(t) < ce*

)< = e -1

. (2.4)
(0] < = [e** = ot 1]
Putting (2.1) and (2.4) in equation (*) yields
Lo, < CIBB=A)F(0)+(A=2B)f'(0)|~cA(B=A) — ca(28 — ))
/_1 lo"(=)ldz < 2Aa?(f — )
n aB(B - MIF(0)] - eB(B— )
2 a(B — 2)?
4 cB(B— X))+ ac(28 - A) + a’¢c (25)

20a?(f— A —q)
1

Since we know that the total variation of ¢/(z) in [—1,1) cannot exceed / lg"(z)|dz,
-1

the lemma is proved.

Now, for later purposes we need to estimate least upper bounds for |¢’| in both

cases @ = 0 and |a| > 0. Using (2.1), (2.2), (2.4) and the definition of ¢’, we have
Case (i): a=10

Uy

sup |g'(z)|
-1<z<1

e=(B=)t

= sup
0<t<oo 22

[F'(t) = BS(2)]



e~ (8-t

—— {0 + )

—B{f(0) +¢f'(0) + y()}]I
e—(B=\)t

= sup
0<t<co

2
{lf'(0)~-ﬂf(0)—-tﬂf'(0)|+°‘fj +ct} (23)

< sup
0<i<o 2X

Case (ii) |a| > 0:

U = sup |¢'(2)]
1<z<1
e—(B=A) , ' cﬂ .
= ok, T {If (0) = BF(0) = tBF(0)] + = [e** — at = 1] +
+5 e - 1]} 2.5)

Notation: Let ¥}, V; denote the right-hand side of inequalities (2.3), (2.5) respec-
tively (standing for the total variation of ¢’ in [-1,1) when @ = 0 and |a| > 0
respectively). Let Uy, U, denote the right-hand side of inequalities (2.3') and (2.5')
respectively (standing for the least upper bound of |¢'| when o« = 0 and |a| > 0

respectively).

Remark (2.3.1): The parameters # and A ensure that ¥;™'¢’ and sup|¢’| are

both finite. In fact, they can be minimized considerably if these parameters were

chosen optimally.

Before we state our proposed method for inverting the Laplace transform of a
given function of the type Wy, we recall the main properties of Legendre polyno-

mials.



2.4 Series and Asymptotics of Legendre Polynomials

For any g(¢) € L*[-1,1), we can have the following Legendre polynomials

expansion
9(@) =D anPufz)  for z €[-1,1) (2.6)
n>0
where
2n+1 gt
a4y = 5 /_Ig(x)Pn(:v)drc
L = (n+k) 1—z\*F
Pu(z) = § e ( 5 ) . 2.7)
The series Z an Po(2) is called the Legendre series of g(x) and we can assert that
n>0

if g(z) is in L?[~1,1), then this series converges in the mean in [~1,1) to g(z) [69].

We can also affirm that if g() is continuous in [—1,1) and its Legendre series
is uniformly convergent there, then
)= ) an Pu(z),  forz € [-1,1). (2.8)
n>0
We list below an important approximation formula, to be used later for computa-
tional purposes, with the help of which we can significantly minimize the number

of steps needed in our computation as well as the error involved.
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Theorem 2.4.1 Jackson’s Theorem [69] p. 205]: Let w(z) be of bounded variation

in [—1,1), and let U = sup |w(z)|, and V denote the total variation of w(z) in
-1<2<1

[-1,1). Given the function

glx)=g(-1)+ [ ] w(2)dz, (2.9)

then the coefficient a,,,

2 -1
of its Legendre series satisfy the inequality

4 1
|an[ < ﬁ (U + "’)1—137, fO?‘ n>2. (210)

Moreover, the Legendre series of g(x) converges uniformly and absolutely to g(z)
in [~1,1). The remainder of the series beginning with the (n + 1)-st term satisfies

the inequalities

8 1
|Rusr(2)] < ﬁ(U+ V)_ﬁ’ for|z| <1, n>1 (2.11)
162 U4V 1
. : - | < > 1. :
|Rot1(2)] < Ve for|eg| <6<, n>1 (2.12)

The above discussions have furnished a fairly sufficient survey of the Legen-

dre polynomials we intend to use as tools for our approximation as well as full

description of functions of the type Wj.

Now, we are in a position for departure for our main problem, namely, the

construction of the technique to be used for inverting the Laplace transform.
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2.5 The Approximate Inversion of the Laplace Transform:

The Inversion Theorem Given the Laplace transform F(s) for a real-valued

Junction f(t) of type Wg , and given € > 0, there exists an integer N such that
= Z (ann(t), for0<t, <t<T <o
n=0

satisfies

sup |f(2) - fu(t)] < e where,
to<t<T

a, = M2n+1) Z 1) P(l _*-(:')-*- k)

Bt = Z )*T(1+n+k) o~ (A=)t

F(B+ A+ \k)

(n — k)Y(A1)?
and N can be chosen such that

16e°7(U +V)]*

/> P .
N cﬁ ] , fOI to 0 (2 13)

or,
32V/2eT(U + V)

N> ,
Y Rv4 YY)

forts >0 (2.14)
The second estimate for N can be used if the function f(t) is to be recovered
wn an interval interior to [0,00), i.c., for t € [to, T} with to > 0 and T < oo
where § = ma.x{ll —2e~Mo| |1 -—-26_’\T|}. U and V represent respectively the

least upper bound of |¢'(z)| and total variation of ¢'(z) in [—1,1).

Proof: We may assume without loss of generality that F'(s) is defined for Re s > 0;

a simple translation in the imaginary axis can be done if this is not the case.

Now, let us follow the same notations and change of variables introduced earlier.



Put,
h(t) = eP f(t), for B>A>0

r=1-2"", for t>0

g(x) = h (L‘\li) , for ze€[-1,1).

Since f(t) is of type Wp, remark (2.2.1) implies that g(z) is the indefinite

integral of its derivative

-+ [ )z

Now, with U and V being the least upper bound of |¢’(z)| and the total variation
of ¢'(z) respectively, Jackson’s theorem states that g(x) can be approximated by

the first N terms of its Legendre series in equation (2.8)

g(z) = i anPy(z),  for 2 € [~1,1)
n=l1
where, by Rodrigues formula
pe = & S ()
o = 25 P
- 2”2'“ /0 P F () Pa(l — 2e=) (2)e=M)dt
= AM2n+1) é% 1T 1+;’|;1‘ / F(t)e B+ Mgy

L (=1)Fr(1 k
= A2y 7)1_ ‘L(I’f';r) F(B+ A+ Ak).
k=0

Now, to show that our uniform error in approximating the original function
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f(t) by the function f,(t) cannot exceed € in magnitude, we consider the following

two cases:
Case (i): to = 0.
Then, inequalities (2.11) and (2.13) give the remainder

|Rynp(2)] < ePT. - forz € [-1, 1 —2eT]

[SUR I

Hence,
N
9(x) =D anPu(2) + Rysa(2), for x € [-1,1).
n=1

Putting 2 = 1 — 2¢™" we have

N
e f(t) = Y anPu(l =267+ Ryga(1 - 2¢7)

n=0

N
f@) = 3 @Pu(t) + €” Rygpr(l — 27V

n=0

N
If we put f,(¢) = Zanf’n(t). Then,

n=0

max |fo(t) = f()] = max e”Rya(1-2e7) <

€
0<Kt<T 9’

Case (ii) 1, > 0:
Similarly inequalities (2.12) and (2.14) give the remainder

|IRns1(z)] < e PT. for x € [-6, 6]

[SSF LY

where, § = max{|l — 2¢="°|, 1 — 2¢=}.
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Also, g(z Zan Ryyi(z), fora € [-4,4].

n=0

Putting z = 1 — 2™, for t € [to, T), we get

N
e_mf(t) = Z anPn(l - 26-’“) + RN.H(]. - 26_'“)

n=0

f(t) = Zan n +66R,\1+1(1—-)e )

If we put f,(t) Zan ), then

n=0

- f = max €° _9,—At
o2 V1)~ el = g, a1 = 2677 <

This completes the proof.
2.6 The Optimal Choice of 3 and \:

In our numerical computations for functions of the type D,, it is always de-
sirable to minimize the time and effort needed in the computation to achieve the

accuracy within the pre-assigned tolerance e.
Thus, with the assumption that ¢ and « are already known, we may take U and
V in inequalities (2.13) and (2.14)
=Ui(B,\) i=1lor2
V=V(B,2) it=1or2
¢ =1 or 2, depend on whether a in our class D, is zero or not respectively.

Now, we can pose the following optimization problem, responsible for minimiz-

ing our integer N that determines the number of polynomials needed to achieve
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the desired accuracy. The minimization is taken over 8, ), and we recommend to

adopt the powerful computational algorithm SUMT [12]

Minimize
T[Ui(B,N) + Vi(B,M)]  i=1lor2

subject to

A>0
B > max{, A + a}.
When this minimum is achieved, say at A\ = Aopt and B = B, for a given ¢
and a, then we may take U = U;(Bopr, Aope) and V = Vi(Bopts Aopt) 1n our bounds

(2.13) and (2.14). This gives an optimal choice of N = Nope, with which we can

advance in our calculations.

2.7 Determination of ¢ and o (a > 0).

The problem arising in the optimization recommended above is the determi-
nation of the best constants ¢ and a needed there, when we only have the given

function F(s) in hand. For this, we recall the following theorem.

Theorem 2.7.1 (Tauberian Theroem) [81] If the function f(t) satisfies the in-

equality |f(t)| < Me™ for allt > 0, M being a positive constant, then

lim sF(s)= f(0).

L lamd> v}

Clearly, our function f(t) as it belongs to the class of functions of the type D,

satisfies the hypothesis of Tauberian theorem. This can be shown with the help of
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the inequalities (2.2) and (2.4).

Therefore, given F(s) we calculate the following limits involved in our bounds

and known to exist by the hypothesis of our class

F(0) = lim,_ oo sF(s)
F(0) = limg_ o s [sF(s) — (0]
J"(0) = imymeso s [s2F(s) — s£(0) = £(0)]
Now, we can use these limits to estimate lower bounds for ¢ and a.

Since, | f"(t)] < ce™, it is immediate to see that a necessary condition is that

/(0] <e

|s?F(s) — sf(0) — f'(0)] < < , for s > a. (2.15)

S—«

If the leftside of the above inequality, which is the Laplace transform of f(t) is

different from zero, we have, for s > o

<a. (2.16)

In most cases, inequality (2.16) will provide a good estimate for o directly, other-
wise we need to estimate the maximum of the left side over all s > 0, and use it

as a lower bound for a.

If the procedure of determining lower bounds for a and ¢ is too difficult, de-
pending on the nature of the function F(s), then the following theorems [81] are

recommended.
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Definition 2.7.1:  An operator L;,[F(s)] is defined by the equation

et = CDF o (R (B)

for any real positive number ¢ and any positive integer k.

Condition A: A function F(s) satisfies condition A if it has derivatives of all

orders in (0 < s < 0o) and if there exists a constant M such that for (0 < s < o)
L [F(s)) < M (k=1,2,...)
|sF(s)] < M.
Result: [81]
Condition A is necessary and sufficient that
Fo)= [ e s
where f(t) is bounded in (0 < ¢ < o0).

Result: [81]

If F(s) is the Laplace transform of a function f(t) with f(t) bounded in (0 <

t < 00), then

e 0

lim { sup ILL.,t[F(s)]|} = ess sup |f(¢)]-
k 0<t<ao 0<t<oo

Now suppose we are given ["(s) for a function f(¢) which is known to satisfy

part (i) of the definition of D,, and we want to know if condition (ii) is also
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satisfied, i.e., the existence of ¢ and « such that |f(¢)| < ce®*. Moreover, we want

to estimate the least ¢ and a. Then the results of Widder suggest the following.

Let G(s,) = F(s — )

where 7 is a real number to be fixed later. Then, the original function of G(s, ) is
simply e f(t). We try to find the least possible value n that makes the following
limit exist

Jim {021(1)00 lLk.t[G(Sﬂ))]l} = ess sup le™ £(2)]

If we succeed in doing so, then we can claim that

[ s <

and our ¢ and « are on hand, with a = —.

Remark (2.7.1): What we actually need to estimate is c and a such that | f*(t)| <

ce®. For this, we can, without loss of generality, consider F(s) instead of F(s),

where

F(s) = L(f"(2))(s)
= §*F(s) —sf(0) — f'(0)

Then, we simply carry the same analysis for F.
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Example:
1
F(s) = s _ L
2
f(t) = e
1
G(s,n) =F(s—n) = 7
S§—17— 2

DF (=1)*K k) k i
L [G(s,n)] = ( IJ) . NI “ k- tn+1)
(?-U—s) ?
Clearly,
1 = —%
klim sup [LiJG(s,n)]|p =
% |o<t< 0o N#E—3
hence, we choose 77 = —3 and the corresponding limit ¢ = 1. Then, |e™f(t)| < ¢ =

1, and |f(t)| < ce™™ = e3t. Giving o = 3 as expected.
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2.8 Numerical Implementation

We use the software Mathematica to implement our technique. The following

input statements provide the desirable results.

Algorithm

K := Machine precision (to be specified)
L:=N[A\K]=Xp (to be specified)

B := N[B,K] = Bopr  ( to be specified)

m = number of polynomials needed = N,y (to be specified)

fls-] := fls] = N[F(s), K] = The Laplace Transform (to be specified).

afn-] := afn] = N[(L +0.)(2n + D)Sum(((=1)")((n + D)) F[(B + L +0.)
+(L +0.)i])/((n — )U(E)2)), {i,0,n}], K] = (the coefficient )

fulz-] := N[Exp[(B + 0.)2]Sum[a[n]Legendre Pln,1 — 2Exp[—z(L + 0.)]],
{n,0,m}], K] = (the approximation function).

glz_] == N[f(2), K] = the exact function (to be specified).

hlz_] : N[Abs[f,[z] — g[z]], K] = the error function

Table [{N[z,1], N{f.[z],8], N[g[2],8], Number Form[h[z],2]}, {z, to, T,t1}], [to, T)
is the interval of approximation and ¢, is the increment size of the calculation (to

be specified).
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Examples:

In the following examples A and 8 have were taken in an arbitrary trial and
error manner, for the reason that U and V have singular and nondifferentiable

terms. For this we shall only estimate the number N for the first example.

Example 1: For simple computations let us consider the function f (z) =1, with
the Laplace transform F(s) = %, and let us try to recover f(z) for 0 < ¢y <z <
200 = T, within an error ¢ = 107, Then the corresponding g, ¢’ and ¢” can be

easily seen by definition (2.2.1)

Now, since | f"(z)| = 0, we may take a = ¢ = 0 in our definition (2.3.1).

Now,
: 8
U = = —
e 0
< " =
Vs /;1 lg" (@)l 2)

Now, if we choose B arbitrarily small and X very close to 8 with ) < B. Then, by

our inequality (2.14), we have

32v/2¢%0% (&)

10-1x¢/1 - 62’
~ 150.

N



m =2
t fa(t) Appr. | f(t) Exact | Error
0.0 1.0 1.0 0.0
20.0 1.0 1.0 0.0
40.0 1.0 1.0 0.0
60.0 1.0 1.-0 0.0
80.0 1.0 1.0 0.0
100.0 1.0 1.0 0.0
120.0 1.0 1.0 0.0
140.0 1.0 1.0 3.1107°M
160.0 1.0 1.0 6.1 101
180.0 1.0 1.0 2.0 10-M
200.0 1.0 1.0 7.0 10712
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Example 2:

(a)
m =10
t fa(t) Appr. f(t) Exact Error
0.0 | -0.00000962189 0.0 9.6 10-°
L 0.32239106 0.32239694 | 5.9 107°
z 0.20787082 0.20787958 | 8.8 10~°
2 | 0.067052245 0.06701974 | 3.310°°
7 | -0.00049518539 0.0 5.0 10~
22 | -0.01406353 | -0.013932035 | 1.3 10"
22 | -0.0083793352 | -0.008983291 | 6.10 10~
= | -0.001941255 | -0.0028961856 | 9.5 10~*
27 | -0.0019625595 0.0 2.010°°
(b)
m = 20

t fa(t) Appr. f(t) Exact Error
0.0 2.5354036 0.0 2.5 107°
T 0.32239695 0.32239694 | 1.1 10°°
£ 0.20787955 0.20787958 | 3.0 10°®
2 1 0.067019656 0.06701974 [8.4 1078
T 0.00000024 0.0 0.0
2 | .0.013931553 | -0.013932035 | 4.8 10~
22 | -0.0089845545 | -0.008983291 | 1.3 10°°
<+ | -0.002895472 | -0.0028961856 | 7.1 10=°
27 | 0.000010587337 0.0 1.1107°

40



Example 3:
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(a)
m=35
t fa(t) Appr. f(t) Exact Error
0.0 | -0.0091284955 0.0 9.1 1073
0.2 | 0.051823691 | 0.048925307 | 2.9 10°3
0.4 | 0.099266734 | 0.10090527 | 1.6 10~
0.6 | 0.13233794 | 0.13555411 {3.210°°
0.8 0.15181664 | 0.15304602 | 1.2 1073
1.0 0.1594026 0.15730278 | 2.1 1073
1.21 0.15723974 0.15251432 | 4.7 1073
1.4 | 0.14761049 | 0.14216317 | 5.4 1073
1.6 | 0.13274715 | 0.12884934 |3.910~°
1.8 0.11472268 | 0.11438317 | 3.4 10~
2.0 | 0.095393769 | 0.099949961 | 4.6 10~3
(b)
m =25

t fo(t) Appr. f(t) Exact Error
0.0 | -0.000046726633 0.0 4.710°°
0.2 0.048926224 0.048925307 | 9.2 10~7
0.4 0.10090542 0.10090527 | 1.510°"
0.6 0.13555571 0.13555411 | 1.6 107°
0.8 0.15304517 0.15304602 | 8.5 10~°
1.0 0.15730314 0.15730278 | 3.6 10~
1.2 0.15251373 0.15251432 | 5.9 1077
14 0.14216473 0.14216317 | 1.6 10~°
1.6 0.12884655 0.12884934 | 2.8107°
1.8 0.11438579 0.11438317 | 2.6 10°°
2.0 0.09995069 0.099949961 | 7.3 10~°




Example 4:

F(s) =

Vs+2

1)3/2

J(8) = e ¥ I(5) + (4 D)

where I; and Iy are the modified Bessel functions of degree 1 and zero respectively.

()

m=3

fa(t) Appr.

F(t) Exact

Error

0.0

1.0000323

1.0

3.210°°

0.2

0.8986087

0.89862316

1.4 107°

0.4

0.79809951

0.79810129

1.3 10°°

0.6

0.70224679

0.70223497

1.210°°

0.8

0.61322768

0.61321473

1.310°°

1.0

0.5321391

0.53213443

4,710°°

1.2

0.45935012

0.45935646

6.3 10~°

14

0.39475522

0.39476999

1.510°°

1.6

0.33795381

0.33797177

1.8310°°

1.8

0.28837582

0.28839136

1.6 10°°

2.0

0.24536772

0.24537636

8.6 107°

(b)

m =10

fo(t) Appr.

f(t) Exact

Error

0.0

0.99999984

1.0

1.6 1077

0.2

0.89862312

0.89862316

3.7107°

0.4

0.79810128

0.79810129

1.6 10°°

0.6

0.702235

0.70223497

3.410"8

0.8

0.6132147

0.61321473

3.6 107°

1.0

0.53213446

0.53213443

34108

1.2

0.45935644

0.45935646

1.7107%

14

0.39476997

0.39476999

211078

1.6

0.33797182

0.33797177

4.7107°

1.8

0.28839135

0.28839136

8.7107°

2.0

0.2453763

0.24537636

5.2 10~8
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Example 5:

= Bessel function of degree zero

(a)

m =10

fa(t) Appr.

f(t) Exact

Error

0.0

1.0001498

1.0

1.5 1071

0.2

0.99008446

0.99002497

5.9 10°°

0.4

0.96033677

0.96039823

6.1 10°°

0.6

0.91201646

0.91200486

1.2 107°

0.8

0.84638125

0.84628735

9.410°°

1.0

0.76516841

0.76519769

2.910°°

1.2

0.6709762

0.67113274

1.6 1071

1.4

0.56677705

0.56685512

7.8 10~

1.6

0.4555604

0.45540217

1.6 10~

1.8

0.34031201

0.33998641

3.3 1074

2.0

0.2241224

0.22389078

2.3 101

(b)

m =20

Ja(t) Appr.

f(t) Exact

Error

0.0

0.99999486

1.0

5.110°°

0.2

0.99002349

0.99002497

1.510°°

0.4

0.96039749

0.96039823

7.4 1077

0.6

0.91200681

0.91200436

1.9 107°

0.8

0.84628488

0.84628735

2.5 107°

1.0

0.76520046

0.76519769

2.310°°

1.2

0.67113118

0.67113274

1.6 10°°

1.4

0.56685251

0.56685512

2.6 10°°

1.6

0.45540876

0.45540217

6.6 10~°

1.8

0.3399851

0.33998641

1.310°°

2.0

0.22388007

0.22389078

1.110°

43
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2.9 Concluding Remarks

The problem of inverting the Laplace transform with the aid of Legendre poly-

nomials has been proposed earlier by Erdelyi [21], Papoulis [55] and Lanczos [43].

More recently, Schoenberg [73] discussed and proposed solutions in the form of

a minimization problem. Nashed [54] had investigated Schoenberg’s work and

derived some sharp exponentially decreasing error bounds, but with rough as-

sumptions on the original function being under transformation.

In our work, we claim the following:

L.

o

A method for approximately inverting the Laplace transform with the use of
Legendre polynomial was derived and proven to be very successful, provided
the approximated function belongs to the class W;, which was shown to be

quite large as Lemma 2.3.1 suggests.

One of the major features of the method is the fact that there is no need
to solve linear system of equations to obtain the coefficients of the approx-
imating polynomial. In fact, these coefficients are calculated directly and
accurately. This is not the case in previous methods adopting the same

Legendre polynomials.

. Error bounds in terms of the least upper bound and the total variation of

the original function are obtained.

. New parameters 3, A were introduced in the method that could minimize the
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error bounds when chosen optimally.

. The method was tested in few examples and displayed good results when
the original function is sought in a finite interval of the positive real axis.
Unfortunately, this is not the case if the original function is to be recovered

for large values of ¢ > 0.

. One of the main difficulties arising in our method is the optimization prob-
lem. But a trial and error choice of 8,A with 8 > X > 0 has proven to be

adequate.
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CHAPTER 3

A REGULARIZATION METHOD

3.1 Introduction

In the context of ill-posed problems, the Laplace transform inversion is highly
instable and severely ill-posed. The lack of universal methods for inverting the
Laplace transform stems from the fact that the space of functions f for which the

Laplace transform exists is simply too big.

From an operator theoretic point of view, we may see the Laplace transform

as an integral operator of the first kind.

Lf=g
. (3.1)
L)) = [ ft)eat

Then, the ill-posedness of the Laplace inversion can be best explained by the open

mapping theorem.

Theorem 3.1.1 (Open mapping, bounded inverse). A bounded linear operator T
from « Banach space X onto a Banach space Y is an open mapping. Hence if T

is bijective, ™! is continuous.
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Corollary 3.1.1 T~ is bounded iff the range of T is closed.

Example: This example illustrates that if the image of the element is not in the

range of the operator, then the inverse does not exist.

Define the operator A,
b »
Af = / 2%t f(t)dt.
Then the equation

Af =sina
can never have a solution. That is because the range of A is the span of z2.

Returning to our operator L, the following remark will illustrate the ill-posedness

of the problem.

Let us define the usual p-norm for the integrable functions on an interval (a, b)

by
b /p
Il = ([l )" 1<p<eo

Let us denote the intervals [0,00), (—oc,00) by Ry and R respectively and let

L?(a,b) denote the space of functions with finite p-norm.

Remark 3.1.1:

(1) £ maps L¥R,) into itself

(i) £ is unbounded on L*(R.).
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Proof: Part (i) will be shown in chapter V, and for part (ii) we immediately see

that for f,(t) = e !sinwt

L“’”2—>0, as w — 00

£l

hence £ is not bounded away from zero and therefore £7! is unbounded.

The unboundedness of £7! suggests strongly the employment of Tikhonov reg-

ularization techniques, responsible of replacing our original model
f = L',_]g (32)

by a one parameter family of bounded regularized operators for which the problem

becomes well-posed and a stable solution to the inverse is tractable.

Although most of the methods in the past, as discussed in Chapter I, had one
way or another used the concept of regularization implicitly to tackle the inversion
of the Laplace transform, they did not utilize regularization techniques in the sense
of Tikhonov, i.e., approximating the operator £=!, which has the advantages of

solving the problem in the presence of noise and for a larger class of transforms.

Regularization methods have been used by [79,47] and more recently, Essah
and Delves [22], Brianzi and Frontini [7], Ang, Laund and Stenger [1], Bakusinskii

[3] and Strahov [76].

In the sequel we shall treat the inverse problem by regularization in the follow-

ing steps:
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(i) We shall give a brief introduction of the concept of regularization.
(ii) We shall restrict the space and pose some conditions on f and g in (3.1).

(iii) We shall transform the integral equation unitarily to an integral equation of

convolution type.

(i) We, then, employ the powerful techniques recommended by Tikhonov and
Arsenin [77], together with Fourier transformations to obtain a regularized

approximate Fourier transform.

(v) In the last step, we shall develop a numerical scheme to invert this Fourier
transform, and therelore a numerical approximation of the approximate
’ !

Fourier transform is obtained.

(vi) Error bounds will be derived throughout and we conclude our work with

some numerical algorithms and examples.

3.2 Tikhonov Regularization

In the sequel, we restrict ourselves to Hilbert spaces X and Y and let K be a

bounded linear operator.
K:X-Y
(3.3)
Kf=g

Let Ker(K) denote the null-space of K and let Ker(K)* be its orthogonal com-

plement in X.
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Definition 3.2.1: A regularization scheme for equation (3.3), in general, consists

of a family of bounded linear operators R(«, )
R(a,)): Y =X, a>0,
with the property of point-wise convergence
limy Rag) = f

for all f € X. The parameter a is called the regularization parameter.

If the solution fy of equation (3.3) belongs to Ker(K)t, then a regularizing

operator for this equation is generated by [30, 81] the minimization problem
: - 2 4 FI2 ,
1}2{{;{”1\f —gl3+alfl}, a>0, geV. (3.4)
An element f € X solves the problem (3.4) if and only if it satisfies the relation
(KK +al)f = K™g

where K* denotes the adjoint of I'. Since |[(K™* + af)f]|2 > al|f|| for any a > 0

and f € X, it follows that (K" K+a/l)X is a closed subspace of X and consequently
(K"K + a)X]" = Ker(K*K + al) = {0}

thus (K*K + al)™! is defined on X, and the minimization problem (3.4) has a

unique solution.

Now, it is clear that the operator

g Rla,g) = (K"K +al)™ K*g (3.5)
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is well defined and continuous for each a > 0.

Moreover, we get the approximation error
fo—R(a,g) = o( K"K +al)™ fo

with the help of which [2], it may be shown that R(e,¢) — fo as @ — 0. Thus R
is a regularizing operator for the equation (3.3). Ivanov [37] has shown some error

bounds in such cases.

Remark 3.2.1 [2] If Ker(K)* is not finite dimensional, then in general, problem
(3.4) cannot be solved exactly. In order to get a numerical approximation to

R(a, g), we may replace (3.4) by

min {|If - gll3 + o I3} (3.6)

where X, is an n-dimensional subspace of X. This minimization problem is solved
by
R.(a,9) = [(KP)"KP,+ al] " (KP,)yg (3.7)

where P, denotes the orthogonal projection from X onto X,. The convergence of

R.(a,9) to R(a,g) as n — oo is shown in [2].

In our work we shall be concerned with an integral operator of the convolution
type. For this, we follow Tikhonov and Arsenin [77] in constructing a regularizing

operator for equation (3.1) with the use of Fourier transform.



For definiteness, let us look at an equation of the form

Kf= / H(s — t)f(t)dt = g(s) (3.8)
and let us apply the Fourier transformation A and its inverse A~! defined by

A f(w)z/_m & f(2)de

- (3.9)
AT f(t) = 2‘—”/ flw) e dw
Assumption 3.2.1
(i) g(s) € L*(R).
(i) f(t) € L'(R).
(i) H(t) € LY(R).
By the convolution theorem we have for equation (3.8)
; g(w)
) = L, 3.10
flw) == ) (3.10)

The main difficulty in obtaining an inverse Fourier transform for f is that we need
to suppress the influence of large values of w as both § and H tend to zero. This
immediately suggests the introduction of some stabilizing factor S(w, ), giving

rise to the regularizing operator R(a,g).

1 e S( ).&( ) —uwdw (311)
)

f0)% Rslang)s= 52 [ =5

for details and properties of S(w, o) see [77], page 115.



53

Now suppose M(w) > 0 is an even function satisfying the following criterion:

Criterion 3.2.1
(i) It is piecewise-continuous on every finite interval
(ii) it is nonnegative and M(w) > 0 for w # 0

(ili) M(w) > ¢ > 0 for sufficiently large |w|

(iv) for every a > 0 the ratio H(—w)/[L(w) + aM(w)] belongs to L2(R) where

A

L(w) = H(w)H(-w) = |H(w)?.

Then, if we set
L(w)

Sha) = T @)

(3.12)

we obtain a class of regularizing operators for equation (3.8). Such a class is

determined by the function A (w). This yields the regularized solution

H(w)j(w)
aM(w) + IH( )2

flw) = (3.13)

and its inverse

dw

fo(t) = Rpy(er,g) = ,r/ H(_W)J;( w) exp[—iwt]

L(w) + aM(w)

It was proven [77] that this regularized solution f, minimizes the functional

Ua(f,9) = [ (KS = g)dt + Q1]

with stabilizing factor of the form

Q{f]:/_" M(w)[f(@)]? de.
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Remark 3.2.1. Tikhonov and Arsenin have suggested to consider M(w) of the
type

Mw) =Y qu®
k=0

where the ¢i’s are nonnegative constants and ¢, > 0.

3.3 Regularization of the Laplace Transform
Let f and g satisfy (3.1) and suppose that the following assumption holds.

Assumption 3.3.1 Suppose that for some A > 0 the function f in (3.1) satisfies

(i) f(t)=0@t™), t— oo

Change of Variables:

The following change of variables reduces our integral equation (3.1) into a

convolution type integral:

G(u) = e*g(e")
Fu) = f(e)

H(u) = exp[—e"]-e*
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Equation (3.1), then, becomes

G(v) = /R H(v — u)F(u)du (3.14)

Assumption 3.3.2 Let g = Lf and suppose that f satisfies assumption (3.3.1).

Furthermore, suppose
(i) f(t) € L,

(i) Vig(t) € L%,.

Remark 3.3.1 Assumptions (3.3.1) and (3.3.2) immediately imply that
(i) G € LY(R)

(i) F e L} (R)N LA(R).

Now, we have the hypothesis of assumption (3.2.1) satisfied, thus with the use
of equation (3.12) applied to equation (3.13), we get the regularized solution

Bw) = H(w)G(w)

aM(w) + |H(w)[?

(3.15)
where « is the regularizing parameters (to be chosen optimally) and M(w) is a

function satisfying criterion (3.2.1).

The following theorem will demonstrate the error in the regularizing method

of approximating F by F,.

Theorem 3.3.1 Let g = Lf, and suppose that f salisfies assumption (3.8.2).

Furthermore, suppose that there exists a constant E such that
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G('T)‘? dx < E? (*)

o 2
/ (2l
-0

Then, with the choice M(w) = |w|* and a > 0, the reqularized solution F, defined

by (3.14) converges in L*(R) as a — 0 to the solution F of the equation

Pw) = Glw) (3.16)

The convergence is of order O(\/a).
Proof: The choice of M(w) = |w|? is seen immediately to satisfy criterion (3.2.1)

and hence, the solution F, defined by (3.15) is a regularized solution to equation

(3.14).

Now, for the order of convergence, we first notice that

H(w) = T(1+iw)

~ ~

H(-w) = H(w)=T(1-iw)

Tw

| (w)?

sinh Tw

The isometry of the Fourier transform, i.c., || |2 = ||F||., together with equations

(3.14), (3.15) and the inequality (*) immediately imply

IF—Fll = |F-FEl,
H-w)Gw) Gw)
alwl? + AW Aw)
alw|2G(w)
H(w)(alw]? + [H(w)]?) ],
-/'x’ ] a?|w|! |CAr’(w)|2A(lw ]1/2
~oo |H(w) (e|w|? + | H(w)?)?

2




87

< |/ ~ ool [G(0) |2dw]"2
- °° 2afwf? |H(w)[*

°° asinh? 7w [G( )|? dw V2
< Va

3\

\/‘Err

— 0 as a—0

3.4 Approximation of the Regularized Solution F,

Our main objective now is to invert the Fourier transform F, in order to obtain
the desired Fy,, but since the Fourier inverse of F, is not readily tabulated, neither
easy to be found analytically by complex analysis procedures or otherwise, one

can only attempt to solve this problem numerically.

Hermite Polynomials

It is quite natural to think of Hermite polynomials, when attempting to ap-
proximate functions in L*(R) being used in our Fourier transformations. For this,
let us recall the following useful properties of the hermite polynomials [69,32]. The
Hermite polynomials H, (n =1,2,...) are defined by

Hy(z) = " L2 - for ze€R

dz"
Ho(x) =1 (3.17)
(3] . n!(.zl.)n—%
kl(n - 2k)!

Hy(z) = (~1)"

k=0

1

g

Remark 3.4.1 Let ¢, = d, e"‘xzi H,(2), where d, Then the
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set {©n} constitutes a complete orthonormal set in L%(R). Furthermore, these

functions ¢,, are the eigenfunctions of the Fourier transform operator and we have
G = V21it o, (3.18)

For a detailed discussion of the proofs see [32]. Now, for the numerical approxi-

mation of F, set
Fo(w)=T(1 — i)+ So(w) - G(w), (3.19)

where
1

aw? + Tw/ sinh 7w’

Sa(w) =

Remark 3.4.2 The functions S,,G, T are all L(R) functions.

Now, consider the following approximation for the function S,.

N
Sa,N(w) = Z U4nPn

n=0
where,
oy = / Z Sa(Men(A)dA (3.20)
Notice that «,, = 0 for n odd, hence
2]
San(w) = nzz:oazn%n(w)- (3:21)

This in turn yields the approximation ﬁa_N for the regularized solution F,

~

Fon(w) = Son(@)(1 - iw) Gw). (3.22)
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Assumption 3.4.1. Let the hypothesis of theorem (3.3.1) be satisfied and assume

that

sup G(w)| < 00.
w

Remark 3.4.3

(1) stllpII‘(l —w)] = 1.

2

(i) (e“"’zlz)/\ (w) = V2re 7.

Now, the following theorem will imply the convergence of our scheme defined

by (3.22)

Theorem 3.4.1. Let the hypothesis of assumption (3.4.1) be satisfied. Then
the approzimation Fy n defined by (3.22) will converge in the L*(R) sense to the
regularized solution F,, defined by (3.19).

Proof:

A ~

”Fa,N""Fa”2 = Fa,N—Fa

2

= |San(@) - T(L = w)G(w) = So(w) - T(1 — iw)G(w),

= [(Samtw) = Salw)) T(1L — i) G(w)]

Cl'(w)|

< [San = Sallysup
w€R

- 0 as N — oo.
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Now, theorem (3.3.1) and (3.4.1) together with the triangle inequality easily
imply the following
Corollary 3.4.1. |[F - Fon|l, 0 asa— 0, N — oo.
Now, for computational purposes recall the following:
Remark 3.4.4. Given ﬁ’(A) = K(}\) G’()\), where K is an entire function, we can
directly recover F'(a) via the inversion formula
F(a) = K(iD)G(z) (3.23)
where i = /-1 and D = %.

Theorem 3.4.2. For the approzimation scheme, defined by equation (3.22), we

may recover F, n by the formula

where U(z) = e, V(zg)=e=e .
Proof: Recall that I'(1 — i) = V(w) and
o2 1 -

T = U(w)

Fan(w) = San(w)-T(1 — iw)Gi(w)
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n=0

7
1 - N -
(Z aznﬂzn(W)) : TU(W) V(w) - G(w)
Hence, the convolution theorem immediately implies

(]
FG.N(L‘") 7:}—'2'—7; (nz=0 l2nH2n L‘-' [U* V x C] ( )

Now, remark (3.4.4) implies

2w

1

8
Fun(a) = (g aznﬂgn(zﬁm) (U*V *G)(z)

s

where,

2n)Y(4)"~k D2n—k)
k

Ho(iD) = 37 (~1)" ™ ( H(2n - 2k)!

(3.24)

This finally implies

n:

(% n 71-2L n—k J2(n-k
1 nl(4)F P-BY (1)
Fon(z) = I:\/E {Z @2n (Z k\(2n — 2k)! di2(n~F) *V(t)xG(t)| (=)
Remark 3.4.5. Recall that to obtain the approximation for the original function

f we need to set

fan(t) = Fyn(—logt).
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Example 1:

0.3t

F(S) = (3.:1)2

f(t) = te'
a = 104
m = 10
f(t) Exact

f(t) Approximate

a = 1074
m = 20
f(t) Exact

f(t) Approximate

ovs
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Example 2:

> _— 1
Fs) = G+ 11

f(t) = e 'sint

a = 1074
0.3} m = 10
0.25¢
0.2}
0.15¢}

f(t) Exact

f(t) Approximate

10-4
24

o]
i

m

0.05 f(t) Exact

f(t) Approximate

oys
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Example 3:
-— ]
Flo) = e
flty = et — ¢=dus
7 -
/ \...\ fly = PR TR ¥
" \ O = 10—4

\ m = 10

.

0.2 AN
f(t) Approximate
0.1

—v 1 2 3 4 S \L .

f(t) Exact

0.35 N
AN f(t) = edt—eit
o3 ‘ a = 10—4
m = 20

0.25
0.2
0.15 \

f(t) Approximate
0.1 N\ \

1 2 3 4 s l .

f(t) Exact
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3.5 Conclusion

A new technique of numerically treating the Tikhonov regularization operators
F, has displayed good results. But the slow convergence of the regularizing scheme
was apparent. This suggests a more eflicient programming algorithm, and/or

finding an optimal «.
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CHAPTER 4

A SPECTRAL REPRESENTATION METHOD
FOR THE INVERSION OF THE
LAPLACE TRANSFORM

4.1 Introduction

In this chapter, we shall study the spectral theory of the Laplace transform seen
as an operator £ acting on the Hilbert space L?[0,00) by finding its eigenvalues
and their corresponding eigenfunctions, and taking advantage of the fact that its

kernel is symmetric, and hence spectral analysis applies smoothly
LIUFD)s) = J5° e f(t)dt = g(s)

Lf=yg

with its eigenvalue equation
Lf=Af (4.2)

Hildebrand [31] and Widder [81], have shown that equation (4.2) has solutions of

the form

yla,a) = /(1 —a) 2*~' ¥ /T(a)2™° (4.3)

with corresponding eigenvalues A(«) = F,/T'(¢)1'(1 — «) respectively for 0 < a < 1.
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It follows that all values of A in the interval (—o00, —\/7 |U[\/7, 00) are spectral
values. But if these are the only spectral values of the operator £, then we imme-

diately conclude that £ (which is known to exist) is bounded, contradicting the

remark (3.1.1).

This suggests and motivates us to do more investigation on the nature of the
spectrum and resolvent of the operator £ and, therefore, will be our main concern

in this chapter.

In the sequel, we intend to carry our work as follows:
1. For a more convenient and easier analysis we shall first switch our work into
the Stieltjes transform L£? obtained by iterating the Laplace transform L.

Then we consider the eigenvalue equation

L2f = pf (4.4)

o

We use a result found in Hardy and Titchmarsh [78] to obtain all solutions
of (4.4) in a direct and constructive way, where one does not need to guess

solutions and verily them as done by Hildebrand and Widder.
3. We classify these solutions as they belong to different parts of the spectrum.
4. We show that the spectrum is simple, continuous and bounded.

5. As a consequence we shall derive the spectral representation associated with

the Laplace transform, by computing its spectral measure explicitly.

6. This in turn gives a real inversion of the Laplace transform.
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In order to study the real inversion of the Laplace transform, we shall restrict

it to an operator mapping L?[0, 00) into L?[0, c0).
Then we shall try to find all eigenfunctions or solutions of

Ly = /ON ety (t)dt = Ay(s). (4.5)

As known in case the spectrum is continuous the solutions are not in the Hilbert
space Lf’o,m). For this reason we shall not restrict the solutions to the Hilbert space
Lfo'oo), only. The only property we can require is the solutions must be smooth,
due to the smoothness of the kernel defining the operator £, i.e. e~*t. Observe
that if the equation Ly = Ay holds then £2y = A%y will also hold formally, where

L? is the Stieltjes transform defined by

e = [~ L (46)

Equation (4.6) shall be the starting point of our discussion. We shall obtain all
solutions of (4.6) and then by using a result on the spectrum of integral operators
we shall discard all ” bad eigenfunctions”. By cigenfunctions we shall mean all

solutions of Ly = Ay such that A € o, where ¢ is the spectrum of L.
4.2 The Spectrum of £?

In order to solve equation (4.6) we shall make a change of variable so as to

obtain an equation of convolution type. Setting
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where z € (—o0, +00), we have the operator A defined by

A: L}R — L[}R)

_ [ ¢() N
Ao = /—00 2 cosh (‘%) de

To classify the spectrum of A, we must solve the following eigenvalue equation;

A¢ = po
o [T %) ‘
ols) = [.\ 2p cosh(52) da (4.8)

To solve this equation, we use a result proved by Titchmarsh [78]. Define the

Fourier transform of & denoted K(w)
K(w) = — 7 ke at
((w) = — : .
\Y 2r J-oo

Result: Let 0 < ¢ < ¢, and let e“®lk(x) belong to L'(—00,00) and e~ (x)

belong to L2(—co,00). Then, if ¢(a) satisfies

it 1s of the form,

q
d2) =33 C, ar e

v p=1

where w, runs through all zeros of 1 — \/2x A'(w) such that |Im(w,)| < ¢. The
Cy,p are constants. ¢ is the order of multiplicity of the zero w, and K(w) is the

Fourier transform of k.
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It is not difficult to show that ¢’ in the above theorem can not exceed %, for

the function e“!*lk(z) to be in L!(—o0, c0). Hence, we must have 0 < ¢ < ¢ < 3

T

. I, () = 1 : arier m | —_
Our kernel k(z) = Treom T and its Fourier transform is K (w) = ~Ticoshnn

Now, set 1 — v/2rK () = 0. Then

+Ln[Z + \/’;—22 -1]
- .

W =

(4.9)

are its zeros, each with multiplicity 1. We require that [Im(w,)| < ¢ < 1 for the

Theorem of Titchmarsh to apply.

Remark (4.1): That there is no other solution of any kind, i.e., for ¢ >

(ST
-
—
w

shown by Hardy and Titchmarsh [78].

Remark (4.2): If we put p = %7 in (4.9), i.e., solving the equations A¢ = +ig,
then we have |Im(w,)| = % > c and hence we have no solutions of any kind. This
implies that the deficiency spaces N; and N_; defined by L*(—c0,00) — R(A +
iI) and L23(—o00,00) — R(A — iI) respectively, have zero dimensions. Hence the
deficiency index of A is (0,0). So the closure of A, denoted by A is a selfadjoint

operator. This indeed gives a direct proof of the selfadjointness of A.

Now that the operator 4 is selfadjoint, we need only to investigate the spectral

values p on the real line, i.e., p is real.

2 . . .
Let z=Z 4 ./Z — 1, and consider the following four cases:
P p? ! &

i) p=0.



iii)

iv)
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The sequence of L%(—o0, 00) functions v,
Pu(v)=1 n<ae<n+1
=0  otherwise
certainly have |[¢,|| = 1 and ||A¢,]] — 0. Hence p = 0 is a point of the

continuous spectrum.

—00 < p<O.
Then, = = -G ti/l- f;, |arg z| > % and |Im w| > 1. Hence we have no

solutions.

0<p<m.
Then, z = positive real number, argz = 0 and |Imw| = 0. Therefore, we

have the solutions ¢(s) = c;e'l*ls + ¢ e~*ls) where ¢; and co are arbitrary

+Ln l+,/ﬁ—
G i ). Also, p = —=&

constants and w = .
T cosh Tw

p>m.
Then,
s w2 T 7w
z==+i4fl—=, |z| =1, aigz =cos™! = < —.
p p? p 2
+icos™!
Hence, w = ticos™ m/p and [Imw| < 1. The solutions are ¢(s) = czesll 4+

ks
cosh rw *

cqe™®l with p=

Notice that, the solutions in (iv) are those found in Hildebrand, as we shall see

later.

The last case brings the question; which of these solutions are the eigenfunc-

tionals? In other words it remains to classily these points as whether they belong
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to the spectrum or the resolvent of A. But before we do this, let us state the

following results found in Pollard [61].

Let k() be a function satisfying the following hypotheses:

1. k(z) is real, measurable and even.

o

. k(z) € LY (=00, 00).
3. [22 |k(2)]d= < 1.

4. k(z) € L*(~00, ).

Let K(w) = [%, e=%k(z)dx.

-0

Consider

Af(z) = /R k(e — t) f(¢)d (4.10)

Result 1: In order that X belongs to the point spectrum of A it is necessary and

sufficient that A — K'(w) vanish on a set of positive measures.

Result 2: In order that A belongs to the resolvent set of A it is necessary and

sufficient that X be different from zero and A — K (w) vanish nowhere.

Result 3: In order that A belongs to the continuous spectrum of A it is necessary
and sufficient that either (i) A = 0 and K(w) = 0 on a set of at most measure

zero, or (ii) A # 0 and A = K(w) on a nonempty set of at most zero measure.

Now, we certainly have our kernel k(z) = Tc%h(ﬁ—) of equation (4.9) satisfying
2

. . . . gl _ ] e—iwz: L P .
the hypotheses mentioned above, with A'(w) = [ e dz = ——; hence,
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for p > 7 we have p — K'(w) > 0 and result 2 implies that p is in the resolvent
set, where, for 0 < p < 7 we have by Result 3 that p belongs to the continuous

spectrum.

As we are examining the spectrum of £ we recall an interesting theorem by
Gelfand and Shilov [72], which ensures our conclusion in the paragraph following

result 3.

Theorem: [Shilov] The generalized eigenfunctions y(A,2) of any self-adjoint op-
erator A defined on the space L*(R) are derivatives (of the type 9"/dz, - -+ 0z,) of
measurable functions which do not increase faster than (1+|z|)*™?*, for arbitrary

e> 0.

Now, Hildebrand (as mentioned earlier) found that y(z,a) defined by (4.3)
solves the eigenvalue problem Ly = Ay, and hence solves L2y = Ay. Then, with the

same change of variables done in section (4.2), we can conclude that for 0 < a < 1

1

é(z,a) =T(a) ez (1 — a)e(“_%)”

are also solutions of equation (4.8)
Ag =p¢

But, Shilov theorem immediately excludes these solutions from our spectrum since

they are derivatives of the functions ¢
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which obviously grows faster than (1 + |ar|)%"'c

We then conclude that the spectrum of the operator A is continuous and it

covers the interval 0 < p < 7.

Indeed, if we put a = % + 2w and notice that

T(a) = I'@) = T'(1 — ), |T(a)[2 = —

cosh 7w’
Then the discussion in case (iii) implies that p = |T'(a)[? is in the continuous spec-
trum of A with multiplicity 2, with the corresponding generalized eigenfunctions
(eigenfunctionals) ¢(s) = ¢;(a)e™ (/2= x ¢y(a)elt/2=9) where ¢; and c; are arbi-
trary functions of a. By changing variables, i.e., put s = Lnp, 2 = Ln§, y(s) =
ﬁcﬁ(Ln 1), then, we conclude that if ¢, and ¢, are solutions of (4.10). Then

y(s,p) = c1(a)s™ F cy(a)s®! are solutions of

= yp),.

py(s,p) = s sta

(4.11)

i.e., the operator £? has a continuous spectrum covering [0, 7] and every spectral

value p(a) = |I(a)|? =

has multiplicity 2, where

cosllTw
,cosh~1 Z
a=l+z—”ﬂ- L tiw

Theorem: The spectrum of L (acling on the space L*(Ry)) denoted o is simple
and continuous covering the interval [—\/m, \/7]. Moreover, the spectral values
are Ai(a) = [T(a)| = /g end Xa(a) = ~|[(a)| = — /== with the associ-

ated eigenfunctionals y,(x,\) = T'(a)a™® 4+ {T(a)]e*~! and ya(z,A) = [(a)z™* -

sin~! :"7

IT(a)|2*~" respectively, where a(X) = —




7

Proof: For the equation Ly = My, one can directly verify that y, and y, are
solutions. In fact these are the only solutions of Ly = Ay for otherwise, L2y =
Ay will have more than two independent solutions contradicting remark (4.1).
Similarly if A; or A2 has multiplicity greater than 1 then the eigenvalue p of £2

(p = A2 = AZ) will have multiplicity greater than 2, a contradiction. Hence,
our spectrum of £ is continuous covering [—\/7, /7] and each eigenvalue is of

multiplicity 1, hence the spectrum is simple.

We now have the eigenvalues and their corresponding generalized eigenfunc-
tions for the operator £ in hand, where £ is bounded and selfadjoint. Hence we

are in a position to start the construction of the spectral function.

4.3 The Spectral Analysis:

Since L is a self-adjoint operator with simple spectrum, there exists a nonde-
creasing function defined on the real line, g say, and in this case the eigenfunc-
tionals help define isometries

M L20,00) — L3,

¥= F() = [ f(2)y(z, \da L (4.12)

-1

F = 1) = 1% PO S N du(). |

such that Parseval equality holds

—~1 -1

()= [ FO)$O)du(). (413)
p is called the spectral function associated with the operator £. Recall that Par-

seval equality ensures that * is an isometry. This pair defines inverse isometric
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mapping of L?[0,00) onto L3, and of L3, onto the L?[0, o),
L(f) = /_ °; AP(N) 3(@ N dp(A) <= AF(A) = /0 T L(Ny(e, Ndz.  (4.14)
Formally we have for any f € C§°[0, 00)

/0 st f(1)dt = £(f) = /0““’ (1) /, Xy(, Ny (t, Ndpu(N)dt,

So,

the kernel of £ = ¢™*! = / Ay(z, Ny(t, N)du(r).

We extensively rely on this formal equation together with the eigenfunctionals

evaluated earlier to derive a formula for our spectral function p.

e = /w Ay(z, A)y(t, A)du(A)

ﬁ
/_ﬁx (, \yl@ (A

=/ A [[(a)2™* + |D(a) u-][r )t + T (@)t Jdu())

+ /_ ﬁ/\[l’(a). * (@) (@ = [T(@E=Jdu().

sin”! %

is an even function of

1
and ¢ = - + 1

..4

Notice that A = |I'(«)| = |T(} + iw)
2

A. Changing A to —A in the second integral of the above equation and assuming

that u is odd yields
—/ IP(@)f? [P(a)(@t)™® + T(1 = a)(at)*~"] {Adu(A) + Adu(A)}

e~ = —9/0 IT(2+iw)|? [ (3 + fw)(at)" V2w 4 I3 - iw)(l‘t)_l/”iw] (dpA(w)).

Putting 2t = ¢° and changing w to —w in the second piece of the integral
yields,

ele=¢ = 2 /oo IT(2 + i|w])PT (2 + dw) - e dp(A(w)).
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Using the inverse Fourier transform and the fact that
Rt y 3 .
/ eviet/ e ds = T(2 + iw).
—00

We finally get the formula for our spectral function g,

1
—4W[F(%+iw)|2'

1 (Mw)) N (w) =

Then,
/ 1
1U ()\) —m, A>0
Notice that,
N = Q _ T '
" dw Y\ cosh(zw)
hence,
1

' /\ —
) 27 sgn(A)A3/72 — M

for all A€o

4.4 The Inversion Formula:

Recall that p() is the spectral function for £ where A(a) = +|[(a)| = +,/—2—

cosh rw’

a =

[l

+ 1w and w is real, —00 < w < co0. With these facts we can prove the

following theorem.

Lemma (4.4.1) £~ 1= A (l\) M
Proof: Using the definition of ™ and A in equations (4.12) and (4.13) together

with the isometries defined by equation (4.14), we have
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(FON™ (2)
= (Fenm)

hence,

-1 A7! l)/\l
e ()

The Theorem of Inversion: Let g(s) be a given L*[0,00) function representing
the Laplace transform of an L*[0,00) function f(z). Then, f can be recovered from

g by the formula

1 o o xs)”¢
flz) = 2—7;/0 g(.ﬁ)/_oo F((mls)_ a)(lw ds

where, a = J + tw.

Proof: We similarly manipulate the integrals as done in the earlier discussions,

and we formally switch integrals (this will be justified in chapter V).

f@) = £ = T ()= 5 [ glelys, s

-1 [ ]
— A 2 .
= [ So()ls Nds

=/ / )\J y(s, A)dsy(z, X)du(r)
= [T o) [ TRyt Vi)

= /0oo g(s) /_\/\; 5\15 [,\ y(s, N)y(z, /\)] du(A)ds

1oy © (xs)™*
= 5/, g(s)/_oo I‘(l—a)dwds'

Corollary: Let g(s) belong to L*[0,00) and represent the Laplace transform of an

L?*(0,00) function. Let gy be its Mellin transform. Then we can recover g from
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gum by the Mellin inversion formula

1 1/2+i00 e
!](S)z_—)—;; i gar(a)s™da.

Proof: a = %+ w, —oo<w< 0.

According to the previous theorem,

LU = o) =5 [T o) [* srdwds

T

1 ™ a1 /m ( ) —ﬂ-l d
= — 7 g(s)s™%ds dw.
27 Joe ! 0 I °

O oo

_ 1 o a—~1 N —al d N 1
= 5 _Nn /0 g(s)s™%ds [—z(a—§)].
1 1/2+ic0 00 1
= — - s*~ds da.
2wt J1/2-ico 1 /0 9(s)s saa
1 1/24ico — g
= _— 7 ( Y a a-
2w J1/2-ico I"oni(a)

Example: Consider the L?[0, co) function f(1) = e™%, its Laplace transform g(s) =

s+1°
Now, let us use our formula to recover f.

1 e ] o (xs)”° RN o g7e
f(m)—-?w/o s+1./_ooF(1—a)dwdS_‘27r/-oof‘(1—a)/o s+1d3dw'

Put s = €f and = = €". Then,

fle") =

1 oo e—(1/2+iwn roo p(1/2-iw)g
21 Jooo I'(3—iw) /_»o 1+ €t
1 oo g=(1/2Hiw)y .

d¢ dw.

27 Jso (3 — w) " cosh ww

1 o p—(1/241w)y 1 1 ]
= — —C———)F(;+iw)r‘(5—zw)dw.

21 Je l’(:} —w

e~2

= /oo F(% + jw)e” " duw.

2n -0 K4




Hence, f(t) = et
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CHAPTER 5

DIRECT SPECTRAL ANALYSIS
OF THE LAPLACE TRANSFORM

5.1 Introduction

By comparing the Laplace transform with the differential operator, that is
comparing two self-adjoint operators [6], we shall obtain £L~! = 2LV~ cos(r D)V,
where £ is the Laplace transform and V is a change of variable. This will help
us deduce an explicit spectral representation of the Laplace transform. Using this

fact, we shall derive a simple real inversion method to compute the inverse Laplace

transform.

It is known that the range of the Laplace transform is in the space of analytic
functions. Therefore the domain of the inverse Laplace transform is contained in
the set of entire functions on the right half plane. Recall that operators acting on
the space of entire functions can be represented by differential operators of infinite
order. One way of verifying this result for the inverse Laplace transform is to use

methods of spectral theory. For this we shall restrict the Laplace transform to an
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operator mapping L?[0,00) into L?[0, c0).
L:L*0,00) — L*0,00)
we) — L)) = [ e my(z)de. (5.1)

This is an integral operator with a symmetric kernel, and we shall try to show that

it is a selfadjoint operator in L2[0, 00). It is clear that

Clee) = [ Ag, (5.2)

Thus £? can be seen as composition of projections and the Hilbert transform.
We now shall use comparison techniques to find a spectral representation of the

Laplace operator. To this end consider the following transformation V,
V:L*0,00) ~— L*(~00,0)
y — Vy(2) = ely(er). (5.3)
It is easy to show that V is a unitary transformation, i.e.,
Vv =1, and V1=V~
and the inverse operator is defined by
V7l [¥(~00,00) — L[0,0)
ga) — Vg(a) = — Lnz).

\/.»,79(

The study of £2, involves the operator defined by A = V£2V-1, that is

A: L} —o0,00) — L*(—00,00)
y() = Ayle) =kxy = [ Ko —n)yln)dn (5.4)
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where, k(z) = 7=

= g—q=- A is obviously an integral operator of the convolution type.
2

. . . -1
We shall denote the Fourier transform # and its inverse by *

Nof— f(N) = [: f(z)e"dz
A

2

) — Jw = [T feed

Theorem 5.1.1: The operator A defined on L} (—o00,00) by (5.4) is a bounded
selfadjoint operator with ||A|| = .
Proof: It is easy to show that the Fourier transform of k is

(A = —Z (5.5)

coshmA’

and so £()) is a bounded function. Using the Parseval relation || f|| = || /|| and the

fact that sup |k(z\)| < 7 we have for any f € L*(~o0,00);
AER

AL = e+ £l = 1eF)l < suplk)INFI < = [1F] = 7 1F]]

Hence; Dy = L*(~00,00), and ||A|| < 7. In fact the equality holds. This is shown

by choosing

* V- R ORE
fu such that f,(\) =

0 otherwise .

Then

/oo [fn(/\)]2 dX =1 and supp f()) — {0}.

had e <]

Hence,

Jim |Afll = Jim, \/ JEOPQIPO = fim VEOP = KO = 7.
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Since A is bounded and symmetric it is a selfadjoint operator in L?(~o0, c0).
Corollary 2. The operator L? is a bounded selfadjoint operator and,
£ = =

Proof: Follows from the fact that A is a bounded selfadjoint operator, see Theorem

(5.1.1) and £? is unitarily equivalent to A.

5.2 The Spectral Representation of £?:

Let us find the spectral function of £2. In order to do so, we only need to find
the spectral function of A. It is known that the spectrum is invariant under a

unitary transformation of the operator.

By using Parseval relation for the Fourier transform
(Af, ) = (k* [.9) = (K [,4) = (A F(A), (1)
where, f(A) = [T% f(x) "*dz. From this we deduce,

(Af) = [~ BTN d- (5.6)

Let a()) be the inverse of k()) defined by

1, 7 w2

Clearly

T =) aA)<0 A>0.

cosh wa(A)
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We have from (5.6)

(Af, ) /0 " fa(n)- z&(a()\))d% + / 0Af(—a(z\))zﬁ(—a(/\))d_;,(f)
a(})

(af8) = [3[{#a)- 3D} + {f—a0n) - B=aON}] a5

4

I

The above equation can be written in the matrix form as

2() R
- A A TN
(Af,8)= [ 2 [fla(h), fi=a()] . . 6D
° a) | | ¥(—a(}))
0 d°z
eiza(\)
This only means that is the eigenfunctional of £2, so the multi-
e=iza())
a4 g
plicity is two, and the associated spectral matrix is , see [6].
0 d3d
(15%l 0
Proposition 5.2.1: The spectral function of A is and the multi-
0 dyd

plicity is two and o = supp da(A) = [0, 7).

Now we use our relation A = VL2V~! to deduce the spectral representation

for L2

(L2f,9) = (VTIAVS, ) = (AVf, V) = (A\V ], 7).

Define the transform *2;
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Then, we obtain the following relation between 2 and /A by using the isometry V

FO = [T f@e it = [~ Vi) =D de =VF (). (59)

Hence, equation (5.7) implies;

(L2f,9) = (AVS,VY)

- . a2 o ][ Ve
= ["[Vr @, Vr (e
0 0 | | vp(-

%53 a())

A2

Pl g0 ¥ ()
=/ [f (), f(A)]

0 o
0 qod b (N

This, simply means that our spectrum is continuous of multiplicity two covering

B o
T™
[0, 7], which is the support of the spectral matrix function p(A) = ,
0
27

3,-;—+ia(.\)
and the corresponding eigenfunctionals are

- %—ia(.\)

5.3 The Spectral Resolution of L:

In what follows we shall consider the square root £2. For simplicity set w(A) =

—1 +ia(X?).

Now, with the help of the eigenfunctionals of £? we shall construct the eigen-

functionals of £ as follows: it is easy to see that the following combination

y(x,A) = T(1 +w)a” + s(N)|0(1 + w)|z™ (5.9)
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+1 A>0
satisfy Ly = Ay where, s()) = and A = s(A)|T(1 + w(A))].
-1 A<0

Define the transform ™ :f (A\) = [ f(z)y(z,\)dz and recall that f2 =

Is° f(z)z“dx. Observe that

T (0) = T +w) - FO2) + sT(1 + w)| T (02). (5.10)

It is clear that the multiplicity of the spectrum of £ is either 1 or two. We
claim that equation (5.10) defines a complete system of eigenfunctionals and so
the multiplicity is only one. Recall that a system of eigenfunctionals is complete
if

i) =0for \eo = f=0 in L2[0,00).

Since both A € o and —~A € o we have from equation (5.11) ) we obtain the

following system

F=0 = T(1+w)- FO)+[T(1+w)] F (02) (5.11)
T (=0)=0 = T+w) FO) =00 +w)| F (02) (5.12)

N2 A2
The determinant of the system being no zero means that f(A\?) =0 and f (\2?) =

0. That is f= 0.

This transition formula (5.11), together with Parseval relation implies for all
fy € L0, +0).

(Lf, L) = (L2f, ).
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For the left-hand-side use the Parseval equality associated with the operator £

and for the right-hand-side use the parseval associated with £2 to obtain

2T odman = [ [Fado+s Fo o2 e

Now, we use this equation to evaluate our spectral function p of £ and recall that
IT(1 + w)]? = A%

We now shall compute the left-hand-side of equation (5.14) using equation

(5.11)

[2F 0% e =

S

A2 {F(l + 117)7(A + s(A)|T(1 + w)| f (/\2)}

——

TTF0) 3 (OF) + s\ IF1+w)I¢(A2)} o)

+
HoS—

[ {7@2) o4 F o) ¢(A2)}dp(x)

[ SOV {TwFDIra +w)l 7 00 ¥ 00+

+ T(L+ 0T+ -w)|fu2>?z?(v>} do()

Since the second integrand is an odd [unction, we only need to assume that the

p(A) is an odd function for the above expression to reduce to
2 7} ~ a [ 2 2 2 2
[ 7 o F o = [ {Fon B one 7 on 3o ey
and use equation (5.14) to obtain

[y Fondon + 7oy i) =

[ [T B oo T oo Bon [ 442
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o[ NP0 8 08+ F ) $00))da(r) =
LA F(/\) $ 0+ T 0B d%)

&

where o+ = o N [0, +00). Therefore we need to have

A)
2)? - lﬂ__ >
Adp(\/A) = Aa 5 A>0
From which we deduce that

PN (N 1

I 2r /e

from which we conclude that

1

=

0SA<SVr

to recover all of p(A) on o we need to recall that p()) is an odd function

1
T 27 A3s(A) VAT — M

P'(A) -V <A< VUr

+1 A>0

where s(A\) = .
-1 A<0

This formula coincides with the same one found earlier in Chapter IV.

5.4 Construction of a Real Inversion Formula by Using
Pseudo-Differential Operators

Let f and its Laplace transform be in L?[0,00) and let V be the change of
variables defined earlier; let D = dii- Then the following theorem furnishes a real

inversion formula for £,



Theorem 5.4.1: L~ = 1LV~ cos(z D)V.
Proof: It is known that convolution operator can be represented as differential

operators, indeed from (5.4) and (5.5) )
Af(x) = k= f(a)

So by taking the Fourier transform

AFQ) = k()
= F(A)

coshz )"
cosh A

f(A)

ATTF(N) =

AT = —cos(r)f(a)
Thus

£t = v-‘A-’V=v-‘lcos(7rD) 1%
T
£ = Lov-teos(zp)v (5.14)

T

where D = di.
T

The analyticity of F' helps a great deal in utilizing the formula of theorem
3.4.1. That is, one can always expand F in terms of its Fourier series in a small
neighbourhood of the positive real axis, as we shall see by the following applications

of the theorem.

Before we do so let us use the above theorem to justify our formal work in the

inversion theorem of chapter IV, as promised.
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~%dw

Remark 5.4.1: V-12D) ye-st - /
1 - a)

, where a = % + w.

Proof: If we equate both formulae obtained for £~! in chapter IV and V, we have

1. © o (st)"ziw
~y-1 7 - (s AR
—V= cos(x D)VLF /0 r(b)/ dw

o TG =)
—71;_-V_1cos(7rD)V /_ ; e~ F(s)ds = /0 ~ F(s) _°; %dw
/  F(s) (%—V‘l cos(nD)\-"e‘“) ds=[ “Fe) [ : lifé)__%—;:dw
Therefore, it remains to show that
—V Ycos(rD)Ve™™ —/ —it___——::;dw

But, using the definition of the Gamma function as will be shown later, we get

1 ¢ 1 o0
;V"l cos(wD) (et/ze'se) = =V! cos(wD)/_oo e ‘5""""[‘(1 w)dw

T
= v [ ——euws-#iwdw
o I(3 +iw)
(st) --+'w
- F +zw

5.5 Regularization Via Truncation

To apply theorem (5.4.1) one found it very difficult to use directly. For this
we need to expand F(s) in terms of its Fourier series, which in turn can only be
done if F(s) is periodical, otherwise we need to truncate F' and expand safely in

a finite interval £ < s < L.

Now, let us discuss the error we commit by truncating F.
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Assumption 5.5.1: Let R denote the interval R — [Ln{,Ln L] and define the
error function Ej,

EpL «(N) =/7; e /2 F(e)dx.

A Y

Furthermore, suppose that for some o >0, 3> 0and e >0

e—x(l+€)|.\|

7 < (B
|EL.1'(/\)| = ¢ Le

Proposition 5.5.1: Let F' = Lf and suppose we want to recover f from its
Laplace transform using the formula L7' = 1LV =1 cos(x D)V, with replacing F by
ils truncated approzimation Fr,
Fr(s) = F(s) se€l(,L]
=0 elsewhere .

Furthermore, suppose that assumption 5.5.1 is satisfied. Then the error E § we
commit in recovering f by using Fr is of order O(L~%) O(ﬂf).

Proof: Let fr and Ej denote the approximation of f using Fr and the error

committed respectively. Then,

2

1.. ——— ———
IB; = 0f = frll3 = |2V costaD) (VF - 7Fy)

2
< % llcosh 7\ (VF — V Fp)2

2

oo LnL
! cosh A (/ At F(e*) —-/ e”’\e”/ZF(e”)) dz
T -0 In¢

1
= - llcosh wAEL o()|)2

2

< ! ”cosh Vi e'"(H"”'\I“Z
T
1

= o(™) o)

— 0 asf—0and L — 0.
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Application 1: We shall work out an example on the computation of the in-
verse Laplace of a given function, by using equation (5.14). In case ez F(e®) is

continuous, it can also be approximated by polynomials over a finite interval. Let

where n <0 and 1<z<L.

N (Ln(a))®
F(’L) = E%an-——\/‘_T

Clearly L7'F(z) = LV 'L cos(rD)VF = T a.LV ! L cos(rD)z". We need to

evaluate
o (—l)k(ﬁ)2k7l! n—~2k
cos(mD)x —ngmm

Therefore

al 1 (=1)%(z)%*n! _ _

1___ o - . 1/2 n—-2k

Vo cos(rD)a ‘ogkn (n—aie | Lne)
Thus
gv-l.l.cog( Dp" =Y l(—l)k(”)zkn!lj [1'_1/2(L71 1:)"_2k]

TS e TS — 2k ‘

and so

R A 2k, 1
f@)=L"F@)=Ya, Y %glb}()_z(__{)k_)z'ﬁ [e (L 2]

n<0  0<2

Now, we need to evaluate £ [m‘l/ 2 Ln(m))"] . For this, we change variables in

the definition of the Gamma function by putting ¢t = sa

I'(z) = /ON et dt

e -1
= s'/ e " da
0

Putting = €Y, we have



Now, similarly putting z = e¥

h(s) = L (w'1/2(Ln ;1'_)71) _ /"\" e_sx$—1/2(Ln (:L))nd:l:

0

o0
—se¥ (L1
- e3¢ ol3+nly
-3

dy

hence,

I(1+n)

S%+n

his) =

Finally, we get

1(=1)*(n)*all(} +n — 2k)

fe)=L7'F(2) = Z an Z

a0 0T (2k)(n — 2k)lgFin-2k

Example: Consider F(s) = 7‘;, which is the Laplace transform of f(t) =

Using application 1, we have

&P F(ef) = 1

Then,

Application 2: Let (Lf)(2) = F(x) where F(z) is defined by

1
F(a) = W Z @, cos(n In ;1.'%
T 20

)

1<a<el

96

1

m.
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where fl |F'(m)|*dn < oo. Clearly from (5.9)
L7'P(2) = L:‘-"'l;lr—cos(wD)VF

where

VF =e? F(e*) = > a, cos(nw%).

n20

we deduce that

LF(2) = L'% V=l cos(xD)> a, cos(nw%). (5.15)

We now would like to evaluate the right hand side of equation (5.15). Recall that

1 _ 1 k- aky DX
;COS(WD) = —kgo(—l) (w )W
and (—1)*7%* D% cos(na %) = (n"—Z)?" cos(naf). Hence
1 ™ 1 1 7, T
;cos(rD)cos(n;er) = ;ém(n—f) cos(nxz)
2
= % cosh(f—Lﬁ) cos(nz 2 )-
and so
—1~V ! cos(D) (nZ I 7r2n) os(nl -7[)
= cos cos(1 - \/_com cos(nlnz ).

The last remaining operation is the Laplace transform.

1 2
E%-\/—_ cosh( T) cos(nlnar{—) = % cosh(u) \}_ cos(nlnz— 7r)
Therefore
2n vy T
flz) = LY Z @, cosh( Re{(—,_H—T,),Ll}
n20 L 5+1”T
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Application 3: If we can also use a Fourier expansion
. Sy X
ez F(e*) = c,e™7t where |2| <L

el .
and /_LlF(n)|2d7) < 00. Obviously VF(a) =¥ c,e™ % and

1 cos(mD)e™E = = cosh(nn—z)ei"”%
T T L

Thus V-1 cosrDe™Z = L cosll(rz%)ar‘%+i”%. All we need now is to apply Laplace
transform to obtain

2

fe)=L7F(2) = ch%cosh(n%)ﬁx‘%“nf

2 14
= ch-l—cosh(nl)——r(z-}—m[’)
T L

:1;%‘“"%
5.6 Concluding Remarks

A spectral representation of the Laplace transform was obtained and used to
obtain real analytical inversion formulae in both of chapters [V and V. Although
these formulae are represented differently, they were proven to coincide by remark
(5.4.1). They yield two different ways of interpreting the Laplace transform inverse.
Moreover, regularization by truncation was suggested using the inversion formula
in chapter V. The ill-posedness of £~! resulting from the unboundedness was very

clearly seen through the differential operator D involved in the formula £! =

LIV cos(rD)VF.
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