NUMERICAL ANALYSIS OF ENTROPY
GENERATION N LAMINAR VISCOUS FLUID FLOW
BETWEEN PARALLEL PLATES

BY

NAYEF M. AL-SAIFI

A Thesis Presented to the
DEANSHIP OF GRADUATE STUDIES

KING FAHD UNIVERSITY OF PETROLEUM & MINERALS
DHAHRAN, SAUDI ARABIA

In Partial Fulfillment of the

Requirements for the Degree of

MASTER OF SCIENCE

in

CGHEMICAL ENGINEERING

January, 2004




UMI Number: 1419519

INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy
submitted. Broken or indistinct print, colored or poor quality illustrations and
photographs, print bleed-through, substandard margins, and improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized

copyright material had to be removed, a note will indicate the deletion.

®

UMI

UMI Microform 1419519
Copyright 2004 by ProQuest Information and Learning Company.

All rights reserved. This microform edition is protected against

unauthorized copying under Title 17, United States Code.

ProQuest Information and Learning Company
300 North Zeeb Road
P.O. Box 1346
Ann Arbor, Ml 48106-1346



KING FAHD UNIVERSITY OF PETROLEUM & MINERALS
DHAHRAN 31261, SAUDI ARABIA

DEANSHIP OF GRADUATE STUDIES

This thesis, written by

NAYEF M. AL-SAIFI
Under the direction of his Thesis Advisor and approved by his Thesis Committee, has
been presented to and accepted by the Dean of Graduate Studies, in partial fulfillment of

the requirements for the degree of

MASTER OF SCIENCE IN CHEMICAL ENGINEERING

Thesis Committee

Al

Dr. Ramazan Kahraman (Chalrman)

Dr. H. H. Al-Ali (Member)

y ?{;ﬂw N . s ;3/ i:’ gi K
= F R R { -
P"‘bf Mohamed B. Amin Dr. K. Loughlin (Member)

(Department Chairman)

Prof. Osama A. Jannadi
(Dean of Graduate Studies)

2413 J2.604
Date



Dedicated to

My Loving Parents and Wife

i



ACKNOWLEDGMENTS

My unqualified gratitude is to Allah, the Almighty who guided me in every facet
of this work in his infinite wisdom and bounties.

I am sincerely grateful to Dr. Ramazan Kahraman, my thesis committee chairman,
and Dr. Usamah Al-Mubaiyedh, my thesis co-chairman, who not only made themselves
available for consultation at all times, but also served as a source of continuing inspiration
throughout the course of this work.

My sincere thanks and appreciation is also due to the other members of the
committee, Prof. Ahmet Sahin, Dr. H. H. Al-Ali and Dr. K. Loughlin for their invaluable
support, suggestions and constructive criticisms that enormously facilitated this work.

I would like to acknowledge the King Fahd University of Petroleum and Minerals
especially for making available all the facilities. I would also like to thank the chemical
engineering department and especially the faculty members for their invaluable
contributions, and assistance in several ways throughout the course of my graduate
program.

Finally, my deep thanks go to my family for their love, support and

encouragement for their invaluable help and motivation.

1ii



TABLE OF CONTENTS

Page
DEDICATION il
ACKNOWLEDGMENT iil
TABLE OF CONTENTS iv
LIST OF TABLES vii
LIST OF FIGURES viii
ABSTRACT (English) XV
ABSTRACT (Arabic) Xvi
CHAPTER 1 INTRODUCTION 1
1.1 Motivation 1
1.2 Objective of the Study 2
CHAPTER 2 BACKGROUND AND LITERATURE
REVIEW 4
2.1 Velocity and Temperature Distributions in Ducts
2.2 Entropy Generation Studies 11
2.2.1 Entropy Generation Equations 12
2.2.2 Entropy Generation Analysis in Different Process
Components 13
2.2.3 Entropy Generation Analysis in Different Duct
Geometries 17
CHAPTER 3 MATHEMATICAL FORMULATIONS 23
3.1 Problem Statement 23
3.2 Entropy Generation Equation 27
3.3 Continuity and Momentum Equations 29
3.3.1 Vorticity and Stream Function Equations 31
3.4 Energy Equation 33
3.5 Fully Developed Velocity Solution 34
3.6 Dimensionless Equations 35
3.7 Viscosity Temperature Relationship 38
3.8 Boundary Conditions 39
3.8.1 Stream Function Boundary Conditions 40
3.8.2 Vorticity Boundary Conditions 41
3.8.3 Temperature Boundary Conditions 43
CHAPTER 4 NUMERICAL FORMULATION 50
4.1 Generalities of the Method of Weighted Residual 50
4.2 Psedospectral Method 52
4.3 Choice of Basis Function 53
4.4 Chebyshev Polynomials 53
4.5 Chebyshev Derivatives 57

4.6 Solution Techniques 63

iv



CHAPTER 5 RESULTS AND DISCUSSIONS
Convergence of the Numerical Solution

5.2 Variable Viscosity Relationship

5.3 Constant Wall Temperature

5.3.1 Velocity Profiles

5.1

54

53.2

53.3
534

5335

5.3.1.1 Velocity Profiles for Constant Viscosity
5.3.1.2 Velocity Profiles for Variable Viscosity
Effect of Inlet-Wall Temperature Difference, Reynolds
Number and Liquid Type on Velocity Profile

5.3.2.1 Effect of Inlet-Wall Temperature Difference
5.3.2.2 Effect of Reynolds Number

5.3.2.3 Effect of Liquid Type

Temperature Profiles

Effect of Reynolds Number and Liquid Type on
Temperature Profiles.

5.3.4.1 Effect of Reynolds Number

5.3.4.2 Effect of Liquid Type

Entropy Generation Profiles

5.3.5.1 Entropy Generation from Fluid Friction Effect
5.3.5.2 Entropy Generation from Heat Transfer Effect

5.3.5.3 Effect of Reynolds Number, Liquid Type and AT
on Entropy Generation
5.3.5.3.1 Effect of Reynolds Number
5.3.5.3.2 Effect Liquid Type
5.3.5.3.3 Effect of Inlet-Wall Temperature
Difference

5354 S,, and S,

Constant Heat Flux

54.1
54.2

54.3
5.4.4

545

Velocity Profiles

Effect of Reynolds Number and Liquid Type on

Velocity Profile.

5.4.2.1 Effect of Reynolds Number

5.4.2.2 Effect of Liquid Type

Temperature Profiles

Effect of Reynolds Number and Liquid Type on

Temperature Profile.

5.4.4.1 Effect of Reynolds number

5.4.4.2 Effect of Liquid Type

Entropy Generation Profiles

5.4.5.1 Patterns of Entropy Generation Profiles

5.4.5.2 Effect of Reynolds Number and the Liquid Type
on Entropy Generation
54.5.2.1 Effect of Reynolds Number
5.4.5.2.2 Effect of Liquid Type

66
66
67
72
72
72
73

85
85
90
95
98

102
102
102
105
105
110

117
117
120

123
125

129
129

137
137
139
141
141

141
147
149
149

152
152
153



5453 S,, and S,

CHAPTER 6 CONCLUSIONS AND RECOMMENDATIONS

NOMENCLATURE
BIBLIOGRAPHY

vi

159

162

166
169



Table

3.1

3.2

33

34

3.5

3.6

4.1

4.2

5.1

5.2

LIST OF TABLES

Dimensionless equations for constant wall temperature and
constant properti¢s.

Dimensionless equations for constant wall temperature and
temperature dependent viscosity.

Dimensionless equations for constant heat flux and constant
properties.

Dimensionless equations for constant heat flux and temperature
dependent viscosity.

Boundary conditions for constant wall temperature case.
Boundary conditions for constant heat flux case.
Comparison between exact and pseudospectral solution for N = 6.

Comparison between exact and pseudospectral solution for N =
14.

Numerical solution convergence for axial velocity corresponding
to ethylene glycol (physical properties are given in Table 5.2, T, =
300 K, AT = 30 K, Reynolds number = 100, X = 30000 and Y =
0).

Physical properties for Water and Ethylene Glycol [Plawsky,
2001].

vii

Page

44

45

46

47
48
49

61

62

68

69



Figure
3.1

3.2

33
34

4.1

4.2

5.1a
5.1b

5.2

5.3

5.4

5.5

5.6

5.7

LIST OF FIGURES

Flow of a fluid between parallel plates subjected to constant wall
temperature.

Flow of a fluid between parallel plates subjected to constant heat
flux.

Determining the entropy generation for constant viscosity case.
Determining the entropy generation for variable viscosity case.

Graphs of the first Chebyshev polynomials, ¢, (x), for k =0, 1, 2,
3and 4.

Flow Chart of solution technique.

uvs. (T-T,) for water for 7, = 300 K.
uvs. (T-T,) for ethylene glycol for 7, = 300 K.

U vs. Y for constant viscosity case.

U vs. Y for variable and constant viscosity cases for ethylene
glycol at X = 185 (physical properties are given in Table 5.2, Re =
400, AT =30K and 7,= 300 K).

V vs. Y for variable viscosity case for ethylene glycol at X = 185
(physical properties are given in Table 5.2, Re =400, AT=30K
and 7,= 300 K).

U vs. Y for variable viscosity case for ethylene glycol at various X
values (physical properties are given in Table 5.2, Re =400, AT =
30 K and 7,= 300 K).

U vs. X for constant and variable viscosity cases for ethylene
glycol at Y = 0 (physical properties are given in Table 5.2, Re =
400, AT =30 K and 7,= 300 K).

U vs. X for constant and variable viscosity cases for ethylene
glycol at various Y values (physical properties are given in Table

viil

Page

24

24
25

26

55

65

70
71

74

75

78

79

80



5.8

59

5.10a

5.10b

5.11

5.12

5.13

5.14

5.15

5.16

5.17

5.18

5.2,Re =400, AT=30K and 7,= 300 K).

U vs. X for constant and variable viscosity cases for ethylene
glycol at Y = 0.5 (physical properties are given in Table 5.2, Re =
400, AT=30K and 7,= 300 K).

U vs. X for constant and variable viscosity cases for ethylene
glycol at Y = 0.82 (physical properties are given in Table 5.2, Re =
400, AT=30K and 7,= 300 K).

U vs. X for variable viscosity case for ethylene glycol at Y = 0
(physical properties are given in Table 5.2, Re = 400, AT=30K
and 7,= 300 K).

U vs. X for variable viscosity case for ethylene glycol at Y = 0.46
(physical properties are given in Table 5.2, Re = 400, AT=30K
and T, = 300 K).

U vs. Y for variable viscosity case for ethylene glycol at X = 185
(physical properties are given in Table 5.2, Re = 400, AT = 10, 20
and 30 K and 7,= 300 K).

U vs. X for constant and variable viscosity cases for ethylene
glycol at Y = 0 (physical properties are given in Table 5.2, Re =
400, AT =10, 20, 30 K and 7,= 300 K).

V vs. Y for variable viscosity case for ethylene glycol at X = 185
(physical properties are given in Table 5.2, Re = 400, AT = 10, 20,
30K and 7,= 300 K).

V vs. X for variable viscosity case for ethylene glycol at Y = 0.15
(physical properties are given in Table 5.2, Re =400, AT = 10, 20,
30 K and 7,= 300 K).

U vs. X for variable viscosity case for ethylene glycol at Y = 0
(physical properties are given in Table 5.2, Re = 100, AT=10 K
and 7,= 300 K).

U vs. X for variable viscosity case for ethylene glycol at Y =0
(physical properties are given in Table 5.2, Re = 200, AT=10K
and 7,= 300 K).

U vs. X for variable viscosity case for ethylene glycol at Y =0
(physical properties are given in Table 5.2, Re = 100,200,300,400,
T,=300K, AT=10K).

U vs. Y for variable viscosity case for ethylene glycol at X = 1105

ix

81

82

83

84

84

86

87

88

89

91

92

93



5.19

5.20

5.21

5.22

5.23

5.24

5.25

5.26

5.27

5.28

5.29

(physical properties are given in Table 5.2, Re = 50 and 400, 7, =
300 K and AT=30K).

U vs. X for variable viscosity case for ethylene glycol and water at
Y = 0 (physical properties are given in Table 5.2, Re = 200, 7, =
300 K and AT =30K).

U vs. Y for variable viscosity case for ethylene glycol and water at
X = 825 (physical properties are given in Table 5.2, Re = 200, T, =
300 K and AT =30K).

®@ vs. X for variable viscosity case for ethylene glycol at various
Y values (physical properties are given in Table 5.2, Re = 400, T,
=300 K and AT =30K).

©® vs. Y for variable viscosity case for ethylene glycol at various
X values (physical properties are given in Table 5.2, Re = 400, T,
=300 K and AT=30K).

® vs. X for constant and variable viscosity cases for ethylene
glycol at Y = 0.8 and 0.9 (physical properties are given in Table
5.2, Re =400, T,= 300 K and AT = 30 K).

® vs. X for variable viscosity case for ethylene glycol at Y = 0
(physical properties are given in Table 5.2, Re = 100,200,300 and
400, T,=300 K and AT =30K).

® vs. X for variable viscosity case for water and ethylene glycol
at 'Y = 0 (physical properties are given in Table 5.2, Re =400, T, =
300 K and AT =30 K).

S;’en (fluid friction effect) vs. X for variable viscosity case for

ethylene glycol at various Y values (physical properties are given
in Table 5.2, Re =400, 7,= 300 K and AT = 30 K).

S o (fluid friction) vs. Y for variable viscosity case for ethylene

glycol at various Y values (physical properties are given in Table
5.2, Re =400, T,=300 K and AT =30K).

.S"g'm (fluid friction) vs. X for variable viscosity case for ethylene

glycol at Y = 0.70 ( physical properties are given in Table 5.2, Re
= 100, 200, 300 and 400, T,= 300 K and AT =30 K).

S;”en (heat transfer effect only) vs. X for variable viscosity case for

94

%6

97

99

100

101

103

104

107

108

109



5.30

531

532

5.33

5.34

5.35

5.36

5.37

5.38

ethylene glycol at various Y values (physical properties are given
in Table 5.2, Re =400, T,= 300 K and AT =30 K).

S™ vs. X for variable viscosity case for ethylene glycol at various

gen
Y values (physical properties are given in Table 5.2, Re = 400, T,
=300 K and AT =30K).

S;n (heat transfer effect) vs. X for variable viscosity case for

ethylene glycol at Y = 0.91 and 1 (physical properties are given in
Table 5.2, Re =400, 7,= 300 K and AT =30 K).

S vs. X (heat transfer effect) for constant and variable viscosity

gen
cases for ethylene glycol at Y = 0.92 (physical properties are given
in Table 5.2, Re =400, T,= 300 K and AT =30K).

S n (€t transfer effect) vs. Y for constant and variable viscosity

cases for ethylene glycol at X = 185 (physical properties are given
in Table 5.2, Re =400, 7, =300 K and AT =30K).

S’;’en (heat transfer effect) vs. X at Y = 0.90 for constant and

variable viscosity cases for ethylene glycol for two Re values
(physical properties are given in Table 5.2, 7, = 300 K and AT =
30 K). '

‘S'vm

gen
viscosity cases for two Re values (physical properties are given in
Table 5.2, T, =300 K and AT =30K).

(heat transfer effect) vs. X at Y = 0.5 for constant and variable

S;’m (heat transfer effect) vs. X for variable viscosity case for

water and ethylene glycol at Y = 0.90 (physical properties are
given in Table 5.2, Re =400, 7, =300 K and AT =30 K).

S;n (heat transfer effect) vs. Y for variable viscosity case for

ethylene glycol and water at X = 185 (physical properties are
given in Table 5.2, Re =400, 7,= 300 K and AT =30 K).

S vs. X at Y = 0.90 for variable viscosity case for ethylene

gen
glycol at different AT values (physical properties are given in
Table 5.2, Re =400 and T, = 300 K).

xi

112

113

114

115

116

118

119

121

122

124



5.39

5.40

5.41

5.42

5.43

5.44

5.45

5.46

5.47

5.48

5.49

S,y vs. X for variable viscosity case for ethylene glycol for
different Re numbers (physical properties are given in Table 5.2,
T, =300K, AT =30K).

Sy Vs. Re for variable viscosity case for ethylene glycol
between X = 0 and X = 7500 (physical properties are given in
Table 5.2, T, =300K, AT =30K).

U vs. X for constant and variable viscosity cases for ethylene
glycol at Y = 0 (physical propemes are given in Table 5.2, Re =
400, T,=300 K and Q" = 10 W/m®).

U vs. X for constant and variable viscosity cases for ethylene
glycol at Y = 0.43 (physical propertles are given in Table 5.2, Re =
400, T,=300 K and Q" = 10 W/m?).

U vs. X for constant and variable Viscosity cases for ethylene
glycol at Y = 0.95 (physical propertles are given in Table 5.2, Re =
400, T,=300 K and Q" = 10 W/m?).

U vs. X for constant and variable viscosity cases for ethylene
glycol at Y = 0.5 (physical propertles are given in Table 5.2, Re =
400, T,= 300 K and 0" = 10 W/m?).

U vs. Y for constant and variable viscosity cases for ethylene
glycol at X = 10000 (physical propemes are given in Table 5.2, Re
=400, T,=300K, Q" = 10 W/m?).

V vs. Y for variable viscosity case for ethylene glycol at various
X values (physical properties are given in Table 5.2, Re = 400, T,
=300K and Q" = 10 W/m?).

U vs. X at Y = 0.52 for variable viscosity case for ethylene glycol
(physical properties are given in Table 5.2, Re = 100, 200, 300,
400, T,=300 K and Q" = 10 W/m?).

U vs. X for variable viscosity case for ethylene glycol and water
at Y = 0 (physical propertles are given in Table 5.2, Re =400, T, =
300 K and Q" = 10 W/m?).

® vs. X for variable viscosity case for ethylene glycol at Y = 0
(physical propertles are given in Table 5.2, Re = 400, T, =300 K
and Q" =10 W/m?).

Xii

127

128

130

132

133

134

135

136

138

140

142



5.50

5.51

5.52

5.53

5.54

5.55

5.56

5.57

5.58

5.59

® vs. X for variable viscosity case for ethylene glycol at Y =1
(physical properties are given in Table 5.2, Re = 400, 7,= 300 K
and Q" = 10 W/m?). '

® vs. X for variable viscosity case for ethylene glycol at Y = 0.52
(physical properties are given in Table 5.2, Re =400, 7,=300 K
and Q" =10 W/m?).

@ vs. Y for variable viscosity for ethylene glycol at various X
values (physical properties are given in Table 5.2, Re = 400, 7, =
300 K and Q0" = 10 W/m?).

® vs. X for variable viscosity case for ethylene glycol at Y = 0
(physical properties are given in Table 5.2, Re = 100, 200, 300,
400, T,= 300K and Q" = 10 W/m?).

@ vs. X for variable viscosity case for ethylene glycol and water at
Y = 1 (physical properties are given in Table 5.2 Re = 400, T, =
300K and Q" = 10 W/m?).

S’g’en vs. X for variable viscosity case for ethylene glycol at various

Y values (physical properties are given in Table 5.2, Re = 400, T,
=300K and Q" =10 W/m?).

S;'en vs. X for constant and variable viscosity cases for ethylene

glycol at Y = 0.52 and 0.74 (physical properties are given in Table
5.2, Re =400, T,= 300 K and Q" = 10 W/m?),

8™ vs.Y for variable viscosity case for ethylene glycol at various

gen
X values (physical properties are given in Table 5.2, Re = 400, 7,
=300 K and Q" = 10 W/m?).
S:’en vs. X for variable viscosity case for ethylene glycol at Y =
0.52 (physical properties are given in Table 5.2, Re = 100, 200,
300, 400, 7,= 300 K and Q" = 10 W/m?).

8" vs. Y for variable viscosity case for ethylene glycol at X =

gen
80.4 (physical properties are given in Table 5.2, Re = 100, 200,
300, 400, T,=300 K and Q" = 10 W/m?).

Xiii

143

144

145

146

148

150

151

154

155

156



5.60

5.61

5.62

5.63

Sr.n vs. X for variable viscosity case for ethylene glycol and water

at Y = (.52 (physical properties are given in Table 5.2, Re = 400,
T,=300K and Q" = 10 W/m?).

S™ vs. Y for variable viscosity case for ethylene glycol and water

gen
at X = 100 (physical properties are given in Table 5.2, Re = 400,
T,=300K and Q" = 10 W/m?).

S, vs. X for variable viscosity case for ethylene glycol for

different Re numbers (physical properties are given in Table 5.2,
T,=300 K and Q" = 10 W/m?).

between X = 0 and X = 1250 (physical properties are given in
Table 5.2, T,= 300 K and Q" = 10 W/m?).

Xiv

Suax Vs. Re for variable viscosity case for ethylene glycol‘

157

158

160

161



THESIS ABSTRACT

NAME OF STUDENT  : NAYEF M. AL-SAIFI

TITLE OF STUDY : Numerical Analysis of Entropy Generation in Laminar
Viscous Fluid Flow Between Parallel Plates
MAJOR FIELD : Chemical Engineering

DATE OF DEGREE : January, 2004

Intrinsic irreversibilities associated within various process components lead to
generation of entropy which destroys available energy and influences the performance of
processes. In this study, entropy generation for fully developed laminar viscous flow is
numerically investigated between parallel plates subjected to either constant wall
temperature or constant heat flux. The governing partial differential equations
representing the continuity, momentum and energy equations are solved numerically
using a Chebyshev pseudospectral technique by taking into account the temperature
dependence of the viscosity. The governing equations are transformed into stream
function and vorticity formulations and solved by using a new technique for treating the
boundary conditions of vorticity at the wall. Entropy generated from temperature and
velocity fields is shown to depend upon Reynolds number, liquid type and inlet to wall
temperature difference. The increase in the Reynolds number values shifts and extends the
entropy generation profile downstream. The higher the liquid viscosity, the higher the
entropy generation for the flowing fluid between the parallel plates. Further, the entropy
generation from heat transfer effect is dominant compared to that from fluid friction
effect. The study revealed that the constant viscosity assumption may yield a considerable
amount of deviation in entropy generation from that of the variable viscosity case.

The obtained entropy generation profiles are an initial step to the design of fluid
flow between parallel plates and to minimize entropy generation.

MASTER OF SCIENCE DEGREE
KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS
DHAHRAN, SAUDI ARABIA
JANUARY, 2004

XV



Al Ladla

el S il s culllall

)l e Cna O gadea il (2 ADU abas a1 Al ) gie
Al duigh ¢ peuaddl Jlaa

e 2004: ol

cillaadl Gong old Jo 0N Lglad (e gl il ) (505 4seliall clalaal) B Ly g AN 3 55 )
blasdl BB ABlal) 4l Lilai) Lagesd
psh Ciall 1360 Lol 55 8 dgpeall Jal gadl B Cunll 5 g SN Al 43 e Y o allal oda o 3all
4308 () Lo iy Lol Cpaal] (s e LabDUS g (il s Copndans (o (5 029 b Bl L g 3D Al oy
03a B Ly AN cilyiate o g cpadaud NS o o g (3845 Jalidy of Jilud) da e (e el 43405 ) e
Udae g ajell c¥aay ALSH Bis slea ABUl) B ddolae b5 Al cidlaa 335 o a8 Al )
SN At g da g3l Jad JLSeY) 8 A3V e Ly AN
B sall ol gl g Al pag plig L9 SN agd B oo Lusall Bl zedlilll (e ol diall 138 a8 B g
Agiy)pd)dad 35 o il odn (e g Al B ) AngdBaly) g Jileal) A ol Lgdanda (g Ly g AN
il Lasy b g AN Ass 35 ibeal) A g 30 cad)  Lals Adf 2 g 81 D ) ABLYL | L g AR Baj ) 9
Sl A e o e o AT An g3 S G RS Labis L g AN i 5 o GDIGR) 0 g g Al pall 028

LN 455 e G A 3 B L g dliituna il il dad e glaa ptly ial 13

plall (b pfiwalall da o
Ol g gl 268 llall daaly
A gmaadl Ay ol AStaad) — o gl
52004 -l

xvi



CHAPTER 1

INTRODUCTION

1.1 Motivation

One of the primary objectives in the design of any energy system is to conserve
the useful energy applied to run a certain process. This useful energy can be destroyed due
to the intrinsic irreversibilities associated within the process components [Gool, 1980].
The thermodynamic irreversibility, for example, can cause a decrease in the net power
output of the cycle of the power plant. In a similar manner, it leads to an increase in the
power required as an input for refrigeration plant. Furthermore, the available work can be
lost in many components such as heat exchangers, mixers, turbines and compressors due
to irreversibility [Bejan,1982]. Unfortunately, the irreversibility cannot be avoided but it
can be minimized in order to save the available energy. The minimization can be achieved
if the irreversibility can be identified in the process components. Entropy generation
analysis (EGA), or second law analysis, provides a useful tool to identify the
irreversibility in any thermal system as well as to determine the optimum conditions under
which the process or devices is operated [Ibanez et al., 2003].

Recently, entropy generation analysis has been extensively applied in many heat
transfer processes including forced flow subjected to heat transfer in different geometries
of ducts. The entropy generation or thermodynamics irreversibility that associates with
fluid flow subjected to heating is usually related to heat transfer across finite temperature

difference and viscous friction [Bejan, 1979]. As a result, the rate of entropy generation



per unit volume at an arbitrary point in the medium is a combination of viscous and heat
effects. The viscous effect can be described by the Navier Stokes equation while the heat
effect can be described by the energy equation. In solving these equations, fluid properties
such as specific heat, thermal conductivity and viscosity are usually assumed independent
of temperature. Among all physical properties involved in laminar flow problems, the
temperature dependent viscosity plays a dominant effect in velocity and temperature
distributions which are obtained from momentum and energy equations, respectively
[Yang, 1962].

Heat transfer and viscous dissipation are the only sources of entropy generation in
forced fluid flow through a duct subjected to heat transfer. However, these two sources
can be influenced by different parameters related to the operating conditions and duct
geometries such as Reynolds number. Therefore, these parameters can also influence the
entropy generation in ducts and the analysis of entropy generation should be accompanied

by the investigation of different parameters.

1.2 Objective of the Study

Although there are many studies carried out to investigate entropy generation in
many process components, there are still a lot of process components which are not
investigated. Entropy generation analysis of forced flow in rectangular ducts has not been
investigated so far. Some analytical studies analyzed entropy generation in different duct
geometries but those studies were not able to present entropy generation distributions
everywhere in the system. A careful inspection of the literature also shows that some other

duct geometries are still not studied such as parallel plates. Thus, the study of the entropy



generation in parallel plates can present a good insight to the analysis in the rectangular
ducts.

Consequently, the objective of this study is to determine entropy generation
distributions and total entropy generation between parallel plates considering the
dependency of viscosity on temperature. The investigation covers the following cases:

I. Constant wall temperature in which properties fall in two cases:

a) Constant properties.
b) Variable properties (temperature dependent viscosity)
2. Constant heat flux in which properties fall in two cases:
a) Constant properties.
b) Variable properties (temperature dependent viscosity)
In addition, the effects of several parameters are taken into consideration. These
parameters are the Reynolds number, liquid type and inlet-wall temperature difference

(constant wall temperature case).



CHAPTER 2

BACKGROUND AND LITERATURE

REVIEW

Recently, extensive studies have been conducted to analyze the entropy generation
for fluids flowing or/and heating in many process components in industry including
different geometries. Recognizing the fact that entropy generation for a flowing fluid
subjected to heating in ducts is due to fluid friction and heat transfer, the former is
expressed in terms of velocity and the latter in terms of temperature.

This chapter is aimed at shedding light on representative examples from the
literature for entropy generation analysis and treating methods for the solution of

momentum and energy equations.

2.1 Velocity and Temperature Distributions in Ducts

The ultimate solution to laminar viscous flow problems subjected to heating would
be to have a general solution to Navier stokes equations and energy equation.
Unfortunately, these equations are nonlinear, and there is no known method of obtaining
an analytical solution. Exact solutions can only be obtained for these equations after
simplifying. For simple cases, an excellent reference has been provided by Schlichting
(1979) for different cases of flow and different geometries of ducts. However, when few

assumptions and more components of velocity and temperature are considered, the



analytical solution is not available. As a result, the solution of these equations is
approximated numerically.

The approximated solutions of the Navier stokes equations or/and energy equation
have been investigated from the early times in the literature. An excellent review is
provided by Shah and London (1978) in which the numerical solution is presented for
different geometries of ducts including pipes, parallel plates and rectangular ducts. Both
Navier stokes and energy equations are treated in this review by finite difference method.
Although this review involved a comprehensive reference for laminar flow forced
convection in ducts, all solutions were limited to constant properties and none of the
properties was considered to be temperature dependent property.

Some fluid properties are highly temperature dependent and considering this effect
in solving Navier stokes equations and energy equation can provide more accurate results.
Among all fluid properties involved in flow problems, temperature dependent viscosity
plays a dominant role in influencing the velocity and temperature profiles [Yang, 1962].
Therefore, the complete analysis of momentum and energy equations should include the
consideration of temperature dependent viscosity as well as the consideration of all
velocity components and temperature.

An inspection of the literature for the analysis of momentum and energy equations
shows that these two factors are in general not satisfied for many fluid problems in
different geometries of ducts. The literature is very rich with the investigation of the
Navier Stokes and Energy equations in different fields including forced flow problems. In
this literature review, selective examples will be presented for the investigation of the
velocity and temperature profiles rather than a complete and comprehensive investigation

since the ultimate objective for this study is to investigate entropy generation profiles.



Thus, the rest of this section will provide selective examples from the literature for the
solution of the momentum and energy equations for different numerical schemes in
different duct geometries. The introduction of those examples will start by pipe geometry
as shown in the following study.

An analytical solution was obtained by Yang (1962) for laminar forced
convection of liquids flowing inside circular tubes for both constant wall temperature and
constant heat flux. The temperature dependent viscosity was considered in solving the
governing equations but the effect of velocity components in the radial and azimuthal
direction were neglected.

A simiiar study carried out by Test (1968). Here, a numerical and experimental
study was performed for liquids flowing in tubes considering a temperature dependent
viscosity effect. The numerical solution was obtained by solving the momentum, energy
and continuity equations assuming Poiseuillean velocity profile and uniform temperature
profile at the inlet to the tube. Two equations were obtained as a solution for local Nusselt
Number and the local ‘friction factor in the laminar flow whose viscosities are temperature
dependent. The friction factor equation was not satisfactory at low Reynolds Numbers. In
the energy equation, it was found that the radial convection term is quite significant and
serious errors will result in the Nusselt number if this term is neglected. The experimental
Nusselt number is not in good agreement with the analytical values while the friction
factor values are satisfactory. The calculated velocity profiles did not agree to those
obtained from experimental data and this may be related to the nature of the finite
difference method which was applied in this study.

One year later, an experimental study was carried out in a circular tube to study

the influence of free convection and variable viscosity on forced laminar flow of ethylene



glycol initially at 32 °F subjected to a constant heat flux. In addition, an analytical
solution was obtained for the momentum and energy equations coupled through viscosity.
This study showed that the requirements for fully developed velocity and temperature
profiles in the absence of buoyant forces and with uniform heat flux are satisfied only
when the viscosity is exponentially dependent on temperature. Also, this dependency
* showed that the Nusselt number and pressure gradient are functions of the ratio of the
bulk viscosity to the viscosity near the wall and to the Graetz number. The analytical and
experimental results are introduced in terms of viscosity ratio exponents for Nu number
and pressure gradient. Both are compared and it was found that the results are in good
agreement [Shannon and Depew, 1969].

The previous examples presented some of the investigations of velocity and
temperature profiles for a forced laminar flow in cylindrical geometry. Now, the
investigation of the literature review will be directed towards rectangular geometries since
this study is concerned to investigate entropy generation in rectangular geometries. The
analysis of flow in rectangular geometries includes the analysis of the flow in parallel
plates and rectangular duct. Parallel plates represent a hypothetical situation that serves as
a stepping-stone to more complex situations such as rectangular duct. Therefore, the
following examples cover first the flow in parallel plates that can be considered as a
special case of rectangular duct. Then, the flow in the rectangular duct will be considered.

A numerical study was carried out to obtain an exact solution for the temperature
distribution for Poiseuille flow between parallel plates. The temperature of the upper plate
was considered to be higher than that of the lower plate and the inlet temperature was less
than the lower plate. The study showed the behavior of temperature profiles between

parallel plates for Peclet number from 1 to 10 [Deavours, 1974].



Furthermore, Shah and London (1978) presented a comprehensive review
involving forced laminar flow between parallel plates. In this reference, continuity,
momentum and energy equations are numerically investigated by the finite difference
method. Two different temperature boundary conditions are applied to the parallel plates,
namely, constant wall temperature and constant heat flux. Several figures are plotted for
velocity and temperature in terms of the Nusselt number. The effect of temperature
dependent viscosity was neglected in this study.

Although the previous reference provided a comprehensive review for flow
between parallel plates, two references will be presented because their analyses are
performed by the use of vortictiy and stream function formulation that will be used in this
study. In the first reference, Chang and Huang (1991) carried out a numerical study on a
fully developed laminar forced convection between parallel plates channels with two
series of transverse fins. The Navier Stokes and energy equations have been written in
terms of vorticity and stream function formulation. The finite difference method has been
applied to solve those equations. This study investigated the effect of different parameters
on the flow field. These parameters are fins arrangement, Reynolds number and friction
factor. The results show that fins arrangement is an influential factor on the flow field
when they are arranged as an array while the in-line arrangement behaved infectively to
the flow. The study did not cover the effect of temperature dependent viscosity on the
flow.

In the second reference, Yuan et al. (1998) performed a similar numerical study to
that of Chang and Huang (1991) to fully developed laminar flow and heat transfer
between parallel plates channel to study the effect of different parameters on the flow but

with adiabatic streamwise-periodic rod disturbances. Another parameter was added which



was the ratio of half of the duct to the diameter of rod disturbance where this ratio ranged
from four to five. Also, a comparison between the cases of adiabatic rods and isothermal
rods has been made. It is shown that the adiabatic rods gave a higher value of the Nusselt
number. The effect of temperature dependent Viscosity is also not considered in this study.

Finally, some selective examples will be presented for a rectangular duct. One of
these studies was performed by Butler and McKee (1973). In this study, a solution is
carried out to determine the velocity and the temperature distribution for fully developed
flow of viscous fluids in heated rectangular duct by solving the momentum and energy
equations. On the top wall of the duct, a constant heat flux was imposed with aspect ration
of 0.5, 5, and 10. This study shows that the maximum velocity shifted toward the hotter
wall. It is also shown that the average wall stress has a different value for the heated and
unheated walls that would cause internal rotation of the flow. The analysis in this study
did not cover the alteration of velocity in the radial direction although it included the
consideration of the effect of temperature dependent viscosity.

Another study was carried out by Sotiropulos and Abdullah (1990). He introduced
a numerical solution to solve continuity and Navier stokes equation in two-dimensional
driven cavity for Reynolds number 100, 400 and 1000. The momentum equations were
coupled with a Poisson-type equation for the pressure and solved using a method called
Beam and Warming approximated factorization method. This method demonstrated an
excellent convergence and stability.

Furthermore, Xie and Hartnett (1992) carried out an experimental study for
laminar flow heat transfer in a 2:1 rectangular duct to study the variable effect of viscosity
on mineral oil. Three heating configurations were adopted: (1) top wall heated, other walls

adiabatic; (2) bottom wall heated, other walls adiabatic; (3) top and bottom walls heated
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sidewalls adiabatic. In the first case, the effect of heating near the top wall made the liquid
less viscous and therefore the velocity would increase. Thus, it is found that the heat
transfer was enhanced due to the increase of the velocity near the top heated wall while in
the second case the heat transfer is enhanced more because of the additional boundary
effect. In the last case, the variable viscosity effect was small due symmetrical variations
in the duct cross-section.

The experimental results in the previous study, Xie and Hartnett (1992), are
compared with a numerical study carried out by Shin et al. (1993) in a rectangular duct
with the same conditions. In this study, the effect of variable viscosity is considered in
solving the energy and the momentum equations simultaneously for mineral oil in 2:1
rectangular duct. The effect of the viscous dissipation was neglected in solving those
equations. The numerical results are in good agreement with the experimental results
carried out by Xie and Hartnett (1992). Moreover, the mechanism of heat transfer
enhancement for mineral oil was numerically performed by Chou and Tung (1995) in a
2:1 rectangular duct for the same three heating configurations adopted by Xie and Hartnett
(1992). For the case of the top wall heated, the major factor for heat transfer enhancement
was the axial velocity distribution due to temperature dependence viscosity. For the case
of the bottom wall heated, the major factor to heat transfer enhancement was the axial
velocity distribution in the region near the entrance whereas the main cause in the fully
developed region was the buoyancy-induced secondary flow. For the case of the top and
bottom walls heated, the mechanism of heat transfer enhancement is more like that for
bottom wall heated.

Pinelli and Vacca (1994) obtained a solution for the two dimensional

incompressible unsteady state Navier Stokes equations by projection method where the
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spatial derivatives were evaluated by Chebyshev pseudospectral method in a square cavity
for Reynolds number = 10 to 500. The continuity equation was iteratively forced to be
satisfied at the boundaries of the cavity and as a result the pressure was satisfied
everywhere in the cavity. The solution is compared to other solutions from the literature

and it gives good agreement.

2.2 Entropy Generation Studies

Although the concept of entropy generation that is based on the second law of
thermodynamics has been established from early times, its extensive application did not
appear early. The renewed interest in the second law of thermodynamics appeared lately
in many applications in engineering problems. Bejan (1982, 1995) carried out an
extensive work in the analysis and the minimization of the entropy generation in heat
transfer and fluid flow processes.

The purpose of this section is to introduce a literature review for the entropy
generation analysis in engineering problems. This section will be divided into three parts.
The first part will cover a review for the equations that can describe entropy generation in
different phenomena including flow and heat problems. The second part will cover
entropy generation analysis in different process equipment including heat exchanger and
distillation column. The final part will extensively treat the entropy generation analysis in
flow problems in ducts including parallel plates, rectangular duct and pipe. On the other
hand, the fundamentals of entropy and its analysis will not be reviewed here and the
reader is referred to Bejan (1982, 1988), Nevers and Seader (1980), Gaggioli (1960),

Gaggioli and Wepfer (1980), Gool (1980), Kestin (1980), and Marcella (1992).
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2.2.1 Entropy Generation Equations

To analyze the entropy generation in any process, the analyzer needs to use
equations from which the entropy generation can be estimated. These equations can be
derived by identifying the sources of entropy generations in any system and then applying
the second law of thermodynamics. In this section, the derived equations cover the
entropy generated from fluid friction, heat transfer, mass transfer and chemical reactions.

For identifying the entropy generation in forced flow problems subjected to heat
transfer, Arpaci (1989) derived the general entropy generation equation for laminar and
turbulent flow in rectangular coordinates. The same equation for the laminar case is
verified by Bejan (1995). Further, Bejan provides the laminar equations for cylindrical
and spherical coordinates. All their derived equations are written in terms of velocity and
temperature only because their analyses excluded entropy generation from mass transfer
effect and chemical reactions effect.

Poulikakos and Johnson (1989) derived an expression for entropy generation in
combined heat and mass transfer phenomena in external flow for laminar and turbulent
flows. This expression is applied to forced convection heat and mass transfer in a flat
plate and a cylinder in crossflow.

Gyftopoulos and Beretta (1993) derived an approximate expression for the rate of
entropy generation in a system including chemical reactions. Their expression is derived
for a reaction in a closed system. Further, the validity of their expression included both
equilibrium and non-equilibrium states.

Teng et al. (1998) derived a comprehensive equation to determine the local
entropy generation in multicomponent system. Their comprehensive equation treated the

entropy generated in chemical reaction system and laminar fluid flow involving heat and
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mass transfer. Further, the diffusive-viscous effect was considered because it could
contribute significantly to entropy generation in multi-component fluid system. Under
appropriate simplifying assumptions, this comprehensive equation reduced to those

reported in the literature for a single fluid system.

2.2.2 Entropy Generation Analysis in Different Process Components

The widespread application of the entropy generation analysis in process
components makes the literature review difficult for this section. Thus, this section will
present selective examples from the literature to show the immense use of the entropy
generation analysis in many process components. Moreover, the effect of applying this
analysis on the process and the effect of some parameters on entropy generation will be
introduced if possible.

Leidenfrost et al. (1980) applied the entropy generation analysis on a refrigeration
system in order to achieve the proper parameters for running the system. Choosing the
proper parameters will lead to minimizing the power needed for the flow of the refrigerant
and obtain the minimum losses in the system. It was found that the main parameter that
influenced the losses in the system was the condensing temperature. Entropy generation
was decreased by lowering the condensing temperature by either increasing the external
~ heat transfer at the condenser or by lowering the inlet temperature to heat exchanging
media.

The second law analysis was applied on a combined power and desalination plant
in order to locate opportunities for improvement [Gaggioli et al., 1988]. Further, it was

shown that the second law analysis was used to provide estimation and saving of the
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power. Also, this study showed that the second law analysis could provide an
understanding for various processes and their mutual effects.

Badar et al. (1993) carried out an analytical second law analysis for gas liquid heat
exchanger in order to optimize the system. The irreversible losses in this system were
related to finite temperature difference and pressure drop. The results were shown in
terms of optimum number of transfer units as function of dimensionless unit-cost ratio,
charging time and reduced temperature difference of the system.

Drost and White (1994) analyzed a rotary magnetic heat pump regenerator by
entropy generation analysis. The objectives of their study were to demonstrate the
usefulness of local entropy generation analysis to the design of this type of component
and to identify design modifications that improve the performance of rotary magnetic heat
pump regenerator. Although the design of rotary magnetic heat pump seems complex, the
location where the entropy generation analysis was applied in this heat pump is simple.
Inside the heat pump, the analysis of entropy generation was applied similar to a liquid
water flow inside a duct subjected to constant heat flux. The duct represented the
regencrator and the water represented the regenerator fluid. The magnetic material was the
source of constant heat flux which provided heat from the top and the bottom of the
regenerator. Therefore, improving the design of the heat pump depended on minimizing
entropy generation in regenerator. The regenerator fluid gained its entropy generation
from heat transfer between the magnetic material to regenerator fluid, conduction of
thermal energy along the magnetic material and viscous dissipation in regenerator fluid.
The analysis was carried out by obtaining velocity and temperature distributions by
assuming laminar flow and substituted those distributions in the entropy generation

equation. The analysis was improved by choosing the proper parameters in the design.
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These parameters were regenerator length, magnetic material thickness, flow path width,
magnetic material inlet temperature, and regenerator fluid inlet temperature and
regenerator mass flow.

Ray and Sengupta (1994) performed the entropy generation analysis on a
distillation column. In particular, the analysis was applied on trays where the vapor and
the liquid are in contact. The entropy generation was numerically calculated from heat,
mass and momentum transfer for bubble movement through a moving liquid pool. Two
parameters were used to analyze the entropy generation on a distillation column tray.
These were sieve hole diameters and weir height. It was found that weir height plays a
dominant role compared to sieve hole diameters on entropy generation.

Sama (1995) presented a valuable paper to encourage increased use of the second
law of thermodynamics in process design. His work was subdivided into two parts,
namely, use of second law in the design of heat exchanger and optimization of designs.
The availability concept was introduced and applied on heat exchanger. The optimum
design of heat exchangers was explored by studying the saved availability, cost of fuel,
cost of heat exchanger and capital cost. Further, second law errors which were defined as
the design decisions that cause the waste of thermodynamics availability was discussed in
heat transfer process. Finally, three methods were represented for optimization of designs.
These are optimization by combination and permutation, optimization by mathematical
modeling and optimization using second law insight.

Entropy generation analysis has been applied to investigate irreversibilities in heat
exchanger and minimum irreversibility criteria have been established [Saboya and Costa,
1999]. The study involved counter flow, parallel flow and cross flow heat exchangers. In

cross flow configurations, four types of heat exchanger configurations have been
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investigated, namely, both fluids unmixed, both fluid mixed, fluid of maximum heat
capacity rate mixed and the other unmixed and finally fluids of minimum heat capacity
rate mixed and the other unmixed. In this analysis, the entropy generation caused by fluid
friction was neglected. The study compared those types of heat exchangers and showed
that the counterflow heat exchanger is less irreversible than the others.

The entropy generation analysis was conducted in a tubular heat exchanger
subjected to constant wall temperature [Zimparov, 2001]. It was shown that the
performance of the heat exchanger was improved and the heat transfer was enhanced
because of using the entropy generation analysis. In addition, the general evaluation
criteria added new information to entropy generation minimization.

The entropy generation in a plane turbulent jet was investigated by taking into
account natural oscillations in the jet [Cervantes and Solorio, 2002]. This study was a
model modification for an old study. It was shown that the entropy generation grows
along the flow direction and depends directly on entrainment with the still ambient fluid.
Also, it was shown that the strong increment of the entropy dictated in the highly unsteady
region of the flow where its length is specified.

The second law analysis was carried out for a waste heat recovery steam generator
[Reddy et al, 2002]. In this study, a general equation for entropy generation was proposed
for waste heat recovery steam generator producing superheated steam. It was found that
the entropy generation number increases with increasing the non-dimensional temperature
difference. In addition, the specific sources that are responsible for entropy generation rate
are the temperature difference between stream-to-stream, heat losses to the surroundings,

ambient temperature and frictional pressure drop in the generator.
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A theoretical entropy production proof was presented to heat exchanger to show
that the heat exchange is minimum when the local entropy generation is constant in all
parts of the system [Johannessen et al, 2002]. The study showed that minimum entropy
generation is independent of the value of the heat transfer coefficient. In addition, the
optimal heat exchange conditions are approximated in practice with a counter-current heat

exchanger.

2.2.3 Entropy Generation Analysis in Different Duct Geometries

In the preceding section, the entropy generation analysis was reviewed in different
engineering equipment and process. In this section, the attention is now turned to the
entropy generation analysis in different geometries of ducts. Ducts are always part of any
engineering process and the entropy generation inside them may influence the
performance of the whole process. As a consequence, the review of entropy generation in
ducts is required. Different duct geometries will be considered in this section including
triangular, pipe, parallel plates and rectangular ducts.

San et al. (1987) conducted entropy generation analysis for two limiting cases of
combined forced convection heat and mass transfer in a two dimensional channel. First,
convective heat transfer in a channel was studied for both laminar and turbulent flows for
constant wall temperature and constant heat flux. Then, expressions for optimum plate
spacing and optimum Reynolds number were derived after minimization of entropy
generation. In the laminar case, the fully developed velocity profile was used through the
channel while control volume analysis was used in the turbulent flow cases. Second,
isothermal convective mass transfer in a channel was studied for laminar and turbulent

flow with boundary conditions at the channel walls of both constant concentration and
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constant mass flux. Theﬁ, the entropy generation was investigated and optimum
conditions were derived. It was shown that increasing the plate spacing from the optimum
point caused a gradual increase in the entropy generation. Also, the increase in entropy
generation was very steep if the plate spacing was decreased from the optimum point.

A numerical study was carried out to study the local entropy generation of the
laminar mixed convection flow in vertical parallel plates with a series of fins on one wall
[Cheng et al., 1994]. The wall with fins was subjected to constant wall temperature that
was higher than the inlet temperature whereas the other wall was subjected to ambient
temperature. The local entropy generation was obtained from velocity and temperature
data by solving the momentum and energy equations by the stream function vorticity
formulation with a constant velocity at the inlet. The study covered a range of Reynolds
numbers from 0 to 300, dimensionless fin height from 0 to 0.5 and the parameter of
buoyancy force (Rayleigh number) from 0 to 10. The effect of Reynolds number on
distortions of entropy generation was shown. Also, the effect of the Reynolds number on
the cross-sectional entropy generation was plotted for different parameters. Furthermore,
the effect of the local entropy generation on different parameters was studied. These
parameters were the effect of Rayleigh on cross sectional entropy generation, the effect of
fin height on cross sectional entropy generation and the effect of temperature difference
between wall and inlet on the cross-sectional entropy generation. Consequently, the
geometric configuration of the finned channel with higher second-law efficiency is
proposed.

Sekulic et al. (1996) investigated the entropy generation in different duct
geometries under constant wall temperature. The geometries of the ducts included

ciréular, triangular, parallel plates, rectangular and square. To accomplish the analysis of
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entropy generation in ducts, Sekulic et al. solved the momentum equation to obtain
velocity distributions and the energy equation to obtain temperature distributions. Those
distributions inserted into entropy generation equation to get the entropy generation
distributions in ducts. The solution of momentum and energy equations was conducted
under several assumptions including zero thermal conduction in the fluid stream, all
thermophysical properties are constant, fully developed flow and only the consideration of
axial velocity component. Different parameters were investigated in this analysis, namely,
Reynolds number, inlet to wall temperature ratio and a specific duct length.

Lin and Lee (1996) conducted a second law analysis on a pin-fin array under
cross-flow. In this analysis, the main objective was to search for optimal design
conditions. This was done by taking into account that increasing the cross-fluid velocity
would reduce the heat transfer irreversibilities but also increase the irreversibility due to
the increase in the drag force. The study presented the optimal design condition when the
fin array are staggered and in line, and both were compared.

Entropy generation for a viscous fluid in a duct subjected to constant wall heat
flux was investigated by Sahin (1996). The effect of the dependence of the viscosity on
temperature was taken into consideration. It was found that the entropy generation
increases a long the duct length. Further, in the case of low heat flux, the vicious friction
term became dominant.

Sahin (1998) compared the irreverisbilities for different duct geometries in order
to determine the optimum duct geometry that would minimize losses fér a range of
laminar flows and constant heat flux. The geometries used were circular, square,

equilaterally triangular, rectangular with an aspect ration of 0.5 and sinusoidal with an
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aspect ratio of—;—. It was found that the circular geometry is best especially when the

frictional contributions become important. In addition, the triangular and rectangular ducts
were inferior choices for entropy generation.

A numerical study has been conducted to calculate entropy generation due to
laminar mixed convection from an isothermal rotating cylinder by Abu-Hijleh (1998). The
study was conducted for three cylinder radii, wide range of Reynolds numbers and
buoyancy parameter. The mathematical modeling for the isothermal rotating cylinder was
analyzed by the continuity, momentum and energy equations for two directions. It was
found that the entropy generation increased as the Reynolds number and buoyancy
parameter increased. Moreover, the entropy generation decreased as the cylinder radius
was increased. Also, it was shown that the entropy generation was mainly due to the
thermal effects at small cylinder radii and due to viscous effects at large cylinder radii.

The entropy generation for a fully developed and forced convection flow has been
investigated in a large rectangular duct packed with spherical particles by Demirel and
Kahraman (1999). Constant heat flux was applied for the top (heated) and the bottom
(cooled) walls. The volumetric entropy generation has been calculated from velocity
profile that is obtained from an approximate analytical expression and temperature profile
that is determined from velocity and energy equation. Entropy generation per unit volume
is calculated and plotted for different values of the ratio of depth of the duct to diameter of
packing = 5 and 20. It was shown that the irreversibilities distributions are not continuous
through the wall and core regions. Also, the entropy generation is in general due to heat

transfer.
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A numerical study was conducted by Narusawa (1999} for natural convection in a
rectangular cavity to examine the entropy generation. Free boundary and rigid boundary
conditions were examined in this study in which the cavity was heated from bottom and
cooled at the top. It was pointed out that the entropy generation depends on the aspect
ratio of the cavity, the critical Rayleigh number and a non-dimensional parameter related
to the ratio of entropy genefﬁtion by viscous friction to that by thermal transport.

Sahin (2000a) worked out a numerical study to determine the entropy generation
and pumping power requirements for a laminar crude oil flow in a pipe subjected to
constant heat flux. The effect of viscosity on temperature was taken into consideration. In
this study, it was shown that the entropy generation was significantly affected by the
dependence of viscosity on temperature.

Analytical entropy generation investigation was carried out by Sahin (2000b) for a
fully developed turbulent fluid through a smooth duct subjected to constant wall
temperature. The dependency of viscosity on temperature was taken into consideration in
this study and the variable viscosity results were compared to those of constant case. It
was found that when the fluid is heated the entropy generation per unit heat flux attains a
minimum along the duct length and the ratio of pumping power to the total heat flux
decreases. Furthermore, the assumption of constant viscosity produced a considerable
deviation for the entropy generations and pumping power results.

Baytas (2000) numerically analyzed the entropy generation in an inclined porous
cavity subjected to laminar convection heat transfer. The analysis involved the numerical
solution of mass, momentum and energy equations, using Darcy’s law and Boussinesg-
incompressibility approximation. The boundary conditions of the surfaces were kept

constant but different temperatures for the two walls and the other walls were kept
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thermally insulated. The velocity and temperature profiles were obtained and substituted
into entropy generation equation. The entropy generation profiles were considered under
different parameters, namely, the angle of inclination, Darcy number and Rayleigh
number. It was shown that the heat transfer irreversibilities dominate the fluid friction
irreversibilities when Rayleigh number increased.

The method of minimizing entropy generation for two cases was illustrated by
asymmetric convective cooling [Ibanez et al., 2003]. The first case is to cool a solid slab
subjected to uniform internal heating, whereas; the second case is to cool a Poiseuille flow
between two infinite parallel plane walls of finite thickness. In the former case, the
entropy generation rate was obtained by the energy balance equation along with Fourier’s
law for the heat flux. In the latter case, the entropy generation was determined by the
energy equation considering viscous dissipation where the velocity was obtained from
Poisecuille flow. In both cases, the dimensional heat transfer coefficient (Biot number) was
fixed on one wall while the Biot number on the other wall is varying. It was shown that
minimum entropy generation rates could be reached by extracting heat in asymmetric way
in which Bi numbers are different for the two walls. Also, it was shown when Bi numbers
are equal, the entropy generation tends to increase. Furthermore, the cooling in an
asymmetric way was very useful in order to optimize operating conditions of heat transfer

devices.
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CHAPTER 3

MATHEMATICAL FORMULATIONS

3.1 Problem Statement

Entropy generation distribution and overall entropy generation of a heated flowing
fluid are investigated between parallel plates. The investigation is performed for a fluid
entering between the parallel plates with a fully developed velocity profile and constant
temperature. The parallel plates are subjected to heating either by constant heat flux or by
constant wall temperatures. The two cases are illustrated in Figures 3.1 and 3.2 for
constant wall temperature and for constant heat flux, respectively. Both are diagramed for
the upper half of the distance between the parallel plates since the problem is symmetric.
The source of entropy generation is related to the change in the fluid temperature and due
to the fluid friction. As a result, the momentum and energy equations are solved to
determine the temperature and velocity distributions and from these distributions the
entropy generation can be determined as shown on Figures 3.3 and 3.4. The effect of
temperature dependent viscosity is included in solving momentum and energy equations.
This will lead to a coupling between the momentum and energy equations due to the
temperature dependent viscosity. A linear relationship for viscosity with temperature is
chosen to study the effect of viscosity dependency on temperature. Furthermore, the effect
of different parameters is investigated in studying the entropy generation including the
Reynolds number, liquid type and inlet-wall temperature difference. In this study, several
assumptions are considered. These are steady state, incompressible flow, Newtonian fluid,

fully developed flow at the inlet and no buoyancy force.
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Figure 3.1 Flow of a fluid between parallel plates subjected to constant wall temperature.
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Figure 3.2 Flow of a fluid between parallel plates subjected to constant heat flux.
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Figure 3.3 Determining the entropy generation for constant viscosity case.
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Figure. 3.4 Determining the entropy generation for variable viscosity case.
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3.2 Entropy Generation Equation

The entropy generation for a flowing fluid through a duct is usually related to heat
transfer and viscous friction effects. When a fluid flows inside a duct, three interactions
occur in the duct. These are mass fluxes, energy transfer and entropy transfer. These
interactions are studied on a differential control volume to determine the local entropy
generation equation for twb dimensions. The Second law of thermodynamics can be

written as:
S =§-S--—Q—-st+2ms 3.1

where :

O : heat transfer rate

m : mass flow rate

s : specific entropy

T, : boundary temperature of the system.

This law can be applied to the control volume to determine the local rate of entropy

generation and may be expressed as:
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where

q : heat flux
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p: density

T': temperature.

The last equation has nine terms. The first four terms represent the entropy transfer
associated with heat transfer, the next four terms account for the entropy conveyed into
and out of the system and the last term represents entropy accumulation in the control

volume.

Dividing by dxdy, the local rate of entropy generation becomes:
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T{ ox oy T Ox Oy ot Ox oy

ov

+s ?—’—0-+vx—a£+v §£+p —a—v—"—+——y—

ot ox oy o oy

The term in the square bracket vanishes because it represents the continuity equation.

Equation 3.3 can be written in vectorial notation as:

. 1 1 Ds
S” ==V.g-——q VT +p—— 3.4
gen T q Tz q pDT

In this equation, the last term includes entropy which can be eliminated by using the

Gibbs relation which can be written as:

du =Tds—Pd(—1—] 35
P

where P and u are pressure and internal energy respectively. This relation can be written

in terms of substantial derivative notation:

e e At 3.6

The internal energy can be represented by using the first law of thermodynamics written

for one point in the convective medium as:
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2 av 2 6 2
p;‘?}f_z ~V.g—P(V)+ 42 av") o Do O D 3.7
Dt Ox Oy oy Ox

where y is viscosity.

Then, Equation 3.6 and Equation 3.7 are combined to give the overall entropy generation:

sr Ll gvrilo_ Ly, P Dp 38
T T T pT Dt

which can be simplified for an incompressible fluid as :

§m =L gvr+fo 3.9
T T

gen

where @ represents viscous dissipation which is expressed by the quantity inside the
square bracket in Equation 3.7. Finally, Fourier’s law of heat conduction:

g=-kVT 3.10

applies to Equation 3.9 and upon substitution gives the volumetric rate of entropy

generation:

S "

gen

k H
=—F(VT)2 +o® 3.11

where (VT)' = VT.VT.

3.3 Continuity and Momentum Equations

The velocity distribution can be obtained from the continuity and momentum
equations. Since the velocity distribution is required between the parallel plates, several
assumptions need to be considered for simplicity. The analysis investigates two velocity
components which are the axial and normal components while the third component which

represents the velocity in the width direction is set to zero. This assumption is valid if the
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width is very large compared to the height. Furthermore, the fluid flow will be assumed at
steady state and incompressible.
The continuity and momentum equations that satisfy these assumptions can be

written for variable viscosity as:

ov
v Yy 3.12
ox oy
av 2 2
Ao, ey Pa| o 9P 0BV OU T v, [0V OV 3.13
ox oy dx ox ox oyl ox Oy ox oy
v ov d (o v, o
plv,—=+v,— =—3i£.i+26—'u—v—y+é;i e +6vx +u sz + vzy 3.14
ox Oy dy oy oy ox\ ox Oy ox Oy

where Equation 3.12 represents the continuity equation and Equations 3.13 and 3.14
represent x-momentum and y-momentum equations. In this analysis, the x-direction
represents the axial direction whereas the y-direction represents the normal direction. The
second and the third terms in the right hand side in Equations 3.13 and 3.14 will vanish if
the viscosity is assumed to be constant. Those equations will be solved simultaneously
with the energy equation to determine velocity and temperature distributions for both
constant wall temperature and constant heat flux. In the case of constant heat flux, the
continuous heating to the fluid flow continuously changes the viscosity which, in the case
of variable viscosity, couples momentum equations with energy equation. Therefore, the

velocity and temperature are continuously changing as the fluid goes downstream and

2 0%
they will not develop. Thus, p v; and e 2y , which represent the second derivates of axial
x

momentum diffusion components, will be set equal to zero because velocity boundary

conditions are unspecified downstream. Order of magnitude analysis shows that it is
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possible to eliminate those terms. Both terms have order of magnitude equals to uy/L?
where u, and L are average velocity and duct length, respectively. Those terms are
compared to those of normal momentum diffusion components which are of order Un/H2,
where H represents the height of the duct. L is much larger than H, (I>>H). Therefore,
the normal momentum diffusion is much higher than the axial’s and hence, the second
derivate of axial momentum diffusion can be neglected. Equations 3.12, 3.13, and 3.14
can be transformed in terms of two other quantities which are stream function and

vorticity equations to eliminate the pressure.

3.3.1 Vorticity and Stream Function Equations

The momentum equations include the pressure term which cannot be treated
easily. Pressure is an entity that does not have boundary conditions or independent
thermodynamic relation that can satisfy momentum and continuity equations. Several
algorithms are available to treat the problem of pressure by iteration procedure among
continuity and momentum equations which takes the fact that the continuity equation is
indirectly connected to the pressure. However, an interesting two quantities can be very
useful in treating the problem of the pressure. These quantities are stream function and
vorticity. The stream function and vorticity are defined intelligently to delete pressure
term by combining the momentum equations in a single equation and satisfy the
continuity equation. The stream function can be defined for the two velocity components
as:

s 3.15

oy
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v =——a—%‘i 3.16

’ Ox
On the other hand, the vorticity can be defined as:

ov
w=—%+—a——y— 3.17
X

The last three equations can be coupled to obtain an equation that relates the vorticity to

the stream function:

2 2
w___az//+ay/

3.18
ax2 ayl

This equation is applied for constant wall temperature case. However, in the case of
constant heat flux, the first term in the right hand side is eliminated due to unknown
stream function at very far distance downstream since the stream function does not
develop.

The pressure is eliminated from momentum equations by differentiating Equation

3.13 with respect to y so that (62 p/ ayax) occurs and differentiating Equation 3.14 with

respect to x so that (62 p/ ayax) occurs. Then, the two equations are subtracted to cause

the pressure terms to cancel and substitution of Equation 3.15, 3.16 and 3.17 into the

resulting equations yields:

oy dw dyow) ou Oy 0 O oy | [0y O
Ox dy’dox  OxOy OxBy Oy Ox’dy oyt ox?
2 2 2 2 3 3
(a g0 yJ_ (a w0 w)”gg__a__w_”gﬁa v _o

ay?  ox’ x? o &' ox ax’

3.19

This equation is called vorticity equation and applied to constant wall temperature case.

However, in the constant heat flux case, vorticity equation differs since the second
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derivatives of velocity components with respect to x are eliminated. Thus, the vorticity

equation for the constant heat flux is:

oy dw dydw) fou Dy 0 0'p) [0y O
oy 0x Ox Oy Ox 8y’ox  OxOy Oxdy oyt ox?

o’ o’w ou o*
LA R L
dy Oy A Oy

Equation 3.19 and 3.20 describe the variable viscosity case for constant wall temperature

3.20

and constant heat flux and they can be used to describe the constant viscosity case if all

the terms are deleted except for the terms in the first and fifth brackets.

3.4 Energy Equation
The temperature distribution can be obtained from the energy equation. The

change of the temperature in two dimensions is:

2 2 2 av ) v Y
pCp(vx%]:+vy%§)=kl:g{+gy§}+y{2(%v“j +2(ayyj +(va+ ;)} 3.21
x % X Y

where;

k : thermal conductivity
C, : specific heat

The energy equation consists of three parts, namely, convection which appears in the left
hand side, conduction which appears in the first square bracket in the right hand side and
viscous dissipation which appears in the second square bracket in the right hand side. The
energy equation can be written in terms of stream function by using Equations 3.15 and

3.16:
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3.22

This equation can be used for constant wall temperature case. However, in the constant

2

o°T C e . .
heat flux, el term is eliminated for the same reasons presented in Section 3.3 and also
x

due to the fact that the normal heat diffusion is much higher than the axial heat diffusion.

3.5 Fully Developed Velocity Solution

The fully developed velocity solution is required because the fluid at the inlet is

assumed to be fully developed. When the fluid is fully developed, the normal velocity

components equal to zero and the axial velocity does not vary in the axial direction. Thus,

the only change of velocity is related to the change of the axial velocity in the normal

direction and the resulting equation can be written after eliminating zero velocity

components from Equations 3.12, 3.13 and 3.14 as:

d*v. oP

X

dy’ T ax

y7,

This equation is integrated twice to yield:

1{oP) ,
vV, =—| — |y +Cy+e,
2ul Oy

in which ¢; and ¢; are determined by invoking the following boundary conditions

dv
L =0 =0
B @ y

vy =10 @ y=H

3.23

3.24

3.25

3.26
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where the origin is taken to be at the center of the parallel plates. Applying the boundary

conditions to Equation 3.24, the resulting solution yields:

b, =t (ﬂ)(Hz ~y?) 3.27

N
In this equation, the pressure gradient can be determined by evaluating the mean velocity

that can be determined by: |
U, = g 3.28

where Q is the volumetric flow rate which can be obtained by integrating the velocity

profile (3.27):

3
012 (-20)
3ul dx

Now, the mean velocity can be determined by substituting Equation 3.29 into 3.28:

2
- E_(_ _‘fﬁ] 330
3u

u m

dx

Equation 3.27 and 3.30 are combined to eliminate the pressure gradient and finally the

fully developed solution results:

2
v, =1.5u,,,(1—(—y-) ) 3.31
H

3.6 Dimensionless Equations
The following parameters are used to make the energy, vorticity, stream function

and entropy generation equation dimensionless:

Y = 3.32

a
H
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u

m
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3.33

3.34

3.35

3.36

3.37

3.38

where T,, T, and u, are inlet temperature, wall temperature and viscosity at T,

respectively. In the case of constant heat flux, the dimensionless parameter for the

temperature can be defined as:

Tr-T

o

3.39

where Q" and k are heat flux and thermal conductivity, respectively. The dimensionless

stream function, vorticity and energy equations can be written for constant wall

temperature case as follows:

Re
2

(

oY 0X oX oY

— awnn — —— — 3-—-—
?_V/_?_@_Q_I/f_ég)”(aﬂ >y

(

’m o'm

oY* oax*?

2o 2
- = 0 V; +a Vg
oX oY
o 'y o’m +?_E O’y O’y o'y
0X oY*ox  OX0Y 8XoY OY 8X oy oY? ax?
2— 2 — A3 — 3
g 82,08\ B0V GOV
ax? or? Y 8y axX ax

3.40

} 3.41



37

o700 _owoo)_2(2% 2%0) 28r | (0% T (7 o
_av 9¢ L 22 2 g ALY 3.42
8Y 0X oX oY) Pe\ox® ar’) Pe'| \axov) \ov: ox

However, in the constant heat flux, the stream function, vorticity and energy equations

can be written as:

2 e 2
ow oV 343

-0 = +
ox*  oy?

Re(@.s_u__a_a_z__a.z@az_)+2_6_z Oy, On) (3% _oF
9Y X 8X oY 8X 8Y*8X  oXoY oXoY ) ) &

o’ (0w .omdw
LA |+2E k=0
oY oY oY oY

o7 00 oy 89) 2(0%0) 28/ | (oW ) (o o)
GG B A N R Py, L LY 3.45
oY 5X ox oY) Pe\ov®)  Ppe oxoy | \or?  ax

where the Re and Pe numbers are defined by:

3.44

Re = P4nDs 3.46
B,
u D
Pe = ﬁci;c-'"——i 3.47

where D,=2H. In the case of constant wall temperature, the Brinkman number is defined

as:

_ H
T KAT

3.48

whereas in the case of constant heat flux, the Brinkman number is suggested by Shah and

London (1978) to be defined as:

Br' = Hollm 3.49



38

The volumetric entropy generation can be written for variable viscosity and constant wall

temperature as:

2 2 2 20 \? 10— a2=2)\2
.= 5ot (5) (&) |4 o) (5o 350
a2 [\ax ) "oy Hg | \axor ) "lav? ax

where: ¢ =ATG+T,

H : variable viscosity relation in which g = f(6)

while the volumetric entropy generation for constant heat flux can be written as:

g 0 [(?ﬁ) +(§€J }+ O'5r ﬁH 62‘7) +(azﬁ_azy7J } 351
k(g \ax oY H¢' axoY or*  ox?

Q'H

where ¢' = 6+T,

In the case of constant viscosity =1 in Equations 3.50 and 3.51.

3.7 Viscosity Temperature Relationship

The viscosity is more sensitive to temperature than other properties such as
specific heat, density and thermal conductivity. As a result, the viscosity dependency on
temperature will be taken into consideration in this study. Several empirical relations are
suggested in the literature. For simplicity, a linear temperature relationship for the
viscosity will be used:

p=pu,-bT-T,) 3.52

where b is constant. The dimensionless viscosity and its derivatives in Equations 3.41
and 3.44 can be written in dimensionless form as:

T=1-x0 3.53
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ax o ax

9K __, 099 3.55
oy oy

2 e 2

g}fz‘ - g}f 3.56
2 e 2

gX/; = gXQZ 3.57

where x can be defined for constant wall temperature and constant heat flux as:

K= bAT and x'= bHO , respectively.
H, Mok
3.8 Boundary Conditions

The boundary conditions considerably influence the entropy generation between
the parallel plates especially those for temperature. In this analysis, the boundary
conditions are based on symmetry. As a result, the analysis covers the upper half of the
parallel plates by taking the center to be the origin. Three boundary quantities will be
covered in this section. These are stream function, vorticity and temperature boundary
conditions. To solve stream function, vorticity and energy equations, twelve boundary
conditions are required for constant wall temperature whereas 9 boundary conditions are
required for constant heat flux since the boundary conditions of stream function, vorticity

and temperature are not defined downstream.
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3.8.1 Stream Function Boundary Conditions

At the inlet, the fluid enters the parallel plates with a fully developed velocity
profile that was defined in Equation 3.31. This equation can be rewritten in dimensionless
form as:

U=1.5-15Y° 3.58
where U is dimensionless axial velocity which is defined by vy/u,. The boundary
condition for the stream function at the inlet can be determined from substituting Equation
3.58 into the dimensionless form of Equation 3.15 to yield the following equation:

¢7/’=—§—Y~—;-Y3 @ X=0 3.59

However, at a far distance downstream, the boundary condition for the stream function
can be defined from Equation 3.16 where v, equals to zero (due to fully developed flow)

at that location so:
oy
—=0 @ X=L/H 3.60

This boundary condition is limited to constant wall temperature while in the case of
constant heat flux the stream function is unknown at X=L / H since the velocity profile
will not be fully developed.

On the other hand, the boundary condition for the stream function in the normal
direction can be determined from the fact that the difference between any two streamlines
equals to the flow rate:

Q=y,-v, 3.61
where y,and y, are two different streamlines. This equation can be written for the upper

half of the parallel plate as:
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Q=y(y=H)-y(y=0) 3.62
Any solid wall is a streamline and it has a constant value. The stream function at y =0 will
be arbitrarily set equal to zero. So, the stream function at y=H equals to the flow rate. In
dimensionless form, the flow rate equals to one. Therefore, the boundary conditions for

the stream function in the normal direction can be set to be:

0 @ Y=0 3.63

i

7

7=1 @ VY=1 3.64

3.8.2 Vorticity Boundary Conditions
The vorticity boundary conditions can be written by the use of Equation 3.17
which can be written in dimensionless form as:

ou oV

oy ov 3.65
oY  ox

@ =-

where V is dimensionless normal velocity which is defined by v,/u,,. At the inlet, v, equals
to zero so V= 0. Therefore, the second term in the right hand side of Equation 3.65 equals
to zero. Then, Equation 3.58 is substituted to Equation 3.65 and integrated to yield:

=3 @ X=0 3.66
Moreover, to get vorticity boundary condition downstream, U and V boundary conditions
are required at X=L/H. The boundary conditions at X=L/H for U and V are defined by:

V=0 @ X=LH 3.67
and

Y_o @ x=LH 3.68
ox
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The last two boundary conditions can be used in the resulting equation from

differentiating Equation 3.65 with respect to x:

0w _ 90 (~QQ+QV—) 3.69

ax ax\ ov  ox
Therefore, both terms on the right hand side equal to zero because of the use of Equations
3.67 and 3.68 to yield:

_g% =0 @ X-= % , 3.70

Equation 3.70 is limited to constant wall temperature because the vorticity is not defined
for constant heat flux at far distance downstream since the velocity profile is developing.
The vorticity at Y = 0 can be determined from Equation 3.65. Both terms in the

right hand side equals to zero because the centerline is a line of symmetry and therefore

oU /0y and V equal to zero. Thus, the vorticity boundary condition at ¥ =0 can be
written as:
=0 @ Y=0 3.71
At Y = I, the vorticity boundary condition cannot be defined from Equation 3.65 or any
other equation. Therefore, the vorticity at the wall is written as:
o= @ Y=1 3.72
where f; is unknown value which differs along the wall and is determined by solving
stream function, vorticity and energy equations iteratively by using the no-slip boundary

condition at the wall as criteria to satisfy the solution. This is explained in detail in section

4.6.
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3.8.3 Temperature Boundary Conditions
The boundary conditions for the energy equation for the constant wall temperature

case are defined as

=0 Y=0 3.73
oY @
6=1 @ Y=I1 3.74
6=0 @ X=0 3.75
o @ x=L/H 3.76
ox

Equation 3.76 can be applied for constant wall temperature case. In the case of constant
heat flux the temperature at X=L/H is not defined since the temperature profile does not
get fully developed. For constant heat flux case, Equations 3.73 and 3.75 also apply for
the energy equation. Further, the temperature at the wall is defined to be:

00
—=-1 Y=1 3.77
oY @

Finally, the boundary conditions for stream function, vorticity and temperature are
summarized for constant wall temperature and constant heat flux for the four cases that
are solved in this study:

1. Constant wall temperature and constant properties.

2. Constant wall temperature and variable viscosity.

3. Constant heat flux and constant properties.

4. Constant heat flux and variable viscosity.
These four cases are summarized in Table 3.1, Table 3.2, and Table 3.3 and Table 3.4
respectively where their boundary conditions are summarized in Tables 3.5 for constant

wall temperature and 3.6 for constant heat flux.
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Table 3.1 Dimensionless equations for constant wall temperature and constant properties.

Vorticity Equation:

_R_e_(aw 0w gzgg)_(aza aza] o

—_——— +
2\0Y 8X &X or ax*  or?

Stream Function Equation:

Energy Equation:

[gg_gg_@_w‘_gg)__z_ 0 2%\ 28| (o7 (3% _oF)
oY 0X oX oY) Pe\dX® 8Y?) Pe| \8XoY or® ax’

Entropy Equation:

2 2 2 2= \2 25 a2\
2, =400 (28] (2] | p 2T 4 S8 ) | E-SE
& H¢g 10).4 oY H*¢| \ oXoY oY® oXx

$=ATO+T,
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Table 3.2 Dimensionless equations for constant wall temperature and temperature
dependent viscosity.

Vorticity Equation:
Re( B WA, T OF 00 OF AT, (0 7Y
oY oX oX oY OX 9Y*0X  OXOY oXoY 8Y oX*oy oY? ax?
2— Rn2e 20— 2— — A3 e A3
[6;1 dy]ﬁ_(aw+6m)+2%6y/+2_a_g_5y/=0

2

or* ox? ”a)(z or? oY oy’ oX ox’

Stream Function Equation:

27 2=
50V oV
ax*  or’
Energy Equation:
o7 80 owoa 2(o%0 o0\ 28-| (o) (o o)
e e = s+ == |+ H 4 e
oY 6X 08X 0Y) PeldX® oY Pe o0XoY oY: ox
Entropy Equation:
2 2 2 27— \? 20— 232
g Mary (oo}t (00}t [ 2wV (e o
g H¢" |\oX oY H¢ oxoY oY: oXx
¢p=ATO+T,
Viscosity Relationships:
g=1-x6
om__ 20 OE__ .08
oX oxX oY oY
o'm o6 7] 06
= —i = K
oY? oY’ ax? ox’
bAT
K=

H,




Table 3.3 Dimensionless equations for constant heat flux and constant properties.
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Vorticity Equation:

0

Re(o7 2D 07 33 37
2\0Y aX 28X or or*?

Stream Function Equation:

Energy Equation:
(W20 _opon) 200 20, AN Al
oY X 08X oY) PedY® Pe | | 0XoY oY*  ox?
Entropy Equation:
#7\2 2 2 3530 2-—\2 20— 232
on (0 (gg%(@j LOB| (27 ) (o'
= k(g) | \ox oY H¢' | \ oxoY oY? ox’

Q"H
k

¢,=

6+T,




Table 3.4 Dimensionless equations for constant heat flux and temperature dependent
viscosity.
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Vorticity Equation:

Re(éﬂ?ﬂ-éﬂﬁ@)”i@ 07,00 O (F 07
oY 8X oX oY oX ov*ex  aXoYy axoy ) \ov® ax?
O’m| 0w Oudy _
- — 2 =
(a)ﬂ] Hort T art

Stream Function Equation:

Energy Equation:
(awgg__a_;g_g_g) 200 25| (7 (7 _oF)
oy ax oxor) peort  pe | \awer ) T\ar T ax?
Entropy Equation:

- () (&) G (55
k() [\ox oY H¢' axoY oY* ax’

¢ = QkH g+T,
Viscosity Relationships:
A=1-x0
o __, .00 o __, 26
ox oxX oY BY
o’u 00 o' 06
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Table 3.5 Boundary conditions for constant wall temperature case.
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Vorticity Boundary Conditions:

Stream Function Boundary Conditions:

=0

Temperature Boundary Conditions:

9 _y
oY

® ® ©® ©

®

® ® ®

®

X=L/H




Table 3.6 Boundary conditions for constant heat flux case.

49

Vorticity Boundary Conditions:

Temperature Boundary Conditions:

26 _

=0 Y=0
oY @

By

e Y =1
oY @

6=0 @ X=0
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CHAPTER 4

NUMERICAL FORMULATION

The forced flow between parallel plates subjected to heating is governed by
vorticity, stream function and energy equations. These governing equations are classified
as parabolic partial differential equations. The vorticity and energy equations are non-
linear in their structure. The complexity of these equations increases when the dependency
of viscosity to temperature is taken into consideration. Solving those equations
analytically is not possible. As a result, a numerical solution is required to obtain the
distributions of vorticity, stream function and temperature. Thus, this chapter is devoted to

the numerical formulation of these equations.

4.1 Generalities of the Method of Weighted Residual

Method of Weighted Residuals (MWR) provides a family of numerical techniques
for solving differential and integral equations. It includes eignfunction expansion,
pseudospectral, Tau, Galerkin and other projection methods. The numerical techniques of
MWR share common mathematical operations and follow similar steps in the
implementation of the solution procedures. For example, the trial functions (or basis
functions) are generated from the solution of a Sturm-Liouville problem. Further, the
solution techniques involve various inner product calculations. A subclass of MWR is
spectral method that includes pesudospectral, Galerkin and Tau methods. The spectral

method can be used to approximate the integral or differential equation by using a
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truncated series expansion and the error (or residual) is forced to be zero in approximate
sense by using inner product. To demonstrate the spectral method clearly, consider the
following differential equation:

Lu= f(x) 4.1
with the following boundary condition:

Bu=90 4.2

where L and B are differential operators. A trial function {¢,(x) } is chosen to represent

the solution u(x) and let u, (x) be the approximate solution:

u(x) = u,(x) =§N:aj(pj(x) 43

J=1
where a; are the spectral coefficients. The solution requires that Equation 4.3 must satisfy

Equations 4.1 and 4.2. As N — oo, it is expected for u, (x) to approach the exact solution,

but for finite N, a finite error (or residual), R, is expected. The residual is defined as:
R=Luy(x)-f() 44

In solving the differential equation, the challenge is to choose the appropriate coefficients
{a;} so that the residual becomes as small as possible. In order to make the residual as
small as possible, weight function (or test function), y; (x) is defined by the inner product
condition:

Ry)=0 =12, 4.5
This condition is equivalent to requiring that the residual be orthogonal to the test
function. Using R and u,, (x) expressions, the condition becomes:

N

S (Lo, (x),7,(Na, = (f(x),7,(x) i=12...N 4.6

J=!
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and from the resulting system of the equations the coefficients {a;} can be determined. So
far, the test and frial functions have been left unspecified. Choosing the test and frial
functions will be illustrated in the coming sections.

Finally, the spectral methods consist of different methods and the forthcoming
discussion will be limited to one method which will be applied to solve the vorticity,
stream function and energy equations. This method is called pseudospectral method or

collocation method.

4.2 Pseudospectral Method

Spectral methods which are Galerkin, Tau and pseudospectral differ in their
minimization strategies and the choice of the test function. For example, the test function
in pseudospectral method is dirac delta function which can be defined as:

7, =0(x—-x;) 4.7
where {x;}, i=1,2,.......N is a set of collocation points. The pseudospectral method
requires that the residual to be zero at the chosen set of points since:

R o(x—x))=R (x). 4.8
Thus, unknown u(x) can be approximated by :
uy(x,)=ul(x) =010 N 4.9

hence,
N
Zak%(xz)=u(x,-) =01 ... N | 4.10
k=0

Equation 4.10 gives a system of N+/ equations which can be solved to determine the

series coefficients, a;.
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4.3 Choice of Basis Function
The choice of basis functions has been unspecified yet during the previous
discussion. The basis functions are not specified randomly. Instead, the basis sets must
satisfy a number of properties:
1) easy to compute
ii) rapid convergence
ii1) completeness ( any solution can be represented to arbitrary
high accuracy by taking the truncation N to be sufficiently
large)
These properties are satisfied in different orthogonal polynomials including Legendre and
Chebyshev polynomials. The Chebyshev series expansion is similar to a cosine Fourier
series and the use of the valuable properties of Fourier series such as Fast Fourier
Transform (FFT) can be used in Chebyshev expansion. However, Legendre polynomials
does not have known fast transform algorithm. The methods and algorithms for
Chebyshev can be applied to Legendre polynomials with technical changes related to their
specific properties. The Chebyshev polynomials are selected to provide the basis
functions in this study in order to solve vorticity, stream function and energy equations.
Thus, the following section is devoted to introduce some of Chebyshev properties and

their application in the solution of differential equations by pseudospectral method.

4.4 Chebyshev Polynomials

The orthogonal Chebyshev polynomials can be defined for xe[-1,1] by:

p,(x)=cos(kcos” x)  k=0,1,2,..... 4.11
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By setting x=cos z, the following expression can be deduced for the Chebyshev basis
function:
@, = cos(kz) 4.12
The first Chebyshev polynomials can be obtained from Equation 4.12:
@, =1,0,=cosz=x, ¢, =cos2z=2c0s’z-1=2x" =1...cccoooorine.

The first five-Chebyshev polynomials are plotted in Figure 4.1. The zeros of these

polynomials represent the collocation points which can be obtained from the Gauss-
Lobatto points:

x, =cosmi/N i=01...... N 4.13

The main difficulty in pseudospectral method is how to determine the coefficients

which appear in Equation 4.10. The coefficients can be defined in an explicit way by

following the coming sequences. The Chebyshev polynomials are orthogonal on [-1,1]

with the weight:
w= ! 4.14
1-x?
Let the inner product be defined by:
(u,v), = Iuvwdx 4.15
-1
The Chebyshev polynomials are orthogonal in the inner product:
: T
((Plca§”1 )w = {¢k¢1w dx = Eck5k,l 4.16
-1

where J,, is Kronecker delta and ¢, is



1 :
| @) P4) o)

¥

(%)

Pa(x)

X

Figure 4.1 Graphs of the first Chebyshev polynomials, ¢, (x), for k=0, 1, 2, 3, 4.
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2 if k=0
ck—{ ¥ 4.17

1 i k=1
Equation 4.16 can be approximated by the quadrature formula in which x; is calculated

form Equation 4.13. The quadratic formula can approximate any function f(x) by

i N
7o~ f(x)

dx = — 3y ——=~ 4.18

_v!fw V& T

where

2 if k=0
¢, =41 if 1Sk<N-1 4.19

2 if k=N

Thus, the Chebyshev basis sets in Equation 4.16 can be approximated by:

U] =

0, (x),(x;) 4.20

2]

1 N
7 V1
_2‘Ck5k,1 = :!-%(Pzw dx = —]—\/'—;
When k=/=N, this formula remains exact if ¢, is replaced by ¢, which is equals to 2.

Therefore Equation 4.20 can be replaced by:

Y z,
Z:’(Dk (xi )(01 (xi) = 'Z_Ndk,l 4.21

i=0

where k > 0 and { < N. This equation is called discrete orthogonality relation based on
Gauss-Lobatto points and it is quite useful in Chebyshev pseudospectral method because
it provides an explicit approximation to the coefficients, a;, which appear in Equation

4.10. This can be achieved by multiplying Equation 4.10 by ¢,(x,)/¢, for each side and

summing from i=0 to ;=N then use Equation 4.21 to get the explicit relation for the

coefficients:

Z-_l—u,gak (x,) k=0, ........ N 422
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Now, the coefficients for the first and the second derivatives of u{x) are required in order
to solve differential equations. The first and the second derivatives for u(x) can be

represented in terms of basis functions by:

N N
uy(x) =D ap(x) =D ale,(x) 4.23
k=0 k=0
N N s
uy (x) = api(x) =2 a’,(x) 4.24
k=0 k=0

where the coefficients are defined by:

=2 > pa, k=0, ........., N-1 4.25
Ck {;fl:)lodd
2) 1 - 2 2 _
a? =— Y p(p’-k*)a, k=0,..... N-1 4.26
¢ (p:kk+)2
prR) even

4.5 Chebyshev Derivatives

In pseudospectral method, the solution of differential equations by determining the
coefficients is seldom employed in Chebyshev case. Instead, the solution can be obtained
by determining the unknown of grid values. This can be obtained by expressing the
derivatives at any collocation point in terms of the grid values of the function where the

derivative can be expressed as:
N
ull)(x) = DPuy(x)) =0, ... N 427
=0

where p represents the degree of derivative. Dl.‘,f,?) can be calculated by eliminating the

coefficients from Equations 4.23 and 4.24 by using expression (4.22). Then, express

@, (x,) and the p derivatives @{”(x,) in terms of trigonometrical functions according to
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Equation 4.12. Finally, the sums are evaluated by applying the classical trigonometrical

identities.

To illustrate how the pseudospectral method can be applied to solve differential

equation where the unknowns are grid values, an example is required.
Example:

Let us consider the 1-D second-order linear differential equation:

d*u  du

—5—4—+du=¢" +C xel[-11]
dx dx
BC’s u(-H)=0
u(+) =0
C= “4‘22
1+e
the exact solution :
u() = et — L a0y
Sinh?2

Solution:

Equation 4.27 is substituted in the differential equation to obtain the following:

N N
> DPuy(x,)—4Y DPuy (x) +4u(x,)=e” +C =0, 2......... N
=0 =0

uy(-)=0

uy(+1) =0

By choosing N=6, the collocation points and derivatives are:

x=[-1 08660 0.5 0 -05 -0.8660 I]

4.28



[12.1667 -14.9282 4.0000 -2.0000 1.3333 -1.0718 0.5000
3.7321 -1.7321 -2.7321 1.1547 -0.7321 0.5774 -0.2679
-1.0000 2.7321 -0.3333 -2.0000 1.0000 -0.7321 0.3333

D;}) =| 0.5000 -1.1547 2.0000 -0.0000 -2.0000 1.1547 -0.5000

~0.3333 0.7321 -1.0000 2.0000 0.3333 -2.7321 1.0000

0.2679 -0.5774 0.7321 -1.1547 2.7321 1.7321 -3.7321

-0.5000 1.0718 -1.3333 2.0000 -4.0000 14.9282 -12.1667 |

[86.3333-140.4017 81.3333 -44.6667 30.6667 -24.9316 11.6667 |
42.7846 -62.6667 24.3923 -6.6667 3.6077 -2.6667 1.2154
-3.3333 13.1068 -17.3333 9.3333 -2.6667 1.5598 -0.6667
DP =| 1.0000 -2.6667 8.0000 -12.6667 8.0000 -2.6667 1.0000
-0.6667 1.5598 -2.6667 9.3333 -17.3333 13.1068 -3.3333
1.2154 -2.6667 3.6077 -6.6667 24.3923 -62.6667 42.7846

11.6667 -24.9316 30.6667 -44.6667 81.3333-140.4017 86.3333 |

b

Substitute D and DY and apply boundary conditions in Equation 4.28:

[-51.7385 35.3205 -11.2855 6.5359 -4.9761[us(x,)] [1.0813 ]
2.1786 -12.0000 17.3333 -6.6667 4.4880 || u,(x,)| |0.3526

19521 0 -8.6667 16.0000 -7.2855  ||u,(x;)|=|-0.2961
-1.3684 1.3333 1.3333 -14.6667 24.0350 ||u,(x,)| |-0.6896
-0.3573  0.6795 -2.0479 13.4641 -65.5949 || us(x;) | |-0.8755]

The solution is found to be
uy(x,)=0.0000

ug(x,)=0.2216
ug(x,)=0.4429
us(x,)=0.3516
ug(x,)=0.1627
ue(x,)=10.0392
us(x,)=0.0000

59



60

The comparison between pseudospectral and exact solutions has been shown in Table 4.1
for N=6. The convergence of solution is increased as the number of N points is increased
and this can be verified by using N=174 as shown in Table 4.2.

The truncated series 4.27 can be modified to two-dimensions. These derivatives
are required in this study in order to represent stream function, vorticity and energy

equations. To show how these derivatives can be presented, selected derivatives are

shown:
2 N
9 =3 eyl -1 N+ j] 4.29
Ox ik =0
2 N
9-? = ZDy,ﬁf}w[( J=D*N+i] 4.30
Oy ik J=0
3 N
a'é’ => DyPwl(j-1* N +i] 431
oy ik =0

All other derivatives are calculated in the same way and then they are substituted to

vorticity, stream function and energy equations and solved simultaneously.



Table 4.1 Comparison between exact and pseudospectral solution for N=6.
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Unknown grids Psedospectral solution Exact solution
N=6

u, (1.000) 0.00000000000000 0.00000000000000
u,(0.8660) 0.22158833611989 0.22193844430186
u¢(0.5000) 0.44294812692560 0.44389705589030
1, (0.000) 0.35160260729292 0.35194572633611

u, (—0.5000) 0.16274001051126 0.16330060085857
u, (—0.8660) 0.03915564374364 0.03926561729417
us (—1.000) 0.00000000000000 0.00000000000000




Table 4.2 Comparison between exact and pseudospectral solution for N=14.
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Unknown grids Psedospectral solution Exact solution
N=14

u,,(1.000) 0.00000000000000 0.00000000000000
u,,(0.97493) 0.04979178600830 0.04979178600822
u,, (0.90097) 0.17390808380990 0.17390808381019
u,,(0.78183) 0.31379829260617 0.31379829260636
u,,(0.62349) 0.41384450474992 0.41384450475063
u,,(0.43383) 0.44751317240387 0.44751317240408
u,,(0.22252) 0.41953249290887 0.41953249290965

u,,(0.000) 0.35194572633609 0.35194572633611
u,,(-0.22252) 0.26883535022965 0.26883535023028

u,, (-0.43388)

0.18790537179341

0.18790537179336

1, (-0.62349)

0.11892710081015

0.11892710081051

u,,(-0.78183) 0.06569924503458 0.06569924503463
u,,(-0.90097) 0.02869116311253 0.02869116311264
1,,(—0.97493) 0.00708510155216 0.00708510155235

u,4(~1.000) 0.00000000000000 0.00000000000000
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4.6 Solution Techniques

The solution of stream function, vorticity and energy equations is required for four
cases. Two of them investigate the stream function, vorticity and temperature distributions
on constant wall temperature in which the viscosity is constant in one case and variable
with temperature in the other case. Whereas the two other cases investigate the
distributions of stream function, vorticity and temperature with constant wall heat flux in
variable and constant viscosity. The techniques of the solution will be explained for one
case and the other cases will follow similar techniques. As an example, the investigation
of stream function, vorticity and temperature will be shown for the variable viscosity case
and constant wall temperature. The solution can be obtained by solving Equations 3.40,
3.41 and 3.42 simultaneously with the boundary conditions 3.59, 3.60, 3.63, 3.64, 3.66,
3.70, 3.71, 3.72, 3.73 to 3.76 and with viscosity relations 3.53 to 3.57. The main difficulty
in solving those equations is the lack of the knowledge of vorticity on the wall. The
vorticity on the wall is taken to be £, which changes form point to point on the wall. This
difficulty can be recovered by the following sequence. The values of Re, Br and Pe is
computed by choosing properties for any chosen liquid. The system of equations is solved

with boundary conditions by giving the vector £, guessed values. The solution of w, ¥
and T that is determined is checked by using the following criteria on the wall:

L — 432
%y

y=1
If this condition is satisfied, the vorticity, stream function and temperature are the required

solution. Otherwise, the values of f, need to be updated by using Newton-Raphson

technique and again the system of the equations needs to be solved with the new £, till
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the criteria is satisfied. After the convergence of the solution, the velocity components can
be obtained from Equations 3.15 and 3.16. The solution can be double-checked by
substituting the two velocity components in the continuity equation. The number of points
that is taken in the two-directions is 40x40 collocation points. Finally, the entropy
generation rate per unit volume is determined from Equation (3.50) since the velocity and
temperature distributions are achieved. The sequence of this procedure is shown on Figure

4.2.



Specify
Re, Pe, Br

Selve iteratively:
e Vorticity equation
e Stream function equation
e Energy Equation

Solution
converged

J

Figure 4.2 Flow chart of solution technique.

65



66

CHAPTERS

RESULTS AND DISCUSSIONS

The numerical schemes outlined in the previous chapter were employed to
determine the entropy generation for laminar flow between parallel plates subjected to
heat transfer. The pseudospectral method was applied to accomplish this task by solving
the stream function, vorticity, and energy equations for constant and variable viscosity.
Constant wall temperature and constant heat flux cases were considered. In the variable
viscosity, where the viscosity is a function of temperature, a linear relationship
represented by Equation 3.52 is used to describe viscosity behavior with temperature for
two liquids. Thus, the test of the linear relationship for the two liquids is presented.

Moreover, it is necessary to demonstrate the convergence of the numerical solution.

5.1 Convergence of the Numerical Solution

Convergence of the numerical solution using the pseudospectral method increases
as the mesh size is increased. The mesh size is expressed by N,*x N, where Ny and N,
represent the number of collocation points in x and y directions, respectively. The
convergence of the numerical solution is demonstrated in Table 5.1. Here the axial
velocity at X = 3000 and Y = 0 is reported for different values of N, and N,. The
conditions for these calculations correspond to the physical properties of ethylene glycol
as shown in Table 5.2, T, =300 K, 7, = 330 K and Re = 100. It is clear that increasing N,

x N, improves the accuracy of the numerical solution. In particular, Ny plays a more
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significant role on the convergence of the numeral solution than N, As shown in Table
5.1, the axial velocity reached an asymptotic value of 1.499842 converged up to six
decimal digits for N, = 40 and N, = 20. In this study, we have adopted a mesh size of N, =
40 and N, = 40 to produce all the numerical results. The solution of these equations has
been obtained by choosing a tolerance equals to le-8. All codes written for this study

were programmed in FORTRAN 90.

5.2 Variable Viscosity Relationship
Many relationships can be utilized to study the viscosity behavior with
temperature. The choice of viscosity relationship depends on several factors including the
type of fluid. Two liquids are chosen in this study, ethylene glycol and water. The
properties of the more viscous liquid (ethylene glycol) and the less viscous liquid (water)
are shown in Table 5.2. Equation 3.52 is suggested to be applied in this study for both
liquids:
p=u,-bT-T,) 3.52
The applicability of this relationship is satisfactory for the selected temperature ranges
that are chosen in this study. The maximum chosen range for the temperature difference
between the inlet fluid and the wall was 30 K. Figures 5.1a and S5.1b show the
applicability of this linear relationship over the selected range in this study for both water

and ethylene glycol.
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Table 5.1 Numericél solution convergence for axial velocity corresponding to
ethylene glycol (physical properties are given in Table 5.2, T, = 300
K, AT =30 K, Reynolds number = 100, X = 30000 and Y = 0).

Ny N, U
10 10 1.4985948
20 20 14996592
30 30 1.4998007
40 20 1.4998429
40 30 1.4998428
40 40 1.4998429




Table 5.2 Physical properties for water and ethylene glycol [ Plawsky, 2001].

Water Ethylene Glycol
Viscosity relation p=u-bT-T) p=p,-b(T-T,)
T,(K) 300 300
1, (N.s/m®) 855x107° 1.57x10
p (kg/m’) 997 1114.4
k (W/mK) 613x10~ 252x107
C,(/kgK) 4184 2415
Pr 5.83 151
b (N.s/m” K) 1.08x107 33.4x107
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y =-10.76x + 822.4
R?=(0.9726

300 -
200 -
100 -
0 l T T
0 10 20 30
T-T,(K)

Figure 5.1a g vs. (T-T,) for water for 7, = 300 K.
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1800
y = -33.4x + 1490.5
1600 3 R? = 0.9598
1400 -
1200 -
[ ]
<~ 1000 -

600 - ]
400 -
200 -
0 T T T 1 T
0 5 10 15 20 25 30
I-T,( X)

Figure 5.1b uvs. (T-T,) for ethylene glycol for T, = 300 K.
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5.3 Constant Wall Temperature

5.3.1 Velocity Profiles

After resolving the stream function, vorticity and energy equations, Equations 3.15
and 3.16 were successfully applied to acquire the velocity profiles, v, and v;. The velocity
profiles can be influenced in the case of variable viscosity by different parameters. These
are inlet-wall temperature difference (AT), Reynolds number (Re) and liquid type. In this
section, the velocity profiles are presented for both constant and variable viscosity. These
profiles were acquired under several assumptions (as mentioned in Section 3.1) including

fully developed flow at the inlet.

5.3.1.1 Velocity Profiles for Constant Viscosity

For the constant viscosity case, the inlet fully developed velocity profile that is
only a function of y is not influenced by the wall temperature that heats the inlet fluid as it
proceeds further between the parallel plates since the momentum and energy equations are
decoupled. As a result, the axial velocity, v,, remains unchanged as the fluid flows
downstream along the parallel plates and the v, component is equal to zero. However, as
just mentioned above, the axial velocity changes in the normal direction. The velocity can

be expressed for fully developed fluid by Equation 3.58:

U=15-15Y" 3.58
The axial velocity profile vs. Y is plotted in Figure 5.2 for the upper half of the parallel
plates where the origin is chosen at the center. At the center where Y=0, the axial velocity
equals to 1.5 which is the maximum velocity while at Y=1 the axial velocity equals to

zero due to the no slip condition at the wall. The change of the Reynolds number, the
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liquid type and the inlet-wall temperature difference do not influence the shape of the

fully developed profile when the viscosity is constant provided that the flow is laminar.

5.3.1.2 Velocity Profiles for Variable Viscosity

In the variable viscosity case, however, the temperature dependent viscosity
influences the velocity profiles between the parallel plates in which the wall temperature
heats the entering fluid. Here, the momentum and energy equations are coupled through
viscosity since it is a function of temperature. The velocity component U for the variable
viscosity case is compared to that of the constant viscosity case in Figure 5.3. The effect
of consideration of variable viscosity is obvious. In this figure, the axial velocity profile is
plotted vs. Y at X = 185 and Reynolds number = 400 for both constant and variable
viscosity with 30 K difference between the inlet and the wall temperature for ethylene
glycol. When ethylene glycol enters the parallel plates with a fully developed velocity
profile, it is subjected to heat transfer from the wall due to the difference in temperature
between the fluid and the wall. This heating causes a decrease in viscosity as the fluid
proceeds further in the duct. The ethylene glycol tends to become less viscous near the
wall than at the center because of the effect of heating which is higher near the wall. The
decrease in viscosity near the wall is accompanied by a decrease in shear stresses between
the liquid molecules and therefore an increase in the velocity as it is shown in the figure at
a distance near Y = 1. On the other hand, near the center where Y is close to zero, the
magnitude of velocity is lower for the variable viscosity than the constant viscosity case.

This can be explained based on the volumetric flow rate per unit width:

0= [v,dy 5.1



1.4 -
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0.4 -
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Figure 5.2 U vs. Y for constant viscosity case.
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1.4 477 -~ —————— constant viscosity
TN mmemmmmee variable viscosity
1.2 1
1 B
- 0.8 -
0.6 N - ~ i
0.4 -
0.2
0 T T i T
0 0.2 0.4 0.6 0.8 1

Figure 5.3 U vs. Y for variable and constant viscosity cases for ethylene glycol at X =
185 (physical properties are given in Table 5.2, Re =400, AT=30K and T,

=300 K).
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The volumetric flow rate for the two cases should be equal. Since the velocity increases
near the wall, it has to decrease later far away from the wall such that the area under the
curve remains the same.

Due to the fact that the temperature is varying in the axial direction and the
viscosity is temperature dependant, the velocity field will be modified accordingly.
Specifically, the axial velocity is a function of the axial direction and due to the continuity
equation (3.12)

dvy ‘
— 220 52
dy

This will give rise to non-zero value for normal velocity as shown in Figure 5.4.

To sum up the discussion of axial velocity in the normal direction, a look at U vs.
Y is required at distance far from the inlet. The heat transfer occurs along the duct until
the temperature difference between the fluid and the wall equals to zero at the end of the
duct, no temperature-jump condition. The velocity profile at no temperature-jump
condition reforms to the fully developed profile since there is no temperature difference
between the wall and the fluid. The no temperature-jump condition occurs at X = 120000.
The velocity profile at this location coincides with the fully developed profile as plotted in
Figure 5.5.
As expected, the axial velocity varies in the axial direction due to the dependence of
viscosity on temperature. U vs. X is presented in Figures 5.6, 5.7, 5.8 and 5.9 at various Y
values. For the same reasons mentioned before, near the heated wall U first increases due
to the large temperature gradient and then decreases and becomes very close to that of the
constant viscosity case at height X values at which the temperature gradient diminishes.

Whereas near the center (Y = 0) U first decreases and then increases to balance the
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changes which takes place near the wall, as also explained above. Furthermore, in Figure
5.7, the minimum velocity is shifted to the left as the Y values increase. To see this
picture clearly, Figure 5.10a and Figure 5.10b are plotted for U vs. X for Y = 0 and 0.46
respectively. In Figure 5.10a, the minimum velocity appears approximately at X = 1000
while the minimum velocity for Figure 5.10b appears at X = 200. Figure 5.10b is closer to

the heating plate where the velocity profile develops faster.
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Vx10®
(6]

Figure 5.4 V vs. Y for variable viscosity case for ethylene glycol at X = 185 (physical
properties are given in Table 5.2, Re = 400, A7'=30 K and 7,, = 300 K)).
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I ‘ X=120000 (fully developed)

1.2 4 X=185 AR
X=28650

0.6

.

0.4 -

0.2 -

Figure 5.5 U vs. Y for variable viscosity case for ethylene glycol at various X values
(physical properties are given in Table 5.2, Re = 400, AT=30K and 7, =
300 K).
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1.42 -

141 ——————  constant viscosity
' variable viscosity

1.38 4

1.36 ; T l
0 20000 40000 60000 80000 100000 120000

X

T T

Figure 5.6 U vs. X for constant and variable viscosity cases for ethylene glycol at Y =0
(physical properties are given in Table 5.2, Re = 400, AT=30K and T, =
300 K).
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--------- variable viscosity
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Figure 5.7 U vs. X for constant and variable viscosity cases for ethylene glycol at various
Y values (physical properties are given in Table 5.2, Re = 400, A7 =30 K and
T,=300K).
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1.115 4.'" —————  constant viscosity
---------- variable viscosity

1.1 ! ! [
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X

Figure 5.8 U vs. X for constant and variable viscosity cases for ethylene glycol at Y =
0.5 (physical properties are given in Table 5.2, Re = 400, AT=30K and T,
=300 K).
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Figure 5.9 U vs. X for constant and variable viscosity cases for ethylene glycol at Y =
0.82 (physical properties are given in Table 5.2, Re =400, AT=30K and 7,
=300 K).
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X

Figure 5.10 a U vs. X for variable viscosity case for ethylene glycol at Y = 0 (physical
properties are given in Table 5.2, Re =400, AT =30 K and 7,= 300 K).
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Figure 5.10 b U vs. X for variable viscosity case for ethylene glycol at Y = 0.46
(physical properties are given in Table 5.2, Re = 400, AT =30 K and 7,
=300 K).
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5.3.2 Effect of Inlet-Wall Temperature Difference, Reynolds Number and Liquid
Type on Velocity Profiles
The velocity profiles for variable viscosity are influenced by several parameters.

These parameters are inlet-wall temperature differences, Reynolds number and liquid

type.

5.3.2.1 Effect of Inlet-Wall Temperature Difference

The viscosity is a function of temperature. The higher the temperature, the less
viscous the fluid becomes. To study the effect of inlet-wall temperature difference on the
liquid, the inlet temperature is fixed at 300 K while the wall temperature is specified to
310 K, 320 K and 330 K for three different runs. The three runs are plotted as U vs. Y in
Figure 5.11 for ethylene glycol with Reynolds number = 400 at X = 185. As the
temperature difference increases between the wall and inlet fluid, the change in the
velocity profile becomes more pronounced as compared to the constant viscosity change,
see also Figure 5.12. This phenomenon can be noticed in the other velocity components

with the same fluid properties as shown in Figures 5.12, 5.13 and 5.14.
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Figure 5.11 U vs. Y for variable viscosity case for ethylene glycol at X = 185 (physical
properties are given in Table 5.2, Re =400, AT =10, 20 and 30 K and T,
=300 K).



87

1.52

15 | """'"’"”:::::ji:iii

1.48 -

1.46 - l

AT=10 .~
> 1.44 4 l

142 4 AT=20 .~
144
L l constant viscosity
138 4 /AT=3 o e variable viscosity
1.36 1 1 1 , 1
0 10000 20000 30000 40000 50000 60000

X

Figure 5.12 U vs. X for constant and variable viscosity cases for ethylene glycol at Y =
0 (physical properties are given in Table 5.2, Re = 400, AT = 10, 20, 30 K
and T,= 300 K).
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Figure 5.13 V vs. Y for variable viscosity case for ethylene glycol at X = 185 (physical
properties are given in Table 5.2, Re = 400, AT = 10, 20, 30 K and T, =
300 K).
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Figure 5.14 V vs. X for variable viscosity case for ethylene glycol at Y = 0.15 (physical

properties are given in Table 5.2, Re = 400, AT = 10, 20,30 K and 7, =
300 K).



90

5.3.2.2 Effect of Reynolds Number

Reynolds number is one of the parameters that influences the velocity profiles. In
the previous discussion, the pattern of the axial velocity profiles at the center was
discussed in the axial direction and it was shown that the profiles become fully developed
at a far distance downstream. This conclusion is true for any Reynolds number provided
that the flow is laminar. Figures 5.15 and 5.16 show this behavior for Reynolds numbers
100 and 200 for ethylene glycol where AT = 10 K. 1t is clear that the profile at Reynolds
number = 100 develops faster than that of Reynolds number = 200. The same behavior is
presented more clearly in Figure 5.17 in which U vs. X is plotted for different values of
Reynolds numbers at Y = 0 and AT = 10 K. It was shown from last three figures that at
low Reynolds number, the profile developed after a short distance between the parallel
plates. As the Reynolds number increases, the pattern of the profiles is shifted
downstream. Moreover, as the Reynolds number becomes larger, the length it takes to
establish the final profile grows in a direct proportion. Finally, in order to see the effect of
Reynolds number from different angles, Figure 5.18 is plotted for U vs. Y at two different
Reynolds numbers at X = 1105. At the center, the figure shows that the velocity for Re =
50 is higher than that of Re = 400. This is because the temperature gradient for Re = 50 is

higher than that of Re = 400.
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Figure 5.15 U vs. X for variable viscosity case for ethylene glycol at Y = 0 (physical
properties are given in Table 5.2, Re = 100, AT = 10 K and 7,= 300 K)
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Figure 5.16 U vs. X for variable viscosity case for ethylene glycol at Y = O (physical
properties are given in Table 5.2, Re =200, AT =10 K and 7,= 300 K).
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Figure 5.17 U vs. X for variable viscosity case for ethylene glycol at Y = 0 (physical
properties are given in Table 5.2, Re = 100, 200, 300, 400, 7, = 300 K,
AT =10K).
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Figure 5.18 U vs. Y for variable viscosity case for ethylene glycol at X = 1105 (physical
properties are given in Table 5.2, Re = 50 and 400, 7, =300 K and AT =30
K).
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5.3.2.3 Effect of Liquid Type

In this study, two Newtonian liquids are chosen as one liquid is less viscous while
the other is more viscous. These liquids are water that represents the less viscous liquid
and ethylene glycol that represents the more viscous liquid. In Figure 5.19, U vs. X is
plotted for both water and ethylene glycol at Y = 0 (Re =400 7, = 300 K and AT = 30 K).
It is clear that water, being less sensitive to temperature than ethylene glycol, develops
faster because water’s Prandtl number is smaller than ethylene’s. U vs. Y for both water
gnd ethylene glycol is also plotted at X = 825. At the center, it is clear that water has
higher velocity than that of ethylene glycol which is more viscous and therefore needs
longer distance to reach the fully developed value. Therefore, we can conclude that the

more sensitive the fluid to temperature, the more the heat effects are pronounced.
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Figure 5.19 U vs. X for variable viscosity case for ethylene glycol and water at Y = 0

(physical properties are given in Table 5.2, Re = 200, T,=300 K and AT =
30 K).
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Figure 5.20 U vs. Y for variable viscosity case for ethylene glycol and water at X = 825
(physical properties are given in Table 5.2, Re = 200, 7, =300 K and AT =
30 K).



98

5.3.3 'E@mperéture Profiles

Temperature profiles are obtained from the enérgy equation. The fluid enters with
temperature = 300 K and it is subjected to heat transfer from the wall that is higher than
the inlet fluid by 10 K for the first run, 20 K for the second run and 30 K for the third run.
The heat transfer continues until the temperature difference between the fluid and the wall
equals zero. Figures 5.21 ;1nd 5.22 present ® vs. X at various Y values for variable
viscosity case (Re =400, T,= 300 K and AT = 30 K). In Figure 5.21, as is expected, the
ethylene glycol gains heat from the walls of the parallel plates and the dimensionless
temperature gradually increases with X till it reaches 1 at which there is no heat transfer
from the wall. The temperature near the wall reaches 1 faster than that in the center. ® vs.
Y at various X values is shown in Figure 5.22 and it is clear that the liquid gains more
heat as it flows downstream because of heat transfer from the wall. This heat transfer
makes the temperature gradient in the normal direction lower as X increases. Moreover,
the temperature dependent viscosity influences the pattern of temperature profiles. Figure
5.23 compares the temperature profiles for the constant and variable cases. ® is plotted vs.
X at Y = 0.8 and 0.9 and it is clear that the temperature dependent viscosity affects the
temperature profiles. In the figure, the temperature profile for the constant viscosity is
higher than that of the variable viscosity because the velocity in the variable viscosity case
is less than that of constant viscosity at Y = 0.8 and 0.9 and the relation between velocity

and temperature can be seen in the convection term in energy equation (3.21).
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Figure 5.21 ® vs. X for variable viscosity case for ethylene glycol at various Y values
(physical properties are given in Table 5.2, Re =400, 7,= 300 K and AT =
30 K).
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Figure 5.22 © vs. Y for variable viscosity case for ethylene glycol at various X values
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Figure 5.23 ® vs. X for constant and variable viscosity cases for ethylene glycol at Y =
0.8 and 0.9 {physical properties are given in Table 5.2, Re = 400, T,= 300
KandAT=30K).
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5.3.4 Effect of Reynolds Number and Liquid Type on Temperature Profiles
Temperature distribution can be influenced by different parameters including the
Reynolds number and the liquid types. The discussion of this section will evidently show

that flow phenomena and thermal phenomena interact to a great extent.

£3.4.1 Effect of Reynolds Number

Reynolds number is a parameter that affects the velocity as well as the
temperature. In the previous discussion, the effect of Reynolds number on the velocity
profiles was elaborated. Similarly, Reynolds number shifts and extends the temperature
profiles downstream when the Reynolds number increases. @ vs. Xat Y =0 is plotted for
ethylene glycol in Figure 5.24 for different Reynolds numbers (7,=300 K and AT'= 30
°C). From the figure, it is clear that uniform temperature in the fluid is achieved earlier {at

shorter distance) at low Reynolds numbers than at higher Reynolds numbers.

5.3.4.2 Effect of Liguid Type

In Figure 5.25, ® vs. X at Y=0 is plotted for ethylene glycol and water (Re=400,
T.=300 K and AT = 30 °C). Water, which is the less sensitive to temperature liquid, is
heated faster than ethylene glycol. This is because the heat diffuses in water easier than in
ethylene glycol and this can be explained by the comparison of the magnitude of the
Prandtl number for water and ethylene glycol where the water’s Prandtl number is much

smaller than ethylene glycol’s.
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Figure 5.24 © vs. X for variable viscosity case for ethylene glycol at Y = 0 (physical
properties are given in Table 5.2, Re = 100, 200, 300 and 400, 7,=300 K
and AT=30K).
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Figure 5.25 © vs. X for variable viscosity case for water and ethylene glycol at Y = 0
(physical properties are given in Table 5.2, Re =400, T,=300 K and AT =
30 K).
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5.3.5 Entropy Generation Profiles

Entropy generation calculated from temperature and velocity data will be
presented and discussed after the previous discussions of velocity and temperature
profiles. Entropy generation arises from fluid friction. As a result, the entropy generation
profiles depend on the behavior of both velocity and temperature profiles. To investigate

and gain insight of the behavior of entropy generation profiles, this section is divided into

four parts. The first part is to investigate entropy generation per unit volume (S’;"eﬂ)
profiles from fluid friction perspective only whereas the second part is to investigate S oo

from heat transfer perspective. The third part is to investigate the S;’;n under the effect of

several parameters, namely, A7, Reynolds number and liquid type. The fourth part is to
estimate the total entropy generation along Y for a specified X-location, S v » where AY
represents the distance from the center to the wall. Further, the fourth part includes total
entropy generation along Y and X from inlet to a specified X-location, Sy » Where AX

represents the distance from inlet to the selected specified X-location.

5.3.5.1 Entropy Generation from Fluid Friction Effect

Friction is one source of irreversibility in a flowing fluid in a channel Fluid
friction arises from the friction between the liquid and the plate walls and from the friction
between liquid molecules themselves. Viscous dissipation represents this friction effect.
Viscous dissipation function (@) appears in the second part of the entropy generation

equation:

S F—%(VT)Z +{§¢' 311
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At low Reynolds number, viscous dissipation function is not significant and a small effect
of viscous dissipation on entropy generation is expected. Even though the effect of fluid

friction is not significant, it is worth to see the patterns of entropy generation profiles
arising from fluid friction (considering only the second part of Equation 3.11). S o V8. X

is plotted in Figure 5.26 for ethylene glycol with Reynolds number = 400 at various Y

values. S}, increases as the value of Y increases. This is expected since the shear stress

increases towards the wall.

S™ vs. Y is plotted for various X values in Figure 5.27 for fluid friction effect.

gen
This figure shows that as the flow proceeds downstream, S;”m decreases at any Y. This is

related to the minimizing of the velocity gradient as the flow proceeds further.
Furthermore, entropy generation arising from fluid friction effect can also be influenced

by the increase of the Reynolds number because the viscous dissipation function increases

"
gen

as the Reynolds number increases. To examine this effect, S" arising from fluid friction
effect is plotted vs. X for different Reynolds numbers in Figure 5.28. The selected
Reynolds numbers are 100, 200, 300 and 400. Re = 400 provides the highest viscous
dissipation among the other Reynolds number values. As a result, the entropy generation
arising from fluid friction effect increases if the Reynolds number increases.

To conclude this section, it is evident that the entropy generation arising from fluid
friction effect is of order 107 which is << 1. As a result, the entropy generation arising

from fluid friction is negligible and viscous dissipation function can be neglected n

solving the governing equation in this study.
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Figure 5.26 S;"m {fluid finction effect) vs. X for vanable viscosity case for ethylene

glycol at various Y values (physical properties are given m Table 5.2, Re =
400, T,=300 K and AT =30K).
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Figure 5.27 S’;”m {fluid friction) vs. Y for variable viscosity case for ethylene glycol at
various Y values (physical properties are given in Table 52, Re =400, 7, =

300 Kand AT=30K).
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5.3.5.2 Entropy Generation from Heat Transfer Effect
Entropy generated from heat transfer is dommnmant between the parallel plates. In

this section, the entropy generation arising from heat transfer effect (the first term of

equation 3.11) will be investigated. Figure 5.29, 5.30 and 5.31 are plotted for S7, vs. X

for different Y values. The profiles for Sg":,n vs. X are divided into three figures in order to

illustrate their behavior clearly. Figure 5.29 covers the range of Y from 0.12 to 0.31 while

Figure 5.30 covers the range from 0.42 to 0.82. Furthermore, Figure 531 mvestigates

S” at Y =0.92 and 1. All these figures correspond to Reynolds number = 400 and AT =

gen

30 K. In the vicinity of the wall, the heat transfer is significant and the generation of
entropy is expected to be higher than that at the center. Therefore, S o inCrEases towards

the wall due to the significant effect of high temperature gradients near wall. Furthermore,
as the Y value increases, the maximum entropy generations shifted to the left of the
diagram (towards the entrance of the parallel plates). This is related to the effect of the
shift of the velocity that was explained in Figure 5.10. The maximum entropy generation
is located at the same X-location of the maximum velocity and this is can be established if

Figure 5.9 is compared to Figure 530 at Y=0.82. In both figures, the location of the
maximum velocity and entropy is approximately at X = 185. S‘;”m n Figures 5.29, 5.30,

5.31 start from zero at the inlet of the parallel plates then increases to a maximum and
subsequently decreasing back to zero. This 1s due to the temperature gradient which
undergoes the same behavior from the nlet to the end.

On the other hand, the precedmng discussion of velocity and temperature profiles

showed that the velocity and temperature profiles in the varable viscosity case deviate



i1t

from those of the constant viscosity case. As a result, the entropy generation profiles from
the variable viscosity case should also deviate from those of constant viscosity case since

the entropy generation consists of velocity and temperature data. This can be shown n
Figure 5.32 which is a comparison of S o from variable and constant viscosity cases. The
effect of consideration of temperature dependent viscosity can also be noticed n Figure

533 which is a plot of §7 vs. Y at X = 185. In this figure, it is clear that the entropy

sen
generation from variable viscosity is higher than that of constant viscosity at location
close to the wall. On the other hand, the entropy generation from the vanable viscosity 1s
less than that of the constant viscosity at a location close to the center. This behavior is a
result of the behavior of the velocity profile in Figure 5.3 that was explained in the
preceding discussion of velocity profiles. To sum up this section, the investigation of the
entropy generation arising from heat transfer effects equals to the total entropy since the

entropy generation from fluid friction effects can be neglected.
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5.3.5.3 Effect of Reynolds Number, Liguid Type and AT on Entropy Generation

One of the main objectives of this study is to investigate the effect of some
parameters on local entropy generation of viscous fluid flow between parallel plates. This
section will elaborate the effect of some of these parameters on the local entropy

generation, namely, Reynolds number, inlet-wall temperature difference and liquid type.

53.5.3.1 Effect of Reynolds Number

Reynolds number effect has been discussed on the behavior of the velocity (Figure
5.17) and temperature (Figure 5.24) profiles. Similar behavior can be expected for the

local entropy generation since the entropy generation consists of velocity and temperature

data. Figure 5.34 shows plots S;’,’m vs. X at Y = 0.90 for ethylene glycol for Re = 200 and

400 (7,= 300 K and AT = 30 K. Similar to the behavior observed in Figures 5.17 and

524 increasing Reynolds number shifis and extends the eniropy generation profiles
downstream. Furthermore, the area under these profiles increases as the Reynolds number
increases and this indicates that as the Reynolds number increases the total entropy
generation between the parallel plates increases. Same behavior can be observed in Figure
535 but at Y = 0.5. The difference between Figure 5.34 and Figure 5.35 is that the profile
in Figure 5.35 extends more downstream because the profile in Figure 5.34 is closer to the

heating plate and it develops faster.
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53.5.3.2 Effect of Liguid Type

The liguid type can influence the amount of entropy generation. In the discussion
of velocity and temperature, it was shown that the liquid type can influence the behavior
of velocity and temperature profiles as shown in Figures 5.19 and 5.25. The discussion of
the liquid type is based on ethylene glycol and water. When water flows between parallel
plates, the fully developed profile establishes after a short distance because viscous
resistance of water 1s weak. However, the viscous resistance in ethylene glycol is very
strong and the ethylene glycol needs longer distance to develop. As a result, heat diffuses

into water faster than thai of ethylene glycol. In terms of entropy generation, this behavior

"
gen

can be demonstrated by examining Figures 5.36 and 5.37. In Figure 5.36, §7 vs. X is

plotted for ethylene glycol and water (Re =400, 7,=300 K, AT=30K and Y = 0.90). At

X = 600, it is clear that the entropy generation for water approaches zero because the
temperature gradient almost equals to zero, the no jump temperature condition. But, from
this figure, it is clear that the ethylene glycol needs longer distance to reach fully
developed condition since at X = 600 the temperature gradient is still significant.
Furthermore, the quick response to temperature gradieni causes the area under the water
curve to be smalier. On the other hand, the area under the curve in the case of ethylene
glycol is larger since it does not response to the applied temperature difference as quickly
as water. As a result, the total entropy generation for ethylene glycol will be more than
that of water. This conclusion demonstrates that the total entropy generation increases as
the viscosity of the liquid increases when liquid flows downstream till it develops. Figure

5.37 which repsesents entropy generation vs. Y at X = 185 shows the influence of hiquid
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type on entropy generation from different angle. At the wall, where Y = 1, the entropy
generation in ethylene glycol is higher than that of water. At this specified X location, the
temperature gradient of water is less than that of ethylene glycol. As a result, the entropy

generation for ethylene glycol will be higher.

5.3.5.3.3 Effect of Inlet-Wall Temperature Difference

Heat transfer is dominant effect for entropy generation in forced fluid flow
between paralle! plates. AT represents the heat transfer driving force. In this section, the
investigation of entropy generation will be highlighted by using different AT values.

Here, it must be emphasized that 7, is fixed to be 300 K during each run while the wall

temperature controls AT. Figure 5.38 presents S” vs. X at Y = 0.90 for ethylene glycol

gen
for AT = 10, 20 and 30 K (Re = 400 and 7,= 300 K) .The effect of increasing AT on the

entropy generation is demonstrated and, as expected, it is clear that as AT increases, the

entropy generation increases.
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5354 S Ay and ‘S?AYAX

In the analysis of the entropy generation, entropy generation must be minimized in
order to avoid the loss of the available work in any system. In order to achieve this
minimization of the entropy generation, the analyzer needs to discover the parameters that
influence the entropy generation as well as the locations as the quantity of the entropy
generation can be enormous. Although this study introduced entropy generation profiles
and the parameters that affect these profiles, the optimum parameters that satisfy the
minimum entropy generation conditions is out of the scope of this study. Thus, this
section will cover important figures that can help in achieving the minimization of the

entropy generation. The first figure, Figure 5.39, is the plot of total entropy generation

along Y between the parallel plates at specified X-locations, S .y » for different Reynolds
numbers. § .y was obtained by averaging the entropy generation data along y-direction

using Simpson rule. This figure illustrates that Ny . Initially increases in X-direction

reaching a maximum value then it decreases as the uniform temperature is reached

between the parallel plates. This increase and decrease is related to the behavior of
S’;"m vs. X that was explained in Figures 5.29, 5.30 and 5.31. Increasing the Reynolds

number shifts and extends these profiles and this is related to the shifting and extending of

velocity and temperature profiles that were explained earlier.

Figure 5.40 is a plot of fotal entropy generation from the inlet to X = 7500, S arax > VS.
Reynolds number. The total entropy generation S x> Tepresents the overall average of
entropy in the X and Y-directions between the parallel plates. As the Reynolds number

increases, S, increases. An inspection of Figure 5.34 explains this behavior. In Figure
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5.34, the comparison was between Reynolds number = 200 and 400. As it was discussed
earlier, the increase of the Reynolds number shifts and extends the entropy generation
profile and that is related to the extending and shifting of velocity and temperature
profiles. The extension of the entropy generation profile creates more area under the curve
of the entropy generation. As a result, as the Reynolds number increases, the total entropy

generation increases due to the increase of the area under the curves.
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numbers (physical properties are given in Table 5.2, 7,= 300 K, AT =30
K.



128

40

30

}

25

{

S AYAY

3
Wim K;.20 |

15 -

10

0 100 200 300 400
Re

Figure 540 S,,,, vs. Re for variable viscosity case for ethylene glycol between X = 0
and X = 7500 {physical properties are given in Table 5.2, 7,=300K, AT =
30K).



129

54 Constant Heat Flux:

£4.1 Velocity Profiles

In a similar manner to the constant wall temperature case, velocity distributions
can be obtained in the case of constant heat flux by solving vorticity, stream function and
energy equations iteratively. After that, Equations 3.15 and 3.16 are utilized to obtan
velocity distributions. Both plates are subjected to the same constant heat flux which
equals to 10 W/m®. The viscosity linear relationship is also applied in this case and the
inlet liquid temperature (7,) equals to 300 K. The applicability of the linear relationship is
valid to maximum temperature difference equals to 30 °C (330 K). The liquid is
continuously heated and its temperature increases. Therefore, the length of the parallel
plates is carefully chosen in order to make sure that the liquid temperature does not
exceed 330 K in any point throughout the liquid in the duct.

In order to investigate the velocity profiles clearly, U vs. X is plotted for ethylene
glycol at various Y values in Figures 541, 542, 543 and 5.44 (physical properties are
given in Table 5.2, Re =400, 7, =300 K, Q = 10 W/mz). Further, the velocity profiles
obtained from variable viscosity case are compared to those of constant viscosity. Figure
5.41 represents U vs. X at Y=0 for constant and variable viscosity. The velocity decreases
as the liquid proceeds downstream due to the temperature gradient. The liquid is heated
until the liquid temperature becomes 330 K and this temperature occurs at X= 10000. The
same velocity behavior appears in Figure 5.42 which presents U vs. X at Y = 0.43. The
only difference between the two figures is that Figure 5.41 shows more deviation than
Figure 5.42 from the constant viscosity profile because the temperature gradient 1s higher

in Figure 5.42 (see the difference in the U values in both figures). Further, Figure 5.43
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Figure 5.41 U vs. X for constant and variable viscosity cases for ethylene glycolat Y =0
{physical properties are given in Table 5.2, Re = 400, 7, =300 K and Q"=
10 W/m®).
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represents U vs. X at Y = 0.95. Here, the velocity profile increases as the liquid proceeds
downstream because the liquid viscosity decreases due to the effect of heating which
causes a decrease in the shear stresses between liquid molecules and therefore an increase
in the velacity. Moreover, Figure 5.44 represents U vs. X at Y = 0.5. It represents a
combination between Figure 5.43 and Figure 5.42. At a distance close to the entrance, the
velocity profile shows a decrease then an increase as the flow proceeds downstream.

Now, the change of axial velocity in the normal direction will be investigated.
Figure 5.45 is a plot of U vs. Y for ethylene glycol at X = 4400 (physical properties are
given in Table 5.2, Re =400, 7, =300K, Q=10 W/m?). The figure is similar to Figure
5.3 and it was discussed in detail in Section 5.3.1.2.

Furthermore, the change of the normal velocity in normal direction will be
discussed. Figure 5.46 represents this change. V vs. Y is plotted for ethylene glycol at
various X values for variable viscosity {physical properties are given in Table 5.2, Re =
400, 7,=300 K, Q=10 W/m?). Here, the continuous heating changes the axial velocity
as the flow goes downstream. Therefore, the change of the normal velocity in the normal
direction does not equal to zero. At the entrance the normal velocity equal to zero. It is
clear that from the figure the magnitude of the normal velocity decreases as the X value

ncreases.
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Figure 542 U vs. X for constant and variable viscosity cases for ethylene glycol at Y =
0.43 (physical properties are given in Table 5.2, Re = 400, 7, = 300 K and
0"= 10 W/m?).
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Figure 543 U vs. X for constant and variable viscosity cases for ethylene glycol at Y =
0.95 (physical properties are given in Table 5.2, Re = 400, 7, = 300 K and
Q"= 10 W/m®).
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Figure 5.44 U vs. X for constant and variable viscosity cases for ethylene glycol at Y =
0.5 (physical properties are given in Table 5.2, Re = 400, 7, = 300 X and
O"= 10 W/m").
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Figure S45 U vs. Y for constant and variable viscosity cases for ethylene glycol at X =
10000 (physical properties are given in Table 52, Re = 400, 7, = 300 K,
Q"= 10 W/m%).



136

10 4
T X=154
g
, X = 61.6 "~
6 -
V=10 '\
4 B 1/ nnnnnnnnnnn - :
s X =1382"
2 ’ .
7 T X 2245
;’j{: - T ~ ‘:\
O F : ' ‘ NS
0 02 0.4 0.6 0.8 1

Figure 5.46 V vs. Y for variable viscosity case for ethylene glycol at various X values
(physical properties are given in Table 5.2, Re =400, 7,=300 K and Q"=
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5.4.2 Effect of Reynolds Number and the Liquid type on Velocity Profile
5.4.2.1 Effect of Reynolds Number

Reynolds number as it was shown is one of the parameters that affect the velocity
profiles as well as temperature profiles. The change of the temperature boundary
condition does not eliminate the effect of the Reynolds number on velocity and
temperature profiles. To see the effect of the Reynolds number on velocity profile, Figure
5.47 is plotted for U vs. X for ethylene glycol at Y =0.52 for various Reynolds numbers.
(physical properties are given in Table 5.2, 7,=300 K, Q = 10 W/m?). For the constant
wall temperature, the velocity profile becomes fully developed at the end of the parallel
plates where the inlet-wall temperature difference equals to zero. However, for constant
heat flux, the inlet liquid is heated until the temperature becomes 330 K since the linear
viscosity relation is not valid beyond 330 K. The length of the parallel plates is chosen
based on satisfying this temperature. So, the profiles in Figure 5.47 demonstrate the
velocity profile up to the length at which liquid temperature equals to 330 K. As the
Reynolds number increases, the required length of the parallel plates increases. In the
figure, when Re = 400, 300, 200 and 100, the required length at which the temperature

equals 330 K are 10000, 7500, 5000 and 2500, respectively.
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Figure 5.47 Uvs. X at Y = 0.52 for variable viscosity case for ethylene glycol (physical
properties are given in Table 5.2, Re = 100, 200, 300, 400, 7, = 300 K
and Q"= 10 W/m?).
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The effect of temperature dependent viscosity appears clearly in the more viscous
liguids such as ethylene glycol. On the other hand, the less viscous liquids such as water
do not show strong temperature dependency effect on viscosity. This is demonstrated in
Figure 5.48 which is a plot of U vs. X at Y = 0 for variable viscosity of ethylene glycol
and water (physical properties are given in Table 5.2, Re = 400, T.=300 K and Q = 10
W/m?). In this figure, the ethylene glycol responds to the effect of the heating higher than
that of water. Moreover, the required length of the parallel plates at which the liquid
temperature equals to 330 K for water is smaller than that of ethylene glycol. The length
of the parallel plates when the liquid is water equals to 1500 whereas the length of the
parallel plates when the liquid is ethylene glycol equals to 10000. This is because the

Prandtl number of ethylene glycol is higher than that of water.
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Figure 848 U vs. X for variable viscosity case for ethylene glycol and water atY =0
{physical properties are given in Table 5.2, Re = 400, 7,= 300 K and Q"=
10 W/m?).
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8.4.3 Temperature Profiles

To investigate temperature profiles, temperature behavior in axial and normal
directions needs to be demonstrated. Figures 5.49, 5.50, 5.51 are plotted for ® vs. X at
various Y values. The three figures are plotted for Y-values equal to 0, 1 and 0.52,
respectively. For Figure 5.49, the temperature gradually increases because it is not located
close to the source of heating while in Figure 5.50 the temperature increases sharply since
it is located at the source of heating. The temperature profile at Y = 0.52 increases almost
in linear fashion.

To examine the temperature profiles in Y-direction, Figure 5.52 is plotted for ©
vs. Y for different X values. In this figure, it is clear that as the X increases the
temperature increases and this is due to the increase of the amount of heating for the

liquid from the constant heat flux.

5.4.4 Effect of Reynolds Number and Liquid Type on Temperature Profiles
34.4.1 Effect of Revnolds Number

It was demonstrated that Reynolds number influences the velocity profiles as well
as the temperature profiles in the case of constant wall temperature. Likewise, the
Reynolds number can influence the temperature profile in the constant heat flux case.
This can be figured out from Figure 5.53 which is plotted for ©® vs. X at Y = 0 for
different Reynolds number values. Here, as the Reynolds number increases, the

temperature profiles shifis downstream.
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Figure 549 O vs. X for variable viscosity case for ethylene glycol at Y = 0 (physical
properties are given in Table 5.2, Re = 400, 7,=300 K and Q"= 10 W/m®
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Figure 5.50 © vs. X for variable viscosity case for ethylene glycol at Y = 1 (physical
properties are given in Table 5.2, Re = 400, 7, = 300 K and Q"= 10
W/m?).



144

0.4

0.35 -
03 -
0.25 |

® 02
0.15 1
0.1

0.05 -

0 2 T l H
0 2000 4000 6000 8000 10000

T

Figure 5.51 © vs. X for variable viscosity case for ethylene glycol at Y = 0.52 (physical
properties are given in Table 5.2, Re =400, 7,=300 K and 0"= 10 W/m®
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Figure 5.53 © vs. X for variable viscosity case for ethylene glycol at Y = 0 {physical
properties are given in Table 5.2, Re = 100, 200, 300, 400, 7,=300 K and
0"=10 W/m®).
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The two liquids, ethylene glycol and water, are compared to show the effect of
heating on the liquid behavior. Figure 5.54 is plotted for ® vs. X for ethylene and water at
Y=0 (physical properties are given in Table 5.2, Re =400, 7, =300 K and Q =10 W/m).
In this figure, the length of the parallel plates at which the liquid becomes 330 K in the
case of water is smaller than that of ethylene glycol. This is because heat diffuses quickly
in water and slowly in ethylene glycol and that can be figured out from the magnitude of

Prandti number.
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Figure 5.54 © vs. X for variable viscosity case for ethylene glycol and waterat Y =1 (
physical properties are given in Table 5.2 Re =400, 7,=300 K and Q"= 10

W/im?).
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54.5 Entropy Generation Profiles

The source of entropy generation between the heated parallel plates comes from
heat transfer effect and fluid friction effect. It was found that the entropy generation from
fluid friction effects could be neglected. Thus, the total entropy generation is a result of
the heat transfer effect. In this section, the discussions of the entropy generation profiles

are divided into three parts. The first part is to discuss the patterns and the behavior of the

S’;”m while the second part is to discuss the effect of some parameters on S;’;n profiles. The

third part is to discuss §,,and $,,,, for the constant heat flux case.

5.4.5.1 Patterns of Entropy Generation Profiles

To investigate the entropy generation profiles in the constant heat flux case, the
patterns of the profiles should be demonstrated. As the fluid flows downstream, it is

subjected to heat transfer that increases entropy generation in the fluid. To show this

effect, Figure 5.55 is plotted for S™ vs. X for different Y-values. At a location very close

zen
to the wall, the entropy generation is expected to be higher than any location in the
parallel plates. That is related to the significant effect of heating near the wall since the
source of heat flux comes from the wall. To complete the investigation of entropy
generation, the entropy generation obtained from the variable viscosity should be

compared to those obtained form constant viscosity. For this purpose, Figure 5.56 15

v vs. X at Y-values equaﬂs’ts 0.52 and 0.74. From the figure, the generation

plotted for Sgen
of the gnfropy at Y = 0.74 is higher than the generation of entropy at Y =0.52 sinceat Y =

0.74 is closer to the heating wall. Furthermore, these two profiles are compared to profiles

that are obtained from constant viscosity. It is clear that the deviation between the
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Figure 5.55 S™ vs. X for variable viscosity case for ethylene glycol at various Y values

{physical properties are given in Table 5.2, Re =400, 7,=300 K and Q"=
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constant viscosity profile and the variable viscosity profile increases as the flow proceeds
downstream because the fluid receives more heat as it moves downstream and the effect

of temperature dependent viscosity increases. In order to investigate the entropy

generation profiles from different angle, Figure 5.57 is plotted for S o VS, Y for different

X values. This figure shows that the entropy generation increases in the X-direction and
that is due to the increase of the amount of heating in the ethylene glycol as the flow

proceeds downstream.

5.4.5.2 Effect of Reynolds Number and the Liguid Type on Entropy Generation

The effect of various parameters was demonstrated for velocity and temperature
proﬁies, These parameters are the effect of Reynolds number and the type of the fluid. In
this section, the effect of the two parameters on entropy generation profiles are discussed

which are effect of Reynolds number and effect of liquid type.

54.52.1 Effect of Reynolds Number

The main effect of the Reynolds number in the previous discussions was the
shifting and extension of the profiles downstream as the Reynolds number increases. This

effect was also noticed in entropy generation profiles as shown in Figure 5.58. In this

figure, S'g”eﬂ vs. X is plotted for different Reynolds numbers values at Y=0.52. It is clear

that the entropy generation profiles extend and shift downstream as the Reynolds number

increases. Furthermore, S7

gen

vs. Y is plotted for different Reynolds number values at X=

80.4. From Figure 5.59, it is clear that as the Reynolds number increases, the entropy

generation profile shifts towards the wall.
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Entropy generation for ethylene glycol and water will be tested in one figure to

show the difference in behavior between more and less viscous liquids. Figure 5.60 is
plotted for 5’;,? vs. X for ethylene glycol and water at the same condition. It is clear that

water reaches the final X-location, 1800, faster than the final X-location, 10000, of
ethylene glycol. This is because heat diffuses quickly in water while the heat diffuses very
slowly in ethylene glycol Therefore, substantial amount of heat is needed in ethylene

glycol case and this explains why the entropy generation is larger in ethylene glycol case
in comparison to water. Moreover, S . v5. Y is plotted in Figure 5.61 to complete the

discussion of the effect of the liquid type on the entropy generation. This figure is plotted

at X = 100 and Re = 400. At a distance very close to the wall, it is clear from the figure

that S” for the ethylene glycol is higher than that of water. This is related to the

gen
temperature gradient in the Y-direction for the ethylene glycol that is longer than that for
water because the temperature difference between the wall and the ethylene glycol is

higher. That is because the ethylene glycol responds slower to the effect of heating.
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Figure 5.57 S o vs. Y for variable viscosity case for ethylene glycol at various X values
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54.53 S AY and S AVAX
In the constant wall temperature case, the importance of total entropy gensration in

Y-direction at a specified X-location, S v » and total entropy generation in Y-direction

from inlet to 2 specified X-location, S,,,, , were explained and two figures were shown
and discussed. In this section, the same two figures are discussed for the constant heat

flux. Figure 5.62 1s plotted for S, vs. X for different Reynolds numbers. In this figure, it

is demonstrated that as the flow goes downstream, S,, increases due to the increasing
amount of heat coming from the wall into the liquid.

Finally, S sy V5. Reynolds number is plotted in Figure 5.63 for ethylene glycol

where X starts from inlet to 1250. S,,,, increases from Re = 0 to 100. After this point,

S,y decreases as the Reynolds number increases. To explain why S uyay decreases as the
Reynolds number increases after 100, two points must be emphasized to understand this
behavior. The first point is related to the final length of the parallel plates at which these
calculations are ended. The final length of the parallel plates was limited due to the linear
viscosity relation that should not exceed 30 °C difference. The second point is related to
the length of the X at which this figure is plotted. These two points can be noticed cleatly
in Figure 5.58. In this figure, the first point specifies the shape and the limit of these
profiles. Furthermore, the X length is taken at 1250 and the location of this point on
Figure 5.58 shows that the area under these curves explains why the entropy generation
decreases. It is clear that the area for Re = 100 is the largest at X = 1250 while the area for

Re =400 1s the smallest.
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Figure 5.63 S’MM vs. Re for variable viscosity case for ethylene glycol between X = 0
and X = 1250 (physical properties are given in Table 5.2, T, = 300 K and
O"=10 W/m°).
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CHAPTER 6

CONCLUSIONS AND RECOMMENDATIONS

Entropy generation has been investigated for forced laminar flow between parallel
plates subjected to constant wall temperature and constant heat flux. The effect of
temperature dependency of the viscosity has been taken into consideration. The
investigation has been approached by determining temperature and velocity data and
inserting them into the entropy generation equation. Different parameters have been
investigated to show their effect on entropy generation. These parameters include the
Reynolds number, inlet-wall temperature difference and liquid type.

The influence of Reynolds number is remarkable on the entropy generation
profiles. It has been shown that increasing the Reynolds number results in shifting and
extending velocity, femperature and therefore entropy generation profiles downstream the
parallel plates. |t has been shown for constant wall temperature case that increasing the
Reynolds number leads to an increase in the total entropy generation because the entropy
generation profiles are shified downstream as shown in Figure 5.40. However, for the
constant heat flux case, it has been shown that the total entropy generation increases at
low Reynolds number and then it decreases as the Reynolds number increases as shown n
Figure 5.63. For both cases, these behaviors can be changed if various lengths of the
paraliel plates are chosen. For example, m Figure 535 which represents the entropy

generation per unit volume vs. axial length for Reynolds numbers = 200 and 400, the total
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entropy generation can be determined from the area under the curve. The area under

the curve for Re = 400 is greater than that of Re = 200 when the axial length 1s long.
However, it is smaller when the axial length is short. Therefore, the length of the parallel
plates is a critical parameter when the total entropy generation of different Reynolds
number is compared. Thus, it is recommended to include the length of the parallel plates

as a parameter in studying the entropy generation. Further, for the constant wall
temperature case, S‘M increases downstream until it reaches a maximum at a specific
length. Then, it decreases since the temperature gradient diminishes as the fluid moves

downstream. Before that length, S,, increases as Reynolds number decreases while

beyond that length S,, increases as the Reynolds number increases. This is related the
shape of temperature énd velocity profiles when Reynolds number i1s increased. In
constant heat flux, however, as the Reynolds number increases, S Ay OCTE3SEes
downstream because the heating continues as the flow proceeds downstream.

The mfluence of liquid type has been investigated in this study by using two
different liquids, ethylene glycol and water. It has been shown that in the constant wall
temperature case, the entropy generation in ethylene glycol to be higher than that of water
because heat transfer develops faster for water than ethylene glycol since water has
smaller Prandtl number. However, in the case of constant heat flux, the same conclusion is
true but here the temperature profile does not develop (1.e. it continues to mcrease). In
general, the total entropy generation between parallel plates increases as the Prandtl

number increases.
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The effect of the temperature difference between the wall and the mlet s

considered in constant wall temperature case. As expected, increasing the temperature
difference leads to an increase in the entropy of the flowing liquid.

In this study, the two sources of the entropy generation which are heat transfer and
fluid friction are compared. It has been shown that the effect of heat transfer is dommant
and the effect of fluid friction could be neglected without a significant effect on the total
entropy generation.

Furthermore, when temperature dependent viscosity is considered, velocity and
temperature profiles deviate from those of constant viscosity and therefore entropy
generation obtained from variable viscosity deviates from that obtained from constant
viscosity. For constant wall temperature case, this deviation increases as the inlet-wall
temperature difference increases because entropy increases when temperature Increases.
In heat flux case, the deviation increases as the flow proceeds downstream because the
continuous heating to the fluid changes the viscosity and therefore changes the velocity
since the momentum and energy equations are coupled through viscosity. This behavior is
noticed clearly in ethylene glycol which is thermally more sensitive than water.

To sum up, determining the entropy generation profiles and studying the effective
parameters in this study is a first step to the minimization of the entropy generation which
is beyond this study. The two cases of heating {(constant wall temperature and constant
heat flux) have not been compared since the outlet temperature does not provide valuable
information in determining the entropy generation profiles. However, if the minimization
of entropy generation is to be included, it is an essential task to compare not only the two

case of heating but also to include several configurations of heating. Therefore, 1t is
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recommended to extend this study to include various configurations of heating and

consider that as an additive parameter. Also, 1t is recommended fo include the length of
parallel plates as a parameter in order to investigate its effect on entropy generation.
Further, it is recommended to obtain the optimum conditions that satisfy the mimimum
entropy generation. The investigation of the parallel plates can be extended to include

rectangular duct since this study serves as a stepping-stone to more complex situations.
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NOMENCLATURE

Fluid dependent constant
Brinkman number
Suggested Brinkman number for heat flux
Specific heat

Hydraulic diameter

Width of the parallel plates
Thermal conductivity
Mass flow rate

Pressure

Peclet number

Prandtl number

Heat flux

Heat flux in X-direction
Heat flux in Y-direction

Reynolds number
Specific entropy

Entropy generation per unit volume

166

Total entropy generation averaged over Y-direction for a specified

X

Total entropy generation in Y-direction for AX
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v, (m/sec)
U
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v
x (m)

X
y (m)

Y

AT (K)

Greek Symbols

B, (1/sec)
p (ke/m’)
p (N s/m?

, (N s/m®)

Temperature

Dimensionless temperature
Inlet temperature

Wall temperature

Internal energy

Average velocity

Axial velocity
Dimensionless axial velocity
Velocity in Y-direction

Dimensionless velocity in Y-direction
Axial direction

Dimensionless axial direction
y-direction

Dimensionless y-direction

Inlet-wall temperature difference

Vorticity boundary condition at the wall
Density
Viscosity

Reference viscosity
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H Dimensionless viscosity
w (1/sec) Vorticity
@ Dimensionless vorticity
w (m*/sec) Stream function

Dimensionless stream function

@ Viscous dissipation function
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