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Chapter 1

INTRODUCTION

1.1 Motivation

Flight has fascinated many minds, and revolutionized the idea of global commercial
transportation systems. It is not only a means of transport, but it has many de-
fense applications and it has made possible human access to the depths of the solar
system. From the day man first flew a heavier than air vehicle at the beginning
of this century to this present time, there has heen a tremendous development in
the technology. There is a continuing demand for vehicles having faster speeds and
better performances in every respect.

In the second half of the present century, one of the most challenging problems
encountered is of optimal flight trajectories. The problem consists of finding the best

trajectory, in some sense, for the motion of a vehicle in three-dimensional space. An




interesting aspect of atmospheric flight is that the performance index may have a
wide variety.

In this era the developing need for economical access to space and the commercial
global transportation has increased the demand for hypervelocity, trans-atmospheric
vehicles (TAV’s). Such aerospace vehicles are proposed to have flexible operational
characteristics approaching those of aircraft. The TAV’s will take-off from and land
at conventional runways and operate in low earth orbits. A lower speed variant
would be a vehicle which will transport passengers or high value cargoes to any
locations on the earth in a small fraction of the flight time of current jet airliners.

The missions that are proposed for the aerospace plane would require extended
periods of hypervelocity flight at altitudes ranging from about 10 km to over 100
km. Such flight missions should apparently comply with certain mission require-
ments such as, minimum heat load, number of g's experienced during the flight, and
restrictions in the quantity of fuel carried aboard the vehicle, and ete. The mission
requirements change with the kind of application we consider. All these things lead
to the problem of optimal flight operation trajectorics.

One of the many cases where optimization of flight trajectories is essential is the
severe heating problem encountered by TAV’s. The missions proposed for a typical
aerospace plane would use an air-breathing engine; hence it needs to travel for long
periods of times at hypervelocities in denser atmosphere. Such extended periods

of hypervelocities in the atmosphere causes severe heating problems. Tauber and




Menees [5] have found that the heating load of a TAV during ascent to be nine times
greater than the heating load of space shuttle re-entry. This leads to very high wall
temperatures to occur. No material can sustain at such high temperatures. This
serious problem makes it essential for us to seek trajectories that minimize the heat

load without violating the other constraints.

1.2 A look at other studies related to present
work

The systematic study of flight is one of the most important and exciting scien-
tific fields of endeavor. The mathematical modelling of flight has been known for
quite some time. There has been considerable amount of work done in the area of
flight trajectories. Flight trajectories of hypersonic re-entry vehicles also received
considerable attention. In the 1950, some very good work was done by Allen et.
al., [6] and Chapman [7], which contributed much to the knowledge of trajectory
behavior and the dynamics involved. There are also quite some published papers
that dealt directly with optimization of flight trajectories performance and control.
The work of Vinh [8], Griffin [9] and Vinh et. al., [10] are some of the prominent
ones.

The space shuttle has been one of the prime targets of hypersonic research in

the 1970’s. The take-off of the space shuttle was like a rocket, in nearly a vertical




position with the least possible time spent in the lower atmosphere. Hence, the
heat load was low during the ascending phase and higher during the reentry. The
reentry heat load studies were done by [11] and [12]. [13] showed that ascending
phase heat load is less than 2% of the reentry. But for hypersonic vehicles of the
future which will use air-breathing engines, it was shown that the heat loads will
be nine times more than shuttle reentry. Al-Garni [14], Al-Garni et.al. [15], Al-
Garni [16] have performed studies that give an insight into the amount of heat load
during ascending trajectories. In the same study in [14], a computational study was
performed to find suboptimal trajectories which minimize the heat load. The study

was conducted under an assumption of constant specific impulse (I,)

1.3 Scope of the work

In this study we seek to obtain Aerodynamic and thrust controls that minimize
heat load of a ascending hypersonic vehicle. The study is based on modeling the
trajectory optimization problem as a general nonlinear optimization problem such
that, standard solution procedures are applicable. The approach was based on
transforming the infinite dimensional problem to a finite dimensional optimization
problem by introducing a control scheme. Two forms of controllers, a feedback
controller in polynomial form, and a neural controller are studied. Results are

validated by comparison with pervious numerical and analytical results. Various

cases are then studied by considering




1. Constant specific impulse L,
2. variable specific impulse I,,(M), and
3. different initial and final altitudes.

In all there are eight cases which are arranged as CASEla-b, CASE2a-b, Case3a-h,
and CASE4a-b. The work is organized as follows.

In chapter 2, the back ground material needed for this study is presented. This
covers material from different fields of engineering. Specifically, the equations of
motion for flight, atmospheric properties, aerodynamic and propulsive forces, the
heating model, and an introduction to neural networks is presented.

Chapter 3, presents the problem definition and solution methodology. It starts
with the definition of dimensionless variables and then the conversion of equations
to dimensionless form. The constraints on flight trajectories are presented next. We
then go ahead to formally define the problem and then present a solution method-
ology.

Chapter 4, presents the simulation results for the eight cases considered in this
study. The results are presented graphically in a way that is easy to interpret.

Finally in chapter 3, the conclusions of the study and suggestions for future

research are presented.




Chapter 2

FUNDAMENTAL CONCEPTS

AND HYPERSONIC FLIGHT

2.1 Imtroduction

This Chapter presents the necessary fundamental material related to the study of
hypersonic flight. We begin by first deriving the gencral equation of motion of a
rigid vehicle modelled as a point mass. The cquations are first presented for the
general case of rotating earth which, will be later simplified.

In the sections that follow we discuss the dynamics,the aerodynamics, the propul-
sion and the heat transfer equations of hypersonic flight. We also give an introduc-
tion to neural networks. This chapter is organized as follows; section 2.2 presents the

equation of motion,section 2.3 presents the atmospheric model, section 2.4 discusses




the aerodynamic forces. section 2.5 the propulsive forces, section 2.6 presents the
hypersonic aerodynamic heating, and finally section 2.7 presents an introduction to

neural networks.

2.2 Derivation of equations of flight

In deriving the equations of motion we are making the following assumptions in the

light of previous workers [1], - [17]:
1. The Earth is spherical.
2. It has a homogenous, and radially acting gravitational force vector.

3. The atmosphere is stationary and depends only on the radial distance from

the centre.

4. The aircraft is considered as a point variable mass.

.C)!

The motion of the vehicle is influenced by aerodynamic, gravitational, and

propulsion forces.

6. Maneuvering of the vehicle can be achieved through the aerodynamic forces

and/or through the thrust force.

The motion of the vehicle is described by the position vector 7(t), velocity vector
V(t), and mass m(t). The vehicle is subjected to a total force F composed of

gravitational force mg, the aerodynamic force 4 and a thrusting force T, ie.,

4




F=T+A+mj (2.1)

F=m—, (2.2)

Our task is to evaluate all the terms invcﬂved in the above equations in terms of
trajectory variables.

Consider the Earth to be rotating at a constant angular velocity & about the
Z-axis. We define an inertial reference frame 0X1,Y1,2Z; such that O is at the
centre of the earth and OX;Y] is the equatorial plane. Let us also define a different
reference OXY Z fixed with respect to thg earth (i.e., it is rotating with the same
angular velocity &3). Let OZ coincide with 02, see Fig.2.1 We will use the earth
fixed axis OXY Z as the reference frame (inertial frame) to derive the equation of

motion. We can resolve the position vector 7 as

F=ri+ ry] +1:k, (2.3)
Therefore, we have
ar 6 . ,
E—E-l-w)(h (2.4)

taking the derivative of Eq. (2.4) with respect to time yields the expressions for

absolute acceleration,
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Figure 2.1: Coordinate system.
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W _ BF (dr) (&) (dr) (45 (dr) (dk
dt ~ o2 dt ) \dt dt ) \ dt dt ) \ dt
LI (@ x r)] (2.5)

+d:‘x[6t

Substituting ‘;;‘;’ = 0 and using the equations

™~

d——‘xi
at
N
a—-wx‘]
i _ .
;i?—ka
we get
v &F . & . .
E—m+2wx&-+wx(wxr) (26)

Substituting Eq. 2.6 in Eq. 2.2 we have

-

- 627-" - (57' - o~ -
F—m(a—t,‘,+2wxﬁ+wx(wxf')) (2.7)

For convenience we re-define the notation for the time derivative and write the

above equation as.

7’ g -
m(%)=F—2m(cb‘xV)—m¢Z’x(d)'x1"') (2.8)

In the above equation, V is the velocity of the vehicle with respect to the earth

fixed axes and the time derivative is taken with respect to these axes. From the
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above equation we can see that since & # 0, we get two additional force terms or
proportionally two additional accelerations. The term —2(& x \7) is the Coriolis
acceleration and the term —& x (& x 7) is the transport acceleration. For a given
distance r the transport acceleration depends on the direction of the vector ,that
is, on the latitude of the vehicle. This acceleration is zero when 7 is colinear to &
solely when the vehicle is aligned with the poles. This acceleration is at a maximum
with a value w’r when the vehicle is in the equatorial plane. For earth since w is
small, we can neglect this component. On the other hand, the Coriolis acceleration
depends on the magnitude and the direction of the velocity V' of the vehicle with
respect to the earth. It is zero when the flight path (i.e., ‘7) is orthogonal to
the polar axis (i.e.,&). For orbital speed, this maximum Coriolis acceleration is of
the order of 10~3gy, where g, is acceleration of gravity at sea level. For re-entry
vehicles, long navigation, or external atmospheric operation flights, this Coriolis
acceleration should be retained for better accuracy, while for aircraft operation or
transatmospheric(aerospace plane) performance and control, were the study is of
an approximate nature and not mission specific as in this work, the term can be
neglected.

Equation 2.8 and the kinematic equation

=
I
<4

(2.9)

ol &
&
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are the vector equations for the position vector 7 and the velocity vector V. They
are equivalent to six scalar equations.

Consider the earth fixed system OXY Z (Fig.2.2). The position vector 7 is de-
fined by the magnitude r, its longitude §, measured from the X-axis in the equatorial
plane, positively eastward, and its latitude ¢, measured from the equatorial plane,
along a meridian, positively northward.

Let us also define a rotating coordinate system Oxy:z such that the x-axis is
along the position vector, the y-axis is along the equatorial plane in the eastward
direction, and the z-axis completes the right handed coordinate system. Let + be
the angle between local horizontal plane (i.e. the plane passing through the vehicle
located at the point M and orthogonal to the position vector ) and the velocity
vector. The angle 7 is called the flight path angle. Let v be the angle between local
parallel of the latitude and projection of VV on the horizontal plane. The angle ¢
is called the heading angle and is measured positively in the right handed direction
about the x-axis. Let 7, and k be the unit vector along the axes of the rotating

system Ozy:. Therefore,we have [14]-[1]

=1

Resolving Vinit's components along Oxy:

V= (V siny)i + (V cos y cos ¥)j + (V cosysin )k (2.10)




Figure 2.2: Reference frames [1].
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Similarly the angular velocity & can be represented by its components as

& = (wsin ¢)i + (wcos @)k .(2.11)

Hence we have

=

GxV = —(wVcosycosgcost)i + wl(sinycos¢ (2.12)

— cosy sin #sin ¥)j + (wV cos+sin dcos w)fc

Now

-

@ X7 =(rwcosd)j (2.13)
w X (& X 7) = (—=rw? cos® @)1 + (rw? sin ¢ cos @)k (2.14)

In the force term F, the gravity force for a central field is
mg = —mg(r)i (2.15)

The aerodynamic force 4 can be decomposed into two force Drag, D (opposite
to the velocity vectors), Lift, L (Orthogonal to the velocity vector). In symmetric

flight the thrust vector T always lies in the lift drag plane as shown in Fig.2.3.




thad

Figure 2.3: Aerodynamic and propulsive forces.
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We can decompose the thrust into a tangential component Tp (along the velocity)
and a normal component Ty (along the lift). The angle between thrust and the

velocity vector a; is called "thrust angle of attack.” Therefore we have

Tr=Tcosa;, Ty =Tsina ’ (2.16)

Now, we can write both the aerodynamic and propulsive forces together in both

the directions as

Fr=Tcosay— D, Fy=Tsina;+L (2.17)

Since Fr is along V' we can resolve it into components along xyz in the same

way as V and we get (similar to Eq. 2.10).

Fr = (Frsin )i + (Fr cos v cos ¥)j + (Fr cosysin )k (2.18)

In planar flight, the vector F}v is in the (7, \7') plane, i.e., there is no lateral
component of force F,. But in a more general case a lateral force is produced by
the control action of ailerons. If we rotate L, hence Fy about the velocity vector V
we create a lateral component of the force Fy which has the effect of changing the

orbital plane. In such a situation, we have to resolve the force fN along the zy:z

axis. To do this consider Fig.2.4, and Fig.2.5.
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Figure 2.4: Aerodynamic forces.
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Figure 2.5: Components of the velocity and the aerodynamic force in a topocentric
coordinate system.
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Let us assume that the lift vector L is rotated out of the (7, V) plane due to
aileron control by an angle g. This angle is called “ bank angle ”. The force F,
(which is along L) is decomposed as F cos o ( perpendicular to N in (7, V) plane),
F,sin o (lateral force, orthogonal to (7, V) plane.)

Let us define axis z'y/2' with centre at M as an axis parallel to the rotating axis
zyz. Also defining 7,2 to be an axis centred at point M, along the direction of
F, cos o, 17, and F,sino respectively.

We can get the system z,, y1, 2y, from 2'y/z’ by first rotating an angle v about 2/
and then rotating an angle y about /. The details of mathematical transformations

are as follows [1]:

A’ = [Ry][Ry][A)]

R -
1 0 0
R’y 0 cosyy —sint
0 siny cosv ]
and
cosy siny 0
Ro=1 —siny cosy 0

thus, we have

0

0 1
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z 1 0 0 cosy siny 0 L)
Y |=|0 csyp —sing || —siny cosy 0 0
Z 0 siny cosy J 0 0 1 21

Multiplying the two matrices we get

- 10
4 ( COs 7y sin 0 )
¥ | | —cosysiny cosycosy —siny % (2.19)
Z —sinysing cosysiny cosy 2

We know that the components of F, in the Ma,y,z, coordinates are f,, coso
.0, F, sin o, respectively. Resolving the components in A 2'y'z' coordinate system

which is the same as Ozy: system, using Eq. 2.19 , we get [1]

Fy= (Fn cosocosy)i — (Fy cosasin Ycosy + Fysinosin¥)j (2.20)

~(Fn cososinysiniy — Fy sino cos )k

Now, we have resolved ali the terms in the equation Eq. 2.8 and 2.9 into compo-
nents along Ozy:.

In order to take time derivative of the vector # and V/ in Eq. 2.8 and 2.9, with
respect to earth fixed coordinate system OXY Z » using their components along

rotating system Oxyz we need to evaluate the angular velocity Q of the rotating

axis, We have
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+é

we know that & = (sin ¢ é)i + (cos ¢ é)fc and 8 = —éj . Therefore, we have

Q= (sin¢%)§— (3‘;) J+ (cosd)glg) k (2.21)

Now, we get the time derivative of 1,7,k with respect to earth fixed system

OXYZ.

4 =0x1i —(COS(Z')dt)]-i-( )k
:“3 =(xj -—(cos¢ i+(sin¢%)fc (2.22)
=0 x

dk do do
—( )z— (sm ”)]

dt k

we have 7= ri. Therefore,

dt — dt " dt
Substituting Eq. 2.22 we get
- dr dr - C[e - (l¢“
R e = ~— ]2 . y— fe——K 2
V=3 (dt) o+ (’ madt)] + (’ di I”) (2.23)

Comparing the coefficients of Eq. 2.10 and Eq. 2.23, we have three scalar equa-

tions.

— =Vsin~ 2.24
7 sin 7y (2.24)
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dl Vcosycosy
—_——— Y 2.2
dt rCcos ¢ (2.25)
dp Vecosysiny
—_—— 2.2
dt r (2.26)

These are the three kinematic relations.

From Eq. 2.10 we have

V= (Vsiny)t + (V cosycos ¢)] + (V cos ysin ¥)k (2.27)

taking derivative with respect to time (i.e., finding ‘('T‘:) and using Egs. 2.22 and

2.24-2.26, we get.

dv dv dy V2 X v . . dvy
— 1 s / v — S— 2 ' ~ /)_—_ - Y/ ’ ——
& sin vy o +1 cos7dt ” cos 7] i+ [cos y cos ¥ 7 V sin ¥ coszbdt

.o d /2 . . -
—V cosysin wd—f + — cosy cos Y(sin v — cosysiny tan ¢)J 7
r

. dV .. . dy . dy
/)_ -— g Y ’ g PR
+ [cos'ysmtr T V'sinysin o + 1" cosy cos o (2.28)

2 .
+T cos y(sin ysin ¢* + cosy cos? ¢ tan d))} k

From Eq. 2.8 we have

7 -—p -
m(fl‘_t =F-2m&xV —md X (J x 7) (2.29)
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Substituting in this equation for F @ xV,dx (wxr).

We get the i-th component as
av dy V? 1 1.
sin y— -+ Vcos'y-d-% - -r—cos""y = ;;FT siny + EFN COS 0 COS Y
—g + 2wV cos 7y cos ¢ cos P + w?r cos? ¢ (2.30)
The j-th component will be
dv dv V2
€OS 7—— 7 —-Vsiny— 7 — V cosytan ¢—— + ~— cosq(siny — cosysin ¢ tan ¢)

1 . .
= —Fpcosy — —(FN cososiny + Fi sin o tan ¢)
m m

—22%(sin y cos ¢ — cos y sin ¢ sin @) (2.31)

cos Y

and the k-th component will be

dv ) ﬂ |4 cos7d¢

. 't
cos , (sm 4 COsCOS Y tan ¢>

dt dt = tany dt tan
1 1 sino
=—F - —Fy siny — 2.32
m €08y = —Fy (cos o siny tan lb) (2.32)
0wV cosysin @ _ w2r5in '¢cos o
tan sin ¥

Thus we obtain three scalar equations, solving for &, 4 W We get

d 1 Fysi V2
Vgt'é = — 2::: 7_ —-cosycos Ytan ¢ + 2wV [tan y cos #sin 1 — sin ¢

2

wr
—E cos P sin ¢ cos @ (2.33)
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% %FT — gsiny + w?r cos ¢[cos psin v — cos 7 sin ¢ sin ¢] (2.34)

dy 1 | %
i EFNcoso —~gcosy+ o cosy + 2wV cos ) cos ¢

+w?r cos @|cos y cos ¢ + sin ysin ¢ sin o) (2.35)

The three equations 2.33, 2.34, and 2.35 are the force equations. We have the w
terms in the expressions because of the rotation of the earth.

"The above derived equations represent a general vehicle in flight over a spherical
rotating earth. It should be noted that in the above equation the vehicle mass m is
variable. The equation for the change of mass is given in a later seption. We have

also to characterize the aerodynamic and the propulsive forces Fr, and Fy; this is

also dealt in a later section.

2.3 The atmosphere and density variations

Earth’s atmosphere is a dynamically changing system. It's properties such as pres-
sure, temperature and density depend on various reasons such as location on the
globe, time of day, season etc. To take all these factors into account when consid-
ering design of flight vehicle is impractical. Hence we adopt a specific set of data

representing average conditions, as in U.S. Standard Atmosphere [18]. In the present

“study the temperature and pressure are based on the standard atmospheric data.




25

We can obtain the density as a function of altitude from two basic equations. The

first the equation of state ( empirical equation see [2] ) which relates the pressure

P, density p, and temperature T" is given as,

P=pRT

(2.36)

where R is the universal gas constant, equal to 287J /kgK. The second equation

relates the rate of change of pressure with altitude to the change in weight of the

atmosphere and is given by ( hydrostatic equation [2))

dP = —pgdr

where g is the acceleration due to gravity.

From equation (2.36), on differentiation we have.

Which when combined with Eq. 2.36 and 2.37 gives

dp _ g 1dT"|
p  |RT + T dr] i

This equation can be written as.

d = —fdr
p

(2.37)

(2.38)

(2.39)

(2.40)
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where

B=—t == (2.41)

in the above equation fJ, is called the reciprocal of the scale height.

We can write from Eq. 2.40

dp dr

- = -Pﬂ‘czz

— (2.42)

We can consider 3, as a constant over small intervals of altitude. The value of

8, can be found by the adjustment of concordance with the standard atmosphere.

2.4 Aerodynamic forces; The drag Polar and aero-
dynamic -lift-to-aerodynamic-drag-ratio

In describing a model it is essential to specify the aerodynamic forces that act on
the vehicle. We can get a functional form for the magnitude of aerodynamic forces

Ag by doing a simple dimensional analysis ( [19]) which is given by

Ap= % A /)SV2 (2.43)

Where S is the surface area, C 4 is a dimensionless cocfficient which is a function

of Mach number M, defined as the ratio of the speed of the vehicle , to the speed
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of sound o' (M = V/a'), the shape of the body and its attitude with respect to
the relative velocity of the air. In the present work, the vehicle is considered as
symmetric and the velocity vector lies in the plane of symmetry. This is a good
assumption [19] for a hypersonic vehicle.

For a symmetric body vehicle, the attitude is conveniently described by the angle
of attack a, which is defined as the angle between the relative velocity vector and a
reference line fixed with respect to the vehicle.

In deriving the equation of motion we have considered the aerodynamic force
to consist of the Drag force D opposite to the velocity vector and the Lift force L

orthogonal to the velocity vector. The lift and drag forces are expressed as, [14]

L=L,+L, (2.44)

D=D,+D, (2.45)

Where L, is the aerodynamic lift force, L, the lift due to ram drag, D, the
aerodynamic drag, and D, is the ram drag,

From Eq. 2.43 we can express the aecrodynamic lift and drag forces as.

D, = % pSV2Cp, (2.46)
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L, = -21; pSV2Cp, (2.47)
Where Cp, and C,, are called the aerodynamic drag coefficients and the aero-
dynamic lift coefficient respectively.

The coefficients of the lift and drag are functions of angle of attack, Mach number

and reynolds number if we retain the effects of viscosity and compressibility [1].

CDa = CD,,(a, A’I, Re), CLa = CLa(O', 1\‘[, Rc) (2.48)

Where R., is the reynolds number defined as

R a0

In the above equation ! characterizes the length or size and 4’ is the viscosity.

Drag polar

At a given Mach and Reynolds number, the aerodynamic drag and lift coefficients
are functions of the angle of attack. At low angles of attack, the variation of C;,
is linear with respect to a. On other hand, at relatively high angles of attack, the
effect of flow separation is important, and the lift coefficient varies non-linearly with
the angle of attack and depends strongly on the Reynolds number. It reaches a

maximum value Cy = Cy,,. at an angle of attack a = Qmaz, called the stalling
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angle of attack. Generally speaking, the flight is restricted to angles of attack less
than op,.. Hence, we have the constraint Cy < Ci,,, restricting the lift coefficient.

By eliminating a between the two equations 2.48 we obtain a relationship [1],

Cba = Cpa(CLa, M, R,) (2.50)

For each prescribed set of values of M and R., the plot of the equation is called
the drag polar. If we neglect the influence of the Reynolds number, the drag varies
with the Mach number. For each value of M, the aerodynamic drag coefficient can
be evaluated as a function of the lift aerodynamic coefficient, using Eq. 2.50. In our
work, instead of the angle of attack a, we shall use the lift coefficient Cra, as the
control variable for aerodynamic maneuvering and control. Hence it is necessary
to have an explicit functional form for Eq. 2.50. for most vehicle aerodynamic

configuration this can be expressed as follows (1]

Cpa = Cpo(M) + [, (M)C?2, (2.51)

where the zero-aerodynamic drag coefficient Cpo and the induced aerodynamic

drag factor K, are functions of the Mach number. In this form, the drag polar is
referred to as the parabolic drag polar ([1},[2]-[20]).

Sometimes instead of the aerodynamic lift coefficient CLa, it is convenient to

use the aerodynamic-lift-to-aerodynamic-dra.g-ratio as control variable. It is defined

as [2]
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_ CLa

E= CDa

(2.52)

It seems that as Cy, increases from 0 to Cy,,,,, E first increases to maximum
value E* and then decreases. If we use Eqgs. 2.51 and 2.52,then
ClLo(M) Cra(M)

= Coual) = Couity + K ONCEOD ~ /G0 (25)

To find maximum E(M), we differentiate E(M) in Eq. 2.53 with respect to Cp,(M)

and equate to zero,

dE(M)
dCro(M) ~

Coo( M) + Ko(M) x C2 (M) — 2o(M)C2,(M) = 0

By solving for Cj (M), we get

Cpo(M)

Cr (M) = e (30) (2.534)
From Eqs. 2.51 and 2.54 we have Cha(M),
Cpa = 2Cpo(M) (2.55)

Solving for E*(M) which is Epq.(M) from Eqs. 2.53, 2.54 and 2.55 we get,
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1
~ 2/K.(M)Cp.(M)

We thus have from Egs. 2.54, 2.55 and 2.56 the classical solutions, where

E*(M) (2.56)

Ci.(M), Cp.(M), and E*(AM) are the functions of Mach number.

For the analysis of the optimal trajectories, it is assumed that the functions
Cpo(M),K,(M) and Cy,,, (M) are known explicitly as functions of the Mach num-
ber. For any given vehicle this is done by modelling these functions, based on
aerodynamic data obtained from wind tunnel measurements and flight tests or oc-
casionally from theoretical estimates. For a supersonic aircraft, it is not advisable
to use a single modelling of the function for a complete range of speed from low
subsonic to high supersonic speeds.

In the hypersonic flight region, we can show that it has the Mach number inde-

pendence principle ({1], [2], and [19]), where

CLae Czas CDas C-Da1 CD03 I\'-a ) Es andE”

become relatively independent of the Mach number, then Eqs. 2.52, 2.54, 2.55 and

2.56 become

Cpa=Cpo + I('GCI% (2.57)
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Aerodynamic lift-to-drag-ratio

CLa

E= CDa
* CDO
La — I{a
Cpe =2Cpo

Cia\ _
Cba) - 2v/K,Cp,
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(2.58)

(2.59)

(2.60)

(2.61)

There are two methods for determining the lift-to-drag ratio; analytical and exper-

imental. One of the means to obtain analytical results is to use Newtonian model

for fluid flow [2]. It is observed that in hypersonic flow the stream lines are parallel

and hence come close to matching the Newtonian model. Consider ( Fig. 2.6 ) a flat

plate inclined at an angle of a to the free stream velocity. For a Newtonian flow |

the time rate of change of momentum due to particles striking the surface is equal

to the product of mass flow rate and the change in normal component of velocity:.

This in turn is equal to the force on the surface from Newtons second law. Hence

AR =poV2 S sin’a

(2.62)




123.7

Asin0

33

Figure 2.6: Model for the derivation of newtonian sine-squared law.
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and

P— Py == =p . V2sinla (2.63)

a3

where (P — P,) is the differential pressure over the flat plate surface and py, , V,,
the density and velocity of the free stream respectively.

In terms of the definition of the pressure coefficient we may write.

P-P .
> = %pooV;: = 2sin%a (2.64)

This is the famous Sine-Squared law for the Pressure Coefficient. The above

equation can be modified in a more general situation as ([2)

Cp = Cpmax sin?a (2.65)
where
Poo— P,
maxr — — 2.66
CP ta %pw‘/o% ( )

Cpmez is the maximum pressure coefficient which occurs at the stagnation point,
pmaz
Py is the total pressure behind a normal shock wave.

From the geometry of the Fig. 2.6 we get

L, = Agcosa (2.67)

D, = Agsina (2.68)

Substituting for A, from Eq. 2.62 we get
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L, = peuVEAsin?acosa (2.69)

Dy = p V2 Asin®a (2.70)

and thus the aerodynamic lift-to-drag ratio becomes

E=— =cota. (2.71)
The newtonian results for the lift and drag coefficients and lift - to -drag ratio

for a flat plate as a function of angle of attack is shown in Fig. 2.7. From the figure

we can observe the following important characteristics,

1. The lift coefficient increases gradually with angle of attack and the maximum

occurs at a = 34.7°, after which C;, decreases.

2. The lift coefficient varies non-linearly with the angle of attack a even at low
values of a ranging between 0deg to 15deg. This is in direct contrast to the

variation of C, in subsonic flight.

3. It should be noted that —g— increases monotonically as a is decreased. If we
consider this trend at oo — 0, —g— — 00, which is misleading. To do a correct
analysis we should consider the effect of the skin friction, the result is shown
by means of the dashed lines from this we see -g— reaches a maximum at a small

a and then decreases to zero at a = 0.
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Figure 2.7: Newtonian results for lift and drag coefficients and Lift-to-drag ratio for
a flat plate as a function of angle of attack [2].
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The result from the flat plate are interesting from an academic point of view.
Practically all vehicles should have certain volume to carry, fuel, payload, people,
and etc. A more realistic configuration is shown in Fig. 2.8 from (3], which shows a
3-view drawing of a hypersonic vehicle. The wind tunnel data and the theoretical
results for this configuration are shown in Fig. 2.9. It is seen that the lift coefficient
varies non-linearly with a, a trend consistent with that for flat plate. We can
also observe that C; is very insensitive to the Reynolds number. The lift-to-drag
ratio versus angle of attack is shown in Fig. 2.10. We observe from the figure that
maximum % occurs in the angle-of-attack range of 3 to 5 deg.The values of (%) s
ranges from 4.5 to ahout 6, depending on the Reynolds number. Figure. 2.11 gives a
drag polar (Cp versus C}) for the configuration shown in Fig. 2.8. The figure shows
that the experimental data are almost linear. Which indicates that the drag polar

given by equation 2.57 is reasonable for the hypersonic vehicle. For, M, > 1 there

is a general correlation for (%) . based on actual flight vehicle data:
ma

< (LY (M +3)
E = (D)maz - .!\"[oo

(2.72)

This equation is shown as a solid curve in the figure. The figure also shows open
circle data points, corresponding to a variety of hypersonic vehicle designs. For more
details see [21] and [22).

In [4] a generic aerodynamic model is presented. The geometry is built up of

simple geometric shapes, see Fig. 2.12. The data for —g— of this configuration is shown
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Figure 2.8: A generic hypersonic-transport configuration. 3]
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Figure 2.9: Lift curve for the hypersonic-transport configuration, M, = 8 [3].
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Figure 2.10: Lift-to-drag ratio for the hypersonic-transport configuration, M, = 8

[3].
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Figure 2.11: Drag polar for the hypersonic-transport configuration, M., = 8 [3].
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in figure. Figure 2.13,2.14 shows % V.D Mach numbers for all a’s. Figures. 2.15,2.16

are 3-D plots for the same data.

2.5 The propulsive force and engine model

‘The propulsive forces play a very important role in the overall performance and de-
sign of flight vehicles. The Propulsive forces generated are based on the fundamental
laws of mechanics, (i.e.) force is exerted on a solid surface by means of surface pres-
sure and shear stress distribution. In a jet propulsion system this is achieved by
imparting a large change of momentum to gases. A jet engine is a device which
takes in air at free stream velocity Vi, Fig. 2.17, heats the air by combustion of
fuel, and blasts the hot gases at a much higher velocity V;. This creates a change in
momentum, based on Newton’s third law an equal and opposite reaction produces
a thrust (Fig. 2.17.b). The true fundamental source of the thrust of a jet engine
is the net force produced by the pressure and shear stress distribution exerted over
the sﬁrface of the engine [2], see Fig. 2.17. From Fig. 2.17.b, let = denote the flight
direction, the thrust of the engine in the direction is equal to the x-component of P,
integrated over the complete internal surface, plus that of P,, integrated over the

external surface (i.e.),

T, = / (Pdz), + / (Poods), (2.73)
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Figure 2.12: Aircraft configuration, three views [4].
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since P, is a constant, the last term becomes,

/(Pwds)z = Peo /(ds)z = Poo(Az - Ae) (274)

where A; and A, are inlet and outlet areas of the duct. Substituting in Eq. 2.73 we

get

T, = / (Puds). + Poo(4; — A,) , (2.75)

The integral in the above equation is not easy to handle in the above form. It
could be evaluated as follows. Consider Fig. 2.17.d the x-component of the force on

the gas inside the control volume is.

F=P,A + / (P,ds), — P.A, (2.76)

This force is equal to the time rate of change of momentum. The time rate of change

of momentum is given by (Mg + M fuel)Ve — Tgin Vi therefore, A
F, = (g + 1m0 Fuel)Ve = 1iginVo (2.77)
Substituting in Eq. 2.76 we get
Ohaie + guar)Ve = taieVoo = Proi + [(Puds)e - Pod, (2.78)

Solving for the integral term we get
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/ (Puds)e = (1itgir + 1 uet)V = Titair Vi + PoA, — Py A; (2.79)

Thus the final result for the engine thrust is obtained by substituting the above

equation in Eq. 2.75 which gives,

Tn = (mair + Thfuel)‘/:z - mm‘rvoo + PeAe - PooAv’ + Poo(Ai - Ae) (280)

Which on simplification yields

Tn = (mair + ﬁlfuel)v; - Thair‘/oo + (Pe - Poo)-‘le (281)

Equation 2.81 is the fundamental thrust equation for jet Propulsion.

For Turbojet engine mg;, >> m fuel, then

T = tain(Va = Vio) + (P, = Pog)d,. (2.82)

Engine model

It is seen that the main performance characteristics of a propulsion system are the
thrust and the specific fuel consumption. In the simplest form we can express the

mass flow rate of the engine as

dm T.
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Where T;, is the net thrust and g, is the acceleration due to gravity at sea level.
It is observed that I,, depends primarily on the Mach number and slightly on the
thrust settings and altitude. For the analysis of optimal trajectories, the function
I;,(M) should be modelled based on the engine performance characteristics.

In this study the I,, has been modelled as a function of Mach number. The data
for I,;, as a function of Mach number is given in [23] . Detailed values are given in [4]
for different angles of attack and air fuel ratio. We have curve fitted this data with
polynomials to obtain a functional relationship. These results are given in chapter
3.

The thrust generated by the turbojet engine is high, but they have a low effi-
ciency. The efficiency of an engine is denoted by the thrust specific fuel consumption
(C) (or TSFC); the lower the C the higher is the efficiency. To overcome this draw
back turbo fan engines were developed. In these engines the concepts of pure turbo-
Jet and the propeller are combined. This concept was further extended by replacing
the ducted fan with a propeller, with the turbine driving both the compressor and
the propeller. Such a combination is called a turboprop. The turboprop engines
have relatively higher efficiencies.

Another concept of a jet engine is a ramjet. In this type of engine all rotating
machinery is eliminated. In a ramjet engine, air is inducted through the duct inlet at
Voo, decelerated in diffuser, burned in a region where fuel is injected, and then blasted

out the exhaust nozzle at a very high velocity V.. One disadvantage of a ramjet
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engine is that, in order to start and operate, it should be already in motion. Another
disadvantage of ramjet engines is there low efficiency at subsonic speeds. However
at supersonic speed their efficiency improves. Figure 2.18 shows the comparison
of the thrust specific fuel consumption of ramjet and turbojets. We can see that
at supersonic speeds the efficiency of ramjet engine improves. For turbojet the
curve in figure is terminated at Mach 3, this is due to the reason that at higher
Mach number, the turbojets must increase the combustion temperature. However
material limitations do not permit this. On the other hand ramjets have no turbine
and hence can operate at much higher Mach numbers. This consideration makes
it the only choice in the present day technology to fly at supersonic speeds. The
ramjet engine also cannot operate beyond Mach 6, beyond which the walls of the
ramjet tend to fail structurally [24].

Thus like turbojets, conventional ramjets are also limited by material problems,
although at high Mach numbers. Moreover, if the temperature of the air entering
the combustor is too high, when the fuel is injected, it will be decomposed by high
temperatures rather than be burned. This means that the fuel will absorb energy
instead of releasing energy. Thus the engine will become a drag machine, rather
than a thrust producing machine. For hypersonic flight at very high Mach numbers,
something different has to be done, to achieve the desired results. This led to the
concept of a supersonic combustion ramjet, the SCRAM-jet. In a SCRAM-jet, the

flow entering the diffuser is at a high Mach number. The diffuser decelerates the
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Figure 2.18: Comparison of thrust-specific fuel consumption for ideal ramjet and
turbojet engine {2].
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airflow only enough to obtain a reasonable pressure ratio. The flow is still supersonic
upon entering the combustor, unlike the other engines discussed earlier. Fuel is
added to the supersonic stream, where “supersonic combustion ” takes place. In
this way the flow field throughout the SCRAM-jet is completely supersonic. This
keeps the static temperatures low, thus avoiding the problem of fuel decomposition

and material failure. Therefore the power plant for a hypersonic transport in the

future will most likely be a SCRAM-jet [2].

2.6 Hypersonic aerodynamic heating

In this section we introduce the hypersonic heating equation of viscous flow. From
the EpraJctic,al aspect of the design of a hypersonic vehicle, we are concerned with
the prediction of surface heat transfer and the skin friction. Of these two, surface
heat transfer is usually the dominant aspect that derives the design characteris-
tics of conventional hypersonic vehicles, although skin friction is very important in
tailoring the aerodynamic efficiency of slender vehicles([25]). An aerospace plane
(TAV) designed to takeoff horizontally from an airport and go into orbit using an
air breathing propulsion, needs to acquire enough kinetic energy within the sen-
sible atmosphere to coast into a low earth orbit. At such high speeds (M > 10)
within the dense atmosphere, aerodynamic heating will be very severe and will form

a dominant factor in the vehicle’s design.
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The Aerodynamic heating to the surface is described by [26]:
Qw = peueCH(h:m - h’:n) = Poo Voo Cr (I, — h’:u) (2.84)

where Q,, is the local heat transfer rate (energy per second per unit area), (h,, — /)
is the enthalpy difference, and where R, is the enthalpy at the wall when Q,, = 0.
Cp is the Stanton number, p, and u, are density and velocity, respectively at the
edge of the boundary layer, and they are functions of location z, and where p,, and
Vo are free stream density and velocity, respectively. Also, we have

. 1
Qo Ths

which states that stagnation-point heating varies inversely with the square root

(2.85)

of the nose radius ([23]); hence to reduce the heating, the nose radius should he
increased. If we assume the approximation that he., = hi,, where h is the total
enthalpy, given as

b o Ve
Hy =l + =22 (2.86)

At hypersonic speeds, 352’- is much larger than /., hence 1, is given by

V2
= (2.87)

b, ~

Moreover, the surface temperature, although hot by normal standards, still must
Temain less than the melting or decomposition temperature of the surface material.

Hence the surface enthalpy &/, is usually much less than h,, at hypersonic speed,

K, >> 1, (2.88)
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Combining Eq. 2.84, 2.87 and 2.88 we obtain the approximate relationship

Qo =~ %pm V3cCy (2.89)

This shows that the aerodynamic heating increases with the cube of the veloc-
ity, and increases very rapidly in the hypersonic flight regime. Moreover, from Eq.
2.89, we can understand why the major aerodynamic heating for the transatmo-
spheric vehicle (TAV) is encountered during ascent rather than during entry. A
TAV will accelerate to orbital velocity within the sensible atmosphere(using air-
breathing propulsion). The resulting high velocity will be combined with relatively
high p, to yield very high heating values. In contrast, on atmospheric entry, the
transatmospheric vehicle will follow a gliding flight path where deceleration to lower
velocities will take place at higher altitudes, resulting in lower heating rates than
are encountered during ascent. For more practical enginecring analysis and design,
we can simplify and develop more approximate methods. The simplest may be to

use generalized form of Eq. 2.89

Qu = Cor V' (2.90)

where the units for Q.,,, Po and Vo, are W/em3 | kg/m? and m/s, respectively.
N', M’ and Cg are assumed to be constants. This equation applies in the flight
regime for which boundary- layer theory is valid. It is a good approximation for

both laminar [27] and turbulent [28] convection at a catalytic surface in the absence
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of boundary layer mass additions. The numerical values used in this equation are
taken from Marvin and Deiwert [28]-[29] for the stagnation point and turbulent
flat-plate heating, respectively. For stagnation point:

/
M'=3, N'=5 Co=183x10"°R;* ( - %,i) (2.91)

where R, is the nose radius in meters, and A/, and h are the wall and total en-
thalpy’s, respectively.
For laminar flat plate:

[
M'=3.2, N'= .5, Cq =2.53 x 10~%cos ¢ )} (sin ¢') X"~# ( ~ %;ﬂ) (2.92)

where ¢ is the local body angle with respect to the free stream, and X’ is the
distance measured along the body surface in meters.

For turbulent flat plate:

For V,<3962m/s, N'=.8, M =3.37

Cq = 3.89 x 10~¥(cos ¢')™(sin ¢/) 6 X =% Iy k 1-111
== A1 "\ 556 e

For V> 3962m/s, M'> 3.37

1
Cq = 2.2 x 10~%(cos ¢')>%(sin ¢ )16 X/, % (1 - 1.11h—'")

!
A
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where X7, is the distance measured along the body surface in turbulent boundary

layer.

"The validity of these correlations is reasonable as long as the flight conditions are
such that boundary layer theory is valid. They are useful for preliminary analysis
and are not recommended for more detailed work.

In this study we considered the stagnation point heat load since the maximum
heat occurs there. Tauber et. al.,[5] have made an engineering estimate of the
aerodynamic heating to an aerospace plane (TAV) for both ascent and re-entry.
Their estimate gives both maximum heat transfer rate(in W/em?) and total heat
transfer(in kJ/cm?) at the stagnation point.. Two important results are observed:
(1) The TAV'’s stagnation point heating load is three times that of shuttle re-entry.
Even more striking is the fact that the ascent heat load of TAV is about 9 times the
heat load of shuttle re-entry. (2) The major aero-thermal heating of the hypersonic
vehicle occur during ascent rather than during re-entry. This is because during the
ascent, high velocities combined with high ambient density result in high heating
values, in contrast to re-entry conditions (low heating rate), in which deceleration

to lower velocities takes place at higher altitudes.
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2.7 Neural networks: An introduction

Artificial neural networks (ANN) are biologically inspired tools, they perform func-
tions analogous to the elementary functions of the biological neuron, Fig. 2.19. Ar-
tificial neural networks exhibit characteristics of the human brain such as, learning
from previous experience, abstract essential characteristics from inputs containing
irrelevant data etc. Despite these similarities they are no way near to the functioning
capabilities of the brain. They draw comparison due to the fact that ANN's evolved
as a result of human effort to study the organization of the human brain [30). It is
helpful to understand the functioning of the human nervous system to comprehend
this analogy.
| The human nervous system, built of cells called neurons, is of staggering com-
plexity. An estimated 10! neurons participate in perhaps 103 interconnection over
transmission paths that may extend to a meter or more.

Each neuron is an electrically active cell. They interact with one another through
the flow of local ionic currents between them. These ionic currents are driven by a

voltage difference across the neuron’s cell membrane.

2.7.1 Artificial neuron

The artificial neuron was designed to mimic the characteristics of the biological

neuron as understood by the human mind. In essence a set of inputs are applied to
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Dendrites

e

Figure 2.19: Biological neuron

each neuron. Each input is applied over a separate link as shown in Fig. 2.20. A
weight is associated with each link. Each input is multiplied by the weight of the
corresponding link through which it is applied. All the weighted inputs are then
algebraically summed to determine the activation levei of the neuron. A model that
implements this idea is shown in Fig. 2.20. The different inputs X;,X,,..., X,
are applied to one link each. These are multiplied by the link weight and finally
algebraically summed up.

Despite the diversity of network paradigms, nearly all are based on this config-
uration. A set of inputs labeled X, Xj,..., X, is applied to the artificial neuron.
Each signal in then multiplied by an associated weight wy, ws,... w,. Finally it is
applied to the summation block. The summation block algebraically adds up all the
inputs and sends the resultant output which is denoted as Y. In vector notation

if X' denotes a vector whose i** component X; and W is a weight vector whose t*
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X4 w1
X Wy
.2 \ Y = XTw
® ¢ —>
X Yn

Figure 2.20: Artificial neuron

component is w;, then, the resultant net can be expressed as

L =XTw (2.93)

2.7.2 Activation function

The signal T is usually further processed by an activation function f as shown in
Fig.2.21 to produce the neuron’s output signal Y. Generally the activation function

used is the so-called “ squashing function ” expressed mathematically as

Y = F(5) (2.94)
where F(X)= 1+le-3 (2.95)

Fig.2.22 depicts the sigmoidal logistic function. Another nonlinear activation
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7

ARTIFICIAL NEURON

Figure 2.21: Artificial neuron with activation function

function which is commonly used is the hyperbolic tangent. It is shown in Fig.2.23.

Mathematically it is expressed as

F(Z) = tank(XT)

1—e<

14 e

(2.96)

1V

2.7.3 Single layered network

"The power of neural computation comes from connecting the neurons into networks.
‘The simplest network consists of a group of neurons arranged in a layer as shown in
Fig.2.24. Neurons present in the same layer are not connected with each other, The
circular nodes on the extreme left in Fig. 2.24 serve only to distribute the input.
They perform no computation and hence they are also referred to as the zeroth layer.
The set of inputs X has each of it’s element connected to each neuron through a

link each of which has a weight associated with it. Each neuron simply outputs the




Figure 2.22: Sigmoidal logistic function

-1

Figure 2.23: Hyperbolic tangent function
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Figure 2.24: Single-layer neural network

algebraic weighted sum of the inputs to the network, acted upon by the activation

function. Actual networks may also have many of the connections deleted.

2.7.4 Multilayer artificial neural networks

Greater computational capabilities are offered by large, more complex so-called mul-
tilayered networks as shown in Fig.2.25. Each neuron in a layer is completely con-
nected with all the neurons in the next layer. Neurons in the same layer are not

connected. This is the feedforward neural network architecture. Although networks
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Figure 2.25: Multilayered neural network

have been constructed in every imaginable configuration, arranging neurons in layers
mimics the layered structure of certain portions of the brain. Multilayered neural
networks have been proven to have capabilities beyond those of single layer. But the
nonlinear activation functions are vital to the expansion of the network’s capabilities
beyond that of the single-layer network since without these functions multilayered

networks provide no advantage in flexibility over a single layered network [30).




Chapter 3

PROBLEM DEFINITION AND

SOLUTION METHODOLOGY

3.1 Introduction

This chapter presents the problem definition and a solution methodology. We start
with transforming the equations of motion presented in Chapter 2 into dimensionless
form. This is done to make the study more general. The selection of trajectories and
their constraints are discussed in Sec. 3.3. The problem definition is given in Sec.

3.4., Sec. 3.5 presents a general solution methodology, and discusses the proposed

control laws.
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3.2 The dimensionless system of equations

The equation of motion (Eqgs. 2.24-2.26 and Eqgs. 2.33-2.35 ) presented in Chapter
2 represents a general flight vehicl;a. In the present work, we are mainly concerned
with the overall flight trajectories of TAV’s. For simplification of the analysis we
make the assumption of a non-rotating earth and of ﬂight in the equatorial plane.
(ie. w = 0 and ¢ = 0).It should be noted that w is small hence the term w?r, which
represents transport acceleration can be neglected. The term 2wV has an important
effect in a high-speed,long range flight. However, in the present study we can neglect
it since our objective is to do an overall analysis. It can be considered in a more
specific problem in future studies. If we make the above assumptions the equation

Eq. 2.24, Egs. 2.26-2.33 and Eqs. 2.35-2.35 reduces to

dv .
m—r = T, — D; - mgsiny (3.1)
’da “'/'2
mV d—t/ = L, —mgcosy + % cos 7y (3.2)

Thus the equation of motion and all other relevant equations are given as

% = Vsiny (3.3)
4 = —pfVsiny (3.4)

dt




& _TL-D _
dd = m gsmy
where Dy = D, + D, and T; =T, + D,
dy L, V2
/—:—— —
‘dt - gcosy+ oy
where L, = L, + L,
df Vcosvy

dt 9o Ip90
dQ — 0.57 3
gt = Cor

The dimensionless state variables are defined as.

The dimensionless position,

. T
Ff= —
7'0
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(3.5)

(3.6)

(3.7)

(3.8)

(3.9)

(3.10)

where 1, is the earth radius at the equator, and r is the position of the vehicle

with respect to the earth center.

The dimensionless density,
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n= 1oooc;apﬁ (3.11)

(]

where p, is the air density at the sea level, and p is the density at .

The dimensionless velocity,

| %
where V; = /9,7, is the orbital velocity at the equatorial earth surface.
The dimensionless path angle,
- ¥
= 3.13
I (3.13)
where 1, is any chosen reference. The dimensionless longitude,
0
0=— 3.14
7 (314)
where 8, is any chosen reference longitude.
The dimensionless mass ,
= mn (3.15)

where m, is the mass of the vehicle at the time of takeoff at earth surface and

at Mach zero(M = 0).

The dimensionless time
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-t

t=— (3.16)
t

where t* = ‘/5-';: sec. Note that ¢* is the time taken to reach circular orbit speed

at constant acceleration Jo-

We also define the

1
C= rp (3.17)
where C is the specific fuel consunption.

Using the above definitions, Eq. (3.3) to Eq. (3.9) can be written in the dimen-

sionless form as

% = u siny (3.18)
Zg_—ﬂv nusiny (3.19)

du [, To nu? siny
@ e (o) (22) - i ;
= [ﬂ (52 (f)(#) ,,2] (3.20)

‘Z {04 (201 Cg) (\) (’Z‘) = (5 cos 7) + (Fcos 7)} [re  (3.21)

u
== (17 cos'y) /B1e (3.22)
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=t Tt
= —ted (3.23)

dQ (CQC5V(;21‘01]0'5U3)
@ Qre

where ), the dimensionless aerodynamic control, 7; is the dimensionless thrust con-

(3.24)

trol, and f, is given by

CDa - 1+’\a2

fa= Ci. 2FE~

(3.25)

and

Cy = 1000
Cy = characteristic length of the vehicle
Cs= (pSco)/m,

Cs= VPo/(ClCZa)

3.3 Trajectories and their constraints

The selection of the trajectories is affected to a large extent by the constraints. The
constraints could be due to the physical limitations of the vehicle or they might be
mission dependent(mission constraints). As an example, the performance of RAM-
jet and SCRAM-jet engines improves with increase in flight dynamic pressure. This
is due to the increase in engine mass flow and the improvement in combustion char-

acteristics at higher static pressure. But there are structural limitations that restrict
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the maximum static pressure in the combustion chamber. On the other hand the
combustion process sets a lower limit on the static pressure, below which combustion
cannot be sustained [24]. Hence the dynamic pressure forms an important physical
constraint.

Similarly examples for mission constraints are the final height that is to be
reached, the velocity of the vehicle, rate of climb etc.In the present study we have
given consideration to most of the important constraints. These constraints have
been suggested in various works (25], [31], [3], [22], [32], [33], [34] and are presented

below.

500 < I,(M) < 3000sec.

-1.0< A <L1.0
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-11< <11

0.06< C;, <0.1

0.001 < Cp, < 0.04

The above design values are for an angle of attack in the range of 0.5° to 3.0°. For
the atmospheric data p,T", and P, we can use the data given in [18] ( US standard
atmosphere). The data is taken for the trajectories in the range 20km < h < 65km.
The earth radius is given as r, = 6375400m. This leads to the following trajectory
constraints:

The final state and time constraints:

1< ur <1414

60 < hy < 75km

05<6; <1.0rad

0.25 < gy < 0.43

500 < ¢; < 1500sec
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The functional constraints:

u; < u(t) < 1.414

h; < h(t) < 75km

% < 7(t) < 0.1rad

6; <0(t) <0.1rad
0.25 < p(t) < (i = .94)

0.0< (rc(t) = Z—:) < 200m/sec

0.02 < ¢(t) < 1.5atm.
0< a(t)/g, < 2.0
0.1 < (D./Da)(2) < 300

m
500 < - - 2
500 < (——CD,S) (t) < 70000 Kg/m

m
100 < [ =— ] (¢) < 15000 ICq/m?2
< (55) @ < 15000 g/
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100 < (E’T—S) () < 15000 K g/m?

Tt—Dt)
<{—— <0.
o_( 5= <07

0< (-f,—') (t) < (sin5.7 = 0.1)

The functional objective constraint:

Q(t) £ 0.5 KW/cm?
and the final objective constraint:
Qs <500 kJ/cm?®

In the above equations we have summarized the trajectory constraints that are

essential. We have included most of the constraints that affect the design of the

vehicle critically.

3.4 Problem definition

The problem at hand is defined as follows:
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Minimize the heat load

T =Q(%,1) (3.26)

Subject to the constraints

Ci(z,t) <0 i=1l...m (3.27)

where, Z is the state vector, Q is the heat load, given by the equation (3.24) and
Cis are the constraints given in the previous section, and ¢ is the time. The form of
control laws used to transform the problem into a finite dimensional optimization
problem are discussed in the next section.

It should be noted that the heat load Q is not an explicit function of the controls
7 and A, see Eq. 3.24. Whereas, it is an explicit function of the density 7 and the
velocity u. These in turn are functions of the controls 7 and A. Thus Q is implicitly
a functioﬁ of the controls. To evaluate the objective value and the constraints a
complete simulation (integration) of the system of equations 3.18-3.24 for given

controls is needed.




"

3.5 Solution methodology

3.5.1 The controls

As discussed previously, the objective of this study is to transfer the TAV from a
specified initial state to a final state, while minimizing the heat load. This objective
is achieved through the two controls, namely thrust control 7, and aerodynamic
control A;. The controls 7, and A, are yet to be specified.

In this study we have considered two different forms of control laws.

Polynomial controller

The first is a feedback control law which is function of velocity and density [14),

[15],[35] expressed as.

n=a+au’+azn (3.28)

A=0by+ by u? + 037 (329)

where a;,b;,¢ = 1,...3 are the parameters which spccify the functional rela-
tionship. The states u and 7 have been chosen for feedback since they are most

representative of the TAV’s behavior.
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Neural controller

In the second case a two layered feedforward neural network is used as a controller.
The form of the neural network used is shown in the figure 3.1, [30], [4]. The two
inputs to the neural network are u,7 and the outputs are the thrust control 7, and
aerodynamic control ). The weight matrices [IW] and [X] define the outputs of the
neural network. Thus the problem becomes of a parametric nature where (W1, [X]
are to be determined such that the constraints are satisfied and the objective is
achieved.
Mathematically the controls using the neural controller are expressed as,

oulput at the first layer

( 3 ( b

0, Fluwy; + pwys)

4 0, (= W) = ¢ Fl{uw)2 + pwsy)

v~

O3 | | fl(uwng + pwns) J

and thus the controls become

" = fg({o}T[X])T - F2(01 X1 + 02X + 03X31)

At f2(01X12 + 02X 22 + 03X;32)

It should be noted that in the hidden layer a tangent hyperbolic function ( f1

in Fig.3.1 ) was used as a activation function and in the output layer a sigmoidal

function (f2) was used.

In recent years a lot of research activity has been centered around the neural
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Figure 3.1: The neural controller for aerodynamic and thrust controls.

networks. They are being applied in many areas of engineering and sciences. Neu-
ral Enetworks have a remarkable learning ability, they can be viewed as a class of
functional representations. Thus they are considered to be dense in the space of
continuous functions and hence can be used for representing any general nonlinear
function. In fact it has been shown by Cybenko([36] and Hornik et. al. [37]that any
continuous mapping over a compact domain can be approximated as accurately as
necessary by a feedforward neural network, even with only one hidden layer. This
implies that given any € > 0 a neural network NN with sufficiently large number of

nodes can be determined such that
1f(z) - NN(2)|| < € forallz € D

where f is the function to be approximated, NN the neural network and D is
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a compact domain of a finite dimensional normed vector space. This provides the
basis for using the neural network as a controller for the TAV.

After the above definitions of controls we write the equations for lift, drag thrust
etc., as follows.

The thrust,

Tn = T; - Dr (330)

where T; = m,g,7; and T, = MoGoTn-

Introducing,

D, = (dy + dou®)7, (3.31)

where dy and d, are design coefficients for ram drag, to be calculated during the

computational study. The value of (d; + dyu®) < 1.0 for positive net thrust.

The lift,
A=A+ A, (3.32)
where
Cla
= — 3.33
Aﬂ CZG ( )

and we define ), = d3)\,, where d3 is a design parameter to be computed.

From the above we can write,
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L,= %p‘ﬂsch = gSC} Ag (3.34)
L= -;-pV2SCL,. = d3qSCj )\ (3.35)

3.5.2 The optimization procedure

Once the control laws are defined the problem reduces to finding the parameters
a;,b; ( for the first type ) or the matrices [W],[X] ( for the second type ). The
parameters are to be found such that the objective ig achieved while satisfying the
constraints. The above problem is solved by doing an extensive simulation and
ioptimization study. The numerical computations are performed using a simulation
and optimization package [38]. The computations consists of two distinct phases
namely simulation and optimization. The package uses the IMSL{39] routines in the
simulator and the “ Feasible Sequential Quadratic Programming (FSQP) " [40] for

optimization.

Simulation

The simulation in this study consists of solving the initial value problem (IVP).
Given the values of the dependent variable y at time ¢ = 0, and the controls the
values for ¢ > 0 are computed. We have made use of the IMSL routine DIVPAG,

[39]. This routine solves an IVP for ordinary differential equations using either
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Adams-Moulton or Gear method. We have used Gear method since the system of

equation in this study are stiff.

Optimization

Optimization was performed using the optimization software FSQP [40]. It con-
sists of a set of FORTRAN subroutines for the minimization of smooth objective
functions subject to nonlinear equality and inequality constraints, linear equality
and inequality constraints, and simple bounds on the variables. If the initial guess
provided by the user is infeasible for the constraints, FSQP first generates a point
satisfying all these constraints. Subsequently, the iterates generated by FSQP all
satisfy the constraints.

The algorithm is based on a sequential quadratic programming (SQP) iteration
modified so as to generate feasible iterates. The merit function is the objective
function. An Arminjo-type line search is used to generate an initial feasible point
when required. After obtaining feasibility, either (i) an Arminjo-type line search
may be used, yielding monotone decrease of the objective function at each iteration,
or (ii) a nonmonotone line search may be selected, forcing a decrease of the objective
function within at most four iterations.

Figure 3.2 shows the flow chart of the program that was used for the study. The
parameters for the optimization are either a;,b; or [W],[X]. An initial guess is to be

provided by the user to start the optimization process: We assigned random values
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Figure 3.2: Flow chart of program used for the study.

to the parameters at the start. Most of the times these values produce trajectories

which do not satisfy the constraints. In this case the optimization program searches

for a feasible point and then proceeds from this newly generated point.

The parameters generated by the optimization program are fed to the simulation

package which integrates the nonlinear differential equations. It also computes all

the constraint values. The objective and the constraints are then fed back to the

optimization routines, based on which the search proceeds.




Chapter 4

OPTIMIZATION AND

SIMULATION RESULTS

4.1 Introduction

In this chapter the optimization and simulation results using the methodology dis-
cussed in chapter 3. are presented. In section 4.2. are presented the parameters.
constants and the initial conditions used for this study. The data has heen colleeted
from different references. In section 4.3. the correlations of I, as a function of Mach
number are presented. Section 4.4 presents the simulation results for the four cases,
CASEla-h to CASEda-h. The CASEla, is same as CASE 1. presented in [10],[11]).

It is presented for both validation and comparison.

84
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4.2 Design parameters of the vehicle and initial

conditions

To perform a simulation and optimization study we need to specify certain vehicle
design parameters and the initial conditions. The design parameters are taken from

(32]. [33]. [34). [41).

4.2.1 Vehicle model parameters

The following weight and sizes of the vehicle are considered.
445000 < 11, < 4450000V

20 < leugth — Cy < GOm
10 < span < 30m
0.025 < (p,SC3/m,) < 0.15

((poSCs/m,) is the mass ration parameter for longitudinal stability,)
1 )




86

4.2.2 Initial conditions

The initial condition are given in this section, the are same as in [10], [11]. They

are as follows:

r; = 6395400km or G385400Am

pi = 0.082kg/mn*

u; =02

1i = 0.175rad (4.1)
0; = 0.0rad

pi = 0.94

Qi = 5.0kJfemi?

4.3 The Specific Impulse I,

In this work we have considered two different cases. namely that of constant I, and
the other of variable I,,. In general the I, is dependent primarily on the Mach
Number and the air to fucl ratio. and slightly on thrust setting and altitude. For
the analysis of optimal trajectories, I, should be modeled ou the basis of engine
performance characteristic. In this work we have modeled I, as a function of Mach
Number(I4,(A1)) using the engine data given in [22]. The Fig.4.1 shows the plot for
the data, the plot is of Ip vs Mach number, for different specific fuel ratios, We
have done a polynomial fit to the data.

The equation obtained is given as,

1£L9




4500 . T

Figure 4.1: Specific impulse vs Mach number for different specific fuel ratios.
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Ly(M) = TALE ~ 400 — 5.45F — 205 4 1.48M* (4.2)

—18.1M3 4 97.6A12 — 322.2) + 3059.23

4.4 Optimization and Simulation results

Extensive optimization and simulation study was performed using the methodology
presented in Chapter 3. For the optimization procedure the objective was to min-
imize the heat load (Eq. 3.25) while satisfving the constraints. We have presented
results for four cases. we differentiate between the cases based on the initial and
final conditions, and/or the specific Impulse used for the Engine modeled. The Fig- -
ure 4.2 shows the classification of the different cases. Each case is further divided
into two sub-cases for example CASE 1 is further divided as CASEl-a and CASE1-
b. CASEIl-a uses the polynomial type controller and CASE1L-b uses the nenral
controllers. Similarly we have CASE2-a. CASE2-h. CASE3-a. CASE3-l. CASE4-a.
and CASE4-b. Both cases a and b use the same initial conditions and parameter

values.

4.4.1 Results validation

To validate the results obtained in this study, a comparison was performed. with

the work of Al-Garni[10], Al-Garni ct. al[11]. The initial conditions, vehicle design
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Figure 4.2: Overview of the simulation study.
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Figure 1.3: Heat rate per unit area and heat load per unit area vs the dimensional
speed.

parameters, and constraints are assumed same as those in the study by Al-Garni [10].

In [10] two approaches were adopted, numerical and analytical. The results
obtained by these two approaches were then compared. In the present study a
compatrison of the results obtained is made with hoth the numerical and analytical
approaches of Al-Garni{10]. Figure 4.3 shows a comparison of the heating, the
thicker lines are from this study. It can be scen that the results obtained are fairly
close. Similarly the results for acrodynamic and thirust controls are shown in F ig. 4.4
and Fig. 4.5 respectively. The results are seen to he very close. Thus. this comparison

validates the results obtained by the proposed computational method.
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4.4.2 CASE 1a-b

CASE 1-a presents the trajectory obtained using thie polynomial feed back controller
and CASE 1-b uses a neural controller. For both cases tra jectories start at an initial
altitude of 20 Km and reach a final height of ~65Ikm. We used constant specific
Impulse I,, value of 2400 for both the cases. It should be noted that CASE 1a is
the same as CASE 1 in [10]. The optimized parameter values for the two controllers
are given in the Appendix. The results are presented in Fig 4.6 to Fig 4.18.

Figure 4.6.a shows h vs u and Fig 4.6.h shows u vs t. The trajectory shown starts
from t; = 0, h; = 20K'm and u; &~ .2 and finishes at t; = 1275sec. h ;= T0Nm
and uy = 1. The figure shows that the trajectory satisfies the constraints on h. v
and t. It is also observed that the trajectory obtained using a neural controller is
much smother than the polynomial controller. This is a favorable characteristic that
reflects in all the cases presented here.

Figures 4.7.a and 4.7.b show 4 vs « and 5 vs v respectively. The plots show
that ¥ and 5 both satisfy the functional constraints.

Figures 4.8.a and 4.8.1 show p vs v and 6 vs « respectively. The plot of p shows
that the approximation made for the density is reasonable and the values obtained
are close to the data in U.S. standard atmosphere. Also p is plotted because it is
one of the most important factors that affects the lwa»;.ing. The plot of 8 vs u shows

that the final constraint on @ is satisfied.
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Figure 4.6: (a) h - altitude (km) vs « - dimensionless velocity. (b) o - dimensionless
velocity vs t - time (sec).
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Figures 4.9.a and Fig. 4.9.b show Q vs u and Q vs v. Both Q and Q satisfy the
constraints. It is seen that Q obtained using polynomial controller is = 310k.J/cm?,
whereas @) obtained using neural controller is higher and is ~ 335k Jem?. This is
due to the fact that the trajectory using ncural controller is lower (see Fig. 4.6.a).
The above results are promising, since the heat loads are not as high as obtained in
[1]. With this kind of heat loads cooling system could most probably be designed.

Figures 4.10.a and 4.10.h show rc vs v and ¢ vs u respectively. It is seen that
both rc and ¢ satisfy the constraints. It is also clear from Fig. 4.10.a that the
trajectory obtained using a neural controller is smoother. Figure 4.10.h shows that
the dynamic pressure is higher for trajectory using neural controller, this is desirable,
since higher dynamic pressures are usually related to better engine performance.

Figures 4.11.a and 4.11.b show (a/g,) vs « and p vs « respectively. The di-
mensionless acceleration is within the recasonable limits given in the literature, The
dimensionless mass y is shown in Fig. 4.11.b. it satisfies the final constraints.

Figures 4.12.a and 4.12.h shows the thrust and aerodynamic controls plotted vs
u respectively. The controls values are within the specified range. It is interesting to
note that the aerodynamic control using the neural controller stays alimost constaut.

Figures 4.13 to 4.18 shows the ;ll'ags. thrust. lift, coefficients of lift. and coefficient

of drags. All these variables lie within reasonable limits and satisfy the constraints.
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4.4.3 CASE 2a-b

The CASE 2a-b are variants of CASE 1a-h. respectively with [, considered as
variable (I,,(Af)). For both the cases the trajectories start at an altitude of 20km
and the final altitude is approximately 65km. The optimized parameter values for
the controllers are given in the appendix. The results are presented in Fig. 4.19,4.31,

They are mostly comparable with those of CASE 1a-b except for the following

differences.

¢  and v (Fig. 4.20) are smaller than those of CASE 1a-b. This means that the

trajectories obtained are smoother.

¢ The heat load obtained using the neural controller is higher. 34047 /cm? (Fig. 4.22)
as compared with 300k.J/cm? using polynomial controller. This is hecause the
trajectory obtained using the neural controller is lower. This is favorable from
the engine performance view point. Since this will lead to higher overall dy-

namic pressure.

¢ The final mass (Fig. 4.24) is lower (p =~ 0.2) than the CASE la-b. This
is because the average I, value when using variable I, is lower than the
constant I,,. This is not a problem because = 0.2 implies m =~ 90800kg

for a typical configuration of hypersonic vehicle, which is good enough for the

vehicle without fuel and payload.
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o The thrust control 7, in CASE 2D is different than that of CASE la. This is in
contrast to the similar trends of 7, for CASE 2a and CASE 2h. We attribute
this to the capability of neural networks to model a vast range of nonlinear

functions.

o The total drag and ram drag (Fig. 4.26) are lower using neural controller as

compared to that of polynomial controller. This is in contrast to CASE 1a-b.

4.4.4 CASE 3a-b

This case and CASE {a-h are studied to sce the offect of altitude on the optimized
heat load and in general t.llg trajectories. The trajectory starts at an iuitial height of
10km, and ends at a height of approximately 60Am. The other parameters remain
the same as in CASE la. The results are presented in Fig. 4.32 to 4.43.

Figures .32 shows h vs u and u vs t. It is seen that the tra Jectories using neural
controller is on an average lower than that using a polynomial controller. This will
off course lead to higher heat loads, however this also has an aclvantage in terms of
dynamic pressure.

Figures 4.33 shows 4 vs u and 4 vs u, as was seen in CASE 1 and CASE 2,vand
7 are very small when using a neural controller. This gives a very smooth trajectory.

Figures 4.34 shows p vs u aud 6 vs «. the density of CASE 3D stays higher than

CASE 3a since the trajectory of CASE 3D is lowor.
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of total lift vs u - dimensionless velocity.
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Figures 4.35 shows Q) vs ¢ and Q vs u, we can sec that the heat load and
the heat rate for trajectories of CASE 3b is higher than that of CASE 3a. This
again is attributed to the lower overall trajectory of CASE 3b. The heat loads are
approximately 300kJ/cm? and 350kJ/cin? for CASE 3a and CASE 3b respectively.
Inspite of the fact that the heat load in CASE 3b is higher, the trajectory may he
still preferable when we consider the overall characteristics.

Figures 4.36 shows rc vs u and ¢ vs u, the variation of rate of climb is very
smooth in CASE 3b as compared to that of CASE 3a. This corresponds to the
observations made for 4 and 4. The dynamic pressure ¢ is on an average higher for
CASE 3b. This is a favorable trend also seen in all the previous cases using a neural
controller.

Figures 4.37 shows a/g, vs u and i vs « for the two cases. The dimensionloss
acceleration stays within reasonable limits. The final dimensionless mass is around
0.3 which is pretty good.

Figures 4.38 shows 7, vs « and ), vs «. The acrodynamic control and the thrust
control satisfy the constraints. The acrodynamic control using neural controller
stays almost constant throughout the flight trajectory.

Figures 4.39 to 4.44 present t,h'e results for the drags, lift, coefficients of lift and

drag, etc. All these are seen to satisfy the constraints and are in reasonable limits.
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Figure 4.36: (a) rc - rate of climb (m/sec) vs u - dimensionless velocity. (b) ¢ -

dynamic pressure (atm.) vs u - dimensionless velocity.,
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Figure 4.39: (a) D, - total drag (V) vs u - dimensionless velocity. (b) D, - ram drag

(N) vs u - dimensionless velocity.
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Figure 4.41: (a) L, - aerodynamic lift (N) vs u - dimensionless velocity. (b) T} -
total thrust (N) vs « - dimeunsionless velocity.
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Figure 4.42: (a) T,, - net thrust (\\') vs u - dimensionless velocity. () Cpy - coefficient
of total lift vs u - dimensionless velocity.
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Figure 4.43: (a) Cp, - coefficient of acrodynamic lift vs « - dimensionless velocity,
(b) Cpq - coefficient of acrodynamic drag vs u - dimensiouless veloeity.




136

2.5
20

1.5
[

(&)
1.0 3a

05

oool—-—_—_'='—- A 4

0.2 0.4 0.6 0.8 1.0
u - dimensionless speed

0.3 1 1 1

0.2 0.4 ) 0.6 0.8 1.0
u - dimensionless speed

Figure 4.44: (a) Cyy - coefficient of total drag vs u - dimensionless velocity, (1)
T, - D,/D, vs u - dimensionless velocity.




137
4.4.5 CASE 4a-b

The CASE 4a-b are variants of CASE 3a-b respectively with I, considered as vari-
able (I,,(M)). For both the cases the trajectories start at an altitude of 10km and
the final altitude is approximately 65km. The optimized parameter values for the
controllers are given in the appendix. The results are presented in F ig. 4.45,4.57.
They are mostly comparable witl those of CASE 3a-b except for the following dif-

ferences.

¢ Unlike CASE 3a-h the values of 7 and § are comparable. Fig. 4.46.

¢ The heat rate and heat load using the neural controller are lower than that
obtained using polynomial controller. This is in contrast to the previous case.
Fig. 4.48. This might seem as a contradiction, but this type of results are

expected, because of the sub-optimal nature of the solutions.

® The dynamic pressure in CASE 4b is in general lower than the dynamic pres-
sure of CASE da. This is consistent witl the fact that the trajectory of CASE
<a is higher, Fig. 4.49. Since a lower trajectory results in higher densities and

thus higher dynamic pressures.

o The final mass for both the cases is less than 0.2. Fig. 4.50. This is of concern
since this will leave smaller payload. The lower fiual mass is due to two

reasons. (i) we are using a low average I, value. The final mass will improve



ek 4

138

with higher average I, values. (ii) Since the average trajectory height is low

the drag increases. Hence more fuel is spent.
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4.5 Comparison Between Neural and Polynomial

Controller

The following is a comparison between the polynomial and the neural controller,

1.

-

The trajectories obtained using the neural controller are much smoother than

those obtained using polynomial controller.

It was much casier to obtain feasible solutions using neural coutroller than
while using the polynomial controller. This is very helpful, sinee it saves a lot

of computer time.

Neural networks are known to have a capability of representing any nonlinear
function given a sufficiently large number of nodes. Thus it is more reasonable
to use a neural controller than a polynomial controller. when the functional

form of the required controls are not known in advance.

It is observed that the desired level of control is not attained by varying 7
or A individually. i.c., for example. if you want to Lit a final height # s with
two different velocities uy and uy. It is not possible to attain this objeetive by
just varying 7. In fact A should also he simultancously varied to get the de-
sired result. This simultaneous variation of thrust control T and aerodynamic
control A is difficult when we are using two different polynomials for 7 and.

Whereas this coupling of 7 and) is inherent in a neural controller. Thus a
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Figure 4.53: {a) T,, - net thrust (V) vs u - dimensionless velocity. () Cy, - coefficient
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better control is achicvable using an neural controller. This was also observed

while performing the simulation study.

It is observed that the heat loads obtained when using neural controller is
slightly higher than those obtained using polynomial controller. This is be-
cause of the sub-optimal nature of the study under consideration. However.

the results obtained are in an acceptable range.

It is seen that the fuel spent in some cascs using the neural controller is higher.
Even though the constraints on the fuel mass are satisfied in all cases, efficient
use of fuel is very beneficial. In this respect the neural controller seems to be
better. However, we should note that onr objective was only to minimize the

heat load. and was not concerned with fuel consumption.
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Chapter 5

CONCLUSIONS AND FUTURE

WORK

5.1 Conclusions

The study of control of hypersonic flight trajectories is of prime importance in the
development of future hypersonic .\'chi('los. This study has produced snb-optimal
solutions to the trajectory optimization problem. An overview of the fundamental
concepts needed for performing this study is presented. This includes derivation of
equations of motion. the atumsphle‘re, aerodynamic and propulsive forces, hypersonic
aerodynamic heating and an introduction to ncural network. Ou the basis of this
fundamentals the problem of minimizing the heat load is formulated as a non-linear

optimization problem. All necessary constraints that arise due to physical and
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mission requirements are incorporated.

Two different forms of controllers are used to transform the optimization problem
into a finite dimensional problem. The two controllers used are polynomial controller
and neural controller.

An extensive optimization and simulation study was performed to obtain sub-
optimal solutions to the problem. Our cases are studied by varving initial and final
altitudes and by considering specific impulse as a constant or variable. Each case is
studied by using both the polynomial controller and neural controller. The results
obtained in general satisfying all the physical and mission constraints. This shows
that the trajectories lie within reasonable flight corridor. The heat loads obtained
are also within reasonable limits.

It is seen that there is not much difference in the trajectories obtained by con-
sidering the specific impulse constant or variable. The main affect is on the fuel
consumption. From the comparisqn of the polynomial and neural controller it is
seen that the overall performance of ucural coutroller is hetter. However., in some
instances the results obtained by the polynomial controller are better. Further stud-
ies with different forms of neural and polynomial controllers are needed to confirm
these results.

In general the study performed shows that the minimized heat loads for hyper-
sonic vehicles using air-breathing engines is in the range of 300k.J/em? to 350k.J Jem?,

The new (neural) control scheme introduced performs very well and might serve as
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a good alternative to the other forms of controllers.

3.2 Suggestions for future research

1. Studies could be performed with 3-D cquations of motion. i.c.. relaxing the

constraint of flight in the equatorial plane.

2. We have studicd one forin of a neural controller, in future studies variations of
the neural controller could be studied and its effect on the optimal trajectories

ascertained.

3. Studies could be carricd out to obtain optimal solutions to this problem,

4. In the equations uséd in this study some of the vehicles parameters have heen
assumed. For a more accurate study we can make use of experimental data
or real life data. For example 3. reciprocal of the scale height is assumed
constant. this may be improved by using more data such as that obtained
form real flight tests. The drag polar for acrodynamic forces could be a source

of error, this can be improved by considering experimental data.
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Appendix A

THE CONTROLLER

PARAMETERS

Controller Parameters CASE 1a

t; = 1.6000
@ =0.8999 ay =0.4299 «y = 0.9G9GE — 01
by =0.6000 by =0.3399 b3 = —0.1718E — 01

dy = 0.6000 d» = 0.1999 dy = 0.7499E - 01
Controller Parameters CASE 1b

t; = 1.6000




R

-0.2486 0.6345F — 01 -—0.9052
W) =

0.4989  0.6528 —-0.3964F — 08

0.4428 0.7118E - 01

[X]=| 0.2631E-01 0.1900

-0.4170 0.1856

dy = 0.6000 d,=0.19999 d3 = 0.2600E — 01

Controller Parameters CASE 2a

t; = 1.6000
a; = 0.8500 a3 =0.4399 a3 = 0.9700F - 01
by = 0.6000 by =0.3399 b3 = —0.1700E -~ 01

dy =0.6000 dy=0.1999 d3 = 0.7499F — 01
Controller Parameters CASE 2b

t; = 1.6000

] 0.2486 0.6345E — 01 0.9052
0.4989 0.9086E — 01 0.0000
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0.8000E — 01 0.7039E —01

[X]={ 0.2631E- 01 0.9000E - 01

-0.4170 0.8562E — 01

dy = 0.6000 d; =0.1999 d; = 0.2600E - 01

Controller Parameters CASE 3a

t; = 1.6000
4 = 08032 ay =04617 a3 = 0.9019E — 01
by =0.6000 b, =0.3399 by = —0.1637E — 01

dy =0.6000 dy=0.19999 dy = 0.7499F - 01
Controller Parameters CASE 3b

‘t; =1.6000
0.2486 0.6345E — 01 0.1052

0.4989 0.9086E — 01 0.3964E - 01

0.8000FE ~ 01 0.7039E - 01

[X] =1 0.2631E-01 0.9000E — 01

-0.4170 0.8562E — 01

dy = 0.6000 oy =0.1999 d3 = 0.2600F - 01
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Controller Parameters CASE 4a

- t; = 1.6000

a; = (0.8201 as = 0.4856 ay = 0.1025
by =0.5686 b, = —0.3499 b3 = 0.3505E — 02

d; =0.6000 dy =0.1999 d5 = 0.2600EF — 01
Controller Parameters CASE 4b

ty = 1.6000

] 0.7324E' - 01 0.6345E — 01 0.1559E — 01

0.5229E'~ 01 0.9086E — 01 —0.7314E — 03

0.1000 0.5460E - (2

[X]=1 0.2802E - 01 0.1400

0.6928E —~ 01 0.8562E - 01

dy =0.6000 dy =0.1999 d5 = 0.2600E — 01
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