A Process Migration Subsystem for Distributed
Applications: Design & Implementation

by

Syed Khaja Naseer

A Thesis Presented to the
FACULTY OF THE COLLEGE OF GRADUATE STUDIES
KING FAHD UNIVERSITY OF PETROLEUM & MINERALS

DHAHRAN, SAUDI ARABIA

In Partial Fulfillment of the
Requirements for the Degree of

MASTER OF SCIENCE
In

COMPUTER SCIENCE

January, 1996

INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI
films the text directly from the original or copy submitted. Thus, some
thesis and dissertation copies are in typewriter face, while others may
be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality
illustrations and photographs, print bleedthrough, substandard margins,
and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete
manuscript and there are missing pages, these will be noted. Also, if
unauthorized copyright material had to be removed, a note will indicate
the deleticn.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand corner and
continuing from left to right in equal sections with small overlaps. Each
original is also photographed in one exposure and is included in
reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6" x 9" black and white
photographic prints are available for any photographs or illustrations
appearing in this copy for an additional charge. Contact UMI directly
to order.

UMI

A Bell & Howell information Company
300 North Zeeb Road. Ann Arbor, MI 48106-1346 USA
313:761-4700 800.521-0600

{9 el e el e el Jt e e el e ol e Sl ool et el el e el e e el e el e

o

%ﬁﬁé&iﬁ%ﬁsﬁéa?ei#aia%is%Sﬁl#&iifi%i%iﬁi#ﬁl%&l&&iﬂ%&&

A PROCESS MIGRATION SUBSYSTEM
FOR DISTRIBUTED APPLICATIONS:
DESIGN & IMPLEMENTATION

BY

e

SYED KHAJA NASEER

A Thesis Presented to the
FACULTY OF THE COLLEGE OF GRADUATE STUDIES

KING FAHD UNIVERSITY OF PETROLEUM & MINERALS
DHAHRAN, SAUDI ARABIA

In Partial Fulfilment of the
Requirements for the Degree of

MASTER OF SCIENCE

In

COMPUTER SCIENCE

JANUARY 1996

%WWWEWWWWWW%WW’

A P A N P P P P S P P S PP R

UMI Number: 1377980

UMI Microform 1377980
Copyright 1996, by UMI Company. All rights reserved.

This microform edition is protected against unauthorized
copying under Title 17, United States Code.

UMI

300 North Zeeb Road
Ann Arbor, MI 48103

KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS
DHAHRAN, SAUDI ARABIA

COLLEGE OF GRADUATE STUDIES

This thesis, written by SYED KHAJA NASEER under the direction of his
Thesis Advisor and approved by his Thesis Committee, has been presented to and
accepted by the Dean of the College of Graduate Studics, in partial fulfillment of

the requirements for the degree of MASTER OF SCIENCE in COMPUTER
SCIENCE.

THESIS COMMITTEE

[TPopjigit=_

Dr. M. Bozyigit (Chairman)

\

Dr. S. Ghanta (Member)

t.\'\/ i ,é\
Dr. M. -\.I\Iulhem (Member)

,—Q_::';a?""
D1 K. S. AlTawil (Member)

e fs T

Department Chairman

Dean, College of Graduate Studies
®

¢-2 9
Date

ii

My
Parents
Sisters & Brothers-In-Law

022.005

022.006

022.073

022.074

ACKNOWLEDGMENT

In the name of Allah. Most Gracious. Most Mcrciful.

O Mankind! If ye have a doubt about the Reswrrection. (consider) that We
created you out of dust. then out of sperur. then outr of a leech-like clot,
then out of a morsel of flesh. partly formed and partlv unforned, in order
that We may manifest (Our power) to vou: and We cause whom We will
to rest in the wombs for an appointed term. then do We bring you out as
babes. then (foster vou) that yo may reach vour age of full strength: and
sonie of yvou are called to die, and some are sent hack to the feeblest old
age. so that thev know nothing after having kuown (1nuch). and (further).
thou scest the carth barren and lifeless, but when We pour down rain on
it. it is stirred (to life). it swells, and it puts forth every kind of beautiful
growth (in pairs).

This is so. because God is the Reality: it is He Who gives life to the dead,
and it is He Who has power over all things.

O Men! Here is a parable set forth! listen to it! Those on whom, besides
God. ye call. cannot create (even) a fiv. if they all met together for the
purpose. and if the flv should snatel away auyehing from them. they would
have no power to release it from the fly. Feeble are those who petition and
those whow thev petition!

No just estimate have they made of God: for God is He Who is strong and
able to Carry out His Will.

(The Holy Quran)

All Praise is due to ALLAH to whom belongs the dominion of the Heavens and

the Earth. Peace aud merey he upon His Propliet. I thank Him for giving me the

knowledge and paticuce to carry out this work.

Acknowledgment is due to King Fahd University of Petrolemn and Minerals for

support of this research.

v

First and foremost, I would like to express my hmnble gratitudes to my parents,
without whose blessings. support, encouragement and motivation. I wouldn't have
been what T am. I also thank my dearest sisters and brothers-in-law for their con-
stant impetus and backing. I thank ALLAH (S.W.T) for blessing me with such a

caring and affectionate family.

There have been several who influenced my work and life positively. and I con-
sider myself fortunate to have known them. Foremost among them is my thesis
advisor - Dr. Muslim Bozyigit, who Las heen fully involved in this research right
from day one. He was always available to me, even during the peak times of the
semester. I really enjoved the numerous discussions that we had and I am very
grateful to him for his paticnce, support and motivation. Especial thanks are due to
my committee members Dr. Glianta, Dr. Khalid, aud Dr. Mulliem for their active

support aud invaluable suggestions.

I offer my humble gratitudes to my dear friends Nisar. Kaleem. Ather. Hadi,
Feroze. Sajjad. Rahcem, Atif and Azhar for their direet/indirect contributions to
this work and for making my stay at KFUPM a pleasant experience. Special thanks
are due to the my acadeimic advisor Dr. Ghanta for his guidance and expert counsel.
I would also like to express my thanks to the faculty and staff of the Information &
Computer Science department - Dr. Mulliemr (Chaivman). Dr. Shafeeq. Dr. Sukairi.
Dr. Yousef (COE). Mr. Yazdani. Mr. Suhaib, NMr. Husni, Mr. Said. Nr. Garout

and Mr. Shahid. for providing an enjovable work atnosphere.

Contents

Abstract(English)

Abstract(Arabic)

1 Introduction

1.1 Workstation Based Distributed Enviromments
1.2 Nlotivatious

..........

2 Background

2.1 Literature Survey

2.1.1

3 The Migration Subsystem
3.1 Statement of the problem . .

3.2 System Features
3.3 Role of the subsystem in an NCS
3.4 Issues

.............

.............

......................

......................

......................

......................

....................

......................

4 Design of the Process Migration Subsystem (PMS)

41 System Requirements . - . . .

4.2 Location of the PAIS

4.3 Componeuts of the PAIS . . .

4.4 The Kernel-PMS Interface . .
4.4.1

4.4.2 The File & I/0 subsystem and PS
4.4.3

444 IPCand PMS

4.4.5 Design Alternatives . .

The Migration Dacmion

4.5.1 The Migration Protocol

Process Countrol Subsystem and PNS

The Virtual Memory Management Module and PAIS

......................

......................

......................

......................

..............

..............

......................

......................

.....................

vi

15
18
19
21
24

26
20
26
28
29

38
39
40
42
46
49
36
G0
66
71

i

79

A

1.6

4.5.2 Independent Applications .
4.5.3 Distributed Applications . .
Fault-Tolerance

Implementation Details

5.1 Introduction to Linux.
5.2 PMS Implementation
3.2.1 The E-Kernel L. L.
5.2.2 The PMS library
3.2.3 The Distributed NID
Experimentation & Results
6.1 Independent Applications
6.1.1 Compute Inteusive Processes
6.1.2 IO Inteusive Processes . . .
6.2 Distributed Applications
6.3 Hybrid Applications
6.4 Fault-Tolerance
6.5 Timing Measurements
6.5.1 Checkpointing

6.5.2 Migration

Conclusion and Future Work

Appendix

Installing the Linux OS

Al
A2
A3
Ad
AD
A6
AT
A8

Introduction
Getting Linux
Hardware Requirements
Installing the OS
Configuring the kernel -
Compiling the kernel
Configuring the N-Windows system
Possible problems

......

..........

Bibliography

vii

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

79
83
87

88
88
90
91
101
115

119
119
120
120
121
121
122
122
122
127

130
132

132
132
132
134
136
136
137
138
138

140

List of Figures

6.1
6.2
6.3

A Workstation based Distributed Computing Systemy 5
Structureof Unix o 7
Rate of Failure of nodeson a DCS. 12
Comparison of Network and Distributed OS 17
Backup group for the execution of remote jobs . . . o oo o000 23
The PMS within a futuristic NCS oo oo 28
Block diagram of the kernel enhanced with the PNIS .. 00 0L L. 43
System viewof the PNIS 45
Enhanced process state transition diagram00 50
Process’s state information o L oo L 54
Major ficlds of the process control block L. 35
File descriptors. File table, and Inode table L. 37
Mapping Logical address to Physical address 62
Memory layout of a process L oo o o 64
The file descriptor table with an opensocketo oo 69
The Sockets Model o o 69
A scenario of the usage of sysCheckpoint() 72
Software Architecture of the Load Balancing System Ih)
The Migration Protocols oo 81
General scenario for socket communication Lo 85
The Task State Segment L oo 93
A user process's viewof memory . L. Lo Lo oo 96
Data structures maintained by the PNIS L. 103
Role of AD in a distributed application. 116
The Checkpoint times for a Compute Intensive process 123
An I0-Intensive Intensive process with Lfile 123
An JO-Intensive Intensive process with 2file o000 124
An I0-Intensive Intensive process with 3file oo 0 oo 124

viil

6.5 A Communication Intensive process
6.6 A Hybridprocess
6.7 Comparison of the average checkpoint times
6.8 Comparison of the average migration times

List of Algorithms

5.1 The sysCheckpoint() systemcall
5.2 The sysRestore() systemeall
5.3 The minit PMS library function
5.4 The checkpoint PNIS library function . . .
5.9 The msendto PMS library function

5.6 The sigusrlHandler PNS library function .

ix

THESIS ABSTRACT
Name: SYED KHAJA NASEER

Title: A PROCESS MIGRATION SUBSYSTEMI
FOR DISTRIBUTED APPLICATIONS:
DESIGN & INIPLEMENTATION

Degree: MASTER OF SCIENCE
Major Field: INFORMATION & COMPUTER SCIENCE

Date of Degree: JANUARY 1996

Workstation-bused Distributed Computing Systems (DCS) are getting popular in both
academic and commercial communities duc to the continuing trend of decreasing
price/performance ratio of workstations and the rapid development of networking
technology. However. the ectual work load on individual workstations is usually di-
verse, and in some. the load may be much lower than their computing capacity. As
a result, some workstations would often be under-utilized, while the others are over-
loaded. A preemptive process migration facility can be provided, in such o distributed
system, to dynamically relocate executing processes among the component machines.
A migration based relocation can help cope with dynwmic fluctuations in load and
service needs, meet real-time scheduling deadlines, bring a process to a special de-
vice, or umprove the system’s feult tolerance. Such « facility. however, has not been
available in the context of conventional operating systems such as Unxz. Most of the
work on providing « process migration facility has been on limited-domain distributed
operating systems.

This study outlines the design and implementation of a stand-alone Process Mi-
gration Subsystem (PMS) that provides the fucility of migrating processes ezecuting
on a DCS. The subsystem can handle migration of independent processes as well
as processes belonging to distributed applications. The communication among such
processes s mamntained transparently cven after migration of any of the component
processes.

Keywords: Process Migration, Checkpointing, Fault-Tolerance, Dynamic load-balancing.

King Fahd University of Petroleum and Minerals, Dhahran.
January 1996

Al J1 LM
2l st oSO It g
iy geanad A8yl Ot ldaslt pomged 88 alls ¢ At Wt Ol e
P pramrle : dr il
TV ol gl g e gl 1 il
A4 by 1 Bolgadt pu b

SV S (38 e o5l 4l oladt e daezadl de b (W ol sl

St Gt Uy ¢ 360 Jall oot (3 e0sY1] e i 5L 1 i I3y 5l
3l dladt e i Ll L oS0, L oAl 2 (3 e 0,0 BTy ¢ o glize Bals 0 K
U, Akn b 0555 28) ol ¢ B Bty . B all iaoeal) gl 30 e 1S G

" daitdly Sllaadl g " alis] B 3L B B ales (5 Y olla) 0,55 Lty ¢ LS 4
el & S Al et e i (K8 il o F ldall I el s ods e 8
¢ bl oLyl JL}S}\L}....J.J\.,.L:S\CAJ‘L.;HJ;.L;L.J MY Bkl Jo dedl gl wlles
Pl LS iy ¢ ol Sleor e b s woy ¢ ki) Slleall 8 ALl sl M) 534
sUar 1 Jlozs] o pinn . S oo Jordl Al oy 3 s g f gl om0 M
23338 Gladl il sl fadd) Ausil (3 08T JLb s 8 Lesd)

S Jam sy ¢ OLbeal g Jitn 8 U dadlly poanadll Jan 2l 0e
Slkanll jongz Ll G18GY pladi s | a1 Y) Audisl e S0l Slleall jong e
day g Bk e G5 Olleall 0da e oy Sl ddes | R e Slidas B ez o ol alied
. .a._l...;,__;ij.g._g.;

AUl aai ¢ paddl Jadd G5 4e ¢ oot Jud ¢ Ollesdl gy 1 coudl OLIS

e}la.“ é e ,U.‘ 37,))
ostall 5 J 55l g3 LU dmalr
a3 grandl 4y et &SN ¢ O gk

V44 by

Chapter 1

Introduction

A Distributed Computing Systemn (DCS)' is defined as a computing system con-
sisting of at least two autonomous processors counccted by a data communication
network, that appear to the users of the system as a single computer [3]. It is based
on the MIMD? architectural paradigm, wherein cach processor exccutes instructions
independent of the others. Thus, a DCS can be viewed as a virtual NMIND computer
which has a different program running on every node, or possibly several different
programs on every node if multiprocessing is involved. Users of a DCS are to be given
the impression that they are using a single, integrated computing facility, although
the facility is actually provided by more thau oue computer and the computers may
be at different locations. using the network to coordinate their work and to transfer
data among them. The limiting example of such a distributed computing system
is the Internet, comprising of fens of thousands of computers ranging from PCs to

Mainframes to Supercomputers, interconnected by the global Inter-Network.

n this rescarch, a DCS refers to a loosely-coupled distributed system
2Multiple Instruction - Multiple Data stream

In a DCS, resources may be shared by many processes; examples of shared re-
sources include files. printers, and CPUs. This sharing of resources may lead to
resource contentiol. as mauy processes try to aceess a particular resource at the
same time. Access to resources need to be scheduled so as to avoid couflict and to
maximize resource utilization. In a typical DCS, it is possible that some processors
are assigned more work than others. Thercfore, it is desirable for the workload in
a DCS to be evenly distributed to maximize the CPU utilization and minimize the
average response time. Load balancing algorithms try to assigu the tasks to proces-
sors in such a way that the load ou cacli processor is approximately the same. Thus,

in a DCS, Dynamic Scheduling and Load Balancing play an important role.

Almost all the algorithins on Dynamic Scheduling and Load-Balancing that have
been proposed in the literature [21] rely on some form of process migration facility.
Process Migration can be defined as the ability to move a process’s exccution site,
at any instant of time. from a sowrce machine to a destination machine of the same
(or different) architecture. A preemptive process migration facility can be provided,
in a distributed system. to dynamically relocate running processes among the com-
ponent machines. Such relocation can help cope with dynamic fluctuations in loads
and service needs, meet real-time scheduling deadlines, bring a process to a special

device, or improve the system’s fault tolerance.

However, such a facility is not common in distributed operating systems, due

largely to the inherent complexity of providing such facilities and the potential exe-

cution penalty if the migration policy and mechanism are not tuned correctly. There
are several reasons why migration is hard to design and implement. The mechanism
for moving processes must reliably and cfficiently detach a migrant process from
its source environment, transfer it with its context (the per-process data structures
held in the kernel) and attach it to a new environment on the destination machine.
This close association of the migration mechanism with the basic functions of the
operating system, such as process scheduling, memory management and interprocess
communication, has heen the major bottleneck in providing a migration facility in

conventional Unxx operating systeis.

Inherent in the definition of process migration is the concept of checkpointing.
In order to stop, transfer, and restart an executing process from one machine to
another, we need to have some form of checkpointing and restoration mechanism.
Checkpointing and rollback recovery is a standard technique proposed in providing
a fault-tolerant computing environment {26]. The goal of checkpointing, here, is to
establish a recovery point in the exccution of the program, and save enough infor-
mation to recoustruct the state of the program at this recovery point in the event
of a failure. To restore this recovery point, one needs to retricve the memory image
of the process, setup the relevant process/kernel data structures, restore the state

of the CPU registers and enable exccution of the process with the new process image.

Research pertaining to classical checkpointing and rollback recovery in database
systems is heavily documented. However, rescarch on migration in the context of

distributed systems has been very scarce. Most of the work on providing a remote

execution facility has been in custom-made distributed operating systems such as
Remote Unix [11], Butler {14}, Condor [12], and Amoceba [22]. Further, there is little,
if any, work on using checkpointing and process migration as a means of providing

fault-tolerance in Un*x based distributed systems.

1.1 Workstation Based Distributed Environments

Workstation-based distributed computing environments are getting popular in both
academic and commercial comnmuities due to the continuing trend of decreas-
ing cost/performance ratio and rapid development of networking technology. A
workstation-based DCS is a Computer system in which most machines are au-
tonomous personal multitasking workstations, caclh dedicated primarily to serving
its local user, interconuccted by high-speed local arca networks (Figure 1.1). In
most of these environments, workstations are assigned ownership to individual users
to guarantee the privilege of their processing demands. However, the work loads
on these workstations are usually much lower than their computing capacity, es-
pecially with the ever-increasing computing power of new hardware. As a result,
the resources of such workstations are often under-utilized and many of them are
frequently idle. Nevertheless, the demands on extra computing power would never
stop. There are always cases where users would like to take all the advantage of any
available CPU cycles on idling workstations for jobs that could not be processed on
their own machines. In applications known as Grand Challenges, the continuity of

the tasks is vital as restarting can be very expensive.

Figure 1.1: A Workstation based Distributed Computing System

(@1

Recently, the issue of how to effectively utilize computing power in worksta-
tion based distributed systems has sparkled many research ideas and experimental
systems. Most of the work concentrates on topics of analyzing workstation us-
age patterns, designing algorithms for remote capacity allocation, and developing
facilitics for remote execution. One important issue of sharing resources in such
workstation-based distributed environments is the reliability or fault-tolerant as-
pect of user progras. Since cach workstation is considered a personal resource of
its owner, the general policy regarding the control of these machines is to keep as
much autonomy as possible in the hands of their own users. That is, although work-
stations can be shared by remote jobs from other users, these remote jobs will be
pre-empted from the workstation whenever the local user needs to use the machine.
As a result, jobs running on a remote workstation are not guarantecd to run until
completion even without considering the possible failure of workstations or network
connections. In order to maintain reliable execution of rewote jobs, various mech-
anisms based on worm programs and checkpointing Liave been adopted for many

implementatious [10].

1.2 Motivations

The image that a computing systein provides to its users and the way they think
about the system, is largely determined by the operating system, not the underlying
hardware. It is the OS that manages the hardware resources comprising the com-
puting system and provides the base upon which user applications can be executed.
Thus, the basic functionality of the OS is to.prcscnt the user a virtual machine that

is easier to program than the underlying Lardware, The interface between the OS

~1

and the user programs is defined by a set of "extended instructions” that the OS
provides. These extended iustructions are known as "system calls” and are used to
access the services provided by the OS. The structure of the Unxx kernel is shown

in Figure 1.2.

Kernel

System Calls

Libraries

Commands &
Applications

Figure 1.2: Structure of Uuix

A fundamental concept in Unix is that of a process, which can be defined as
a program in exccution. The computing model defined by Unix is based on the
process being the basic unit of computation. This model is called the process model.
All the operations that are supported by the OS are at the process level. In other

words, a process is an atomic entity in Unix.

This model has been very effective and efficient for contemporary applications.
However, there is a need for a model that can support a finer granularity - at the

level of computational state, rather than at the level of processes. In particular, this

is required for long-running applicatious, for example, a cryptographic application
that needs to decipher a key. Such applications need huge computational power
and run for days and months. As the computation time increases, the probability
of sustaining the computation decreases, due to the possibility of failure of the ma-
chine/hardware for any of the scores of reasons. Other area of such long-running
applications include mathematical simulations, whether forecasting, oceanographic
modeling, computational acrodynamics, reservoir modeling, artificial intelligence

etc.

What is needed in such applications is a way of cnsuring that the programs run
to thair completion. Some sort of guarantee of successful completion despite the

possibility of failures. None of the contemporary OS5 provide such a guarantee.

In order to provide such guarantee, we need to change the fundamental process-
based model and extend it into one that is oriented at the computation state. We
need to have a mechanism that permits users to save a snapshot of the computa-
tional state of their processes, at regular intervals of time such that in the event
of failure, they can be restored to their latest state, rather than being restarted
from scratch. What we need is a mechanism for checkpointing and restoring the
computational state of the process. No such support is provided by Unxx or any of
its variants. This work intends to extend the existing process model of Unx so as

to give users the power to checkpoint/migrate their processes.

Un*x based distributed systems do provide some simple remote execution fa-

cilities for invoking operations on other machines, in the form of rsh and rlogin
commands. In order to understand their limitations, cousider the rsh command,
which provides an extremely simple form of remote invocation under Unix. rsh
takes as arguments the name of a machine and a command, and causes the given
command to be exccuted on the given remote machine. sk has the advantages of
being simple and readily available, but it lacks two important features: transparency
and eviction.

First, a process created by 7sh does not run in the same environment as the
parent process: the current directory may be different, environment variables are
not transmitted to the remote process, and in many systems the remote process will
not have access to the same files and devices as the parent process. In addition, the
user has no direct access to remote processes created by rsh: the processes do not
appear in listings of the user's processes aud they caunot be manipulated unless the
user logs in to the remote machine.

The sccond problem with rsh is that it does not permit eviction. A process
started by rsh cannot be moved once it has begun exccution. However, such a pre-
emption facility is essential in order to provide fault-tolerance, real-time scheduling,
load-balancing, load-sharing, or idle-workstation utilization.

Process Migration , therefore, provides additional flexibility that a system with

only remote invocation lacks.

Such a facility, however, is not available in the context of conventional Unxx sys-
tems. The main rcason has been the difficulty in isolating a process’s state from one

machine and reinstating it exactly on another. However, in the case of distributed

10

operating systems that have heen built from serately, their design has been organized
so as to minimize the amo.unt of process'’s state information maintained within the
kernel. Further, these systems are based on the message passing paradigm which
provides the two key aspects of MIND programming : Synchironization of processes
and, read/write access for cach processor to the memory of all other processors;
which makes the task of incorporating a process migration facility relatively easy.
Examples of such distributed operating systems are the Sprite [6], Charlotte [1],

Demos/MP [16). and Accent among others.

The emergence of a large number of workstation computing environments based
on Unix leads to the issue of how to effectively utilize the computing power available
in such distributed systems. Resource utilization iu such systems is very low, and
as per the statistics of various studics [24], at least onc-third of the total comput-
ing power is unused even at the busiest times of the day. This low utilization of
the workkstation makes such systems ideal candidates for the provision of a pro-
cess migration facility whicl is the basis for dynamic scheduling and load-balancing.
Process migration would enable cffective utilization of the vast computing power

latent in such workstation based distributed computing environments.

The provision of a process migration facility raises another important issue -
reliability or fault-tolerance aspects of a parallel application executing on the dis-
tributed system in the event of failure of the remote exccution site. In a typical
DCS, it is possible that some processors fail and some others are idle. In order to

provide fault-tolerance and to maximize CPU utilization it is desirable to reallocate

11

the tasks/processes exccuting on the faulty/failing processor to any other working
processor on the DCS. The increasing popularity of such systems makes it extremely

important to improve the systems reliability.

To visualize the importance of providing a fail-safe computing environment, a
narrow scope study was conducted on our departmental DCS. Of the 200 odd work-
stations comprising the DCS, a sct of about 35 machines were selected at random
and the number of failures of the machines over a period of 30 days were recorded
by a daemon process. The statics obtained are shown as a graph in Figure 1.3. A
failure rate of an average of 4 machines per day was observed, and as the number
of machines is increased, the rate is expected to grow lincarly. Each failure may
mean failure of a number of long-term or critical tasks. A Migration Subsystem can

restart tliese tasks on active workstations.

While the crux of the current rescarch has gone into the techniques for effective
load-balancing, dynamic scheduling and resource utilization; very little has been
done in the direction of fault-tolerant distributed computing within the context of
process migration. The traditional hardware redundancy systems for improving
fault-tolerance are not cost effective. Our work is motivated by the need for soft-
ware fault-tolerance to improve the reliability /availability of the system without any

extra cost ([15]).

No. of Failures

10

Failures/Day ~¢-~
9T o
8r -
No. of Nodes : 35

7t . -
°l : ; Time Span : 30 Days
il ' ' { Avg. Rate : 4 Fallures/Day
ry - A 1
3l : ° :,: |
2} ' ; -
1 PR L . .

0 5 10 15 20 pye -

Day

Figure 1.3: Rate of Failure of nodes on a DCS

12

13

The benefits and applications of a process migration facility in a DCS can be

summarized as follows :

e Cope with dynamic fluctuations in loads and service needs.

Bring a process to a special device.

e Achieve better overall throughput for concurrent/parallel applications.

Improve system performance by reducing inter-machine communication costs/time.
e Enable cffective utilization of resources (Idle machines).
¢ Provide fault-tolerance.

Although some distributed operating systems mentioned before do provide ex-
cellent example of the benefits of migrating processes during their execution, they
are mostly restricted to research envirouments and stand nowlere as compared to
the widely established user-base of standard Un#x systems. The objective of the
process migration subsystem is to allow user programs to be migratable among the
machines comprising the DCS. Such a process execution facility is especially suitable
for non-interactive, compute-intensive, long-running applications such as scientific
computations, simulations, image processing, neural-network or genetic algorithm
based applications, rather than interactive and “fast-turnarounc " applications that

exist for relatively short periods of time.

Nowadays, Network File System (NFS) hias beconie an integral part of distributed
computing systems. NFS provides on-line shared file access that is transparent and

integrated. The user can execute an arbitrary application program and use arbitrary

14

files for input or output without having to worry whether thie files are located on the
local mackine or have to be brought in from a remote machine. In fact, users need
not and do not kuow where their files and directories are physically located. In the
near future, a similar facility, say, Network Computing System (NCS) would allow
transparent execution of user processes on any of the machines comprising the DCS.
Users would submit their programs and applications at the local machine, but the
actual exceution site of their processes may be some other remote machine which is
idle or better suited for that application. The task of providing application/process-
level fault-tolerance, dynamic scheduling, dynamic load-balancing and proper re-
source utilization would be handled transparently by the NCS3. The provision of
these features would make it more powerful distributed systen. This rescarch is a

step towards building such a system.

3An ordinary distributed system provides these features ouly at the system-level

Chapter 2

Background

The image that a computer system presents to its users, and how they think about
the system, is largely determined by the operating system, not the underlying hard-
ware. Modern computer systems often have multiple CPUs. These can be organized
as multiprocessors (with shared memory) or as multicomputers (without shared
memory). The former tend to he tightly coupled, while the latter tend to be loosely
coupled. The basic characteristics of a distributed system is that although it com-
prises of multiple autonomous CPUs, the image it presents to the users is that of
an integrated single computer. Therefore, although shared-memory multiprocessors
also offer a single system image, they do so by centralized control, so there really is

only a single system, and hence cannot be considered as true distributed systems.

The operating system for loosely coupled, distributed systems can be classified
roughly into two classes - Network operating systems and Distributed operating sys-
tems. Network operating systems allow users at independent workstations to com-

municate via a shared file system but otherwise leave cach user as the master of his

15

16

own workstation. A typical example is a network of workstations connected by a
LAN. Each workstation has its own operating system. All the user’s commands are
normally run locally, right on the workstation. However, it is sometimes possible for
a user to log into another workstation remotely by using a command such as “rlogin
machine-name”, which allows the user’s own workstation to behave as a remote ter-
minal attached to the remote machine. Commands typed on the keyboard are sent
to the remote machine, and output from the remote machine is displayed on the
screen. To switch to a different remote machine, it is necessary first to logout, then
to use the “rlogin” command to connect to another machine. At any instant, only
one machine can be used, and the sclection of the machine is entirely manual.
Communication and information sharing is provided by a shared, global file sys-
tem accessible from all the workstations. The file system is supported by one or more
machines called file servers, which accept requests from user programs running on
the other (nonserver) machines, called clients, to read and write files. Workstations
can import or mount these file systems, augmenting their local file systems with
those located on the servers. While it does not matter where a client mounts a
server in its directory hierarchy, it is important to notice that different clients can
have a different view of the file system. The name of a file depends on where it is
being accessed from, and how that machine has sct up its file system. Because each
workstation operates relatively independently of the others, there is no guarantee
that they all present the same_dircctory hicrarchy to their programs. It is possible
that the machines all run the sanie operating system, but this is not required. If the
clients and servers run on different systems, as a bare minimum they must agree on

the format and meaning of all the messages that they may potentially exchange. In

17

a situation like this, where cach machine has a high degree of autonomy and there
are few system-wide requirements, people usually speak of a network opcerating sys-

tem.

Network operating systems are, therefore, looscly-coupled software on loosely-
coupled hardware. Otlier than the shared file system, it is quite apparent to the users
that such a system consists of numerous computers. Each can run its own operating
system and do whatever its owner wants. There is essentially no coordination at
all, except for the rule that client-server traffic must obey the system’s protocols.
Distributed operating systems, on the other hand, present the entire collection of
hardware and software into a single integrated system, much like a traditional time-
sharing system. In other words, a distributed systein is one that runs on a collection
of networked machines but acts like a virtual uniprocessor. Figure 2.1 brings out

the major differences hetween these two systeins.

Characteristic Network OS Distributed OS
Looks like a virtual uniprocessor ? No Yes
All workstations run the same OS ? No Yes
Communication primitives Shared files Messages
Network protocols required ? Yes Yes
File sharing semantics Not weli-defined well-detined

Figure 2.1: Comparison of Network and Distributed OS

The essential idea is that the users should not have to be aware of the existence

of multiple CPUs in the system. Thus, a true distributed system has certain funda-

18

mental characteristics. There must be a single, global interprocess communication
mechanism so that any process can talk to any other process. Process management
must also be the same everywhere. How processes are created, destroyed, started,
and stopped must not vary from machine to machine. There must be a single set
of system calls available on all machines, and these calls must be designed so that
they make sense in a distributed environment. The file system must look the same
everywhere, too. As a logical conscqucncc.of having the same system call interface
everywhere, it is imperative that identical kernels run on all the CPUs in the sys-
tem. Doing so makes it casier to coordinate activities that must be global. For
example, when a process has to be started up, all the kernels have to cooperate in
finding the best place to execute it. Nevertheless, cach kernel can have consider-

able control over its own local resources, and handles process /memory management.

No current system fulfills this requirement entirely, but a number of candidates
are on the horizon. This study is a step towards enhancing the functionality of
the conventional, centralized Unixx OS so as to transform it into a true distributed

operating system.

2.1 Literature Sufvey

A basic feature of a true distributed system is its ability to migrate executing pro-
cesses among the machines, which would enable transparent load-balancing, dynamic
scheduling, and fault-tolerance. Rescarch on migration in the context of distributed

systems has been very scarce. Most of the work on providing a remote execution

facility has been in custom-made distributed operating systems such as V-System

19

(13], Butler [14], Remote Unix [11], Condor {12] and Amocba [22]. Further, there
is little work on using checkpointing and process migration as a means of providing
fault-tolerance in standard Unixx based systems [26]. This scction discusses some

of the attempts that were made in this direction.

2.1.1 Process Migration

The Distributed Automated Workload Balancing System (DAWGS) developed by
Clark and McMillin [3], allows transparent remote exccution of users’s jobs in a work-
station based environment. DAWGS uses a distributed scheduler based on a bidding
scheme to detect idle machines and is capable of checkpointing and migration. The
authors were able to provide such a facility by incorporating special sections of code
in the kernel and modifying most of the system calls. Their environment comprised
of homogeneous machines running the IBM’s Academic operating system, a 4.3 BSD
derivative. The major limitations of DAWGS is that the migration mechanism is
scattered all over the kernel, thereby making the facility non-portable. Another
drawback is that it doesn’t support sockets, lience it cannot support migration of
distributed applications comprising of multiple processes (tasks) that interact with

each other over the network.

In [16], Powell and Miller present DEMOS/MPD - a message-based operating
system for multi-processor systems. It is based on the micro-kernel paradigm and
provides a complete encapsulation of a process. There is no uncontrolled sharing of
memory and contact with the operating system, I/0, and other processes is made

through a process’s links (buffered, one-way message channels). There is no process

20

state hidden in the various functional modules of the operating system. On the
other hand, the system servers cach maintains its own state, thus no resource state
(except for links) is in the process state. Once a process is taken out of execution,
it is a simple matter to copy its state to another processor. Further, the processors
are all identical and provide the same service thereby forming a homogeneous com-

puting environment. However, this OS has not really left the research labs.

In {22], Tanenbaum describes the details of Amocba - A micro-kernel based op-
erating system. An important feature of Amocba is that it has no concept of a
“home machine”. When a user logs in, it is to the system as a whole, not to a
specific machine. The login shell runs on some arbitrary machine and the system
automatically looks around for the most lightly loaded machine to run each user
command. The system comprises of process servers, file servers, directory servers,
compute servers and run servers which together provide the required transparency.
Although a very powerful system, Amocha is still a rescarch tool. To support the
huge unix base of applications software, a Unix emulation package was added later.
The new design features (like contiguous allocation of virtual and physical memory,
10 paging or segmentation) may make it a relatively casy candidate for process mi-

gration support.

Doulas and Ramkumar [7] observe that most of the prior work on task migration
has been of limited use because of the high cost of migration.The authors believe
that the key reason for this high cost is that processes are typically large and heavy.

Accordingly, they suggest that task migration can be cfficiently implemented in

21

an environment that supports a) swall light-weight processes (threads) which are
cheaper to move and, b) message driven exceution. They use the Charm parallel
programming cnvironment to decompose applications into many lightweight tasks

which are substantially smaller than a typical UNIX process.

Jeffery et al [9] presents four algoritlms for checkpointing and restoring paral-
lel programs running on shared-memory multiprocessors. Their criteria for a good
checkpointing algorithm were: efficiency. concurrency and, low-latency overhead.
However, in these algorithms, the authors checkpoint only the user’s address space.
The states of the kernel and the file system were not saved. Hence programs that

rely on kernel and external states such as RPC and open files were not recoverable.

As it is clear from the above discussion none of these OS compare to the user-

domain of Unxx systeius.

2.1.2 Fault-Tolerance

The article by Yang and Qu [26] deals with the fault-tolerance aspects of remotely
executing jobs in a workstation based distributed system. The focus of this paper
is on the analysis of reliability ;md turnaround time for the execution of remote
programs. The authors discuss the two comumon control policies for fault-tolerance :
Optimistic (Non-Checkpointing) strategy and, Pessimistic (Checkpointing) strategy.
The optimistic policy assumes that jobs running on remote workstations are most
likely to complete successfully. Therefore, cach remote job is scheduled to run only

on one of the idling workstations until cither it succeeds on that machine or it loses

22

the machine (because of hardware failure or reclaim of control by the owner) and
is restarted at another workstation. The pessimistic policy always prepares for the
failure by periodically saving the states of a program during its exccution, so that
the program can be resumed from its most recent checkpoint.

The analysis of reliability and mean turnaround time of remote jobs running un-
der these two policies is mainly analytical. The authors justify that the theoretical
results derived from the analysis can serve as a basis for the choice of different param-
eters and policies in the development of fault tolerant systems for such distributed

environments. The work is based on the following assumptions :

o The operating systems on cach workstation provides transparent remote exe-

cution and scheduling facilitics.

o The system software on individual workstations can co-operatively collect load

information and schedule remote jobs to run on idling machines.

In order to support fault tolerant exccution of jobs on remote workstations ,
the authors have adopted a control policy based on the notion of a backup group
(Figure 2.2). A backup group is a collection of workstations which maintains the
information of a running remote job, and is responsible for making sure that the
remote job runs on one of the n;cmbcr machines. Should the running copy of the
remote job crash due to any unforesceen reason, other member machines in the group

will decide to choose another machine to continue the exccution of the remote job.

A backup group is called an n-backup group if it consists of n workstations. An
n-backup group intends to maintain, at all times, n workstations in the group. Ac-

cording to the authors, the notion of backup group provides information clustering

23

[0 Workstation
L'_] Workstation

funning
remota job

" 777 Backup group

Figure 2.2: Backup group for the execution of remote jobs

in a distributed environment such that Ouly the members in a group need to have
information about remote jobs which are under the control of the group. The au-
thors, however, do not provide any details on constructing and maintaining such

backup groups.

Srinivasan and Jha [19] presented some heuristics to improve safety and reliabil-
ity of the distributed system by mapping tasks to processors. This work is based
on the idea of allocating tasks with high exccution times to more reliable processors
and allocating large volumes of data to more reliable links. However, this approach
does not provide any form of fault-tolerance and a processor failure would still result

in a total system failure.

Tridandapani and Somani [25] proposed three scheduling strategies to improve
fault tolerance by utilizing the idle processors. The concept of running a secondary

version of each job on an idle processor was explored using preemption strategies to

24

avoid throughput degradation. This approach is cfficient if we are willing to spend
the time to run a sccondary version of each job. Although the concept of check-
pointing was not explored, it is very likely to obtain improved fault tolerance and
efficiency for jobs that have negligible communication time compared to processing

time.

A fault-tolerant resource allocation algorithm in dynamic distributed systems
was proposed in [17]. The scheduling of processes with some resource requirements
was discussed under process and crash failures. The degree of fault tolerance was
measured by the failure locality which is the maximum number of processes whose
liveness conditions can not be satisfied because of a process failure. The work we

present here is more general and is not restricted to resource allocation processes.

2.2 Objectives

The main objective of this study is to provide pre-emptive process migration ca-
pability to the standard Unixx systems, as a step towards transforming it into a
distributed system. As is clear from the above survey, no attempts have been made

in this direction. To attain this objective, the following approach have been outlined

for this research:

1. Determine the migration relevant internals of the Unixx operating system.

2. Develop new system calls to support process migration and provide the user-

level C library interface for them.

[é1]

. Implement a Checkpoint and Restore facility at the keruel level so as to be able

to checkpoint and restore any process.

. Develop a facility for transferring the checkpointed state of a process from

the host machine to the destination machine of homogencous architecture and

Operating system.

. Define the intcractions of the proposed process migration subsystem with the

existing file and process subsystems, as well as the user applications.

. Provide migration support for independent as well as communicating pro-

CCsses.

. The subsystem is expected to be stand-alone, implemented without modifying

the existing system calls and kernel code.

Chapter 3

The Migration Subsystem

3.1 Statement of the problem

The objective of this study is to design and implement a process migration sub-
system for the Unixx operating system. The work platform is a distributed system
comprising of a network of PCs running the Linux operating system (a Unix clone
for 1386+ machines). The study includes development of checkpoint and restore
mechanisms on which a process migration subsystem is implemented. The goal is
to enable migration of independent processes as well as communicating processes

belonging to distributed/parallel applications.

3.2 System Features

Ideally, a process migration subsystem is expected to possess the following features:

26

27

1. Transparency

Migration should not affect the behavior of cither the process or its peers. Its
execution environment must appear the same (access to files and devices) and
it should produce exactly the same results as obtained by execution on the
home (original) machine. To the rest of the world the process should appear

as if it had never left its home machine.

9. No Residual Dependencies

A host need not have to maintain any part of the process’s state after it
has migrated away from it. For example, no message forwarding (in case of

communicating processes) should be required.

3. Consistency

Ability to migrate any user process at any instant of its exccution, irrespective

of whether it is executing in kernel/user mode, slecping, or swapped out.

4. Flexibility

The subsystem should provide the mechanism to allow a user to migrate in-

dependent process, a set of process belonging to any parallel application.

5. Low-Latency

The checkpointing and restoration time should be kept low so that the over-

head on the process is minimal.

28

6. Reliability and fault-tolerance

Migration may fail in case of network or destination machine failure. However,
in such cases there should be no loss of data and the eftect should be as if the

process has not been migrated.

7. Security

Migrating a process to a remote machine should not compromise the security
of the process. The owner of the remote machine (.ie. the super-user of that

machine) should not be able to tamper around with this process.

3.3 Role of the subsystem in an NCS

The position of a migration subsystem in the futuristic NCS is depicted in Figure

3.1

User Applications

Parallelizing Subsystem

Schedufing Subsystem

Load Balancing Subsystem
Faull Tolerance Subsystem

Process Migration Subsystem

Distributed Computing System

Figure 3.1: The PMS within a futuristic NCS

The user’s application would be submitted to the parallelizing subsystem which

would decompose the application into a set of parallel tasks. These tasks along with

29

their communication/interaction patterns would be fed as input to the scheduling
subsystem which would come up with a static serializable schedule as per the user’s
requirements. These sct of tasks are then input to the load-balancing subsystem
which does the job of dynamic scheduling based on the system load and the pro-
gram's schedule. The fault-tolerance subsysten would then be used to ensure a
fail-safe execution of the process. To allocate/dcallocate a task to/from any of the
hosts of the DCS, the load-halancing subsystem would interact with the process
migration subsystem which would assign the task to appropriate hosts as per the
load-balancer’s requests. The load-balancing subsystem, scheduling subsystem, or
user applications can directly interact with the process migration subsystem to avail

a limited set of services.

3.4 Issues

The mechanism used to migrate a process depends on the state associated with
the processes being migrated. If there existed such a thing as a stateless process,
then migrating such a process would be trivial. In reality, processes have large
amounts of state (Real-Estate !!!), and both the amount and variety of state seem
to be increasing as operating systems evolve. The more the state, the more com-
plex the migration mechanism is likely to be. Let us now consider the design and

implementation issues that may he confronted in developing a migration subsystem.

o The Migration Interface

The user-interface to the migration subsystem can be through four major

functions:

30

1. checkpoint(pid)
2. restore(pid)
3. migrateIn(pid. fromMachine)

4. migrateOut(pid.toMachine)
In providing the checkpoint function, one can visualize three alternatives :

1. Provide these function at the user level so that he can include them in the
source code of the program and have regular checkpointing so as to avoid
loss of computation. Here the function checkpoint would checkpoint only

the currently running process and not its descendents, if any’.

2. A more general approach wherein the function would checkpoint the cur-
rent process along with all its descendents, if any.

3. A generic approach, checkpoint(pid), wherein the function would take a
process's id as parameter and allow checkpointing of any arbitrary pro-

cess, irrespective of whether it is running, sleeping or swapped out.

o Migration mechanism and policy

In providing a migration facility, it is possible to separate policy from mecha-

nisni.

Mechanism == What to migrate ¢

How to migrate ¢

Nike fork()

31

Policy = When to migrate ¢

Which process to migrate ¢

Wihere to migrate ¢
The migration policies might differ, depending on whether the main concern
is load sharing (avoiding, idle time on one machine when another has a non-
trivial work queuc), load balancing (such as keeping the work queues similar
in length), or application concurrency (mapping application processes to ma-
chines to achieve high parallelism). However, the migration mechanism itself

remains the same irrespective of the policy adopted.

o Location of the mechanismn and policy

The mechanism as well as the policy can be provided cither as

— a library utility outside the operating system, or

— an integral part of the kernel, in the form of a system call.

The policy is mostly associated with resource nuumgemcnt'z. System calls exist
which provide the necessary statistics needed for the policy decisions. Hence
policy is best provided as a library utility which uses the underlying function-
ality provided by the migration mechanism [1]. Also, since different situations
demand different policies, a policy utility outside the operating system would
be easicr to test and replace.

However, the migration mechanism is closely associated with the basic func-
tions of the OS such as process scheduling, memory management, I/O and

IPC. Hence it is a good candidate for inclusion in the kernel itself.

2Ex: Load Balancing and Scheduling rely on various machine usage statistics

32

o Muanaging the process’s state (What to Migrate ?)

A Process’s state typically includes the following:

~ Virtual memory.
In terms of bytes, the greatest amount of state associated with a process
is likely to be the memory that it accesses. Thus the time to migrate a
process is limited by the speed of transferring virtual memory. Handling
the virtual memory involves sliding through the process’s virtual memory
tables, mapping virtual pages to physical page frames, determining which
pages are dirty, checking whether they are in-memory or swapped-out and
finally saving/transferring them.

— Open files and Communication channels.

If the process is manipulating files or devices, there will be state associated
with these open channels, both in the virtual memory of the process
as well as in the operating system kernel’s memory. The state for an
open file includes the internal identifier for the file, the current access
position, and possibly cached file blocks. The state associated with a
message channel (eg: Sockets, Pipes, cte.) includes buffered messages
plus information about senders and receivers. Checkpointing involves
chasing through the kernel pointers to access the data structures® related
to these communication channels and saving their state, and setting them

up back in the kernel upon restoring.

3Local file descriptor table. global file table and in-core inodes

33

— Execution state.

This consists of information that the kernel saves and restores during a
context switch, such as register values, condition flags and stacks (user/Kernel).
This information is machine dependent and is the main bottleneck in
providing a migration facility in a true heterogencous distributed system
comprising of machines of varying architcctures.
— Other kernel state.

Operating systems typically store other data associated with a process,
such as the process’s identifier, a uscr identifier, the current working di-
rectory, signal masks and handlers, resource usage statistics, references
to the process’s pz;rent and children, and so on. Most of this information
is in the process control block (PCB) for the process. However, handling
some of the information such as pid of the waiting processes, the con-
trolling terminal, pointer to the PDDBRA, the kernel stack and in-core
inodes of the éxecutable, among others, need to be mapped onto the new

process’s environment after migration.

o Process state consistency

The process to be migrated should be frozen (stopped) at some instant of its
execution so as to ensure a consistent transfer. The issues involved here is

what to freeze and when to frecze ¢ Three activities need to be frozen during

migration :

1Page Directory Base Register : The register poiuting to the page directory for that process

34

1. Process’s execution
2. Outgoing communication
3. Incoming communication

The first two activities are trivial to frecze. However, to freeze incoming com-

munication, we can :

i

Inform all peers to stop sending

Delay/Hold all incoming messages and forward them after migration

Reject/Drop all incoming messages until the process has been migrated

The first option requires a complex protocol to stop and restart communica-
tion with the peers, especially handling those that are already on the way.
Rejecting incoming messages 1'cquires that the sender use some form of proto-
col that retransmits rejected messages (a UDP socket would not work). Thus
we are left with the optibn of delaying or holding the messages until it is safe
to forward/redirect them to the new site of the process.

The overall throughput of the process is affected by the decision of when to
freeze. The entire process of migration can be thought of as comprising of
following stages: Sclection, Negotiation, Marshall, Transfer, Demarshall, and
Restart. Selection is the task of choosing a process for migration, and is
usually a migration policy decision, Negotiation involves setting up the basic
infrastructure for migra.t..ion, such as checkpointing, Marshalling refers to the
procedure involved in converting the pointers and data structures of the pro-
cess’s state into a form so that they (::dll be reestablished, and Demarshalling

is the reciprocal of marshalling.

35

There are three options for the time of freezing :

— Immediately after selection.
— After negotiations are completed.

— After a major part of the state has been transferred.

In the latter approach, after negotiation all the dirty pages of the process are
marked clear and transferred in parallel with the process’s execution. Once
all the pages are transferred and the other process state has been setup, the
process is stopped and any pages that are marked dirty are retransferred.
Although these altcrnatives scem trivial, they do have a significant impact on

the process’s turnaround time.

o Transferring the state (How to Migrate ?)

The overall problem in migration is to maintain a process’s access to its state
even after it migrates. For cach portion of state, thie system must do one of

three things during migration:

1. Transfer the state.

2. Leave the state on the Home machine and arrange for forwarding.

3. Ignore the state and sacrifice transparency.
To transfer a piece of state, it must be extracted from its environment on the
source machine, transmitted to the destination machine, and reinstated in the
process’s new environment on that machine. For state that is private to the

process, such as its execution state, state transfor is relatively straightforward.

Other state, such as internal kernel state distributed among complex data

36

structures, will be much more difficult to extract and reinstate. An example
of 'difficult’ state is information about open files and the working set. Finally,
some state may be impossible to transfer. Such state is usually associated
with physical devices on the source machine. For example, the frame buffer
associated with a display must remain on the machine containing the display.
If a process with access to the frame buffer migrates, it will not be possible to

transfer the frame buffer.

The second option for cach picce of state is to arrange for forwarding. Rather
than transfer the state to stay with the process, the system may leave the
state where it is and forward operations back and forth between the state and
the process. For example I/O devices cannot be transferred, but the operating
system can arrange for output requests to be passed back from the process to
the device, and for input data to he forwarded from the device’s machine to
the process. In the case of message channels, arranging for forwarding might
consist of changing sender and receiver acldrésscs sc; that méssages to and from
the channel can find their way from and to the process. This approach results
in residual dependencies on the host machines through which the process has
been migrated. If such residual dependencies are allowed, we would end up
with the process’s state being distributed among machines all over the system.
This would lead to difficulties when the process migration mechanism is used
to provide fault-tolerance as one would need to keep track of all the machines
on which parts of the process’s state exists. Hence, residual dependencies are

best avoided as much as possible.

37

The third option, sacrificing transparency, is a last resort. If neither state
transfer nor forwarding is feasible, then one can ignore the state on the source
machine and simply use the corresponding state on the target Machine. An ex-

ample of such a situation is memory-mapped I/O devices such as frame buffers.

In addition to the above issues, another problem is that of incompatibility of
state representation among the different versions of the Unix family, such as 4.3
BSD, System 7 and others. In some versions, a part of the process’s state is kept in
the kernel, so as to improve cfficiency/performance and hence the data structures
used are different. This incompatibility forms a major bottleneck in providing a
flexible and transparent process migration facility. Architecture incompatibility of
the machines comprising the distributed system forms another bottleneck in provid-
ing cross-platform migratability. The architectural differences such as the number
of registers and their size, the direction of stack growth, support for multitasking
makes it difficult (if not impossible) to map the checkpointed state of a process
from one kind of machine onto another. A flavor of the difficulty can be obtained
by imagining the issues in mapping the Instruction Pointer (IP) of the executing

program - the instruction sets of the two machines may be quite different.

Chapter 4

Design of the Process Migration

Subsystem (PMS)

The Process Migration Subsystem (PMS) is mcant to be a stand-alone subsystem
that can be plugged onto an existing operating system, thereby empowering it with
the ability to migrate active processes!. The implication of this is that the function-
ality of PMS should not e distributed among the components of the existing OS,
but rather should be in the form of an enhancement module that can be attached
to it, in order to support migration.

However, the issues involved-in developing such a subsystem (see Section 3.4)
make it imperative to tailor (certain components of) the PMS so that it can inter-
operate with the kernel in which it is to be embedded. This scction describes the
design of the PMS, and outlines the arcas where the PAIS needs to be tailored

according to the OS in which it is to be embedded.

1An active process, in this context, implics any process that is presently in the process table
(task.list) of the OS.

38

39

4.1 System Requirements

The basic functionality of the PMS is to provide migration capability to the OS, so
that it can handle requests for pre-emptive migration of any process executing on
the DCS. A major counotation of this requirement is the ability to checkpoint and

restore active processes.

Processes can be basically classified into three types: CPU intensive, I/O in-
tensive, and communication intensive. CPU intensive processes generally belong to
independent applications - applications that do not interact witl any otlier processes
exccuting on the system. Processes of the latter two types are typically those belong-
ing to distributed or parallel applications - applications comprising of two or more
processes that execute on the same or different hosts of the DCS and interact with
each other in order to produce the required output. This interaction pattern, which
is defined and governed by the protocol followed by the application, can be either
through application defined “well-known” files. or through IPC mechanism provided
by the OS - such as shared memory, signalling, message passing, or commutication
channels such as pipes or sockets. However. since the processes of a distributed
application are meant to be exccuted on different Losts, the most common approach
is to use sockets as the channels for communication.

For distributed applications that are designed for static assignment of processes
to host, the end-point addresses (iu the case of socket-based communication) usually
get assigned to some variables of the program during the initial stages of execution
and are used for communication during the lifetime of the processes exccution. How-

ever, if such applications are to be run on an environment that supports migration,

40

the end-point addresses would not be valid once any of the component processes

migrate over to another lost.

Thus, from the users perspective, the PMS should be capable of not only migrat-
ing processes, but, in case of distributed applications, should also be able to sustain
communication among the component processes transparently, even after migration.
Apart from this, it should also be capable of migrating independent/parallel appli-
cation’s processes which are I/O intensive and perform read/write on files. The
major criteria Lere is that the results produced by such applications should be the

same, irrespective of whether they have heen migrated or not.

4.2 Location of the PMS

The first and foremost decision in the design is regarding the location of the PMS. In
order to facilitate portability, one could think of providing PMS entirely at the user-
level, as an application program along with a new library archive. This approach
can be termed as the User-level PMS or UPMS. To make his programs migratable,
the user would then need to use the appropriate library functions and have the code
recompiled. This would imply the availability of libraries for each programming lan-
guage which the machine/environment supports. However, the major bottleneck in
providing such a subsystem are the implementation difficulties that arise due to the
need to access the system’s registers (IP, SP, BP, Flags ctc.) and the information
embedded in the kernel data structures such as the PCB of the process, its open
communication channels, scheduling, accom;ting and user-management information

(refer to Section 3.4). Also, the possibility of a process being able to migrate out

41

another process has to be completely ruled out duc to the inlicrent segmentation
features of the Unxx kernels. Each process in Un«x has its own private address-space
and the scgmentation features of the kernel prevents a process from accessing the
address-space of any other process, unless two processes arrange to share a part of
their address-space through the use of system calls for shared memory. Although
it is theoretically possible to arrange so that the address-space of the process is

accessible from other processes, it would be highly unacceptable due to the security

breach that it would open up.

The close involvement of the PMS with the internal functioning of the kernel
suggests the need for incorporating the subsystem as a part of the kernel itself. This
alternative, wherein the PMS is incorporates as a new subsystem within the exist-
ing kernel, may be called as the Kernel-based PMS or KPMS. Such an approach,
apart from being cfficient, would allow an arbitrary process to migrate out any other
process. Since tlic kernel of conventional Unxx systems is monolithic, it has access
to the entire address-space on the machine, upon appropriate setting of the kernel
registers. This approach would, however, require major modifications to the existing
kernel routines - modifications/enhancements to parts of the file & I/0 subsystem,
Process Control Subsystem and even the Memory Management Subsystem. This
would lead to a situation wherein the functionality of the KPMS is distributed all
over the kernel, thereby making it difficult, if not impossible, to port it onto another
kernel. The benefit of having the PMS as an integral part of the kernel is that it
would facilitate implementation, as the mocl_iﬂcations/ enhancements to the existing

routines would not be major. A significant advantage of such an approach would be

42

that any existing application would become eligible for migration, as there would

be no need to modify or recompile the application.

A third alternative would be to have part of the PMS at the user-level and part
of it in the kernel. The part of the PMS that is to be plugged into the kernel, say
the Enhanced Kernel or E-Kernel, would provide the interactions needed to extract
the process related information cmbcddcd within the kernel, while the user-level
component of PMS would handle all those aspects that do not require kernel-level
ixlte1'\'e11§i011. This approach would lead to having the best of both the UPMS and
KPMS. The process migration subsystem that is discussed in this design is this
hybrid subsysten, wherein some components of the subsystem are embedded in the
kernel, while the other parts operate entirely at the user-level. The PMS referred
henceforth is precisely this subsystem. The layout of the kernel along with the PMS

is shown as a block diagram in Figure 4.1.

4.3 Components of the PMS

The PMS comprises of three components: a set of distributed Migration Daemons
(MDs), the PMS user-library, and the E-Kernel. The layout of these components is
depicted in Figure 4.1.

To provide process migration capabilitics, the PMS exccutes an MD on every
host of the DCS that is willing to take part in migration. In order to be migrat-
able, the user applications register themsclves with the MD running on their host,

through the use of PMS library routines, and interact with it to avail of its services.

Kernel Traps
Usertevet ~ ~ . 2 A & ’
Kernel Level
4 0 P Y Y
System Call Interface I
T T T
Y i
, | E-Kernel lé
| - iy |
A 4 4/ A Y
 Inter Process
File & VO - Communication.
Subsyslem 'Y\\\ Process R TR .
\ Control . Scheduler
x x ~a| Subsystem i j
' * Memory :
Buifer Cache .. Management :
| A A
! P |
Character - Biock i
U 1
)
Device Drivers '
) !
y i
| Hardware Device Controler I
A A Q A
Kernel Level k ‘ ;
Hardware Laval ! ’ i
\ \ Y
I Hardware Devices J

Figure 4.1: Block diagram of the kernel enhanced with the PMS

44

The MD, in turn, makes use of the PMS library routines to invoke the appropriate
kernel routines for migration. These routines are provided by that part of the PMS
which is embedded in the kernel, the E-Kernel, in the form of code that enhances
the kernel’s functionality, thereby cmpowering it with precmptive process migra-
tion capabilitics. The MD is, in fact, a component of the distributed program that
manages the migration of user applications (which might consist of one or more
processes/tasks) exccuting on the hosts of the DCS. The PAIS library forms the
interface to the E-IKernel. The MD makes extensive use of the functions provided
by the PMS library. User applications, however, may bypass the MD and access

some P)S library functions to avail a limited set of services directly from the library.

Figure 4.2 further elaborates this layout from a system-level perspective. In
the figure, P;, P and P, are migratable processes, in that they have registered
themselves with the local MD and hence can be migrated, either of their own volition
or by some other process, whereas process Py is non-migratable and the MD doesn'’t
even know of its existence. The MDs communicate with cach other in order to
exchange information regarding the location of processes, so that communication
among the component processes of a distributed application can be sustained in the

event of migration of any of them.

The implications of adopting this hybrid approach for the PMS and the required

interactions among its comporents is discussed in the following section.

Network an il o RS .

..............

Figure 4.2: System view of the PMS

46

4.4 The Kernel-PMS Interface

Files and Processes are the two contral concepts in a Unix system. The block diagram
of Figure 4.1 shows these two as logical subsystems, along with the proposed process
migration subsystem, and the interactions among them.

The figure demarcates three levels : User, Kernel, and Hardware. The system call
and library interface represent the border between user programs and the kernel.
System calls appear as ordinary function calls in C programs, and libraries map
these function calls to the pi‘imiti\'es needed to enter the operating system, through
well-defined interface points called Kernel Traps. When a user’s program invokes a

system call, exccution flow is as follows:

o Each call is vectored through a stub in libe, or the corresponding language
library-archive. Each call within libc is generally a syscallX() macro, where
X is the number of parameters used by the actual routine that provides the
functionality for the system call. For example, all the exec family of system

calls finally boil down to the ezecv system call.

e Each syscall macro expands to an assembly routine which sets up the kernel
stack frame and calls _system_call() through an interrupt. This function is the
entry point for all the system calls, and is responsible for saving all registers,
checking to make sure that a valid system call was invoked, placing the argu-
ments to the system call onto the relevant registers and ultimately transferring

control to the actual system call code via the offsets in the _sys_call-table.

o After the system call has exccuted, ;1'et.ﬁ'om_s'ys-call() is called. It places

the return value on the appropriate register and checks to see if the scheduler

47
should be run, and if so, invokes it.

o Upon return from the system call, the syscallX() macro checks for a negative
return value, and if there is one, puts its absolute value in the global variable

-errno, so that it can be accessed by library functions like perror().
Assembly language programs, however, may directly invoke the above under-
scored functions and bypass the system calls library.
Summary of existing kernel subsystems

File & I/O Subsystem : The file subsystem manages files - allocating file space,

administering free blocks, controlling access to files, and retrieving data for user
applications. Processes interact with the file subsystem via a specific set of system
calls, such as open, close, read, write, stat, chown, chmod ctc. To access the data,
the file subsystem uses a buffering mechanism that regulates/controls data flow be-
tween the kernel and secondary storage devices. The buffering mechanism interacts
with block I/O device drivers to initiate data transfer to and from the kernel. De-
vice drivers are the kernel modules that control the operation of peripheral devices.
The file subsystem also interacts directly with "raw” I/O device drivers without the
intervention of a buffering mechanism. Raw devices, sometimes-called character de-

vices, include all devices that are not block devices, such as ttys, printers, Network

cards, etc.

Process Control Subsystem : The process control subsystem is responsible for pro-

cess synchronization, inter process communication, memory management, and pro-

cess scheduling. The file subsystem and the process control subsystem interact, for

48

example, when loading a file into memory for exceution : the process subsystem has

to read exccutable files into memory before executing them.

The memory management module controls the allocation and deallocation of
memory and maps the virtual address space used by the applications onto physical
memory pages. Two policies are widely used for managing memory: swapping and
demand paging. In a swapping system, all memory pages belonging to a “victim’
process are swapped out to disk, whercas in a paging system the pages that are

swapped out need not belong to any one particular process.

The scheduler module allocates the CPU to processes. It schedules them to
run in turn until they voluntarily relinquish the CPU while awaiting a resource or
until the kernel preempts them when their recent run time exceeds a time quan-
tum. The scheduler then chooses the highest priority cligible process to run; the

original process will ruri dgain whén it becomes the highest priority process available.

The inter-process communication module handles communication, ranging from
asynchironous signaling of events to synchronous transmission of messages between
processes. Finally, the hardware control is responsible for handling interrupts and

for communicating with the low-level hardware devices.

The Process Migration Subsystem

The proposed migration subsystem would provide the mechanism which would en-

able a process to be migrated from the kernel on the source machine to that on a

49

target machine. In order to isolate an executing process, the migration subsystem
needs to interact closcly with both the file and the process control subsystems, so
as to be able to extract the process’s state embedded within them. This is precisely
the job done by the E-Kernel component of the proposed PAMS. One of the main
objectives of this research is to define the possible interactions among these subsys-

tems and develop the interfaces between them.

In order to be able to come up with the design of the E-Kernel, we need to know

the internal mechanism and data structures of the existing subsystems.

4.4.1 Process Control Subsystem and PMS

A process can be defined as a program in exccution, comprising of the program'’s
code along with its run-time data and stack. The lifetime of a process can be divided
into a set of states, cach with a certain characteristic that describe the process. The

various states and the transitions among them are depicted in Figure 4.3.

Consider a typical process as it moves through the state transition model. The
events depicted illustrate various state transitions. The process enters the state
model in the created state when, the parent process executes the fork system call
and, eventually moves into a state where it is ready to run. For simplicity, assume
the process enters the state ready to run in memory. The scheduler will eventually
pick the process to execute, and the process enters the state kernel running, where
it completes its part of the fork system call. When the process completes the system
call, it may move to the state user running, where it executes in user mode. After a

period of time, the system clock may interrupt the processor, and the process enters

User

Check- \
o erpt poi:(l:ed ;
Interrupt ~)
\‘ MigrateOut
\ N fntermu, Conitnue
Rsturn Yoy fflum Checkpoint
/ y
Keinel
Running Viratod
Restore
. F; ‘\
Proeret "‘ T Migrateln
! Exit
Reschedule — ‘ S
Process '
\ ST
Sleep , .
\ > Zombie |}
\ \ \ 1]
~ - 4
Memory Swap In Wakes, \
Avaiable
l SWap Out
fork() ;‘;‘mn
~—>-{ Created
Not Enough . a‘L o
Memory |
\ |
Asleep,
Wakeup Swapped

Figure 4.3: Enhanced process state transition diagram

51

state kernel running again. When the clock interrupt Landler finishes servicing the
clock interrupt, the kernel may decide to schedule another process to execute, so
the first process is preempted and goes back to the ready to run in memory state.
Eventually, the scheduler will choose the process to exccute, and it returns to the
state user running.

When a process executes a system call, it leaves the state user running and enters
the state kernel running. Suppose the sysfcm call requires 1/0 from the disk, and
the process must wait for the I/0O to complete. It enters the state asleep in memory,
putting itself to sleep until it is notified that the I/O has completed. Later, when
the I/O completes, the hardware interrupts the CPU, and the interrupt handler

awakens the process, causing it to enter the state ready to run in memory.

Suppose the system is exccuting many processcs that do not fit simultaneously
into main memory, and the swapper (process 0) swaps out the process to make room
for another process that is in the state ready to run swapped. When evicted from
main memory, the process enters the state ready to run swapped. Eventually, the
swapper chooses the process as the most suitable to swap into main memory, and
the process reenters the state ready to run in memory. The scheduler will eventu-
ally choose to run the process, and it enters the state kernel running and proceeds.
When a process completes, it invokes the exit system call, thus entering the states

kernel running and, finally, the zombie state.

The process has control over some state transitions at the user-level. First, a

process can create anothier process. However, the state transitions the process takes

52

from the created state depend on the kernel: the process has no control over those
state transitions. Second, a process can make system calls to move from state user
running to state kernel running and cuter the kernel of its own volition. However,
the process has no control over when it will return from the kernel; events may
dictate that it never returns but enters the zombie state (ex: receiving an Abort
signal). Finally, a process can exit of its own volition, but as indicated before, exter-
nal events may dictate that it exits without explicitly invoking the exit system call.
All other state transitions follow a rigid model encoded in the kernel, reacting to
events in a predictable way according to well-defined rules, such as - No process can
preempt another process executing in the kernel, for example; in order to maintain

the consistency of the kernel data structurces.

In this study, a process is empowered with additional functionality such that it
may decide to migrate itself to another kernel, by invoking the new migrateOut()
system call provided by PMS. This system call would lead it to the kernel run-
ning state, from which it would be checkpointed, marshalled and enter into the
checkpointed state, ready to be transferred over to the target kernel. This state is
similar to the zombie state, except that a process in the zombie state would have
almost no state information, whereas a process in the checkpointed state has its en-
tire state preserved. Upon completion of the migrateOut() system call, the process
would end up in the migrated state, which is a virtual state in which the process is
no longer in this kernel. Finally, a foreign kernel might migrate a process over to this
local kernel, in which case a (dacmon) process on the local kernel would invoke the

migrateln() system call and introduce the migrated process into the kernel through

53

the restored state, which is an exact replica of the checkpointed state of the process

as it was on the kernel from which it had migrated.

When the process is in the chieckpointed or the restored state, it needs to preserve
the complete state information of the process at the instant it was checkpointed. Let

us now see exactly what comprises the complete state information of a process ?

After the process is created by fork(), the kernel loads the executable file (binary)
of the process into memory during ezec(). The loaded process consists of at least
three parts, called regions: text, data, and the stack. The text and data regions
correspond to the ‘text’ and ‘data’ scctions of the executable file, but the stack
region is automatically created and its size is dynamically adjusted by the kernel at
run time. The data region can be viewed as comprising of two subregions: initialized
data and uninitialized data (bss). The statically allocated variables comprise the
initialized data region whercas the variable and data-structures that are allocated
dynamically form the unititialized data region. These components forming the state

of the process are depicted in Figure 4.4

Because a process can exccute in two modes: Kernel or User, it uses a separate
stack for each mode. The user stack, apart from holding the pushed registers and
parameters involved in the function calls, is also uscd to allocate memory for the
local variables declared /used within the functions; whereas the kernel stack is used
when the process is executing kernel code while handling system calls or interrupts,
and is null when the process exccutes in user mode. The function and data entries

on the kernel stack refer to functions and data in the kernel, not the user program,

54

f User Level Context }
T

ext

Data

bss
Stack

System Level Context
PCB

788
Kernel Stack

Figure 4.4: Process's state information

but its construction is the same as that of the user stack. An important point to be
noted lhere is that cvery process has its own uscr stack. but there is only one kernel
stack that is uscd by all processes exceuting on that kernel. In other words the kernel
stack is a global data-structure. In fact. it plays a dual role - Acting as a private
stack for the calling process. while handling system calls: and as a public arca when
processing interrupt handlers. All this information (except for the contents of the
kernel stack, when it is being used for handling interrupts) coustitute the PRIVATE

state information of thie process.

The most crucial information maintained by the process control subsystem comn-
prises of the processor state that.needs to be saved at cach context switch and, the
per-process data structure. called the process control block (PCB). The information
needed for a context switch is basically the contents of the hardware registers. while
the PCB comprises of the process management and accounting information. Some
of the major ficlds of the PCB are shown in Figure 4.5. Thus, the complete state
information of a process comprises of its private state. context switeh information

(TSS), PCB (taskstruct) and its kernel stack (if the process was in kernel mode at

(1]
(W]

that instant). as shown in Figure 4.4. This is precisely the information that needs to
be preserved when the process is checkpointed (apart from the information related

to I/O, mentioned in Scction 4.4.2).

Process Management

Memory Management

File Management

Registers Pointer to text segment Umask value
Program Counter Pointer to data segment Root directory
Program Status Word Pointer to bss segment Working directory
Stack Pointer Exit status Executable’s descriptor
Process State (R/S/Z..) Signal status Open files descriptors
Time Started Real UID Various flags

CPU time used Effective UID

Children’s CPU time Real GID

Time of next alarm Effective GID

Message queue pointers | Bit maps for signals

Pending signal bits Various flag bits

Process ID

Parent process 1D

Process group

Controling tty

Various flag bits

Figure 4.53: Major ficlds of the process control block

Migrating the process’s state information

When a process is checkpointed, its text region need not be saved, as it can be
easily obtained from the executable file (binary) of the program of this process. The
contents of the Initialized data, bss and stack regious, however, have to be saved
as they vary with the exccution- of the process and define the state in which the
process is at that instant (user/kernel). Saving and reinstating this information is
relatively straight forward. The contents of the PCB and TSS, however, need to be
mapped onto the new process's image during restoration. In TSS, the registers that
need special care are ESP and EBP, which depeud upon the state (user/kernel) of
the process at that instant. If the process was in a system call, at the instant of

checkpointing, these registers would point to the kernel stack, otherwise they point

ot
(=]

to the user stack. For the PCB, most of its compoucnts are pointers to other data
structures in the kernel and extracting their information implies chasing through the
pointers and arshalling their contents. This is the rcason that marshalling forms

the critical part of checkpointing.

4.4.2 The File & I/0O subsystem and PMS

The internal representation of a file is given by an inode (index node), which contains
a description of the disk layout of the file's data and attributes such as the owner,
access permissions, and access times. Every file has one inode, but it may have
several names (links), all of which map iuto one inode. When a process refers to a
file by a pathname, the kernel parses the file name one component at a time, checks
that the process has permission to search the directories in the path, and eventually
retrieves the inode for the file. Inodes are stored in the file system, but the kernel
reads them into an in-core inode table when manipulating files. The kernel contains
two other data structures: the file table and the user file descriptor table. Figure

4.6 shows the tables and their relationship to ecach other.

The file table is a global kernel structure, but the user file descriptor table is
allocated per process. When a process opens or creats a file, the kernel allocates
an entry from each table, corresponding to the file's inode. Entries in the three
structures - user file descriptor table, file table, and inode table; maintain the state
of the file and the user’s access to it. The file table keeps track of the byte offset in
the file where the user’s next read or write will start, and the access rights allowed
to the opening process. The user file descriptor table identifies all open files for a

process, including I/O devices, which are treated as files in Unix. The kernel returns

user file-descriptor table file table inode table

Count : 2
(Process A) Mode - write
0
1
2]
3 Count: 1] Count: 2
4 Mode : read-writ Path : /etc/passwd
Count: 1 Count: 1
Mode : write Path : /etc/dev/tty1
(Process B) .
0
1 Count : 1 Count : 1
2 Mode : read Path ; /Local/chk.c
3
4
i
i
i
«—— UserArea —>» « Kernel Area >

Figure 4.6: File descriptors, File table, and Inode table

58

a file descriptor for the open() and creat() system calls, which is an index into the
user file descriptor table. When exccuting read() and write() system calls, the kernel
uses the file descriptor as an index to access the user file descriptor table and follow
pointers to the file table and inode table entries.

An installation may have several physical disk units, eacli containing one or more
file systems. The kernel deals ou a logical level with file systems. The conversion
between logical device (file system) addresses and physical device (disk) addresses

is done by the disk driver.

Migrating I/O related process state

As far as the PAIS is concerned, to migrate a process, we need to take care of
preserving the process’s access to the files that it had opened and recstablish these
onto the other kernel. As is obvious from Figure 4.6, we not only have to save the
information of the user file-descriptor table, but also the information contained in
the global file table and the in-core inode table which are kernel data structures.
Since the user file-descriptor table is within the address space of the process, its
contents can be preserved simply by saving the process’s bss region. However,
saving and reinstating this and the other two tables would require very tedious
manipulations of the pointers involved, especially in cases where the pointers refer
to physical addresses, as is usually the case for kernel address space in most of the
Unixx systes.

Another alternative would .be to just save the file descriptors along with their
corresponding read/write positions and user identification/access information, and

ignore the other contents of the tables. During restoration, oue would need to use

59

these file descriptors to reopen the relevant files, and then change the contents of
the newly allocated tables to the chieckpointed values. Although this sounds fairly
simple, the major flaw is that the file descriptors do not form a unique identifica-
tion of the files existing on the filesystem. Instead of the file descriptors, we can
extract and save the physical disk inode number from the in-core inode table during
checkpointing and use this as identification, since inode nmunbers are guaranteed to
be unique within a given filesystem. Siuce kernels routines/functions exist which
take the physical inode number and return back the file descriptor, after filling up
the tables appropriately. this scems to be the casy and cfficient solution. Migration
between different filesystems would complicate the situation. This could be handled
by extracting and saving the filesystem ID from the inode table while checkpointing.

However. a much better and portable approach would be to keep track of the
files that are opened by the process, by providing a proxy to the existing fopen()
and felose() library routines. These routines would save the full pathiname of the file
that is being opened in a user-transparent internal data structure within the process.
During checkpointing. the read/write pointers for these files would be saved in the
data structure and the files flushed. Restoring would then be a matter of re-opening
these files by extracting their pathnames from this data structure and repositioning
their read/write pointers. Apart from being straightforward, this approach would be
Lighly portable. even across different file systems. This approach has been adopted
by the P)MS to deal with the files related state information during migration of the

process, and the proxy routines are provided by the PMS library.

GO

4.4.3 The Virtual Memory Management Module and PMS

Memory management in Unixx relies on the segnientation and paging support pro-
vided by the underlying hardware. Segmentation is used to give cach progran several
independent, protected address spaces. Paging is used to support an environment
where large address spaces are simulated using a small amount of RANM and some
secondary storage. When several programs are exceuting at the same time (Multi-
tasking), cither mechanism can be used to protect against interference from other
programs. The memory management features apply to units called segments. Each
segment is an independent. protected address space. Access 1o segments is con-
trolled by data which describes its size, the privilege level required to access it, the
kinds of memory references allowed (read, write, instruction fetch, stack push/pop,
etc.) and whether it is present in memory or ou disk. Segmentation is used to con-
trol memory access, which is useful for catching bugs during program development
and preventing a mishchaving program from tampering with the address space of
others. A frequent cause of software failures is the growth of the stack into the
instruction code or data region of a program.. Scgmentation can prevent this. The
stack segment would Lave a maximun size enforeed by the program or OS, and any
attempt to grow heyond would generate an exception (software interrupt). The seg-
mentation hardware translates a segmented (logical) address into an address for a
continuous. unsegmented address space, called a lincar address. If paging is enabled,
the paging software translates the linear address into a physical address. If paging

is not enabled, the lincar address is used directly as the physical address.

To better understand the intricacies of memory manageuient, let us look into

61

some the i486's memory management hardware. The process of trauslating a virtual
address contained in the CS:IP registers into the physical page frame is depicted in

Figure +.7. Before going into the dotails of the above figure, hiere are some basic

definitions:

o Segment Sclectors
A segiment selector points to the information which defines a scgment (called
a segment descriptor). Auy of the segment registers (cs,ds.cs,8s,cte.) can act

as a segnient selector.
o Scyment Descriptors
A seguient descriptor is a data structure in memory which provides the pro-

cessor with the size and location of a segment, as well as control and status

information,

e Secgment Descriptor Tables
A segment Descriptor table is an array of segment descriptors. There are two
kinds of descriptor tables:
1. The global descriptor table (GDT)
2. The local descriptor tables (LDT)

There is one GDT for all tasks, and an LDT for cach task being run. A descrip-

tor table is variable in length and may contain up to 8192 (2'3) descriptors.

s Segment Register 32 o M Instruction Pointer 0
Logical Address r Segment Seleclor lrll RPLI Oliset]
" 197
(index intc GDT/LOT) ; 0<»GOT :
1=>LDT i
LOT t
]
A !
: 1
Y :
1
..................... X
+32 |
: meneannee ©
..................... i
Protection Info. *® & oy ZT' vT / 1211 Diiear 8 Linear
Base Addr_|Segment Limi] L__oirectory able se Address
Page Directory Page Table Page Frame
31 15 0
Selector | Limit L L o= o o
Lot Base Address _PoDir Entry b~ A PoDir Entrylo~). Operand |
\ \
v k4 U Ed

w

Figure 4.7: Mapping Logical address to Physical address

63

A virtual (Logical) address consists of the 16-bit segment sclector for its segment
and a 32-bit offset into the segment. A logical address is translated into a linear
address by adding the offset to the base address of the segment. The base address
comes from the segment descriptor, which comes from one of two tables, the global
descriptor table (GDT) or the local desceriptor table (LDT).

Unlike segments which usually are the same size as the data structures they hold,
on the 486, pages are always 4K bytes. The paging mechanism treats the 32-bit
lincar address as having three parts, two 10-bit indexes into the page tables and a
12-bit offset into the page. A page table is an array of 32-hit entries. A page table is
itself a page, and contains 4096 bytes of memory or, at most. 11X 32-bit entries. Two
levels of tables are used to address a page of memory. The top level is called the
page directory. It addresses up to 1K page tables in the sccoud level. A page table
in the second level addresses up to 1K pages in physical memory. All the tables
addressed by one page directory. therefore. can address 1M or 220 pages. Because
cach page contains4lx or 2'? bytes, the tables of one page directory can span the
entire lincar address space of the i486 (220 x 2% = 232). The physical address of the

current page directory is stored in the PDBR (the CR3 register of the TSS).

Paging is used by Unixx in order to support demand-paged virtual memory.
When a program’s instruction attempts to access a page which is on disk, the pro-
gram is interrupted in a special way - it allows the operatiug system to read the
page from disk, update the mapping of linear addresses to physical addresses for

that page, and restart the instruction. This process is transpareut to the program.

64

Migrating VM related process state

The virtual memory of a process forms the greatest amount of state associated
with it, usually in the order of 2% pages. However, at any iustaut of time, only a
fraction of these pages are in use by the process. Also, since pages are allocated and
deallocated as per demand. during the process’s execution. there might be holes in
the address space of the process. The memory layout of a process is shown in Figure

1.8.

Text

Initialized
read-only data

Initialized
read-write data

From process's exectuable

Uninitialized
data

Figure 4.8: Memory layout of a process

To provide efficicnt migration, PNS Las to cusure that ouly those pages which
contain information needed by the process after its migration should be migrated.
To migrate a process. the MD would invoke the syvsCheckpoint system call provided
by the E-Kernel, which goes through the process’s virtual address space, obtains
the physical page fraumes corresponding to ‘a given virtual address, and saves the

contents of only those physical pages that have been accessed aund are dirty. It also

65

keeps track of the virtual addresses of the pages, so that during restoration, PMS
can maintain the original virtual addresses. To reinstate the process, the MD at
the destination host invokes the svsRestore system call, which reads the information
from the checkpointed image file and interacts with the page protection mechanism
of the kernel such that COW (Copy on Write) and READ-ONLY pages can be over-
written. If the virtual page to be restored doesn’t exist in the process’s page table,
sysRestorc obtains a free page from the kernel, overlays its contents from the image,

and restores its protection bits as they were at the instant of checkpointing,.

Some of the pages of the process may belong to the shared dynamically linked
libraries used by the process. Saving these during checkpointing would be unwar-
ranted, as they will he available at the destination host. However, the virtual address
at which these pages have been loaded (in case they are already in use by some other
processes exccuting on that site) may not be the same at the site of restoration. Sav-
ing theses addresses would be of no use as mapping them to the address existing
at the destination site would be highly inefficient, if not impossible. During check-
pointing, since the virtual address of the page, by itself, would provide no clues
as to which function of which library this particular page belongs, we would need
to lookup this address in the symbol-tables of all the dynamic libraries to obtain
the information. Similarly. upon restoration, one would nced to perform a reverse
lookup in the symbol-tables of these libraries at the present host, to obtain the
virtual address at which the required function’s pages are preseutly loaded.

Inorder to overcome this bottleneck, the PMS simply ignores those pages which

are shared. The implication is that processes that use shared memory for IPC are

66

nou-migratable. However, such processes do not exist in practise, since this form
of IPC is never used in developing distributed applications. Further, using shared
memory as the IPC medium has hecome outdated, and applications using this are
virtually non-existent on any real DCS. While restoring the process, the PMS simply
starts exccuting the process from scratel, with an argument of “-r”, which forces
it to go into restoration mode immediately upon excecution of the first few instruc-

tions. By the time the process starts exceuting, the kernel would have set up all

its dynamically linked library pages, and the PNS need not be bothered about them.

Apart from this, some of the entries of the process’s page tables point to pages
that contain the kernel routines and system calls that are used by this process. Since
these pages will be available at the destination kernel, the PNS can safely ignore
them. For pages that have been swapped out, trying to read their contents during
checkpointing would result in a page-fault. and the kernel would have it loaded
back into memory and restart the read instruction transparently. Hence, as far as
the PMS is concerned, there is no difference between a page that is in-memory or

swapped out to disk.

4.4.4 1IPC and PMS

The Inter Process Communication (IPC) module of the process control subsystem is
responsible for handling the communication between processes. The most simplest
and primitive form of communication among process is through files, wherein one
process writes to a “well-known” file aud one or more processes read form it. PNS

already provides support for migration of processes with open files. However, the

67

standard IPC mechanisms supported by UnixX systeils arct message queues, shared

memory, semaphores, signals, pipes and sockets®.

Message queues allow processes to send formatted data strcams to arbitrary pro-
cesses, sharced memory allows processes to share parts of their virtual address space,
and semaphores allow processes to synchronize execution. A pipe is a bi-directional
communication channel that can be used to pass data between two processes, while
signals are used to inform processes of asynchronous cvents. All these IPC mech-
anisms are designed for a single-machine environment aud the state information
regarding these is embedded entirely within the kernel. Hence, from the PMS’s
perspective, processes using these are non-migratable due to the enormous overhead
involved in extracting/rcinstating the relevant state information from the kernel
data structures. However, sockets form a basic communication mechanism used by
distributed applications and hence it is very essential to provide support for mi-
gration of processes using this form of IPC. The following discussion describes the

functionality needed by PAIS to handle migration of processes using socket-based

IPC.

A socket is an application program interface (API) to the network communication
protocols. It is an abstract object from which messages can be sent and received.
Sockets are created within a communication domain® much as files are created within
a filesystem. Like files, each active socket is identificd by a small integer called its

socket descriptor, which is an index into the same user file descriptor table that is

2For details, refer to (2]
35uch as Unix domain. Internet domain and XNS domain

68

used by files.

The casiest way to understand the socket abstraction is to envision the data
structures in the operating system. When an application calls the socket() system
call, the kernel allocates a new data structure to hold the information needed for
communication, and fills in a new entry in the user file descriptor table of that
process to contain a pointer to this kernel data structure. Figure 4.9 illustrates

these data structures after a call to socket().

Although the internal data structure for a socket contains many ficlds, the system
leaves most of them unfilled when it creates the socket. The application that created
the socket must make additional system calls to fill in information in the socket data

structure before the socket can be used.

Migrating IPC related process state

To support migration of processes involved in communication using sockets, the PMS
needs to obtain the socket related data structures for the process to be checkpointed.
However, as depicted in Figure 4.9 and Figure 4.10, alimost the entire data structures

are embedded within the kernel.

The only socket related state information that is at the user-level is that con-
tained in the user file descriptor table, which gets saved while checkpointing the file
& 1/0 related process’s state information (as discussed in Section 4.4.2). Arranging
for marshalling the information embedded within the kernel would be oppressive,
to say the lecast. A much better approach would be to store the user-level socket
information in a PMS library data structure, through the provision of proxys for

the existing socket related system calls, such as socket(), bind() and sendto(). Dur-

User File Descriptor Table

Socket Layer
TCP
Protocol Layer |
P
|
. Etherne
Device Layer Driver f
N

User Level

Kernel Level

NETWORK

G9

Socket Data Structure

.77/ Family: PR_INET

‘__Service: SOCK_DGRM

v Local IP:

Remote IP:

1 Local Port:

Remote Port:

Buffers:

N

Kernel Level

Host A
Socket Layer
TCP
] Protocol Layer
P
\
Ethernet i
Driver Device Layer
y

Figure 4.10: The Sockets Model

Kernel Level

Hardware Level

70

ing migration, the contents of this data structure would be preserved simply by
checkpointing the process's address space through the checkpoint PMS routine, and
the sockets closed. Upon restoration, the restore routine would setup these sockets
by looking up the relevant information from this data structure and re-establishing

them.

Apart from this, the PMS has to ensure that the communication among the com-
ponent processes of a distributed application is sustained even after migration of any
one of them. The objective is to ensure that the data being sent reaches the process
to which it was originally destined. Our study has revealed that at the protocol
layer level, the kernel routines convert the user-specified end-point address into a
protocol specific network address. One approach to deal with the above problem is
to enhance these routines such that they maintain an additional data structure con-
taining the original and current locations of the migratable processes executing on
the DCS. Prior to performing tlie address conversion, these routines would lookup
the user-specified end-point address from this data structure and replace the original
address with the current one. This approach, however, would require tampering the
existing kernel routines, as this functionality cannot be provided as a new module of
the E-Kernel. Further, it would he specific to the particular network protocol being
used - adding a new protocol would imply changing some of its routines to provide

this functionality.

"The approach adopted by PMS to handle transparent communication, is to main-

tain this data structure at the user-level and do the trapslation at the end-point ad-

71

dress itself. This data structure is thus maintained by the MD at cach host, which
interact with cach other to keep this data structure updated. The details of the

protocol followed in doing this is deseribed in Section 4.5.3.

4.4.5 Design Alternatives

The basic prerequisite for process migration is the need to have the complete pro-
cess's state information saved prior to migrating the process, and restoring this
saved state upon resumption of execution at the target host. This implies provision
of the functionality of checkpointing and restoration. From the design of the PMS
discussed in Section 4.2 and depicted in Figure 4.1, the obvious candidate for per-
forming this task is the E-IKernel. Thus, the functionality of checkpoint and restore
is provided by the E-Kernel in the form of two new system calls - sysCheckpoint()
and sysRestore(). Further two new PMIS library routines have been provided which
act as the application’s interface to these system calls. This section discusses the
other alternatives available, justifies the uced for the E-Kernel, and bring out the

role of the MD in checkpointing/migrating any arbitrary process.

Checkpointing

In order to checkpoint a process, the straightforward approach would be to make it
checkpoint itself. In this situation, the sysCheckpoint system call wouldn't take any
arguments and would checkpoint the process invoking it (i.c. the currently executing
process) as the existing fork() system call. Thus. to checkpoint itself, the process
would invoke sysChieckpoint() somewhere within its code. Since the system call

would be serviced within its own context, the process would have complete access

72

to its entire address space. Furthier. since the system call is handled in the kernel
mode and since the Cuix kernel is monolithic. the sysCheckpoint() kernel routine
can access the global kernel data structures by setting up the appropriate segment

registers.

However. this simple approach has two subtle flaws. The first one is that we
cannot provide the functionality of having auy other process checkpoint/migrate
this process, due to the segmentation features of the kernel. as discussed in sections
4.2 and 4.4.3. Such a functionality is essential to provide fault-tolerance so that a
remote process can migrate-in the processes from the failed node. Another situation
is a distributed load-halancing application [18] wherein the load-balancer might need
to checkpoint and migrate-out a resource-hungry process from the host to a remote
machine on the DCS that is lightly-loaded or idle (sce Section 4.12). The second

flaw is more inconspicuous and is depicted in Figure 4.11.

. UserMode - KemelMode

Get the value of IP & other registers; «—
Save them to disk;

Figure 4.11: A scenario of the usage of sysCheckpoint()

The flaw is that upon restoration, the IP register would be pointing to the first

73

instruction shown in the sysCheclkpoint() routine of Figure 4.11. Hence, immediately
after restoration, the contents of the IP and other registers would again be saved
to the disk unnecessarily. This could lead to a deadlock situation if the process
is performing checkpointing inorder to migrate over to another host. Immediately
upon restoration, the process would again dunp the contents of its registers to the

disk and try to migrate to the specified host. which is now the same machine.

Another problem is that at the instant the process is checkpointed, it would be
in the kernel mode. Our study of the Linux kernel has revealed that, in order to
avoid the overlicad in translating a virtual address to physical address, the kernel
code is mapped directly into the physical memory locations. without going through
the page tables. Hence, everything within the kernel refers to physical memory loca-
tions, thereby making it impractical to migrate a process that has been executing in
kernel mode. This leads us with only two alternatives: make changes to the existing
kernel routines. or disallow processes to be migrated while they are exccuting in the
kernel mode. The first option has been ruled out. as it forces us to tamper with
the existing routines - routines that are in no way concerned with the PMS. as such
tampering would spread out the PMS related processing among the entire kernel.
This is in violation of our design’ideology, wherein we are interested in providing a
stand-alone subsystem that can be casily incorporated into any existing kernel. The
second option of not allowing a process to be checkpointed while it is executing in
the kernel mode, apart from l;cing too stringent, makes it impossible to have the
process checkpoint itself, as checkpointing necessarily forces the process to manipu-

late its kernel-level data structures. which can be accessed ouly when the process is

running in kernel mode.

Another issue can be raised by considering an example. A load-balancing system
is run on the DCS to allow efficient resource utilization, as described in [18]. The
load-balancing application spawns an application controller on one of the hosts on

the DCS and an application agent on cach machine, as shown in Fig.4.12.

Let process A be the application agent on host H. Among the many processes
running on H. let P be a “resource-hungry™ process. Process A decides that it is
best to move P to some other machine, say X, and invokes the system call migrate-
Out(P,X). This results in the sequence of calls leading to sysCheckpoint(P). At some
time during checkpointing. the process P has to be stopped. Since the checkpoint
system call is invoked in the context of process A, the kernel can easily stop process
P by putting it out of the ready queune. After marshalling the relevant data struc-
tures, the state information would be transferred over to the kernel on X and the
process restarted. However. consider the case wherein the 1)1;océss P wants to check-
point itself. Since the svsCheckpoint(P) system call would now be invoked within
the context of P itself. stopping the currently exccuting process (P) by removing it

from the ready queue would bring the system to an instant halt.

Approach Adopted

A strategy that overcomes all these drawbacks is to assign the job of checkpointing
to a special dacmon process. If a process wants to checkpoint itself, it would contact
the dacmon with its own pid and request it to be checkpointed. This scenario is

explained in detail in Scction 4.5.2. Since it is another process that is invoking

- o W = o oy
- -

A7 App. Agent [*
7 | App. Agent Load Agent N
7/ |Load Agent User Agent \
! (App. 1) 1
!)
]
{ ! Ethernet based LAN
T
: !
1
L
[Control Host !
App. Agent !/ |G Y
{App. Controller Load Agent ,l S
1| App. Agent 7
) Load Controller Y
’ .
. ’ The Virtual Parallel
g , Machine
’ ’
7 App. Agent , ’
[Load Agent s
!
] - -
. L=
: S/ A Token
P Ring based Gatoway
] S m—a LAN ol
! App. Agent
] Load Agent
1 User Agent
] (App. 2)
! [
\ /
' {
1 1
\ App. Agent !
1 |Load Agent i
\ User Agent ! -
\ (App. 3) [4
]
\ \
\‘ So FDDI LAN
e)
N 1 ~
\ ~
\
\\ App. Agent ‘|
\ Load Agent '
\
N 1
~ /
~ -

Figure 4.12: Software Architecture of the Load Balancing System

-1
[41]

76

the sysCheckpoint system call, the calling process would not be in the kernel mode
at the instant of checkpointing. Upon restoration, the process would start normal
execution without any overhead or deadlock. This technique could also enforce
security by allowing/disallowing certain processes to be clicckpointed by others,
since checkpointing is done solely by the dacmon, which is a controlled process.
This approach has been adopted in the design of the PMS, and the job of check-

pointing/restoration has been entrusted to the MD.

Migration

A process can, of its own volition, migrate over to another host, or any arbitrary
active process can request it to migrate out of the current host. In order to support

the latter case, we need to have asynchironous interaction among these two processes.

Let P, and P; be two processes exceuting on host 4. At some time of its ex-
ecution, Pj, which makes policy decisions regarding migration, decides to have P;
migrated over to some other host H. Since P; cannot checkpoint P; directly, it re-
quests the MD to do so on its behalf. At this instaut, P could possibly be executing
in kernel mode. Since P)S disallows migration of such processes, the MD cannot
straightaway checkpoint P;. Hence, it sends a message to I asking it to get itself
in a safe state (.ie. not in kernel mode). The problem now is: How does P; know
that the MD has sent a message to it? One approach is to have F; keep polling
its communication channel on .which it communicates with the MD. However, this
implies having a program-loop in the application’s code, so that the channel can be

polled in each of its iterations. Eunforcing such an approach in the application is

=1
-3

impossible, without having the programmer be aware of the need to ensure that the
channel must be polled. The objective of the PMS is, however, to relieve the pro-
grammer from the intriusic of the PMS as much as possible. Hence, this approach

is straightaway rejected.

The correct method, and the method that has been adopted here, is to use the
signalling mechanism of the OS to have asynchronous interactions. The MD would,
upon sending the message to P, send a signal (SIGUSR1) to it. The PMS library
routines that deal with the registration of the process with the MD, would take
care of setting up a signal handler for catching this signal (SIGUSR1). Thus, upon
receiving SIGUSR1, P; will go into the signal handler, which gets the process into
a consistent state and send back a message to the MD indicating its willingness to
be checkpointed. The MD would then use E-Kernel’s sysCheckpoint system call to
have P; checkpointed.

Thus, the MD forms an essential component of the PMS, not only to provide

migration, but also to support checkpointing of arbitrary processes.

4.5 The Migration Daemon

In order to provide efficient process migration, we introduce the concept of a Mi-
gration Daemon (MD). The idea is to have a dacmon process exccuting at every
node of the DCS that is willing to participate in migration. (Note: some of the
nodes of the DCS may be too susceptible to failures and hence may be excluded
from participating in migration). This dacmon process is the one which controls the

migration of processes from/to the machine. Its place would be that of the “appli-

78

cation agent” in Figure 4.12. If a process wants to chieckpoint itself, it would invoke
the PMS library function checkpoint(SELF). The library function would translate
into code that sends a message to the local MD asking it to checkpoint the process
which has sent this message. Since the MD is a different process, it would easily be
able to checkpoint any other process through the sysClheckpoint() system call. The
MD also plays a critical role in handling messages destined to the migrant process,

as discussed in later sections.

The MD has a major role to play in chieckpointing/migrating exccuting processes.

The need for a daemon process is outlined helow:

1. To ease implementation and make it cfficient, it is better not to have a process
invoke the sysCheckpoint() system call within its own context (see Section
5.2.1). Hence, it is the MD that will be invoking sysCheckpoint() on behalf of

a requesting process.

2. The sysCheckpoint/sysRestore system calls provide a mechanism by which any
process in the ready queue can be checkpointed/restored. Although restric-
tions can be incorporated to provide user-level security (like not allowing a
user to checkpoint /restore any other user’s processes), these restrictions would
make it difficult to use this mechanism to provide fault-tolerance, wherein the
basic requirement is the ability to save/restore any of the processes running
on a faulty processor.

In order to blend security with functionality, without loosing the power, we
enforce the restriction that only the super-user (root) can use these system calls

to checkpoint /restore any arbitrary exccuting process, whereas normal users

9

can check/restore only processes owned by them. Heuce, to support fault-

tolerance. we need a process owned by the “root™, and NMD is that process.

3. In order to deteet and tolerate the failure of processes running on a node in
the DCS. we need to have a distributed control over the DCS. The distributed

control is achieved by the Migration Dacmon.

Thus. to fulfill these requirements, a MD handles chieckpoint/migrate requests
from the user programs exccuting ou its node, as well as from the remote MDs
running on othier nodes: does the actual chieckpoint /restore by invoking the Check-
point/Restore system calls, within its context. on belialf of the calling process; and

cooperates with other MDs in salvaging failed processes.

4.5.1 The Migration Protocol

As in any distributed application, the MD has its own protocol - the Migration
Protocol, for interacting with user processes and the remote MDs. The Migration
Protocol (MP) has two components @ User-MD interactions, and MD-MD interac-

tions. The essence of these interactions is brought in focus in the following sections.

4.5.2 Independent Applications

Let us consider the simplest case first - Independent Applications, where a process
is a stand-alone entity, in that it has no interactions with any other processes exe-
cuting on the DCS. Oue can think of four scenarios: A process checkpointing itself
at regular intervals of time (for fault-tolerance), a process being checkpointed by

another process executing on the same node. a process migrating itsclf, or a process

80

being migrated out of the host by another process (load-balancer, for example).

In the first case, a process might want to have itself checkpointed at regular
intervals of time, so that, in the event of a failure, it could be restored to its check-
pointed state, without any significant loss of computation. In this case, the process
would use a PMS library routine which sets up a timer and invokes the check-
point(SELF) routine at the specified interval. The checkpoint(SELF) routine, after
dealing with the open files and/or communication channels (if any) of the process,
would send a “CHECIKPOINT™ request to the local ND asking it to checkpoint its
state information by providing its own pid (say ""). The MD would then invoke
sysCheckpoint(Py) and send back a *CONTINUE’ message once process ‘P’ has

been checkpointed. This sequence of interactions is depicted in Figure 4.13(a).

The distributed MDs, being incharge of providing a fail-safe DCS, have to ensure
that the processes (not necessarily all) exccuting on their nodes are checkpointed at
regular intervals of time, so that in the event of failure of the node, these processes
may be reinstated on another active node. This situation requires that an MD be
able to checkpoint any arbitrary process on its node. For any other process P; (say,

a load-balancer) that wants to checkpoint another process P;, it has to request the
MD to do so on its behalft. Figure 4.13(h) depicts this scenario.

Process P; invokes the PMIS library routine checkpoint(P;), which sends a “CHECK-
POINT P;” message to the logal ND. The MD checks whether P; is permitted to
perform this operation on P; and then forwards this request to P;. Upon receiving

this request from MD, P; gets itself into a consistent state by checkpointing all its

1See Section 4.5 for details

=> P;: MIGRATE_OUT SELF Host_B

=> pid: MIGRATE_IN App

> P;: CHECKPOINT SELF
==> pid: CONTINUE

(a) Self Checkpoint

> P;: CHECKPOINT Pj

> pid: CHECKPOINT

> Pj CHECKPOINT SELF

> pid: CONTINUE

(b) P; Checkpointing P;

(c) Seif Migrate

M D \fofk()
o

A .
(\, hdir(Wd).
\4

==> Pp: RESTORE SELF
==> pld: CONTINUE

1==>

P;: MIGRATE_OUT P; Host B

> pid: MIGRATE_OUT Host_B

> Py MIGRATE_OUT SELF Host_B
==> pid: CONTINUE

(d) P; Migrating Pl

> [MD]~ o0 "

o

!

. thdir(Wd);

‘tec('app' S

> pid: MIGRATE_IN App

> Pp: RESTORE SELF
7 ==> pid: CONTINUE

Figure 4.13: The Migration Protocols

3. 6xec(“ap;>"‘.‘-ﬂ):
OF
Ot

81

82

open files and I/O channels and calls checkpoint(SELF), thereby asks the MD to
checkpoint its state information. The MD then invekes sysCheckpoint(P;) to have
P; checkpointed and sends back the *“CONTINUE" message upon completion. P;

then goes on with its normal exccution.

The protocol required for a process to migrate itself outo another active node
is depicted in Figure 4.13(¢). To understand the need for such a situation, let us
consider the DCS depicted in Figure 1.1. Suppose the machine with SVR4 is the
fastest oue on the DCS. The application prograunner would like to make use of this
fact and exccute his application on it. However. after the computations/calculations
are done, the program needs to produce its results in the form of graphs on the Laser
printer cornected to the NMACH print-server. So the programmer places the PMS
library call migrateOut(SELF print-server) in the code so as to move the process
over to the print-server for faster service. This library routine would now expand
to code which, after checkpointing the process’s files and I/0 channels, sends the
message “MIGRATE.OUT P print-server” to the local NMD. The MD then gets
P; checkpointed by invoking svsCheckpoint(P;) and sends a “NIGRATEIN App”®
message to the MD on “DestHost'.

The remote MD. upon rcccip.t of this message, forks a child process md, which
sets its current working directory to “Wd' and execs *App’ with the “-1” option so
as to force it to go into restoration mode immediately upon execution. Process
md, which has now become Py (i.e. process P in state zero - the initial state),

immediately sets up its files and I/O as at the checkpointed state and sends a “RE-

SApp' is the name of P;'s exccutable

83

STORE P, message to the local MD. The MD thien uses sysRestore(Py) to have Py
restored to its original checkpointed state and sends a ‘CONTINUE’ message upon
completion, whereby the program resumes its normal execution, as at the instant of

checkpointing.

Finally, the protocol that allows a process P; to migrate-out any other process
P; is shown in Figure 4.13(d) and is self explanatory. Such a scenario occurs in
the case of a DCS that has support for load-balancing, dynamic task scheduling or

real-time processing.

4.5.3 Distributed Applications

A distributed application is basically a sct of cooperating tasks belonging to a single
program. These tasks communicate with cach other and collectively provide the
functionality of the application. From the PNS perspective, a distributed applica-
tion is just a set of processes (tasks), the major difference being that these processes
are involved in communication, with the processes on the same/different host(s) of
the DCS.

Thus, apart from the design issues involved in independent application, the PMS
now has the additional responsibility of maintaining the communication among these
processes, even after they have migrated from their home site (the site of their initial
execution/allocation). In order to handle this responsibility, the PNS needs to keep
track of the current site of exccution of all the processes belonging to the distributed

application(s) running on the DCS at any instant of time.

84

The most common and portable medium of communication is the socket. The
general sequence of socket related system calls needed to sctup communication

among two processes is depicted in Figure 4.14.

The process/task uses the socket() system call to create a new channel that
can be used for network communication. The call returns a descriptor which is
an index into the user file descriptor table. When a socket is created, it does not
have any notion of endpoint addresses, neither the local nor the remote addresses
are assigned. The task needs to invoke the bind() system call to specify the local
endpoint address for the socket, which is denoted as an IP Address - Port number
pair. In other words. it is as if the task is requesting the kernel to deliver to it
whatever arrives on that endpoint. Usually, this endpoint is known/built-in to all
the tasks of that distributed application. The recvfrom() and sendto() system calls
are used to transfer data among the tasks.

Now, when a task is migrated, its endpoint address (IP-Port) is no longer valid.
However, since the applications themselves have been designed to work on static
allocation of tasks to hosts, they would be blissfully unaware of the migration of
their peers and hence would still try to communicate with them at the same original
addresses. It is thus the responsibility of the PMS to translate the invalid original

endpoint address into a valid destination referring to the migrant task.

The idea is to develop a function that accepts the original IP-Port address and
converts it into the present endpoint address of the migrated task. To do this the
PAIS needs to maintain a table - Migration Table. specifying the original and present

address of all the migratable processes on the DCS.

Task X

[socket ())

(bin;()]
Y

_...(recvfrom()J<

: blocks until data
- is recieved

Y

o

(sendt'o()]o- - - -
(]

Task Y
[f socket () J
r binc‘; () J

Y

Y
>(recvirom ()J

blocks until data

.............

Figure 4.14: General scenario for socket communication

86

This functionality of the PMS can be provided either at the kernel level or at
the user level, as has been discussed in Section 4.4.4. The most suitable candi-
date is the MD. Since the MD is a user level distributed application, it can easily
gather and maintain the migration table information. In order to convert the task-
specified endpoint address into the actual valid address, we have provided a PMS
library function - msendto(). This function has exactly the same semantics as that
of the sendto() system call. When a task uses msendto() to send data, the function
sends a message to the local MD comprising of the specified endpoint address. The
MD then looks up this address in its migration table and returns back the present

IP-Port combination. This address is then used in seudto() to actually send the data.

Maintaining the migration table requires additional support, which can be pro-
vided by additional PMS library routines which are clones of the existing socket
related system calls. When a socket is created. the msocket() and mbind() routines
would inform the MD so that an eutry can be created for it in the migration table.
The MD would then inform all other MDs on the DCS about the availability of this
new endpoint. Now. when a task migrates. the routine responsible for checkpointing
the open communication channels saves the original endpoint address and sends a
message to the local D, iuformi-ng it that a specific task is about to migrate out of
the host. The MD then updates the task’s entry in the migration table to indicate
that the task is in-migration. If an address lookup request comes at this instant from
msendto(). the MD would block the reply until the process has been migrated. Upon
restoration on the destination host. the migrant task would inform the MD at that

site about its old as well as new addresses. The MD updates its own information

and then broadcasts this message to all its peers. Thus, at any instant of time, the
contents of the migration table are maintained in a cousistent manner, in that each
MD has exactly the same copy of the table. Thus the combination of the migration
table, PAIS library routines, and the set of distributed MDs effectively solves the

problem of address resolution for migrant tasks of distributed applications.

4.6 Fault-Tolerance

The PMS provides the basis on which a fail-safe DCS can be constructed. In order
to provide fault-tolerance we need a roll-back recovery scheme, and checkpointing
is the only possible solution. In order to roll-back, we need to have a latest copy of
the process’s image. Hence, processes which are to be fail-safe need to arrange such
that they get checkpointed at a user-specified time interval. The PMS provides a
library routine - regCheckpoint(), which takes an interval and expands to code that
invokes checkpoint(SELF) at the specified interval. The steps involved in a process
checkpointing itself are depicted in Figure 4.13(a). Upon failure of the node or the
process, the process can be restarted from its checkpointed image (which is saved
onto a centrally accessible host, via NFS) by simply executing the process with the
“-1” option, as explained in Section 4.5.2.

Such a facility could be used by the fault-tolerance subsystem shown in Figure
3.1. The subsystem would monitor applications running on the DCS and, in the
event of failure of any of the i)l'occsscs/hosts. would transparently reinstate them
onto active hosts. The issues involved here are those dealing with the migration
policy, rather than the mechanism. Since P;\IS provides the migration mechanism,

the fault-tolerance subsystem would imply incorporating the decision-making logic.
)) 1 g

Chapter 5

Implementation Details

The work platform chosen for the implementation of the PMS is a distributed system
comprising of a network of PCs running the Linux operating system (a Unix clone
for 1386+ machines). The study includes development of checkpoint and restore
mechanisms on which the pre-emptive process migration facility is implemented.
Prior to delving into the details of the PMS implementations. let us look into the

features provided by Linux. and the reason for choosing it as the implementation

bed.

5.1 Introduction to Linux

Linux is a clone of the Unix operating system that runs on IBN PC compatible
machines with Intel-386/48G/Pentiun or equivalent processors. It was written from
scratch by Linux Torvalds (a graduate student at the Helsiuki University of Technol-
ogy, Finland), in collaboration withi an enthusiastic, world-wide group of volunteers

interacting through the Internet.

88

89

Linux is a full-fledged operating system that provides all the capabilitics normally
associated with commercial Unxx systems. It supports most of the features found
in other implementations of Unix, plus quite a few that aren’t found elsewhere. It is
a complete multitasking. multiuser operating syvstem aud is mostly compatible with
a number of Unix standards at the source level, including IEEE POSIX.1, System
V, and BSD. All its source code, including the kernel. device drivers, libraries, user
programs, and development tools are freely distributable. The major features of

Linux can be summarized as follows:
e Support for pseudo-terminals, loadable keyboard drivers. and virtual consoles.
e POSIX compatible job control.
o Kernel emulation for 387 FPU iunstructions.

e Support for a variety of filesystems such as ext2fs, Minix, Xenix, MSDOS and

ISO 9660 CD-ROM! filesysteny.

o Complete implementation of TCP/IP networking; including SLIP, PLIP and
PPP.

e Support for NFS. NIS, FTD, Telnet. NNTP and SMTP.

e Support for demand-paged loaded executables, disk paging and dynamically

linked shared libraries.

e Excellent compilers for C, C++, Pascal, Modula-2, Oberon, Smalltalk and

Fortran, standard utilities for text/word processing and the X-Window system

90

o Password security, file protection, multiple logins, virtual memory and multi-

tasking.
o Provides workstation capabilitics ou top of inexpensive PCs.

The most obvious reason for choosing Linux as the implementation platform has
been the free availability of its complete source code. This would allow us to make
an indepth analysis of the internals of the kernel and help in coming up with a
design that would be portable. However, the major reason is that since Linux is still
under development and enhancements, it would he possible to incorporate process
migration as an integral part of the system. Its free availability and the fact that
it runs on PCs, has made it a very popular OS in a span of just a couple of years.
It presently enjoys a wide user base in both academic and business environments.

Enhancing it with PMS would make it a full-fledged distributed operating system.

5.2 PMS Implementation

As illustrated in Figure 4.1, the PMS comprises of three major components: the
E-Kernel, the PMS library, and the set of MDs. The functionality of migration is ba-
sically handled by the E-kernel, which provides the sysCheckpoint() & sysRestore()
system calls, and the PMS library routines checkpoint(), restore(), migrateln() and
migrateQut() that form the interface to these system calls. The MDs play a major
role in checkpointing and migration, apart from ensuring sustained communication
among migrating processes belonging to distributed applications. The following sec-
tions elaborate the implementation details of the cach of these components of the

PAIS.

91

5.2.1 The E-Kernel

Checkpointing forms the fundamental mechanism needed to provide process migra-
tion capability. Checkpointing a process implies extracting its state information that
is dispersed within the basic components of the kernel, namely - File & I/O subsys-
tem, Process Control subsystem, and the Virtual Memory Management subsystem
(refer to Section 4.4.1). This makes it imperative to incorporate the checkpoint and
restore functionality within the kernel. The E-Kernel (or Enhanced-Kernel) is a
P\S module that is responsible for extracting a process’s state during checkpoint-

ing, and reinstating it on the destination host upon migration.

The E-IKernel comprises of a set of kernel-level routines that interface with the
existing kernel in the form of two new system calls - sysCheckpoint() and sysRe-
store(). The basic functionality of these system calls is to extract/reinstate the
process related information from/to the kernel.

Section 4.4.1 describes what exactly comprises the state information of a process.
This state information is governed by the operating system on which the process
executes. The characteristics of the OS are in turn defined by hardware support
provided by the specific machine gu‘éhitccturc which it manages. Thus, in the context
of this study, the state of a process is determined by the 486 machine architecture

and Linux operating system.

Process related state

The process related state basically comprises of its PCB and TSS, as shown in

Figure 4.5. The i486 processor provides hardware support for multitasking by storing

92

the processor state information needed for a context switch in a data structure in
memory, called the TSS. The fields of the TSS, as shown in Figure 5.1, are divided

into two main categories:

1. Dynamic TSS fields which the processor updates with cach task switch. These

fields store :

o The general registers (EAX, ECX, EDX. EBX, ESP, EBP, ESI and EDI).

The segment registers (ES, CS, FS, DS, GS and SS).

The flags register (EFLAGS).

The instruction pointer (EIP).

The selector for the TSS of the previous task.

9. Static TSS fields the processor reads, but does not change. These fields are

setup when a task is created. These fields store
e The sclector for the task’s ldt. The logical address of the stacks for
privilege levels 0, 1 and 2.

o The T it (debug trap bit) which, when set, causes the processor to raise

a debug exception when a task switch occurs.

o The basc address for the I/0 permission bitmap!, which points to the

beginning of the map.

1The i486 processor can generate exceptions for specific I/0 addresses. these addresses are
specified in the I/O permission bitmap of the TSS -

3 15 0
I/O Map Base Address | 0000 0000 0000000 |T
0000 0000 0000 0000] Selector for Task’s LDT
0000 0000 0000 0000 GS
0000 0000 0000 0000 FS
0000 0000 0000 0000 DS
0000 0000 0000 0000 SS
0000 0000 0000 0000 CS
0000 0000 0000 0000 ES

EDI
ESI
EBP
ESP
EBX
EDX
ECX
EAX
ELAGS
EIP
RESERVED
0000 0000 0000 0000 §82
ESP2
0000 0000 0000 0000 SS1
ESP1
0000 0000 0000 0000 SSo
ESPO
0000 0000 0000 0000 !:.ink (Old TSS Selector)

4C

48

44

40

30

2C

28

24

20

1c

Addresses are shown
in hexadecimal

Bits marked as 0 are
reserved

Figure 5.1: The Task State Segment

93

94

In the context of Linux, the per-process information is maintained in a data
structure called the task.struct. The TSS itsclf is a part of the task-struct and can

be accessed directly. The contents of the fask_struct structure are described below:

¢ Memory Management information ¢

Process memory liits ¢ unsigned long sturt-code.
end_code.end_duta, brk, start.stack;
Page fault counts : unsigned long min_fit. maj_fit,

cmin flit. cmajfit:

Local Descriptor table : struct desc_struct *ldt:
No.of resident pages : unsigned short rss:

The Task State Segment © struct tss_struct tss;

Virtual Memory : struct vin.arca_struct * mmap;

Other information : int swappable:; /* 0 = Process’s pages not swappable */
unsigned long kernel_stack-page; /* The kernel stack */

unsigned long saved_kernel_stack; /* V86 mode stuff */

¢ Scheduling information :

Present state of exccution @ wolatile long state:

Process priority : ' long counter, priovity;

Alaru intervals : unsigned long timeout, it_real-value, it-prof-value;
Timer values : wnsigned long itreal_iner, it_virt_iner;
Accounting : long utime. stime, cutime, cstime, start_time;

¢ Inter-process conmumuuication information :

Process identification : int pid, pgrp. session. leader, groups[NGROUPS];

Process relations : struct task_struct *p_opptr, *p_pptr, *p_cptr, *p_ysptr;
The wait queue : struct wait.queue *wait_chldexit;

Status of signals : unsigned long signal, blocked, flags;

Signal handlers : struct siguction sigaction[32];

Shared Memory : struct shin_desc *shm;

Semaplores : struct sem_undo *semun;

e File and I/O information :

Access control : unsigned short wid, euid, suid, gid, egid, sgid;
Process’s tty : int link_count. tty:

User mask : unsigned short wmask;

Inode table : struct inode *pwd, *root, *ezecutable;

File descriptor table : struct file * filp[NR-OPEN];

Virtual Memory related state

The VM related state of a process is in the form of memory pages spread over its
entire virtual address space. Figure 5.2 shows the map of the virtual address space

from the process’s perspective.

Since pages are allocated and deallocated dynamically, care has to to be taken
to ensure that only the working set of the process is extracted at the instant of
checkpointing. From the perspective of migration, the working set comprises solely
of the process's dirty data and bss pages. Pages belonging to shared libraries and
the kernel are common among all the processes exceuting on that kernel, and hence

can be ignored (see Section 4.4.3 for a detailed discussion).

96

0xc0000000 | The invisible kernel | reserved
initial stack

room for stack growth | 4 pages
0x60000000 shared libraries
brk unused

malloc memory
end.data uninitialized data
end_code initialized data

0x00000000 text

Figure 3.2: A user process’s view of memory
The E-Kernel system calls

The primary function of the E-Kernel is to provide the functionality for checkpoint-
ing and restoring any arbitrary process. The sysCheckpoint() and sysRestore()
system calls would. therefore, need to have a parameter that specifies the pid of
the process to be checkpointed or restored. These system calls, however, are not
directly invoked by the process to be checkpointed, as discussed in Section 4. It is
the MD that invokes these on behalf of the calling process. Algorithm 5.1 outlines

the sysCheckpoint() system call.

The task_struct?. which represents the Process Control Block (PCB) in Linux,
is obtained from the pid. If pid doesn’t refer to any valid process entry in the list of
executable tasks, the algorithm returns a failure: otherwise the PCB of the process
is obtained by using pid as an index into the task list and a checkpoint-file (CF) is

created wherein the process’s image can be saved.

2The task_struct contains the process’s management and accounting information

Algorithm : sysCheckpoint
Input : Process Identifier (pid)
Output : Status (Success/Failure)
{
if(pid refers to an entry in the task list)
Get PCB corresponding to pid:
else return(FAILURE);
Setup the checkpoint-file (CF) for saving the process’s image;
Freeze the process by removing its entry from the ready-queue;
Marshall the contents of the PCB to the CF:
Marshall the contents of the Task State Segment (TSS);
Sct PDBR to that of process pid;
for(all dirty pages in the process’s data & bss space)
if(page is dirty)
{ Save the virtual address of the page;
Save its contents;

Save the contents of the process’s user-stack:

Reset the PDBR to that of the currently exceuting process;

Restart the process pid by placing its entry back in the ready-queue;
Close the CF;

return(SUCCESS);

Algorithm 5.1: The sysCheckpoint() system call

98

The CF is always created at a fixed checkpoint directory (say */checkpoint™).
This fixed location would ensure that the file remains accessible from any other ma-
chine on the DCS in the event of the failure of the node of execution of the process.
This is done by using NFS with the checkpoint directory at one (or more) node
acting as the file server and having all other nodes mount this directory at the same

mount point {*/checkpoint™).

Once the CF is successfully created, the process identified by pid is stopped by
temporarily removing its entry from the rcady-queue. The contents of the task_struct
are mainly pointers to other data structures. These pointers may not be valid for
the restored process and lhence they need to be marshalled and saved to CF. The
Task State Segment (TSS), which contains the context switching information that
represents the snapshot of the execution state of the process in terms of its register
values, is then marshalled to the CF. Since the process pid cannot be in kernel mode

at this instant, the contents of the kernel stack®, need not be saved.

Since this system call is invoked by the MD on bhehalf of the calling process, it
would not have any access to the calling process’s address space, which is protected
by the kernel’s segmentation mechanism. In order to overcome this, sysCheckpoint
has to manipulate the segmentation registers and the PDBR (Page Dircctory Base
Register). The PDBR is therefore made to point to the base of the process pid's

address space, which is stored in the CR3 register of its TSS. The contents of all its

3The stack used by the kernel in the event of interrupt /exception while executing in the kernel
mode

99

dirty data and bss pages are then saved to CF along with their virtual addresses.
We need to save the virtual addresses due to the possibility of holes existing in the
process’s address space. By noting these virtual addresses, we can setup the pages
at their exact locations upon restoration.

The contents of the user stack? are then dumped to CF and the PDBR restored
to its original value. The process pid is restarted by placing its entry back into the

ready-queue and finally the CF is closed before returning with a success status.

A reciprocal approach is adopted in restoring a process. The system call sysRe-
store() is not executed within the context of the calling process but handled by the

AD. This algorithm is outlined as Algorithm 5.2.

The pid, specified as a parameter to the system call, is used as an index into the
list of currently active processes (task list) on that machine. If pid refers to a valid
entry, its corresponding PCB is obtained, otherwise the system call returns with a
FAILURE status. The checkpoint-file (CF) that contains the image of the corre-
spouding checkpointed process is then opened for reading. The process pid is then
frozen by disabling its entry in the ready-queue. The contents of the saved PCB
are read and carefully marshalled outo the PCB of pid. Since all the process man-
agement and accounting ficlds of the PCB. such as uid, gid, cuid, egid, start_time,
cte. are restored to the original saved values. this process (pid) will behave exactly
as the original checkpointed process and will have precisely the same access restric-

tions and privileges. The context switching information of the checkpointed process

1The process’s private stack

100

Algorithm : sysRestore
Input : Process Identifier (pid)
Output : Status (Success/Failure)

if(pid refers to an entry in the task list)
Get PCB corresponding to pid;
else return(FAILURE);
Open the checkpoint-file (CF) that contains the process’s saved image;
Freeze the process by removing its entry from the ready-queue;
Read saved PCB from CF;
Map the contents of this PCB onto pid's PCB;
Read saved TSS from CF;
Map the contents of this TSS onto pid’s TSS;
Set PDBR to that of process pid,
while(not end of CF file)
{ Read address and contents of a page from CF;
if(address not in pid's virtual space)
{ Get a free physical page;
Map its virtual address to that read from CF;
}
Disable Copy-On-Write (COW) for this new page;
Overlay its contents with the one read from CF;
Enable COW for this page;
};
Close CF;
Reset the PDBR to that of the currently exceuting process;
Restart the pid by placing its entry back in the ready-queuc;
return(SUCCESS);

Algorithm 3.2: The sysRestore() system call

101

is read from CF and mapped outo the TSS for pid. The PDBR, which now points
to the page directory of the currently executing process, is set to point to that of
pid and the segment registers are modified so as to enable access to the address
space of pid. The virtual address and contents of a page are read from the CF, until
the CF file is exhiausted. For every page rvead. if the virtual address read is not in
the address space of process pid. we need to obtain a free page from the kernel and
ensure that it is made available at exactly the same virtual address that is read. To
enable write to this page. we need to disable the COW (Copy-On-\Write) mechanism
for that page. The coutents of the page read are overlayed onto this page and COW
re-enabled. The CF is then closed. the PDBR reset aud the process pid restarted

by re-enabling its entry in the ready-queuc.

Since these are the only two major routines that are added to the kernel, provid-
ing the migration functionality on any other version of Unix would simply require
customizing these two system calls to suit that specific operating system environ-
ment. This makes the PNS highly portable. The rest of the functionality of PMS
is provided at the user-level by the library routines and the NDs executing on the

nodes of the DCS.

5.2.2 The PMS library

The observant reader might have uoticed that although we clain checkpoint /migration
of processes with open files and communication chaunels, we do not handle either
of these in our checkpoiut/restore algorithins.

The major problem in dealing with open files is the impossibility of converting an

102

inode number to the file's full pathname. The existing data structures maintained
by the filesystem do not provide that information that is needed in order to traverse
in a reverse fashion and extract the pathname given an inode number. Incorporat-
ing the ability to checkpoint /restore open files based on their inode numbers would
require some significant modifications to the existing kernel code related to file han-

dling/manipulations. thereby making PMS difficult to port to other versions of Unix.

Maintaining casy portability has been the major reason for splitting up the mi-
gration mechanism into two basic compouents - E-IKernel and PMS library routines.
The library routines deal with the checkpoint /restore of open files and communica-
tion channels, apart from providing support for migration of processes by interacting
with the MDs. However, a major drawback of this decomposition is that we need

-to recompile the uscr applications after adding these library routines to make them

migratable. If this feature were incorporated in the kernel itself, any user application
would be migratable without the need for recompiling/recoding, thereby providing
the highest flexibility. Section 4.4.2 discusses the other possible alternatives that
were available along with their merits and drawbacks.

To support migration. the PMS nceds to maintain additional information related
to the execution site of processes and their current communication state. This
information is distributed among the MD at cach site and the processes executing
on that site. Further, cach process needs to maiutain information about its open
files and communication channels. The contents of these data structures and their

role in migration is depicted in Figure 5.3.

The MTable (Migration Table) is a data structure maintained by each MD. In

103

filelnfo
File Pointer
Filename MTable
Access Mode Process ID
R/W Position Socket Descriptor
IP Address
Port Number
socketinfo Status
Socket Descriptor
Domain
Type
Protocol
Local IP
Local Port

Figure 5.3: Data structures maintained by the PMS

fact, this is a distributed data structure that is maintained globally by the coop-
crating set of distributed MDs. The coutents of the MTable is maintained exactly
the same at all the MDs through the migration protocol described in Section 4.5.1.
fileInfo and socketInfo are per process data structures. Every migratable applica-
tion needs to include the *Migration.h” header file so that these data structures get
compiled into the code of the process. The fileInfo structure, as its name suggests,
is used to save the open-files related information that is needed during restoration.
Similarly, the socketInfo structure is used to hold the socket related information for
the sockets that were active during checkpointing. These data structures are basi-
cally used by the PIS library routines and their role in migration can be understood

by looking into the functionality of these routines.

minit(int arye, char *arguf], char *type)
This routine is to be used by every application that needs to be migrat-
able. This should be the first exceutable statement within the program.

The parameters arge and argv are the command-line argument count and

104

pointer to the process’s environment string respectively, while type can be

onc of regCheckpoint Interval or regMigration.

The type regCheckpoint is used to provide fault-tolerance, in cases where
the process wants to have itself checkpointed at regular intervals of time.
The additional argument Interval is then treated as the interval between
two checkpoints. mlnit sets up an interrupt handler to trap the SIGALRM
interrupt and uses the alarm() system call to have the handler activated
at the specified interval. Upon receiving the interrupt, the alarm han-
dler uses the PMS library function chieckpoint(SELF) to get the process

checkpointed. The functioning of this routine is outlined in Algorithm 5.3.

In order to be migratable, the program has to get itself registered with the
local MD so that the MD and other processes executing on the DCS know
about its existence. It thercfore invokes minit with the ‘type’ argument
as regMigration. This causes mlnit to sctup a chanuel for communicating
with the local MD and sends a message to the MD specifying its pid and the
name of its exccutable file App. MD creates an entry in its data structure
fo_r this process, to be used during migration of this process, either by the

process itself or by some other process.

When a process is to be restored from its checkpointed image, it simply

"

needs to be executed with the 1" argument in its command line. This

would cause the process to be executed from scratch. However, being the
first executable statement in the program, miInit chiecks for the presence

A2l

of the “-1” option in the command-line and recognizes it to mean that

Algorithm : mlnit
Input : Command-line arguments (arge & argv), and Initialization type (type)
Output : Status(SUCCESS/FAILURE)
{
Get current ip-addr and pid:
Setup signal haudler for SIGUSR1:
Create a new socket and connect it to the local ND:
If(type == REG.CHECKPOINT)
{ Extract the value of interval specified in type:
Setup handler for the SIGALRM sigual:
Invoke alarm(interval) to setup alarm every interval seconds;
}
else if(type == REGMIGRATION)
{ Compose message "REG-MIGRATION pid App”:
Send message to local ND:
}
else return(FAILURE);
if(argv[l] == "-1")
Invoke PMIS library function restore(SELF):

/** This point is reached only during the normal execution **/

Store current ip-addr and pid as orginallP and originalPID:

retwrn{ FAILURE):

Algorithm 3.3: The mluit PNIS library function

106

the process wants to be restored from its saved image. It therefore goes
into restoration mode by setting up a communication chaunel with the
local MD and invoking the library function restore(SELF), which sends
a message requesting its process image be overlayed with the saved one.
originallP and originalPID are PMS variables maintained by the process
and are used to update the entries of the MTable whenever the process

nmigrates.

checkpoint(int pid, int flug)
This is the programmer’s interface to the sysCheckpoint system call. Algo-
rithm 5.4 describes its functionality. Before invoking sysCheckpoint, this
routine invokes the checkOpenFiles and checkOpenSockets routines to get
all the information related to the open files and communication channels
of the process saved into the fileInfo and socketInfo data structures. This
information is used during restoration to sctup the files/channels exactly
as they were at the instant of checkpointing. The checkpoint routine then
sends a ‘CHECKPOINT pid’ message to the local MD requesting the ac-
tual checkpointing of the process, as depicted in Figure 4.13(a). After com-
pletion of the chieckpointing, the MD sends back a ‘CONTINUE’ message,
whereupon tlie process resumes normal exccution. The flag argument of
this routine can take three values: BLOCIK. NO.BLOCK, and EXIT. The
BLOCK argument iniplics that the process is to remain blocked even after
completion of checkpointing, NO-BLOCK implics resumption of normal
execution, while EXIT specifies that the process is to cxit after check-

pointing. These flag values are used while migrating the process.

Algorithm : checkpoint
Input : Process ID (pid), and flag
Output : Status
{
If(pid '= SELF)
Send “CHECKPOINT pid" message to the local ND;
else
{ Set mypid to the ID of this process;
For(every open file)
{ Save file-related state in fileInfo;
Close the file;
5
For(every socket)
{ Save socket-related information in socketInfo;
Close the connection;

Send *CHECKPOINT mypid® message to the local MD;
Await for “CONTINUE" message from the MD;
}

return(checkpoint status);

Algorithm 5.4: The checkpoint PNS library function

108

restore(int pid)
This routine is normally invoked Ly mnit. To restore a process, the exe-
cutable of the process is invoked with the -1 argument. Upon execution,
mInitinterprets this argument to mean restoration and sends a ‘RESTORE
SELF" request to the local MD to get itself restored. After the process’s
image Lias been overlayed, the process would be in exactly the state at
which it was checkpointed - awaiting for the "CONTINUE” ,message from
the MD. as depicted in Algorithm 3.4. However, since the process would
now be at the end of the checkpoint routine, it would simply return back to
its normal execution. Since sysRestore() doesn’t setup the files and sockets
that were open by the process, the process would now be executing in a
state where it is not aware of the files/sockets that were originally open.
This problem of restoring the files and sockets is handled by the SUGUSR1
signal handler that was setup by mlnit. The MD, after completion of sys-
Restore(), would send the SIGUSR1 signal to process pid, prior to sending
the “CONTINUE" message. Upon receiving this signal the handler would
take up the job of setting up the open files and communication channels
(Algorithm 5.6) through the information coutained in the relevant data-
structures of the chcckl.)oiutcd process. by invoking the restoreOpenFiles

and restorcOpenSockets routines.

migrateOut(int pid. char *destHost)
A typical use of this routine could be by an application that makes the
policy decisions for migration, say the Load-Balancer. When invoked,

this routine sends a *MIGRATEOUT pid destHost’ message to the lo-

109

cal MD. The MD would then request the process identified by pid to get
itself migrated over to the host destHost by sending it the message ‘MI-
GRATE.OUT SELF destHost’. Process pid, upon receipt of this message,
gets itself clieckpointed by invoking checkpoint(SELF) and asks the MD
to forward the "NMIGRATEIN APP' message to the destHost machine.
The remote MD at destHost would then get this process, identified by ap-
plication name (APP). restored onto its kernel by invoking the migrateln

function. The protocol involved is discussed in Section 4.5.1.

migrateln(int pid. char *fromHost)
This routine is normally invoked by the MD at a remote host upon receipt
of the ‘MIGRATEIN APP message form its peer. The MD then forks off
a child process and exec’s the application identified by App with the -1’
argument, forcing it to go into restoration mode immediately upon start
of execution. The child process would then go through minit and restore
to obtain its image tat was checkpointed on node fromHost and restores it

outo the node at which this routine is executed.

mfopen(char *fileName. char *mode)
The user applications 11;1lst use this routine instead of the standard fopen
for opening files. The syntax of this routine is exactly the same as that
of fopen. The function of mfopen is to create an entry in the fileInfo data
structure and store the pathname and mode of access, prior to invoking
fopen to do the actual job of openjug the file specified by fileName. This

saved information forms part of the checkpointed state of the process.

110

mfclose(FILE *fp)
This is the proxy for the standard felose routine. It removes the entry for

the open file identified by fp from fileInfo and iuvokes felose to close it.

checl:OpenFiles(void)
This routine is invoked implicitly by chieckpoint and does the job of check-
pointing the open files. It goes trough all the open files of the calling
process and stores the current read/write position of the file in the filelnfo
data structure. It then closes the files by invoking the standard library

routine felose,

restoreOpenFiles(void)
The restore routine makes use cf this routine to get the open files of the
checkpointed process restored to their original state, after having done
with restoring the process’s state information. This routine looks up the
fileInfo data structure and reopens the files using fopen. Files that were
originally opened in the WRITE mode need to be reopened in APPEND
mode, as otherwise the previous contents will be destroyed. It then sets the
read /write pointer of the file to the position at the instant of checkpointing,

by extracting this information from fileInfo.

msocket(int domain, int type, int protocol)
The functionality of this routine is akin to that of mfopen, except that here
we are concerned with open communication channels rather than open
files. It creates an entry in the socketInfo data structure and stores all

its arguments so that they can be used while reopening the socket during

111

restoration. Finally, it invokes socket() system call to get a new channel

allocated for connnunication.

mbind(int sd. struct sockaddr *addr, int addrLen)
The application must use this routine in licu of the existing system call
bind(), in order to bind a local end-point to the socket. This routine stores
this end-point address in the sockInfo data structure, which is needed upon
restoration in order to have the process sctup its communication channels.
It then sends an “MT_UPDATE’ message to the local MD specifying the
end-point address at which the socket hias been bound and presently avail-
able for communication. This information is needed by the MD to provide

communication among migrating processes, as explained in Section 5.2.3.

msendto(int sd, char *msy, int msgL, int flags. struct sockaddr *dest, int AddrL)
This is the major routine that provides transparent communication among
migrating processes. The functioning of this routine is depicted in Algo-
rithm 5.5. It basically seuds the specified destination end-point address to
the MD for lookup in its Migration Table. The MD sends back the current
valid end-poiut address, if the process has been migrated. Otherwise, it
simply reflects back thc. same message. Upon receipt of the reply from the

\MD, the data is sent directly to the ip-port specified in the reply.

mclose(int sd)

This routine removes the entry for sd from the socketInfo structure. It also
send an ‘MT_DELETE’ message to the local MD, along with the present

end-point address, asking it to delete the entry belonging to this socket.

112

Algorithm : msendto
Iuput : socket descriptor (sd), data, length, flags, destination address (ip-port)
Output : Status
{
Set retries to 0; Set delay to NIAX_DELAY;
While(retries < MAX_RETRIES)
{ Compose message “MT-CHECK_STATUS sd ip-port”;
Send message to local NID;
Await reply from MD:
Set stat to the status field of reply:
if(stat== AVAILABLE)
{ Extract current ip-port from the reply;
Send data to the end-point address ip-port;
return(SUCCESS);
}
clse if(stat == INMIGRATION)
{ Increment retrics;
Sleep for delay scconds;
Continue:
}
else return(stat);

return(FAILURE):

Algorithm 5.5: The msendto PMS library function

113

checkOpenSockets(void)
This is implicitly called by checkpoint while checkpointing the process.
It scans through the socketInfo structure and for every open socket, sends
the “MT_CHANGESTATUS sd ip-port INNIGRATION” message to the

local MD. It then closes the socket using the close() system call.

restoreOpenSockets(void)
This routine is invoked by restore to re-establish the connections that were
open at the time of checkpointing. It creates a new socket as per the spec-
ification saved in the sockethufo data structure. The new socket descriptor
is then mapped at the old value, so that the application can still refer to
the same old descriptor. If the socket was bound at the instant of check-
pointing, it is rehound and the new end-point address ip-port is obtained.
An “MTMIGRATE" message is then sent to the local MD, specifying the

previous and the present ip-port address.

The PAIS provides the flexibility that a process can chieckpoint /migrate any other
process. During its normal execution, a process. wouldn’t know when to expect such
a request from the MD. Obviously it cannot keep waiting for the message nor can it
keep polling the MD, as discussed in Section 4.4.5. This scenario implies the need
for the process to arrange for asynchronous intimation of the arrival of a message.
The miInit function which is invoked by the process during the initial stages of its
execution (either normal or restored). does the job of setting up a signal handler
to catch the SIGUSR1 sigual. The functionality of this handler is described in

Algorithm 3.6.

Algorithm : sigusriHandler
Input : Noue
Output : Noue

{

Read the incoming message;
Extract the type and status ficlds from the message;
If(type == CONTINUE)
{ If(status == RESTORED)
{ For(cach entry in fileInfo)
{ Set filename to fileInfo.Filename:
Set mode to fileInfo.Mode:
If{mode == \WRITE)
Set mode to APPEND:
Open the file filename in access mode mode;
Map new file-pointer to fileInfo. FilePointer;
Set current read/write position to fileInfo. Position
}:
For(cach entry in socketInfo)
{ Create a new socket as per the entry;
If(socket was hound)
{ Bind socket to any available ip-port;
Send “NMIT_.UPDATE ip-port” message to local MD;
}:

}:
return:
}
else if{ type == CHECKPOINT)
Invoke checkpoint(SELF) to get this process checkpointed;
else if(type == MIGRATE.OUT)
{ Extract destHost from the message:
Invoke migrateOut(SELF.destHost) to migrate over to destHost;

}

else return:

Algorithm 5.6: The sigusrlHandler PMS library function

114

115

Prior to sending any message to a process, the MD would send the SIGUSR1
signal to it. The signal handler would then read the incoming message and extract
the type and status ficlds of the message. If the type field specifies “CHECKPOINT”,
the signal handler would invoke checkpoint(SELF) to get the process checkpointed.
If type specifies “MIGRATE_OUT”, it would extract the destHost filed from the
message and call migrateOut(SELF,destHost), thereby having the process migrated
to destHost. However, if type is “CONTINUE", it would mean that the process
has been either checkpointed or restored recently. If statusis “CHECKPOINTED”,
the handler simply exits. Otherwise, if status specifies that the process has been
"RESTORED?", it invokes restoreOpenFiles and restoreOpenSockets to have the

process’s files and sockets restored to their original state.

5.2.3 The Distributed MD

The concept of a dacmon process - the Migration Dacmon, has been introduced to
enable migratiou to be implemented at the user-level. The MD is a privileged pro-
cess that is run setuid to root. It is a true dacmon process and gets started during
system boot time through the /etc/rc files. The need and benefits of dedicating a
separate process to handle checkpoint/restore has alrcady been mentioned in the
Section 4.5. The MD is. in reality, a distributed program, with the component MDs
executing on each of the host of the DCS that is willing to participate in process
migration. The interactions of the processes with the MD, and among the MDs

running on the hosts is depicted in Figure 4.2.

The set of MDs perform two major tasks: Pre-cmptive migration of active pro-

116

cesses, and maintaining the communication among the components processes of a
migratable distributed application.

In order to provide migration, the MDs follow a well-defined protocol, called
the Migration Protocol. The details of this protocol are discussed in Section 4.5.1.
The role of MD in checkpointing a process is depicted in Figure 4.13(a) and (b).
The interactions among the process and the MDs during the course of migration is
illustrated in Figure 4.13(c¢) and (d). However, another major role played by the MD
is in sustaining transparent communication among the migrant processes belonging
to distributed applications. This scenario is depicted in Figure 5.4.

MTable

Process ID
............... . Socket Descriptor
' o w--»|__ IPAddress 1=~ _

/" . Port Number
3 4 - Stalus

>

|

g = - — - - — <

S T .
"’ W
S ST

Figure 5.4: Role of MD in a distributed application

Role of MD in a distributed application

The scenario depicted in Figure 5.4 is a sct of process - Py, I%, Py and Py, belonging
to a distributed applications. These processes interact with caclt other and cooper-
ate to produce the desired results. Let the initial allocation of these processes be
as shown in the figure. Since these processes are migratable, upon execution, they
would invoke the PMS library function minit to get themselves registered with their
local MDs. Cousider one such scenario - process) invokes miInit. This would cause
it to send a “REGMIGRATION P;™ message to the MD at Host 1. Upon receipt
of this message, the MD would enter the pid (/%) in its MTable, and broadcast this
message to all other MDs on the DCS, which would then update their own MTable.
The idea is that whenever the contents of the MTable are to be update, the MD
which is the producing the change will be responsible for broadcasting this change
to all other MDs, in order to ensure that the contents of the MTable are maintained

consistently, such that it appears as a single global table.

Later, at some instant, P, would create its socket through msocket, thereby gen-
erating the message "N[T-UPDATE P, sd” leading to the socket descriptor field of
the MTable being updated. To bind this socket, 2 would invoke mbind causing the
IP Address and Port Number ficlds of the MTuble entry to be filled in. The status
of the socket would then be marked as AVAILABLE. A similar sequence of actions
by P, and P; would create twe more entries in the (virtual) global MTable. Now,
when P, wants to send some data to P, the mscundto routine would cause it to send
a request to its local ND for a MTable lookup of the end-point address identified

by the (IP-Address,Port-Number) pair. The MD would check the corresponding

118

ficlds of the table and reflect back the same message, since the status field is set
to the flag value AVAILABLE. P, would then extract the end-point address from
the incoming message and blindly send the message at that address. From the ap-

plication’s perspective, this process of address trauslation is completely transparent.

Suppose that I has to be migrated to Host 1. The migrateQut routine would
cause the status field of the corresponding entry of the AMTable to be marked as
INANIGRATION. If any address-resolution requests for P arvive at this instant at
any of the hosts, the MD would cause the calling process to sleep for a pre-defined
interval and retry. Meanwhile, upon completion of migration, /%, which is now Pj,
would go through minit and restore functions. These functions would restore the
socket and create a new entry in the MTable for Pj. Further, the old entry would
be made to point to this new one. Now, if P; send a message at the old address

of P, the MD would transform it into the new one referred to Py by MTable lookup.

Thus, the only overhead involved in communication is that of the table lookup
by the local MD. The actual communication occurs directly among the relevant pro-

cesses and doesn’t go through the MD, which would have been a major bottleneck.

Chapter 6

Experimentation & Results

The provision of a process migration facility opens up a lot of new areas - dynamic
load-balancing, real-time scheduling, fault-tolerance cte. However, for the purpose
of demonstrating the functionality of PMS, within the scope of this study, our exper-
iments were classified into four basic classes : Independent Applications, Distributed
Applications. Hybrid Applications and applications demounstrating the feasibility of

Fault-Tolerance. The following sections briefly outline these experiments.

6.1 Independent Applications

This class of applications comprise of user-programs which execute as a single pro-
cess. This process would be a stand-alone entity. in that it has no cominunica-
tion/interaction with auy other processes currently running on the system. Such
processes can further be classified into two types: Compute Intensive and I/0 In-

tensive.

119

120

6.1.1 Compute Intensive Processes

A compute intensive or CPU intensive process is one which spends most of its time
in doing some computation. Typical examples of such applications are simulation
programs, Neural Network or Artificial Intelligence based programs and scientific
applications. Such applications are usually long-running and exccute for hours or
days. The time spent in checkpointing such a process is proportional to the amount
of memory used by it, which is in turn governed by the size of the data structures used
by the program. A representative process that was selected for our experimentation

was that of an application that computes the value of a formula for infinity.

6.1.2 I/0O Intensive Processes

An I/0 intensive process is one that deals mostly with files. A heavy percentage of
its time is spent in reading data values from one or more files and generating the
results in the same/different file(s). Quite a significant number of applications that
exist on Unxx belong to this category. Examples include sort, tr, nroff and troff.
The representative process in this class is one that reads data from two different
files and merges them. character-wise, into a single output file. A reciprocal of
this process would be one that splits a huge file, character-wise, into two separate
files. Both these case were tested on PMS. The size of cach of the data files was
approximately 18 MB. The results produced without migration were compared with
that produced with the process being migrated around the DCS during the course
of its execution. The results were found to be the same in both the cases, thereby
proving the consistency and correctness of ‘the migration mechanism provided by

PMS.

121
6.2 Distributed Applications

Distributed applications are programs that comprise of two or more tasks or pro-
cesses. which interact (commnunicate) among themselves to produce the desired re-
sults. The processes belonging to such applications can therefore be categorized as
communication intensive. The representative application of this class that was used
for testing the PMS comprised of a server process and n client processes. The clients
produce some data and send it to the server whicli manipulates it and sends it back.
In order to test the persistency of commuuication provided by PMS, a process was
chosen at random and migrated over to an arbitrary host. This sequence of random
migrations was conducted for a given number of iterations. The results obtained

were found to be the same with/without migration.

6.3 Hybrid Applications

The processes of this class, as the name suggest, exhibit the characteristic of both
compute intensive and I/O intensive processes. For the purpose of experimentation,
the process sclected was of an application that reads from a file and sends the data
to its component process. The component process would then lookup the data value
received into its database (another data file), compute a new value and return back
another st of data. The process was migrated during its execution and the data
produced were compared with those from a stationary exccution. The results were

found to be the same in both the cases.

6.4 Fault-Tolerance

In order to provide a fail-safe environment. a process can have itself registered with
the PMS, specifying the granularity of reliability needed by it in the form of an
interval between two successive checkpoints. The PAS then takes charge of having
the process checkpointed regularly at that specified interval, for the duration of the
process’s exceution. In case of failure of the process or its exccution site, it can be
restored ou any other host of the DCS stmply by invoking it with the “-1” command-
line option. This functionality of the PAIS was tested with over 100 runs of processes
belonging to all the three classes, and it was found that the processes were instantly

restored back to their latest checkpointed state.

6.5 Timing Measurements

6.5.1 Checkpointing

The time taken to checkpoint a process can be viewed from two different perspec-
tives: User and System. From the user’s perspective, the checkpointing time can
be considered as the tin;e interval between the instant the chieckpoint PMS library
function is invoked and the process gets chieckpointed. This checkpoint time was
measured for 100 raudom ruus of the representative processes helonging to the class
Compute Intensive. I/O Intensive, Commuunication Intensive and Hybrid applica-
tions. The results are plotted as Figwe {6.1}, {6.2, 6.3, 6.4}, {6.5} and {6.6}
respectively. The average user-level checkpoint time for these processes is specified

in Table 6.1. and compared in the graph shown in Figure 6.7.

123

3w —_— .
.]
’ T 7T Avtual Valuss T

2 - T Avetage Yalues,

260 ¢

240 !

Checkpoint Time (secs)
e
]
H

140

1.20 - o

L e o

LW ——- ——
20 U 60 80
Numbwr of Runs

g

Figure 6.1: The Checkpoint times for a Compute Intensive process

3.00 ¢
.

80 - Actual Values |
: T Average Values

.60 -

240 »

1

2

=3
'

Checkpoint Tiune (sees)
= s
& H
Y 1

1.60 ¢

140 -

LW - e

Lo

] 50 100 150
Number of Runs

Figure 6.2: Au JO-Intensive Intensive process with 1 file

124

300 (= oo e — - S
}
!
80 + R Actuad Values
; = Aveeape Valusy
260 -
1
240 -

Checkpoint Time (secs)

50 oo 150
Numbwer of Ruas

Figure 6.3: An JO-Intensive Intensive process with 2 file

300 ~-- R

280 - T Actuad Values
. T Averge Valwes,

260 ¢

240 ~

Checkpuint Timne tsecs)

o S0 100
Nuinher of Runs

Figure 6.4: An JO-Intensive Intensive process with 3 file

130 -

10 -

1.50 -

Checkpoint Time (sees)

L340 -

L0 -

L0
0

Figure 6.5: A Communication Intensive process

0 m s
Number of Runs

80

140 -

120 -

X 4 o L]
Nusmiber of Runs

Figure 6.6: A Hybrid process

Chieckpoint Time (secs)

Comparison of Average Times

126

U -

} V—_— CmeufcinfcnfsiGc ____

' [oo 1/0 Intensive = with 1 file
170 r s o =« 1O Intensive = with 2 files |

' 1Com = 1O Dinensive = with 3 files

[[—- Communication Inlensive
1.60 | === Hybrid)
60 - o T

‘.
Y.
‘-I -y .
v . A .
1.50 - \ L _\,-!‘_ iy
haX~] / [T
LR .
A R
1.40 |- ‘o AW - i
\ AR T l") :
> o | wol oy J

t \ \! O A !

1 L 00275 /"\ “ .I !
130 ¢ \\ Rt o;: :

) q’ \'\-““ Y il § }"\ ‘\“

! \ :‘nn”?___[Y ad
1.20 i e ——- “‘6“* el TR AT BT e
1.10 r

I }
1.00 L B e e

0 20 40 60 80

Number of Runs

Figure 6.7: Comparison of the average checkpoint times

Application Class Checkpoint Time (secs)
Compute Intensive 1.24
I/O Intensive - 1 File 1.17
I/0 Iutensive - 2 File 1.35
I1/O Intensive - 3 File 1.41
Communication Intensive 1.21
Hybrid Application 1.22

Table 6.1: The average checkpoint times

127

The periodic variations observed in almost all of these figures can be attributed
to the periodic execution of the "cron” daemoun, since these measurements were
taken in a realistic environment with multiple processes executing on the system.
From Figure 6.2 and 6.3, it is clear that as the number of open files increases, the
variations in the checkpoint time increase due to contention for disk access among
the various processes exccuting at that instant. The variations are negligible in case

of CPU and Communication intensive applications (Figure 6.1, 6.5 and 6.7).

From the system’s perspective the checkpoint time is the interval between the
instant the sysCheckpoint PAIS system call is invoked and the completion of the
system call. This time has been found to be a constant 10000 piseconds (or 10 ms)for
the representative process. Similarly, the restoration time has also been found to be
a constant 10000 yseconds. This is in accordance with the logical reasoning that
the checkpoint time must be the same as the restoration time, since whatever has

been saved during clicckpointing has to re-instated exactly during restoration.

6.5.2 Migration

Let us consider the timing measurcments from the user's perspective. Let UT,,
denote the average time it takes to migrate a given process, ut. be the average
checkpoint time. and ut, be the average time taken to restore it. The migration

time of a process can then be formulated as:

UT, = ut. + ut, + ut,

where ut, is the overhicad involved in teracting with the MDs.

128

For the representative compute-intensive process, we have a ut. of 1 second
241038 pseconds and ut, of 1 second and 242189 piscconds. The migration time T,
has been measured to be 2 scconds 675059 pisecouds. Therefore, the overhead t, in
MD-MD interaction that is needed for migrating a process form one host to another

is a negligible 191832 piseconds.

Similarly, if ST, is the system time taken in migration, then we would have

Szll = 37‘(‘ + Sfr

where st. is the system-time in checkpointing the process and st, the system-time
spent in restoring it. There would be no overhead liere due to the fact that the
MD-MD interaction is handled at the user-level. From our measurements, both st.
and st, have been found to be a constant 10000 pscconds, thereby giving a ST, of
20000 pseconds.

The average migration times for processes belonging to the three classes are
summarized in Table 6.2 and compared in the graph shown in Figure 6.8. The
additional overhead observed in Communication and 1/0 intensive applications can
be attributed to the processing involved in saving/re-instating the datastructures

for dealing with the open files and sockets.

129

Application Class Migration Time (secs)
Compute Intensive 2.49
I/0 Intensive 2.58
Communication Intensive 2.54

(sccs)

Migration Time

=2 R W W

o =i a

Table 6.2: The average migration times

=
-

r =z Compute Intensive !

r |Fr==0 1O Inensive :

i ¢ = = Communication Intensive_,

.

-

‘ .) . ,
0 1 2 3 4 5 6 7 8 9 10

Number of Runs

Figure 6.8: Comparison of the average migration times

Chapter 7

Conclusion and Future Work

In this research, the primary objective has been to provide process migration ca-
pability in standard Unxx systems, by extending the contemporary process-based
model. Towards this end, we have designed and developed the PMS - Process Mi-
gration Subsystem, which allows migration of independent as well as communicating
processes executing under the Linux OS. The achievements of this work can be sum-

marized as follows:

o The functionality of the operating system has been enhanced with two new

system calls to support checkpointing and/or migration of processes.

¢ The mechanism has been implemented as a stand-alone subsystem to allow it

to be portable and casily incorporated into any existing Unxx system.

e The mechanism can deal with independent as well as communicating pro-
cesses. This allows development of ‘migratable’ distributed applications. The
communication among the set of processes belonging to such applications is

sustained transparently, even after repeated migration of any of the component

130

131

processcs.
However, PMS has two important implications which need further exploration:

1. PMIS provides an infrastructure for an efficient process/application level fault-
tolerance, and hence may be easily incorporated in a system such as NCS

(section 3.3).

2. PMS can be incorporated into a dynamic load-balancing framework [18], where

the tasks are migrated based on an objective function.

Further, in case of sclf-checkpointing processes, there may be a need to charac-
terize the overhead imposed by checkpointing, with respect to the parameters such
as the number of pages and files involved. Also, for certain class of applications, the
overhead imposed by PMS can be characterized to decide whether a process needs

to be checkpointed/restored, as opposed to restarting it.

Finally, PMS allows migration only across equivalent /compatible machine archi-
tectures and versions of the OS. Althougl providing migration across heterogeneous
platforms comprising of machines of varying architectures remains to be a major
problem, migration over different Unxx versions is a challenging but realistic prob-

lem that can be pursued within the scope of the further rescarch in this direction.

Appendix A

Installing the Linux OS

A.1 Introduction

Linux is a frecly-distributable implementation of UNIX for 80386 and 80486 ma-
chines. It supports a wide range of software, including X Windows, Emacs, TCP/IP
networking (including SLIP), the works. This document assumes that you have

heard of and know about Linux, and just want to sit down and install it.

A.2 Getting Linux

Before you can install Linux, you need to decide on one of the “distributions”
of Linux which are available. There is no single, standard release of the Linux
software—there are many such releases. Each release has its own documentation
and installation instructions.

Linux distributions are available both via anonymous FTP and via mail or-

der on diskette, tape, and CD-ROM. The Linux Distribution HOWTOQ (see sun-

132

133

site.unc.edu in the file /pub/Linux/docs/HOWTO/Distribution-HOWTO) includes

a list of many Linux distributions available via FTP and mail order.

The release of Linux covered in this appendix is the Slackware distribution, main-
tained by Patrick J. Volkerding (volkerdi@mhdl.moorhead.insus.edu). It is one of
the most popular distributions available; it is very up-to-date and includes a good
amount of software including X-Windows, TeX, and others. The Slackware distri-
bution consists of a number of “disk sets”, each one containing a particular type
of software (for example. the d disk set contains development tools such as the gee
compiler, and so forth). You can clect to install whatever disk sets you like, and
can easily install new ones later. Slackware is also casy to install; it is very self-

explanatory.

The version of Slackware described here is 2.0.0, of 25 June 1994, Installation of
later versions of Slackware should be very similar to the information given here.

Information on other releases can be found in tlie Linux Installation and Getting
Started manual from the LDP. You can also find other releases of Linux on various

FTP sites, including sunsite.unc.cdu:/pub/Linux/distributions.

The instructions here should be general enough to be applicable to releases other

than Slackware.

134

A.3 Hardware Requirements

The actual hardware requirements for the system change periodically, Linux is evolv-
ing. However. at the very least, a hardware configuration that looks like the following

is required:

e Any ISA, EISA or VESA Local Bus 80386, 8048G, or Pentium system will
do. Currently. the MicroChannel (MCAY) architecture (found on IBM PS/2
machines) is not supported. Many PCI bus systems are supported (see the
Linux PCI HOWTO for details). Any CPU from the 3865X to the Pentium
will work. You do not need a math coprocessor, although it is nice to have

ole.

¢ You need at least 4 megabytes of iemory in your machine. Technically, Linux
will run with only 2 megs, but most installations and software require 4. The
more memory yvou have, the happier you'll be. I suggest 8 or 16 megabytes if

vou're planning to use X-Windows.

o Of course, you'll need a hard drive and an AT-standard drive controller. All
MFML RLL. and IDE drives and controllers should work. Many SCSI drives

and adaptors are supported as well.

Linux can actually run on a single 5.25" HD floppy, but that’s only useful for

installation and maiutenance.

o Free space on your hard drive is needed as well. The amount of space needed
depends on how much software you plan to install. Most installations require

somewhere in the ballpark of 40 to 80 megs. This includes space for the

135

software, swap space (used as virtual RAM on your machine), and free space

for users, and so on.

It’s conceivable that you could run a minimal Linux system in 10 megs or less,
and it’s conceivable that you could use well over 100 megs or more for all of
your Linux software. The amount varies greatly depending on the amount of

software you install and how much space you require. More about this later.

¢ You also need a Hercules, CGA, EGA, VGA, or Super VGA vidco card and
monitor. In general, if your video card and monitor work under MS-DOS then
it should work under Linux. However, if vou wish to run X Windows, there

are other restrictions on the supported video hardware.

Linux will co-exist with other operating systems, such as MS-DOS, Microsoft
Windows, or 0S/2, on your hard drive. (In fact you can even access MS-DOS files
and run some MS-DOS programs from Linux.) In other words, when partitioning
your drive for Linux, MS-DOS or OS/2 live on their own partitions, and Linux exists
on its own. You do NOT nced to be running MS-DOS, OS/2, or any other operating
system to use Linux. Linux is a completely different, stand-alone operating system

and does not rely on other OS’s for installation and use.

In all, the minimal setup for Linux is not much more than is required for most
MS-DOS or MS Windows systems sold today. If you have a 386 or 486 with at least
4 megs of RAM, then you'll he happy ranning Linux. Linux does not require huge
amounts of diskspace, memory, or processor speed. The more you want to do, the
more memory (and faster processor) you'll ‘nccd. In my experience a 486 with 16

megabytes of RAM running Linux outdoes several models of workstation.

136

A.4 Installing the OS

Linux is a Unix clone for the 386/486 based PCs, with the features of a full-fledged
OS such as true multitasking, virtual memory, shared libraries etc.
In order to facilitate installation, linux provides a setup package through which one

can select the packages that are required to be installed.

A.5 Configuring the kernel

In order to access the resources, the keruel needs to know the characteristics of the
devices that are available. The process of Configuring the kernel is to let the kernel
know what devices are connected to the system so that it can load the appropriate
device drivers to handle them. Having unnccessary device drivers will make the

kernel bigger, and can under some circumstances lead to problems (probing for a

nonexistent controller card).

In order to Configure the kernel, do a ®make config” from the fusr/src/linuz
directory. This queries the installer about the various devices that are accessible to
the system and stores the responses in the config.in file. Once the system configura-
tion has been specified. do a *make dep” to sct up all the dependencies correctly.
This basically uses the information from the config.in file to set the #ifdef param-
eters of the appropriate device header files and also creates a file .depend which
specifies the dependencies among the source-code files. Finally, do a ” make clean”

to remove the intermediate files used during the process of configuration.

137
A.6 Compiling the kernel

Customizing the kernel to your specific system configuration requires recompilation
of the kernel code. This is done by a »make zImage” from /usr/src/linuzto create
a compressed kernel image. In order to boot your new kernel, you'll need to copy
the kernel image (found in fusr/src/linuz/zInage after compilation) to the place
where your regular bootable kernel is found. For some, this is on a floppy disk, in
which case you can ®cp /usr/src/linux/zImage /dev/fd0” to make a bootable
floppy. If you boot Linux from the hard disk, LILO uses the kernel image that is
specified in the file /etc/lilo/config. The kernel image file is usually /vmlinuz (or
/zImage, or /etc/zImage). To use the new kernel, copy the new kernel image over
the old one (“cp fusr/sre/linux/zImage /vmlinuz”). A better option is to make a
copy of it in / (“cp fusr/sre/linux/zImage /") and edit Jetc/lilo/config to specify
an entry for both the new kernel image as well as the old (in case the new one does

not work)as shown below :

Image = /zImage
root = /dev/hda3

label = linux
Image = /vmlinuz
root = /dev/hda3

label = oldlin

Finally, we need to have LILO update its loading map, so as to be able to boot

138

the new kernel image. This is done by running ” /sbin/liloconfig”. Now when
the system is rebooted. it will he able to use the new kernel image. If you nced to
change the default root device, video mode, ramdisk size, ete. in the kernel image,
use the 'rdev’ program (or alternatively the LILO boot options when appropriate).

No need to recompile the kernel to change these parameters.

A.7 Configuring the X-Windows system

In order to be able to use the GUI features of the N-Windows system, we need
to specify the characteristics of the Terminal, Keyboard, Mouse ete. The Linux
setup package provides a sct of Xconfiy files (in fvar/X11/lib/X11/Sample. XConfig-
files/) corresponding to various commouly used I/O devices. We just need to copy
the appropriate file to fvar/X11/lib/X11/Xconfig (and cdit some of its parameters,
if needed), which is the default file used by the “startx” command for invoking the

X-Window system.

A.8 Possible problems

The most common problem encountered during installing Linux, along with other
bootable operating systems (such as DOS, OS/2, etc.) is that the ss'stem hangs
upon reboot (with the partial message LI on the screen). The reason for this is
that although we had partitioned the disk and allocated space for the other OS (us-
ing fdisk), we had not installed them in their respective partitions. So, when Linux

gets loaded, it trics to find these other OS in their partitions but couldn’t, and hangs.

139

To overcome this problem, we can do one of the following :

Install the OS immediately after setting up the partitions.

Install the OS upon completion of the setup, but before reboot.

Reboot the system with a Linux boot floppy and install the OS.

Make all other OS partitions as in-active by setting off the BOOT flag through
fdisk.

Another problem occurs during X-Window configuration. When the startz com-
mand is issued, the screen might clear and start wavering. This is because the Kernel
tries to start X-Window system with the highest resolution specified in the Xconfig

file. To set this right, press Ctrl— (decreases the screen resolution, Ctrl+ is used

to increase the resolution).

Bibliography

[1} Yeshayahu Artsy and Raphacl Finkel, “Designing a Process Migration Facility:

The Charlotte Experience,” IEEE Computer, pages 47-36, September 1989.

[2] Maurice J. Bach, The Design of the Uniz Operating System, Prentice Hall

International Editions, September 1989.

[3] Henry Clark and Bruce McMillin, “DAWGS - A Distributed Compute Server
Utilizing Idle Workstations,” IEEE, pages 732-7-1, 1990.

[4] Intel Corporation, 486 Microprocessor Programmer’s Manual, Osborne

McGraw-Hill, 1990.

[5] George F. Coulouris and Jean Dollimore, Distributed Systems: Concepts and

Design, Addison-Wesley, 1991.

[6] F. Douglis and J. Ousterhout, “Transparent Process Migration: Design Alter-
natives and the Sprite Implementation,™ Software - Practice and Experience,

21(8):757-783, August 1991,

[7] Nick Doulas and Balkrishna Ramkumar, “Efficient Task Migration for Message
Driven Parallel Execution on Nonshared Memory Architectures,” International

Conference on Parallel Processing, pages 1I-170 to II-173, 1994.

140

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[L3]

141

M. Bozyigit K. M. Al-Tawil and S. K. Nascer, “Tolerating Node Failures on a
Network of Workstations using Process Migration,” FTCS, The 12th Annual

International Symposium on Fault-Tolerant Computing, 1996, In submission.

Kai Li, Jeffrey F. Naughton, and James S. Plank, “Low-Latency, Concurrent
Checkpointing for Parallel Programs,” IEEE Transactions on Parallel and Dis-

tributed Systems, 5(8):874-879, August 1994.

Kai Li, J.F. Naughton, and J.S. Plank, “An Effecient Checkpointing Method
for Multicomputers with Wormhole Routing,” International Journal of Parallel

Programming, 20(5):159-180, June 1991.

Michael J. Litzkow, “Remote Unixz: Turning Idle Workstations into Cycle
Servers,” Proceedings of the USENIX 1987 Summer Conference, pages 381-
384, 1987.

Michael J. Litzkow, Miron Livny, and Matt W. Mutka, “Condor - A Hunter
of Idle Workstations,” Procecdings of the 1988 Conference on Distributed

Computing Systems, pages 104-111, 1988.

M.Theimer, KX.Lantz, and D.Cheriton, “Preemptible Remote Ezecution Facili-
ties for the V-System.” ACM Operating Systems Review, 19(5):2-12, December
1985.

David A. Nichols, “Using Idle Workstations in a Shared Computing Environ-

ment” ACM Operating Systems Review, pages 5-12, November 1987.

David Powell, “Distributed Fault Tolerance: Lessons from Delta-4,” 1EEE

Micro. pages 36-47. February 1994.

142

[16] Michacl L. Powell and Barton P. Miller, “Process Migration in DEMOS/MP,”
AC)I, pages 110-119. 1983.

[17] Injong Rhee, ~Optimal Fault-Tolerant Resource Allocation in Dynamic Dis-
tributed Systems.” Proceedings of the Seventh IEEE Symposium on Parallel
and Distributed Processing, pages 160-467, San Antonio, Texas, October 25-28

1995.

[18] S.Ghanta S. Nisar Ul Haq, M. Bozyigit and S.IK. Nasecr, “Design of a Load
Balancing Framework for Distributed and Parallel Applications,” International
Conference on Parallel and Distributed Processing Techniques and Applications

(PDPTA 95), pages 979-993, Athens, Georgia, November 3-4 1995.

[19] S. Srinivasan and N.K. Jha, “Task Allocation for Safety and Reliability in
Distributed Systems™ 1995 International Conference on Parallel Processing,

pages 1I-206 to I1-213, 1995.

[20] W. Richard Stevens. Uniz Network Programming, Prentice Hall International

Editions, 1990.

[21] Tony T.Y. Suen and Johnny S.X. Wong, “Efficient Task Migration Algorithm
for Distributed Systems. ™ IEEE Transactions on Parallel and Distributed Sys-
tems, 3(+4):488-499. July 1992.

[22] Andrew S. Tanenbaum. Modern Operating Systems, Prentice Hall, 1992.

[23] Andrew S. Tanenbaum. Distributed Operating Systems, Prentice Hall Interna-

tional Editions, 1993.

143

[24] Marvin M. Theimer and Lantz Keith A, “Finding Idle Machines in a
Workstation-Buscd Distributed System,” IEEE Transactions on Software Engi-

neering, 15(11):1444-1457, November 1989.

[25] S. Tridandapani and Arun K. Somani, “Efficient Utilization of Spare Capac-
ity for Fault Detection and Location in Multiprocessor Systems,” FTCS, The
Twenty-Second Annual International Symposium on Fault-Tolerant Comput-

ing, pages 440-447, Boston, Massachusetts, 1992.

[26] Cui-Qing Yang and Yaoshuang Qu, “Fuult-Tolerance in the Ezecution of Re-
mote Jobs on Idling Workstations,” Concurrency: Practice and Experience,

7(1):43-60, February 1995.

