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Chapter 1

INTRODUCTION

An antenna is a device for radiating or receiving radio waves. In other words. an
antenna is the transitional structure between free space and a guiding device. In
addition to receiving or transmitting energy. an antenna is usually required to op-
timize or accentuate radiation energy in some directions and suppress it in others.
Thus an antenna must act as a directional device in addition to being a probing
device.

Many applications require radiation characteristics that may not be achievable by a
single antenna element. It may, however. be possible that with an aggregate or an
array of radiating elements in an electrical and geometrical arrangement, radiation
from the elements adds up to give a radiation maximum in a particular direction
or directions. minimum in others. Antenna arravs provide this feature of pattern

control. Due to this reason. extensive research has been done on'their synthesis and



characteristics [1].

Antenna arrays are often required for many radar and communication applications.
Some of these applications are direction finding and navigation. One feature of an-
tenna arrays that makes them useful is their possession of beam steering capabilities,
which is important in scanned and phased arrays.

The radiation pattern of an antenna element. defined as a graphical representation
of the radiation properties as a function of space coordinates, is relatively wide,
and hence. provides a low value of directivityv. In many applications such as long
distance communications it is necessary to design antennas that are very directive.
Enlarging the dimensions of the antenna without physically increasing the size of
the individual elements is done by forming an assembly of radiating elements in an
electrical and geometrical configuration. known as an array. In an array of identical

elements, there are five controls that can be used to shape the overall pattern of the

antenna. These are :

¢ Array geometrical configuration (linear. circular, etc)

The relative displacement between the elements

e The excitation phase of the individual elements

The excitation amplitude of the individual elements

The relative pattern of the individual elements



1.1 Null Steering

The chief objective of steering nulls in the antenna array pattern in the direction
of interference sources is to cancel such sources. This cancellation is necessary
in today’s environment because of the immense importance given to satellite and
mobile communications.

Null steering in antenna arrays can be achieved by controlling the complex weights,
l.e. element amplitude and phase, aniplitudes only, phase only or element positions.
Several analytic solutions have been developed and utilized in order to determine the
required changes in such parameters. so as to steer nulls in the required interference
directions and to achieve acceptable level of null depth [2].

The first method. called complex weight control is very effective [3], and achieves null
steering by changing both the phase and amplitude of the current in each antenna
array element. The number of degrees of freedom in this case is twice the number
of array elements. resulting in better control of null steering. On the other hand,
it increases the array design complexity and can be comparatively slow due to the
large number of variables that have to be determined [3]. Array pattern nulling
can be achieved by phase only or element position variations, in which cases, the
number of steered nulls must be less than half the total number of array elements.
Many analytic solutions and methods such as Least Squares and Downhill Simplex

can be used to steer nulls, but the genetic algorithm may be more suitable. because




as suggested in literature. it is more likely to converge to a global minima [3].

1.2 Overview of Genetic Algorithms

Genetic Algorithms are robust search techniques that mimic the basic principles
of natural selection and biological evolution. The Genetic Algorithm was first ar-
ticulated by Holland in 1973 [4]. Since then. a lot of attention has been given to
this approach because of its great potential to address combinatorial optimization
problems.

Domain knowledge is embedded in the abstract representation of a candidate solu-
tion termed as a chromosome. Each chromosome is made up of units called genes,
representing the individual variables. Chromosomes are grouped. judiciously. into
sets called population. The population at a given stage is referred to as genera-
tion. The survival of a chromosonie is judged by its fitness value. The fitness value
of each chromosome is obtained by a fitness function which evaluates the chromo-
some with respect to the objective function of the on-hand optimization problem.
The fitter chromosomes have a higher probability of getting selected. These se-
lected chromosomes are called parents which represent feasible solutions. Parents
are mated (usually. in pairs) to produce new strings of feasible solutions called off-
spring/children. The block diagram of a simple genetic algorithm is given in figure

1.1. There are three main steps in this algorithm which have been the subject of




many research works right from its inception. These important operations are:

o Creating new chromosomes by mating current chromosomes via the reproduc-

tion operators.

¢ Selection of the fittest parents from the evaluated chromosomes of the popu-

lation. and
o Evaluating each chromosome in the population using a fitness function.

A proper selection of the above operations does effect the performance of genetic

algorithm. These three issues are dealt briefly in the subsections to follow.

Generate lnitial Population
and find fitness

Termination Criteria met ?

Select parents and
crossover

Apply Mutation

[ &

Calcutate Fitness and replace old
popuiation by new popuiation

Figure 1.1: Block diagram of a simple Genetic algorithm




1.2.1 Genetic Operators

Reproduction, basically. involves the use of genetic operators on the strings of chro-
mosomes. Some of the selected chromosomes are modified via genetic operators
like crossover and mutation. Each genetic operator takes some chosen chromosomes

(parents) and produces new chromosomes (offspring). The most common genetic

operators include crossover and mutation.

Crossover Operator

Crossover operators combine sub-parts of two parent chromosomes to produce new
children (offspring) thus allowing new points in search space to be tested. The
operation of crossover starts with two parents independently selected at random
from the population on the basis of their fitness. The selection is done in such a
way that the better an individual's fitness. the more likely it is to be selected. The
crossover operation produces two offspring. Each offspring contains some genetic
material from each of its parents. One of the simplest ways of achieving this crossover
is by partially exchanging a selection of strings between two random points. The
main purpose of the crossover operator is to perform a wide spread search, exploring
almost all the solution space. A lot of crossover operators have been designed in the

recent past for solving combinatorial optimization problems.




bt |

Mutation Operator

Mutation is the secondarv search operator which increases the variability of the
population within the search space. The operation of mutation begins by randomly
selecting a chromosome from the population. A mutation point along the string is
chosen at random, and the single character at that point is randomly changed. The
mutation operator offers the opportunity for new genetic material to be introduced
into the population. Also, it is potentially useful in restoring genetic diversity that

may be lost in a population. Because of premature convergence, mutation is used

sparingly in most genetic algorithms work.

1.2.2 Parent Selection

Parent selection dynamics are based on an application-dependent measure of fitness
called fitness function. The purpose of parent selection is to give more reproductive
chances to those members of the population that are most fit. These selected chro-
mosomes (called parents) are the fittest of the whole lot and so that they reproduce
to bear children. One of the most widely used procedures for the above process is
the roulette-wheel parent selection algorithm [4]. This algorithm is referred to as
roulette-wheel because it can be viewed as allocating pie-shaped slices on a roulette-
wheel to population members. with each slice proportional to the member’s fitness.

To reproduce. we spin the wheel. the selected member being the one in whose slice




the wheel ends up.

1.2.3 Fitness Function

The fitness function is the link between the genetic algorithm and the problem to be
solved. It takes a chromosome as an input and returns a number, which is a measure
of the chromosome's performance on the problem to be solved. Fitness function plays
the same role in genetic algorithms as the environment plays in natural evolution.
Usually. the fitness value is the value of the objective function or some scaled version

of it. In general. the fitness function consists of the composition of two functions

u(r) = g(f(z)). (1.1)

where f is the objective function and g transforms the value of the objective function

to a non-negative number.

1.3 Literature Review

A lot of work has been done during the last few decades on null steering and its appli-
cations. Most of the research has been concentrated on the analytical development

of null steering. We can broadly subdivide the research into two categories.

1. Analytical Null Steering Methods



2. Genetic Algorithm based Null Steering

1.3.1 Analytical Null Steering Methods

In a classic paper Schelkunoff [5] presented a method that is conducive to the syn-
thesis of arrays whose patterns possess nulls in the desired directions. This method
requires information of the number of nulls to be placed and their locations. The
number of array elements needed. and their excitation values are then derived. Vu
[6] described a method of null steering without using phase shifters. This is done by
forcing the zeros of the array factor to occur in conjugate pairs on the unit circle in
the complex plane. The paper also showed that if the number of jammers is much
smaller than half the total number of elements in the array, it is possible to optimize
the pattern as well as suppress the jammers.

Dawoud and Ismail [7] achieved null steering in an adaptive array by elemental po-
sition perturbations. An experimental verification of this technique was provided
by them in [8]. They have suggested that null steering using element position per-
turbations is less complicated when compared to other existing techniques. Vu [9]
in a paper that reviewed the principles and potential applications of null steering in
phased arrays concluded that future research would be towards monolithic phased
arrays with beam scanning and null steering likely to be achieved at low frequencies
with the aid of high speed digital signal processors.

Dawoud [10] presented a methodology of null steering in scanned arrays by element
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position perturbations. This method was devised to improve the performance of
scanned arrays based on the null steering criterion, keeping beamwidth and side-
lobe level variations to a minimum. Hu et al [11] in a recent publication proposed
a synthesis method to design an array pattern with a deep null by controlling only
the excitation phases of part elements by using a weight function to construct an
objective function which was then minimized. Their results demonstrated the effi-
ciency of this numerical method. Ko [12] investigated a fast null steering algorithm
for adaptive arrays with a look direction constraint. In this, the LMS algorithm was
used to adaptively adjust the positions of the array nulls one after another in a time
multiplexed manner to track unknown jammers.

Nagesh and Vedavathy [13] have given a simple method to arrive at an optimum
set of array excitations to achieve a specified radiation pattern. In this method.
an auxiliary function is formulated based on the envelope of the required sidelobe
structure and the array factor in the side lobe region. This function is minimized
subject to the main lobe and null steering constraints to determine the excitations.
Mismar and Ismail {14] used the Minimax approximation to steer the nulls of an
array by controlling the current amplitudes. The technique determines the current
amplitudes that produce the minimum sidelobe level for a given beam width and
prescribed nulls in arbitrary directions. Wu [L3] presented an iterative algorithm for
obtaining a set of coefficients of a linear array that generate a desired main beam

with suppressed sidelobe level. This technique can be applied to.a linear array with
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uniform or non-uniform spacing and isotropic or non-isotropic elements, and it also

converges rapidly to the desired solution.

1.3.2 Null steering based on the Genetic Algorithm

In the last decade a lot of research has been done on the use of the Genetic Algo-
rithm for array pattern svnthesis and null steering. Dawoud et al [16] applied the
genetic algorithm for null steering in adaptive arrays. They showed that using the
GA it is possible to steer nulls precisely to the required interference directions and
achieve any prescribed null depth. The paper also showed the potential of the GA
for conformal array design.

Dawoud et al [3] made a comparison of the results obtained by using analytical meth-
ods for element position control. with the GA approach. They showed bv using the
GA for null steering. we get precise solutions to array adaptation as compared to
the analytical method. A recent paper by .Johnson et al [17] discusses the use of
genetic algorithms for a variety of problems in electromagnetics such as design of
shaped-beam antenna arravs, the design of broadband patch antennas ete. It con-
cludes by emphasizing the suitability of the genetic algorithm for a broad class of
electromagnetic problems. \Marcano et al (18] applied the genetic algorithm for the
synthesis of linear antenna arravs and concluded that the synthesis of the radiation

pattern with many constraints is a non linear optimization problem, which is dif-
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ficult to solve using methods based on deterministic rules because of local minima
problems. and hence. they suggested the genetic algorithm as a solution.

Haupt [19] showed a method to optimally thin an array using genetic algorithms.
The genetic algorithm determines which elements are to be turned off in a periodic
array to vield the lowest maximum sidelobe level. Lu and Yan [20] applied the GA
to synthesize the pattern for linear and curved arrays. They showed that the GA
can be applied to synthesize arbitrary arrays which are difficult to be treated by
other analytical or numerical methods.

Tennant et al [21] used the genetic algorithm for array pattern nulling by element
position perturbation. and made comparisons with the results obtained from the
analytical solution. This comparison showed some distinct advantages of using the
genetic algorithm over analytical methods. Haupt [22] tried to overcome the large
time consumption problem when arrays are numerically optimized, by a new method
that ensures a fast convergence of the genetic algorithm. This is possible if the array
parameters are encoded with a Gray code (Hamming distance =1) and therefore,
are less likely to be disturbed during the crossover operation.

Johnson et al [23] discussed a number of applications of genetic algorithm such
as design of light weight. broadband microwave absorbers, the reduction of array
side-lobes in thinned arrays. the design of shaped beam antenna arrays etc. They
concluded that the GA optimization is suitable for a broad class of problems related

to aerospace antennas and electromagnetics.
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In another recent publication Ares et al [24] used both simulated annealing and
genetic algorithms to find optimum excitation for patterns with null filling. These
methods have the advantage that the optimum aperture distribution is found with-
out searching the entire solution space. A comparison between the performance
of both methods shows that the GA's are faster than Simulated annealing for this
problem. Chambers et al [23] applied the GA to the optimized design of radar
absorbers for the end fire antenna array with both adaptive nulling and radiation
pattern envelope limitations. The algorithms were robust and out-performed other
optimization techniques such as Downhill Simplex and Simulated annealing.

Marcano et al [26] used the genetic algorithm to synthesize multiple beam linear

antenna arrays with low sidelobe levels and stated that the results obtained showed

the robustness of the GA.

1.3.3 Grating lobes and their suppression

Most of the work done on grating lobes and their suppression was in the field of Mi-
crowaves and Ultrasonics. Proukakis et al [27] discussed the ambiguities in uniform
and non-uniform linear arrays. These ambiguities are viewed as the appearance of
grating lobes when beam-forming is used.

Ragheb and Shafai [28] investigated a new concept in array design, where the level
of the grating lobes is controlled by the Element pattern. Here, each array element

operates in the first two modes TE|, and TEy and the array pattern is shaped to
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place a null in the direction of the grating lobes. This increases the inter-element
spacing beyond that of normal arrays, without a serious pattern degradation due
to the appearance of the grating lobes. Shafai [29] in a related paper dealt with
enhancing the scan gain by element pattern synthesis. Scan gain can be achieved
by moving the element pattern peak towards the scan angle. The grating lobes can
be nullified by introducing an intentional null on the element pattern, at their lo-
cation. Rew [30] also proposed a general scheme for eliminating all grating lobes in
ultrasonic synthetic focusing using a linear array. Sharma and Calla [31] addressed
the problem of the appearance of grating lotes in broad wall slotted waveguide ar-
ray of shunt slots and presented an improved design technique to suppress these
lobes. Lockwood et al [32] developed a method for designing sparse periodic arrays
which avoided grating lobes by using different element spacings on transmission and
reception. It was shown that using this technique the number of elements can be

reduced at least four times with little degradation of the beam forming properties

of the array.

1.4 Objectives of the Work

A survey of the literature showed that the appearance of grating lobes in scanned
arrays results in a pattern that is ambiguous and hence not very useful [27]. We have

also seen that the genetic algorithm has been applied to many array optimization
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problems like null steering, pattern synthesis etc. (17], but no attempt has been made
to use it for null steering to solve the grating lobe problem in scanned arrays. The
solution to this problem opens many avenues that make arrays with large separation
advantageous. Some of them are ( 1) Increased directivity, (ii) Increased scan range
and, (iii) Simple feed network requirement for the antenna system. In our work that
follows we intend to focus on the utilization of the genetic algorithm approach of
null steering to tackle the problem of grating lobes.

In order to investigate scanned arrays and its patterns, we adopt the following line
of research. At first. arrayv factors for arrays with large separation d. (i.e 0.5\ <
d < A) are analyzed. This is necessary to understand the radiation characteristics
of such arrays precisely. some of which are array factor patterns and directivity. An
interesting effect of scanning the main beam from broadside towards end-fire with
large inter element spacing, is the appearance of the grating lobe in the pattern.
An important part of the work is to use the genetic algorithm for null steering
to reduce the grating lobe to a desired level. so as to have the new array factor
pattern with increased directivity. For the purpose of null steering we use both
the element position perturbations as well as complex weight perturbations. The
algorithm developed for this work. has been coded using the C++ language, and
plots generated using Matlab. A comparative study has been done for specific arrays
on the change in directivity before and after grating lobe control. Grating lobe

problem in Chebyshev arrays has also been studied. Radiation patterns generated
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using the element pattern of a finite length dipole, are also studied in order to further
control the side-lobes including grating lobes. In essence, this work concentrates on

providing an effective solution to the problem of controlling grating lobe in scanned

arrays.



Chapter 2

An Overview of linear arrays

2.1 Linear Arrays

An array of identical elements. all having uniform amplitudes of excitation and each
with a progressive phase is referred to as an uniform array. An equi-spaced .V
element linear array is shown in figure 2.1.

Referring to the geometry of this figure. all elements have identical amplitudes
of excitation. but each succeeding element has 3 progressive phase lead current
excitation relative to the preceding one. The phase shift between two successive
elements of this array is [kdcosé] where k is the wave-number and is equal to (27)/\.
Here. A corresponds to the center frequency f, and d is the inter-element spacing.
The direction pattern of the array. which is the relative sensitivity of response to

signals from various directions may be found by considering the array factor term

17
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Figure 2.1: Far field geometry of N element array of isotropic sources positioned
along the z-axis.

AF and it can be obtained by considering the elements to be point sources. It is
given bv: AF =1 + ej(kd‘°50+3) + eJQ(kdc050+!3) + ...+ ej(.‘\"—l)(kdcosl)-{-ﬁ)

The above expression can be simplified as:

AY
AF = Z ej(n—l)(kdcos0+ﬁ) (21)

n=1

Equation 2.1 can be written as
N )
AF(8) = a,elnb¥ (2.2)
n=1

where ¥ = 2mwdcos(d)/)\. For the Scanned or Phased array ¥ = kd[cosf — cosfy).
Here, 6 is the main beam direction [1]. The total field for linear arrays is equal to
the field of a single element positioned at the origin multiplied by the Array Factor

(AF). This factored form of the expression is very useful, because the shape of the
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element pattern is fixed. once the choice of elements for the array is made. Thus, in
order to achieve a certain null configuration or a given pattern shape, the designer,
In most cases, can utilize the expression of the array factor. A variation of the
array design is by having uniform spacing and non-uniform amplitude of excitation.

Chebyshev arrays and Binomial arrays are examples of this class of arrays.

2.1.1 Phased Arrays

Recent advances in high speed aircraft and missile technology have established the
Phased array antennas as an answer to radar systems [33]. This is due to the fact
that phased arrays achieve beam steering electronically [9]. Maximum radiation can
be oriented in any direction 6§, by adjusting the phase excitation J between the
elements to 3 = —kdcosf, . Thus. by controlling the progressive phase difference
between the elements. the main beam can be squinted in any direction to form
a scanning array. Since in phased arrays the scanning must be continuous, the
system should be capable of continuously varying the progressive phase between the
elements. In practice, this is accomplished electronically by the use of ferrite phase
shifters [1]. Implementation of a phased array system consists of two essentially
independent tasks: determination of the current distribution on the array elements
that is necessary to produce the desired radiation pattern, and implementation of
an interconnection network which will generate the desired current distribution.

Stuckman and Hill. (34] consider the first problem with particular emphasis on



20

achieving a type of radiation pattern particularly useful when the same antenna is

used for transmission and reception.

2.2 Effects of Changing Array Parameters

A linear array has a number of parameters that contribute to its overall performance.
Some of these important parameters are the number of elements ' V', and inter ele-
ment spacing 'd’. When one or more of these parameters is varied, the performance
of the array also changes. The following section analyzes these changes when either

the number of elements or the inter-element spacing is varied.

1. Fixing Spacing 'd’ and increasing the number of elements *N’: If this
is done, the array length increases, implying an increased value of directivity

and gain. But a complex feed network is required to feed the increasing number

of elements.

[R%]

. Keeping array length fixed: In this case as N increases, d decreases, be-

cause the array length is fixed. The following results are observed:

¢ No significant change in the main beam width.

¢ Increased directivity

e Higher mutual coupling. and hence a more complex feed network



21

3. Fixing the number of elements and increasing the spacing d: When .V

is kept constant. the array length increases by the increasein d . The following

observations are made:

¢ Narrow half power heamwidth (HPBW)
¢ Higher directivity and gain

¢ Less complex feed network

But as the inter-element spacing ‘d’ is increased well beyond 0.5 (d >> 0.3\)
changes occur in the array factor pattern. High side-lobes resembling the main beam
begin to appear. Their appearance causes a sudden reduction in the directivity of the
array. These lobes. called Grating Lobes. tend to reduce the array directivity and
gain . If the useful aspects of these large spaced arrays are retained and grating lobes
controlled. then they become efficient and useful. Null steering using the Genetic
algorithm is an important methodology that may prove useful in controlling the
level of grating lobes. Figure 2.2 shows the antenna pattern for large inter element
separation of 0.85\ when the main beam is scanned to § = —30° from the broadside
(or 60%). From this plot we note that a grating lobe shows up at 132° because of the

combined effects of scanning the main beam to 60° and large inter-element spacing

of 0.83\.
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Figure 2.2: Pattern showing the appearance of a Grating lobe at 132° for a 10
element array with inter element separation d=0.83\.

2.2.1 Grating Lobes

Only the lobe centered at beamn steering angle uq is the desired lobe (main beam).
and all additional lobes. of the same height as the main beam. are called grating
lobes. Proper array design eliminates grating lobes by proper choice of dimensions
or proper design of the antenna element or both [35]. For example, in a broadside
array, the first grating lobe appears in the visible range when d = A. Thus, a value
of d smaller than one wavelength ensures that no grating lobe appears in the visible
range of the pattern. In order to avoid grating lobes under all conditions of beam

steering. the element spacing should satisfy the relation d < A2,



2.2.2 Effect of Grating Lobes on Directivity

The directivity of an arrav is determined entirely from its radiation pattern. It
is defined as the ratio of the maximum radiation Intensity umq: to the average
radiation intensity u,.,. The directivitv of a broadside array of isotropic elements
having an inter-element separation d = 0.5\ is equal to the number of elements V.
Directivity curves (Directivity vs inter-element spacing) drop sharply near one and
two wavelengths due to the emergence of grating lobes into the visible region. The
directivity of a broadside array of isotropic elements is approximated by D =2L/).

This is a straight line approximation and it is accurate in the region from d slightly

less than half wavelength to nearly one wavelength [36].

2.3 Appearance of grating lobes for a 10 element
array

This section describes the the array factor of a 10 element uniform array, when the
main beam is scanned to a direction 6y and the inter element spacing is varied from
0.5\ to 1.0A. Figure 2.3 shows the comparison of grating lobe appearance angles
for different main beam directions. with respect to inter element spacing. \When
the main beam is scanned to 83'. the grating lobe appears when the inter element

spacing d is about 0.92\. This means that the pattern of this array is satisfactory.




until the spacing exceeds 0.9\ at which point grating lobes appear. Figure 2.3 also
shows the useful range of this 10 element array for different main beam directions

and spacings, for example. when the main beam is scanned to 30° a grating lobe

appears for a spacing of (0.55.\.
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Figure 2.3: Plot showing the position of grating lobes for a 10 element array when
main beam is directed to 20°. 30°. 50°. and 85° .
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2.4 Brief description of analytical null steering

methods

2.4.1 Element position perturbations

A linear array of .V equispaced, isotropic elements is considered which has the pat-

tern

Y%
F(u) = Z apeldn(u—us) (2.3)

n=1
and element positions of d, = dy(n — V/2 — 0.5), where dy is the inter-element
spacing and u, is the main beam direction. Because the element position reference
center is taken to be the center of the array, the element positions d, have an odd
symmetry with respect to the array reference center, i.e., d, = —dy

—n+l: n=1v27"?

N

Null steering in linear arrays using element position perturbations is based on setting
the array factor to zero in the directions of interfering sources while minimizing the
perturbation in a mean square sense. The array factor of an NV element array, when

each element is located at d, from the array centre and each position is perturbed

Ay, is given by [7] and [8].

AY
F(u) = Y a,eitdn+an)u—u) (2.4)

n=I1
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Assuming small perturbations, as given by equation 2.5
| An(u —u,) << 1 (2.5)

the A’s can be obtained by linearizing and solving the array factor function as given

by:

AY
z an Npeos(dy(tm — u,) =0 (2.6)
n=1

Complete analysis of this method is given in [7].

2.4.2 Complex weights

In this case both amplitude and element phase of the element weights can be per-

turbed fromtheir original values, the perturbed coefficients can be represented by

wn, =a, + Auw, (

[EV)
=~
~—

Here Aw, = a,(8, + 7¢.). The first term on the RHS of equation 2.7 is the initial

value of the n'" element weight a,. and the second term is the perturbation of the

weight. The perturbed array pattern is then

-'\!
Flu) =) wyeldnlu-u)) (2.8)

n=1
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A detailed mathematical solution to equation 2.8 is provided by Styeskal [37].

2.5 Directivity calculation

For most practical antennas, radiation Patterns are so complicated that their closed
form mathematical expressions are unavailable. Even in those cases where mathe-
matical expressions are available. integrating them to find the radiated power, which
is necessary tc compute the directivity. is not easy. Therefore alternate methods like
usage of numerical techniques may be desirable. The use of numerical methods to
perform complex mathematical operations can be done easily with high speed com-
puters. In this work we have used the technique provided in [1] to calculate the
directivity of the arrays.

To verify the accuracy of the developed routine for directivity calculation, we present
the results for a 10 element array at broadside, whose inter-element spacing is varied
from 0.1\ to 2.0\. Figure 2.4 has been checked with the directivity plot available in
the reference [36]and is in good agreement with it. From the plot we see that the
directivity of the array falls suddenly when the spacing nears unity. This fall is due

the appearance of grating lobes into the visible region.
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Chapter 3

The genetic algorithm as applied

to grating lobe control

3.1 Introduction

In this chapter. we provide a description of the software routines used for null steering

using genetic algorithms for controlling grating lobes.

3.2 Program Description

We have divided the study of the developed routines into two sections. The first

section describes the main algorithm and the next section describes each individual

routine in detail. We describe the main program below.




30

Table 3.1: String representation
Elements | Chromosome string (position perturbations)
N=38 -0.02 0.016 0.01 -0.09 -0.05 0.01 0.03 -0.07

The first step involved is the initialization of the program. Values of constants like
the number of array elements '\, the population size, the inter element spacing,
etc, are initialized in the beginning. This parameter initialization is done in the
“Initialize” routine. A set of chromosomes, which in our case are the perturbations.
is generated randomly to form the initial population. It might be recalled that a
chromosome is a candidate solution made up of units called genes, In our case each
individual gene corresponds to the perturbation of that element. Chromosomes
grouped judiciously into sets constitute a population and the population at a given
stage is referred to as generation.

After generating an initial population. the " Calculate Fitness” routine is invoked
to check the fitness of each chromosome in the population. In our case, fitness of
a chromosome corresponds to the value of null depth in dB at the specified null
position that is achieved with that chromosome . After sorting the population in
descending order, the fitness of the best chromosome is compared with the required
value of null depth. If this condition is not satisfied, the main loop of the program
starts. An important consideration is to generate a new population from the old

population and it is here that parent selection dynamics become important. Parent
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chromosomes .4 and B are selected from the old population such that the probability
of selecting a chromosome with higher fitness value is greater than that having a
lower fitness value. The procedure used for the above process is the roulette-wheel
parent selection algorithm. After selecting the parents 4 and B they are crossed over
to generate a pair of children. this process being repeated for the whole population.
Mutation is also performed based on a certain pre-set probability on a randomly
selected gene of a chromosome. This important step not only helps the algorithm
reach newer areas of the search space but also alleviates the local minima problem.
The fitness of the new generation is calculated once again and chromosomes sorted
in descending order based on their fitness. The fitness of the best chromosome is
checked with the required null depth. If it is equal to or better than the required
null depth the program stops and displays the successful chromosome, else the loop
continues until it reaches a solution or exceeds a pre-defined number of generations.

For more clarification. a flow chart of the adopted procedure is shown in figure 3.1.

3.3 Description of Routines

In this section each routine is described in detail. We start with the Initialization

routine.
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Figure 3.1: Flow chart of the Genetic algorithm as applied to the problem
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3.3.1 Initialization

In this routine we define a few constants and also initialize the excitation ampli-
tudes of the array elements, depending upon the type of the array (Uniform or
Chebyshev). Values of important genetic algorithm parameters such as chromo-
some length, population size, and array Parameters such as null positions, main
beam direction, tolerance levels of perturbations, inter-element separation etc., are
supplied to the program. This routine also calculates the element positions (D,)
based on the initial separation dy using the formula D(n) = do(n - N/2-0.5). Here

N is the number of elements and ‘n’ is the index.

4
Input Chromosometength, and
Initial Separation 'd”

Input amplitudes of excitataion

Yes
o) ;
m InitPosition = d*((i+1) -

Chromasomelength/2 - 0.5)
| i =i+l l——

Figure 3.2: Flow chart of the Initialization routine
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3.3.2 Generating Initial Population

In this routine we generate a set of chromosomes that form the initial population
of prospective solutions. These are generated randomly. We have defined upper
and lower bounds of tolerance for the perturbations. All genes of the chromo-
somes lie within this bound. This is done by the following formulation. Afi] =
(LowerTolerence + rand() = (UpperTolerance — LowerTolerance)). Here rand() is

a function that generates random numbers between 0 and 1.

3.3.3 Fitness Function

For array pattern nulling by element position control. the fitness function used is

given in general terms bv:

F(uy)

F= IF(un)

(3.1)

where F(u,,) is the value of the array factor at each of the desired null positions
and F(u,) is the value in the main beam direction. Specifically, the formula of the
array factor was used to calculate the fitness value when position perturbations were

included. This is given by

v
Flu) = ) apeltdntdallum=u,) (3.2)

n=]
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In the above equation .\, correspond to the position perturbations, u, is the main
beam direction and un, is the null position. An advantage of using the GA is its ease
of implementation without the use of mathematical assumptions when compared to
the analytical method. Fitness values expressed in dB make the judgement of a

chromosome’s utility. easy.

Steering Two or more nulls

The formulation of the program changes slightly when two or more nulls are to be
steered. For example if we wish to steer two nulls at 100°%nd 150° qull steering
is accomplished by working on the maximum of the two nulls. This procedure is
described as follows. If the fitness value at 100° is ~25dB and that at that at 1500 is
—30dB then the genetic algorithm works on the maximum of the two nulls l.e. the
—25dB deep null and tries to push it further down. After this operation suppose the
depth of this null has changed from —25dB to ~35dD. then in the next step the GA
works on the —30dB deep null because it is the maximum of the two (i.e. —30dB
and —35dB) at this stage. This procedure continues until both steered nulls have
the specified null depth. The same explanation holds for three nulls. Thus with a
minor change in program steps. multiple nulls can be effectively steered. Figure 3.3

shows the flow chart of the fitness function evaluation.
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Figure 3.3: Flow chart showing the evaluation of Fitness Function



37
3.3.4 Parent Selection

For the purpose of parent selection we have used a popular stochastic selection strat-

egy called Roulette-wheelselection. Here parents are selected based on a probability

of selection given by the equation:

Fitness(parent;
Pselection = (p ) (3~3)
Y i(parent;))

The probability of selecting a parent from the population is purely a function of
its relative fitness. Parents with high fitness will participate in the creation of the
next generation more often than less-fit individuals. A good point of this mode of
parent selection is that there is still a finite probability that highly unfit individuals
will participate in at least some of the matings, thereby preserving their genetic
information. Roulette wheel selection can be visualized as assigning a space on the
wheel to members that is proportionate to their relative fitness. The wheel is “spun”

and the member pointed to at the end of the spin is selected as a parent.

3.3.5 Crossover Operation

The crossover operator accepts the selected parents and generates two children. In
the single point crossover shewn in the flow chart of figure 3.5, a location that is in
the middle of the parent chromosome is selected. The portion of the chromosome

preceding the selected point is copied from parent number 1 to child number ! and
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Figure 3.4: Flow chart showing the methodology for selecting parents

from parent number 2 to child number 2. The portion of the chromosome of parent
number 1 following the randomlyv selected point is placed on the corresponding
positions in the child number 2 and vice versa for the remaining portion of parent
number 2's chromosome. The effect of crossover is to rearrange genes with the
objective of producing better combinations, thereby resulting in fitter members.

The crossover operator also helps in performing a wide spread search, exploring

larger solution space.

3.3.6 Mutation Operation

The mutation operator provides for a change in the genetic makeup of the current
population. In mutation. if P > DPmutation, an element in the string making up
the chromosome. is randomly selected and changed. This is depicted in figure 3.6.

Having a high rate of mutation results in a generation that may lose its genetic link
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Figure 3.3: Flow chart showing the Crossover operation
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due to excessive randomness. Hence. a low mutation probability was used, usually

Choose chromosome to mutate
randomiy from the population

ranging from 0.01 to (.1.

Gene to mutate =
rand()*Chromosome Length

Y

Aeplace the gene posttion ‘Gene to mutate’ in
the randomly chosen chromosome with a
random number within the specified tol range.

Figure 3.6: Flow chart showing the Mutation operation

3.3.7 Sorting of Chromosomes

After the calculation of fitness values in dB sorting is needed to find out the best
chromosome in that generation. We have accomplished sorting using the " Selection
Sort Algorithm™ in which the first element of the array is compared with the second
and swapping is done if the second is greater. This procedure is repeated by checking
each element of the array with the first. Once this is done the first element of the
array has the member with highest fitness. The procedure is repeated for the second,
third, fourth elements and so on until all the elements of the array are covered and

the array thus gets sorted in descending order. A flow chart of the procedure is

given in figure 3.7.
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Figure 3.7: Flow chart showing the Sort operation
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Chapter 4

Results and Discussion

In this chapter. we present and discuss the results achieved by applying grating
lobe control on both uniform and non-uniform arrays. The benefit of applying
genetic algorithm for null steering is also discussed. The organization of the results
is as follows. At first. an array of 12 elements is considered. For this array the
inter element separation 'd’ is varied from 0.5\ to around 1.0). so that grating lobes
appear. all through keeping the scan angle fixed. In order to control the grating lobe
we use the genetic algorithm to steer nulls in its vicinity. The null depth chosen for
the cases where the inter-element spacing is around 0.5 is —60d3. For arrays with
large inter-element spacing. the control level chosen was —15dB to avoid pattern
degradation by going for higher depths. For each case, we present the element
position perturbations A, of the elements that help achieve the required grating

lobe control. Results are presented for a 20 element array, in order to show that this
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algorithm can be applied to arrays of varying lengths. The A’s for each case here are
also provided. We also used the complex weight variations for grating lobe control
and present results achieved using this technique in this chapter. Two or more nulls
have been easily steered in different directions at the same time, as shown in this
chapter. Results are also shown for three nulls steered in three different directions.
We have also dealt with non-uniformly excited arrays namely Chebyshev arrays and

have investigated the effects of grating lobe control on them:.

4.1 Use of position perturbations

In this section the effect of perturbing the element positions on for nul] steering
is studied. The set of position perturbations A,’s. are generated by the genetic
algorithm and are used to find the new array factor pattern. Here, we analyse some
of the plots obtained. and present the set of perturbations in tables, for each cor-

responding plot. The expression for the array factor that is used to generate these

plots is given as:

F(u) = ZY(an)[(ej(d..)(u-u,))(ej(Au)(u—u,))] (4.1)
n=1

where A, corresponds to the position perturbations. The other parameters in the
equation are defined as: u; is the main beam direction, a, is the original amplitude

and d, is the position of the n'* element. In order to explain the concept of null
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steering properly we present the case of a broadside array with a spacing of 0.3\ in
figure 4.1. This is the simplest case considered for the 12 element array. Here, we
have steered two nulls in different directions 140° and 160%. The null depth chosen is
—60dB for both of them. The range provided for the perturbations was +0.07\ and
the maximum number of generations provided for the algorithm to converge were
2000. The resultant pattern shown in solid lines depicts that both nulls were steered
exactly to the specified positions and with the required depths. The population size
chosen was 135 and the mutation rate chosen was 0.1. A small population size was
chosen for achieving a faster convergence. The number of generations needed for

convergence were 133. The position perturbations that produce these nulls is also

provided in table 1.
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Figure 4.1: Array Factor Pattern for N=12. and separation=(.5\ with nulls imposed
at 140° and 160". Dotted lines show the Original Pattern.

Table 4.1: Perturbations corresponding to Figure 4.1 in terms of \

Perturbation A p
-0.060894
0.047911
-0.022806
-0.027592
-0.059221
-0.063372
0.005496
0.024302
-0.037168
-0.046202
-0.063286
0.076061
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4.1.1 Effects of increasing inter-element spacing with main

beam at 70°

In this section we analyze the effect of increasing the inter-element separation from
0.3A to 0.8\. The most important effect that large separations give rise to is the
appearance of grating lobe. \We have reduced its level to —15dB or less, in order to
make it just another side lobe by perturbing element positions. Because of its height
and large beam-width the perturbations required for null steering need a higher
tolerance range. mostly £15% of the original positions as compared to that needed
for a case where the spacing is 0.5.\. in which case the required range lies between
+5%. Due to the increased range provided for the perturbations, the resultant
pattern is a little disturbed as compared to the original. The pattern disturbance
for the 0.5\ cases is negligible due to very small tolerance level provided for the
perturbations. Figure 4.2 shows a simple case of a 0.3\ spaced 12 element scanned
array (main beam at 70") with nulls steered to 140" and 160°. These nulls are —60dB

deep and resultant pattern is close to the original. The number of generations needed

were 167.

Figure 4.3 shows that by increasing the inter-element spacing to 0.6\ the level
of the last side-lobe increases as compared to the previous case. A null is steered
at 170° of depth —G0d 3 in order to control it. The number of generations needed

were 506. Table 3 shows the perturbations, which are still around +5%. Due to
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Array Factor in 08

[o] 20 40 &0 80 100 120 140 160 180
Angle in Degrees

Figure 4.2: Array Factor Pattern for N=12, and separation=0.5A with nulls imposed
at 140 and 160° with main beam at 70°. Dotted lines show the Original Pattern.

Table 1.2: Perturbations corresponding to Figure 4.2 in terms of \

Perturbation Ap
-0.013677
-0.021996
0.029755
-0.029903
0.026078
-0.006084
-0.000301
-0.029678
0.029703
-0.029654
0.028975
0.020577
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small perturbations, the resultant pattern is not disturbed and hence, close to the

original. ~ Figure 4.4 is an example of grating lobe control of a 12 element array

=20

Atray Factor in dB
]
8

&

e} 20 <0 S0 30 100
Angie in Degrees

Figure 4.3: Array Factor Pattern for N=12. and separation=0.6\ with nulls imposed
at 120° and 170", Control level specified is —60d..

with a separation of 0.75\ using element position perturbations. The grating lobe
level was constrained to —13dB from the main beam maximum. It 1s seen here
that controlling the grating lobe requires a larger tolerance range on perturbations
(£0.162) as compared to the case where the separation was 0.3A. This is because
it is difficult to control the grating lobe level with its large height (0dB) and wide
beam-width. using a small solution space (tolerance level). The pattern is also
slightly disturbed because of the relatively large perturbations used. as compared to

the first case. The number of generations needed for convergence were 2589. Figure



Table 4.3: Perturbations corresponding to Figure 4.3 in terms of )

Perturbation Ap

0.052670

-0.056661

-0.040925

-0.025198

-0.035490

-0.018464

-0.048671

0.001181

-0.027167

0.040669

0.035289

-0.043933

=20

Array Factor in dB

:

Figure 4.4: Array Factor Pattern for N=12, and se

posed at 160° and 170°.

60

80 100
Angle in Degrees

120

140

160 180

49

paration=0.75\ with nulls im-
Control level specified is —15d5.
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4.5 shows that an increase in the element spacing to 0.8) shifts the position of the
peak of the grating lobe to 153°. Hence grating lobe control was employed with
a control depth of —13dB at the specified directions of 150% and 160°, but in the

resultant pattern, one side-lobe with its peak at 140° has a level of —7dB, thereby

showing little improvement when compared to the original pattern. The number of

generations needed were 4363.

Array Factor in dB

L 2 L 1 L 1 1 L
c 20 40 60 80 100 120 140 160 180
Angle in Degrees

Figure 4.5: Array Factor Pattern for N=12, and separation=0.8) with nulls imposed
at 150° and 160". Control level specified is ~15d3.
4.1.2 Main beam at 20°

In this section we show an example of the main beam being scanned to 20°. If
we steer the main beam thus far. even for small element separations, we see the

appearance of grating lobe. Figure 4.6 shows the pattern of this ai'ray where elements



Table 4.4: Perturbations corresponding to Figure 4.4 in terms of A

Perturbation Ap
0.160199
0.161352
0.161451
-0.161165
-0.160228
0.161352
0.161352
-0.161224
-0.160761
-0.161185
0.160475
-0.161254

Table 4.5: Perturbations corresponding to Figure 4.5 in terms of A

Perturbation Ap
0.174515
-0.174483
-0.176957
-0.176427
0.174818
0.176838
0.176838
0.175336
-0.175725
0.176103
-0.175034
-0.176255
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have a spacing of 0.5). The level of the last side lobe in the unperturbed pattern is
too high, and to control it we have placed a null at 170°. Also, to control any other
side lobe from rising much in other directions, we have placed a null at 120° also.

The number of generations needed were 1800.

Antay Factor in dB
& &
T L

Figure 4.6: Array Factor Pattern for N =12, and separation=0.5\ with nulls imposed
at 145° and 170° with main beam at 20°. Dotted lines show the Original Pattern.

4.2 Application to 20 and 32 element arrays

In this section we apply this method by to a 20 element array whose main beam
is scanned to 60°. The inter element spacing chosen is 0.75\. Due to the large
scan angle and spacing a grating lobe appears with its peak at 146.4°. The half

power beamwidth for this lobe is 6.20 as compared to 3.9° of the main beam. In
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order to bring its level down we have controlled side lobes at 144° and 148°. The
resultant pattern is disturbed. The mutation probability employed was 0.1 and the

population size chosen was 15. 8166 generations were needed for the algorithm to

converge to the required specifications. Figure 4.7 shows these details. The plot in

Array Factor in dB

[+} 20 40 60 80 100 120 140 160 180
Angle in Degrees

Figure 4.7: Array Factor Pattern for N=20, and separation=0.75) with nulls im-

posed at 144" and 148° with main beam at 60°. Dotted lines show the Original
Pattern.

figure 4.8 refers to a 32 element array whose main beam is scanned to 60° and has an
inter-element spacing of 0.75\. The peak of the grating lobe is at 146.4% and hence
two nulls of depth —15dB were steered at 145° and 1479, thereby bringing its level
down. The number of generations needed were 13210. From the last two examples
of 20 and 32 elements we can conclude that application of null steering using the

genetic algorithm can be performed for arrays with any number of elements.



Table 4.6: Perturbations corresponding to F igure 4.6 in terms of A

Perturbation Ap
0.067950
0.067975
0.067975
0.034734
0.064111

-0.049812
0.045089
-0.051269
-0.018443
-0.067846
-0.067622
-0.0678359

Angle n Degrees

-1wof

Array Factor in dB
] |
8 ]

A
<}

-50

Figure 4.8: Array Factor Pattern for N=32, and separation=0.75A with nulls im-

posed at 145° and 147° with main beam at 60°. Dotted lines show the Original
Pattern.



Table 4.7: Perturbations corresponding to Figure 4.7 in terms of A

Perturbation Ap
-0.164480
-0.168890
0.160890
0.163494
-0.162456
0.167914
0.158721
0.154321
-0.170000
-0.169689
0.169689
-0.169533
0.140293
-0.168993
-0.167406
-0.168454

0.167126
0.165445
-0.168454
0.163670




4.3 Complex Weight perturbations

The versatility of the genetic algorithm, vis-a-vis usage of any method of pertur-
bation to steer nulls is validated by the use of the amplitude-phase type of per-
turbations. also known as complex weight perturbations. The set of amplitude
perturbations \,,’s. and phase perturbations Apa’s , are generated by the genetic
algorithm and are used to find the new array factor pattern.In this section we anai-
vse some of obtained patterns. and present the set of perturbations in tables, for
each corresponding pattern.

Figure 4.9 shows the application of null steering using complex weight pertur-
bations to a 12 element uniform array. The array is broadside. and nulls of depth
—60dD are steered at 140" and 160". The number of generations required to achieve
this objective are 294. Mutation rate chosen is 0.1 and population size chosen was
15. Figure 4.10 refers to the 12 element scanned array (main beam at 50°) , 0.5\
spaced. and where nulls are placed in the directions 115 and 160° to control side

lobes. These examples show the ease of placing nulls with the complex weight tech-

nique.

Investigation of the effect of scanning the main beam towards 0° showed that the
grating lobe appears for values of spacing as small as 0.5\. Figure 4.11 proves that
when the main beam scanned to 0? with a spacing of 0.5\ a grating lobe appears. In

order to bring it to an acceptable level, we have steered two nulls at 170° and 180°



Array Factor in dB
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Figure 4.9: Array Factor Pattern for N=12. and se

at 140° and 160". Dotted lines show the Original Pattern.

Table 4.8: Perturbations corresponding to Figure 4.9

Perturbation A, | Amplitude Perturbation Ay
-0.042547 -0.017510
0.038488 0.017513
-0.008165 0.005814
0.013103 -0.014946
-0.014870 0.019045
-0.015850 -0.009917
-0.011077 -0.012181
-0.029977 0.008433
-0.011083 0.017714
0.049579 0.008145
-0.046771 0.018339
0.033181 -0.019856

(S]]
=1

paration=0.5A with nulls imposed




Figure 4.10: Array Factor Pattern for N=12, and separation=0.5)\ with nu
posed at 115°, 140° and 160° with main beam at 500.

Pattern.

-20}

Array Factor in dB

0 10
Angle in Degrees

Table 4.9: Perturbations corresponding to Figure 4.10

Perturbation A,

Amplitude Perturbation A 4

0.027467 -0.019873
-0.027745 -0.019916
-0.027988 0.019821
0.009337 0.019741
0.025908 0.012389
-0.019181 -0.009110
0.017563 -0.019485
-0.026816 -0.017454
-0.007476 0.019988
0.027188 0.019960
0.027600 -0.018937
-0.027856 -0.019926

lIs im-
Dotted lines show the Original
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in 8343 generations. The resultant pattern is disturbed as compared to the original.

s

Array Factor in dB

-40f

0 20 40 60 80 100 120 140 160 180
Angle in Degrees

Figure 4.11: Array Factor Pattern for N=12, and separation=0.5\ with grating

lobe control at 170% and 180° for the end-fire array. Dotted lines show the original
pattern.

4.3.1 Main beam at 60°

Figures 4.12 and 4.13 correspond to the 12 element array whose main beam is
scanned to 60°. For a spacing of 0.6S)\. it is seen from figure 4.13 that the grating lobe
appears and three nulls were steered to control it in 9879 generations. Grating lobe
control using complex weights is achieved at specified directions, but the resultant

pattern has some side lobes that have a higher level when compared to the original.



Table 4.10: Perturbations corresponding to Figure 4.11

Perturbation Apn | Amplitude Perturbation A A
0.108010 -0.085732
-0.118227 -0.082562
-0.119114 -0.088055
0.118118 -0.084001
0.113320 -0.081694
0.113935 -0.086902
-0.118579 -0.088292
0.118828 -0.085770
-0.119648 -0.087347
-0.111394 -0.080848
0.119648 -0.084402
-0.119802 -0.080249

Array Factor in d8

o] 20 40 60

80 100 120 140 160 180
Angle in Degrees

60

Figure 4.12: Array Factor Pattern for N=12, and separation=0.35\ with nulls of
depth —60dB imposed at 120° and 160° . Dotted lines show the Original Pattern.




Table 4.11: Perturbations corresponding to Figure 4.12

Perturbation A,,

Amplitude Perturbation Ay

0.034787 -0.024841
-0.033867 0.023051
-0.006532 -0.021751
-0.028921 0.024962
0.039622 0.014453
-0.015549 -0.020763
0.011217 -0.023633
-0.038757 0.022607
0.024653 0.024985
0.010609 -0.024797
0.037476 0.022606
-0.039795 -0.024275

Array Factor in B
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Figure 4.13: Array Factor Pattern for N=12, and separation=0.68\ with lobe control
imposed at 155°. 170° and 180" with main beam at 60°. Dotted lines show the

Original Pattern.



4.3.2 Main beam at 70°

Figure 4.14 shows an array factor pattern generated for a 12 element array with an
element spacing of 0.6\ with main beam at 70°. It is seen here that the side-lobe
farthest from the main beam starts to get higher. We have steered a null in that
direction i.e at 160" to bring its level down. The tolerance range that was provided
for the amplitude perturbations was +2% and that for the AL.s was £3%. The

number of generations needed for the program to converge to the above specifications

were 3632.
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Figure 4.14: Array Factor Pattern for N=12. and separation=0.6\ with lobe control
imposed at 143 and 160° with main beam at 70°. Dotted lines show the original
pattern.

The plot in figure 4.13 shows the control of grating lobe when this 12 element

array has a spacing of 0.73\ using complex weight perturbations. The number of



Table 4.12: Perturbations corresponding to Figure 4.13

Perturbation A,, | Amplitude Perturbation Ay
0.152352 -0.066783
0.138776 -0.067321
-0.163731 0.066992
0.163157 -0.069791
-0.163409 0.064651
-0.161807 -0.067501
-0.159763 -0.062677
0.163932 0.068992
0.163630 0.057148
-0.159602 -0.068193
0.1596352 0.068624
-0.157163 -0.067180

Table 4.13: Perturbartions corresponding to Figure 4.14

Perturbation \,, | Amplitude Perturbation Ay
0.029429 -0.011423
-0.026226 -0.019916
-0.026409 0.019821
-0.003665 0.013785
0.027275 -0.007793
-0.028326 0.015596
0.014408 -0.014806
-0.027365 0.019468
-0.017235 0.019709
0.029747 -0.017528
0.027702 -0.019443
-0.029059 0.019183
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generations needed here for convergence are 9688.
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Figure 4.15: Array Factor Pattern for N=12. and separation=0.75\ with nulls im-
posed at 160° and 170° with main beam at 70°. Dotted lines show the Original

Pattern.

Table 4.14: Perturbations corresponding to Figure 4.15

Perturbation \,, | Amplitude Perturbation Ay
0.164637 0.098035
-0.164557 -0.099652
0.165000 0.098669
0.164899 0.099554
-0.163258 -0.099829
-0.164930 -0.099786
-0.164658 0.084277
0.164366 -0.099908
-0.164577 0.099432
0.164839 -0.099182
(3.163530 -0.097009
-0.164758 0.099164




4.3.3 Application to a 20 element array

Using complex weight perturbations. a 20 element scanned array’s grating lobe is
controlled as shown by figure 4.16. The main beam is at 80° and the elements have

a spacing of 0.85\ between them. The grating lobe is controlled at 1799 in 5140

generations.
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Figure 4.16: Array Factor Pattern for N=20. and separation=0.85\ with lobes con-
trolled at 140°. 160” and 172° with main beam at 80°. Control level chosen is ~153dB.
Dotted lines show the Original Pattern.

4.4 Application to Chebyshev arrays

The Dolph-Chebyshev method. used in the implementation of the Chebyshev array.

has many practical applications. This method was originally introduced by Dolph



Table 4.15: Perturbations corresponding to Figure 4.16

Perturbation A,, | Amplitude Perturbation Ay
0.155719 0.098547
-0.160196 -0.088513
0.180827 0.006125
0.179737 | 0.026243
0.173776 | -0.000821
-0.161924 | 0.075079
0.173741 i -0.097217
0.137036 ; -0.024381
-0.190000 ’ 0.036918
0.140202 ; -0.066082
-0.142754 0.016892
0.169380 ; -0.043632
0.135035 ! -0.013114
-0.133406 | 0.014158
-0.164081 | -0.042790
0.178426 | -0.092138
-0.129197 E -0.086413
-0.186683 I -0.010062
-0.186347 | -0.088861
-0.179400 | 0.024406
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and investigated afterwards by Riblet et al. The element amplitude excitation co-
efficients of this array are related to Chebyshev polynomials. All the side lobes of a
Dolph-Chebyshev array pattern have equal height. There is a relation between co-
sine functions and Chebyshev polyvnomials. For example the Chebyshev polynomial
T3(z) = 427 -3z isequal to the cosine function cos(3z) = 4cos*(z)~3cos(z). The re-
cursive formula for Chebyshev polvnomialsis given by T,,,(z) = 2z m—1(2) =T m—2(z2).
We know that the array factor is a summation of cosine terms whose form is same
as Chebyshev polynomials. The unknown amplitude coefficients of the array factor
can be determined by equating the series represeniing the cosine terms to the ap-
propriate Chebyshev polynomial. The order of the polynomial should be one less
than the total number of elements of the array.

Ares et al [38] presented a new algorithm for calculating the excitation coefficients of
Dolph-Chebyshev arrays based on reconstructing the Schelkunoff polynomial from
its roots. In this work. we have used the design procedure provided in (1] and de-
signed a 20 element array with a side lobe level of -18dB. The normalized coefficients
of excitation of this array were [0.620. 0.614, 0.684, 0.663, 0.629, 0.582. 0.525, 0.462,
0.396. 1.0]. Both element positions and complex weight perturbations were applied
for controlling grating lobes. Here. we present an example using complex weight
perturbations in figure 4.17 for the 20 element broadside array with an element sep-
aration 0.5\ with nulls steered to 143° and 160 in 3936 generations. Figure 4.18 has

been generated using the element position perturbations for the same null positions.
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The number of generations needed were 2696. The table of perturbations that is

used is also provided with each plot.
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Figure 4.17: Array Factor Pattern for N=2(. and separation=0.5\ with nulls im-

posed using complex weight perturbations at 145° and 160° with main beam at 90°
and Control level chosen is ~60dB3.

Figures 4.19 and 4.20 are related to the Chebyshev array of 0.85\ spacing and
whose main beam is at 80Y. F igure 4.19 shows the resultant pattern when position
perturbations are used for grating lobe control. while figure 4.20 shows the pattern
that results when complex weights are used. These plots show that the resultant pat-

terns are a little disturbed as compared to the original. The number of generations

needed were 14206 and 19800 respectively.




Table 4.16: Perturbations corresponding to Chebyshev F igure 4.17

Perturbation \,, | Amplitude Perturbation Ay
0.045959 -0.009811
0.000145 0.009412
-0.046078 -0.009609
0.040783 0.009351
-0.048910 0.005688
0.047821 -0.001463
-0.043524 0.009393
0.048962 -0.003742
-0.032269 0.009517
-0.034219 -0.007789
-0.018188 -0.008951
0.036206 0.006557
-0.034326 -0.009368
0.048914 0.008712
-0.048202 0.008526
0.044217 -0.007753
-0.044443 0.009584
0.049634 -0.009557
-0.012618 0.009944
-0.045941 -0.009468
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Figure 4.18: Array Factor Pattern for N=20, and separation=0.3\ with nulls im-

posed using position perturbations at 143 and 160% with main beam at 90° and
Null depth chosen is —604B.
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Figure 4.19: Array Factor Pattern for N=20, and separation=0.85\ with nulls im-

posed using position perturbations at 163° and 175° with main beam at 80° and
Control level chosen is —13dB.



Table 4.17: Perturbations corresponding to Chebyshev Figure 4.18 in terms of A

Perturbation A,,
0.044788
-0.012174
-0.054429
0.053791
-0.048585
0.041293
-0.042613
0.041244
-0.022856
0.034002
0.001992
-0.010983
-0.054355
0.050485
-0.054094
0.054906
-0.054765
0.052570
0.018351
-0.050925
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Table 4.18: Perturbations corresponding to Chebyshev Figure 4.19 in terms of A

Perturbation A
0.180619
0.172443
0.183713
-0.181037
-0.171314
0.183780
0.167170
-0.138295
0.181003
-0.180562
0.182222
0.163455
0.169033
-0.179975
-0.171585
-0.183148
-0.178462
0.184571
-0.172398
-0.181556




Table 4.19: Perturbations corresponding to Chebyshev Figure 4.20

Perturbation A,, | Amplitude Perturbation A A
0.186625 0.037950
0.181836 -0.056041
0.184329 -0.047026
0.189188 0.099475
-0.165948 -0.064183
0.181720 0.020054
0.137639 -0.069018
-0.157833 -0.032969
0.173126 0.033811
-0.144342 -0.098157
-0.168557 -0.042991
-0.147404 -0.042991
-0.183025 -0.081866
0.188397 0.009067
-0.164081 -0.082037
-0.173115 -0.098950
0.188806 0.092804
-0.186660 0.096045
0.189548 -0.038578
-0.189710 0.059075
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Figure 4.20: Array Factor Pattern for N=20, and separation=0.85) with nulls im-

posed using complex weight perturbations at 165° and 175° with main beam at 80°
and Control level chosen is —15dD.

4.5 Effect of grating lobe control on Directivity

An important reason for controlling grating lobes in scanned arrays is to increase
the directivity of the array and thus, its overall gain. In this section we Iook at the
behavior of directivity curves for various cases. At first, we look at the effect of
grating lobe control on directivity, using complex weights and then that of position
perturbations. For this, we consider a 12 element scanned array with main beam
steered to 70°. Figure 4.21 shows the variation of directivity as a function of inter-
element spacing using complex weights. From this figure 4.21, we see that the
curves (before and after null steering) are close to each other when the spacing is

varied from 0.5\ to around 0.7\. It is clear here that with increasing separation,




Table 4.20: Directivity for a 12 element array with main beam at 70° (using Complex
Weights)

Spacing | D - Before | D - After

0.5\ 12.0 11.98

0.6A 14.1 13.91

0.7A 15.9 15.2

0.75) 11.42 11.6

0.8A 9.84 12.2

0.9A 10.87 12.1

the directivity of the array also increases. At around 0.73A, the directivity curve
without grating lobe control. has a sudden drop, which shows that a grating lobe
has appeared in the array factor pattern. Employing grating lobe control (from
0.75A onwards). shows that the directivity curve is higher as compared to the curve
obtained without grating lobe control. Thus, from these observations, we confirm
that controlling of grating lobe provides for an increase in directivity. Figure 4.22
presents the variation of the directivity curves as a function of Element spacing
when position perturbations are used for grating lobe control. Again, for a good
comparison, we have used a 12 element array with main beam scanned to 70°. The
grating lobe appears at around 0.73), and it is from here that the curve that is
generated after applying grating lobe control, moves a little higher as compared to

the original, thereby showing an enhanced performance in this range.
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Figure 4.21: Directivity plot for a 12 element array whose main beam is at 70°.
Complex weights are used for null steering

Table 4.21: Directivity for a 12 element array with main beam at 700

perturbations)

Spacing | D - Before | D - After
0.3\ 12.0 12.07
0.6\ 14.1 13.8

0.7\ 15.9 15.19
0.73A 11.42 12.1

0.8\ 9.84 12.5
0.9\ 10.87 12.8

(using Position
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Figure 4.22: Directivity plot for a 12 element array whose main beam is at 70° and
position perturbations are used for null steering
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Table 4.22: Directivity for a 20 element Chebyshev array with main beam at 80°

(using Position perturbations)

Spacing | D - Before | D - After
0.5A 18.83 18.6

0.6 21.8 20.38
0.7 24.65 23.33
0.8\ 27.3 26.5
0.851 | 22.27 22.16
0.9 17.6 19.73

4.5.1 Directivity analysis for Chebyshev arrays

In this section the effect of application of the GA for controlling grating lobes in

Chebyshev arrays is analysed with respect to changes in directivity. As seen from the

figure 4.23 the curve before null steering and the curve after ull steering are close

to each other until 0.85), when grating lobe begins to appear. From 0.85\ onwards

we see that controlling the height of the grating lobe by null steering results in an

increase in the directivity of the array.
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Figure 4.23: Directivity plot for a 20 element Chebyshev array whose main beam is

at 80° and position perturbations are used for lobe control



Chapter 5

Effect of element pattern on

grating lobe control

5.1 Introduction

The previous chapter has shown that controlling grating lobes using position per-
turbations is possible, but at the cost of getting patterns that have high side lobes.
It is known from the literature that if the length of a finite length dipole is var-
ied, the element pattern null position also shifts [33]. In this chapter we have used
this element null synthesis technique. in order to control the grating lobe and get
an overall resultant pattern whose side-lobe topology is close to the original. This

would, be a very effective solution to the grating lobe problem.

80
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5.2 Finite length dipole

In this section we analyse the radiation characteristics of a linear dipole of any

length. To reduce the mathematical complexities, it will be assumed that the dipole

has a negligible diameter.

9.2.1 Current distribution

For a very thin dipole, the current distribution at a point (x’,y’.z’) can be written.

to a good approximation. as

d:[(,.sin[k(§ -, 0<Z<

ey

/2

alysin[k(L+ )], ~1/2<2 <0

This distribution assumes that the antenna is center-fed and the current vanishes
at the end points (:' = +[/2). Experimentally it has been verified that the current

in a center-fed wire antenna has sinusoidal form with nulls at the end points [33].

5.2.2 Radiated fields: Element factor, Space factor and

Pattern multiplication

For the current distribution of equation 5.1, it is shown in [1] that closed form
expressions for the E and H fields can be obtained which are valid for all regions

(any observation point except on the source itself). The mathematical expression
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for the electric field is given as:

+/2 ke~dkr +/2 -
E, =/ dE§ = jn i sinG[/Uo L(Z g, 2"el* 30q2"] (5.2)

-2 7T

The factor outside the brackets is designated as the element factor and that within
the brackets as the space factor. For this antenna, the element factor is equal to the
field of 2 unit length infinitesimal dipole located at a reference point (the origin). In
general, the element factor depends on the tvpe of current and its direction of flow
while the space factor is a function of the current distribution along the source.

The total field of the antenna is equal to the product of the element and space

factors. This is referred to as pattern multiplication for continuously distributed

sources. and it can be written as
Total field = [Element factor] x [Space factor] (3.3)

The pattern multiplication for continuous sources is analogous to the pattern mul-
tiplication for discrete element antennas (arrays). For the current distribution of
equation 3.1 equation 3.2 can be written as

. —jkr Q [ o, 12 I L
Ey = jr)“L-sin()[/ sinfk(z +:")]etiks c°“0dz'+/ sinfk(z — 2')etik"cosf 4
i7r —1y2 0 2

4

o]

(5.4)
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Mathematically manipulating 5.4 we get the electric field as:

. klpe™ ¥ cos(4cosh) — cos(&L)
Ey =jn 9y [ = =

] (3.3)

sind

Equation 3.5 is applicable to an element placed on the z-axis. The choice of a finite
length dipole of length 1.0\ is suitable for the broadside case. When dealing with
scanned arrays with large inter element spacing, we need to have element lengths
greater than 1.0\ for grating lobe control. Practically, a co-linear array configuration
is not feasible for such elements lengths. In order to use the element pattern in our
work on scanned arrays. we include means to shift the maximum of the element
pattern to a required direction. Physically. this amounts to placing the dipole at an
angle a with respect to the z-axis. This modification can be added as the angle a
that achieves this scanning, to equation 3.5 and is shown in equation 3.6

[co.s(%cos(f) + ) — COS(%)

E, =
? sin(f + «)

| (5.6)

Figure 5.1 shows the geometry of an array of finite length dipoles placed at an angle

of a with respect to z-axis. This array is practically realizable and also avoids the

co-linear configuration.
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Figure 5.1: An array of dipoles placed at an angle a with respect to z-axis
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0.3 Effect of increasing the length of dipole

In this section we discuss the effect of increasing the length of a dipole on the element
pattern. Figure 5.2 shows the pattern of dipoles of lengths ranging from1.0), to 1.1\
» generated using equation 3.6 which are placed on the z-axis (a = 0). For example.
from figure 5.2(b) we see that choosing a length of 1.01\ produces an element pattern
null at 168.5%. It would be our endeavor to make use of such element nulls produced
by choosing appropriate length of dipoles. in cancelling the grating lobe, using the

pattern multiplication rule.

Let us now consider another example of the generated element pattern when the

length of the dipole is changed to 1.07.\. Figure 5.3 (h) shows that an increase in
the length of the dipole has caused the element null to shift to 150.5°. This null is
quite deep with a depth of more than —60d5.

In order to validate the achieved patterns we chose a dipole of length 1.25\ and
generated an element pattern using equation 5.6. This is shown in figure 5.4. This
element radiation pattern was compared with the reference element pattern available

in Balanis [1]. The obtained plot was in agreement with the reference.
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Figure 5.2: Element patterns of a dipole as its length is varied from1.0A to 1.05A.

For Fig (a)L=1.0\. For Fig (b) L=1.01\. For Fi

For Fig (e) L=1.04\. and For Fig (f) L=1.05.\

g (c) L=1.02), For Fig (d) L=1.03A.
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Figure 5.4: Element pattern of a dipole of length 1.25).
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5.3.1 Scanning the element pattern

In this section we consider examples of scanning the element pattern. This has
been done in order to study the effect of scanning the pattern on element nulls.
Scanning is also important because we intend to apply these element patterns to
control grating lobes in scanned arrays. Consider the first example of a dipole of
length 1.04\ whose pattern has been scanned in steps from 0° up to 90°. This
scanning is achieved by choosing an appropriate value of a in equation 5.6. Another
example shown is for a length of 1.05.\. Figures 5.5 and 5.6 show that as the pattern
is scanned from 0 to 90°, the position of the nulls also change. This is an important
observation that can be used in choosing the desired length of the dipole in order

to null the grating lobe.  If we now increase the length of the dipole to 1.09\ with

a = 20°, we see that nulls of depth —G0dB at 13.3%, 126.5° and 160°. The height
of the side-lobes is high as compared to the plot (b) of figure 5.6. These details are
shown in figure 5.7. In order to have a good documentation, table 5.1 is provided

showing the variation of null positions for dipoles of different lengths.
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90

is for a = 0° Fig

(b) is fora = 20°. Fig (c) is for a = 40", Fig (d) is for @ = 70° and Fig (e) is for

a = 909,

Figure 5.7: Element pattern of a dipole of length 1.09\ with a = 20°.
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5.4 Application of Element pattern and Array

factor pattern for grating lobe control

In this section we present the results obtained when we use both the element radia-
tion pattern and array factor pattern to control grating lobes. Pattern multiplication

rule would be applied to get the resultant radiation pattern.

5.4.1 Application to a 12 element 0.75\ spaced array

We first start with a 12 element array whose main beam is scanned to 700. The inter
element spacing is 0.753\. Figure 4.4 shows the use of position perturbations on the
array factor pattern in order to control the grating lobe. As seen from figure 4.4. a
grating lobe having a large width appears. with its maximum at 180V, By choosing
an appropriate element length. we could steer the element nulls, in addition to the
array factor nulls generated by position perturbations, in order to effectively cancel
it. An element length of 1.03\ is suitable in this case because it has element nulls at
140",160° and 180°. Having these nulls. along with the array factor nulls at 150° and
160" clearly have resulted in the cancellation of the grating lobe. The shape of the
resultant radiation pattern is also very much close to the original. Figure 5.8 shows
the radiation pattern of the 12 element dipole array, each element of length 1.03A in
comparison with the unperturbed array factor pattern. The comparison shows that

grating lobe present in the array factor pattern is effectively cancelled by multiplying
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it with the element pattern of a dipole placed at an angle of 20° with respect to

z-axis and of length 1.03\. Figure 5.9 presents the radiation pattern of the same 12

ER{°] o

Arnray Faclor in dB

N

L L L
80 100 120 140
Angle i Degrees

Figure 5.8: Radiation pattern of a 12 element array of dipoles, each of length 1.03.\
and having array factor nulls at 160° and 170°. Inter element spacing is 0.73\.
Dotted lines show the unperturbed array factor pattern

element array without position perturbations. having a spacing of 0.75.\ and each
dipole has a length of 1.03\. This pattern is compared with the unperturbed array

factor pattern. In this figure we see that the grating lobe is cancelled effectivelv

due to the element nulls. The plot of figure 5.9 shows good improvement in the

pattern shape as compared to the case where the grating lobe was controlled just
by perturbing element positions of the array. Thus. this technique of choosing an

element of a particular length to get nulls in the element pattern not only results in
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Table 5.1: Table showing the variation of null positions for different dipole lengths
when a = 20°.

Length of dipole Null positions | Side-lobe level (in dB)
0.5\ 160° -
1.0A 1609 -
1.01\ 148.59.160Y.171.3° -54.371
1.02)\ 1449.160°, 1769 -45.283
1.03\ 140°.160Y,180° -39.930
1.04\ 137.5Y,160° 2.59 -36.111
1.05\ 135°,1609 59 -33.143
1.07A\ 130.53".160°,9.5° -28.620
1.09A 126.5°.1609,13.5° -23.200
1.10\ 1251609159 -23.742
1.15)\ 117.5Y,160°,22.59 -18.000
1.20\ 112°.160°,287 -13.800
1.25\ | 107°.160° 339 -10.325

Array Factor in 0B
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Figure 5.9: Radiation pattern of a 12 element array of dipoles, each of length 1.03.\.
Inter element spacing is 0.75\. Dotted lines show the array factor pattern.
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cancellation of grating lobes. but also gives satisfactory radiation patterns.

5.4.2 Application to 12 element, 0.8\ spaced array

In this section we extend the use of the element pattern to a 12 element array
whose main beam is scanned to 70° and which has an inter-element spacing of 0.8\.
From figure 4.5 we see that the grating lobe shifts its position when the spacing is
increased from 0.75A to 0.8\. Because of this shift in the position of the grating
lobe. we need to choose the dipole element’s length that produces element nulls in
the direction of the grating lobe. The optimum length of the dipole that produces
element nulls in the direction of the grating lobe is 1.05A. This dipole is at an angle
of a = 20° with the z-axis. The angles at which nulls are produced are 135°. 160°
and 3. Grating lobe control using element position perturbations is emploved at
150° and 160°. The combined effect of these is shown in figure 5.10. Figure 5.11
compares the overall radiation pattern with the unperturbed array factor pattern.
Here. grating lobe control is done using the element pattern nulls alone. Fach plot
shows that the new radiation pattern has very good side lobe structure and effective

cancellation of the grating lobe.
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Figure 5.10: Radiation pattern of a 12 element array of dipoles. each of length 1.05.\
and having array factor nulls at 150° and 160°. Inter element spacing is 0.8A. Dotted
lines show the unperturbed array factor pattern
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Figure 5.11: Radiation pattern of a 12 element array of dipoles. each of length 1.05\.
Inter element spacing is 0.8\. Dotted lines show the array factor pattern.

9.4.3 Application to a 20 element array

In this section we show the application of the pattern multiplication rule for a 20
element array whose main beam is scanned to 60°. The inter-element spacing is
0.75A. Grating lobe appears in the array factor pattern with its maximum at 146°.
We have chosen an element of length 1.04\ and oriented at o = 30° with the z-axis.
This configuration of the element produces nulls in directions 127.5%, 150° and 172.5°
and hence is effective in cancelling the grating lobe. Figure 5.12 shows the radiation
pattern of this array in comparison to the unperturbed AF pattern. Figure 5.13
shows the radiation pattern produced with the usage of element pattern nulls only

in comparison with the array factor pattern. These figures show that the resultant
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radiation pattern again has a very good side-lobe topology and effective grating lobe

cancellation

n
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Figure 5.12: Radiation pattern of a 20 element array of dipoles, each of length 1.04\
and having array factor nulls at 144% and 148°. Inter element spacing is 0.75.\.
Dotted lines show the original array factor pattern.

5.4.4 Application to a Chebyshev array

As a final example. the pattern svnthesis method is applied to a 20 element Cheby-
shev array with a side-lobe level of -18dB. The main beam of this array is scanned
to 80° and the inter-element spacing is 0.85\. The grating lobe Just appears in the
pattern, and therefore element nulls are needed to eliminate it. A dipole length of

1.005A placed at a = 10 is found suitable for this case. Figures 5.14 shows that
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Figure 5.13: Radiation pattern of a 20 element array of dipoles, each of length 1.04).
Inter element spacing is 0.75\. Dotted lines show the array factor pattern.

the resultant radiation pattern has no grating lobe, but the side lobe structure is

changed from the original. where all side lobes have the same level.

9.5 Discussion

Our main purpose of providing an effective solution to the grating lobe problem
led to the utilization of element factor nulls. Their use, not only eliminates the
grating lobes but also gives good resultant radiation patterns. The flexibility of
synthesizing the element factor nulls by choosing appropriate lengths of the dipole

elements makes practical application of the technique, feasible. As shown, this
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Figure 5.14: Radiation pattern of a 20 element Chebyshev array of dipoles. each of
length 1.005\ and having array factor nulls at 165° and 175°. Inter element spacing
is 0.85A. Dotted lines show the original array factor pattern.
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method can be applied to any linear array. Side-lobe structure of the resultant
radiation pattern is also good. Effective control of the grating lobe is thus made

possible with this technique. Hence. this method provides a very good solution to

the grating lobe problem.




Chapter 6

Conclusions and

Recommendations

6.1 Conclusion

In this work. application of the genetic algorithm for null steering to control grating
lobes has been studied and developed. Element position perturbations and complex
weight variations are null steering techniques that have been employed to achieve
grating lobe control. These techniques provide grating lobe control at the specified
directions and achieve the required depths, but the resultant pattern is a little
disturbed as compared to the original. In order to get a radiation pattern that has
a good side-lobe topologyv and a controlled grating lobe level, use of a finite length

dipole element pattern has been investigated. This synthesis technique is based on

101
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the usage of element pattern nulls. These element nulls are a function of the length
of the dipole and by choosing an appropriate element, these nulls can be placed in
the vicinity of the grating lobe in order to control it. Results have been presented for
both uniform and non-uniform arrays. using the GA based control as well as control

based on element pattern svnthesis. The following are the conclusions drawn from

the study.

¢ The number of iterations and hence computation time needed to control grat-
ing lobes is large as compared to null steering in the directions of sidelobes.
For example. the number of generations needed for steering two nulls using
position perturbations in the pattern of a broadside array having an inter-
element separation of 0.3\ is 153 as compared to 2589 generations needed to
control grating lobe in a scanned array (main beam at 70°) with 0.75\ sep-
aration. For the same cases when complex weights are used. the number of
generations needed are 294 and 968S respectively, thus showing that use of

complex weights slows the rate of convergence.

e Mathematical approximations that are required for getting an analvtical solu-
tion. are not needed for null steering using either complex weights or position

perturbations when using the genetic algorithm.

» Complex weights have not provided any other specific advantages over position

perturbations vis-a-vis directivity. or improvement in pattern structure, when
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used for grating lobe control. Practically, position perturbations can be used

because fewer variables need to be controlled.

The appearance of the grating lobes into the visible region causes a sharp drop

in directivity. This study has shown that by reducing grating lobe levels. the

directivity of the array increases.

Application of grating lobe reduction to Chebyshev arrays also led to patterns

with increased directivity.

Grating lobe control using the genetic algorithm can easily be applied to any

array type simply by changing the fitness function.
Null steering to control grating lobes does not affect the main beam.

Use of null steering for grating lobe control in arrays with large inter-element

separation results in patterns with high side lobes. Further control of grating

lobes can be achieved using a suitable element factor.

The element pattern synthesis method used is based on choosing an appropri-
ate length of dipoles for getting element nulls in the direction of the grating

lobe. This technique is simple in design and practical to implement.

Array factor grating lobe control using null steering together with the appro-

priate element factor results in a useful array pattern where the array factor
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control reduces the grating lobe level while the element factor helps to con-

strain the grating lobe and side lobes in other directions.

¢ The use of the element pattern nulls provides a good solution to the grating
lobe problem. The obtained results show that the resultant radiation pattern

has good side-lobe structure and a controlled level of the grating lobe.

Thus, the genetic algorithm has been used to provide precise solutions for null
steering by element position control and complex weight variations. Processing

times are also quite small.

The advantages derived by controlling the level of the grating lobes are manifold.

e Firstly the scan angle range increases. This is of vital importance in areas

such as Radar and phased array systems.

e \When large phased arrays with reduced grating lobes are used, we get multiple
advantages such as increased directivity and greater scan range thereby making

the system cost effective.

Although the results in this work are based on the linear arrays, both uniform and
non-uniform. this technique is general. and may be applied to arbitrary geometries.
Hence. the use of the genetic algorithm is an advantageous proposition for design-
ers. in particular. for those who wish to evolve suitable and cost effective solutions
for antenna array problems. When combined with the element pattern svnthesis

technique. it provides an effective solution to pattern shaping problems.
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6.2 Recommendations

After conducting a detailed investigation of controlling grating lobes we provide the

following recommendations and direction for future research.

e A practical implementation of a scanned array can be attempted which has a

pattern with controlled grating lobes, based on the results of this work.

» The genetic algorithm can be implemented using other forms fitness functions
that not only control grating lobes. but also constrain the side-lobe levels

within a desired range.

e Application of the genetic algorithm to control grating lobes in 2D arrays is

also an advantageous proposition.

e Investigation of element patterns of different element types could be under-

taken for grating lobe control.
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