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Chapter 1

Introduction

1.1 Background

Buovancy forces arise as a result of variation of density in a fluid subject to gravity.
and produce a wide range of phenomena of importance in fluid mechanics and heat
transfer. Natural convection is one of these phenomena. Natural convection heat
transfer occurs whenever a body is placed in a fluid at higher or lower temperature
than that of the body. This difference in temperature causes change in the density
of the fluid near the heated or cooled body. The lighter fluid moves up and the
heavier fluid moves down resulting in natural motion of the fluid. Hence the process
in which fluid flow arises due to the effect of density difference in a body force field
such as gravitational field, is termed as natural convection. The fluid velocities in

natural convection currents, especially those generated by the gravity. are generally



low. but the characteristics of the flow in the vicinity of the heat transfer surface are
similar to those in forced convection. A boundary layer forms near the surface and
the fluid velocity at the interface is zero. Natural convection flow may be laminar
or turbulent. depending on the characteristic length, the fluid properties. the body
force and the temperature difference between the surface and the fluid {1].
Generally there are two basic modes of flow generated by buoyancy. The first
referred as conventional convection, occurs when the density gradient is normal to
the gravity vector and the second mode known as unstable convection (also referred
to as Rayleigh Benard convection), occurs when the density gradient is parallel to the
gravity vector. Natural convection problems are classified as either external natural

convection (eg. vertical plate) or internal natural convection (eg. enclosures).

1.2 External Natural convection

Natural convection flow arising due to a body placed in an extensive quiescent
isothermal medium is termed as external natural convection flow. Flow through
vertical surfaces. inclined surfaces, curved surfaces such as cylinders and spheres are
some cxamples of the external natural convection.

Consider. as an example, the natural convection heat transfer from a heated
vertical surface placed in an extensive medium at a uniform temperature. If the plate

surface temperature is greater than the ambient temperature, the fluid adjacent to



the vertical surface gets heated. becomes lighter and rises. Heavier fluid from the
neighboring areas rushes in to take the place of the rising fluid, similarly the flow
for a cooled surface is downwards. The fluid next to the surface is stationary due to
the no-slip condition and the fluid far from the vertical surface is stagnant because
of the extensive quiescent medium. Therefore the flow exists in a layer adjacent to
the surface with zero velocities on cither side as shown in figure 1.1. A boundary
layer exists and the region outside the boundary layer is unaffected by the flow [2].

External natural convection has wide range of application both in nature and in
technology. Heat transfer processes in natural environment such as the buoyant flow
arising from leat rejection to the atmosphere, circulation arising in atmosphere are
few examples of external natural convection. In order to avoid overheating when
the usual mode of heat transfer fails, natural convection is considered in the design
of electronic devices and systems in power generation. Natural convection is also
responsible for heat losses from pipes carryving steam or other heated fluids and from

the coil of a refrigerating unit to the surrounding air.

1.3 Internal Natural Convection

Natural convection flow arising in enclosed areas is termed as internal natural con-
vection. The internal flow problems are generally more complex than the external

ones. In the latter, the region outside the boundary layer is taken as unaffected by
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Figure 1.1: Representative velocity and temperature distribution in natural convec-

tion boundary layer flow on a heated vertical plate



the flow where as in internal flows, boundary layer form near the walls but the region
exterior to them is enclosed by the boundary layers and form a core region. The
core is partially or fully encircled by the boundary layers. The two arc obviously
coupled in most cases and it is this coupling that introduces a considerable amount
of complexity in the analysis of internal flows [3].

A problem counsidered very extensively, as an example of internal natural con-
vection flows, is that of flow between parallel plane walls, horizontal and vertical.
The two walls are taken at different temperatures and the flow is studied as a func-
tion of the temperature difference and the distance between the walls. The case of
horizontal laver of fluid heating from below have been studied by several investi-
gators. Other problems of interest and which have been considered in some detail
are the flow in rectangular enclosures, in closed end tubes and in horizontal circular
cvlinders. The two cases of flow, between infinite vertical and horizontal plates, are

special circumstances of flow in a rectangular enclosure.

1.3.1 Natural Convection in Enclosures

Natural convection in enclosures is a topic of contemporary importance. hecause
enclosures filled with fluid are central components in a long list of engincering and
geographical svstems. The flow and heat transfer induced, for example in the inner
air space of a double-pane window system differs fundamentally from the external

natural convection. Natural convection in enclosure is the result of the complex



interaction between the finite size fluid svstem in thermal communication with all
the walls. The complexity of this internal interaction is responsible for the diversity
of flows that can exist inside enclosures {3].

The phenomenon of natural convection in an enclosure is varied as the geometry
and orientation of the enclosure. Judging from the number of potential engineering

applications, the enclosure phenomena can loosely be organized into two large classes

1. Enclosure heated from the side

2. Enclosure heated from below

The first class is representative of applications such as solar collectors. double wall
insulations and air circulation through rooms in a building. The second class refers
to the functioning of thermal insulation oriented horizontally. eg. Heat transfer
through a flat roof attic space.

The present study primarily focuses on enclosures heated from the side. The
reason for this choice is because of its applications in thermal insulation engineering,

solar technology and energy management in architectural design.



Chapter 2

Literature Survey

The study of natural convection flows in an enclosure has received considerable
attention during the past three decades. A review article by Ostrach [4] represents
an excellent summary of the past research activities. The important variables in
the problem are the temperature difference between the two vertical surfaces. AT,
the horizontal distance between them. L. and their height. H. Different flow regions
have been found to occur under various conditions on the basis of experimental

informnation.

2.1 Natural Convection in Vertical Enclosures

The heat transfer in rectangular cavities, with isothermal vertical walls and ei-

ther perfectly conducting or perfectly insulating horizontal surfaces, was studied by

~1



Batchelor [5]. Different flow regimes which arise depending on Ra and H/L. were
examined. For small values of Rayleigh number Ra. heat transfer was found to be
predominantly by conduction. Batchelor mentioned the fact that for air gap thick-
ness of less than 1 cm, convection was negligible and that as L increases from 1 to
2.5 cms, the heat transfer rate decreases, being essentially constant beyvond about
2.5 cm.

Eckert and Carlson [6] carried out detailed experimental study on the flow and
heat transfer in rectangular enclosures. The aspect ratio was varied from 2.1 to 46.7
and the Rayleigh number from 200 to 2 x 10°. It was concluded that at low values
of Ra, conduction is the dominant mechanisin. The temperature distribution from
the hot wall to the cold wall was found to be linear indicating the predominance
of conduction heat transfer. The lower and upper ends of the flow region showed a
little disturbance in the field indicating significant effect of convection at these ends.
At higher values of Ra, boundary layers on the two vertical walls were observed
and the temperature variation was seen to be largely in these boundary regions. the
central region being isothermal in the horizontal direction. Three flow regimces i.e
conduction regime. transition regime and the boundary layer regime were indicated
in their study. Turbulent fluctuations were also observed as the Ra was increased.

Another work of considerable significance. on the physical mechanism related to
flow between vertical walls, is that by Elder [7]. The aspect ratio was varied from

1-60 and the Rayvleigh number to the order of 108. For low values of Ra, Ra < 107,



a weak, steady. unicellular circulation was observed, with fluid rising near the hot
wall and descending near the cold wall. This then is the conduction regime. At
higher Ra, in range 10° < Ra < 103, large temperature gradients were observed
near the walls. with a uniform temperature gradient in the interior region. As Ita
increases, more inflexion points appear and the flow gradually becomes localized
near the walls, the central region being at a much lower velocity. With a further
increase in Ra i.e 3 x 10° the unicellular motion is disturbed and secondary flow
arises. The transition of the flow from laminar to turbulent flow was studied by
Elder [8]. Disturbances. in the form of waves. propagated up the hot surface and
down the cold one. Turbulence was found to arise around Ra = 10°.

Schmidt et.al [9] observed two flow regions in rectangular enclosures with aspect
ratio 2 and Ra = 6 x 10%, a primary flow moved up the hot wall and down the cold
wall. and the secondary flow region was observed at the upper part of hot wall and at
the lower part of cold wall. Experimental results of turbulent natural convection in
rectangular enclosure by Giel et.al [10] shows the properties of laminar. transition,
turbulent, relaminarization and the quiescent region. Formation of recirculating
vortices along the 70 percent of each wall was also observed.

Analvtical and experimental determination of heat transfer through vertical
plane lavers was studied by Emery and chu [11]. The governing equations were
solved by applying the boundary layer assumptions and then integrating the equa-

tion yielded results which differed by no more than 12 percent from the measured
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data. Numerical computation were performed for free convection under isothermal
wall and constant heat flux boundary conditions by MacGregor and Emery [12]. It
was concluded that the net heat transfer ia a strong function of the cell aspect ratio
and for Prandtl numbers less than one, a significant separate Prandtl number effect
exists.

Nobuhiro Seki et.al [13] studied the behavior of heat transfer in a rectangular
cavity with isothermal vertical walls. Heat transfer cocflicients are measured for P,
of 3 - 40.000 and aspect ratio from 3 - 47.5 and their correlations were presented for
laminar, transition and turbulent regions. An important conclusion was made re-
garding the height of the vertical wall as a representative length in Rayleigh number
and Nusselt number. The visual observations performed by using various heights
of the cavity with constant width under the same temperature of the vertical walls
indicate that turbulent flow is generated at the upper part of the heated wall as
the height of the cavity was increased. It was concluded that height of the cavity
plays a significant role in the heat transfer, therefore height of the cavity is a better
representative length than the width of the cavity.

In recent years a large number of numerical investigations have been carried out
in parallel with experiments. Markatos and Pericleous [14] carried out a number of
nunierical computations utilizing the control volume upwind scheme for laminar and
turbulent natural convection in square cavities. The Rayleigh number was varied

from 103 — 108 for laminar region and from 107 — 10'6 for turbulent regime using
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the standard k — = model of turbulence. Their results were found to be in good
agreecment with the benchmark solutions of G.De Val Davis [15].

Ozoe ct. al. [16] studied the heat transfer characteristics of a three dimensional
natural convection flow in cubical enclosure using a two equation model for turbu-
lence with Ravleigh number ranging between 10° — 107 . They concluded that spiral
vortex exist near the side walls and the maximum value of the time-averaged eddy
diffusivity was 2.6 times the molecular kinematic viscosity. Their computational
scheme was also applicable to different boundary conditions. different aspect ratios
and for different enclosure inclinations.

A large number of papers have been published in turbulent natural convection in
vertical enclosures ( inclination angle § = 90° ) utilizing various numerical schemes
and different turbulence models. Ince and Launder [17] studied turbulent flows in
rectangular enclosures utilizing Jones-Launder low Reynolds number & —z model and
found that the model leads to satisfactory agreement with the reported experimental
data. It was concluded that the original form of low Revnolds number & — = model
did not succeed in predicting correct flow rate and heat transfer. However the
modification made in the low Reynolds number & — = model showed good agrecment
with the experiments.

Henkes et.al. 18] utilized three different turbulent models i.e. standard k — ¢
model, Jones-Launder low Revnolds number model and Chiens low Reynolds number

model, to investigate the heat transfer characteristics of turbulent natural convec-
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tion flow in square cavity. It has been concluded that the average wall heat transfer
coefficient obtained using standard & —& model is quite high. while the ones obtained
using low Reynolds models of Jones-Launder and Chien are in a reasonable agree-
ment compared to the corresponding experimental values. It was also concluded
that using higher Prandtl number fluids (water) results in significant differences
between the models.

Hanjalic and Vasic [19] utilized algebraic flux model for the prediction of turbu-
lent natural convection in rectangular enclosure. It was concluded that for a simple
class of problems like side heating and cooling , results obtained using different mod-
els of turbulence are reasonably close to each other. But in case of tall cavities and
for cavities with simultaneous heating from sides and from bottom the prescribed
algebraic flux model could serve better results.

Hiendel ct.al. [20] used fixed coefficient (FC) and variable coefficient (VC) low
Revnolds number models to predict the average nusselt number for turbulent natu-
ral convection within a differentially heated enclosure. They concluded that average
nusselt numbers are predicted more accurately using variable coefficient model com-
pared to using the fixed coefficient model.

Henkes and Hoogendoorn [21] derived the scaling of the turbulent natural convec-
tion for Rayleigh number upto 10%? using three different & — = models of turbulence.
The scaling found were almost independent of the A — = model used.

A detailed numerical study of the various models of turbulence has been studied
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by Betts and Dfa'Alla [22]. Predictions from a range of low Reynolds number & — ¢
of turbulence have been compared with the experimental data. Out of the ten
models tested, only those of Jones-Launder, Launder-Sharma, Hassid-Poreh and
Wolfshtein's models predicted results that were reasonably comparable with the
experimental data. It was also concluded that the use of wall laws based on forced
flows. where shear stress is constant near the wall. is obviously wrong in natural
convection.

Sun and Emery [23] investigated heat transfer characteristics in a two dimen-
sional square cavity with a conducting vertical baffle. The velocity and temperature
profiles indicated that effect of inserting baffle on the overall heat transfer is within
limits except when the height of the baffle is more than 0.5 and if the location is

near the heated walls.

2.2 Natural Convection in Inclined Enclosures

The knowledge of heat transfer characteristics of natural convection flow across
inclined fluid layers is often of interest. Such fluid layers occurs. for example. between
the absorber and cover plates of a solar collector. insulation of buildings and in
window glazing. An active research in this problem led to nunierous analytical and
experimental studies, but the numerical studies are rather sparse.

Arnold et.al [24] investigated the effect of angle of inclination on the heat transfer
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across rectangular regions of several aspect ratios in the laminar range i.e Rayleigh
number between 10° — 108. The angle of inclination was varied from 0 deg (hcated
from above) to 180 deg (heated from below) with aspect ratio of one. three, six and
twelve. It was concluded that the scaling law could not be applied for the cases with
g > 90 deg as the flow becomes more complex.

Extensive experiments involving high aspect ratio enclosures heated from below
are reported by Hollands et.al [25]. The Raleigh number range covered is from
10% — 10° and the angle of inclination is from 0 < ¢ < 70 deg (heated from below).
A correlation was developed which gives Nusselt number as a function of Ra x cosd
and 8.

Another significant contribution on the study of inclined rectangular enclosure
was given by ElSherbiny et.al [26]. \leasurements are reported for high aspect
ratios between 3-110 and Ra ranging from 10% — 2 x 10°. It was concluded that the
average Nusselt number depends on Ra, aspect ratio and the angle of inclination.
Correlations has been provided for inclined and vertical lavers.

Badr and Siddiqui [27] investigated the effect of angle of inclination on the cou-
pling cffect hetween natural convection inside a rectangular enclosure and forced
convection outside the enclosure. It was concluded that the coupling effect resulted
in a reduction in the heat transfer rate. The angles of inclination was varicd between
409 and 90°.

Results concerning turbulent natural convection in inclined enclosures have so



far been very limited. Kuyper et.al. [28] studied numerically both the laminar
and turbulent natural convection in inclined enclosure utilizing the standard & — =
model to account for turbulence. They reported that the nussclt number shows
strong dependence on the orientation of the cavity and power law dependence on
the Rayvleigh number of the flow.

Ben Yedder and Bilgen {29] studied turbulent natural convection in enclosure
bounded by a massive wall and concluded that maximum heat transfer occurs for
an inclination angle of 80 -90 degrees and also stated that the heat transfer is an

increasing function of the Rayleigh number and of the wall conductivity.

2.3 Natural Convection in Inclined and Parti-

tioned Enclosures

One of the least studied. yet most frequently encountered cases, is the one of an
inclined enclosure in which partitions are inserted in order to reduce the heat transfer
rate. Most of the studies in a partitioned enclosure have been concerned with vertical
air filled enclosures.

Tong and Gerner [30] studied numerically the cffect of partition position on
the heat transfer rate. He compared the results of the bisected air-filled enclosure
(partitioned enclosure) with that of an enclosure fully filled with a porous insulation

and concluded that bisecting the enclosure with a partition is an effective method
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of reducing heat transfer. Maximum reduction in heat transfer occurs when the
partition is placed midway between the vertical walls.

Anderson and Bejan [31] studied enclosures with a single partition analytically
based on the Oseen linearization method. The study was in the boundary layer
regime and the effect of the conductance through the partition was supposed to be
negligible. Theyv confirmed their results experimentally using an enclosure with a
double partition. The experimental results were correlated to obtain a relation of
heat transfer between the two isothermal walls. It was proportional to (1 + N)%6!
where .\ is the number of partitions.

Nishimura et.al. [32] developed a boundary layer solution for natural convection
in enclosures with a partition and the solution validity is confirmed by experiments.
It has been concluded that the heat transfer rate is independent of the position of
the partition if the boundary-layer thickness is less than the half width of each cell
constructed by the partition.

Nishimura et.al. [33] studied the effect of multiple partitions on heat transfer
rates in horizontal enclosures. It was also found from the engincering standpoint
that the horizontal and vertical enclosures are cquivalent in the thermal insulation
capability of partitions under the same conditions, in spite of different flow pattern.

Kangni ct.al [34] studied laminar natural convection and conduction in enclosures

having multiple partitions. Effect of Rayleigh number, aspect ratio, thickness of the

partition and the conductivity ratio (solid to fluid conductivity) has been studied for
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air as the fluid medium. It was concluded that at high Ra the heat transfer decrcases
with increasing N, increasing partition thickness and increasing conductivity ratio
K.

Mamou ct.al. [35] studied extensively the effect of different parameters like
Rayleigh number, angle of inclination , solid to fluid conductivity ratio , thickness
of fluid laver . thickness of solid partitions , and number of partitions on the overall
nusselt number for laminar natural convection in inclined enclosures. Stream func-
tion and temperature field is obtained analytically and compared with the numerical
calculations. Good agreement was found between the parallel flow approximation
and the numerical simulation when the conductivity ratio 'K} was not too large.

Analytical and Numerical study of natural convection in inclined enclosures was
also performed by Vasseur et.al. [36]. The governing equations of the fluid layers are
solved analytically in the limit of thin layered system with constant flux boundary
conditions. This study was limited to Rayleigh numbers upto 107 i.e. laminar

regine.

2.4 Scope of the work

From the literature review relevant to the present study, it is evident that along
with the experimental and analytical work, there is a great emphasis on the numer-

ical computation. This is on one hand because of the cost effectiveness and wider
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availability of high speed computers and on the other hand due to the fact that a
numerical solution provide more detailed information about the flow and tempera-
ture field as compared to the experimental observation. In the experimental work,
number of points at which measurements are taken is very limited because it re-
quires heavy instruinentation. The literature review clearly shows that even those
cases which have already been solved experimentally. are being solved numerically
so as to establish validation of newly developed numerical schemes and computer
codes.

As can be seen from the literature review that the fluid flow and heat transfer
calculations for natural convection in inclined partitioned enclosures is limited to
laminar flow i.e Ra < 10°. No such calculations exist in the literature for natural
convection in inclined partitioned rectangular enclosures in the turbulent regime.

Consequently in the present study, the numerical simulation of turbulent natural
convection in inclined and partitioned rectangular enclosure is being accomplished.
Partitions in the enclosure is introduced to reduce the heat transfer which reflects
the insulation capability of partitions. Such information is very essential and ben-
cficial to the design of double glazed windows and in the energy conservation in
architectural design of buildings. Effect of number of partition. aspect ratio. angle
of inclination and Rayleigh number will be discussed. For all the cases studied, the
average \ussclt number is determined.

To accomplish this task, we use the control volume method. In this method. the
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equations are discretized into algebraic equations by performing the integration of
the governing non-linear partial differential equations across a finite control volume.
These equations are then solved using Semi Implicit Method for Pressure-Linked
Equation (SIMPLE) algorithm which is an iterative method. A well developed finite-
volume code (PHOENICS) is being used to accomplish this simulation. PHOENICS

stands for Parabolic, Hyperbolic or Elliptic Numerical Integration Code.



Chapter 3

Mathematical Formulation

In Natural convection, as in other convective processes, a consideration of fluid flow
is necessary in the study of the energy and mass transfer mechanisms. A study
of convection further necessitates a consideration of the coupling between the fluid
flow and the mechanism underlying conduction. This is due to the fact that the
heat transported due to the moving fluid element would eventually be transferred
to its neighboring elements through conduction. In natural convection processes.
unlike forced convection, the flow itself arises due to the temperature difference in
the bodyv-force field. Therefore the heat transfer and the fluid flow processes are
inseparably linked together and one may not be determined independent of the
other.

The physical situation involving fluid flow. mass transfer and heat transfer are

governed by the conservation principles of mass, momentum and energy. These

20



principles have been derived in the form of partial differential equation. These

equations have the general form of a transport equation as described below

a9 8, a[ngg

—15,-'0;[‘] +S (3.1)

Here ¢ is any field variable and u is the velocity vector. This equation describes
the transport of scaler or vector quantity which takes place because of convection

and diffusion processes.

The first term in the general transport equation is called the transient term. It
represents the accumulation of variable ¢ in the control volume. The sccond term is
called convection term. This represents the transport of property ¢ due to mass flow
in the control volume. The third term is called diffusion. This represents the flow
of property o due to its gradient in the flow field. The fourth term is called source
term. This represents the rate of generation of the transport variable o within the

control volume.

The equations renders a great convenience from the point of view of solution
methodology. A computer program which seeks to solve this equation is actually

able to simulate transport of any variable by merely changing the Prandtl number
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and the source term. For example if P,.=1 and S = —gf + pg; , the above equa-
tion describes the momentum equation. If P, = % and S=0 the above equation

describes energy equation without internal heat generation.

3.1 Problem Considered

The problem considered is depicted schematically in figure 3.1 and refers to the two
dimensional flow in a rectangular enclosure with height "H'. and the distance between
the isothermal walls as 'L’. The upper and lower walls are kept insulated while the
two vertical walls are heated and cooled uniformly. The enclosure is inclined at
an angle ¢ measured from the heated side (i.e. $=90 deg corresponds to vertical
enclosure). A solid partition of thickness 't’.(¥27%) and conductivity of k; is placed
at a distance r, from the origin. Two flow regions exist which are scparated by a
solid partition.

The particular form of the general transport cquation which governs the process
of natural convection in an enclosure is being presented below. It is composed of a
continuity, two momentum and an energy cquation. The considered flow is assumed
to be steady state. two dimensional with negligible viscous dissipation. As the

velocities involved in natural convection processes are very low we neglect the effect

of viscous dissipation. The fluid is an ideal gas with s, Cp and k as constant.



Figure 3.1: A Rectangular Enclosure



24

Mass Conservation: Continuity equation;

01‘,‘

Momentum Conservation: Navier-Stokes equation

0 _ Op 0 Ju;  Ou;
51‘_:(/)11.”]') - an + Sr] + 0.1,',‘ |:/J [81,- + 011:” (33)
Energy Conservation: Energy Equation
a g | pndT
:(pufT) = Sp + Er [—P—r 07] (3.4)

where u; is the velocity component in the coordinate directions r;. p is the local
pressure. p is the fluid density. S;; is the source (body force) term in the co-ordinate
directionr, i.e S;; = S, = —g3(Th—Tc)cos(P) and S;2 = S, = ~g3(Th, —T,) sin(P).

and Sy is the source term in the energy equation which is taken as zero.
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3.2 The Effect of Extremely Small Scale of Tur-

bulence

Many Natural convection flows of interest, in iature and in technology. are turbulent.
Turbulence is a term which denotes a motion in which an irregular fluctuation
is superimposcd on the main flow. The velocity. pressure and temperature at a
given point do not remain constant with time, but vary irregularly at a relatively
high frequency. There is a considerable amount of mixing, with the fluid packets
moving around irregularly, giving rise to the observed fluctuations. The scale of
these fluctuations is several orders of magnitude smaller than the flow domain size.
The consequence is that a grid typically of the order of 1000 points is required in
cach flow direction. It means that the total number of grid points will be of the order
of 10° to fill the three dimensional space. To add to this. the flow being unsteady
requires extremely small time steps.

The computational facilities available at present are far beyond those required
for an analysis of this kind. In fact many rescarchers express the idea that we
may never be able to simulate turbulent flows using direct numerical simulation
(i.e. using full Navier Stokes Equations without any modelling assumptions about
structure of turbulence). At the same time. it should be clear that Engincers in any
case are not interested in these small scale fluctuations. The scale of motion which

is of practical significance to them is much higher than that of of these fluctuations.



both temporally and spatially.

3.3 The Mean Flow Equations

Above discussion leads us in a logical way to the statistical approach to obtain the
time averaged behavior of the flow properties.

The time averaged values of the velocity components are denoted as u. T, @
and the disturbance or fluctuating quantities are represented as u'. ¢'. w'. The
instantancous value of velocity, pressure and temperature is given as u = 7 + u’.
v=o+v. w=U+w,p=p+p . T=0+0

The time averages are found by integrating the local instantaneous value. of the
particular quantity at a given point, over a sufficiently long interval of time. The
interval is large as compared to the time period of the fluctuations. but sufficiently
smaller than the time level of interest. The time average flow properties are much
smoother in the spatial as well as temporal domains. The consequences are that to
capturc the flow, a grid with the enormous number of nodes is no more required. In
fact. if the mean flow behavior is not changing with time. then, no time marching is
required. With time averaged equations, we require a grid having size of the same
order as required by a laminar flow for the same system. and. fortunately this time
mean behavior is the one of interest to an engincer. The time averaged equations

are described as [37]
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Mass conservation: (Continuity Equation)

g, ____,_ _0p J Jou; 9 ——F
bz(lm. ;) = 3z, + 5z + 37 [ﬂ (a.r,. + (?z,-) - (puiuj)J (3.6)
Energv Conservation: (Energy equation)
3] J |u (06 —— -
— (o8 = SRl BEadl (i R e
7. (pT0) = Sp + ar [Pr (01'_) (/)U.))] (3.7)

The above equations are formally identical with the governing equations for lami-
nar flow. if velocitics. pressures and Temperature are replaced by their time averages
except for some additional terms, which depend on the turbulent fluctuations of the

flow. These terms have appeared as a consequence of the averaging process.

3.4 The Problem of Closure

The above equations, although time averaged, are still exact since no assumptions

have been introduced in deriving them, but they no longer form a closed set. The
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averaging procedure introduces unknown correlations among the fluctuating veloci-
ties. These terms have the behavior of additional stresses on the fluid elements and
are called turbulent or Reynolds stresses ( pm) and turbulent fluxes (pu’©). In
most cases. these are much larger than their laminar counterpart.

The real difficulty in these equations is that the relationship between the mean
and turbulent components is not known. The determination of these correlations
is the main problem in calculating the turbulent flow properties. Exact transport
equations can be described for these turbulent stresses. but they contain correlations
of the next higher order. Their closure is, therefore, not possible in an exact way (38].
Hence, turbulent flows can not be simulated in an exact way using time-averaged
equations. We need to make some modelling assumptions about these corrclations
so as to close our mathematical model. Different modelling assumptions have been
proposed for these correlations. These modelling assumptions are called turbulence
models. These turbulence models approximate these correlations in terms of mean

flow quantities and some empirical constants.

3.5 Turbulence Modelling

In order to predict turbulent flows by numerical solutions to the Reynolds equations,
it becomes necessary to make closing assumptions about the apparent turbulent

stress and heat flux quantities, turbulent modelling is thus needed to calculate the
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turbulent flows.

If modelling assumptions are introduced for the Reynolds stresses and Turbulent
fluxes appearing in the time mean equations then turbulence model is known as
"First Order Turbulence Model’ [38].

If, however, exact transport equations are introduced for these apparent stresses
and fluxes. then they will contain turbulent correlations of the next higher order. If
modelling assumptions are introduced for these correlations, then model is known
as 'Second Order Turbulence Model’ [38]. With appropriate modelling assumptions
and empirical constants these models are much more general and become widely
applicable as compared to first order models.

Similarly. higher turbulence models can still be developed which. with appropri-
ate modelling assumptions and empirical inputs, are expected to work better than
lower order models.

However. there is a serious problem in this regard. The advantage of higher order
models are offsct by the fact that number of differential equations comprising the
turbulence model increases with the order of turbulence model. The consequences
are two fold. Firstly, there is a great increase in the computational cffort to solve
the problem. Secondly, and far more serious. is that they require a greater number
of empirical inputs and modelling assumptions and. thus. demand great effort to
determine the suitable ones. In fact, with poor modelling assumptions and empirical

information they can work even poorer than first order models.
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For these reasons, to our knowledge, models having an order higher than second
order have not been used yet. Great majority of problems is solved using first
order models which have so far been reasonably developed and provide satisfactory

solution for many problems.

3.5.1 First Order Models

Boussinesq Approximation

Perhaps the first move towards a model of turbulence can be attributed to Boussi-
nesq. All first order models are based on his approximation. He suggested that
the effective turbulent shear stress, arising from the cross correlations of fluctuating
velocities, could be replaced by the product of the mean velocity gradient and a

quantity termed as the turbulent viscosity’ [39].

Boussinesq approximation:

—_ ow; 0w, .
T = puiul = —/1,[% + a—i—] +2/3pkd;; (3:8)
;
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Where y, is the turbulent eddy viscosity and oy is the turbulent Prandtl number
which is taken as a constant. With this approximation being introduced, the time
averaged equations take the form.

Mass conservation: (Continuity Equation)

——(p) =0 (3.10)

Momentum Conservation: (Momentum equation)

d Jp d du; Ou
Pl Uj) = —5— i+ o L+ 5 3.11
dz; (Pt 1) dz; Ot dx; [(ﬂ ) (Or,- + dx; (3.11)
Energy Conservation: (Energy equation)
a ., _ d 7 /1,) a0 _
Fo\puit) = — 5 +t—)5" 3.12
5z, PT0) = S0+ {(P * %) oz, (3.12)

Here the last term in the Boussinesq approximation has been included in the
pressure term, since it represents the normal stress.
Now there remains the task of determining s,. Many equations have been pro-

posed to determine it. Some of them will be described briefly.
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Basic Concept in determining u,

All the models which seek to determine i, utilize a fundamental concept. They
assume an analogy between molecular motion and turbulent motion. The turbulent
eddies are thought of as lumps of fluids which like molecules collide and exchange mo-
mentum. The kinematic viscosity is proportional to the average velocity of molecules
and mean free path between them. Likewise the eddy viscosity is considered pro-
portional to a velocity characterizing the fluctuating motion and a typical length of

this motion which Prandtl called the mixing length [39].

Be XU Ly, (3.13)

The analogy is not complete and objections have been raised by researchers. but
still the eddy viscosity has been found to work well in practice, especially for two
dimensional boundary layer type flows.

Depending on the number of differential equations comprising the models. first

order models can be divided into following types.

1. Zcro equation models

2. One equation models

3. Two equation models
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We will describe one example of each with particular emphasis on two equation
L — ¢ model, since this is the model which has been selected for the purpose of this

study.

Zero equation models

These models do not involve transport equations for turbulence quantities. but in-
stead employ the eddy viscosity concept and specify the eddy viscosity either directly
from experiments, through empirical formulae, or by relating it to the mean veloc-
ity distribution. The most popular model of this kind is the Prandtl mixing length
model. In this model, Prandtl postulated that the velocity of turbulence. 7 is cqual

to the mean velocity gradient times the mixing length.

- |9
T=Ln [0y] (3.14)

With this relation, the eddy viscosity can now be expressed as

e = p[,?71 [@-] (3.13)
y

Where L, is the mixing length which is specified by simple empirical formulae.
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In confined geometries i.e. Enclosure, turbulence is produced mainly near the
walls and is transported by convection. This model neglects the convective and dif-

fusive transport and hence predicts unrealistically low values in recirculating flows.

It has many advantages and disadvantages.

The advantages are :

. It is simple and requires no additional differential equation.

—

. With good choices of mixing length distribution, the realistic predictions are

3]

possible.

3. Enough experience has accumulated.

The disadvantages are :
1. There is no successful experience of predicting recirculating flows.

2. It implics zero effective viscosity and thermal conductivity at zero velocity

gradient.

3. It takes no account of process of convection and diffusion.



One equation Models

The state of turbulence at a point is influenced by the state of turbulence at other
points in the flow. It means that it is not very suitable to determine the velocity
scale of turbulence merely by the local flow properties, as is the case with the
mixing length model. Rather, a transport equation should be used in determining
the velocity scale so that the net effect of neighboring points due to convection and
diffusion can be accounted for. The same is true for the case of length scale of
turbulence. whose magnitude varies in the flow.

One equation transport models provide a differential transport equation for one
of the two properties; the velocity scale of turbulence. Still the length scale is
determined from empirical data.

A well known one equation model is proposed by Prandtl and is called 'K model".
In this model, the velocity scale is taken to be the square root of turbulence kinetic
energy. A differential equation is derived from Navier Stokes equations and the
unknown terms appearing in the equations are modelled using appropriate assump-

tions. The modelled form of this approach is given by

Pm% = i— [(u + ﬂ) O_k" + P + Gy — ps (3.16)

g 0.1',~

Where P is the production term given by the relation.
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Ju; ou;| Ju;
P = —L 4y 2= 3.17
¢ #'[31:,- arj] dz; (3.17)
Gy is the buoyancy production/Destruction term which is given as
06
Gy = giﬁ& [—] (3.18)
o, | 0z;
and ¢ is the dissipation term. Here,
k=Su’ (3.19)
and
yy = pkL (3.20)

This tvpe of model has not gained popularity, because there is no transport
equation for the length scale and empirical determination of length scale is difficult.

Hence, the advantage of a transport equation for velocity scale is offset.
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To obtain the level of generality. especially seeking for recirculating flows we
must search the model in which transport effects on the turbulence length scale are

also accounted for.

Two equation models

The simplest models for calculating the turbulent complex flows are two equation
models employing an additional transport equation for the length scale. Among
them the & —z model has been tested most widely and has been shown to predict with
the same cmpirical input, many different flows, including shear layer flows. confined
recirculating and complex three dimensional flows with an accuracy sufficient for
practical purposes [39]. This model has all the desirable attributes required of
turbulence models. i.e. width of applicability, accuracy. economy of computation
and simplicity. Because of these distinguishing features we are employing this model
in the present study.

In this model the differential equation for velocity scale is the same as for the "Ix
model”. The length scale is determined indirectly. i.e. a differential transport equa-
tion is derived for the dissipation of turbulence kinetic energy from Navier Stokes
equations. This equation implicitly possesses the length scale. Modelling assump-
tions are made for the unknown terms appearing in this equation. The complete

model is as described below.
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The Turbulent kinetic energy is given by : ( k- Equation )

)

The isotropic dissipation rate of the turbulent kinetic energy is given by : (

Equation )

5 a o< 3
AL (;1 + “—‘) O P(Caful P+ CesGr) — Ceafos) + E (3.22)
T - o./) 0zx; k

where 1, is called turbulent viscosity and is given by:

iy = turbulent viscosity, C“fypg

The last term in equation (3.21), pz is the destruction rate and I is the rate
of generation of turbulent kinetic energy and G is the buoyancy production term

which are given in equations (3.17) (3.18).

The advantages of Two equation k — £ model are :

1. Two equation models account for the transport not only of the turbulence

velocity scale but also of the length scale.
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2. Its predictive capabilities for shear layer flows and confined recirculating flows

are well established.

3.5.2 Turbulence Models Used in the Present Study
Standard k — : Model with Wall Functions

In case of standard k& — ¢, the viscous sublayer is bridged by employing empirical
formulae called wall functions to provide near wall boundary conditions for the
mean flow and turbulence transport equations. These formulae thercfore counect
the wall conditions (i.e wall shear stress) to the dependent variable at the near wall
grid node. The grid node is presumed to lie outside the viscous sublayer in fully
turbulent fluid. The advantages of this approach are that it escapes the nced to
extend the computation right down to the wall and it avoids the need to account
for viscous effects in the turbulence model.

From a large amount of experimental data. it has been determined that at a
point P near a wall which is at a distance y, from the wall. the flow velocity u, is

given by

T; = ”7 In(Ey?) (3.23)
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Table 3.1: Constants for & — £ model

Here u” is called the friction velocity, and y; represents the dimensionless dis-

tance from P to the wall and;

yt = 2 (3.25)
I

Here & is the Von karman constant and its value is 0.435 [39]. 7, is the shear
stress at the wall. E is a roughness parameter and its value is taken to be 9 for

smooth walls. The constants in the k and ¢ equations are given in Table (3.1).[38]

It should be noted that this law is applicable when y¥ has a value greater than
11.63 . If the distance is less than this valuc. then point P is in the laminar sublayer
so there will be no need of any empirical information for the velocity at point P and
Navier Stokes equations can be solved for velocity with the eddy viscosity being set

to zcro.
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\We now suppose that the turbulent sublayer is in local equilibrium which means

that the rate of production of turbulent kinetic energy is equal to its dissipation

rate. Hence the differential equation for k reduces to

Hy

du .y
p

(5?/) € (3.26)

Using the fact that shear stress at point P in the turbulent layer is approximately

equal to the wall shear stress. we obtain

ez PO, Ou  Tw OU 3.27
p Oy dy p ( y) (3.27)

Jdu T,

*2 : w
€= — since u” = ,[— 3.28
G | > ] (3.23)

Now from Prandtl Kolmogorov law
.2

b= G (3.29)

N bl (3.30)

Substituting value of € from equation (3.28) in the above equation yields
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2 (=) (3.31)

1 [1, : 9
k= )= [l2ye2 [since ;z,—g = Ty) (3.32)
Cu p dy
Hence:
ut4 . Tw 2
k= [since — = u™7] (3.33)
Cu p

This expression is used as the boundary condition for k. Now, Differentiating

equation (3.23) with respect to y

d * 1 Epu”
gu_u - =pu (3.34)
dy k Eyf p
Substituting in equation (3.26)
e=y2 P (3.35)
kpyk
*4 " +
€= kZpu* [since from equation(3.25) %ﬁ = ypu’] (3.36)
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Therefore;

u.3

(3.37)
kyp

€ =

This expression is used as the boundary condition for e.

To obtain u* appearing in k and ¢ boundary condition expressions we combine
(3.23) and (3.23) to obtain

U PV (3.38)

[T,| = — In{ p

1, is known from the solution of momentum equation. It should be noted that k
and € have not been specified at the wall in contrast to other variables. It is for the
reason that the flow immediately adjacent to the wall is laminar and the concept of
eddy viscosity does not apply there. therefore, the & and = values are not required

there.

Low Reynolds number extension of the two equation £ — : model

In this approach wall damping and viscous effects are incorporated by making several
of the model coeflicients functions of a local turbulence Reynolds number. This

model requires that the equation be integrated right down to the wall. For this
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Table 3.2: Constants for & — ¢ model

we should have a very fine grid distribution near the walls. We have used Lam-
Bremhost low Revnolds number extension of the two equation kA — ¢ model. All the
constants in the k — ¢ equations are same as the Standard & — ¢ model with wall

functions, except f,, fi and f,. These model co-cfficients are given as

_ 0.0165x Re, ]2 20.5
fa=[1.—e ] [1 + <—Re, )] (3.39)
0.05\’
fi=1+ <—°> (3.40)
fu
fo=1 = [emtReD)] (3.41)
where  Re; = —‘/%’5*'1— . Yy = normal distance to the ncarest wall and Re, = 5— X ,l

Boundary conditions are £ = 0; g; = 0 at the wall. The constants are given in

table (3.2).



3.6 Boundary Conditions

To solve the governing equations comprising the mathematical model, boundary
conditions are needed at each part of the domain boundary. The problem has been

solved in x-y plane. At

r=20 u=0 v=0 T=T,
r=1L u=20 v=0, T=T,
y=0 v=0, v=0 =00
y=H =0 v=0, ‘?,—Z—=0.0

The Energy equation across the solid partition takes the form

o*T  o°T

The boundary conditions at the interface where the partition is introduced are

Atr=1, u=rv=0, [\'fg—z'h; = I"S%Elx?‘

Atr=1y u=rv=0, [\'S%H = [\—f%}‘hf

z,



Chapter 4

Numerical Solution of the

Governing Equations

Numerical methods are developed to determine the numerical solution to the set
of differential equations. These methods involve two basic steps which include dis-
cretization of the differential equation into an algebraic equation and then solving
these algebraic equations by direct or iterative methods.

Nuinerical methods differ from each other in the method of approximation in-
troduced for the discretization of the differential equations. The second step i.c.
solution to the resulting algebraic equations is general for all the numerical meth-

ods.

46
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4.1 Methods of Deriving the Discretization Equa-

tions

For a given differential equation, the required discretization equation can be derived
in many ways. The common methods are described briefly and the method which

is employed by PHOENICS will be presented in detail.

4.1.1 Taylors-series Formulation

The usual procedure for deriving finite-difference equations consists of approximat-
ing the derivatives in the differential equation via a truncated Taylor series. Let
us consider the grid point shown in figure(4.1). For grid point 2, located midway
between grid points 1 and 3 such that Az = 1, — 1| = r3 — ra. the Taylors series

expansion around 2 gives

, , do 1 , [d"0
O =0y — Ax ('{E>z+§( 1) (([.L’2>2— (4 1)
and
do 1 , [ d*o
— | — —(Azx)* 4.2
&3 = & + Ax (dl_)z-i-?(&l‘) (d.r2>2+ ( )

Truncating the series just after the third term. and adding and subtracting the

two equations, we obtain
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do O3 — 01
) = 4.
(d:z:)2 2Azrx (+:3)
and
ﬁ 201+O3“‘20‘2 (44)
dz?/, (Az)?

The substitution of such expressions into the differential equation leads to the
finite-difference equation.
The Tavlors-series formulation is relatively straightforward but allows less flexi-

bility and provides little insight into the physical meaning of the terms.

1 2 3
O O O

y l‘ AX >|< AX >’

Figure 4.1: Three consecutive grid points used for Taylor-series expansion
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4.1.2 Variational Formulation

This method is based on the method of calculus of variations. Calculus of variation
shows that certain differential equations is equivalent to minimizing a related quan-
tity called the functional. This equivalence is known as the variational principle. If
the functional is minimized with respect to the grid point values of the dependent
variable, the resulting condition give the required discretization equations. The vari-
ational formulation is very commonly emploved in finite element methods for stress
analyvsis.

The main drawback of this formulation is its limited applicability. since a varia-

tional principle does not exist for all differential equations of interest.

4.1.3 Method of Weighted Residual

In this method the differential equation is represented as L(®) = 0. We have to
consider an approximate solution of o that contains a number of undetermined

parameters like

o=ag+ar+ st + .+ apx™, (4.3)

the a’s being the parameters. The substitution of o into the differential equation

leaves a residual R. defined as



R = L(3). (4.6)

In order to make this residual small we have to suppose

/WRd.r =0, (4.7)

where W is a weighting function and the integration is performed over the domain
of interest. By choosing a number of weighting functions we can generate as many
equations as are required for evaluating the parameters. These algebraic equations
containing the parameters as the unknown are solved to obtain the approximate

solution to the differential equation.

4.1.4 Control Volume Formulation

[n this method, the calculation domain is divided into a number of non-overlapping
control volumes such that there is one control volume surrounding each grid point.
The differential equation is integrated over the control volume. Piecewise profiles
expressing the variation of variable ¢ are used to evaluate the required integrals.
The result is the discretization equation containing the values of o for a group
of grid points. The discretization equation obtained in this manner expresses the
conservation principle for the finite control volume just as the differential equation

expresses it for the infinitesimal control volume.
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The most attractive feature of the control volume formulation is that the result-
ing solution would imply that the integral conservation of quantities such as mass,
momentum, and energy is exactly satisfied over any group of control volumes and. of
course, over the whole calculation domain. This characteristic exists for any number
of grid points. Thus, even the course grid would produce an exact integral balance

[40].

4.2 The Discretization Procedure used in the

Present Study

As described earlier, partial differential equations are to be discretized into algebraic
cquations by using appropriate approximation to obtain a numerical solution to the
problem. The procedure followed is the Finite Volume Method. It will be described
in general cartesian coordinates for the general transport equation.

In vector notation, the general transport equation for steady state situation is

given by

V.(pUo¢) = V.(T,Vo) + S (4.8)

This equation is integrated over the finite control volume around node P shown

in figure 4.2. The integration is given as:



Figure 4.2: A finite control volume



/sn /,:[V.(PUé)]dydz = / /w V.([,Vo)dydr + / /w Sdyde —(+9)

Performing the integration results in

, a¢ n 0o e =
[(puy0 — Foa—z)AI]s + [(pu,0 — Fovg;)Ay]w = S,ArAy (4.10)

Where S, is the average value of S over the finite control volume and u,.u, are
the components of velocity vector U in the cartesian coordinate directions 1 and y
respectively.

The total flux across any face of the finite control volume is represented by J.
Focussing the attention on the east face, the total flux across this face will be given

as:

Jdo
= {pu 0, — — .l 4.11
Je = [pu 0. (F"(?x Ay (4.11)

As can be scen from equation 4.11, the total flux is composed of a convective
flux (puso.) and a diffusive flux ((Fég—‘f)e) which are represented by C. and D,

respectively and written as:



Ce = pu,0.Ay (4.12)
do
De - (Fée a)e (413)

The source term is appropriately linearized and written as:

S¢ = S() + Spop (414)

Substituting equations (4.11) to (4.14) into equation (4.10). equation (4.10) can

be written as:

Je = Jp+ Jn—Js = (So + 5,0,)AyAT (4.13)

Furthermore, profile assumptions have to be made about the variation of o within
the finite control volume. For the diffusion flux a linear profile can be assumed. This
results in the central discretization given as:

aé (0 — op)

D. = (To.7)e = o, (4.16)

Arpg



Central discretization is usuallv not appropriate for the convective flux and may
) P 3

result in non-physical oscillations in the solution. To make the discretization com-

patible with physical reality a hybrid scheme is used. Depending on the Cell Peclet

number it uses either an upwind or central discretization for the convective flux C,.

Cell Peclet number is defined as

pu NIpg
P, =
Lo,
Using Hybrid Scheme [40]
C.= pux(é—s—;‘é—P)L\.z‘, if —2<P <2

[§)

C. = puoegdz, if P, >

o

C. = puopdr. If P, <

(4.17)

(4.18)

(4.19)

(4.20)

Similar expression are obtained at other faces of the finite control volume. Sub-

stituting these expressions in equation 4.15 we get

(-"P - SP)OP = Anén + «"so,s + -'lcoe + -’110va + SO



where

Ae= 2 pu (4.22)
A= 2 = (4.23)
v = 32 = puy), (+24)
f= 2 ), (425)
Ap= Aot Au + 4, + A, (4.26)

Here u,). represents u, velocity at the east cell face. In this connection it should
be clear that this velocity is not an interpolated one. but rather it is indeed cal-
culated at cell faces in contrast to other variables whose values are calculated at
the center of the cells. therefore. at faces the values can be obtained through inter-
polation. This arrangement is highly beneficial to avoid a non-physical oscillatory

solution for the pressure field and to increase the accuracy.
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4.3 Grid Generation

For numerical simulation of natural convection flow in a rectangular enclosure a
non-uniform grid arrangement is used and is shown in Figure(4.3).

The grid for the present study was generated using symmetric power low distri-
bution with an effort to minimize the non-smoothness of the grid, but at the same
time having grid clustering at regions of larger gradients to obtain an cconomic and
accurate solution.

The iterative method is sensitive to the smoothness of the mesh generated. For
non-smooth meshes, heavy underrelaxation is required to prevent divergence of the
solution. This large underrelaxation reduces the convergence rate with the conse-

quence of increased computational effort ([41]).



Figure 4.3: magnified view of bottom portion of the Computational Grid in an
Enclosure with a single partition




4.4 Calculation Procedure

For the general variable ¢ the solution to the discretized algebraic cquations can be
obtained using either direct or iterative methods. Dircct method needs the algebraic
equations to be linear. If, however, the equations are nonlinear then an iterative
method is necessary. Some of the algebraic equation solvers which PHOENICS ([42]-

[43]) possesses are

1. Gauss Siedal Method

N

. Whole field solution method
3. Tri Diagonal Matrix Algorithm

4. Multigrid Method

Gauss Siedal method requires the least number of calculations. over the solu-
tion domain. per iteration. However, it requires a large number of iterations for
convergence, since the boundary information enters the solution domain one node
forward every iteration. Whole field is very efficient for linear algebraic equations for
a modecrate size matrix. [t shifts the boundary information inside the flow system
immediately, since it solves the equations simultancously. However if the grid size
is large, then matrix size becomes very large, and requires a very large computer

memory and enormous computational power [39]. If the algebraic equations are
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nonlinear. then whole field method has to work iteratively since the coefficients of
the discretized equations, being tentative, are to be updated at the end of every
sweep using the new values of @, until the convergence is met. Hence. for nonlinear
algebraic cquations, even for a moderate size of matrix, this method may require

a much larger total computational effort as per required by the Gauss Siedal Method.

A method which has the benefits of both, but disadvantages of none is the Tri
Diagonal Matrix Algorithm. In this method, algebraic equations for a row of nodes
are solved simultaneously. A very efficient algorithm which is called Thomas Algo-
rithm is available to solve the tridiagonal matrix, thus. formed. Hence. the boundary
point information is carried in a single iteration for that row. The solution proce-
dure proceeds to the next column and repeats itself. Therefore. this method works
like whole field method in the row wise direction and like Gauss Siedal method 1in
the column wise direction. The number of total computational effort needed is only
little greater than Gauss Siedal Method. This is due to the usage of Thomas Al-
gorithm. Most of the time, we used this method for the solution of our problem.
However. equation for pressure correction was solved using the whole field method.
since a simultaneous satisfaction of the continuity in the whole domain increases the
convergence rate. Usually several hundred sweeps are required to obtain a converged

solution.
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It should be noted that multigrid method is an advanced iterative method and
has verv high convergence rate. For problems requiring enormous computational
effort, it is very attractive. However, for moderate size problems like ours. the more
traditional methods suffice. These days it is in the development stage, and a good

account of this method can be found in {40}.

4.4.1 Solution Algorithm

If the pressure field is given. the solution to the momentum equations can be obtained
by employing the method described above. However. unless the correct pressure is
emploved. the resulting velocity field obtained from the solution of the momentum
equations will not satisfy the continuity equation. However. no explicit equation
for the pressure is given. This is particularly true for an incompressible flow. In
this regard several methods are available. PHOENICS uses the SIMPLE procedure.
This method has been described in detail in the literature [40] and it is basically an

iterative process.

Let a tentatively calculated velocity field based on a guessed pressure ficld p= is

denoted by u}, u; and let the correct pressure p be obtained from

p=p +p (4.27)
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The corresponding correction in velocities u}, u} can be introduced in a similar

nianner

U, = ul +u, (4.28)
uy = uy + U, (4.29)

Making certain assumptions, the velocity correction formula for east face of the

mesh clement, for example, is given by

Oy
I
D)
+
rl\
-~
!
.U~
m
~
=
(V)
jen]

Now. discretizing the continuity equation and using the velocity correction for-

mulas. one can obtain an equation for pressure correction

(Ap = Sp)pp = AP, + APl + Acpl + Aup, + So (4.31)

Thus we have obtained an equation for pressure correction or in turn for pres-

sure. The important steps to compute the flow properties are as follows.
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. Guess the pressure field p°.

Solve the momentum equations to obtain u} and uj.

. Solve the pressure correction equation.

. Calculate p by adding p' to p~.

. Calculate “u” and “v” from eq.(4.30).

Solve equations for other variables ¢ (e.g. Energy equation. turbulence kinetic

energy and its dissipation), if they have a coupling with momentum ecquations.

. Treat the corrected pressure as a new guessed pressure p*. Return to step 2

and repeat the whole procedure until a converged solution is obtained.



Chapter 5

Results and Discussions

The heat transfer and fluid flow characteristics of natural convection in an enclosure
are studied for both laminar and turbulent regimes. A non uniform grid with high
refinenient near the walls is used to increase the accuracy of the computational
results.

Comparisons with experiments have been performed for both laminar and tur-
bulent flow in inclined enclosures in order to validate the numerical procedure. Grid
independence tests were performed for various grid sizes such as 30 x 60. 40 x 80,
60 x 100 and SO x 120. For the parametric study in a partitioned enclosure the
Ravleigh munber was varied from 109 to 10'3. angle of inclination from 30° to 90°.

aspect ratio ranges from 2 to 15 and the number of partitions from 0 to 4.
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5.1 Validation of the Numerical Code

To validate the numerical procedure, the computational results of few selected cases
were compared with the experimental results of Hamady et. al. [44] and Gicl et. al

[10] and the numerical results of Kuyper et. al. [28]. The selected cases were

e Laminar flow in square enclosure with Ra = 10°. A=1.0. P, = 0.71 and angle

of inclination varied from 20% — 140° [44]. and

e Turbulent flow in a square enclosure with Ra = 10'%, A=1.0. P, = 0.71, and
angle of inclination varied from 30°—90° using standard k —z model to account

for turbulence [28].

e Turbulent flow in a rectangular enclosure with Ra = 8 x 10'%. A=10.0. P, =
0.71. and angle of inclination at 90° using standard A — = model and the low

Revnolds extension of the k& — ¢z model [10].

5.1.1 Laminar Flow

Two dimensional laminar natural convection in a square enclosure have been studied
at different angles of inclination ranging from 20°—140°%. In these computations G0 x
60 grid points were used. Figure 5.1 shows the average Nussclt number distribution
at different angles of inclination. In this figure the numerical results of Kuyper et.

al. [28] and the experimental results of Hamady et. al. [44] arc compared with
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the results of the present study. As can be seen the results of the present study
show a very good agreement with the experimental results of Hamady et. al. [44] in
comparison with the numerical results of Kuyper et. al. {28]. The difference with the
experimental results is due to the conduction through the connecting walls in their
experiments. As can be seen from Figure 5.1, a decrease in the angle of inclination
from 180° causes an increase in the average Nusselt number which is due to the
increase in the driving potential for natural convection. A decrease in the angle
of inclination below 90° will reduce the gravity component along the heated wall,
although the average Nusselt number continues to increase until a maximum value is
reached at an angle of 73%. Beyond this angle a decrease in angle of inclination will
result in a decrease in the average Nusselt number until a local min. is obtained at an
angle of 30°. This reduction in Vu is due to the interaction of the two cells forming
a counter clockwise rotating closed cell in the center of the cavity as scen in Figure
5.13. Because of the good mixing obtained in the core region temperature gradicuts
are small as scen in Figure 5.9. Further reduction in the angle of inclination to 20°
shows an upward trend in the average Nusselt number. The experimental results of
Hamady ct. al. [44] show an increase in the average Nusselt number as the angle
of inclination is further reduced towards 0°. This increase in the Nu is duc to the
transition of the unicellular flow structure to a highly unstable flow. Because of the
unstable and probably three dimensional nature of flow at angles close to 0%, the

present numerical results were obtained upto an angle of inclination of 20° only.
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Natural convection in an enclosure without partition; Ra = 1x10° A=1.0. P, = 0.71
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5.1.2 Turbulent Flow

Turbulent natural convection in a square enclosure have been studied at Ra = 10'°
and P. = 0.71 for different angles of inclination ranging from 30° — 90°. These
computations are performed using standard A — ¢ model with wall functions. Fig-
ure 5.2 shows the calculated average Nusselt number as a function of the angle of
inclination. The results of the present study have been compared with the results
of Kuyper et. al. [28]. At an angle of inclination of 90 degrees the present study
results show a very good agreement with the results reported in the literature [28]
and also for other angle of inclinations the present results agrees within 3% to the

reported results.
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Figure 5.2: Effect of Angle of inclination on the Average Nusselt no. for Turbulent
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0.71. using standard k-e model
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5.2 Comparison of the Two Turbulence Models

At high Rayleigh numbers (Ra > 10°) the flow becomes turbulent with thin bound-
ary lavers along the heated walls of the enclosure. The velocity and temperature
gradients within this thin boundary layer, are very large and require the use of many
computational grid points. In most turbulence calculations the velocity, temperature
and other dependent variables in this part of the boundary layer are approximated
by logarithmic wall functions. However it is reported in the literature {17. 18, 22]
that using the standard k — ¢ model with the wall functions does not give accurate
solution. Hence the A — ¢ model was modified and named as low Reynolds number
k — = model [17. 18. 22]. In the present study both models were used to model
turbulent natural convection in rectangular enclosure and the results are compared
with the experimental results of Giel et. al [10] in order to choose the one that
will exhibit good agreement. Figures 5.3 and 5.4 show the comparison of the tem-

perature and vertical velocity distributions at the mid-height of the enclosure at

Ra = 8 x 10" and A=10. As can be scen from the figures that the low Reynolds

number k — = model results exhibit a very good agrecment with the experimental
results as compared to the standard k — z model results. This is due to the fact

that the standard k& — = model uses logarithmic wall functions which were originally
derived for forced convection viscous sublayer and hence does not predict well the

natural convection hehavior, while the low Revnolds number & — ¢ model equations



can be integrated right up to the wall. Based on the above findings. it has been
decided to use the low Reynolds number &k — £ model to account for turbulence when

performing further computations.
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5.3 Grid Independence Test

A grid independence test was carried out to make sure that the grid size does not
effect the computational results. Computations were carried out using four different
grid sizes: 30 x 60, 40 x 80, 60 x 100 and 80 x 120 grid points. Figure 5.5 shows
the vertical velocity profile at the mid-height of the enclosure obtained using these
different grid sizes. As can be seen the difference in results obtained using 60 x 100
and 80 x 120 grid size is very small. Thercfore in this study a grid size of 60 x 100
is used in order to utilize the computation time efficiently without compromising on

the accuracy of the computation.

5.4 Natural Convection in Enclosures without

partition

5.4.1 Effect of Angle of Inclination in Laminar Flow

Figures 3.6 to 5.13 show the isotherms and streamlines for different angles of incli-
nation. The flow field and temperature distributions for the case where the cavity
is heated from the top (¢ = 180°) confirm to situation that can be fully determined
by conduction heat transfer. As soon as the cavity is rotated the fluid is set in
motion. The isotherms shown in the Figure 5.6 ( ¢ = 133° ) indicate that the

temperature gradient in the core region gets larger. Diffusion is still the dominating
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process in the enclosure since the hot fluid is positioned in the upper corner and
the cold fluid in the lower corner. Figure 5.7 shows that the essential part of the
flow is the thermal boundary layer structure along the hot and cold surfaces. The
figure shows a zero temperature gradient along the x-direction in the core region
and higher gradients near the walls. The thickness of the thermal boundary layer
increases with the height along the hot wall while it decrcases along the cold wall.
Figure 5.8 shows that the stratified temperature is broken up as the flow in the core
region pushes the flow along the adiabatic walls to the side. Figure 5.9 shows that
the counterclockwise rotation of the cell in the core region is accelerated. hending
the isotherms in the core region such that they are no longer orthogonal to the
gravitational ficld. This distortion of the temperature field is due to the increase in
the speed of the counter clockwise rotating cell.

The streamlines in Figure 3.10 show that the fluid leaving the heated and cooled
walls is being decelerated back to the wall due to the effect of gravity forming a
stretched cell along both walls. The velocity along the hot and cold walls increases
with rotation. As can be seen from Figure 3.11 that a small portion of the fluid is
entering the boundary layer upstream again. forming a narrow cell. These cells get
stretched along the adiabatic walls as the angle is reduced to o = 60° as shown in
Figure 5.12. As the angle of inclination is further reduced to o = 40° the two cells
begin to interact forming a counterclockwise rotating closed cell in the core region

of the enclosure as shown in Figure 5.13.
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Figure 5.6: Isotherms for Laminar Natural Convection in an Enclosure without
partition: Ra =1 x 10%, A=1.0. P, = 0.71. & = 135°
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Figure 5.7: Isotherms for Laminar Natural Convection in an Enclosure without
partition: Ra =1 x 108, A=1.0, P, = 0.71, ® = 90°



T =283 (4) 333

Figure 5.8: Isotherms for Laminar Natural Convection in an Enclosure without
partition: Ra =1 x 108, A=1.0, P, = 0.71, ® = 60°



80

T =283 (5) 333

Figure 5.9: Isotherms for Laminar Natural Convection in an Enclosure without
partition; la = 1 x 108, A=1.0. P, =0.71. & = 40°
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w=0.0 (0.897E-05 ) 0.897E-04

Figure 3.10: Streamlines for Laminar Natural Convection in an Enclosure without
partition: Ra =1 x 108, A=1.0, P, =0.71, & = 135°
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Figure 5.11: Streamlines for Laminar Natural Convection in an Enclosure without
partition; Ra = 1 x 10%, A=1.0, P, =0.71. & = 90°
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y=0.0 (0.542E-04 ) 0.542E-03

Figure 5.12: Streamlines for Laminar Natural Convection in an Enclosure withont
partition; Ra = 1 x 105, A=1.0, P, =0.71. ¢ = 60°
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y=0.0 (0.695E-04 ) 0.695E-03 ™

Figure 5.13: Streamlines for Laminar Natural Convection in an Enclosure without
partition; Ra =1 x 108, A=1.0, P, =0.71, & = 40’



5.4.2 Effect of Angle of Inclination in Turbulent Flow

Figures 5.14 - 5.19 show the isotherms and streamlines at 90, 60 and 30 deg incli-
nation angles for the case of turbulent natural convection in an enclosure without
partition. Figures 5.14 and 5.17 show the isotherms and streamlines for an angle of
inclination of ® = 90°%. As can be seen from the figures the flow is dominated by a
thin boundary layer along the hot and the cold walls. The velocity and temperature
distribution in a large part of the enclosure are very well stratified. Figures 5.15 and

.18 show the isotherms and streamlines at ® = 60°. As can be scen trom figure

(1)

Ut

.15 temperature gradient along the heated walls increases as the flow accelerates
along the adiabatic walls. Figure 5.18 shows the formation of the secondary vor-
tices along the top of the hot wall and along the bottom of the cold wall. These
recirculating vortices diminishes as the angle of inclination is further reduced to 30
degrees. As can be seen from figure 5.19 that the flow along the adiabatic walls in-
creases. squeezing the two vortices into the center of the cavity to form a unicellular
structure. Figure 3.16 show steep temperature gradients along the walls indicating

a rise in the heat transfer coefficient.
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Figure 5.14: Isotherms for Turbulent Natural Convection in an Enclosure without
partition: Ra =1 x 10!, A=1.0, P, = 0.71. & = 90"
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Figure 5.15: Isotherms for Turbulent Natural Convection in an Enclosure without
partition: Ra =1 x 10'%, A=1.0, P, =0.71. ¢ = 600
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Figure 5.16: Isotherms for Turbulent Natural Convection in an Enclosure without
partition; Ra =1 x 10'°, A=1.0. P, = 0.71. & = 30°
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Figure 5.17: Streamlines for Turbulent Natural Convection in an Enclosure without
partition; Ra =1 x 10'%, A=1.0, P, = 0.71, & = 90°
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v =0.0 (0.658e-04 ) 0.658e-03

Figure 5.18: Streamlines for Turbulent Natural Convection in an Enclosure without
partition: Ra = 1 x 10'% A=1.0, P, = 0.71. ® = 60°



91

y=-0.224e-01 ( 10 ) 0.718e-03

nax value ( divisions ) min value

Figure 5.19: Streamlines for Turbulent Natural Convection in an Enclosure without
partition; [fa =1 X 1010, A=10. P.=0.71. ¢ = 500
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5.5 Natural Convection in Partitioned Enclosure

In an enclosure fully filled with air or any other fluid medium, convective currents are
created due to the influence of the gravitational field and enhances the heat transfer.
In order to reduce the heat transfer it is common to entirely fill the enclosure with
a porous material as in the case of thermal insulation of building envelops. It was
pointed out by Tong and Gerner [30] that the same percent reduction in heat transfer
is obtained when the enclosure is fully filled with a porous mediuin or it is bisected
by a partition. Tong and Gerner [30] reported about 30% reduction in heat transfer
in partitioned enclosure. Bisecting the enclosure with a solid partition was found
to be economical way of reducing the heat transfer. The study was carried out for
laminar flow and for different Rayleigh numbers with the highest being 10°.

The present study deals with the turbulent natural convection in partitioned
enclosure. Influence of various parameters like number of partitions. Rayleigh num-
ber. Aspect ratio and the angle of inclination on the heat transfer and fluid flow

characteristics will be discussed.

5.5.1 Effect of number of Partitions

The effect of partitions on the heat transfer characteristics of a vertical partitioned
enclosure has been studied. Computations arce carried out for different values of

partitions ranging from 0 - 4 at Re = 8 x 10'°, A=10:1, P, = 0.71. i\, = 1.0. t=0.1
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and ® = 90%. The results are shown in terms of partition efficiency, which represents
the reduction in heat transfer due to the introduction of partitions. The partition
cfficiency is defined as

NU(.\':I..;\‘)

Nuv=o)

Where Vu(y=gy is the Nusselt number calculated when there is no partition and
Nu(v=1,.) is the number of partitions. Figure 5.20 shows the plot of partition
efficiency versus the number of partitions. As can be scen the introduction of a
single partition increases the partition efficiency significantly. In other words the
introduction of a single partition results in a significant reduction in the enclosure
heat transfer rate. The partition efficiency increases with the increase in number of
partitions. Figures 5.21 to 5.26 show the isotherms and streamlines for the enclo-

sure without and with multiple partitions. Figure 5.21 shows the isotherms for the

cnclosure without partition (N=0). while figures 5.22 and 5.23 show the isotherms
for a single and multiple partitioned enclosure.

As can be seen for the non partitioned case (N=0) the boundary laver regime 1s
clearly visible and as the number of partitions is increased the boundary layer regime
gets distorted and conduction starts to dominate the flow. At N=4 in figure 5.23
the temperature gradient is almost linear and therefore most of the heat transferred
is through conduction. Figure 5.24 shows the streamlines for enclosure without

partition (N=0) while 53.25 and 5.26 show the streamlines for a single and multiple
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partitioned enclosure. As can be seen from figure 5.24(N=0) most of the streamlines
are concentrated near the walls indicating a steep rise in the velocity gradients near
the walls.

Figure 5.27 shows the plot of the dimensionless temperature at the mid-height
of the enclosure at various values of N. The temperature profile at N=0 is of the
boundary laver type with steep gradients near the walls and zero gradient in the
core region indicating the presence of convective currents near the walls. At N=1
the aradient near the wall is reduced to a great extent and at N=4 the temperature

profile is almost linear indicating conduction as the main mechanism of heat transfer.
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Figure 5.21: Isotherms for turbulent natural convection in an enclosure without
Partition; Ra = 8 x 10'°, A=10.0, & = 90°
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Figure 5.22: Isotherms for turbulent natural convection in a single partition enclo-
sure with Ra = 8 x 10'%, A=10.0, N=1.0, K, = 1.0, & = 90°, t=0.1
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Figure 5.23: Isothermms for turbulent natural convection in a multiple partitioned
enclosure with Ra = 8.0 x 10'%, A=10.0, N=4.0, K, = 1.0, t=0.1, & = 90°
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Figure 5.24: Streamlines for turbulent natural convection in an enclosure without

Partition: Ra = 8 x 10'%. A=10.0, & = 90°
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Figure 5.26: Streamlines for turbulent natural convection in a multiple partitioned
enclosure with Ra = 8.0 x 10'%, A=10.0, N=4.0, i, = 1.0, t=0.1. & = 90°
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5.5.2 Effect of Rayleigh number

The cffect of the Rayleigh number on the heat transfer characteristics of a vertical
partitioned enclosure has been studied for the Rayleigh number range of 10° to 10'3.
The Rayleigh number can be varied by either varying the temperature difference or
varying the height of the enclosure as the Rayleigh number is a function of these two
parameters. The enclosure height is being varied keeping the aspect ratio constant
at 10:1.

The plots of the isotherms and streamlines are shown in figures 5.28 to 5.31. as
can be scen from the figures 5.28 and 5.29 as Ra increases the temperature gradient
near the walls also increases. Figure 5.30 shows the primary flow rotation from the
hot wall to the cold wall with a curvature near the adiabatic walls. As the Rayleigh
number increases (Ra = 10'3) the rotating cells are stretched back to the upper side
of the hot wall and to the lower side of the cold wall as shown in figure 5.31. This
behavior is clearly visible in the plot of velocity vectors shown in figure (5.32). The
velocity vectors moving away from the top of the hot wall and the bottom of the
cold wall are dragged back towards the vertical walls forming a narrow cell. This
is due to the increase in the buoyancy forces. forming a secondary flow region as
described by Elder [7] and [8].

The effect of Rayleigh number on the Nusselt number for a vertical enclosure

(® = 90°) with a single centrally placed partition is shown in figure 5.33. As can be
YP P
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seen from the figure as the Rayleigh number increases the Nusselt number increases.
This is expected since an increase in the Rayleigh number is associated with increase

in the temperature gradients.
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Figure 5.28: Isotherms for Turbulent Natural convection in an enclosure with par-
tition; Ra = 1 x 109, A=10.0, N=1, i, = 1.0, t=0.1,% = 90°
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Figure 5.29: Isotherms for Turbulent Natural convection in an enclosure with par-
tition: Ra =1 x 1013, A=10.0, N=1, A, = 1.0, t=0.1, & = 90°



107

< =

Y

=L e |J1

|

=

(a) (b)
y =0.00 (0.000614 ) 0.00614
Figure 5.30: Streamlines for Turbulent Natural convection in an enclosure with

partition: RRa = 1 x 10°. A=10.0, N=1, K, = 1.0, t=0.1, & = 90% (a) Magnified
view of the bottom (b) Magnified view of the top
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Figure 5.31: Strecamlines for Turbulent Natural convection in an enclosure with
partition; Ra = 1 x 10'%, A=10.0, N=1, i, = 1.0, t=0.1, & = 90° (a) Magnificd
view of the bottom (b) Magnified view of the top
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Figure 5.32: velocity vectors for Turbulent Natural convection in an enclosure with
partition; Ra = 1 x 1013, A=10.0, N=1, I, = 1.0, t=0.1, & = 90°: (a) Magnified
view of the bottom (b) Magnified view of the top



110

100 S ———rrrr

Average Nusselt no.

—© N=1 ( Single Partition )

0 A A wwurs N " FO AW | L A doa s aasxl i M SN S W
9 1010 101! 1012 1013
Rayleigh Number

Figure 5.33: Effect of Rayleigh number on the Average Nusselt no. for Turbulent
Natural convection in an enclosure with partition; & = 90° A=10. N=1. t=0.1.
KR.=10,P =071
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5.5.3 Effect of Aspect ratio

The early studies of laminar natural convection in enclosures resulted in different
opinions regarding the effect of aspect ratio. Eckert and Carlson [6] obtained a
correlation for the Nusselt number as Nu = C x Ra%3/A%! indicating significant
cffect of aspect ratio on the average Nusselt number. Varying the enclosure height
"H’. will vary thie Rayleigh number as well as the aspect ratio. It is this dependence
of Ra on aspect ratio(A) that has made it difficult to clearly indicate the separate
effects of Ra and aspect ratio(A) on Nu. In case of turbulent flow the literature
indicates that the effect of aspect ratio on the Nusselt number is small and negligible.

In the present Study the effect of aspect ratio on Nusselt number has been studied
for the case of Ra =8 x 10'%, P, =0.71, K, = 1.0, t=0.1 and & = 90°. The aspect
ratio, defincd as the ratio of the height to the width, ranged from 2 to 15. Figure
5.34 shows the plot of aspect ratio versus the Nusselt number for N=0 and N=1. As
can be scen in both cases, the Nusselt number is found to be an increasing function
of the aspect ratio. This can be explained by the observation that as aspect ratio
increases the fluid velocity increases and fluid along the hot and cold walls remain
in contact with them for a longer distance. This reduces the temperature difference
near the walls, but consequently due to the decrease in the distance between the
isothermal walls the distance near the wall dr decreases considerably which leads

to an increase in the temperature gradient near the walls, thereby increasing the
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average Nusselt number.

Figures 5.35-5.38 show the plots of isotherms and streamlines for A=2 and A=15

respectively.
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Figure 5.34: Effect of Aspect ratio on the Average Nusselt no. for Turbulent Natural
convection in an enclosure with and without partition; Ra = 8.0 x 10'%. ', = 1.0.
t=0.1, & = 909



114

Partition

322

Th T =321

Te

320

319

Figure 5.35: Isotherms for turbulent natural convection in a single partition enclo-
sure with Ra = 8.0 x 10'9, A=2.0, N=1.0, A, = 1.0. t=0.1. & = 90°
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Figure 5.36: Isotherms for turbulent natural convection in a single partition enclo-
sure with Ra = 8.0 x 10'%, A=15.0, N=1.0, A, = 1.0, t=0.1, & = 90°
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Figure 5.37: Streamlines for turbulent natural convection in a single partition en-
closure with Ra = 8.0 x 10'°, A=2.0, N=1.0, K, = 1.0. t=0.1. & = 90°



117

U
J

2.

(a) (b)

y = 0.00 (0.000306 ) 0.00306

Figure 5.38: Streamlines for turbulent natural convection in a single partition cn-
closure with Ra = 8.0 x 10'%, A=15.0, N=1.0, K, = 1.0, t=0.1, & = 90°
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3.5.4 Effect of Angle of Inclination

The effect of inclination angle ¢ on the heat transfer characteristics of an enclosure
with a single partition of thickness t=0.1 and conductivity ratio A, = 1.0 has been
studied for Re = 8 x 10'% and A=10. The plot of the average Nusselt number versus
the angle of inclination is shown in figure 5.39. As can be seen from the figure that
as the inclination angle ¢ decreases. convection becomes more significant. and the
heat transfer increases, passes through a peak and then begins to decrease again.
The peak in Nusselt number occurs at an angle of inclination around 60 degrees for
N =1, t=01, K, = 1. This result agrees with the one of an isothermally heated
inclined cavity with a single diathermal partition that has been studied numerically
by Acharya and Tsang [45]. According to Acharya and Tsang the maximum average
Nusselt number was observed to occur at about 60 degrees for .V = 1, t=0.05,

K, =10.
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Chapter 6

Conclusions and

Recommendations

6.1 Conclusions

This study represents the results of a comprehensive numerical investigation of the
turbulent heat transfer and fluid flow characteristics of natural convection in rectan-
gular partitioned enclosures. A general purpose computer code called PHOENICS
is used to perform the numerical computations. The numerical procedure has been
validated by comparing the present results for both laminar and turbulent natural
convection with those of Kuper et. al. [28], Hamady et. al. [44] and Giel et. al's
[10] results. During the course of the investigation, the effect of various parameters

such as the Rayleigh number, the aspect ratio, the number of partitions and the
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angle of inclination were investigated.

The conclusions derived from the present study can be summarized as

e The present study results for laminar natural convection in an enclosure are
in a good agreement with the experimental results of Hamady et. al [44]. This

validates the numerical procedure used in this study.

e The standard A" — ¢ model with wall functions gives a higher prediction for
the heat transfer coefficient for natural convection in enclosures. whereas the
low Reynold’s extension of the K — £ model results are in a good agreement

with the experimental results of Giel et. al. [44]

e Partitions do reduce the heat transfer by natural convection in enclosures. The
use of 1 partition reduces the average Vu significantly. The rate of reduction

decreases as more partitions are added.

e For an enclosure divided by a partition with finite thickness and conductivity
the .V u is found to be an increasing function of the Rayleigh number. Upto a
Ra of 10'! the rate of increase is slow but as RRa further increases a steep rise

in the Nu is observed.

e For a partitioned enclosure the Nu is found to be an increasing function of
the aspect ratio at a constant Rayleigh number. This is true provided that

the aspect ratio, the Rayleigh number and the Nusselt number are defined in
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terms of the height of a rectangular enclosure.

6.2 Recommendations

e The scope of this study is limited by the assumption of two dimensional steady
turbulent natural convection flow. Futher studics are required to extend the

results of the present investigation to the unsteady and/or three dimensional

turbulent flow.

o The effect of thickness, conductivity and the position of the partition on the

heat transfer rate need to be investigated.

e Second order turbulence models like the algebraic flux model can also be ap-

plied in the further studies.
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