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CHAPTER 1

INTRODUCTION

1.1 Geostatistics and Data Integration

Understanding the spatial distribution of reservoir properties like lithology and
porosity is essential for development drilling, reserve estimation and fluid flow
simulation. Data come from various sources at various scales with varying degrees of
reliability. Data from wells alone have limitations and they are not enough to produce an
accurate view of the reservoir. Geostatistics provides a toolbox for geologists and
engineers to use in analyzing data and transferring such analysis and interpretations to the

task of reservoir modeling and forecasting.



One of the most important challenges in reservoir modeling is data integration.
Geostatistics offers tools for integrating data at different scales of different types and
different reliability. For example, combining the high spatial continuity of the seismic
data with the high vertical resolution of the well data to come up with better 3-D reservoir
models (Wolf et al, 1994).

The first challenge for geostatistics in data integration was to come up with
petrophysical models (e.g. porosity) that have a geological signature. This task is
accomplished by honoring the distribution of petrophysical property within each facies at
the modeling stage.

Seismic data are routinely and effectively used to delineate the structures of a
reservoir. However, there has been limited application for using seismic data to help
directly map reservoir properties such as porosity. This limitation is caused by the
difference in scale of measurements for well data (e.g. core and log) and the seismic data.
While the well data have a high vertical and a low horizontal resolution and are measured
in depth, the seismic data have a high horizontal and low vertical resolution and they are
measured in time.

Advances in geostatistics and seismic inversion have created new frontiers for 3-D
seismic such as improving reservoir characterization by allowing the integration of
seismic and well data. Seismic data have been successfully used to predict spatial
variations in lithologies and porosity using geostatistical techniques. A proper integration
of 3-D seismic data with core and log data greatly improves the spatial description of the

reservoir (Al-Qassab et al, 2000; Xu et al, 1992).



1.2 Objectives

The objective of this Thesis is to evaluate the importance of integrating different
data types in 3-D geostatistical porosity modeling. To achieve this, four porosity models
will be built. The first model will be based on well data only and the other three will be
different combinations of well porosity logs, facies and seismic data. Then these models
will be evaluated to investigate the impact of data integration on reservoir

characterization.

1.3 Dataset Description

A sector area from Hanifa Reservoir in the offshore Berri Field has been selected
for this project, Figure 1.1. This area has 97 wells drilled in the Hanifa Reservoir and a
recent 3-D seismic survey that had already been inverted to impedance. The wells are a
mixture of vertical, deviated and horizontal. All have porosity logs and 22 wells have
impedance log derived from sonic and density logs. The logs dates stem from the late
1960s to late 1990s. All wells have facies logs described by the Saudi Aramco geologists.

The acoustic impedance 3D model was generated by using stochastic inversion
algorithms. This impedance model was converted to depth by converting the markers

from time domain to depth domain.

1.4 Methodology
The first step will be studying the statistical distributions of porosity and facies.
Then the distribution of porosity within different facies will be examined. Porosity-

impedance and facies-impedance cross-plots will be constructed to establish a relationship



Berri Field
Outline

Figure 1.1: Location of the study area within the Berri Field



between well log porosity and well log impedance or between facies and impedance. This
relationship, if existing, will be used in integrating the seismic impedance in the porosity
and facies models

The second step will be calculating semi-variograms to quantify the spatial
correlation of porosity and facies from well logs. Both omnidirectional and directional
semi-variograms will be calculated to check the directionality of the data. These semi-
variograms will also be used later on in the geostatistical modeling of porosity and facies.

The third step will be modeling porosity distribution in the reservoir. The first
porosity model will be built based on wells using only Sequential Gaussian Simulation.
The second porosity model will be built based on facies. Porosity histograms for each
facies group will be created and used in the facies-based porosity model. This should help
to constrain the porosity distribution within each facies. Sequential Gaussian simulation
facies-based algorithm will be used in this step.

The third porosity model will be built by integrating the seismic impedance and
porosity logs from wells and by utilizing the porosity and seismic impedance relationship.
This should improve the accuracy of the generated porosity model by utilizing the high
spatial sampling density of the seismic impedance. Sequential Guassian simulation with
co-kriging algorithm will be used in this phase.

The final porosity model will be obtained by integrating the porosity from logs
with facies and impedance from seismic. Sequential Gaussian simulation with collocated
co-kriging algorithm will be used in this step. In all steps several realizations will be

created for each model.



Model validation will be done by two methods, quantitative and qualitative. In the
qualitative method, histograms of the simulate porosity values will be compared to that of
the input porosity. Also, several porosity maps and cross sections will be constructed for
each model and compared to observe the spatial and vertical porosity distribution. In the
quantitative method simulated porosity traces will be compared to the true porosity traces
for ten wells that have not been used in the models. The best model will be the one that

gives the ciosest porosity estimation.

1.5 Facilities

Saudi Aramco will provide data, hardware and software to conduct this study. This
work is carried out using unix based Silicon Graphics Octane workstation dual screen
with 250 MHZ IP30 processor, memory size of 1536 Mbytes and hard disk size of 13
Gbytes.

Geostatistical modeling package from Reservoir Characterization Research and
Consulting, Inc. (RC?) will be used in this study. Four tools from that package will be
used, which are ResPrep, ResGram, ResMod, ResCalc and ResScape.

ResPrep is used to prepare the well logs for subsequent statistical and modeling
steps. ResGram is used to compute and model experimental semi-variograms. ResMod is
the geostatistical-modeling program. It has large number of estimation and simulation
algorithms to generate 3-D models. ResCalc program is used to do model operations and
uncertainty assessment. ResScape is a 3-D visualization tool and enables the rotation of

models.



CHAPTER 2

LITERATURE REVIEW

2.1 Porosity

2.1.1 Definition

Porosity is one of the essential attributes of an oil reservoir. Pore spaces within a
rock are generally filled with connate water, but may contain oil or gas. Porosity is the

pore volume per unit volume of formation and is expressed as percentage:

Porosity (%)= Volume of Voids <100
Total Volume of rock

Measured porosity can be of two types, total and effective. Total porosity is defined

as the ratio of the volume of all the pores to the bulk volume of a material, regardless of



whether or not all of the pores are interconnected. Effective porosity is defined as the
ratio of the interconnected pore volume to the bulk volume of a material.

Porosities of subsurface formation can vary widely. Dense carbonates (limestones
and dolomites) and evaporites (salt, anhydrite) may show practically zero porosity; well-
consolidated sandstone mat have 10 to 15% porosity, unconsolidated sands my have 30%
or more porosity. Shales or clays may contain more than 40% water-filled porosity, but
the individual pores are usually so small that the rock is impervious to the flow of fluids.

Porosity is one of the important factors in defining commercial hydrocarbon
reservoirs. Usually the more the porosity the more hydrocarbons one can have and vice
versa. However, a carbonate oil reservoir with 20% intragranular porosity may not
produce oil at the same rate as a 20% intergranular porosity reservoir, keeping all other
reservoir properties the same. Classification and measuring carbonate porosity is an

important and by no means easy task (Selley, 1985).

2.1.2 Carbonate Porosity Classification

The world of carbonate is much more complex. The simple primary intergranular
porosity that characterizes sandstone reservoirs is rarely found in carbonates. Almost all
carbonate pore systems have been altered by postdepositional processes that fall under the
general term diagenesis. The degree of diagenetic alteration can vary from a modest loss
of primary intergranular porosity by pore filling cement to a complete and pervasive
reorganization of the pore network.

Carbonate porosity can be described as being of either primary or secondary origin,

but the precise difference is not always clear. Primary porosity is the one that existed at



the time of deposition: for example the intergranular porosity of a clean oolitic grainstone.
Some diagenetic process on the rock or sediment usually produces secondary porosity.
(Selley, 1985)

In the real world of carbonate rocks, such a division is much too simple and often
misleading. Rocks containing only primary porosity are very rare. Secondary porosity is
more accurately described as rearrangement or reconstruction of the original pore
networks rather than creation of new porosity. For example, the dolomitization of porous
lime mud does not create porosity, but reorganizes it and helps to preserve the porosity
that was already present. (Choquette and Pray, 1970)

The most useful classification of carbonate pore types is that published by
Choquette and Pray (1970). They recognized two basic categories: fabric selective and
not fabric selective (Figure 2.1). (Choquette and Pray, 1970)

Fabric Selective

Fabric selective elements of porosity are those that are related to the depositional
fabric of the rock. The first four of the fabric selective pore types are the most important
and constitute more than 90% of the fabric selective porosity in the subsurface. The most
common types are Interparticle, Intraparticle, Intercrystalline and Moldic, figure 2.1.
Most of the Hanifa Reservoir porosity is classified as interparticle. (Saudi Aramco, 1991)
Not Fabric Selective

Not fabric selective pore types are secondary in that new porosity is created and
added to the rock. These types include fracture, vug, cavern channel. (Choquette and

Pray, 1970)
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Figure 2.1: Geologic classifications of porosity in carbonate rocks. (From Choquette and
Pray, 1970)
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2.1.3 Methods of Measurement

Porosity is measured by two main methods: directly from cores or indirectly from
geophysical well logs. Both methods will be described briefly with their advantages and
disadvantages.

Porosity from Cores

A core is a cylindrical shape rock sample with a diameter between 2 ¥ inches and 4
inches that is taken from the formation and brought to the surface by special drilling tools.
Core information includes detailed lithology, macroscopic features and petrophysical
properties of the reservoir rocks such as porosity and permeability. The porosity of a core
sample is usually measured in the laboratory using several methods: the most common
Boyle’s law, summations of fluids and bulk volume determination. (Blackbourn, 1990
and Whittaker, 1985)

Porosity from cores has the advantage of being the only way to measure effective
porosity and know the correct classification of such porosity. Although cores provide very
important information, they are very expensive and only a few selected wells are cored.
Even then, no 100% recovery of the formation cored is retrieved. Usually most porosity
measurements are preformed at room temperature and pressure that are different from the
reservoir temperature and pressure. These differences may introduce some error in the
measurements. So, these reading are scaled by factor to compensate for such differences.
(EPS, 1998)

In core samples, porosity is usually determined on 1-inch diameter plugs, however
in special cases a full diameter core may be used. These plug measurements represent

porosity value at a small volume, which may not represent the real porosity distribution.
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In carbonate rocks, it is very difficult to estimate the fracture porosity from core plugs and
even full core samples. Moreover, during a core cutting process, the rock fabric may
change due to the drilling mud, drilling bit type and the experience of the driller

(Whittaker, 1985).

Porosity from Geophysical Well Logs

Geophysical well logs are electrical tools that are lowered in the borehole and
measurements are taken from the bottom to the top or at selected interval in the well. At
present time, it has become a standard procedure to run well logs in every new well
drilled. The logging operations are much cheaper than the cost of coring. Well logs can
be used to obtain petrophysical reservoir properties such as porosity, water saturation and
lithology identification (Western Atlas, 1992; Schlumberger, 1989).

Porosity can be obtained from different well logs such as sonic, density or neutron
logs. Log measurements are done in the field at the reservoir temperature and pressure.
All three logging techniques respond to the characteristics of the rock immediately
adjacent to the borehole. The lateral depth of investigation for these tools is very shallow,
only a few inches or less. The sampling rate is one sample every ¥ foot. However, these
log measurements are influenced by rock volumes that are larger than l-inch core plugs.
This increases the chance for finding real porosity distribution. (EPS, 1998)

Porosity logs have the advantage of being available at most wells. They, also, are
considered to be more representative for porosity over core. However, they need
correction for bottom hole conditions such as drilling mud and drilling hole size. Usually

porosity logs respond to total porosity, unlike cores that give effective porosity. It is very
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difficult, if not impossible, to classify porosity types based on logs response.
(Schiumberger, 1989)

Logs cannot replace cores, nor can cores replace logs. Both data are needed for any
field development. The current practice in the oil industry is to use porosity logs as the
base for porosity modeling. This thesis will follow the current industry practices and use
log porosity to generate porosity models by using different geostatistical techniques and

integrating geological and geophysical data.

2.2 GEOLOGICAL REVIEW

2.2.1 Background

Hanifa Reservoir forms the upper part of Hanifa Formation. Among other
formations, Hanifa Formation is part of the upper Jurassic section in Saudi Arabia (Figure
2.2). This Jurassic section is by far the largest hydrocarbon reservoirs in the history of the
world oil industry. About 17% of the world’s and 67% Saudi Arabia’s oil are located in
this section (Saudi Aramco, 1990). Most of the major oil wells in Saudi Arabia are
producing form this section, Ghawar being the largest oil field in the world, and then
Berri Field.

The Saudi Jurassic section has been divided into seven Formations, figure 2.2.
They are from oldest too youngest: Marrat, Dhruma, Tuwaiq Mountain, Hanifa, Jubaila,
Arab and Hith Formations. In each of these formations there is at least one oil reservoir.
In Berri Field commercial oil reservoirs have been discovered in the Arab, Hanifa,

Tuwaiq Mountain and Dhruma Formation.
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Figure 2.2: Generalized Saudi Arabian stratigraphic of the Jurassic (From Saudi Aramco)
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2.2.2 Hanifa Formation

Alsharhan (1986) describes the Hanifa Formation as “characterized by shallow
water limestone that is composed of alternating aphanitic and oolitic calcarenitic
limestone.” During the late Callovian and Oxfordian time, two important and large
intrashelf anoxic basins existed: the Arabian and the Gotnia (Figure 2.3). In these basin
organic rich mudstone has accumulated (Saudi Aramco, 1991; Alsharhan and Kendall,
1986). Ayres (1982) suspects that these organic rich deposit are the main source rocks for
most of the oil reservoir in the Jurassic section in Saudi Arabia (Ayers et al, 1982).

During the Late Jurassic, the Berri Field area was located on a ramp margin,
which was dipping gently from the Rimthan carbonate platform in the north to the
Arabian Basin in the south. Shallow water, lagoonal and peritidal facies of the Hanifa
occur on the Rimthan Platform north of the field. Above the fair weather wave base, high-
energy sediments were deposited such as skeletal and peloidal grainstones and associated
small biohermal buildups. In the southern part of the Berri Field, sedimentation below fair
weather wave base replaced high-energy carbonates. Low to medium energy sediments
were deposited such as packstones and wackstones. These low energy deposits change
southward into anoxic and organic rich basinal mudstones (McGuire, 1993).

In 1988, Saudi Aramco initiated a study to construct new geological models for
the Hanifa and Hadriya Reservoirs. These models eventually were used for reservoir
simulation using Sequence Stratigraphy principles along with data from conventional
cores, and openhole logs were used in formulating the new models (McGuire, 1993:

Saudi Aramco, 1991).
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Paleogeography of the Gulf area in Late Jurassic (From Saudi Aramco, 1991)

Figure 2.3
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The Saudi Aramco study described Hanifa Formation with the Berri Field area as
a large-scale coarsening- and shallowing-upward carbonate platform sequence of about
500 feet thick. In general, Hanifa consists of two major units: a lower non-reservoir unit
of organic-rich laminated lime mudstones and low porosity skeletal wackestones, and an
upper reservoir unit of grain rich carbonates including skeletal packstones, grainstones

and boundstones (Figure 2.4).

Tight Uime Mudstones.
C o (facies 7,7.0)

Figure 2.4: Depositional facies model for Hanifa Reservoir in Berri Field (From Saudi
Aramco, 1991)
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Due to the minor effect of diagenesis, the Saudi Aramco study has defined the
Hanifa Reservoir facies based on depositional features. From a total of eleven facies, the
study has recognized nine reservoir and two non-reservoir facies (Figure 2.4). The best
reservoir facies consist of skeletal conglomerates and grainstones (Facies 2 and 2.1). The
skeletal/intraclasts conglomerate facies has exceptional reservoir quality, with very high
permeability and porosity. The bioherm-associated facies (Facies 8 and 8.1) exhibit
discontinuous, lenticular geometries and are characterized by intermediate reservoir
quality.

Three facies have intermediate reservoir quality, which are massive
skeletal/peloidal grainstone, cross-bedded skeletal/peloidal grainstone and burrowed
skeletal peloidal grainstone (Facies 3, 3.2 and 3.3). Skeletal packstones and skeletal
wackestones have in general low reservoir quality (Facies 5 and 6). The mudstones,
which have very low porosity and almost no permeability, are classified as non-reservoir
facies (Facies 7 and 7.1). Figure 2.5 to figure 2.10 display thin section photos for each
main facies in Hanifa Reservoir.

The porosity in the Hanifa Reservoir is primarily intergranular with lesser moldic
and intragranular porosity. Moldic porosity is the only secondary porosity that is
significant, but has very low impact on the total reservoir compared to the intergranular

porosity (Saudi Aramco, 1991).
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Figure 2.5: Thin section from facies 2 displays very coarse : to medium-grained skeletal
intraclast and peloid grainstone. Sample porosity is 24% and permeability is 675 md.
Scale bar is 0.2 mm. (From Saudi Aramco, 1991)

Figure 2.6: Thin section from facies 3 displays burrowed fine-grained peloid skeletal
grainstone. Sample porosity is 16% and plug permeability is 6.7 md. Scale bar is 0.2 mm.
(From Saudi Aramco, 1991)

Figure 2.7: Thin SCCthIl from fac1es S displays orly sorted burrowed peloid skeletal
packstone. Sample porosity is 11% and permeability is 0.3 md. Scale bar is 0.1 mm.
(From Saudi Aramco, 1991)
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Figure 2.8: Thin section from facies 6 displays very fine-grained skeletal wackestones,
consisting of abundant sponge spicules. Sample porosity is 2.4% and permeability is O.
Scale bar is 0.5 mm. (From Saudi Aramco, 1991)

Figure 2.9: Thin section for facies 7 displays muddy to very fine-grained
wackestone/mudstone. Sample porosity and permeability are both 0. Scale bar is 0.5 mm.
(From Saudi Aramco, 1991)

Figure 2.10: Thin section irom facies 8 shows the microstructure of large Stromatoporoid
specimen. Sample porosity is 15.5% and permeability is about 44 md. Scale bar is 2.5
mm. (After Saudi Aramco, 1991)
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2.2.3 Berri Field

Berri is located about 100 km north of Dhahran in the Eastern Province of Saudi
Arabia. Most of the field’s surface area is located offshore in the Arabian Guif with a
small onshore locality (Figure 2.11). The areal size of Berri field is about 32 kilometers
by 40 kilometers. The field ranks as the 22™ largest in the world and is in a mature state
of development (Kompanick, 1993).

It was discovered in 1964 based on seismic surveys of the area (Alsharhan and
Kendall, 1986). Six oil zones have been discovered which are Arab A, B, C and D
reservoirs, Hanifa Reservoir and the Fadhli Reservoir. In 1968 oil had been discovered in
the Hadriya reservoir, raising the number of reservoirs in Berri to seven. The Hanifa and
the Hadriya Reservoirs are the main producing reservoirs in this field. Average oil gravity
for both reservoirs is about 38° API. The field has been on production since 1967 and a
peripheral water flood has been in effect since 1973 (Kompanick, 1993; Beydoun, 1988).

Tuwaiq Mountain and Hanifa Formations are believed to be the source rocks for
most of the oil in the Jurassic section in Saudi Arabia (Ayres et al., 1982). Moreover,
these rocks are within the oil generation window. The dominant migration path for this oil
is laterally from the basinal areas to the high areas (Stoneley, 1990). Based on this
picture, Hanifa Formation could be the main source for its oil. Oil has migrated from the
organic rich basinal mudstones to the high structure and good porosity grainstones in
Berri Field. Oil was prevented from migrating upward by Jubaila mudstone that

represents the reservoir caprock (Ayres et al, 1982).



Figure 2.11: Location map of Berri Field in Saudi Arabia.
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2.2.4 History of Hanifa Reservoir Modeling

The earlier models for Hanifa Reservoir were built on the basis of cake
stratigraphy. Such models used methods to interpolate porosity between the wells
independently of facies or any geological data. This approach failed to capture the true
geology of the Hanifa Reservoir and could not explain the anomalies of water
breakthrough in different wells (McGuire, 1993).

The 1991 Saudi Aramco study developed a new facies and layering scheme that is
based on the sequence stratigraphy principle. This study defined 11 facies and 45
geological zones throughout Hanifa Reservoir in Berri Field. It represented a major
breakthrough in the understanding of the geology of Hanifa Reservoir. In addition, it was
the first study done in Saudi Aramco based on sequence stratigraphy. This study showed
clearly that there is a direct relation between facies and porosity and that geology controls
the lateral and vertical porosity distributions (Kompanick, 1993).

Porosity modeling has been executed in two stages. In the initial stage, a facies
model was built to control the facies distribution between wells. Then, this model was
utilized to control the eventual porosity model. This was performed by building separate
porosity models for each reservoir facies based on the porosity distribution within that
facies. Then, the facies model was used to isolate porosity values from the generated
porosity models and generate a composite model. This was the only way to generate a
porosity model based on geology at that time (Kompanick, 1993).

In 1999 Saudi Aramco geologists revised the layering scheme based on newly
drilled wells and came up with 52 geological zones. The facies definitions and number of

facies remained the same. Also a pilot 3-D seismic area has been shot over the Berri
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Field. Based on the new data sets, Saudi Aramco contracted created an updated reservoir
simulation model that integrates all available data using geostatistical methods.

Saudi Aramco geological modelers grouped the eleven facies into six facies. This
grouping was based on core porosity and permeability relationships as shown in table 2.1.
They also compared two different layering schemes: one with 52 layers and the other with
13 layers. The 13-layer scheme was developed to see if they could preserve the reservoir
heterogeneity with fewer layers. The facies and porosity modeling results from the two
layering schemes came in very similarly. This methodology supports the idea that flow
modeling could be done with less facies and geological zones. Consequently, this
assumption could positively impact the speed of modeling and reduce the possibilities

human errors.

Grouped Facies Depositional Facies
A 2,2.1
B 3
C 3.2
D 33,5,6
E 7,7.1
F 8,8.1

Table 2.1: Grouped facies and depositional facies
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The facies models were built by Sequential Indicator Simulation (SIS) using one
directional semivariogram with a strong anisotropy that has 40,000 meters in the south
direction and 10,000 meters in the west, and an azimuth direction of N70W. This was
needed to make it similar to the conceptual geological model. This model was used to
create a porosity model by using facies based on Sequential Gaussian Simulation (FBsGs)

(Saudi Aramco, 2000).

2.3 Geostatistics Review

2.3.1 Background

Geostatistics is a branch of statistics that deals with random variables distributed
in space and/or time with some degree of continuity. Geostatistics has emerged with the
work of Daniel Krige in the South African mining industry in the early 1950s. It was used
as a tool to estimate the recoverable reserves for mining deposits (Goovaerts, 1997).
Beginning in mid 60s and mid 70s it became much more closely affiliated with the work
of Georges Matheron. During this time, the use of geostatistics was focused toward the
mining industry. In 1978, Journel and Huijbregts published “Mining Geostatistics,”” which
focuses on the use of geostatistics in the mining industry (Journel and Huijbregts, 1978).

In the late 1980s, geostatistics was essentially viewed as a mean to describe spatial
patterns, and interpolate the value of the attribute of interest to unsampled locations. In
1989, Isaaks and Srivastava published “Applied Geostatistics,” which focuses on
exploratory data analysis and uncertainty assessment. In 1992 Deutsch and Joumnel
published “Geostatistical Software Library” (GSLIB). That was a guidebook for

geostatistical algorithms, which has been written in FORTRAN by the authors and
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students from Stanford University. The GSLIB covers different geostatistical techniques
from semi-variogram calculation to Kriging and Stochastic Simulation (Goovaerts, 1997).
RC-Squared geostatistical modeling algorithms are built based on GSLIB principles (RC-
Squared, 2000). In 1997 Goovaerts published “Geostatistics for Natural Resources
Evaluation”. This book covers topics such as exploratory data analysis and assessments of
uncertainty, along with different geostatistical algorithms (Goovaerts, 1997).

In the past geostatistical research and development have been done in a few
research schools in France and in the United States. However, in recent years the
petroleum industry has been active both in the research and development of Geostatistics
(Damsieth and Omre, 1997).

2.3.2 Semi-Variogram

A semi-variogram is a mathematical tool to quantify the spatial correlation and
continuity of a variable. It is a plot of the average squared difference in value between
data points against their separation distance. It is computed as half the average squared
difference between the components of every data pair.

] Mo

2
N Z [2(x)—z(x+R)]” |

y(h)=

where N (h) is the number of pairs of data locations a vector 4 (lag distance) apart and z is
the measurement at locations x and x+#4. The output is represented by an experimental
semivariogram as shown in Figure 2.12.

The lag spacing defines the incremental distance at which the semi-variogram is
calculated as shown in figure 2.13. The first lag distance must be at least equal to the

sample spacing. The number of lags used usually varies from 10 to 15 and it should be
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restricted to the dimensions of the data coverage. On average the maximum lag distance is

about half the diagonal of the data extent (Coombes, 1997).

Experimental
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Figure 2.12: Main characteristics of a semi-variogram (From Coombes, 1997)
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Figure 2.13: An example showing semi-variogram calculations for a lag of 100 ft in the

horizontal direction. (Modified after Coombes, 1997)
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The experimental semi-variogram must be fitted with an appropriate model semi-
variogram. Several mathematical models are available and well described in the literature
and can be used for fitting proposes. Examples of such models are: spherical, exponential,
gaussian, power and periodic (figure 2.14). The rule when selecting a model is that it
should fit most points near the origin. In addition, the same model should be used when
calculating directional semi-variograms (Isaaks and Srivastava, 1989 and Journel and
Huijbregts, 1978).

Spatial correlation is dependent on the separation distance and on the azimuth of
separation. If the values of the semi-variogram parameters (e.g. range, sill) are identical in
all directions then it is called isotropic; otherwise, it is called anisotropic. There are two
types of anisotropy: geometric and zonal as shown in figures 2.15 and 2.16. The
geometric anisotropy is indicated by semi-variograms having different ranges in different
directions, while the sill value is the same. Different ranges and sill values in different
directions reflect the effect of zonal anisotropy. Most geological phenomena tend to
reflect anisotropic behavior (Isaaks and Srivastava, 1989).

The behavior of the semi-variogram near the origin reveals important information
about the variable continuity. There are four main types of behavior: continuous, linear,
nugget and random (figure 2.17). Continuous types displays parabolic behavior near the
origin and represent a variable with a high degree of continuity. Linear types display
oblique tangent at the origin and represent a variable with an average degree of
continuity. Nugget type shows discontinuity at the origin. If the last type displays

continuous randomness, it might reflect undetectable spatial correlation (Al-Salem, 1996).
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Figure 2.14: Different semi-variogram models that can be used to fit an experimental
semi-variogram. (From Isaaks and Srivastava, 1989 and Journel and Huijbregts, 1978)
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Figure 2.15: Geometric anisotropy. (After Isaaks and Srivastava, 1989 and Journel and
Huijbregts, 1978)
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Figure 2.16: Zonal anisotropy. (After Isaaks and Srivastava, 1989 and Journel and

Huijbregts, 1978)
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Figure 2.17: The four main types of semi-variogram behavior at the origin: a- linear, b-

random, c- continuous and d- nugget. (After Al-Salem, 1978)
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2.3.3 Kriging

Kriging is a generic name adopted by geostatisticians for a family of generalized
least square regression algorithms in recognition of the pioneering work of Daniel Krige.
Kriging is also known as BLUE (Best Linear Unbiased Estimator). It uses a linear
combination of surrounding sample values and assigns weight to each one in order to
calculate the best predictions. Kriging, also, allows the derivation of weights that result in
optimal and unbiased estimates. All Kriging estimators are of the basic linear regression
estimator z*(x) defined as

n(x)

2*(®)-m= Y dp(O)z(xg) - m(xa)]
o=l

Where

z(x) is a vector model at locations x

m is the mean of z(x)

Zz*(x) is the linear regression estimator

Au(x) is the weight assigned. The weight accounts for the proximity of the data to the
location being estimated and the clustering of data.

The above equation represents the simplest form of Kriging. By modifying the
above-mentioned formula, other kriging algorithms can be derived such as Simple
Kriging and Ordinary Kriging. Other important types of Kriging are Indicator Kriging,
Block Kriging, Kriging with external drift and CoKriging. Kriging with external drift and

CoKriging are used to integrate two different types of data (Goovaerts, 1997).
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Simple Kriging considers the mean “m” to be known and constant throughout the
study area. The simple kriging estimator is unbiased and the error mean is equal to zero.

Simple Kriging equation is expressed as follow:

Z, ()= f AE(x)*z(x,)+ [1 - f A (x)]m

a=!
Ordinary Kriging (OK) considers the mean “m” to be localized, which accounts
for local data fluctuations. OK accounts for local variations in the mean by limiting the
mean to a local neighborhood around the location being estimated. As in SK the error

mean is equal to zero. The OK equation is expressed as follow:

n(x) n{x)

Zop ()= A (x)*z(x,) with Y AF(x)=1

Block kriging is a linear estimate of a value over an area, which has several data
points. Block estimates are smoother than the point estimates. In addition, the smoothing
increases with the increase in block size. The block kriging smooths out the short-range
variation of concentration and erase discontinuities near data locations (Goovaerts, 1997).

Indicator Kriging estimates the probability that the variable value is below or
above a critical threshold at a certain location. It is a method that allows using different
models of spatial continuity for different values of the categorical data. Indicator kriging
provides a probability distribution at each grid node that quantifies the local uncertainty in
the model. These distributions provide a good idea on how much difference can be
expected among different realizations of a stochastic model of facies predictions (Isaaks
and Srivastava, 1989).

Kriging with an external drift simply extracts the trend from the soft data and uses

it to guide the estimation of the hard data. Usually hard data refers to data values at well



33

locations, and soft data refers to any other data that is more extensively sampled than the
well data. For example in a reservoir, porosity logs at the wells are considered to be hard
data, and seismic data are soft data. The estimations reflect a linear rescaling of the units
of the trend. The basic relationship between hard and soft data should make physical
sense and should be correlated (Chambers, 1994).

Kriging with external drift and CoKriging have different mathematical equations,
but both have the same objective, that is to integrate soft and hard data. They are popular
techniques for data integration. Two conditions must be meet before doing any data
integration. The relation between hard data and soft data must be linear. Also the
secondary data must be known at all hard data locations and at all locations being

estimated (Fournier, 1995).

2.3.4 Simulation

Stochastic simulation is the process of building alternative, equiprobable, high-
resolution models. Each of these models is called a realization. Simulation is conditional
if the resulting realizations utilize the hard data values at their locations. Either
categorical or continuous variables may be conditionally simulated.

The sequential simulation procedure in simulating data points is as follows: it first
assigns data values to closest grid node. After that it establishes a random path through all
of the grid nodes. Then it visits each grid node in the model and find nearby data and
previously simulated grid nodes and krige a value from all available data. This value will
be used to construct conditional distribution function (cdf). Then a simulated value will

be drawn randomly from the cdf and assign it to the grid node. This process will be
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repeated until all grid nodes have been simulated. All the simulated values should honor
the data semi-variograms and histograms (GSLIB, 1999)

Simulation is unlike estimation, because in estimation only a unique image could
be constructed. But in simulation, multiple realizations can be generated with the same
probability of existence. The sequential simulation algorithm requires the determination
of the conditional cumulative density function (ccdf) at each location being estimated
using the kriging estimate and its variance. There are two major stochastic simulation
algorithms that are gaussian and indicator simulation. Gaussian simulation is used to
simulate continuous values such as porosity, while indicator simulation is used mainly for
categorical data such as facies. All sequential simulation algorithms honor the data points
at their locations. (Chambers, 1994)

Simulation is used in uncertainty assessments and it honors extreme values.
However, estimation is locally accurate, smooth and good for visualizing trends. It is not
used in uncertainty assessments and it does not honor extreme values, mainly because the
smoothing effect is a characteristic of all estimation algorithms including kriging. The
simulation techniques are used to reproduce local variability within control points (Wolf,

1994).



CHAPTER3

DATA ANALYSIS

3.1 Model Description

Statistical data analysis is a preliminary step in reservoir modeling. It serves
several objectives, such as checking the data quality and looking for trends. Before
proceeding with statistical analysis and modeling, model geometry must be defined. The
model geometry must be based on the stratigraphic framework of the reservoir, so it will
have better representations of the reservoir.

Aramco geologists have made detailed stratigraphic correlations between
sequences of Hanifa Reservoir based on the 1991 study. They have defined 52 reservoir
zones in Hanifa Reservoir in Berri Field. In a recent modeling project, RC-Squared built
two models for Hanifa Reservoir using two layering scheme. The first model was based
on 52 zones and the other on 13 zones. The modeling results were very similar. In this

study we are going to use 12 zones. These zones are defined based on core data, gamma
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ray and porosity logs, and they are corelatable surfaces across the field. These are the
significant sequence boundaries according to Aramco geologists. They are adequate for
this study, because they capture the reservoir geometry. Figure 3.1 compares the two
different layering schemes. Figure 3.2 shows a structure map for the top of the Hanifa

Reservoir at the study area. Figure 3.3 shows a 3-D view for all structures that were used

in this study.
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Figure 3.1: An example comparing the 12 (A) and 52 (B) layering schemes on a porosity
log for the same well across the Hanifa Reservoir



Deep

Figure 3.2: Structure map of the top of Hanifa Reservoir at the study area.
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Figure 3.3: 3-D view of different structure map that are used in this study.
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To capture the reservoir heterogeneity and optimize the number of cells, cell
thicknesses vary from one reservoir zone to another. In the upper part of the reservoir,
where we have good quality rocks, cell size is small. Whereas in the lower part, where
there are mostly non-reservoir rocks, the cell size is larger. Table 3.1 represents the
thickness variations in each zone and the number of assigned cells to each zone. Total
number of vertical cells is 122. Thickness of cells varies from 0.2 feet in the good

reservoir rocks to 10 feet in the non-reservoir rocks.

Zone Thickness (feet) Number of
Number Maximum Minimum Average Cells
1 16.5 8 11.4 6
2 28 3 16 6
3 29.5 1.5 12 5
4 33.5 1 10.5 5
5 57.5 5 29 9
6 26 4.5 16 6
7 47.5 14.5 33 10
8 51 10.5 33.5 9
9 57 16.5 40.5 10
10 74 42 55.5 15
11 49.5 30 34 10
12 310 124 189 30

Table 3.1: Reservoir zones thickness and cell assignments
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The size of the study area is 11,750 meters by 13,500 meters. The standard cell

ed by Aramco are 250 x 250 meters. This study will follow Aramco

1mensions us

areal d

standards. Based on that, the model areal dimensions will be 47 cells in width by 55 cells

in length as shown in figure 3.4. The total number of cells in the model is 315,370 cells.

Vertical well

Horizontal well

Figure 3.4: Areal grid of the study area, red dots are wells that are used for validation

(each cell size is 250 x 250 meters)
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3.2 Univariate Analysis

Univariate statistical analysis is an essential step before geostatistical modeling.
This analysis is important because it shows the data distribution and detects erratic values.
Distribution type is determined by generating histograms for the variables under study.
Histograms are an excellent way to present the most important data; they show maximum,
minimum and type of distribution. Also, univariate analysis provides important statistical
parameters in a simple form, such as mean, standard deviation, etc. Maximum and
minimum values of the data might indicate the existence or absence of erratic values.

From this step and onward, ten wells have been excluded from the database and
kept for a later validation stage (figure 3.4). Univariate statistical analysis has been
conducted for facies and porosity logs. This analysis is based on well logs that have a %
foot resolution. These analyses were conducted for all reservoir zones as a group (Figure
3.5 and 3.6) and for every individual reservoir zone as well (Figure 3.7 to Figure 3.8).
Table 3.2 shows the main porosity statistical parameters per reservoir zone.

Figure 3.4 shows that the mudstone facies have the highest percentage among
other facies in the Hanifa Reservoir. Moreover, figure 3.5 shows that there are two
porosity distruibation in the reservoir. By comparing the porosity distribution with the
facies distribution in each zone, a clear relationship between log porosity and depositional
facies will apear. For example zone 1 where a good reservoir facies exists, porosity
distribution tends to have normal distribution with high mean. Where as, in zone 12
where mudstone facies dominate, the porosity distribution tends to be skewed with low

mean porosity.
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The upper zones, generally, are dominated by grain-rich rocks such as facies 2 and
facies 3. This explains the high porosity values in these zones. Whereas the lower zones,
especially zone 12, are dominated by mudstone facies. This explain the very low porosity
in these zones and confirms that porosity distribution is directly related to facies

distribution.

Figure 3.6: Porosity distribution within the Hanifa Reservoir in Berri Field
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Figure 3.8: Facies distribution for reservoir zones 7 to 12.
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Zone | average| median |minimum| maximum| standard | skewness
Number deviation | coefficient

1 0.21 0.22 0.00 0.37 0.059 -1.385

2 0.20 0.21 0.01 0.31 0.054 -1.004

3 0.19 0.20 0.01 0.32 0.048 -0.765
4 0.18 0.18 0.01 0.30 0.044 -0.293

5 0.21 0.21 0.00 0.34 0.048 -0.731

6 0.19 0.20 0.06 0.30 0.046 -0.400

7 0.19 0.21 0.05 0.30 0.046 -0.400

8 0.20 0.20 0.00 0.32 0.050 -0.180

9 0.15 0.15 0.00 0.35 0.067 -0.147
10 0.11 0.10 0.00 0.29 0.077 0.229
11 0.07 0.06 0.00 0.26 0.056 0.839
12 0.04 0.02 0.00 0.26 0.047 1.940

Table 3.2: Main porosity statistical parameters for reservoir zones in Hanifa Reservoir
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3.3 Bivariate Analysis

Normally, bivariate analysis is a useful tool to understand the linear relationships
between two variables. The correlation between two variables could be one of three types:
positive, negative and no correlation. Positive correlation occurs if the values of variable
X are increasing with the increase in values of variable Y. A negative correlation occurs
when values of variable X increase at the expense of values of variable Y and vice versa.
No correlation reflects that there is no relation between the values of variable X and value
of variable Y.

A correlation has to be established between the primary variable and the
secondary variable before any data integration can take place. The correlation coefficient
is generally used to quantitatively summarize the linear relation between two variables.
The correlation coefficient ranges from +1 to —1. The spread and shape of the scatter plot
cloud of two variables indicate the type of correlation that they have. It is considered a
very useful tool in quantifying erroneous data.

The porosity and impedance cross-plot for 22 wells that have impedance logs,
shows a double trend and some noise, figure 3.11. After investigating this phenomenon,
this observation was due to five wells that have been processed differently than the rest of
wells, figure 3.12. These wells do not have density logs, so a constant density value was
assigned to them. This assigned density was used to compute the impedance log at the
wells, which has resulted in an unreliable impedance log. By removing these wells for the
cross plot, a very strong relationship between porosity and impedance has appeared as

shown in figure 3.13. The correlation between porosity and impedance has increased from
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-0.74 to —0.97. Based on this, the seismic impedance is considered as a good estimator of

porosity in Hanifa Reservoir.
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Figure 3.11: Porosity and impedance cross-plot for all wells
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Figure 3.13: Porosity and impedance cross-plot for wells that have correct

impedance.

No useful impedance-facies relationship has been found, as shown in figure 3.14.
This means that impedance is not a good indicator for facies variations in Hanifa

Reservoir in Berri Field and, it should not be used as secondary data in facies modeling.
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Figure 3.14: Facies and impedance cross-plot
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3.4 Spatial Analysis

Geostatistical techniques are computationally intensive, however they produce
more reliable results. Most geostatistical methods are based on need semi-variograms
parameters to generate 2-D or 3-D models. The quality of the simulation results depends
on the time taken to choose an appropriate semi-variogram model. Needless to say, poor
semi-variogram models may produce estimates that are worse than other simple
interpolation methods such as least square. Also, the semi-variogram models should not
create information that contradict the geological understanding of the area based on core
and log studies. In other words, geological controls should be observed in semi-
variogram facies models.

In this study, semi-variograms are calculated for facies and porosity. A
qualitative interpretation of the facies semi-variogram is conducted to check the

accuracy of these models.

3.4.1 Facies Semi-Variogram

Grouping Procedure

The first geostatistical model to be built is the facies model. As observed in the
univariate analysis in section 3.2, there is a strong relationship between facies and
porosity distribution. If the spatial facies distribution in 3-D could be predicted, then
this would help in predicating the 3-D porosity spatial distribution. In other words, the
objective for building a 3-D geostatistical facies model is to use it as a guide for
porosity modeling.

Eleven depositional facies are defined in the Hanifa Reservoir. In order to

simplify and speed up the modeling process, a decision to group facies with similar
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characteristics was implemented. To apply this, geological depositional settings, as well
as reservoir quality and distribution of each facies within the reservoir have been
reviewed. Porosity distribution histograms for each facies (figure 3.15) and core
porosity and permeability cross plots (figure 3.16) have been generated for each facies
to observe differences and similarities within each facies.

Facies, which have similar porosity distribution and core porosity and
permeability cross-plots, were grouped together such as facies 3, 3.2 and 3.3. On the
Other hand, facies that have distinct porosity distribution and core porosity and
permeability cross-plots were kept separate such as facies S and facies 6. Based on this
work, these eleven depositional facies have been grouped into six facies groups as

shown in table 3.3.

Depositional
2,2.1 3,3.2,33 5 6 7,7.1 8, 8.1
Facies
Grouped
2 3 5 6 7 8
Facies

Table 3.3: Depositional facies grouping used in this study for Hanifa Reservoir.
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Figure 3.15: Porosity distribution histograms for each facies in the Hanifa Reservoir.
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Semi-variogram Computation and Modeling

The next step was to calculate the lag sizes that are appropriate for this study.
Four possible lag sizes have been selected which are 1000, 1500, 2000 and 3000 meters,
figure 3.17. Lag size 1500 meters was selected because it gave us good distribution of
pairs per lag increment. Lag size of the vertical semi-variogram will be ' foot, which is
the same as the facies log resolution.

Semi-variograms were calculated in omni-direction and in multi directions for
each grouped facies for the whole reservoir. The results from this step were poor as in
figure 3.18. This is because some facies group exists only on the upper part of the
reservoir while another exists at the lower part. Based on these results, semi-variograms
were calculated in the reservoir zone in which these facies are dominant. The results
were very good, which meant that these facies groups tend to be constrained by
reservoir zonation and have certain spatial and vertical correlation as expected from the
depositional model and the facies univariate analysis. Next was to calculate vertical
semi-variograms for each facies groups. Tables 3.4 and 3.5 show the main vertical and
directional semi-variogram parameters. Figure 3.18 shows examples for semi-
variograms calculated for facies group 2. More semi-variogram examples are shown in

the appendices.
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Figure 3.18: An example for a poor semi-variogram that was calculated for facies 2 by
data from the full reservoir
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Fa: © Range (Meter) | Sill Model |Nugget|Azimuth|Anisotropy
Group X Y Ratio
2 5294 4280 [0.20|Exponential 0 -33 1.5:1
3 4277 3154 {0.25 |Exponential 0 -30 1.4:1
5 3410 2916 |0.17 [Exponential 0 -14 1.1:1
6 3400 2920 10.07 [Exponential; 0 -19 1.2:1
7 3815 3571 |0.14 |Exponential 0 -9 1.1:1
8 4971 3452 |0.07 |Exponential 0 -33 1.4:1
Table 3.4: Main directional semi-variogram for grouped facies
Facies Range Sill Model Nugget
Groups
2 6.5 0.10 Spherical 0
3 4.7 0.14 Exponential 0
5 4.8 0.08 Exponential 0
6 4.9 0.06 Exponential 0
7 8.4 0.04 Exponential 0
8 9.7 0.04 Exponential 0

Table 3.5: Main vertical semi-variogram for grouped facies
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Figure 3.18: Example for semi-variograms calculated for facies group 2, a-vertical,
b-omnidirectional, ¢ and d directional semi-variogram.



Facies Semi-Variogram Interpretation

Along with this thesis work a study was conducted to understand the
geological controls that affect semi-variograms behavior. This study covered the full
Hanifa Reservoir in Berri Field and utilized the information of 200 wells (Al-Khalifa
and Makkawi, 2001).

Although this thesis work is based on a sector area in the Berri Field and
utilized the information from 97 wells only, the results of the semi-variogram
calculation and modeling came very close to what have been presented in the above-
mentioned study. One of the most important interpretations introduced in that work
is the role of paleo-structure. It is clearly shown that the time of deposition is the
dominant factor affecting facies distribution. Also, facies are laterally distributed
from north to south, independently of the current structure. Most of the models
display linear shape at the origin, which means that they have average continuity.
The low sill values in the vertical direction, especially facies group 7, indicate the
absence of layering within a facies group. Full details about this issue is shown is

(Al-Khalifa and Makkawi, 2001).

3.4.2 Porosity Semi-Variogram

In this step we are going to utilize what has been found when calculating the
facies semi-variogram. The selected horizontal lag size is 1500 meters because it
gives the optimum number of pairs and helps to capture the spatial distribution of
porosity. The lag size for the vertical semi-variogram is % foot, which is the same as

the porosity log resolution. The calculations were conducted for every reservoir zone
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to capture the porosity distributions. The main parameters of the vertical semi-

variograms are shown in table 3.6, and for the directional ones in table 3.7.

Zone Range Sill Model
Number (meters)
1 7.2 0.002 Spherical
2 7.3 0.002 Spherical
3 5.5 0.001 Spherical
4 5.9 0.001 Spherical
5 7.2 0.001 Spherical
6 6 0.001 Spherical
7 6.6 0.001 Spherical
8 8.1 0.001 Spherical
9 7.6 0.001 Spherical
10 7.8 0.001 Spherical
11 7.2 0.001 Spherical
12 8.6 0.0007 Spherical

Table 3.6: Main parameters for porosity vertical semi-variogram.
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Zone Range (meters) Sill Model Nugget | Azimuth | Anisotropy

Number X Y Ratio
1 3468 2440 | 0.002 | Exponential 0 -24 1.4:1
2 2543 2440 | 0.003 | Exponential 0 -21 1:1
3 3410 2440 | 0.003 | Exponential 0 -36 1:1
4 2254 2916 [ 0.002 | Exponential 0 -36 0.8:1
5 3005 3154 0.001 | Exponential 0 -36 1.1:1
6 3236 2976 | 0.001 | Exponential 0 -38 1.1:1
7 3410 3333 | 0.002 | Exponential 0 -38 1:1
8 3410 2976 | 0.003 | Exponential 0 -43 1.1:1
9 2254 3452 | 0.001 | Exponential 0 -43 0.7:1
10 3283 3035 | 0.001 | Exponential 0 -43 1.3:1
11 3699 2678 0.002 | Exponential 0 -23 1.4:1
12 3641 3809 | 0.001 | Exponential 0 -23 1:1

Table 3.6: Main parameters for porosity directional semi-variogram.



CHAPTER 4

GEOSTATISTICAL MODELING AND VALIDATION

4.1 Workflow

The modeling workilow will vary slightly from one modeling method to another
depending on the type of data being modeled. The general modeling workflow for this

study is shown in figure 4.1.

4.1.1 Simple Geostatistical Models

For simple geostatistical models where one type of data is used, such as porosity
or facies from wells only, the modeling sessions will start by selecting wells in the study
area excluding ten randomly selected wells, which have been selected in the previous

chapter. Next, the 12 zones markers will be selected to define the vertical dimension of
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Figure 4.1: Generalized modeling workflow for this study.
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each zone. This is followed by selecting the type of data to be modeled, whether
continuous or discrete. That will be followed by defining the model geometry as
described in section 3.1. Next, all structure maps of the different reservoir zones wili be
loaded. An appropriate modeling technique with the proper semi-variograms and
histograms will be selected to simulate porosity values at each cell within the defined
model geometry. This will complete the modeling work and the generated model will be

validated for quality and accuracy.
4.1.2 Integrated Geostatistical Models

For the other models where different data types are integrated, the change will be
in the modeling step. In this step, soft data will be selected (seismic, facies or both). A
correlation coefficient between hard and soft data or histograms for soft data will be input
to define the relation between the hard and soft data. Then the simulation will be
performed and the generated models validated. Computation time for this type of model
will take longer than for simple models because different data types must be accounted
for. For each porosity modeling method, ten realizations will be generated. These

realizations are sufficient for the scope of this study.
4.1.3 Model Validation

The validation will be done qualitatively and quantitatively. In the qualitative
approach the input data histograms will be compared to the model histograms in order to

check whether the software and algorithms reproduce the input data statistics. Several
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model slices and cross sections will be generated to visualize the model results. The depth

and location of the model slices and cross sections will be the same for all models. This

ity distribution from the different models.

in comparing the poros

11 help

wi

The quantitative approach will be to estimate the porosity trace at each location

Figure 4.2 shows the locations

for the ten wells that have been excluded from the model

A correlation coefficient will calculated between the actual porosity trace

of these wells.

and the simulated trace for each realization. There are ten realizations for each of the four

modeling methods and ten wells to be utilized in this step.

Figure 4.2: Location of the ten wells to be used in the validation step



4.2 Facies Modeling

The first geostatistical model to be generated was the facies model. It was used as
a guide for porosity simulation. Facies model have been successfully used to improve 3-D
porosity distribution (Al-Qassab et al.; 2000). The method used to generate the facies
model is the Sequential Indicator Simulation (SIS). It is one of the sequential simulation
algorithms, mostly used for categorical data such as facies. The algorithm converts the
property being modeled to binary values of 1 or 0. Then a local cumulative density
function (cdf) is determined using indicator kriging. A uniformly distributed random
number in (0,1) samples generates the cdf. Then the sample value is back-transformed.
Each newly simulated node value becomes part of the values for subsequently simulated
nodes. The process is continued until all nodes are simulated. (Daly, 1994)

This facies model was generated by using logs from 87 wells, which were
interpreted based on core description and porosity logs. Facies have been defined into six
main groups as shown in section 3.4.1. Vertical and directional facies semi-variograms
along with the facies histogram have been utilized, table 3.3.

To check the quality of the generated facies model, several model slices have been
generated and displayed in figure 4.3. Also, two cross sections across the model have
been created as shown in figure 4.4 and 4.5.

The model slices start with layer 2, which is at the upper part of the reservoir, and
end with layer 106, which is at the lower most part. Most of the facies groups are showing
high continuity in the NW-SE direction. The model slices show that facies groups 2 and 3
are the most dominant in the upper layers and their occurrence, generally, decreases until

they terminate in the lower zones.
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Figure 4.3: Different slices through the facies model
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Figure 4.4: Location of cross sections A and B across the study area
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Figure 4.5: Cross section A and B across facies model
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Facies group 7 only occurred at the lower part of the reservoir. Facies group 8 is generally
restricted to the middle reservoir zones.

Cross sections A and B, figure 4.5, display the vertical and lateral facies
distribution. The lower part of the cross section is dominated by mudstone -facies group
7- in all parts of the study area. The middle part is a mixture of packstone and
wackestones -facies group 5 and 6- with mostly packstones overlying wackstones. The
grainstone-rich facies, facies group 2 and 3, dominates the upper part of the reservoir.
This represents a coarsing upward sequence according to the 1991 Saudi Aramco study.

Cross section A displays the lateral facies changes in the Hanifa Reservoir. The
grainstone rich facies at the N-E area changes laterally to packstones, then to wackestones
and to mudstones at the S-W area. Our geological understanding of the reservoir confirms
these observations, which increases the confidence in this facies model and its ability to

represent the reservoir (Saudi Aramco, 1991).
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4.3 Porosity Modeling

In this study four porosity model methods will be generated by using different
geostatistical modeling techniques. The first model will be generated by using porosity
logs from wells only. Seismic impedance will be used as soft data in the second porosity
model. The third model will be generated based on the facies model presented in section
4.2. By utilizing seismic impedance and facies models along with porosity from well logs,

a fourth porosity model will be generated.
4.3.1 Well Data Models

The first porosity model will be generated from well porosity logs by using
Sequential Gaussian Simulation (sGs) algorithms. Principles of Sequential Gaussian
Simulation method have been reviewed in section 2.3.4. The porosity semi-variograms
and histograms, which have been computed in section 3.2 and 3.4.2, were used in
generating this model. Ten realizations have been created by this modeling method and
they were used in the validation part.

The first part of the qualitative validation is to check the reliability of this model
by comparing histograms of the simulated values with input data histograms. This
comparison is done for every reservoir zone as shown in figures 4.6 and 4.7. They have
the same distribution type, which indicates that the sGs has preserved, generally, the
statistical characteristics of the input data. Several slices were created through the first
realization of this method, figure 4.8, as well as two cross sections, figure 4.9. The model
slices and the cross sections show that porosity, generally, decreases from top to bottom,

which is related to compaction and to the type of depositional facies. The grainstones rich
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Figure 4.9: Cross section A and B across the porosity model wells only
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In the quantitative validation step we will check model ability to predicate the
porosity traces for the ten wells. Porosity traces for each well have been computed from
each realization and compared to the true porosity trace. A correlation coefficient was
calculated between the true and the simulated porosity trace to measure the accuracy as
shown in Table 4.1. Figure 4.10 displays the distribution of the calculated correlation
coefficient.

The best estimate has a correlation coefficient of 85% and the lowest 18%. Wells
C, E and I, have the highest average accuracy in estimating the porosity. While wells B, H
and J have the lowest average accuracy. Wells with high accuracy tend to be located in
high-density areas, while wells with low accuracy tend to be in sparse well areas. This
shows that the accuracy of models that are built based on wells only depends on the

sample density of the data modeled.
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Well | R1 [ R2 | R3 | R4 | R5 | R6 | R7 | R8 | R9 |R10 |Average {Max|Min
A |67%60% [62% | 58% | 64% |64% [62% |60% |70% |60%| 63% |70% |58%
B |45%|46% |40% [52% |51% |54% |45% [27%[52% [47% | 46% |[54%|27%
C (81%82%85% |84% |81% |85% |81% |80% |81% |80% | 82% |85%{80%
D [71%]71%|67% |71% |74% |68% |68% [ 66% | 75% |65% | 70% |[75%|65%
E {72%|80% |72% {77% |76% 80% |81% |75% |81% ({74% | 77% |[81%{72%
F  [63%]|71%71% |64% |68% |70% |71%|62%[72%62%| 67% |72%|62%
G |71%(54%|68% |63% | 58% [50% |68% | 59% |66% {64% | 62% |71%|50%
H [18%(36%[25%[33%|38%|33% [31%|32%|18%|19% | 28% [38%]|18%
I 76% | 78% | 77% | 80% [ 82% | 80% | 84% | 77% [80% |82% | 80% [84%|76%
J  156%[53% |57% {56% | 59% [62% [62% [65% |52% [59% | 58% [65%|52%

Table 4.1: Correlation coefficients between the true porosities and the simulated
porosities obtained from Sequential Gaussian Simulation for the ten wells.

0% 10% 20% 30% 40% S50% 60% 70% 80% 90% 100%
Correlation Coefficient

35

Frequency

Figure 4.10: Distribution of the correlation coefficients between true and simulated
porosity values obtained from Sequential Gaussian Simulation
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4.3.2 Wells and Seismic Data Models

These models have been generated by using Sequential Gaussian Simulation with
Collocated Cokriging (sGs_Cok). This is a powerful and fast method for integrating soft
data, such as seismic, with hard data. It has been widely used for conditioning 3-D
porosity models based on seismic impedance (Al-Qassab et al., 2000; Vejbaek, 1996 and
Xu et al., 1992). The main advantage that seismic has over well data is that it has higher
sampling density than well data.

To be able to use this method, a correlation coefficient has to be established
between porosity and impedance. In section 3.2, the correlation coefficient between
porosity and impedance has been calculated to be —0.96. This shows that there is a strong
inverse relation between the porosity and impedance. Areas that have low impedance will
have high porosity and vice versa. Based on this, the seismic impedance is expected to
improve porosity prediction.

The other requirement that is needed for the applicability of this method is an
impedance model that has the same model dimension as the model to be generated. Saudi
Aramco has supplied the 3-D impedance model, which has been already scaled to match
our model geometry. Figure 4.11 shows slices through the impedance model. Figure 4.12
shows two cross sections across the impedance model. Some parts at the N-W area of the
study were not covered by the seismic survey and hence they have no impedance values.
Saudi Aramco could not run the seismic survey in that particular area because it was too

shallow for the ship that was operating the seismic survey.
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The same porosity semi-variograms and histograms that have been used to
generate the sGs porosity model were used in this model. The porosity-impedance
correlation coefficient was used to guide the sGs_Cok algorithm to simulate porosity
based on seismic impedance. Ten realizations have been generated for this porosity model
and they will be used in the validation part.

As with the previous model, reliability of this model will be checked by
comparing input data histograms with histograms of the simulated values from the model.
Figure 4.13 and 4.14 show these histograms for the input data and for the simulated
values from the model. Generally, the sGs_Cok algorithm preserved the statistical and
spatial characteristics of the input data.

Figure 4.15 show different slices through the model, and figure 4.16 shows two
cross sections across the model. The model slices and cross sections clearly show the
effect of the impedance on the porosity-simulated model. The lateral and vertical porosity
trends are highly affected by the impedance model. This is expected, due to the high
correlation coefficient that was used. The overall porosity trend is similar to the wells data
only model and, hence, the signature of the general variation in the facies is preserved.

The next step is to check the model’s ability to predict the porosity traces for the
ten wells. As with the previous model, porosity traces for each have been computed from
each realization and compared to the true porosity trace and a correlation coefficient was
calculated as shown in table 4.2. Figure 4.17 displays the distribution of the calculated

correlation coefficients.
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WELL| R1 [ R2 [R3 | R4 | RS | R6 | R7 | R8 | R9 |R10 |Average |Max| Min
A |67%65% |65% |61% (66% [66% |64% |61% [65% |60% | 64% |67%|65%
B 152%|47%|54%|52%|53%|56% |52% |41% |55% |49% | 51% |[56%|41%
C |81%(83% |85%(84% |84%|86% |81% 83% [82% [82% | 83% |86%|81%
D |72%{55%|72%|73%|72% |70% | 71% | 72% |74% [80% | 71% |80%)|55%
E [76% |80% |78% |82% |82% |78% 82% |81% |82% |79%| 80% |[82%)]|76%
F  [56% {60% |58% |60% |62% |62% {62% |61% |62% [53%| 59% |62%|53%
G [60%|52% |64% [51% [55%|54% |63% |63% {57% |63%| S58% [64%|51%
H |38%40% 40% |39% [48% 36% |53% [45% [56% |40% | 43% |56%|36%
I 70% | 76% | 75% [ 72% | 75% | 77% | 75% | 72% | 74% | 75% | 74% |77%|70%
J  |82%[78% |78%|77%|79% |79% |80% [82% |81% [79% | 80% |82%|77%

Table 4.2: Correlation coefficients

between the true porosities and the simulated
porosities obtained from Sequential Gaussian Simulation with Collocated Cokriging for
the ten wells
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Figure 4.17 Distribution of the correlation coefficients between true and simulated
porosity values obtained from Sequential Gaussian Simulation with Collocated Cokriging
for ten wells
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The best estimate has a correlation coefficient of 86% and the lowest has 36%.
Wells that had a high correlation coefficient in the previous model still have a high
correlation coefficient in this model. The improvement in the correlation coefficient has
occurred in wells that are located in a low well density area, such as well H and J. The
average correlation coefficient for Well J has increased from 58% to 80%, which is a
significant improvement. Well H shows similar improvement, the average correlation
coefficient for that well has increased from 28% to 43%.

The use of the seismic impedance has increased the accuracy of the model. This
improvement is significant in wells that are located in sparse wells areas such as wells J
and H. This is due to two factors: the seismic spatial sampling rate is much higher than
that of the wells, and there is an excellent correlation between seismic impedance and log-
derived porosity. This illustrates that seismic information has an important role in

improving the accuracy of porosity-simulated models.
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4.3.3 Wells and Facies Data Models

Facies models can be used to generate a continuous property model such as
porosity or permeability in which the spatial statistics are facies dependent. The main idea
behind this method is to honor the statistical porosity distribution in each facies and at the
same time honor the overall porosity distribution as well. The algorithm used is called
Sequential Gaussian Simulation Facies Based (sGs_FB). It uses porosity data from well
logs and a facies model to perform the simulation. At each location it determines the
facies present from the facies model and uses the porosity semivariogram along with
histograms to simulate a value at that location.

In this method we are going to use the facies model that has been generated in
section 4.2. The same porosity semi-variograms that have been used in the previous
models were used in this one. Porosity histograms for each facies and for each reservoir
zone were used in this model. Ten realizations were generated and used in the validation
step.

The reliability of this model will be checked by comparing input data histograms
with histograms of the simulated values. Figures 4.18 and 4.19 show histograms of the
input data and for the simulated values, respectively. The sGs_FB algorithm preserved the
statistical characteristics of the input data.

Figure 4.20 shows different slices through the model, and figure 4.21 shows two
cross sections across the model. In the model slices and cross sections, the facies model
signature is clear. High porosity areas correspond to grainstone-rich facies - group 2,3 and

8- and the low porosity areas correspond to mudstone facies, group 7.
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Although this has been observed in the previous model, it is much clearer in this model.
Also, this model tends to show less porosity in some layers, such as layer 15, as compared
to the seismic controlled porosity model. Also in this model, the vertical layering of the
reservoir is clearer than the previous two models. However, the overall spatial and
vertical porosity trends are similar to the two previous models.

The next step is to compute the porosity traces for each well from each realization,
compare it to the true porosity trace and calculate correlation coefficients. Table 4.3
shows the calculated correlation coefficients, and figure 4.22 displays their statistical
distribution.

The best estimate has a correlation coefficient of 85%, and the lowest 26%. Three
wells, namely B, C and H, have average correlation coefficients very similar to the wells
only model, while five wells, namely A, D, E, G and I, showed a lower average
correlation coefficient than the wells only model. Only two wells, namely F and J,
showed a higher average correlation coefficient than that model. The overall accuracy of
the seismic control model is better than ir: the case of the facies controlled model.

The decrease in accuracy in this model, compared with the two previous models,
is due to the fact that the porosity is simulated based on the facies type at that location
which is also an estimated quantity. In section 3.4 we have shown that each facies group
has a distinct porosity distribution. Hence if there is an error in facies estimation it will
lead to using an inappropriate porosity histogram that would cause inaccurate porosity

estimation.
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WELL| R1 |R2 |R3 | R4 | RS | R6 | R7 | R8 | R9 |R10 |[Average |Max|{Min
52% |50% | 57% {53% | 58% | 55% |48% [58% |53% |58% | 54% |58%[48%

44% |44% | 46% | 44% | 42% [48% | 45% |43% |45% |52% | 45% |52%|42%

84% [80% | 78% [80% {82% | 83% [82% |85% [80% {82% | 82% |85%,78%
51% {51% |47% | 50% [ 53% (47% |45% {53% |53% |50% | 50% |53%(45%

61% |58% [62% |63% |65% |57% | 58% [64% |63% |59% | 61% |65%(57%

67% | 77% 166% |66% | 72% | 78% | 74% 168% {74% |77%| 72% |78%|66%

36% |40% |52% {37% {42% |46% |33% [50% |50% [38% | 42% [52%(33%
26% 130% |30% [33% [36% [27% |36% [29% [35% |42% | 32% [42%(26%
11% | 76% | 75% |69% | T7% | 72% | 74% | 72% | 75% | 74% | 74% |77%|69%

~RIQ" || |O|W| >

J  [69%]64% [66% |63% |60% |68% |71% [63% |71% |66%| 66% |71%{60%

Table 4.3: Correlation coefficients between the true porosities and the simulated
porosities obtained from Sequential Gaussian Simulation Facies Based for the ten wells
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Figure 4.22 Distribution of the correlation coefficients between true and simulated
porosity values obtained from Sequential Gaussian Simulation Facies Based for ten wells



93

4.3.4 Wells, Facies and Seismic Data Models

These porosity models are generated by integrating porosity from well logs along
with facies and seismic data. The modeling algorithm uses porosity from well logs and
integrates it with other data types by using sequential Gaussian simulation with
Collocated Cokriging Facies Based (sGs_ Cok _FB). At each cell location in the model,
the algorithm determines the facies present and uses porosity semivariogram, in addition
to the seismic impedance to simulate a porosity value at that cell location.

The modeling workflow for this model is similar to the facies based porosity
model, except that an impedance model is selected along with the correlation coefficient
between porosity and impedance. As in the previous models, the same porosity semi-
variograms and histograms are used in this model. The method is computationally
intensive and it has the longest computer run time of all the techniques. Ten realizations
have been generated by using this method.

As with previous models, the reliability of this model will be checked by
comparing the histograms for input data and for simulated values (figures 4.23 and 4.24).
The sGs_Cok_FB algorithm has preserved the statistical characteristics of the input data.
The sGs_ Cok_ FB and the sGs_FB algorithms produced very similar statistics, which are
slightly different from the sGs_Cok. This indicates that the results are more influenced by
the facies model than the impedance model.

Figure 4.25 shows slices through the model, and figure 4.26 shows two cross
sections. The model slices and the cross sections show porosity trends very similar to the

previous three models.
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Also, this model shows the fine vertical layering similar to the facies based model, which
is the effect of using the facies model as a constraint. Moreover, it shows that porosity is
more continuous here than in the wells only model and the facies based model, which
reflects the effect of using the impedance model as soft data. This model seems to be
better than the previous models in defining the vertical and lateral continuity of porosity.

Porosity traces for each well from each realization have been compared with the
true porosity trace, and a correlation coefficient has been calculated. Table 4.4 shows the
correlation coefficients between true and simulated porosity traces, and figure 4.27
displays its distribution.

The best estimate has a correlation coefficient of 86%, and the lowest has 35%.
Three wells -C, F and H- have a very similar average correlation coefficient to the wells
only model. Five wells, which are B, D, E, G and I, showed a lower average correlation
coefficient than the wells only model and only two wells -A and J- showed higher average
correlation coefficients than that model. This is very similar what has been observed in
the facies controlled model, because the facies model is influencing the porosity
distribution more than the impedance model. The overall accuracy, then, of the seismic
control model is better than this model.

The accuracy of this model is better than the well only model and similar to the
facies controlled, but it is less than that of the seismic controlled model. The reduction in
accuracy is attributed to the error associated with the facies estimation as has been

explained earlier.
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WELL| Rl | R2 |R3 | R4 [ RS | R6 | R7 | R8 | R9 |R10 |Average|Max |Min
67% |65% |65% |61% |66% |66% |64% |61% [65% |60%| 64% [67% |60%

44% 139% {38% |42% |43% [37% |41% [45% |43% [40% | 41% [45%|37%

85% [82% |83% [84% {85% [85% |82% [86% |83% [83% | 84% |86% [82%

54%|50% | 60% |60% [53% [53% {55% [54% [55% [62% | 56% |62% |50%

57%159% [60% |60% |63% |57% [ 59% |63% |63% |60% | 60% [63%|57%

69% |72% [69% |68% | 72% | 74% | 71% | 71% |72% |74% | 71% |74% |68%

42% [44% [52% [43% [44% |45% [37% |52% [{47% |44% | 45% [52%{37%

38%{35% [39% |45% |44% [40% |43% [39% |38% |45%| 41% |[45%|35%

~HlIQm| B || O[>

74%73% |70% | 72% | 76% | 71% | 74% | 76% [ 73% | 75% | 73% |76% |70%

J [66%[64% |66% |65% |66% [69% |69% {68% [65% |68% | 67% |69% |64%

Table 4.4: Correlation coefficients between the true porosities and the simulated
porosities obtained from the facies- and seismic-constrained porosity model for the ten

wells
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Figure 4.27 Distribution of the correlation coefficients between true and simulated
porosity values obtained from the facies- and seismic-constrained model for the ten wells



CHAPTERS

CONCLUSIONS AND RECOMENDATIONS

5.1 Summary

Statistical and spatial data analyses have been performed on the study data in
order to verify data quality and look for trends. The analysis revealed that porosity
distribution is ciosely related to depositional facies distribution for every reservoir zone.
Also, there is a strong relation between porosity and seismic impedance. Facies analysis
revealed that some facies could be grouped together based on the statistical analysis of
geological and petrophysical properties, which would help in expediting the modeling

work.
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Vertical and directional grouped facies semi-variograms have been calculated for
every reservoir zone. Vertical and directional porosity semi-variograms have also been
calculated for every reservoir zone to be used in the modeling stage.

One facies model and four porosity models were generated using different
geostatistical modeling methods. The facies model was generated by Sequential Indicator
Simulation (SIS) algorithm. This facies model was used as a constraint in two porosity-
modeling methods.

The first porosity model was generated by the Sequential Gaussian Simulation
(sGs) algorithm using porosity logs from wells. The second model was generated by
Sequential Gaussian Simulation with Collocated Cokriging (sGs_Cok) in which seismic
impedance was used to condition the porosity model. The third was generated by
Sequential Gaussian Simulation Facies Based (sGs_FB) where the facies model is used to
condition the porosity model. The fourth was generated by Gaussian simulation with
Collocated Cokriging Facies Based (sGs_ Cok _FB). This is a fully integrated model in
which porosity from well logs was integrated with facies and seismic impedance. Ten
realizations were generated for each porosity modeling method.

Qualitative and quantitative methods were used to validate each modeling
method. The first step in the qualitative validation was to compare the histogram
distribution of the simulated porosity values with that of the input data. The second step
was to create model slices and cross sections to visualize the results and compare the
models with each other.

In the quantitative validation step we checked model ability to predicate the

porosity traces for the ten wells. These tens have not been used in the modeling steps.
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Porosity traces for each well have been computed from each realization and compared to

the true porosity trace. A correlation coefficient was calculated between the true and the

WELL sGs sGs_Cok sGs_FB sGs_FB_Cok
A 63% 64% 63% 64%
B 46% 51% 45% 41%
C 82% 83% 82% 84%
D 70% 71% T1% 56%
E 77% 80% 61% 60%
F 67% 59% 72% 71%
G 62% 58% 42% 45%
H 28% 43% 32% 41%
I 80% 74% 74% 73%
J 58% 80% 66% 67%

simulated porosity trace to measure the accuracy as shown in Table 1.
Table 5.1: Average correlation coefficients between true porosity traces and simulated
porosity traces derived from different modeling methods

The porosity models have similar porosity distribution; however, the facies based
and the fully integrated porosity models showed better vertical layering than the other
two models. This is due to the use of the facies model as constraint for porosity
distribution. The accuracy of the seismic controlled model is better than all other models.
The decrease in accuracy for facies based models is attributed to the error associated with
facies estimation. Porosity from the wells only model has the lowest accuracy compared
to the other models, which reinforce again the importance of using other types of data in

porosity modeling.
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5.2 Conclusions

Based on the modeling work and data analyses in this study, the main conclusions

are as follow:

1.

Statistical and spatial data analyses are an important step in modeling and
sufficient time should be spent on them. The results of these analyses have a
big impact on the accuracy of the model.

There is a strong relation between facies distribution and porosity distribution
in Hanifa Reservoir in Berri Field. Reservoir zones that are dominated by
grainstone rich facies tend to have high porosity and reservoir zones that are
dominated by mudstones tend to have very low porosity.

The semi-variogram is a valuable tool in studying geological trends and
carries their signature effect in the geostatistical model.

Spatial analyses revealed that facies and porosity in the Hanifa Reservoir are
best represented by directional semi-variograms that have been calculated for
€Very reservoir zone.

Integrating seismic impedance and facies data in porosity modeling will help
to improve the overall model accuracy compared to the wells only porosity
model.

The impact of data integration varies from one area to another depending on
well density. Data integration will have a big impact in areas that have low

sampling density.
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7. Seismic impedance significantly improves the porosity model accuracy in
sparse wells areas. This is because the seismic data are spatially densely
sampled compared to wells.

8. Integrating facies in porosity models helps to preserve vertical and lateral
reservoir heterogeneity. However, modeling facies based on well data and
semi-variograms may lead to error in the facies model. This may result in
decreased accuracy in the facies based porosity models. Facies maps should
be used to constrain the facies model, especially in low-well control areas.

9. Comparison of simulated data with input data indicates that the modeling
algorithms used were capable of reproducing the input data statistics, which

increase the confidence in these algorithms.
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5.3 Recommendations

Based on this study, the following are recommended:

1. Use streamline simulation methods to further study the value of data
integration in modeling. The objective in using streamline is to check which
model matches the best pressure and flow rate at each well. Streamline
simulation methods have an advantage over the finite difference method
simulator by being fast and they can handle high-resolution models. In
addition to porosity models, permeability models and production data are
needed to do this work.

2. Run 3-D Seismic surveys in the early field development stage when wells are
widely spaced. The seismic data will help in improving the accuracy of
porosity models and help in locating new wells.

3. Employ seismic impedance data, if available, to condition porosity models in
future work.

4. Utilize facies maps to improve facies models in future work.
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Figure A.1: Example for semi-variograms calculated for facies group 3, a-vertical,
b-omnidirectional, ¢ and d directional semi-variogram.
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Figure A.2: Example for semi-variograms calculated for facies group 5, a-vertical,
b-omnidirectional, ¢ and d directional semi-variogram.
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Figure A.3: Example for semi-variograms calculated for facies group 6, a-vertical,
b-omnidirectional, ¢ and d directional semi-variogram.



113

Ty,

P T B S0 B
‘ 73 em:

Figure A.4: Example for semi-variograms calculated for facies group 7, a-vertical,
b-omnidirectional, ¢ and d directional semi-variogram.
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Figure A.5: Example for semi-variograms calculated for facies group 8, a-vertical,
b-omnidirectional, ¢ and d directional semi-variogram
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