Investigation and Implementation of Some
Probabilistic Algorithms

by
Ahmad Said Ghazal

A Thesis Presented to the
FACULTY OF THE COLLEGE OF GRADUATE STUDIES
KING FAHD UNIVERSITY OF PETROLEUM & MINERALS

DHAHRAN, SAUDI ARABIA

In Partial Fulfillment of the
Requirements for the Degree of

MASTER OF SCIENCE
In

COMPUTER SCIENCE

June, 1988

INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI
films the text directly from the original or copy submitted. Thus, some
thesis and dissertation copies are in typewriter face, while others may
be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality
illustrations and photographs, print bleedthrough, substandard margins,
and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete
manuscript and there are missing pages, these will be noted. Also, if
unauthorized copyright material had to be removed, a note will indicate
the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand corner and
continuing from left to right in equal sections with small overlaps. Each
original is also photographed in one exposure and is included in
reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6" x 9" black and white
photographic prints are available for any photographs or illustrations
appearing in this copy for an additional charge. Contact UMI directly
to order.

University Microfilms international
A Bell & Howell information Company
300 North Zeeb Road. Ann Arbor, MI 48106-1346 USA
313/761-4700 800/521-0600

Order Number 1355752

Investigation and implementation of some probabilistic
algorithms

Ghazal, Ahmad Said, M.S.
King Fahd University of Petroleum and Minerals (Saudi Arabia), 1988

U-M-I

300 N. Zeeb Rd.
Ann Arbor, MI 48106

-
.:T—,_/

P

.

R ...1'* . R R JPIR T . . K
I N N N O e N N A IR AT

2y,
3
24
e
N
A}

I
1N
24
Y
b))
N
W
Sy

%

1;

¢’ .
.:,‘:(:

.

\Y/

? .
.».l/'v"\l,"‘:]/""kff‘
LY P e .t

.
N

\2

|

.

A2

-.\Y’v

2ol

,
3z
A

fooade

a
Y

ole el

- .
NANA

N

?,-'

AR

f:f*‘

i

’ :?: ok

?}‘
-~
S

i 4
A':? M ﬂn'
DA NAA

. &
(RN

| RN

FS
N N T
PR LS SN

RN
PSS

et s

R

T

T

)
%5

)
'

INVESTIGATION AND IMPLEMENTATION OF SOME

1
.

T
/i\

PROBABILISTIC ALGORITHMS

v

. /4\

P L IR N
T M7
\4../& IR

%

BY
AHMAD SAID GHAZAL

ToleT
5

o

(3!

v ﬁ";

.

A Thesis Presented to the
FACULTY OF THE COLLEGE OF GRADUATE STUDIES

KING FAHD UNIVERSITY OF PETROLEUM & MINERALS
DHAHRAN, SAUDI ARABIA

TN
S

LT T T L
P N A AN
. .'))".\/4‘*'

=
v

.

o8

Jé\-

4

v’%\'

R T

. e
P>
‘k:

~e
b e e e ' ol
N,
N '/A.' R

In Partial Fuffilment of the
Requirements for the Degree of '

MASTER OF SCIENCE

In
COMPUTER SCIENCE

JUNE 1988

= i NS ‘la‘S\' . {%\..

N

P
Y

R TN e v v
i~ ‘/lv'.—l\i‘ o

2T,
e

-

T s v s
NI

;
.

- \TBRARY o

Sifa

KING FARD ONSVERSITY OF PETROLEUM & MINERALS Y

Dhanran - 31261. SAUDI ARABIA e

o

2N

s

AR

e T T T T ST T T A SN O T O O O SO A O g
I e A N e S R A A e R A N T AP ST

KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS
DHAHRAN 31261, SAUDI ARABIA

COLLEGE OF GRADUATE STUDIES

Thié thesis, written by AHMAD SAID S. GHAZAL under the
direction of his Thesis Advisor and approved by his Thesis
Committee, has been presented to and accepted by the Dean of
the College of Graduate studies, in partial fulfillment of

the requirements for the degree of MASTER OF SCIENCE in
COMPUTER SCIENCE.

THESIS COMMITTEE

— =
Thesis Advisor

4.-—{\\%7)

Member

“PL Wl

Member

Department Chairman

42_«//2,.,'

n, College of Graduatd Studies

6, /1T

Da

- ii -

This thesis is dedicated to my parents

and to my all brothers and sisters

- ijii -

ACKNOWLEDGMENT

Acknowledgment is due to the King Fahd University of Petro-

leum and Minerals for providing the opportunity to carry out

this research work.

I gratefully acknowledge the tremendous help, guidance
and encouragement by Dr. Mohammed Ibrahim Al-Suwaiyel who
. served as my committee chairman. I express my thanks and
appreciation to the other members of my thesis Committee,

Dr. Muhammed Khayat and Dr. Peter Walker.

I would like to thank Dr. Yilimiz Akildiz for his help in
in writing the thesis. I would also like to thank Mr.
Muhammed Ammar Al-samman for his help throughout all the
time this work was in progress. I would like to thank those
who helped me to edit this thesis those are : Khalid Hameed

and Ali Damati. Finally, I thank everybody who supported me

by any means.

- iv -

TABLE OF CONTENTS

2.2 Structure of Probabilistic Algorithms...
2.3 Types of Probabilistic Algorithms.......
PROBABILISTIC ALGORITHMS FOR.......T

PRIMALITY TESTING. uuuitnneeseeeennnnnnn.

Solovay & Strassen Method...............
3.3.1 Introducfion
3.3.2 The Algorithm....................

3.4 Rabin Pronanilistic Algorithm...........
for Primality Testing...................

3.4.1 Original Version.................

10
11
16

16
20

25

25
26

28

28

3.4.2 An Improvment of The.............

Rabin Algorithm..................

53.5 Primality Testing Utilizing the..............

Pseudoprimality Test Alone.............uu....

3.5.

3.5.

3.5.

3.5.

4. OTHER
4.1
4.2

4.3

1 Introduction..........................
2 An Algorithm for Primality............
Using the Pseudoprimality Test........

3 An Algorithm for Testing If a Given...
Integer is Carmichael.................

4 A Proposed Algorithm for Generating...
Keys for the Pohlig Hellman...........
PROBABILISTIC ALGORITHMS..........cu....
Introduétion
Nearest Pair Algorithm..................
Pattern Matching...................... ;.
Probabilistic Algorithm.................
Probabilistic Algorithms in.............
Finite Fields...........ciiiuiiuiunnnn..
4.4.1 Rabin Probabilistic Algorithm....
Finding an Irreducible...........
polynomial over a Finite Field...

4.4.2 Rabin Probabilistic Algorithm....
for Finding a Root of a..........

Polynomial over a Finite Field...

- vi -

32

35

35

35

54

64

64

64

71

74

75

77

5. CONCLUSION AND FUTURE WORK...........00uuunn.. 80
REFERENCES.iiiiititiineinnnnenneannnnnnnn 85
APPENDIX A.ttt iiiiteenonnaancnnnannnn 89
APPENDIX B.......iitiiitineiennoennananennnnnns 127

- vii -

1. A Comaprison
test with the
exprimentally

2. A Comaprison

Nearest Pair

force method

LIST OF TABLES

Page
of the Pseudoprimality.......... 58
other two tests.................
of the Rabin Probabilistic...... 68

Algorithm with the brute

exprimentally............... ..

- viii -~

THESIS ABSTRACT

NAME OF STUDENT: AHMAD SAID GHAZAL

TITLE OF STUDY : INVESTIGATION AND IMPLEMENTATION OF
SOME PROBABILISTIC ALGORITHMS

MAJOR FIELD : COMPUTER SCIENCE AND-ENGINEERING
DATE OF DEGREE : JUNE 1988

Probabilistic algorithms were shown to be of importance

after some fast polynomial time probabilistic solutions to
some "hard" problems were given.

In this thesis theoretical foundations of probabilistic
. algorithms are studied. Probabilistic solutions to some
"hard" problems are studied and investigated. Also

probabilistic algorithms for some "easy problems" are
studied and presented.

The main concentration is on the probabilistic solutions
to primality testing. The probability of a composite integer
passing the Fermat test is derived. This includes an upper
bound on the probability of a given integer being a

Carmichael number. Three applications of this work are given
as follows :

1.Using the pseduoprimlity test alone to test for primality.

2.Using the pseduoprimlity test with the Rabin test to test
for Carmichael numbers.

3.Using the pseduoprimality test to generate keys for the
Pohlig-Hellman encryption scheme.
'MASTER OF SCIENCE DEGREE
KING FAHD UNIVERSITY OF PETROLEUM AND MlNERALS
Dhahran, Saudi Arabia
June 1988

- ix -

i Ul oM

J52 denss dasl e U o
| Ll Sl gyl] any Juis 3 Sy sdulyll plize
|
‘ Y bl dsin 5 e pamaie]

- Tl Sleaild] Zeaal a1 1 Fenall ST et B Lz Sl i 5

vard Ll Yl Oluap Ll IS 5 LIl Oleazylosdd) Bkl punll s D)l 0ds i |
b LS Tt Jidl (3 Ll jan LI LY e sl Hlons Teaall LI
Lol 22l e Wi 5 B o 05 031 Wt Wl SL and TIzo] la >

e 420 5 TV LB Y e i e Tl Slaiylodd Lo e I 58300 5K pmns
o glazad e Ll alls Jazy 5 Olosd s3] e ASY LY e A pue T
A S L IS PO 5 055 Jay el

Py Fed) IS Coedl 1 e

o Gy ¥ sl e AKU B ol L] Jlaaza] L

ISl slael e it ol L] ae Ol L] Jlaazad LY
o g L ! !

ol Sl it b Szl a:l gl 4y Olayed JLad] Jlaaza] LY

fJ-l‘-" (,r’ szl 2y
oolally Joyzdll ugs] Zaals
FETYT I | [PP | I (4 W RSN 9531
r SNAA s>

CHAPTER 1

INTRODUCTION

Probabilistic algorithms have come up fairly recently in
computer science and have been of practical value in

important areas like cryptography.

Probabilistic algorithms offer a good promise of coping
with the difficulty of solving some hard problems ,
especially thosé which are not proven to be NP-complete.
Examples are primality testing and ‘factoring polynomials
over a finite field. There are also probabilistic solutions

to polynomial problens that are faster than the

deterministic ones , e.g the the probabilistic algorithms

for the nearest pair problem and the pattern matching

problem

However the speed gained by the use of probabilistic
algorithms is at the expense of some "uncertainty" in the

solution by either allowing wrong answers to occur , but

with "low probability" , or by allowing the algorithm not to
halt , i.e. no answer is given, .but again with "low
probability". Probabilistic algorithms should not be
confused with probabilistic analysis of the complexity of

some deterministic algorithms.
This thesis is concerned with :

1) The study of the theoretical foundations of probabilistic
algorithms and

2) A study of various practical examples of probabilistic

algorithns.

Chapter two covers definitions and the structure of
probabilistic algorithms which are based on probabilistic
turing machines (PTMs). It also covers the basic types of
probabilistic algorithms, i.e the Monte Carlo and the Las
‘Vegas type and gives subtypes of these two types. Finally

chapter two gives the hierarchy of probabilistic algorithms.

Chapter three covefs probabilistic algorithms for
primality testing which belongs to RP (random polynomial
time which is a mixture of Monte Carlo and Las Vegas types).
Sections 3.3 and 3.4 explain the two methods for primality

testing by Rabin [RAB80}] and Solovay & Strassen [SOL77].

The best known deterministic algorithms for primality
testing are exponential in terms of the the length of the
tested number , see [ADL83] and [COH87] . whilé both
probabilistic algorithms by Solovay and Rabin are polynomial
in terms of the length of the tested number. Section 3.5
investigates the idea of using the pseudoprimality test
alone for primality testing and contains the derivation of
an upperbound on the probability of a composite integer
passing this test as a prime. Section 3.5.3 presents an
application using the pseduoprimality test with the Rabin
test to test if given number is carmichael or not. Section
3.5.4 presents an application of using the pseduoprimality
test in the generation of keys for an éncryption scheme. The
three approaches , i.e the Rabin , Sdlovay & Strassen and
the Pseduoprimality test , were implemented using C and the

source listing is given in Appendix A.

Chapter four completes of the overview of the types of
probabilistic algorithms by giving more details on some of
them. Two are of the Las Vegas type and one of the Monte
Carlo type. Section 4.2 presents a probabilistic algorithm
for the nearest pair problem . This problem is of the Las
Vegas type and the best known deterministic Solution for it

is O(n*log n) by Shamos , Benteley and Yuval , [RAB76].

" Rabin gave a probabilistic algorithm for this problem of
complexity O(n) with "high probablity" , [RAB76]. However
- the answer is always correct. This algorithm was implemented

- in C and the listing is given in Appendix B.

Section 4.3 presents a probabilistic algorithm for
pattern matching. The deterministic algorithm for solving
this problem is in the worst case of O(m*n) where m is the
length of the pattern and n is the length of the text. Karp
and Rabin gave a Monte Carlo probabilistic algorithm for
this problem which runs in the worst case in time O(m+n)
[KAR86]. However the algorithm may give false matches but
with "low probablity".

Section 4.4 presents probabilistic algorithms for finding
an irreducible polynomial over a finite field and for root
finding of a polynomial over a finite field. The
probabilistic classes of these algorithms and their
complexities are also given in 4.4. A deterministic

solution to the problem of finding an irreducible polynomial

over a field GF(pn) involves an exhaustive search through
the field. Rabin [RAB80] gave a probabilistic solution to
the problem which uses randomization in the search for these

polynomials , and proved that the expected number of trials

until an irreducible polynomial is found is n. A

deterministic solution to the problem of finding a root of a

polynomial over a field GFKpn) involves an exhaustive search
through the field. Rabin [RAB80] gave a probabilistic
solution to the problem which uses randomization in the

search for these roots , and proved that the complexity of

his algorithm is O((n*L(n)2 * (log n + log p)) where L(n) =

logn * log log n.

I
i
I
i
|
|

CHAPTER 11

THEORETICAL FOUNDATION OF PROBABILISTIC ALGORITHMS

2.1 Introduction

The class of probabilistic algorithms contains those
algorithms in which the run time and the output of the
algorithm are random variables and whose probability

distribution may depend on the input of the algorithm
[scH85].

Probabilistic algorithms are formally modeled by non-

deterministic Turing machines in which each non-

 deterministic choice is considered as a random experiment.

Before proceeding to explain the structure of those
probabilistic algorithms we need to define some basic
classes in complexity theory. The P class is defined to be
the class of problems whose worst case complexities are of
the form f(n) = O(p(n)) where p(n) is polynomial in n.
Examples of these algorithms are sorting and sea.rching

problems. Non-polynomial time class is defined to be the

' class of problems whose worst case complexity can not be

- bound from above by a polynomial in the size of the input.

Normally those are algorithms of exponential complexity,

‘e.d. 0(2"). Examples are the travelling salesman ,

satisfiability and the knapsack problems.

It is desirable to solve a given problem in polynomial

:time. When this is possible it is called "easy". However

this is not always possible , and in this case the problem

will be "hard".

Attention was directed to solve those hard problems using

- non-deterministic machines , i.e. machines that can "guess"

or "generate" a solution and simultaneously verify a number
of these solutions. Non-deterministic machines are not

realistic , but they are of great theoretical importance.

The class of hard problems that can be solved in
polynomial time on a nondeterministic machine is called NP.

It is clear that P is a subset of NP.

Many researches have investigated these hard problems ,

and part of their effort was what Stephen Cook [Cco071]

showed that there is a problem in NP whose solution in

| polynomial time on a deterministic machine will imply that

all problems in NP are also in P, i.e. P=NP. That problem

was the satisfiability problem, SAT.

Further classification of those hard problems can be done
jas follows :

- A problem is called NP-HARD if and only if SAT can be
3reduced to it. SAT can be reduced to a problem if there is
a polynomial time transformation from SAT to that problem.

‘ - A problem is called NP-COMPLETE if and only if it is NP-
HAR.D and can be solved in polynomial time on a non-

' deterministic machine.

This classification implies that NP-—COMPLETE is a subset
gof NP-HARD. Furthermore it is known that there are NP-
HARD problems that are not NP-COMPLETE such as the halting
| problem. In fact. the halting problem falls into a class of
problems , known as "undecidable" problems , which are

impossible to solve by any algorithm.

It is clear that NP-COMPLETE is a subset of NP But is P
- a subset of NP OR P=NP-COMPLETE ? This question has
. challenged many very capable people so far. At the present

it is conjectured that P # NP-complete.

Aésuming that P # NP-complete, we define the NPI class as
follows :

NPI = NP - (P U NP-COMPLETE).

This class denotes problems whose complexities are yet

not proven to be in P or in NP-COMPLETE , i.e Open problems

., [GAR79].

The classification of problems according to their
complexities results in the classes P, NPI, NP-COMPLETE |,
NP-HARD , NP and the undecidable classes among many other

classes.

Algorithms to solve
NP-HARD AND NP-COMPLETE problems will be costly to
implement , and unfortunately many important practical

problems fall into these classes.

The class of problems for which probabilistic solutions
were successful so far is the NPI class. In this chapter we

will present the structure of probabilistic algorithms ,

~ their types and their hierarchy.

10

2.2 Structure of Probabilistic Algorithms :

Probabilistic algorithms are defined in terms of

languages accepted by a probabilistic Turing Machines

| (PIM). A PTM , as defined in [SCH85] , is a Turing machine
Ewit:h ditinguished states called coin tossing states. For

! each coin tossing state, the finite control unit specifies

two possible next states. The computation of a probabilistic
Turing machine is deterministic except that in coin-tossing
states the machine tosses an unbiased coin to decide between
the two possible next states. For simplicity and without
loss of generality we assume that each nondeterministic
branch in a PTM has two possible outcomes each assigne d
probablity 1/2. A PTM has 3 types of Final states; 1l-state

(or accepting state) , O-state (or rejecting state) and

| ?-state (or don't know state). Since each non-deterministic

? choice has probability 1/2, each nondeterministic path of

length t has probability 27t

11

23 Types of Probabilistic Algorithms :

Probabilistic algorithms in general are classified as :

- Las Vegas type : Probabilistic Algorithms that never give

|
t
|
i
| . .
'a wrong answer but may not give an answer at all (? final

f

éstate) with "a low probability".

- Monte Carlo type : Probabilistic Algorithms that always
%give an answer but may produce wrong answers with "a low
Eprobability" , (in other words the machine may output O for
isome X in the language and may output 1 for some x not in

?the language). Before we proceed to list subtypes of the

' above two basic types we give some basic definitions

1- Let £ = basic alphabet = {0,1}.

f * *
2- Letz = set of all strings composed from X and L £ X
denotes a language defined over X

3. XeL,i.e. X is a sentence in L.

. 4- Let M(x) = outcome (type of final state) of a

. probabilistic Turing Machine M on input x , whose range is

- the set {0,1,?}

5- Let XA(ac) = 0 if x 1is not in the language and XA(ac) =1

if x is in the language.

12
|
}’6- Let prob[M(x) = a] be the probability that M on input x
;halts'in an a-state , a in {0,1,?} for more details see
§[SCH85] pages 30-31 and the references given there.
{ Now we list some special languages which fall in the Las

. Vegas class , or in the Monte Carlo class or in between

these two classes

PP TYPE (PROBABILISTIC POLYNOMIAL TYPE)

This is the class of languages A < Z* . for which there

 exists a probabilistic and polynomial time bounded Turing
fMachine M such that for each x in Z* prob[M(x) = XA(ac)] >

1/2. Clearly the Turing Machines accepting the above
languages are of type Monte Carlo since they may "lie" with

"small probability"

BPP TYPE (BOUNDED ERROR PROBABILISTIC POLYNOMIAL TIME)

*
This is the class of languages A < X , for which there

. exists a probabilistic and polynomial time bounded Turing
. Machine M such that for each x in Z* prob[M(x) = XA(ac)] >

1/2+e where 0 < e < 1/2 . It is clear that BPP is a subset

13
Eof PP, so BPP is also a Monte Carlo type.
' R TYPE (RANDOM POLYNOMIAL TIME) :

; This the class of languages A < Z* , for which there exists

%a probabilistic and polynomial time bounded Turing Machine M

{
1

%such that for each x in E*

(1) xcA ~-> prob[M(x) 1] > 1/2.

(2) x¢fA -> problM(x) 0] = 1.

This class is in a sense is a mixture of the two classes of
j"Las Vegas" and "Monte Carlo" types since the machine may
glie on x in A and will not lie on x not in A. This class is
;cailed random since the algorithm depends on a random
%experiment for output. So if d is chosen between 0 and 1

! such that prob[M(x) = 1] > d for x in A then prob [M(x) = O]

< d for x not in A. By ‘iterating the random procedure k

“times the prob[M(x) = 0] < (l-d)k. So by appropriate values
~for k it is possible to have prob[M(x) = 1} > 1/2 + e for

‘any e, 0 < e < 1/2 , when x is in the language A [SCHS5].

‘A good and important example of this class is the
‘probabilistic algorithms for primality testing for which an

- abstract model is given below.

14

ABSTRACT MODEL FOR PROBABILISTIC PRIMALITY TESTING

The following is an abstract model outlining the
basic steps in the probabilistic primality given by
Monier in [MONS8O].

INPUT : n an odd integer

OUTPUT : n is prime or n is composite

NOTATIONS : T(a,n) is a predicate function of a and
n. If n is prime then T(a,n) is false for all a<n.

If n is composite then T(a,n) is true for some a's <
n and false for the rest provided that the ratio of
number of a's where T(a,n) is false to all a's is <
0.5. This ratio is denoted by «.

PROCEDURE :

For i = 1 to k do (k can be determined from the
probability of error as will be seen in Chapter 2)

Generate randomly a < n and test

if T(a,n) then

STOP and declare n to be composite

endfor

declare n to be prime with probability <l-oF

15

ZPP TYPE (ZERO ERROR POLYNOMIAL TIME)

EThis is the class of languages A < z* . for which there

] .

iexists a probabilistic and polynomial time bounded Turing

%Machine M such that for each x in =

(1) xeA -> prob[M(x) = 1] > 1/2 & prob[M(x) 0] 0.
' (2) xfA -> prob[M(x) = 0] > 1/2 & prob[M(x) = 1] = 0.

' This class belongs to the "Las Vegas"-type since the

I

l

+

fmachine does not lie but may not halt. The ZPP class is by

fdefinition the intersection of R and CO-R where the class

3f‘CO-R = [A< 2‘.* such that the complement of A in R}.

From the previous defintions the folloing hierachy of
%complexity classes is obtained :

P < ZPP = R U Co-R < BPP < PP

gThe question of wheather BPP<NP or NP<BPP is still an open
:problem. For basic references on these classes see [GIL77] ,

[SCH85] and [ZAC82]

16

CHAPTER III
PROBABILISTIC ALGORITHMS FOR PRIMALITY TESTING

3.1 Introduction

The problem of testing an integer for primality has been
a source of interest and fascination to mathematicians since
Euclid. In the past two decades it generated even more

interest because of its applications in cryptography.

Probabilistic and non-probabilistic algorithms were
developed for testing primality. Non-probabilistic
algorithms give a definite answer whether the integer being
tested is composite or prime. However the <cost i.e
computation time , of these algorithms becomes very high as

the size of the number grows.

To be more precise the complexity of these non-
probabilistic algorithms discovered so far is not strictly
polynomial unless extra assumptions are made as in the case
of Miller's algorithm , see [MIL76]. The slowest algorithm
for testing primality is the one based on trial divisions
which is exponential in terms of the length of the tested
number and the fastest one in literature today is the
Pomerance Adelman~Rumely algorithm [ADL83] and the Cohen-

Lenstra version of it , [COH87] , which takes about 10

17

minutes to test the primality of a 200 digit number. The
computational complexity of this fast algorithm can be

expressed as a function of the size of the integer to be

tested, say n, as:

d(n)(c*d(d(d(n)))) hopre

d(n) is the number of digits in n, and c is a constant.

Here the algorithm is exponential in terms of the number

of bits of the number of bits of the number of bits of the
tested number.

Gary Miller also gave a non-probabilistic algorithm which

runs in polynomial time UDUogs(n))_ but the algorithm
requires the Extended Riemann Hypothesis to be true. For

more details see [MIL76] .

Probabilistic algorithms for primality tests wprk fast
but may, on very rare occasisons, declare a composite number
to be prime. The probability of such error could be reduced
as much as less than d where 0 <d < 1 by iterating the

procedure as often as needed.

Two of the first and most well known probabilistic

methods are the Solovay-Strassen method [SOL77] and the

18

?Rabin method [RAB76]. These methods are presented in ‘the
‘next two subsections and an implementation of them in C is

'given in Appendix A.

Those algorithms are of type R (random polynomial time)
as explained in Chapter 2. . However, some classify these
algorithms as of the Monte Carlo type since they always

given an answer, but may lie some of the time.

Most of the probabilistic primality test algorithms are

based on Fermat's theorem which states that b(n—l)sl(nwd n)
if n is prime or b is relatively prime to n. The test based
on this theorem is called the pseudoprimality test. These
algorithms go a step beyond the use of this test to
establish the primality or compositeneés of an integer, n,
by subjecting n to more tests such as the quadratic residue
test in the case of the Solovay-Strassen algorithm and the

Miller test in the case of the Rabin's algorithm.

This chapter investigates the issue of utilizing the
pseudoprimality test alone as a test for primality and
studies the probability of composite integers passing this
test. It.is well known that many composite integers can

pass this test, most notably of these are the Carmichael

numbers.

19

An algorithm is developed to test primality using the

pseudoprimality test alone and an upper bound on the

iprobability of error, i.e. of an odd composite integer

spassing the test, is derived and given in section 3.5

20

3.2 Mathmatical Preliminaries:

Number Theory serves as the basis for studying and

developing algorithms for primality. We start with one of

- the basic definitions in number theory which is Congruence.

a is said to be congruent to b modulo n if n|(a-b) (|

 means divide) and it is denoted by a =b (mod n). Now we

list some congruence rules.

if a=b (mod n) then a op c=b op ¢ (mod n) where op is

if a * ¢=b * ¢ (mod n) and d = gcd(c,n) then
a=b (mod n/d)

The basic theory used for developing probabilistic

algorithms for primality testing is Fermat's theorem stated

as:

FERMAT THEOREM:

If n is prime and a is a positive integer such that

ged(a,n) = 1, then: «{™1) pogn = 1. This is one form of
Fermat Theorem , and there are other equivalent forms to

this form , see [HAR79].

21

EULER'S GENERALIZATION OF FERMAT THEOREM::
Euler extended Fermat's theorem as follows:

. Let o(n) be defined as the number of positive integers less

- than n and relatively prime to n.

If n is a positive integer and a is an integer such that

ged(a,n) = 1 then o™ =1(mod n).

- THE EXPONENT OF AN INTEGER MODULO N:

If gcd(a,n) = 1 then there exists § such that a8 mod n

. 1 furthermore there is no B<dé such that aBEI mod n and, §j

- A(n) and 3le(n), [CAR1I5] , where A(n) 1is the minimum

universal exponent defined below.

UNIVERSAL EXPONENT:

U is called a universal exponent for n if for all a

relatively prime to n aU mod n = 1, and the minimum

universal exponent is defined as the smallest integer
satisfying the property of the universal exponent [CAR15].

€1 €2 ®m
Let n=p, * Py, “... * P, be the prime power factorization

of an odd integer n, and let A(n) be the minimum universal

22

‘ exponent, then A(n) can be computed as follows, [ROS84]

e e e
A'(n)=LCA’[q)(pl l)lq’(pz 2)1 --------- l(P(pm 'n)l- i.e.,

e1-1 e,~1 em—l

CLCMpy © %(Py-1).Py 2 ¥ (Py=1),.nennn..... P ™ *(p-1)]

 except when 8 | n then A(n)= LCM[Z(a-z), r(n/2%) where 2% is

the largest power of 2 that divides n.

A(n) is sometimes referred to in the literature as the

Carmichael function, e.g. [REI87]

It is known , e.g. [POM81] , that n is a Carmichael

number if and only if A(n)|(n-1)

PSEUDOPRIMES :

n is called is pseudoprime to the base b if n is positive

integer and (™" 1)=1 nod n

CARMICHAEL NUMBERS:

A composite integer n which satisfies b(n-l)E 1 (mod n)

for all positive integers b relatively prime to n is called

a Carmichael number.

QUADRATIC RESIDUE :

23

a is called a quadratic residue of n if ged(a,n) = 1 and

" the congruence acZE a (mod n)) has a solution , otherwise a

is called a non quadratic residue of n.

- LEGENDRE SYMBOL :

When n is an odd prime the legendre symbol (a|n)
= +1 if a is a quadratic residue of n.
= =1 if a is a non quadratic residue of n.

' Euler critera can be used to test if a given integer is a

- quadratic residue of n or not without trying to solve the

congruence aczs a (mod n)). Euler's critera states that if

ged(a,n) = 1l and n is an odd prime then
(n-1)

(ajn) = a 2 (mod n) = 1 (mod n). Also Euler's critera

can be used as a compositeness test , i.e. if (ajn) =x1

(mod n) then n is composite .

3(p-1)(a-1)
If p and g are primes then (plqg) = (q|p) (-1)

This is known as the law of Quadratic Reciprocity , see
[BAK84]. Euler's critera helps to find which a's are
quadratic residue mod n while the quadratic reciprocity law
helps to find p's such that a is a quadratic residue. The

legendre symbol is defined only when n is prime , the

24

- general form of the legendre symbol is called the jacobi
. symbol f%. , See [BAKS84].

1 ’ (v 1% .
- JACOBI SYMBOL J(A,B): (%)= M (elpy ', ifn =11 p; ' .. The

- jacobi symbol will not help to decide whether a is a

- quadratic residue mod n or not , however as it will be shown

- in section 3.3 the jacobi symbol and the quadratic residue
- together can be used to test probabilistically if a given

integer n is prime or not.

J(a,b) is defined recursively as

if a = 1 then J:=1

else if a mod 2 = 0 then begin
if (b*b-1)/8 mod 2 = 0

then j := j(1/2,b)

else -j(1/2,b) end

s
.
]

else if (a-1l) * (b-1)/4 mod 2 = 0
then j:=j (b mod a)

else j := -j(b mod a,a) see [DOR84] for this defintion.

25

3.3 Primality Testing Using The Solovay & Strassen Method

3.3.1 Introduction

Solovay & Strassen in 1977 , [SsoL77] |, developed a
- probabilistic algorithm for primality testing using the

. quadratic residue as a witness for compositeness.

The idea of a witness of a composite number is based on

the concept that there is a test based on a random number

- less than n , the integer tested for primality , such that
if n is prime then it will pass the test with all the
numbers less than n , while if n is composite then it will
pass the tests only for some portion of the numbers less
than n. The number for which the test.fails is the witness
for n's compositeness. The ratio of the numbers which pass

the test to all the numbers less than n is called the

probability of error.

Repetition of the witness test of k independent trials
reduces the probability of error to be <pek (where pe is

the probability of error).

It is worth noting here that the polynomial time

deterministic algorithm by Miller assumes the truth of the

26

j extended Riemann Hypothesis because the +truth of the

%hypothesis will imply that the number of witnesses needed

to establish the primality of N <2(in N)2* [WAGS6]

Let L (n)={1 <a<n such that al-1)/2 J(a,n) mod n},
- where n is composite. The elements of Ls(n) represent false

f witnesses, or liars as called by Monier [MON80O] . The size

- of Ls(n) + Oor number or liars , when n is composite was

- shown to be :

IL, (n)| < ¢(n)/2. , see [MONSO]

Solovay & Strassen used a witness based on the quadratic

residue and they proved an upper bound on the probability of

error for each witness test to be < 0.5.
The cost of the algorithm was upper bounded by 6 * log n.

This algorithm will always terminate but may give wrong
answers as pointed above, and therefore it belongs to the

Monte Carlo class.

3.3.2 The Algorithm:

INPUT : n an odd integer, E an upper limit on the

error probability.

27
OUTPUT :
n is composite or n is prime with pr(error) < E.
NOTATIONS : J(a,b) = Jacobi symbol.

PROCEDURE PRIME_S:

1. k= - rlog2E1

2. For i:= 1 to k do

M

random(n).

if (ged(M,n) 21) or (M 1)/245(M n) mod n) then
Stop and Output n is composite.
ENDIF
ENDFOR
3. Output n is prime with pr(error) < E.

END PROCEDURE PRIME_S.

28

3.4 Rabin Probabilistic Algorithm for Primality Testing
3.4.1 (Original Version)

INTRODUCTION:

Michael Rabin in 1976 [RAB76] presented a probabilistic
algorithm for primality testing which has the same concept
as the solovay and strassen algorithm in the sense that
primes will never be declared to be composite but composites

may be declared as primes with some probability of error.

Rabin used Miller's Test as a witness for compositeness.

Miller's test is based on the following concepts:

Let n be a positive integer with n-1 = 25*t where s is a
nonnegative integer and t is an odd positive integer. We
say that n passes Miller's test for the base b if either :
1- b' = 1 (mod n) or

j*t ‘
2= b2 ==1 (mod n) for some j with 0< j < s-~1.

_ t _ g2
Let Lm(n)— {a whereas a° =1(mod n) or a

=1 (mod n)}

where O < j<s when n is composite. The elements of Lm(n)

29

represent false witnesses, or liars. The size of Lm(n) , or

number of liars, when n is composite has been shown to be :

* - r
L)l = (20 21,2y 11 (ged(t,p)))
=1
o) % .
where n = Py * P, c... D and v = min (a;,) for 1l<i<r.
r 1
[MONS8O] .

Rabin gave a better algorithm than SOLOVAY's in terms of
probability of error since the probability of error for each
witness test is < 1/4 , whereas the Solovay & Strassen error
is<1/2. On the other hand the cost of Rabin's algorithm in
the worst case = 2 * logn +s * log n which is higher than

Solovay's when s > 4.

This algorithm will always terminate but may give wrong
answers as pointed above, and therefore it belongs to the

Monte Carlo class.

THE ALGORITHM:
INPUT : n an odd integer, E an upper bound on the
probability of error.
ouTPUT - : n is composite or n is prime with

pr(error) < E.

30

PROCEDURE PRIME_R:

l. k= -

Ilongl

2

2. Generate randomly bl’bZ’b3’ .. .bk where each bi in

[0..n-1]
3. Compute M, L such that n-1 = 2L *M where M is
odd.
4 For i =1 to k do
d = b.M nod n
For J := 1 to L do
(27+m)
Compute and Store bi .
endfor
For J := L down to 1 do
27«
test if gcd(rem ag -1),n) = 1
then exit and output n is composite.
endfor
endfor

5. Output n is prime with pr(error) < E

END PROCEDURE PRIME_R

31

32

3.4.2 An Improvement of the Rabin Algorithm:

An improvement given by Knuth, [KNU81] is based on the

fact that if n =1 + Zk*q is prime and x9*¢ = 1(mod n) then

the sequence x*t mod n , acz*t mod n ,........000un...

s
ac(z “t mod n will end with 1, and the value just preceding

i)
the first appearance of 1 will be n-1. So once bi(z *t=n-1

(mod n) there is no need to continue the test of the

remaining values of j.

Knuth also proved that the probability of error for

composite numbers of each witness test is s#ll < 0.25.

THE ALGORITHM:
RABIN PROBABILISTIC ALGORITHM FOR
PRIMALITY TESTING
(Improved Version)
INPUT : n an odd integer, E an upper bound on the
probability of error.

ouTPUT : n is composite or n is prime with

pr(error) < = E.

PROCEDURE:

33

log
1. k = - upper [——ngl

2. For i =1 to k do

3. Generate x randomly in [0...n-1]

4. Set j =0 and y = x9 mod n.

5. If j = 0 and vy = 1 or if Y = n-1 say that n is
probably prime and go to the next i. If j >0 and y

= 1 declare n is composite and halt the algorithm.

6. Increase j by 1. If j < k set y = y2 mod n and

goto step # 5, else declare n' to be composite and

halt the algorithm.

ENDFOR
7. N is prime with probability of error < E.

A comparison of' the Rabin and the Solovay-Strassen
methods done by Monier [MON80] , shows that Rabin test is

more efficient than Solovay-Strassen's test.

The comparison was based on the ratio of the cost and the

logarithm of ifs probability of error, say u.

u=kt/—log(ak), s0 u=t/—-1log(oc) where k is number of iterations

34

fof the loop, t is the cost of each loop and a = 2 for
?Solovay's and = 4 for Rabin's. Furthermore Monier has shown

that any liar to Rabin's test is also a liar to the Soiovay-
[

'Strassen test.

Some mathmaticians refer to the Solovay-Strassen's and
§Rabin's Algorithms as "Compositeness testing Algorithms"
jbecause they establish or prove the compositeness of an

integer with certainty and don't prove the primality of an

‘integer.

35

35 Primality Testing Utilizing the Pseudoprimality Test Alone
3.5.1 Introduction:

Most modern primality tests have arisen from the Fermat's
theorem. This Theorem is the basis of the pseudoprimality
test as mentioned earlier, but the main drawback of this
test compared to Rabin's or Solovay's tests is that the
éarmichael numbers will always pass it , and the

pseudoprimes may pass it with probability similar to

Solovay's probability of error as will be shown later.

In this section we will investigate the question of how
useful is the pseudoprimality +test alone in testing
primality by finding an upper bound on the probability of a
composite integer passing this test. | It is also worth

noting that a e {2,5,7,13} is enough to witness the
compositeness of any integerszsxlo9 [BEA8SS].

3.5.2 An Algorithm for Testing Primality Using the
Pseduoprimality Test

The algorithm presented below is based on the

pseduoprimality test alone and the analysis will lead to the

upper bound sought.

36

|
. THE ALGORITHM:

INPUT : n an odd integer 2 5.

OUTPUT : n is composite or {n is prime with

pr(error)}

PROCEDURE PTEST:

For i := 1 to k do

M = random(n)

if (gcd(M,n) :1} or (M" mod n=M)
then output "n is composite" and STOP
E&DFOR
output "n is prime"

. END PROCEDURE.

It is clear that the procedure above will terminate since
- the loop will be executed exactly k times. However, the
answer that n is prime may be wrong as shown in lemma 3

- below , and therefore this algorithm belongs to the Monte

+ Carlo class.

Let n be an odd integer and define the following sets

37

Gr = { a such that gcd(a,n) = 1},

Gl = { a such that gcd(a,n) = 1 and a” mod n = a},
S1 = { a such that gcd (a,n-1) = 1 and a < n-1}

Now for any a; in S1 there is a unique integer aJ. also in

iSl such that ai*a]. mod n-1 = 1. For more details see [ROS84]

pp 102-104.

Let (E,D) be a pair of elements in S1 much that
E*D = l1(mod n-1)

and let

Gm = f[a such that gecd(a,n) = 1 and a(E*D.) mod n = 1}.
A(n)= minimum universal exponent for n,

= modulo n multiplication.

38

LEMMA 1I:

(Gm,#) is a subgroup of (Gr, #)

'PROOF:

It is known that Gr is a group, and it is clear that Gm

éis a subset of Gr.

1.

Closure of (Gm,#)

If ay ., a, in Gm then we need to prove that a3 = ay # a,

is also in Gm.

if ay in Gm then gcd(al,n)=1 and a:(lE*D) mod n = a, also

. . _ (E*D) _

if a, in Gm then ged(a, ,n) = 1 and a mod n = a
2 2 2 2.

Let ay = al#azlgcd(as,n)= gcd(al*a2 mod n,n)=1.

Also aB(E*D) mod n = (al"‘a2 mod n)(E*D) mod n

(E*D) (E*D)

=(a1 mod n)*(a2 mod n) mod n =al*a2 mod n =a,.

Associativity follows from Gr being a group

Identity = e = 1 in Gm because 1edmod n=1modn = 1.

39

4. Unique inverse exists in Gr as shown above, but we need
to show that if a is in Gm then it has a unique inverse
in Gm. i.e. if a * b mod n = 1 has a unique solution

in Gr and a is in Gm we need to show that b is in Cm.

To show this note that gcd(b,n) = 1 since b is in Gr and

since a#tbh = 1 then (a#b)(E*D) mod n = 1, which implies

that (a(E*D) mod n) # (b(E*D) modn) mod n = 1. But
a(E*D) modn = a since a is in Gm, then a#
(b{E*D) pog ny =1.

Multiply both sides by b to get b#a#(b(E*D) mod n = b,

but since b#a = 1 then b(E*D) mod n = b. Therefore, b is

in Gm and hence Gm is a subgroup. QED.

Note that Gm may be a non proper subgroup of Gr as well as
being a proper subgroup. For example let n = 9, E = 3 and D
= 3 then Gr = {1,2,4,5,7,8}, Cm (3,3) = {1,8}, here Gm is a
‘pProper subgroup of Gr. If E is changed to 5 and D to 5 then

Cm (5,5) = Gr-and here Gm is a non~proper subgroup of Gr.

40

LEMMA 2:
(G1,#) is a subgroup of (Gm,#).

PROOF:
(Cm,#) is a group since it is a subgroup from Lemma 1.

To prove that (Gl,#) is a subgroup of (Gm,#) note that Gl

is a subset of Om since a in Gl- a mod n = a- a(n-l)

mod n=1

Lot*(n-1) t(n-1)+1

modn =1 -a mod n = a

(E*D

-a)mod n = a.

—a in Gm - Gl is a subset of Gm.

To prove that Gl is a group:

1. Closure of (Gl,#)

If a;.a, in Gl then we need to prove that a3=al#a2 also

in Gl.

If ay in Gl then gcd(a1 (n) = 1 and aln mod n = a, also

41

If @, in Gl then ged(a, ,n) = 1 and a," mod n = a,. i
Let a3 = ajke,, ged(ay,n)= ged(a,*a, mod n,n)=1, ’
Also @, mod n = (a, *a,mod n)n mod n

3 1 72
=(a1" mod n)*(a’Z‘ mod n) mod n = a,*a,mod n=a,
2. Associativity follows from Gm.
3. Identity = e = 1 in Gl because

1nmodn= lmodn = 1.

Unique inverse exists in Gm as shown in Lemma 1, but we
need to show that if a is in Gl then it has a unique
inverse in Gl. i.e. if a * b mod n = 1 has a unique !

solution in Gm and a is in Gl we need to show that b is

in Gl.

To show this note that gecd (b,n) = 1 since b is in Gm.

Now since a#b = 1 then (a#b)n mod n = 1, which implies

that (an mod n)#(bn mod n) modn = 1.

But " mod n = a since a is Gl, then a#(bn mod n) = 1.

42

Now buy multiplying both sides by b we get:

b#a#(bn mod n) = b, but since b#a = 1 then b mod n = b.
Therefore b is in Gl and hence Gl is a subgroup. QED.

Note that Gl may be a non proper subgroup of Gm as well
jas being a proper subgroup. For example let n =9, E=5, D
= 5, then Gm (5,5) = (1,2,4,5,7,8) and Gl = {1,8} here Gl is

"a proper subgroup of Gm. If E is changed to 3 and D to 3

then Gm = {1,8]} Gl, and in this case Gl is a non proper

subgroup of Cm.

The order of Gl is equal to the number of solutions of

a(n-l) mod n for a relatively prime to n, and this can be

shown to be:

= [lged(n-1,p-1) where p divides n. [ERDS86].

Of course the exact computation of |Gl| requires one to know

the prime factorization of n.

Bond in [BON84] discuésed Fermat test , Euler test and
Miller test. He also presented how to calculate the
probability of error in each test by defining the sets B(n)
= number of bases for n , E(n) = number of Euler bases for n

and S(n) = number of strong bases for n. He gave a formula

43

for B(n) :

e e e
- 1 2 m
Let n=p, * P, . * P

=2"d+1 where d is odd

r. m
p;=2 'd;+1 where d; is odd and S,= [l ged(d; d) Then B(n) =
_ i=1
k min(r:ri)
IIZ . Again this requires the prime factorization of
i=1

n.

From Lemmas 1 and 2 Gl is a subgroup of Gr, so in summary

we can say that GI<Gms<Gr. .

Since Gl is a susbgroup of Gr then [Gll divides |Gr| by
Lagranges theorem or |Gl| divides ¢(n). This result is also

mentioned by Erdbs and Pomerance see [ERD86]

Noﬁ if for some n we have a situation where (Gr=Gl) then
such n is either prime or a Carmichael number by virtue of

Fermat's theorem, the properties of the Carmichael numbers

and the construction of Gr and Gl.

Since (Gr=Gl) implies that (Gm=Gr) for at least one pair

(E,D) in S1 then the probability of (GI=Gr) < probability

44

of (Gm=Gr) for a pair (E,D) in S1.

45

LEMMA 3:

1. If the input n is prime then procedure PTEST will never

output "n is composite".
2. If n is composite then PTEST may declare it to be prime.

PROOF :

1. If n is prime then for all M < n ged (M,n) = 1 and

M® mod = M as guaranteed by Fermat Theorem.

2. As a counter-example consider n = 561 = 3 * 11 * 17, by
brute force computation of Gr and Gl we can find that Gr

= Gl and hence PTEST will declare 561 to be prime.

The preceding analysis shows that procedure PTEST will
not declare a prime to be composite, but may declare a
composite to be prime. This situation leads one to ask " IF
N IS COMPOSITE WHAT IS THE PROBABILITY THAT PROCEDURE
PTEST WILL DECLARE IT AS PRIME?" this probability will be

referred to as the probability of error.

Since for some n the resulting Gl is a subgroup of Gr
then |Gl| divides |Gr| and one of the following two cases

will be true:

46

Case I : Gr # Gl which will imply n is composite and

IGl|< 0.5*%|Gr|
or

Case II: Gr= Gl and this is the case when n is either a

prime or a Carmichael number.

47

: LEMMA 4:

Gr = Gm if and only if E * D mod A(n)=1 , where A(n) is

- the minimum universal exponent of n.

PROOF:

1. E*D mod A(n)=1 implies Gr = Gl:

If E* D mod A(n)=1 then E * D = k1% (n) * a mod n

k(n)kl
= (a *a)modn = 1*amodn =
. A(n) _ . .
since a mod n = 1 for all a relatively prime to n

which implies that (Gr = Gl).

2. Gr = (Gl implies E*D mod A(n)=1 :

contradiction.)

Assume that (Gr = Gl) and E*D mod A(n)zl

then E * D = kl*A(n)+r(l<r<i(n)).

1
therefore, aE*D

= admodn =1 (since Gr = Gl)

and since r < A(n) then A(n) is

K
mod n = a*() " xg" mod n

(proof by

the minimum

48

universal exponent of n, which leads to a contradiction!
LEMMA 5: Let pd be the probability of (Gr = Gl) then

1

P n))

PROOF:
Let S2 = {a such that gcd (a, A(n))=1 and a < A(n)}

The probability of (Gr=Gl) < probability of (Gr = Gm) for a
pair (E,D) in S1 since (Gr = Gl) implies that (Gr = Gm) but
(Gr = CGm) does not necessarily imply that (Gr = Gl) (see the

~examples of Lemmas 1 and 2).

(Gr = CGm) if and only if E*D mod A(n)=1 (From Lemma 4)
and hence prob (Gr = Gm) = prob (E*D mod A(n)=1) where E, D

as used in the construction of Gm.

Now if one picks a random E from Sl1, this E defines a
" pair (E,D) where D is also in S1 such that E and D are
mutual inverses modulo n-l1 and then to have E*D mod A(n)=1

three events have to happen:

1. gcd(E, A(n))=1 (otherwise E will not have an inverse

mod A{n) which implies E*D mod A(n)=1l).

49

Note that gcd(E, A(n))=1 implies that E mod A(r) is in
S2.

gcd(D, A(n))=1 (for the same reason as 1)

Note that gecd(D, A(n))=1 implies that D mod A(n) is Vin
S2.

Note that (1) & (2), i.e. E mod A(n) in S2 and D mod
A(n) in S2 are not sufficient to say that they are
inverses modulo A(n). For example if n = 15, E = 9 and D
= 11. Then n-1 = 14 and A(nr)=4 Now gcd (E, A(n))=1 and
E mod A(nr)=1 is in S2, the same for D, gcd (D, A(n))=1
and D mod A(n)=3 is in S2. However (E mod A(r)) * (D

mod A(n)) mod A(n) = 3 mod 4 = 3 =1.

Therefore, the following extra condition is needed :
Given (1) there exist an inverse of E and call it D' and

. given (2), D mod A(r) is in S2 then the condition says

that
D'=D mod A(n).

The probability of these three events happening
simultaneously whether they are dependent or not is
obviously is less than or equal to the probability of

the third event. Theréfore :

50

pd < prob(D'=D mod A(n))= since there are ¢ (A(n))

1
oA (n))
possibilities for such D'. Now this is the probability
that a number is prime or Carmichael which implies that

1
Pd <o)

The estimation above will not require the prime
factorization of n to be known if one uses the lower
bound on the Euler totient function ¢(x) and find a
lower bound on A(rR). And this will be in con'trast with
the estimates given by Erdbs and by Bond stated earlier

in page 42.

51

THEOREM:

Procedure PTEST will not declare a prime number to be

composite but may declare a composite number to be prime

with probability < pd+ (1-pd)*0. Sk

PROOF: From Lemma 3 the first part of the statement is

true and if the number is composite then PTEST may declare

it to be prime because either

1. (Gr = Gl) with probability < pd where pd is the

probability calculated in Lemma 5 , or

2. (Gr = Gl) with probability (1-pd). This is the case

when pseudoprimes pass the test.

Now when (Gl # Gr) for each trial of PTEST the probability
that it will not be declared as composite is<0.5 as seen
before, (Since |Gl|<0.5*%|Gr|), and hence the probability

that it will not be declared as composite for k independent

trials for (GrzGl) is equal to (1l-pd)*0.5K

Therefore the overall probability of error = pd+(l-pd)*

0.5k,

52

COST OF PROCEDURE PTEST:

It is clear that the cost of the procedure is =

cost of computing gcd (M,n)

+ cost of computing (Mn mod n) = 1.5 logn + 2.5 logn = 4

log n. For estimates of these costs see [KNU81]

The cost of the procedure is less than that of the Solovay's
and Rabin's although it is of the same order (i.e. Solovay
upper bounded the cost by 6 log n , see [SOL77] , and Rabin

did so by 2 * logn + 1 * log n see [RAB80] , and this

obviously is due to the fact that PTEST performs only one

test, i.e. the psuedoprimality test.

COROLLARY 1:

As n grows larger the probability that it is a Carmichael
number grows smaller and in the 1limit (asn - ©) the

probability goes to zero.

PROOF :

53

'As n goes to ® ,A(nr)= p,; *(p1-1), P, *(py-1),

.pmm-l*(pm-l) will also go to . This is true since

. e.~1 e.-1
A(n)2 pi] *(p;~1) where p].J * (p;~1) is the maximum of

: e.-1
- those p; t * (pi-l) for i = 1 to m. Moreover if n goes to

e. €.
. . esos i .
~ o either one of p; ! is infinite or number of those p; 1is

. infinite , but in this case also one of those p; should be

infinite since every p; is distinct. Consequenctly one of those

e.~1
pi' * (p'i—l) will also go to o and hence Ai(n) will go «©.

op(A(n)) will go to zero since ¢(A(n)) > 4;10;;((';)('2)) see [BAK84]

, then finally or pd will go to zero as n goes to

1
o(A(n))
o ,QED.

54

3.5.3 An Algorithm for Testing If A Given Integer Is

Carmichael or Not

PROCEDURE CARMICHAEL_TEST:
FOR I : =1 TO K DO

M = random (n)

If an mod n # M) then
output "n is not Carmichael and STOP.
ENDFOR
FOR I :=1TO K DO
M = random(n)
If Rabin test on (n,M) output "composite" then

output "n is probably Carmichael" and STOP

END

ENDFOR

output "n is not Carmichael"

END PROCEDURE.

55

iThe probability of wrong decision (as will be proved in the

next corollary < 0.5

where E is the probablity of error)

k where k could be computed as = - l’long]

- COROLLARY 2:

An odd composite integer declared in the .above Procedure
as Carmichael is a Carmichael number with
e k).
probability>(1-0.5
2. An odd composite integer declared in the above Procedure
as not Carmichael is not Carmichael with
e k).
probability2(1-0.25
PROOF:
1. The procedure will declare an integer to be Carmichael

if the integer passes k pseduoprimality tests and does
not pass one Rabin test and in this case n is definitely
composite. Now either n is a Carmichael number or not,
the probability thaﬁ it is not a Carmichael , 1i.e.

Gr # Gl , (and still declared by the above procedure as

Carmicheal) isSO.Sk so the probability that n is a

Carmichael 21-0.55.

56

If the above Procedure declares that n 1is not a

Carmichael number then this was based on either

a- The test M* mod n # M in the pseudoprimality test,
and in this case the decision is definite by the wvirtue

of the definition of the Carmichael numbers , or

b- The integer n passed k iterations of pseudoprimality
test and k iterations of Rabin test. In this case the

probability that n is composite < O.25k

(Note here that
we do not need to multiply both probabilities since the
pseudoprimality test is part of the Rabin test).
Therfore the overall probability that n is a Carmichael

number is > 1-0.25F

This algorithm is of type Monte Carlo , (Specifically the

BPP

class) since it may lie but always gives an answer.

The three approaches Rabin, Solovay and Strassen and the

pseudoprimality test alone were implemented in C. The

implementation is based on long digit operations, so all

variables are defined as a consecutive sequence of words.

All

necessary operations were implemented for those

variables (addition, multiplication and modular

multiplication, fast exponentiation, greatest common divisor

57

- and many others). Those routines serve as a library of all

? long integers operations.

A test was done on random data for different ranges of
- integers using the three tests ', Rabin , Solovay and the

Psedouprimality test. Table 1 summarizes the results.

58

Length of n Number of| Percentage of agreement
in Words Tests of pseduoprimality to
(16 bit) the other two

1 7000 99.971
3 50 100.00
5 20 100.00
7 10 100.00
10 10 100.00
i3 10 100.00
17 10 : 100.00
20 10 100.00

Table 1 : Empirical results of testing random integers under
the three methods and the percentage of agreement of the

pseduoprimality test with the other two.

59

3.5.4 A Proposed Algorithm for Generating Keys for the
POHLIG_HELLMAN SCHEME

INTRODUCTION:

Pohlig and Hellman [POH78] proposed an encryption scheme
based on computing exponentials over a finite field. The
scheme enciphers a message block M in (0..n-1) by computing

the exponential

C=M®mod n ... (1),

where e and n form the key to the enciphering
transformation. M is restored by the same operation but

using a different exponent , d , for the key:

M=Cd mod n ... (2).

The above procedure is based on Euler's generalization of

Fermat Theorem which says that M® (n) modn = 1. This
property implies that if e and d satisfy the relation e * d
mod ¢(n) = 1, then (1) and (2) are inverses [DOR082] . The
security of the system is dependent on choosing the modulus

n to be a large prime.

60
Key generation is done usually by producing large primes
using one of the methods in sections 3.2 or 3.3.

Procedure KEYS as given below can be used to generate n, e

and d and insures that for all M in (0...n-1), gcd (M,n) =1

and (Me mod n)d mod n = M.

The following is a procedure to generate the keys using

PTEST.
PROCEDURE KEYS:

1. n = random ; n is generated to be an odd integer

and as large as required.
2. F =n-1

3. FIND e s.t. GCD (E,F) = 1; e can be as long as

required.
4., FIND d s.t. E.D MOD n-1 =1
5. For i : =1 to k do

M = random (n)

if (ged (M,n) 21) or (M%) nod n)=m

then reject n and goto step # 1

61

endif
endfor

6. Output n as the modulus, e as the enciphering key and d
as the deciphering key.

- End procedure.

LEMMA 8:

1. If the input n is prime then Procedure KEYS will not

reject n as the modulus.

PROOF :

If n is prime then for all M < n gcd(M,n) = 1, and also

o(n) = n-1, and gcd (e, o(n)) = 1, where ¢(n) is the Euler

totient function of n.

In this case e * d mod ¢p(n) = 1 will have a unique solution

for d. Therefore (Mn mod n)d mocd n = M for all M < n as

guaranteed by the Euler Thebrem.

Hence if n is prime then procedure PTEST above will not

reject n. QED.

LEMMA 7:

If n is composite then the algorithm may accept n as the

62

modulus (in this case the keys will work only for blocks

which are relatively prime to the modulus).

PROOF :

A counter-example: Let n = 15 (a composite number). Then
n-1 = 14. Let e = 13, i.e. gcd(e,F) = 1, then we can find d
= 13 such that e * d (MOD F) = 1. Now by choosing any M

that is relatively prime to n we will find out that:

((M%) mod n)P) mod 1n) = M (Exhaustively). Therefore,
Procedure PTEST will not reject n as the modulus although n

is composite, QED.

LEMMA 8:

The probability that the above procedure will produce wrong

keys is when Gr#Gl and this probability iss—l—.

2k
PROOF :
If n is prime then from Lemma 1 Gr = GL. If n is composite
and Gr = Gl as the example in Lemma 2 then those keys are

guaranteed to encrypt and decrypt correctly all messages

reltively prime to n.

If n is composite and Gr#Gl then the probability that PTEST

63

'will not reject n in each trial of step 5 is < 1/2 so the

;probability that PTEST will not reject n for k trials iss-lk-.
‘ 2

64

CHAPTER 1V

OTHER PROBABILISTIC ALGORITHMS

4.1 INTRODUCTION :

In chapter three all the probabilistic algorithms for
primality testing were of the Monte Carlo type. To complete
the overview of the probabilistic algorithms types and
‘examples this chapter covers probabilistic algorithms for
three more problems. Two of these algorithms.are of the Las

Vegas type and one of the Monte Carlo type.

4.2 NEAREST PAIR ALGORITHM

The Nearest Pair problem in its general form is that
given A x, to be n points in k_dimensional
space R’c , one is asked to find a pair (x; , acj) such that d
(aci ‘ xj) is the minimum among all n pairs

., Where d(x,y) is

a "distance measure" between point x and point vy.

A brute force method, i.e. exhaustive, will give the

65

‘answer by evaluating n(n-1)/2 distance computations and

n(n-1)/2 - 1 comparisons.

Shamos & Benteley and later Yuval found two probabilistic
algorithms requiring O(n*log n) distance computations. Both
methods are recursive and involve considerable overhead in

"auxiliary memory, [RAB76].

The major steps in the algorithm need list processing

’

namely we are given n integers al, a2 ;e e e an and want

to find the indices i,j for which ai==‘ﬁ . If hashing is

possible then this can be done in O(n). The algorithm is not

recursive and easily programmable, [RAB76].

The algorithm is probabilistic in the sense that the
running time is O(n) with high probability. However the
output of the algorithm when it halts is definite ,

therefore the algorithm can be classified as of the Las

Vegas type.

Here we will briefly outline how Rabin proved that the
expected running time is O(n) starting with listing some

necessary definitions given in [RAB76]

1. Let D be a decomposition on S such that

66

3
.Zni(ni"'l)
S =S,US,U....... S . e(Sp=n; , let N(D)= Z=——— be a

.measure of D.

2.If T , a subset of S , is a choice of m elements from S

then we call T is a success on D if at least two elements

were chosen from the same Si

3.1f D1 is a partition S = H1 u....... U Hl then we say that
D dominates D1 if for every m the probability of success on

D with a choice m elements > the probability of success on Dl

with a choice of m elements.

Rabin first proved that. there exists 2>0 such that for

every partition D of any finite set S there exists another
partition D' of the same set such that AN(D) < N(D') and D

dominates D' and all sets (parts) in D' with exception of

singletons. Then he proved that If
S1 = (X et x. }, m=n2/3. is <chosen at random
1 'm

from S and a lattice I' with mésh size o(Sl) is formed then the

vZanl/®
probability of (N(I) < cln) > (1-2e) where . is that A

in the previous definition.

67

The algorithm was studied and implemented wusing C (
Appendix B). The algorithm was tested on a different sets
of random points and the time of Rabin method and the brute
method was computed and compared. Table 2 on the next page
gives the results for a timing experiment. It is clear that
for the random cases tested the probabilistic solution is
faster the deterministic solution and the difference
increases as the number of points increases , which shows

the difference in the order of execution time.

68

Number Rabin time Brute method
of random| in sec. time in sec.
points

10 1.31 0.87

50 , 6.70 15.04

100 17.52 59.59

200 53.33 238.81

Table 2 : comparison of run time of the
probabilistic algorithm &
the deterministic algorithm

on a sample of random points.

69

THE ALGORITHM :
INPUT

S a set of n points in k dimensional space.

ouTePuTr - x; . acj such that d(aci , acj) = min d(:)cp P

q)
where 1 < p<q <n. and d(acp ' acq) = the Euclidean Space
distance measure.

PROCEDURE :

1. Let m; = I_n2/3J , my = [m12/3l and S1 is generated from

ml random elements from S , while S2 is is generated from m2

random elements from S1.

2. Calculate 3(S2) = minimum d(acp ’ acq)

acp . acq are in S2 (this minimum is calculated exhaustively).

where

3. Call Procedure Near(Sl, &(S2) , nil) and will receive

back as an output 5(S1)

4. Call Procedure Near(S, 8(51) ,n) and will receive back

as an output §(S) which will be the minimum sought.
Procedure Near(S, & ,n)

1. Construct a square lattice with mesh size = § Every time
let the origin to be in different position in the square
middle , corner , middle of upper side and middle of left
side. All other possiblities are symmertical to the prevoius

four possiblities. (that is why we have four possiblities)

70

2. For i =1 to 4 do

a. Construct a square lattice Li with mesh size
and compute also ki = number of squares of ki

b. For j =1 to kido

“
"

S intersected with square j of Li and compute
S. . = S intersected with square j of Li and compute d

, x) where d(acp , x_\ in Si i then update minimum

q q)

and q.
ENDFOR
ENDFOR

3. RETURN ninimum , p and q.

2%3

min

and p

71

‘4.3 PATTERN MATCHING PROBABILISTIC ALGORITHM

The problem of pattern matching is that given a string of
n bits called the pattern and a much longer string with m
bits called the text . One is asked to determine if the

pattern occurs as a block within the text.

A brute force solution to the problem is to compare every
n consecutive bits of the text with the pattern. In the
worst case the cost , i.e the execution time of this method
, 1s of the order of the product of m and n ., this method is

not practical unless n is small.

Rabin and Karp [KAR86] gave a probabilistic algorithm to
this problem which is of O(m+n) instead of O(m*n). The
algorithm is of type Monte Carlo since it will always give

an answer but it may lie some of the time.

The idea of the algorithm is that we have a number of

fingerprinting functions defined on the text and on the

pattern. A random fingerprinting function is chosen, call it .

fi ’ fi(pattern) and fi(block of n bits of the text), are evaluated ,

then fi(pattern) and fi(block of n bits of the text), are compared.

If not equal then no match otherwise there is a probable

72

match. If the previous step is repeated k times each one
resulting in a probable match then the overall probability

of error = pfl * pf2 * ..., pfk where pfi is probability

of collision (two different strings with the same value of

fi) of two strings using fi as a fingerprinting function. For

a summary of the method see [KARS86].

THE ALGORITHM :
INPUT : PATTERN OF LENGTH N , TEXT OF LENGTH M

OUTPUT : DECIDE IF THE PATTERN OCCURS IN THE TEXT OR
NOT

PROCEDURE :
WHILE (NO MATCH AND NOT END OF THE STRING) DO
1. Find next block of n bits in the text.
2. FOR I =1TO K DO
a. Choose randomly a fingerprinting function.
b. Compute it for the pattern and for the
block and compare them,
if not equal exit the loop in step # 2
and go on to the next block.
ENDFOR
3. A match found with probability of error equal

to the product of the probability of error in

73

each fingerprinting function.

Exit the algorithm.
ENDWHILE
There is no match in the text.

END (ALGORITHM)

74

4.4 PROBABILISTIC ALGORITHMS IN FINITE FIELDS

The problem of finding an irreducible polynomial of
degree n over a finite field and the problem of finding a
root of a polynomial over a finite field are of great
importance to algebraic coding theory

, algebraic symbol

manipulation and to number theory.

Solving these problems by exhaustive search is not
feasible for large values of the size of the field.
Berlekamp solved the root finding problem for

feGF(pn) ' deg(£f) = m , by reducing it to the
factorization problem of another polynomial
F(x)ezp[acl (Zp=GF(p)) , 1is the field of residues mod
p).where deg(F) = mn. The problem of factoring F(x) e Zp[ac],
is solved by reducing it to finding the roots in Zp of
another polynomial G(x) e Zp[x]. Thus all problems are
reduced to that of roo_t finding in Zp[ac]. For root finding in
a large Zp’ a case in which search is not feasible,
Berlekamp proposes a probabilistic algorithm involving a

random choice of d e Zp' [BER70].

75

Rabin gave probabilistic algorithms for these problems ,
they are probabilistic in +the sense that they use

randomization in the search for for the solution. If they

declare a solution it is definitely correct but the

algorithm may not halt with very 1low probability

, and
therfore it is of the Vegas type.
4.4.1 RABIN PROBABILISTIC ALGORITHM FOR FINDING AN
IRREDUCIBLE POLYNOMIAL OVER A FINITE FIELD -
INPUT : p the characteristic of the field Zp
OouTPUT - f(ac)=a0 ta, %20 ta, *acz tooay *x™ jrreducible
Z_ .
over p

PROCEDURE -

REPEAT

Pick a random polynomial over f(x) eZp

, test it for irreduciblity by testing if

n
£(x) | (2P -x)

and

m;

(£(x), xP ~x)=1 where 1 < i <k

76

then stop and output f(x).
UNTIL FOUND

77

4.4.2 RABIN PROBABILISTIC ALGORITHM FOR FINDING A ROOT
OF A POLYNOMIAL OVER A FINITE FIELD :

*acz +a_ *x™ in E(x) ,

INPUT : f(x) = ag +aq * a0 ta, m

GE = GF (p') , p and n.
OUTPUT : o such.that f(o) = O (if it exist).
PROCEDURE :

1. Find f, (%) = (F(x),=(P-1)_1y.

2. 1f fl(ac) = 1 then stop and output no roots for f(x) in

4. Choose randoxt{ly) in E and compute f d(x) =

(Fy() , () (2=10)-
5. If 0 < deg fy4
< deg f; le (1/2)*deg f;then
If deg fd <(1/2)*deg f; then
fFipq(x) = ()
else
Frop(®) = £ / £4()

endif

i=1i+1

78

If deg fi(ac)>1 then

goto step 4
else

output a such that fi(ac)= x~-a

else

goto step 4
endif

Rabin proved that the expected number of

iterations until § found is less than 2 , and since

in step 4 fl is at least halved then at most log2 m

is nedded to find a factor x-a; of f(x),i.e. a root.

The number of field operations E=GF(pn.') required

to find fl(x) and.fz(x) is O(n.mL(m)log p) (where L{a)
= logaxlogloga). Since deg fi+1 < deg fi , 1.e. the
number of field operations to find f3 is at most half
the number of field operations to find f2 and
simillarly for f4 etc. So the total number of field

operations used for finding a root of f(x) is still

O(n.mL(m)log p)

79

The expected number of operations in Zp

is O(nz.mL(m)L(n)log P) since each operation in Zp

requires O(nL(n)) field operations with residues

modulo p.

80

CHAPTER V

CONCLUSION AND FUTURE WORK

CONCLUSION :

In this thesis a number of probabilistic
algorithms were studied and connected to various
types of probabilistic algorithms. However the main
part of the work was devoted for utilizing

pseduprimality test (or Fermat test) in primality
testing.

The estimation of the upper bound of the
probability of a number being a Carmichael number
showed that the pseudoprimality test will improve as

n grows larger. Three practical applications resulted

which are :

The first application is utilizing the
pseudoprimality test alone as a primality test is a
feasible proposition as supported by the upperbound
on the probability for a composite number passing the

test and as the impirical tests showed.

The Second is wusing the pseudoprimality test

81

combined with Rabin test to produce a Monte Carlo
algorithm to test wheather a given integer is a

Carmichael number or not. The results proved to be

correct with a high probability (1- O.Sk) and with
low cost (4+l)*log2n

The third is key generation for the Pohlig-Hellman

encryption scheme and again the probability that the

keys are correct is as high as (1-0.5k) and the cost
i L3
is 6 logzn

The other algorithms studied (nearest pair |,
pattern matching and problems in finite fields)
served as a completion of the total view of
probabilistic algorithms and explained the wvarious

types of the probabilistic algorithms.

Thé probabilistic algorithms for primality testing
for Rabin , Solovay & Strassen and PIEST were
implemented in C. The implementation resulted in a
library of 15 operations for long integers (including
addition , multiplication & modular multiplication ,
fast exponentiation .. etc). The library forms a

basis for applications requiring long integer

82

arithmetic such as the R.S.A algorithm for encryption

& decryption.

83

FUTURE WORK :

This thesis covered the theortical foundations of
probabilistic algorithms , surveyed the classififcation of
probabilistic languages, and investigated the utilization of

the pseudoprimality test in a probabilistic algorithm for

primality testing.

The investigation of the pseudoprimality test resulted in
deriving an upperbound for the probability of composite

integers passing that test, this probability was rferred to

as pd.

Possible future work along the lines of analysis for pd
include the the following points:

1. Derivation of a tighter upperbouﬂd for pd by giving a
more refined analysis of the probabilities of the three
events involved as mentioned in section 3.4. The analysis
will involve conditional probabilities of interdependent

.events , and will also involve deriving a tight bound for
A(n). So far there ié no lower bound for Ai(n), however

there is an upper bound for it , A(n)sn/2.

2. Utilizing the relation derived between A(n) and pd to
produce bounds on C(x) (C(x) is the counting function of

the Carmichael numbers less than x see [POM81]), and then

84

comparing these bounds with the ones given in the

literature , e.g. see [POM81].

The general area of probabilistic algorithms for
primality testing is very active and certainly there is a
need for new algorithms that are faster and more reliable

unless a polynomial time deterministic algorithm is

found.

Finally the successful probabilistic algorithms in
the literature today are problems that are either in P or
in NPI. It remains to be seen if there are probabilistic

algorithms for Np-Complete or Np-hard problems

85

REFERENCES:

| 1. [ADL83] Aderman, Pomerance and Rumely, "On Distinguishing
Prime Numbers from Composite Numbers", Annals of
Mathematics, Vol. 117, 1983, pp. 173-206

2. [BEA88] Beauchemin , Pierre and Brassard , G. "The
Generation of Random Numbers That are Probably Prime",
Journal of Cryptology Vol. 1 1988 , ppr. 53-64.

3.

[CAR15]) Carmicheal R.D.,

"The Theory of Numbers", Dover
Publications, 1959.

4. |COH87] Cohen and Lenstra, Implementation of a new
Primality Test, Mathematics of Computation,

Vol. No.
177, 1987, pp. 103-121.

5. [DEN82] Denning, D.E.R., "Cryptography and Data

Security", Addison-Wesley, Reading, Massachussets, 1982.

6. [ERD86] Erdos and Pomerance,

"On the Number of False

Witness for a Composite Number", Mathematicians of

Computation, Vol. 46, No. 173,

January 1986, pp.
259-279.

7. [GAR79] Garey , M. & Johnson D.

’

, Computers and
Intractibility , W.H. Freeman Press

, 1979.

10.

11.

12.

13.

14.

86

[GIL77] Gill, J.,"Compuational Complexity of
Probabilistic Turing Machines", SIAM J. Comput.

6(1977) , pp. 675-695. pp. 259-279.

[HAR79] Hardy , G. & Wright , E. , An Introduction to The

Theory of Numbers , Clarendon Press , Oxford , 1979.

[KAR86] Karp , R. , "Compinatorics Complexity , And

Randomness" , Comm. Assoc. Mach. 29(1986) , pp. 98-109.

[MON80O] Monier , L. , "Evaluation and Comparison of Two
Efficent Probabilistic Primality Testing Algorithms"

4

Theortical Computer Science , Vol. 11 , pp. 97-108 ,

1980.

[KNU81} Knuth, D., "The Art of Computer Programming,
Seminumerical Algorithms, Vol. 2, Addison-Wesley,

Reading, Mass., 198].

[POH78] Pohlig, S. and Helmman, M.,"An Improved
Algorithm for Computing Logarithms over GF(p) and its
Cryptographic Significance", IEE Trans. on INformation

Theory, Vol. IT-24(1), Jan. 1978, pp. 106-110.

[POM81} Pomerance, C., "On the Distribution of

Pseudoprimes", Math. Comp., Vol. 37, 1981, pp. 587-593.

15

16

16

17.

18.

19.

20.

87

. [RAB76) Rabin, M.O., "Probabilistic Algorithms in
Algorithms and Complexity - Recent Results and New
Directions" (J.F. Traub, Ed.), Academic Press, New York,

1976, pp. 21-40.

-a [RAB80O] Rabin, M.0., "Probabilistic Algorithms for
Primality Testing", J. of Number Theory, No. 12, 1980,
Pp. 128-138.

.b [RAB80O] Rabin, M.O., "Probabilistic Algorithms in
Finite Fields", SIAM J. COMPUT. Vol. 9 ., No. 2 , May
1980 , pp. 273-280.

[ROS84] Rosen, Kenneth H., "Elementary Number Theory and

Its Applications", Addison-Wesley, Reading

Massachussets, 1984.

[SCH85] Schéning , U., Complexity and Structure , Lecture

Notes in Computer Science , Vol. 211 . Springer-Verlag ,

Berlin , 1986.

[SOL77] Solovay, R. and Strassen, V., "A Fast Monte Carlo

Method for Primality", SIAM Journal for Computing, Vol.
6, 1977.

[WAG86] Stan Wagon , The Mathmatical Intelligence

’

Vol.8 , No.3 , 1986. Primality", SIAM Journal for

88

Computing, Vol. 6, 1977.

21. [ZAC82] Zachos , S. , "Robustness of Probabilistic

Computational Complexity Classes wunder Defintional

Perturbations", Inf. and Cont. 54(1982) , pp. 143-154.

Primality", SIAM Journal for Computing, Vol. 6, 1977.

89

APPENDIX A

90

THE FOLLOWING IS A LIST OF ALL THE ROUTINES USED IN

IMPLEMETING the probabilistic primality testing programs

All operands in theses procedures are represented by a pointer
to integer (in this case the operand will all the consecuctive .

words pointed by the pointer for a specific length)

Some abberivations :

Ul = Unsigned Integer

PUI = Pointer to Unsigned Integer
PC = Pointer to Character

PI = Pointer to integer

PF = Pointer to float

ged = Greatest Common divisor
LOP = Length of pointer contents
CPB(x) = Contents Pointed to By x
Procedure Name = PN

Purpose = PU

Return Value = RV

Number of parameters = NP

91

‘PN

PU RV NP
random() Generate a pseduo random UI between O o
number and FFFF
inc(x,length)| Increments x by one on UI = modified 2
a LOP(x) = length LOP(x)
clear_data(x,| Set CPB(x+lower) to - 3
lower,upper) CPB(x+upper-1) to zero
out(x,name, Display on the screen - 3
ength) the contents of LOP(X))
= length with a message
in name
notequal(x,y |[Check if CPB(x) equal UI = 1 to mean 3
. length) or not to CPB(y) of LOP not equal or O
= length to mean equal
copy(x, ¥y, Copy CPB(x) to CPM(y) of - 3
length) LOP = length
jacobi(x,y, Compute jacobi symbol of J(x,y) = -+ 1 3

length)

92

gcd(u, v, coun

ter)

Copmute gcd of CPB(u) ,

CPB(v) of LOP = counter

rem(x,y, coun

Compute the quotient and

ter) the remainder of -
dividing top(x) by
CPB(y)
getbit(l,b, Return the lth bit of UI = word of all
X) CPB(x) in a word having zeros exept the

it as its bth bit

bth bit = 1th bit

of CPB(x)

count(x, coun

ter)

Return number of bits of
CPB(x) of maximun LOP =

counter

UI = # of bits

of CPB(x)

l_words(x,

Return number of words

Ul = # of words

counter) of CPB(x) of maximun LOP| of CPB(x)
= counter

subtract(a, Subtract CPB(d) form -

d,1) CPB(a) of LOP = 1

93

greater(x,y, |Check if CPB(x) > CPB(Y) UI =0 if x < y
1) or < or = 1if x >y
2 if x =y
shiftl(w,1l, Shift CPB(w) to the left -
append) one bit and
bit 0 = append
notone(x, 1) Check if CPB(x) = 1 or Ul =1 if x <> 1

not

0O if x = 1

fastexp(m,e,

t,counterl,

Compute CPB(m)CPB(e)

mod CPB(t) where LOP(m)

counter2, = blocksize , LOP(e) = -
blocksize) counterl , LOP(t) =

counter2
mult(n,x,t,

counter2)

Compute CPB(n) * CPB(x)
mod CPB(t) on LOP =

counter2

notzero(x,1)

Return weather CPB(x)

= 0 or not

UI =1 if x <> 0

Oif x =0

94

add(a,d, 1) Compute CPB(a) + CPB(d)
on LOP =1

multil(q,s, Compute CPB(q) * CPB(s)

cc) on LOP = cc

shifr(w,cc)

Shift one bit to left

CPB(w) on 1lOP = cc

shiftr(w,cc)

Shift one bit to rigth

CPB(w) on LOP = cc

inv(ai,ni,

res,cc).

Compute res such that
ai * res mod ni = 1

on LOP = cc

95

THE FOLLOWING IS A LIST OF ALL THE PARAMETERS FOR ALL

- PROCEDURES

NOTE :

1. In the coulmn Old Value destroyed is applied only for
contents of PUI type

2. Warning 1 means that the current length of PUI type may
increase by 1

3. Warning 2 means that the current length of PUI type may be
doubled

4. ? means garbage.

96

Procedure Parameter |Parameter |0ld value New Value
Name Name Type Destroyed if destroyed
(contents)
inc X PUI Y CPB(x)
incremented
Warning 1
= length Ul - -
clear_data X PUI Y CPB(x+i) = O
for i'= lower
to upper
= lower Ul - -
= upper = - -
out X PUI N -
= name PC - -
= length Ul - -

97

notequal X PUI -

= y = -

= length Ul -

copy X PUI -

= Y PUI CPB(y) = CPB(x)

= length Ul =

jacobi b4 PUI ?

= y = ?

jacobi length Ul -

gcd u PUI CPB(u)=gcd(
CPB(u),CPB(v))

= v = ?

= cc Ul -

98

rem X PUI CPB(x) =
CPB(x)/CPB(y)
= y = CPB(y) = rem(
CPB(x)/CPB(y)
= counter UI -
getbit 1 = -
= b = -
= X PUI -
count X PUI -
= counter Ul -
1_words X PUI -
= counter Ul -
subtract a PUI CPB(a) =
CPB(a) -~ CPB(d)
= d = -
= 1 Ul -

99

greater b 4 PUI N -
= Y = N -
= 1 Ul - -
shiftl ' PUI Y CPB(w) is

shifted one bit
to the left
bit 0 = append

warning 1

= 1l Ul - -
= append UI - -
notone X PUI 'N -

100

fastexp m PUI CPB(m) =
cpB(m)CPB(€)

mod CPB(t)

= e = . -

= t = -

= counterl Ul -

= counter2 = -

= blocksize = -

mult n PUIL CPB(n) =
CPB(n)*CPB(x)
mod CPB(t)

= X = -

= t = -

= counter2 Ul -

notzero X PUI -

= 1 Ul =

101

add a PUI CPB(a) =
CPB(a)+CPB(d)

= ad = -

= 1l Ul -

multil q PUI CPB(q) =
CPB(g)*CPB(s)
warning 2

= s = -

= cc UI -

shifr 4 PUI CPB(w) is
shifted one
bit to left
warning 1

= cc Ul -

shiftr \4 PUI CPB(w) is
shifted one
bit to right

= cc UI -

102

inv ai PUI -

= ni = -

= res = CPB(res) = inv(
CPB(ai),CPB(ni))

= cc Ul -

103

LISTING
void fastexp(unsigned int *m,unsigned int *e,unsigned int *t,unsigned‘

counterl,unsigned int counter2,unsigned int blocksize);

void mult(unsigned int *n,unsigned int *x
.unsigned int *t,unsigned int counter2);
unsigned int far notzero(unsigned int *x,unsigned int 1);

void add(unsigned int *a,unsigned int *d,unsigned int 1);

/e e e e ——— */
/* this routine receives m e t and computes m**e mod t */

/* and return the result in m */

S e e e —————————— * /

/* The algorithm works in the folowing sense

start q =1.

check if e is odd or even then halve n

if n is even 9 = g*g mod t

else g = g*q mod t.

and 4 = g*m mod t. */

/* ___ */
void fastexp(unsigned int *m,unsigned int *e,unsigned int *t,unsigned

counterl,unsigned int counter2,unsigned int blocksize)

unsigned int cl,c2,dl;
unsigned int g(100);

unsigned int i, j,k;

104

clear_data(gq,0,100);
*(q) =0x01;
for (i=0;i<counterl;++i)
{
dl = *(et+counterl-i-1);
for (j=0;j<16;++j)
{
mult(qg,q, t,2*counter2);
cl = d1;
cl >>= (15-j);
cl &=0x01;
if (¢l == 1)
{

mult(qg,m, t,counter2+blocksize);

}
for (i=0;i < counter2 ; ++i)

*(m+i) = *(g+i);

void mult(unsigned int *n,unsigned int *x,unsigned int *t

;unsigned int counter2)

105

unsigned int n1(100),y(100),z(100),c, flag, save(100);
unsigned int j;
/* Al. (intialize) nl =n , ¥Y=0 , z = x */
clear_data(y,0,100);
copy(t, save,100);
copy(x,z,100);
copy(n,nl,100);
flag = 0x01;

j /*¥ A2. (Halve nl.) */

while (flag == 1)
{
c = nl(0);
shiftr(nl, counter2);

c &=0x0001;

/* A3. add y to =z */
if (¢ == 1)

{ .
add(y,z,counter2+l);
rem(y,t,counter2+1);
for (j=0;j<2*counter2;++j)

t(j) = save(]):

106

/* A4. If nl=0 terminate */

if (notzero(nl,counter2) == 0) flag = O;

/* AS5. z = (2 + z) mod t */
add(z,z,counter2+1);
rem(z,t,counter2+l);
for (j=0;j<2*counter2;++j)

t(j) = save(j);

for (j=0;j<counter2;++j)

*(n+j) = y(3);

/¥ e e ——— * /
/* this routine receives x (pointer to unsigned int) and decide if
/* x = 0 or not */
/¥ e ——— * /

unsigned int far notzero(unsigned int *x,unsigned int 1)
{
int j;
for (j=0;j < 1;++j)
if (*(x+j) !'= 0) return(l);

return(0);

107

e e oy,
/F long digit addition %/
Wai THE RESULT is storde in a * /
S e e %/

/* This algorithm works in the following sense */

/* take a , d byte by byte add them if the result < any of them */

/* Then carry = 1 else carry = 0 */

void add(unsigned int *a,unsigned int *d,unsigned int 1)
{ :
unsigned int result(100),carry;
int i;
carry = 0x00;
for (i=0;i<l+1;++i)
{
result(i) = *(a+i) + carry;
if (result(i) < *(a+i))
carry = 0x01;

else carry = 0x00;

result(i) = result(i) + *(d+i);
if (carry == 0)
if (result(i) < *(d+i))

carry = Ox01;

108

}
for (i=0;i<2%1;++i)

*(ati) = result(i);

/* _____________________________________ */
void rem(unéigned int *x,unsigned int *y,unsigned int counter);
unsigned int far getbit(unsigned int 1,unsigned int b,
unsigned int #*x);
unsigned int far count(unsigned int *x,unsigned int counter);
unsigned int far 1_words(unsigned int *x,unsigned int counter);
void subtract(unsigned int *a,unsigned int *d,unsigned int 1);
unsigned int far greater(unsigned int *x,unsigned int *y,
unsigned int 1);
void shiftl(unsigned int *w,unsigned int 1l,unsigned int append);

unsigned int far notone(unsigned int *x,unsigned int 1);

void rem(unsigned int *x,unsigned int *y,unsigned int counter)
{
unsigned int i,flag,11,12,j,sub(100),q(100),13,14;
unsigned int save(100),test,last,byte,bit,res, append;
if (notzero(x,counter) == 0)
return;
clear_data(sub,0,100);

clear_data(q,0,100);

109

ll=count(x, counter);
l2=count(y, counter);
if (12 > 11)
{
for(i=0;i<counter;++i)
y(i) = 0;
return;
}
if ((12+1) % 16 == 0)
13=(12+1)/16;
else
13=(12+1)/16+1;
14 = 11-12;

for (i=0;i < 12-1;++i)

{
byte

i/16;

bit

i % 16;
res = getbit(i+l4+1,bit,x);

sub(byte) = res;

*/
*/
*/

110

for (i=0;i<=14;++i)
{
res = getbit(1l4-i,0,x);
shiftl(sub,12+1,res);
if (greater(sub,y,13) != 0)
{
subtract(sub,y,13);

append 0x0001;

]

else
append = 0x0000;
shiftl(g,i+1,append);
1
for (i=0;i<counter;++i)
{
*(x+i) = sub(i);

*(y+i)

a(i);

/* this procedure will find the 1lth bit of x and reformat it to

the bth bit of one output word called res

unsigned int far getbit(unsigned int 1,unsigned int b

111

;unsigned int *x)

unsigned int byte,bit, res;

byte = 1/16;

bit 1 % 16;
res = x(byte);
res >>= bit;

res &=0x0001;

res <<= b;

return(res);

unsigned int far count(unsigned int *x,unsigned int counter)
{
unsigned int flag,ll,test, last, j;
ll=counter;
flag =1;
while (flag == 1)
{
if (*(x+11-1) == 0) --11;
else flag =0;
}
test = *(x+11-1);

11 *= 16;

112

flag =1;
while (flag != 0)
{
last = test;
last >>= (l6-flag);
last &=0x0001;
if (last == 0)
{

-=-11;
++flag;
}
else
flag =0;
}
return(l1l);

}
/* ___ */
/* this routine receives x (pointer to int) and decide if */
/¥ x = 0 or not . */
/¥ e e e e * /

void subtract(unsigned int *a,unsigned int *d,unsigned int 1)
{
unsigned int result(100),borrow;

unsigned int i;

113

borrow = 0x00;
for (i=0;i<l;++i)
{
result(i) = *(ati) - borrow;
if (result(i) > *(a+i))
borrow = 0Ox01;
else borrow = 0x00;
*(a+i) = result(i):;
result(i) = result(i) - *(d+i);
if (borrow == 0)
if (result(i) > *(a+i))
borrow = 0x01;

}
for (i=0;i<l;++i)

*(a+i) = result(i);

unsigned int far greater(unsigned int *x,unsigned int *y,

unsigned int 1)

unsigned int i;
unsigned int x1,yl;
for (i=0;i<l;++i)

{

114

x1l

*(x+l-i-1);

yl = *(y+l-i-1);

if (x1 > yl) {

return(l);

}
else if (x1 < yl) ¢

return(0);

}
}

return(2);

void shiftl(unsigned int *w,unsigned int i,unsigned int append)

{

unsigned int c,e;
unsigned int i, j;
if ((1%16) == 0)
j = 1/16;
else
i=(1/16) + 1;
c = append;

for (i=0;i<j;++i)

115

e = *(wti);

e &= 0x8000;
¥(wi) <<= 1;
*(wti) = c;
c = e;

c >>=15;

unsigned int far notone(unsigned int *x,unsigned int 1)

{
int j;
if (*(x) != 1) return(l);
for (j=1;j < 1;++3)
1 (¥(x+j) != 0) return(1);

return(0);

unsigned int far 1_words(unsigned int *x,unsigned int counter)
{
unsigned int 1;
1 = count(x,counter);

if (1 % 16 == 0)

116

return(l1/16);

else

return(l/16+1);

/* __ */
/* __ */
/* Last date of modification started in march 5 1988 */

/* Subject of this procedures : implementing jacobi algorithm */

void multil(unsigned int *qg,unsigned int *s,unsigned int cc);
void shifr(unsigned int *w,unsigned int cc);
void shiftr(unsigned int *w,unsigned int cc);
void inv(unsigned int *ai,unsigned int *ni,unsigned int *res,

unsigned int cc);

type ggg defines an array of maximum of 100 elements each is

a pounsigned inter to unsigned intacters (bytes)

void inv(unsigned int *n2s,unsigned int *nls,unsigned int *b,

unsigned int cc)

unsigned int bs(100),q(100),r(100),t2(100), save(100),nl(100)

,n2(100);

int b_sign,bs_sign,t2_sign;

clear_data(b,0,100);
clear data(bs,0,100);
b

clear_data(t2,0,100);

clear_data(save,0,100);

copy(nls,nl,100);
copy(n2s,n2,100);
b(0) = 0x0001;
b_sign = 1;
bs_sign = 1;
t2_sign = 1;
while (1)
{
copy(nl,r,100);
copy(n2,q,100);
rem(r,q,cc);
if (notzero(r,cc)
break;
else

{
copy(b,t2,cc);

t2_sign= b_sign;

multil(q,b,cc);

0)

117

118

if (b_sign != bs_sign)
{
b_sign = bs_sign;
add(q,bs,cc);

copy(qg,b,cc);

else
{
if (greater(bs,q,cc) == 1)
{
b_sign = bs_sign;
subtract(bs,q,cc);
copy(bs,b,cc);
}
else
{
b_sign *=-1;
subtract(q,bs,cc);
copy(dq,b,cc);
}
}
copy(t2,bs,cc);

bs_sign = t2_sign;

copy(n2,nl,cc);

119

cop ,n2,cc);

~~
]

]

copy(nls,nl,cc);

if (b_sign == -1)

{
subtract(nl,b,cc);

copy(nl,b,cc);

}

/¥ e e e ——— * /

/* long digit multiiplication */

/* THE RESULT is stored in g */

/* _____________________________________ */

/* The algorithm works by repeted rotation and addition */
/% e e o e e * /

void multil(unsigned int *q,unsigned int *s,unsigned int cc)
{
unsigned int w(100),wl(100),res;
unsigned int ¢(100),e,cl,el,c2,e2;
unsigned int i, j,k;
for (i=0;i < cc;++1)
c(i) = *(g+i);

for (i=0 ;i < cc ; ++i)

120

¥(wti) = *(s+i);
for (i=cc;i < 2%cc ; ++i)
¢
*(w+i) &=0x00;
*(g+ti) &=0x00;
}
for (i=0;i < 2*cc ; ++1i)
*(wl+i) &=0x00;
for (i=0;i < cc;++1i)
{
for (j=0;j<16;++j)
{

e = ¢c(i);

if ((e & 0x01) == 1) add(wl,w,cc);

c(i) >>=1;

shifr(w,cc);

}
for (i=0 ;i < 2%cc ;++i)

*(q+i) = *(wl+i);

void shifr(unsigned int *w,unsigned int cc)

{

121

unsigned int c,e,i;
c = 0x00;
for (i=0;i<2%cc;++1i)
{
e = *(wti);
e = e & 0x8000;
*(wti) <<= 1;

*¥(w+ti) = c;

void shiftr(unsigned int *w,unsigned int
{
unsigned int c,e,i;
c = 0x0000;
for (i=0;i<cc;++i)
{
e = ¥(w+cc-i-1);
e &=0x0001;
*¥(wtcc-i-1) >>= 1;
*¥(wtcc-i-1) = c;

c =e;

122

c <<=15;

unsigned int far random();
unsigned int far inc(unsigned int *x,unsigned int 1);
void clear_data(unsigned int *x,unsigned int lower,
unsigngd int upper);
void out(unsigned int *x,char *name,unsigned int length);
unsigned int far notequal(unsigned int *x,unsigned int *y,
unsigned int length);

void copy(unsigned int *a,unsigned int *b,unsigned int counter);
int far jacobi(unsigned int *a,unsigned int *b,unsigned int counter);
void far gcd(unsigned int *ag,unsigned .int *ng,unsigned int cc);
#define multiplier 25173
#define modulus 65536
fidefine increment 13849
#define intial_seed 17
unsigned int far random().
{

static unsigned int seed = intial_seed;

seed = (multiplier * seed + increment) % modulus;

return(seed);

123

unsigned int far inc(unsigned int *x,unsigned int 1)
{
unsigned int i;
i=0;
++x(i);
while (x(i) == 0)
{
++i;
++x(1);
}
if (i > 1-1)
return(l+1);
else

return(l);

void clear_data(unsigned int *x,unsigned int lower,
unsigned int upper)

{

unsigned int i;

for(i=lower;i<upper;++i)

*(x+i) = 0;

’

124

void out(unsigned int *x,char *name,unsigned int length)

{
unsigned int i;
printf("%s",name);
for(i=0;i<length;++i)
printf("%x ",x(length-i~1));
printf("\n");
}

unsigned int far notequal(unsigned int *x,unsigned int *y,

unsigned int length)

unsigned int i;
for(i=0;i<length;++i)
{
if (x(i) '= y(i))
return(l);

}

return(0);

/* source : a

destination : b

125

void copy(unsigned int *a,unsigned int *b,unsigned int counter)
{

unsigned int i;

for(i=0;i<counter;++i)

*(bti) = *(a+i);

int far jacobi(unsigned int *a,unsigned int *b

+unsigned int counter)

int j;
unsigned int one(100),parm(100),counterl, counter2;
one(0) = 1;
clear_data(one, 1,100);
j=1;
counterl = 1_words(a,counter);
counter2 = 1_words(b, counter);
if (counterl > counter2).
counter = counterl;
else
counter = counter2;
while (notone(a,counter) == 1)

{

126

clear_data(parm,0,100);

counterl = 1_words(a,counter);

counter2 = 1_words(b, counter);

if (counterl > counter2)
counter = counterl;

else

counter = counter2;
if ((a(0) & 1) == 0)

{

shiftr(a,counter);

parm(0) = b(0);

parm(0) parm(0)*parm(0);
--parm(0); |

if ((parm(0) & 8) != 0)

copy(a,parm,counter); -

~-parm(0);

-=b(0);

parm(0) = b(0)*parm(0);

if ((parm(0) & 4) != 0)
J¥*=-1;

127

++b(0);
copy(a,parm,counter);
rem(b,a,counter)a
copy(b,a,counter);

copy(parm,b, counter);

}

return(j);

}

void far gcd(unsigned int *u,unsigned int *v,unsigned int cc)
{
unsigned int i,j,save(100);
unsigned int savel(100),save2(100);
clear_data(u,cc,100);
clear_data(v,cc,100);
copy(v, save2,cc);
while (notzero(v,cc) == 1)
{
copy(v,save,cc);
rem(u,v,10);
copy(u,v,cc);

copy(save,u,cc);

128

copy(save2,v,cc);

129

APPENDIX B

130

THE FOLLOWING IS A LIST OF ALL THE ROUTINES USED IN
IMPLEMETING THE NEARSET PAIR PROBABILISTIC ALGORITHM
BY RABIN

Some abberivations :

Procedure Name = PN
Purpose = PU
Return Value = RV

Number of parameters = NP
dist type = struct
{
float x,y:
int index;
]
dist_int type = struct
{
int x,vy;
int indéx;

!

131

PN

PR

RV NP
near_pair(ss [Calculate the minimum of
.S,pP,d,sigma an arrary of points - 6
. counter) using Rabin algorith
minimum(s,p, Calculate the minimum
q,min, of an arrary of points 5
,counter) exahaustively
compute(s, Calculate the points
s_1li,x shift,| in each square
y_shift, si, - 6
counter)
sort(s_1l1i, Sort an array of points
flag, lover, using linear sort - 4

upper)

132

THE FOLLOWING IS A LIST OF ALL THE PARAMETERS FOR ALL

PROCEDURES OF THE NEARES PAIR PROBABILISTIC ALGORITHM

NOTE

1. In the coulmn 0ld

contents

of PUI type

2. ? means garbage.

Value destroyed is

applied for only

Procedure

Parameter |[Parameter |0ld wvalue New Value
Name Name Type Destroyed (if destroyed)
(contents)
near_pair ss array of N -
dist
= s = N -
= P PI Y Index of the

first point

in the pair

133

= q PI Index of the
second point
in the pair

= sigma PF Pointer to
minimum

= counter INTEGER -

minimum s array of -

dist

= P PI Index of the
first point.in
the pair

= q PI Index of the
second point
in the pair

= min PF Pointer to
minimum

= counter INTEGER -

134

compute s array of -
dist
= s_1li array of Each s_li(i).x =
dist int (s(i).x+min*
x_shift)/(2*min)
Each s_li(i).y =
(s(i).y+tmin*
y_shift)/(2*min)
= x_shift PF -
= y_shift PF -
= si PF -
= counter INTEGER -
sort s_1li array of The elements are
sorted according
dist_int to one field
which is denoted
by flag
= flag INTEGER -

135

lower

upper

136

LISTING

#include <stdio.h>
#include <math.h>
#include <dos.h>
#idefine multiplier 17
#define modulus 300
##define increment 61
f#idefine intial_seed 7
typedef struct
{
float x,y;
int index;
} dist;

typedef struct

} dist_int;
void near_pair(dist *ss,dist *s,int *p,int *q, float *sigma,
int counter);
void minimum(dist *s,int *p,int *q,float *min,int counter);
int random();
void compute(dist *s,dist_int *s_1li,float x_shift, float y_shift,

float sigma, int counter);

137

void sort(dist_int *s_li,int flag,int lower,int upper);

int random()
{
static int seed = intial_seed;

seed = (multiplier * seed + increment) % modulus;

return(seed);

dist s(200),s1(200),s2(200);

char in_name(25);

int counter,i,p,q,ml,m2,j;

float min;

FILE *in file,*fopen();

struct time now;

printf ("\n Enter name of file that contains the data
scanf ("%24s",in_name);
in_file = fopen (in_name,"r");

if (in_file==NULL)

printf ("could not open ¥%s for reading.\n:",in_name);

else

{

fscanf(in_file,"%d",&counter);

: \n");

138

for (i=0;i<counter;++i)
{
fscanf(in_file, "%f",&s(i).x);
fscanf(in_file, "%£f",&s(i).y);
s(i).index = i;
}
ml

pow(counter,0.6666);
m2 = pow(counter,0.4444);
for (i=0;i<ml;++i)
sl(i) = s(i):
for (i=0;i<m2;++1i)
s2(i) = sl(i);
gettime(&now); .
printf("\n Rabin algorithm started at %02d:%02d:%02d:%02d\n",
now.ti_hour,now.ti_min,now.ti_sec,now.ti_hund
minimum(s2,&p, &g, &min, m2);
near_pair(s,sl,&p,&q,&mnin,ml);
near_pair(s,s,&p,&q,&nin, counter);
printf£("\n rabin minimum = %f at %d , %d \n",min,p,q);
gettime(&now);
printf("\n Rabin algorithm ended at %02d:%02d:%02d:%02d\n",
now.ti_hour,now. ti_min, now.ti_sec,now.ti_hund
minimum(s, &p, &g, &min, counter);

printf("\n minimum brute force = %f at %d , %d \n",min,p,q);

139

gettime (&now);

printf("\n Brute force method ended at %02d:%02d:%02d:%02d\n",

now.ti_hour,now.ti_min,now.ti_sec,now.ti_hund);

void minimum(dist *s,int *p,int *q, float *min, int counter)
{
float value;
int i,j;
*p = s(0).index;
*q = s(counter-1).index;
j = counter-1;
*min=sqrt(pow(s(0).x-s(j).x,2.0)+pow(s(0).y-s(j).y,2.0));
for (i=0;i<counter-1;++i)
{
for (j=i+l;j<counter;++j)
{
value=sqrt(pow(s(i).x-s(j).x,2.0)+pow(s(i).y-s(j).y,Z.O));
if (value < *min)
{
*min = value;
*p = s(i).index;

*q = s(j).index;

140

void near_pair(dist *ss,dist *s,int *p,int *q,float *sigma,

int counter)

int i,lower,j.pl,ql,k,xx,yy;
dist_int s_1i(200);
dist s_i_j(200);
float min;
for (xx=0;xx<2;++xX)
L
for (yy=0;yy<2;++yy)
{
compute(s,s_li,xx,yy,*sigma, counter);
sort(s_1i,1,0,counter-1);
i=0;
while (i < counter)
{
lower = i;
while (s_li(i).x == s_li(i+l).x)

++1;

141

if (lower == i)
++3i;
else

sort(s_1li,0,lower,i);

i=0;
while (i < counter)

{

lower = ji;
while ((i<counter)&&((s_li(i).x==s_li(i+1).x)

&&(s_1li(i).y==s_li(i+1).y)))

k = s_li(i).index;
s_i_j(i-lower) = ss(k);

k = s_li(i+l).index;

s_i_j(i-lower+l) = ss(k);
++i;
}
if (lower == i)
++i;
else

{

minimum(s_i~j,&pl,&ql,&min,i—lower+1);

if (min < *sigma)

142

*sigma = min;

*p = pl;

*q = ql;

void compute(dist *s,dist_int *s_1i,float x_shift, float y_shift,
float sigma,int counter)
{
int i;
for (i=0;i<counter;++i)
{
s_li(i).x = (s(i).x + sigma*x_shift)/(2.*sigma);
s_li(i).y = (s(i).y. + sigma*y_shift)/(2.*sigma);

s_li(i).index = s(i).index;

void sort(dist_int *s_li,int flag ,int lower,int upper)

int i,j,sl,s2;

dist_int temp;

for (i=lower;i<upper;++i)

t

for (j=lower;j<upper;++j)

{

if (flag == 1)

{
sl

s2

else

{
sl

s2
}
if (sl

{

s_li(j).x;
s_li(j+1).x;

s_li(j).y;
s_li(j+1).y;

> s2)

temp = s_1li(3j);

s_1i(j) = s_li(j+1);

s_li(j+1l) = temp;

}

143

144

