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THESIS ABSTRACT

Name : Fayez Hasen Mohammed Al-Ghamdi
Title : TRANSIENT IMPULSIVELY STARTED GAS FLOW ABOUT A SPHERE
Major Field : Mechanical Engineering

Date of Degree : 2003

The objective of the present work is to investigate numerically the unsteady
impulsively started fluid flow about a solid sphere. A finite-difference scheme has been
developed to solve the 3-D boundary-layer governing equations for a wide range of
Reynolds number.

Two computer programs were developed to analyze the flow field around the
sphere. The first program is used mainly to determine the boundary-layer thickness at
steady state condition. The output of this program is used as an input to the second
program which is developed mainly to solve the governing equations in transient
conditions.

Over the studied range of Reynolds number (1000< Re <10,000), results are
presented in terms of velocity components. Engineering parameters such as surface shear
stress, friction coefficient and drag coefficient are also calculated and presented. Detailed
transient profiles are shown for different Reynolds number and meridional angle.
Comparisons with results found in the literature are carried out to validate the present

analysis.
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Cp

Cr

Re

NOMENCLATURE

radius of the sphere

dimensionless drag coefficient, D
% 7 pU,’a’
local friction coefficient, 1770
ot

number of steps of the numerical mesh network in the x-direction

number of steps of the numerical mesh network in the z-direction

radius of a circular cross section of the sphere by a plane perpendicular to the main
stream direction

dimensionless radius of a circular cross section of the sphere by a plane
perpendicular to the main stream direction, 2r/aRe

Reynolds number, 2Ua/v

time

vt
a2

dimensionless time, t =

dimensionless time to reach steady state

dimensionless shear stress in the meridional direction at the surface of the sphere,

7 Re/2

.

meridional (x-direction) component of velocity
potential flow velocity component in the x-direction,

~(Oy/or)/(r sin ) = U, sin O [ 1 + a*/(2r")]

X1V



U dimensionless meridional component of velocity, u/Us,

U’ dimensionless potential flow velocity component in the x-direction, u' /U,

Us free stream velocity

w radial (z-direction) velocity component

W radial (z-direction) velocity component of potential flow,
(Ow/00)/(r* sin ©) =-U,, cos 0 [ 1 - a’/r']

w dimensionless radial velocity component, w/ U,

W dimensionless radial velocity component of potential flow, w /Us,

X meridional coordinate

X dimensionless meridional distance along the surface measured from the
stagnation point, 2x/ Re a

z distance from the sphere's surface measures along the normal to the surface in the
radial direction

Z dimensionless distance perpendicular to the surface in the radial direction, z/a

Greek Symbols:

p density

0 center angle measured from the frontal stagnation line .

1) dynamic fluid viscosity

% kinematic viscosity, pu/p

T shear stress in the meridional direction at the surface of the sphere, ﬂ(iu

oz|,
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1/ stream function of external potential flow far away from the droplet, given by

3
w=05u_r’sin’ @ (l—a—sj

r
Subscripts:

S at separation point

ss steady state
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CHAPTER I

INTRODUCTION

1.1 General

The flow about a solid sphere is of importance in many engineering applications.
Example of such applications are solid fuels combustion, ballistics of projectile motion,

re-entry of missiles, fiber coating applications and axial flow turbo-machinery.

In the present study, transient impulsive laminar flow around a solid sphere at high
Reynolds numbers (1000< Re < 10000) is numerically investigated utilizing a finite-
difference technique. The governing boundary-layer equations are developed, non-

dimensionalized and solved.

1.2 Scope of the Present Work

In the present work, a finite-difference method has been used to analyze the flow
field around a solid sphere subjected to a uniform gas stream. The model is based on the
boundary-layer theory and the following assumptions:

1. Laminar, axisymmetric, unsteady flow around the solid sphere.

2. Incompressible Newtonian fluid with constant physical properties.



3. Body forces are negligible.

4. Reynolds number is large enough to apply the boundary-layer theory but not to
introduce turbulence which occurs at Re = 300,000.

5. The solid sphere is initially at rest and suddenly subjected to a uniform gas stream
with a constant axial velocity (U..).

6. The flow outside the boundary-layer is the potential flow around the sphere.

This chapter included an introduction and the scope of the present work. Chapter
IT presents the literature survey. Chapter III will be devoted to the problem formulation,
non-dimensional form of the governing equations as well as the boundary layer
simplification. In Chapter IV, the grid system and finite-difference forms of the governing
equations are presented. The overall solution methodology and the method employed for
calculating the engineering parameters are discussed in Chapter V. The results are
presented and discussed in Chapter VI for the velocity profiles and in Chapter VII for the
engineering parameters. Finally, the conclusions and recommendations are included in

Chapter VIII followed by the references and an appendix.



CHAPTER II

LITERATURE SURVEY

2.1 Introduction

The literature survey for the forced flow around solid spheres can be classified into
two main categories. First, forced flow over solid spheres without heat/mass transfer. This
category can also be subdivided into two main cases; steady and unsteady flows. Second,
forced flow over solid spheres with heat/mass transfer. This later category can also be

subdivided into three main cases as follows:

1. Steady flow and steady heat transfer
2. Steady flow and transient heat transfer
3. Unsteady flow and transient heat transfer

The present survey refers to the above mentioned two categories with emphasis on

the unsteady case of the first category.

2.2 Forced Flow Over a Solid Sphere Without Heat/Mass Transfer

2.2.1 Steady Flow

Considerable effort was given to the numerical modeling of steady flow around a

sphere at moderate Reynolds number (0.1 < Re < 100) by Jenson [1] and Dennis and
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Walker [2]. Hamielec et al. [3] and Pruppacher et al. [4] who used different numerical

methods to study the drag coefficient and vortex structure of steady flow.

In 1985, El-Shaarawi et al [5] investigated numerically the steady axisymmetric
laminar boundary-layer flow about a rotating sphere which is subjected to a uniform
stream in the direction of the axis of rotation for Reynolds number of 10,000 and for spin
parameter ranging from 0 to 10,000. A finite-difference scheme was developed to solve
the governing boundary-layer equations. Results were presented for the meridional and

azimuthal velocities and for the wall-shear-stress components.

2.2.2 Unsteady Flow

Less attention has been given to unsteady flow problem over a sphere. Rimon and
Cheng [6] studied numerically the transient axisymmetric flow for the uniform
incompressible, homogeneous fluid flow around a sphere. Complete Navier-Stockes
equations were solved for 1 < Re < 1000 where a recirculatory wake appears. Time
dependent stream function-vorticity equation in a finite-difference representation on an
expanding polar grid system by Dufort-Frankel approximation for time and space was
applied. They presented the detailed vorticity distribution around the sphere and values of
drag coefficient which agree with standard drag curve over the investigated range of
Reynolds number. They recommended curvilinear coordinates with variable mesh size as
being highly desirable to obtain quantitative results and reported that downstream outflow

boundary condition is of great importance.
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Dennis and Walker [7] investigated numerically the transient flow past a sphere

which is impulsively started from rest with constant velocity in a viscous fluid. They
reported that the calculation of the flow at early times was performed using boundary-
layer variables which leads to more accurate solutions. The problem was formulated in
terms of stream function and vorticity. Numerical solutions were presented for cases of

Re=20, 40, 100, 200, 500,1000 and <.

The flow around an accelerating spherical particle of diameter ranging from 50 to
200 pm in the Reynolds number range 0.1< Re <100 was studied by Li and Boulos [8].
The flow around the sphere is assumed to be laminar and two-dimensional axisymmetric.
They calculated the drag coefficient and compared it with the theoretical predictions of
added mass term and Basset history term. Appropriate corrections for those two terms

were proposed as functions of the acceleration rate and the particle diameter.

Unsteady axisymmetric incompressible laminar flow generated by spherical
particle injected into a constant-property Newtonian fluid oscillating with time in the
same direction of the particle motion was investigated by Kim et al. [9]. The equations
governing the accelerated motion of the spherical particle were solved numerically using
an axisymmetric implicit finite-difference algorithm. The results were compared with the
numerical solution of the full Navier-Stokes equations for unsteady, axisymmetric flow
around a freely moving sphere injected into an initially stationary or oscillating fluid. The

comparison for the particle Reynolds number in the range of 2 to 150 and the particle to
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fluid density ratio in the range of 5 to 200 indicates that the existing equations deviate
considerably from the Navier-Stokes equations. Therefore, a new equation for the particle
motion was proposed. The temporal structure of the near wake of the unsteady,
axisymmetric flow around a freely moving sphere injector into initially stagnant fluid was
also examined. It was found that as the sphere decelerates, the recirculation eddy size
grows monotonically even though the instantaneous Reynolds number of the sphere

decreases.

2.3 Forced Flow Over a Solid Sphere With Heat/Mass Transfer

2.3.1 Steady Flow and Steady Heat Transfer

In 1992, El-Shaarawi and Al-Jamal [10] investigated the laminar forced
convection about a rotating sphere that is subjected to a uniform stream in the direction of
the axis of rotation. The boundary-layer equations governing this case were solved using a
finite-difference scheme for a fluid of Pr = 0.7 over wide range of Reynolds number and
Taylor number. The traditional kinds of heating condition were considered: uniform wall
temperature and uniform surface heat flux. Results at considerably large values of spin
parameter (Ta/Re?) up to 20,000 were presented for the local and average Nusselt
numbers. Results show that heat transfer for air flowing past a sphere can considerably be

increased by rotating it about a diameter parallel to the air stream direction.



2.3.2 Steady Flow and Transient Heat Transfer

Abramzon and Elata [11] presented a numerical study of the problem of
unsteady convection from a sphere at finite Peclet numbers in a Stokesian flow field
which is suddenly introduced into a fluid of different temperature. They reported that the

advection of the convection process accelerates the approach of equilibrium.

Feng and Michaelides [12] obtained an asymptotic solution for the heat transfer
from a sphere, which undergoes a step temperature change in a Stokesian velocity field.
The solution obtained is for finite but low Peclet numbers. They found that in the case of
step temperature change, the history terms are reduced to an analytical expression of the

error function.

2.3.3 Unsteady Flow and Transient Heat Transfer

Michaelides and Feng [13] performed an analytical analysis analogous to those
for the derivation of the equation of motion of the sphere. The temperature field was
decomposed into the undisturbed field and a disturbed one where the disturbance is due to
the presence of the sphere. They derived a solution to the unsteady conduction problem
from a sphere at low Peclet numbers and discovered the existence of a history term,

analogous to the "Basset" term in the equation of motion of a sphere.

Recently, Feng and Michaelides [14] extended the analytical methods used in

their earlier work and obtained an analytical solution for the general problem of transient



heat transfer from a particle with arbitrary shape in a transient temperature field. The
velocity field is not restricted to be Stokesian, as in most of the previous studies. Results
are applied to the case of a sphere undergoing a step temperature change and a good
agreement was observed with the derived expressions for the transient heat transfer from a

sphere at low Peclet and asymptotic steady-state solutions.

The initial laminar thermal boundary-layer flow past an impulsively started
translating and spinning rotational symmetric body of uniform temperature is investigated
by Ozturk and Ece [15]. It was assumed that the sphere surface temperature was raised
above the ambient temperature impulsively at the start of the motion. Velocity
components and temperature were expanded in series in powers of time. General results
were applied to a sphere. It was found that the surface heat flux is reduced in the
neighborhood of the point of separation and enhanced by the reversed flow inside the

separated region.

Mansoorzadeh et al. [16] developed a numerical simulation of flow past a
heated/cooled sphere. A Galerkin finite element method is used to solve the 3-D
incompressible Boussinesq equations in primitive variable form. The drag coefficient for
adiabatic flow shows good agreement with the standard correlations over the range of the
Reynolds numbers investigated (Re =25, 100, 400). It is shown that the drag can vary

considerably with heating of the sphere.
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Then, Takhar et al. [17] carried out an analysis to determine the development of
momentum and heat transfer occurring in the laminar boundary-layer of an
incompressible viscous electrically conducting fluid in the stagnation region of rotating
sphere caused by the impulsive motion of the free stream velocity and the angular velocity
of the sphere. At the same time, the surface temperature is also suddenly increased. The
analysis included both short and long solutions. The boundary-layer equations governing
the flow were solved numerically using an implicit finite-difference scheme. It was found
that the shear stresses in the longitudinal and rotating directions and the heat transfer

increase with time, magnetic field, buoyancy parameter and the rotation parameter.

The conducted survey demonstrates a gap in the literature for results of unsteady
flow around a sphere at high values of Reynolds number (i. e. Re > 1000). The present
work aims at covering the still existing gap by solving the boundary-layer equations
governing the unsteady impulsive flow about a solid sphere subjected to a uniform gas
stream at high values of Reynolds number. A finite-difference scheme developed by El-
Shaarawi et al. [5] has been utilized and extended here to take into consideration the
unsteady term of velocities in the momentum equations. Numerical results of velocity
components around the sphere at different times will be presented for a wide range of
Reynolds number. Moreover, engineering parameters such as wall shear stress, drag

coefficient and friction coefficient will be calculated.



CHAPTER 111

GOVERNING EQUATIONS

3.1 Introduction

In this chapter, the governing equations that describe the transient impulsive flow
around the solid sphere are presented. The detailed derivation of these equations starting
from the Navier-Stokes equations for spherical polar coordinates, transformation of the
governing equations to the orthogonal curvilinear coordinates, non-dimensionalizing, and
order of magnitude analysis that is carried on to simplify the equations are found in [5]

and [18].

3.2 Assumptions

The main assumptions that are employed in the derivation of the governing
equations are given hereunder:
1. Laminar, axisymmetric, unsteady flow around the solid sphere.
2. Incompressible Newtonian fluid with constant physical properties.
3. Body forces are negligible.
4. Reynolds number is large enough to apply the boundary-layer theory but not to

introduce turbulence.
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5. The solid sphere is initially at rest and suddenly subjected to a uniform gas stream
with a constant axial velocity (U..).

6. The flow outside the boundary-layer is the potential flow around the sphere.

3.3 Governing Equations

In this work, the orthogonal curvilinear coordinates shown in Figure (3.1) are
used. The x-axis is measured along the surface of the sphere starting from the front
stagnation point and extends in the meridional direction till the rear stagnation point. The
z-axis passes through the sphere origin where its zero value is at the surface of the sphere.
Refer to Appendix A for the detailed transformation of the governing equations from

spherical polar coordinates to its orthogonal curvilinear coordinates.
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Stagnation point

Fig. 3-1: Orthogonal curvilinear coordinate system
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3.3.1 Governing Equations in Dimensional Form

Based on the assumptions mentioned in paragraph (3.2), the governing equations
in the orthogonal curvilinear coordinate system are as follows: [5,18]

Continuity Equation

ow ou 2w +u00t0_0 (3.1)

oz ox (a+z) (a+2)

Meridional Momentum Equation

Al ou  ou uw 1 op 1 o°[(a+z)u] d&*u coth ou 2 ow u
—FW—+U—+ =——— v +— — —=

ot oz ox (a+z)  poX (a+z) oz° ox* (a+2)ox (a+z) ox (a+2)*sin’ @
(3.2)

Radial Momentum Equation

- ow  ow u’ 1 op 1 ¢ [(a+z)w] o°w coth ow 2 ou 2w 2ucotd

—tW—tU—— =———+vV 5 —+ —— —— = — .

2 oz ox (a+2) p 0L (a+72) oz X" (a+z)yox (a+z)ox (a+z) (a+2)
(3.3)

3.3.2 Dimensionless Form of Equations

The following non-dimensionalizing parameters are used to obtain the

dimensionless form of the governing equations:

Uu=_" w=" z=-% X = 2% Re = 2Y=2
U, U, a aRe 1%
u = p-—F =2
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Using the above dimensionless parameters and carrying out an order of magnitude
analysis, the final form of the governing boundary-layer equations becomes: [5,18]

Continuity Equation

oX 20z 1+2) 2  (1+2)

oU Re oW +R W +R6U Cotg —0 (34)

Meridional Momentum Equation

* 2
N YN RWA .U 5 (3.5)
&t oX 2 oz - X oz

The radial momentum equation is dropped out completely since all its terms are of
a lower order of magnitude. It should be noted that although the third term in the
continuity equation has a lower order of magnitude than the other three terms, it was kept

in the equation to take curvature effects into consideration (El-Shaarawi [19]).

3.3.3 Boundary and Initial Conditions

To determine the required number of boundary and initial conditions, it is
necessary to investigate the boundary-layer equations presented in the previous section. In
these equations, only the first derivative of U with respect to X is available. Therefore,
only one boundary condition in the meridional direction is required. This boundary
condition can be determined at the front stagnation point. The derivative of U with respect
to Z is of second order, therefore, two boundary conditions in the radial direction should
be specified. These two boundary conditions can be determined at two locations; at the

surface of the sphere where the value of U is zero due to the no slip condition at the



15
sphere’s surface and at the edge of the boundary-layer where the value of U can be taken
equal to the value of the potential flow around a sphere.

Only the first derivative of W with respect to Z is present. Hence only a boundary
condition at one location is enough and can be determined at the surface of the sphere
where the value of W is zero (i. €. no suction or blowing is assumed). The initial condition
is easily determined from the assumption that the solid sphere is initially at rest.

In summary, all boundary conditions required for the governing equations can be

written in the following dimensional forms:

at x=0, z>0,t >0 (stagnation line) u=0,w=w+ )

at z=0, x>0, t >0 (sphere surface) u=w=0 8 (3.6)
at z>5, x>0, t>0 u=u*,w=w

at =0 u=w=0 7

Meridional as well as radial potential velocity components which are applied at the

edge of the boundary-layer can be obtained from the theoretical potential flow around a

[3P4)

stationary sphere [20]. Considering the sphere radius as “a”, stream function as “y” and

[(IPrei]

the potential function as “¢” we have:

3
y/zéuwrzsinzﬁ[l—%j (3.7)

and

a3
¢7=uwrcos0(l+2r3J (3.8)

Meridional and radial velocity components for the potential flow are related to the

previous two equations by the following relations:
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1 oy a’ .
Uk=————=u_|l+—— [sin@ (3.9)
s )
3
and W*:—a—(oz—uOO l—a—3 cos @ (310)
or 2(a+z

Using the non-dimensional parameters defined previously in equation (3.1), we get the

following dimensionless form of the potential flow velocity components:

U*Z{H;Jsme 3.11)
20+2)

and W * = | ]—;3 cos @ (312)
(1+2)

Similarly, the final form of the non-dimensional boundary conditions can be written as;

at  X=0,Z>0, t>0 U=0,W=W*=—]1-—|coso )
(1+2)
at Z=0, X>0,t>0 U=W=0
at ZZ 5,X>0, t>0 UZU*Z(l'FﬁJSine > (313)
+
W:W*——[l—(lJr )3Jcos0

at t=0 U=W=0

Now, having the governing equations in the final dimensionless forms as well as
the dimensionless boundary conditions makes the problem well posed and amenable to

the numerical solution.



CHAPTER IV

NEMERICAL REPRESENTATION OF THE

GOVERNING EQUATIONS

4.1 Introduction

The governing equations developed in the previous chapter are nonlinear second
order equations. Since there is no analytical solution for this type of equations,
approximate methods of solution are used to solve them. The method used in this work is
the finite-difference approximation. In this method the governing equations are first
transformed to difference equations by superimposing on the domain of solution a grid of
points in the form of a mesh and the derivatives are expressed along each mesh point
(referred to as a node). Therefore, the differential governing equations can be written for a
set of nodes of the grid converting them to algebraic equations that are linearized to a
system of linear algebraic equations and then solved by an appropriate technique for
matrix inversion. In this chapter, the finite-difference representation of the governing

equations as well as their boundary and initial conditions are presented [18].
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4.2 Numerical Grid

Figure (4.1) shows the numerical grid which is used to solve the governing
equations for a given value of time. The grid consists of two sets of perpendicular lines
which represent the meridional direction (circles) and the radial direction (straight lines).
The intersections of these lines constitute the spacial mesh points (nodes) where the
solutions of the governing equations are obtained for a given value of time. The circles are
concentric and start from the surface of the sphere with constant Z values and extended
until the edge of the boundary-layer. The straight lines pass through the center of the

sphere and each of them is a constant X-line (at a constant angle).

The spacial grid consists of (n + 1) points in the radial direction where the first
being on the sphere (Z = 0) and the last is located outside the boundary-layer edge. On the
other hand, the grid has (m + 1) meridional stations starting from X=0 (at the front
stagnation line) and extending until the angle of flow separation. The index i represents
the radial value of the mesh points (Z-direction) starting with i = 1 at the surface of the
sphere (Z = 0) till i =n + 1 in the free stream while the index j represents the meridional
value of the mesh points (X-direction) starting from j = 1 at the front stagnation line (X =
0) till the point of separation where j = m + 1. Similarly, the index k represents the value
of the dimensionless time (t), starting with k=1 for t = At. Therefore, the finite-difference
representation of the special mesh points will be as follows:

Zi=1-1)AZ wherei=1,2,3,.....,n+1

Xi=(0-1)AX wherej=1,2,3,.....m+1
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Here, AX and AZ represent the step sizes of the meridional and the radial
directions, respectively, and the subscripts denote the location of the variable under
consideration, e.g. U;;i means the meridional velocity at the 1’th radial location and j’th

meridional direction at the k’th time interval .
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j=4
j=3
j=2
Axj
j=1(xx=0)
U.

Fig. 4-1: Spacial numerical grid for a given time



21
4.3 Linearizing Technique

The finite-difference formulation of the governing equations should retain the
same characteristics of the parent equations developed in the previous chapter. The
governing boundary-layer equations are parabolic in nature with the terms in the marching
direction (X) are the convective terms while those in the transverse (Z) are diffusive.
Therefore, backward differences are utilized for the convective terms and central
differences are utilized for the diffusive terms.

For each meridional location, the variables with subscript (j) will be assumed to be
known and those with subscripts (j + 1) are assumed to be unknown for all values of (i).
The solution for all (i) variables will be organized in a matrix form solved along the
constant (j) lines then it marches forward for the next meridional step till the separation
occurs at which the solution stops for the current time step and restarts from the beginning
for the next time step. The whole solution will terminate when the steady state condition
of flow is reached.

The governing equations are approximated by finite-differences in separate
domains [21] where the location of each derivative was chosen to ensure stability and
consistency of solution. Following the technique used in [21] a ringed point will represent
the location where derivatives are calculated while the cross points represent the grid
points involved in the finite-difference approximation. For the ringed points that do not
coincide on the grid points, derivatives are approximated and an average value is taken
[18]. The grid points involved in the difference representations of the governing equations

are shown in Figure (4.2).
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i+1/

i+1

Continuity equation

| j+1

Meridional momentum equation

Fig. 4-2: Grid points involved in difference representations of the governing equations for

a given time.
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The order by which the numerical solution is obtained starts by solving the
meridional momentum equation for Ujj+i+1 , then the continuity equation has to be
solved for Wi+ x+1 . Therefore, the term W found in the meridional momentum equation
will be represented by Wi;i+1 (1. e. from the previous meridional step), while in the
continuity equation U will be expressed as Ujj+i+1 since it would have been already
obtained from the solution of the preceding momentum equation. Then the whole
procedure is repeated for the next time step until the steady state condition of flow is

reached.

4.4 Finite-Difference Representation of the Derivatives

Following the notation described in the previous section and that shown in figure
(4.2), the finite-difference representation of the various derivatives present in the

governing equations can be written as follows:

5’7U _ Ui,j+1,k+1 _Ui,j,k+1 (4'1)
X AX;

0”7U _ U i+1, j+Lk+1 -uU i1, j+1Lk+1 (4.2)
oz 2AZ

/U _ Uik =2V ok FY0 ke 43)
oz° AZ?

oW _ Wi+l,j+l,k+1 _Wi,j+1,k+1 (4.4)
oz A

oU _ Ui,j+1,k+1 _Ui,j+1,k @.5)

ot At
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4.5 Finite-Difference Representation of the Meridional Momentum Equation

* 2
U U ReWAU .oV +0”Li (3.5)
ot oX 2 0Z oX oz
Ui,j+1,k+1 _Ui,j+1,k LU Ui,j+1,k+1 _Ui,j,k+1 +RGW Ui+1,j+1,k+1 _Ui—l,j+1,k+1 _
i,j.k+1 T Vi gkl -
At AX, 2 2AZ 4.6)
U kY ke

3. . 3 . Ui, Lkl T
=sin( J.A@)—Re cos( ].AO)+ —
5 (J.AO) 2 (J.AO) INE

Rearranging equation (4.6):

—W,jxu Re 1 1 Ui )
U il,j+1,k+1[ 4JAZI - A2 J +U ik (At + ﬁl + 8z

i (4.7)
W. .. R uU.. U....)?
U k| 2 ° 12 = "’”’k+( k) +2 Re sin (j.A8). cos (j.AO)
A 402 (AZ) At AX, 8
9 . 9
Note that 3 Re sin (j.A8). cos (j.AO) = e Ressin (2 j.AO)
Let; c(iy=| Wi Re 1 (4.8)
4AZ (AZ)?
i+ Uiika N 2
A(i)={at  AX, (AZ) (4.9)
B(i)=|NuwaRe 1 (4.10)
4AZ (AZ)?

..U, U, ) 9 .
D(i)= i,j+1,k i,j.k+1 +~ Resin (2 iAO 4.11
(1) At + e T esin (2 J.AG) ( )



Therefore, the meridional momentum equation can be written as:

fori=1:

fori=2:

fori=3:

fori=n:

Or

CiUp + AUy + B1U, = Dy
GU; + AU, + BoUs =Dy
G3U, + AsUsz + B3Us = D3
CoUn-1 + ApUy + ByUni1 = Dn

CiUn1 + ApU, =Dy - BaUn+i

These equations can be expressed in a matrix form as follows:

Ay B,

G A;
GCs

Where,

4.6 Finite-Difference Representation of the Continuity Equation

U

Bz U2

A3 B3 0 U3
0 Cn-l An-l Bn-l Un-l

Cn An Un

D,” = Dy —Bh Unsy

oU +Re&"’\N LR W ReU Cotg _0

oX

e + =
2 oz (1+2) 2 (1+2)

D,
D,

D;

Dn-l

Dn’
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(4.12)

(4.13)

(4.14)

(3.4)
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Ui+l,j+l,k+1 +Ui,j+l,k+1 _Ui+1,j,k+l _Ui,j,k+1 +E\Ni+1,j+1,k+1 _Wi,j+1,k+l "
2AX 00, 2 AZ (4.15)
Re Wik TWi joikar) ] Ui ok tYi jka)Re Cot (jAH)_O
2 (+Zi,,,) 41+Z,,,,,)
Rearranging:
R 1 1 R 1 1
W, j+lk+1i ———— |[*W,, j+1k+1i st S |=
2 \1+z,,,, AZ 2 \1+Zy,,, AZ
(4.16)
_ Ui+1,j+1,k+l +Ui,j+1,k+l _Ui+l,j,k+1_Ui,j,k+1 (Ui+1,j+1,k+1 +Ui,j+1,k+l )Re Cot (jAH)
2AX i n 4(+Z;,,,5)
Let; A(1)= S N
1+ Zi+]/2 AZ
SN 1 1
B(i)=| — 4+ — (4.17)
1+Z,,, A
D( i ) = Ui+1,j+l,k+1 +Ui,j+1,k+1 _Ui+1,j,k+1 _Ui,j,k+l (Ui+1,j+1,k+1 +Ui,j+1,k+1)Re Cot (jAH)
2AX 4,1 4(1+2Z;,,,,)
Equations can be represented, for a given j, as:
fori=1: AW, +B;W,=D, (W= 0 “sphere surface”)
fori=2: A2W2 + B2W3 = D2 (418)

fori=n-1: AW + BoaaWh =D

fori=n: AW, + BaWy =Dy

4.7 Finite-Difference Representation of the Boundary and Initial Conditions

The finite-difference form of the boundary conditions is as follows:

atj=1,1>1and k>1 Ui1x=0 (4.19-a)



ati=1,j>1and k>1

ati=n+1,j>1and k>1

att=0 (k=1)

P S
(1+ (i —1)AZ)®

i,Lk

Ujx=Wijx=0

1
Uy =| 14— |sin[(j —1)A@
1,j.k ( 2(1 N nAZ)3J [(J ) ]

Uiji = Wij1 =0
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(4.19-b)

(4.19-c)

(4.19-d)

(4.19-¢)



CHAPTER YV

METHOD OF SOLUTION

5.1 Introduction

The purpose of this chapter is to show, in details, the method of solution for the
problem under study. This method will be eventually used in the computer programs to
generate the solution of the problem at the specified boundary and initial conditions.

Engineering parameters such as the shear stress at the surface of the sphere, the
flow separation angle and the drag coefficient were also calculated during the solution and

their values were presented for a wide range of Reynolds number.

5.2 Numerical Grid

The numerical grid parameters were selected to be variable and have small values
in the meridional direction especially at the points where high gradients are expected as in
the case of the flow near the separation point. Along each meridional station, the grid size
is assumed constant (AZ = 0.001) where a minimum number of mesh points was assumed
(n = 20). The convergence criterion, which will be explained in the next section, was
checked at the outermost point (n+1). If the convergence criterion was met, the solution

proceeds to the next meridional step, otherwise the number of steps is increased by two
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and the solution is repeated for the same meridional station until the criterion is met. The
solution proceeds in the marching X-direction with an equal grid size (1°) until the point
of separation is reached then the program adjusts itself and returns one meridional step
back to reduce the X-direction grid size to (0.1°) in order to accurately determine the point
of flow separation [18].

Grid independence test was conducted to verify the effect of reducing the grid size
on the study results. It was found that further reduction in the grid size will result in an
insignificant change on the obtained values. Figure 5.1 shows the effect of reducing the

grid size on the values of meridional velocity at 6 = 60° and Re = 5000.

5.3 Criterion for Convergence

For the flow around a solid sphere, a minimum number of mesh points in the Z-
direction for a certain meridional step was assumed to be 20. Upon calculating the
meridional velocity component along this line, the tangent of the velocity at the
uppermost point was calculated and the slope of the velocity (0U/0Z) is calculated at the
uppermost point (n + 1). Then the slope of the potential flow around the sphere is
calculated at the same point and the two values are compared. If both slopes are matched
within a certain arbitrary specified tolerance (a value of 0.005 was chosen in the present
work), the solution is supposed to be convergent and this would determine the edge of the
boundary-layer. Otherwise, the number of the radial steps (n) is increased by two and the

procedure is repeated until the matching criterion is met [18].
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Fig. 5-1: Effect of reducing grid size on the values of meridional velocity at 6 = 60°,
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5.4 Flow Separation

External fluid particles accelerate in the region 0< 6 < 90 and decelerate in the
region where 6 > 90, hence the pressure decreases in the accelerated region and then
increases in the decelerated region [20]. Since the external pressure is suddenly imposed
at the boundary-layer, the transformation of the pressure into kinetic energy takes place in
the accelerated region and a great amount of the kinetic energy of the fluid particles
adjacent to the wall is consumed in moving against the friction forces. In the decelerated
region, the remaining kinetic energy is too small to keep these particles moving in the
region of the high pressure, so, they would be eventually arrested and the external high
pressure would force them to move in the opposite direction detaching from the surface of
the sphere and the point of flow separation can be detected by the condition of zero
velocity gradient at the wall (0U/OZ = 0). Therefore, the flow separation would be
accompanied by the following:

1. a vanishing velocity gradient

2. a larger boundary-layer thickness due to the increase of the number of the
radial steps required to satisfy the matching criterion at the edge of the
boundary-layer, and

3. a larger value of the radial velocity component due to the increase of the
outward flow direction.

The program is developed such that a constant meridional step is followed in the

marching X-direction until the flow separation occurs where zero or negative
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(unexpected) values of U can be obtained. Then a finer mesh is used in X-direction (i.e.

for AX) and the point of separation is obtained [18].

5.5 Calculating Engineering Parameters

Upon computing the velocity field for the whole domain of numerical solution, the

following engineering parameters can be calculated.

5.5.1 Shear stress at the Surface of Sphere

Shear stress can be calculated as

Or, in dimensionless form

Eqn. (5.2) can be written as

5.5.2 Friction Coefficient

C; =
—~pu,’
or C _ L
' vRe/8

5.5.3 Drag Coefficient

o)

A U
Co=4[ == Rsino do
0

Z=0

o)

o,
/uaz z=0
T _7VRe/2
-
Y
Re 07

Z=0

(5.1)

(5.2)

(5.3)

(5.4)

(5.5)

(5.6)
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5.5.4 Vorticity at the Surface of Sphere

u Jdu 1oW
Y4 a8 1 5.7
¢ ror roo (5.7)
or, in dimensionless form I ¢ v + N2 + (5.8)

“U./a) 1+Z  9Z Re oX
The finite-difference representation will be:

U -U +4U -3, 2 n Wi i =W (5.9)

Y 2AZ Re AX

i,j+l 3,j+1 2,j+l1

¢

5.6 Solution Procedure

Two programs were developed to solve the governing finite- difference equations
obtained in Chapter IV. The first program is used only to determine the boundary-layer
thickness assuming steady state conditions of flow. The output of this program is used as
an input to the second program which is mainly used to solve the governing equations in
transient conditions. The numerical solution is obtained by first selecting values of
Reynolds number which is the main controlling parameter of these equations. The
selected Reynolds number is fixed each time the two programs run. Then the solution

proceeds as follows;
5.6.1 Steady-State Solution (1% Program):
1. The program starts in the marching X-direction; the variables in the first

meridional station j = 1 (front stagnation line) are known where the boundary-

layer thickness is assumed to be zero (U = 0 and W is obtained from the potential
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flow distribution). So, the program starts to obtain solutions at the second
meridional station (j = 2) assuming a number of radial grid points of 20.

2. The finite-difference equation representing the meridional momentum equation is
solved first using Thomas algorithm. The obtained values of U are then used to
solve the finite-difference equations representing the continuity equation to
calculate the values of W.

3. The convergence criterion at the uppermost point is checked. If the criterion is not
met, the number of radial steps (n) is increased by two and the solution is repeated
again.

4. Steps 2 & 3 are repeated until the convergence criterion is met. Then the obtained
values for U & W are reported and prepared to be the initial values for the next
meridional step.

5. The final value of n is saved in a separate data file to be used in the second
program as described in the next section.

6. The solution then proceeds in the marching X-direction repeating the previous

steps (2 through 5) until the separation point is reached.
5.6.2 Transient Solution (2" Program)

I. The program starts in the marching X-direction; the variables in the first
meridional station j = 1 (front stagnation line) are known where the boundary-
layer thickness is assumed to be zero (U = 0 and W is obtained from the potential
flow distribution). The initial values of U and W are assumed to be zero

throughout the boundary-layer. So, the program starts to obtain solutions at the
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second meridional station (j = 2) utilizing the value of n obtained from the first
program.

The finite-difference equations representing the meridional momentum equation is
solved first using Thomas algorithm. The obtained values of U are then used to
solve the finite-difference equations representing the continuity equation to
calculate the values of W.

The obtained vales for U & W are stored and prepared to be the initial values for
the next meridional step.

The solution then proceeds in the marching X-direction repeating the previous
steps (2 & 3) until the separation point is reached.

Engineering parameters such as the shear stress at the sphere surface, drag
coefficient and friction coefficient are calculated

The whole solution is then advanced and repeated for the next time step until the
steady state condition of flow is reached when there is no change in the values of

meridional velocity at (6 = 105) for two consecutive time steps.



CHAPTER VI

RESULTS AND DISCUSSION

6.1 Introduction

In this chapter, the meridional velocity profiles as well as the radial velocity
profiles are presented. These profiles are plotted at different times, for different Reynolds
numbers and at different meridional angles to show the effect of these parameters on the

flow characteristics.

6.2 Meridional Velocity Profiles

Figures 6-1a, 6-1b and 6-1c show the transient development of the meridional
velocity component U for Re = 5000. They are plotted at three different meridional
stations (angles) measured from the front stagnation point (6 = 30°, 8 = 60° and 6 = 90°).
Initially (at t = 0), the meridional velocity is zero throughout the boundary-layer. As the
time elapses (t > 0), momentum diffusion starts at the boundary-layer edge and spreads
until it reaches the surface of the sphere. The gradual increase in the values of U continues

until the steady state condition of flow is reached.
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Re = 5000
6 =30°

steady state
t =0.00020
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Fig. 6-1a: Transient development of meridional velocity for Re = 5000, 6 = 30°
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Fig. 6-1b: Transient development of meridional velocity for Re = 5000, 6 = 60°
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The same plots are repeated for another Reynolds number (Re = 10,000) as shown
in Figures 6-2a, 6-2b and 6-2c and the same trend is also shown in these figures. It is
worth noting that the boundary —layer thickness in this case is less compared to its
corresponding values for lower values of Reynolds number. This is due to the thinning
effect to the hydrodynamic boundary layer at high Reynolds number due to higher
velocity gradients within the boundary layer; whereas lower values of Reynolds number
result in less velocity gradients within the boundary layer requiring thicker boundary
layer. This notice will be emphasized in the subsequent figures. A comparison between
the meridional velocity profile at 6 = 60° and Re = 10,000 of the present work and the
corresponding profile for the steady state work of El-Shaarawi et al. [5] at (Ta/Re®) = 0

shows that both profiles lay at the top of each other.
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Fig. 6-1c: Transient development of meridional velocity for Re = 5000, 6 = 90°
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Fig. 6-2a: Transient development of meridional velocity for Re = 10,000, 6 = 30°
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Fig. 6-2b: Transient development of meridional velocity for Re = 10,000, 6 = 60°
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Fig. 6-2c: Transient development of meridional velocity for Re = 10,000, 6 = 90°
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The effect of Reynolds number on the boundary layer thickness is also shown in

Figure 6-3a for t =0.00010 and at certain meridional angle (6 = 60°). Three different
values of Reynolds number Re = 1000, Re = 5000 and R = 10,000 are selected where it is
noticed that as the Reynolds number increases, the boundary-layer thickness decreases
and vice versa. As indicated earlier, this is due to the high velocity gradient, within the
boundary-layer, at higher Reynolds number which requires less boundary-layer thickness
for the velocity to increase from its value at the sphere surface to the free stream value.
The same trend is also observed at different times, t = 0.00040, t = 0.00070 and steady

state condition in Figures 6-3b, 6-3c and 6-3d, respectively.

The boundary layer development as the meridional angle increases is shown in
Figures 6-4a, 6-4b, 6-4c and 6-4d at given values of time (t = 0.00010, t = 0.00040, t =
0.00070 and steady state). Values of meridional velocity U are plotted for a fixed value of
Reynolds number (Re = 5000) and at three meridional angles (6 = 30°, 6 = 60° and 0 =
90°). It is clear from the figures that the boundary-layer thickness increases from its zero
value at the front stagnation point until it reaches its maximum value at the point of flow
separation. This is due to the increased momentum transfer in the radial direction as the

angle increases.
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Fig. 6-3a: Meridional velocity at 8 = 60° for different Reynolds numbers, t = 0.00010

1.6
i t = 0.00040
U 0 = 60°
Re = 10,000
1.2
i Re = 5000
0.8
i Re = 1000
04 —
0 | | |
0 0.02 0.04 0.06 0.08

Z

Fig. 6-3b: Meridional velocity at 6 = 60° for different Reynolds numbers, t = 0.00040
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Fig. 6-3c: Meridional velocity at 8 = 60° for different Reynolds numbers, t = 0.00070
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Fig. 6-3d: Meridional velocity at 6 = 60° for different Reynolds numbers at steady state
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Fig. 6-4a: Meridional velocity for Re = 5,000 at different angles, t = 0.00010
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Fig. 6-4b: Meridional velocity for Re = 5,000 at different angles, t = 0.00040
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Fig. 6-4c: Meridional velocity for Re = 5,000 at different angles, t = 0.00070
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The transient behavior of the meridional velocity for Re = 5000 and at a given

value of radial location (Z = 0.020) is shown in Figure 6.5. Values of meridional velocity
are plotted at various meridional angles. It is clear from the figure that as the time elapses
(t >0), the meridional velocities increase until the steady state condition of flow is
reached. The figure also shows that as the meridional angle increases, the meridional
velocities increase up to 6 = 60° then decrease. Therefore, as the meridional angle
approaches the separation point, the steady state values of the meridional velocity start

decreasing.

The transient behavior of the meridional velocity for Re = 5000 and 6 = 30°
plotted at different radial locations is shown in Figure 6.6. As the time elapses, the
meridional velocities increase until the steady state condition of flow is reached. The
figure also shows that the meridional velocity values increase when moving away from
the surface of the sphere. This is due to the increased momentum transfer in the radial

direction.
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6.3 Radial Velocity Profiles

Figures 6-7a, 6-7b and 6-7c show the transient development of the radial velocity
component W for Re = 5000 and at three different meridional angles (6 = 30°, 8 = 60° and
0 = 90°). It is clear that all of these profiles start with a zero value at the surface of the
sphere where there is no suction or blowing. However, they end at different values of
radial location (Z) where the numerical solution was terminated when the solution
criterion was satisfied. Profiles are negative for meridional angle 6 < 90° while they have
positive values for 6 > 90°. This behavior shows that the radial component of velocity is
pushing the boundary-layer fluid towards the sphere’s surface in the accelerated region of
the flow. Compared with the W-profiles in the adverse region (0 > 90°) where the
tendency changes to suction of the fluid, the radial component of velocity assist increasing
the boundary-layer thickness till the maximum thickness is reached at the point where the
flow separates.

The same plots are repeated for another Reynolds number (Re = 10,000) as shown
in Figures 6-6a, 6-6b and 6-6¢ and the same trend is also shown in these figures. It is
worth mentioning, too, that the effect of increasing Renolds number on the thickness of
the hydrodynamics boundary layer is clear in these figures and is viewed for 6 = 30° in
Figures 6-7a and 6.8a and for 8 = 60° in Figures 6-7b and 6-8b and finally for 6 = 90° in

Figures 6-7c and 6-8c.
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For specific values of times (t = 0.00040, t = 0.00070 and steady state), Figs. 6-9a,

6-9b and 6-9c show the radial velocity profiles at certain meridional angle (6 = 60°) for
three different values of Reynolds number (Re = 1000, Re = 5000 and R = 10,000).
Increasing the Reynolds number always has the effect of decreasing the boundary-layer
thickness as illustrated previously. Hence the smallest boundary-layer thickness
corresponds to the highest value of Reynolds number (Re = 10,000), while the highest

thickness was reported for the lower value of Reynolds number used (Re = 1000).

Figures 6-10a, 6-10b and 6-10c show the radial velocity profile for different
meridional angles 6 = 30°, 6 = 60° and 6 = 90° at different time steps t = 0.00040, t =
0.00070 and steady state, respectively. They are plotted for a fixed value of Reynolds
number (Re = 5000). It is clear from the figures that the boundary-layer thickness
increases from its zero value at the front stagnation point until it reaches its maximum

value at the point of flow separation.
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CHAPTER VII

ENGINEERING PARAMETERS

7.1 Introduction

In this chapter, the results of calculating engineering parameters of interest are
presented for various values of Reynolds number. These parameters include the shear
stress at the surface of the sphere, the friction coefficient, the drag coefficient and the
surface vorticity. Other parameters such as the variation of flow separation angle with
time and the time required to reach steady state condition are also reported, in this chapter,

for a wide range of Reynolds number.

7.2 Surface Shear Stress

Figures 7-1a, 7-1b and 7-1c show the transient development of the dimensionless
shear stress around the sphere plotted for three values of Reynolds number Re =1000,
5000 and 10,000, respectively. At early time, the values of shear stress around the sphere
are low due to low velocity within the boundary-layer. As time passes and due to
momentum diffusion within the boundary-layer, the velocity increases which results in a

corresponding increase in the shear stress until the steady state condition is reached.
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These figures also show that steady state condition is reached earlier for high
Reynolds numbers. That is, less time is noticed for Re = 10,000 compared to Re = 5000,
whereas the case of Re = 1000 required the largest time to reach steady state. This is
illustrated clearly in Figure 7-2 where the effect of Reynolds number on the surface shear
stress at a given time (t = 0.00040) is shown. It is clear from the figure that increasing the
Reynolds number has the effect of increasing the shear stress around the sphere, due to the
increased velocity gradient at higher Reynolds number, until the steady state distribution
is attained.

The transient behavior of the surface shear stress for Re = 5000 and Z = 0.020
plotted at various meridional angles is shown in Figure 7-3. It is clear from the figure that
as the time elapses (t >0), the surface shear stresses increase until the steady state
condition of flow is reached. The figure also shows that as the meridional angle increases,
the surface shear stress values increase due to the increase in meridional velocities.
However, as the meridional angle approaches the separation point, the steady state values
of the shear stress start decreasing. This behavior is related directly to meridional

velocities behavior which was explained in page 46.
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7.3 Friction Coefficient

Figures 7-4a, 7-4b and 7-4c show the transient development of friction coefficient
plotted for three values of Reynolds number Re =1000, 5000 and 10,000, respectively. At
early time, the values of friction coefficient are low due to low shear stress values at the
surface of the sphere at that incident of time. As time passes and due to increasing the
shear stress (as described in the section 7-2), the coefficient of friction increases
accordingly until the steady state condition is reached.

The effect of Reynolds number on the coefficient of friction at a given time (t =
0.00040) is shown in Figure 7-5. It is clear from the figure that increasing the Reynolds
number has the effect of decreasing the values of friction coefficient although the shear
stress increases with increasing Reynolds number. This is because the dimensionless
value of the coefficient is the result of dividing the shear stress by the velocity pressure
that includes square of the velocity. Increasing Reynolds number would increase U,

significantly and hence decreases the coefficient of friction.

7.4 Drag Coefficient

Figure 7-6 shows the variation of the drag coefficient with time plotted for three
values of Reynolds number (Re = 1000, 5000 and 10,000). It is clear from the figure that
as time passes, the drag coefficient increases until the steady state condition of flow is
reached. The figure also shows that increasing the Reynolds number results in decreasing
the steady state coefficient of drag. This is because the dimensionless value of the drag

coefficient includes a term (i. e. R) which is inversely proportional to Reynolds number.
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A comparison between the steady state drag coefficient of the current investigation
at various Reynolds numbers and the results of El-Shaarawi et al. work [5] is shown in

Table 7-1. The two results are almost the same.
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Fig. 7-5: Effect of Reynolds number on the friction coefficient at a given time(t = 0.00040)
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Table 7-1: Comparison between the steady state drag coefficient of the present analysis

and the results of El-Shaarawi et al. work [5]

Re o
Present analysis El-Shaarawi et al.work [5]
1000 0.21123 0.21123
3000 0.12250 0.12252
5000 0.09496 0.09498
7000 0.08027 0.08030
10,000 0.06716 0.06716
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7.5 Surface Vorticity

Figure 7-7 shows the transient development of the vorticity at the surface of the
sphere along the meridional direction plotted for Re = 1000. At early time, the values of
surface vorticity are low due to low rotation of fluid particles near the sphere surface. As
time elapses and due to momentum diffusion within the boundary-layer, the rotation of
fluid particles increases which results in a corresponding increase in the surface vorticity
until the steady state condition is reached. A comparison between the steady state surface
vorticity of the current work at Reynolds no of 100 and the boundary-layer analysis by
Hamielec et al. [1] is shown in Figure 7-8. A good agreement between the two results is

shown in the figure.

7.6 Variation of Separation Angle with Time

Figure 7-9 shows the variation of the angle of flow separation with time plotted for
three values of Reynolds number (Re = 1000, 5000 and 10,000). The angle of external
flow separation increases with time since as the time passes, the meridional velocity
increases and hence the boundary layer thickness decreases making separation occur at
higher values of 0. This figure shows also the effect of Reynolds number. Increasing the
Reynolds number causes the flow to separate at earlier time since it requires less time to
reach steady state condition. The figure also shows that increasing Reynolds number
increases the angle at which flow separates. This is due to thinning the boundary layer at

high Reynolds numbers.
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7.7 Time to Reach Steady State

Figure 7-10 shows the effect of Reynolds number on the time required to reach
steady state. It is clear from the figure that increasing the Reynolds number decreases the
time required to reach the steady state condition. This is due to higher velocities in the

boundary-layer resulting from increasing Reynolds number.
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CHAPTER VIII

CONCLUSIONS & RECOMMENDATIONS

8.1 Conclusions

A finite-difference scheme has been developed and successfully used to solve the
3-D boundary-layer equations governing the unsteady impulsively started fluid flow about
a solid sphere. The present scheme has succeeded in obtaining solutions for considerably
larger values of Reynolds number. For the studied range 1000 < Re <10,000, results are
presented for the meridional and radial velocity profiles, the surface shear stress, the
friction coefficient, the drag coefficient and the external flow separation angle. The time

to reach steady state is also obtained and presented.

The obtained results show that the Reynolds number has a significant effect on the
flow characteristics around the sphere. Increasing the Reynolds number results in
reducing the time required to reach the steady state condition, increasing the shear stress
at the sphere’s surface and decreasing both the drag and friction coefficients. The exterior
flow separation angle was found to increase with time until the steady state condition is
reached and its value increases with increasing the Reynolds number. It was also found

that the drag coefficient increases with time until the steady state condition is achieved
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and its value decreases as the Reynolds number increases. A comparison between the
computed values of drag coefficient and surface vorticity with some data found in the
literature was carried out and good agreement between the present analysis and these

values was obtained.

8.2 Recommendations for Future Work
It is recommended to extend the present work to cover the following cases;
1. Rotating sphere.

2. Forced and mixed convection heat/mass transfer.
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APPENDIX A

ORDER OF MAGNITUDE ANALYSIS FOR

THE GOVERNING EQUATIONS
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The third term in this equation has a lower magnitude compared to other terms and
can be safely dropped. However, this term will be retained in the equation since it
would lead to a simpler solution algorithm for the continuity equations described in

Chapter 3.

A.2 Order of Magnitude Analysis for the Meridional Momentum

Equation
2
iﬁ_k iUﬂﬁ- Wﬁ-l- UW :_id_P_{_ #62(1+Z)U
Re ot Re oJX AZ (1+Z) RedX  Re(l1+Z2)oZ
1 1 1 1 1. (1)) 11 11
— (=) —O)(—) 6~ = — —
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It is obvious that: O(Re &)~ 1 or Re = O(%)

OoP)=1
Terms of order 6 and more can be safely dropped and the meridional momentum

equation becomes:

Re ot Re OX 57 RedX Re(1+Z2)dZ*

2
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The last term in the equation can be further simplified as follows;
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The last term is of order & and can be safely dropped. Hence the meridional

momentum equation becomes;

2
2 U ZUO"U WﬁU_ 2 dP 2 00U

—+—U—+W—= +—
Re ot Re X oz RedX Re 0Z°

At the edge of the boundary layer, meridional velocity component is U" which is the
potential flow around a sphere and it is a function of X only. Substituting in the
momentum equation leads to;

iau* 2 .oU” 2 dP

[ J’_ —_
Re ot Re oX Re dX

The potential flow component U* does not change with time and this led to further

simplification of the above equation;

ZU*ﬁU 2 dP

Re oX Re dX

The meridional momentum equation becomes;
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20U 2.  oU o 2. ,0U° 2 9%
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Multiplying the whole equation with (Re/2), the final form of meridional momentum

equation becomes;

ouU U ReWdaU .O0UT pU
—+U + =U +
ot X 2 0z oxX  9z7?

A.3 Order of Magnitude Analysis for the Radial Momentum Equation
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From the above equation, we get 1=P/6 which indicates that the variation of pressure
in the boundary layer is proportional to 6 and it can be neglected. Therefore, dropping

the terms of order 6 and higher order leads to safely dropping the whole equation.
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