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THESIS ABSTRACT 
 
 

Name : Fayez Hasen Mohammed Al-Ghamdi 

Title : TRANSIENT IMPULSIVELY STARTED GAS FLOW ABOUT A SPHERE 

Major Field : Mechanical Engineering 

Date of Degree : 2003 

 

The objective of the present work is to investigate numerically the unsteady 

impulsively started fluid flow about a solid sphere. A finite-difference scheme has been 

developed to solve the 3-D boundary-layer governing equations for a wide range of 

Reynolds number. 

Two computer programs were developed to analyze the flow field around the 

sphere. The first program is used mainly to determine the boundary-layer thickness at 

steady state condition. The output of this program is used as an input to the second 

program which is developed mainly to solve the governing equations in transient 

conditions. 

Over the studied range of Reynolds number (1000≤ Re ≤10,000), results are 

presented in terms of velocity components. Engineering parameters such as surface shear 

stress, friction coefficient and drag coefficient are also calculated and presented. Detailed 

transient profiles are shown for different Reynolds number and meridional angle. 

Comparisons with results found in the literature are carried out to validate the present 

analysis. 
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  خلاصة الرسالة

  فايز حاسن محمد الغامدي:     لاسما

  لبحول آرة من الص فجأةفع دالسريان المتغير مع الزمن لمائع من :  عنوان الرسالة

  هندسة ميكانيكية :    التخصص

   م٢٠٠٤مارس  :   تاريخ الشهادة

  

 حول آرة من فجأةالهدف من هذه الرسالة هو دراسة السريان المتغير مع الزمن لمائع مندفع 

وقد تم استخدام طريقة الفروق العددية لحل المعادلات ثلاثية الأبعاد . تخدام الطرق العدديةالصلب باس

  .لرقم رينولدزعلى نطاق واسع ن المائع في الطبقة المتاخمة لسطح الكرة وذلك لسريا

  

بتحديد سماآة يقوم البرنامج الأول . وقد تم تصميم برنامجين لتحليل سريان المائع حول الكرة  

وتستخدم نتائج هذا البرنامج آمعطيات . الطبقة المتاخمة لسطح الكرة في حالة الثبات مع الزمن

  .الثاني الذي صمم بشكل رئيس لحل معادلات سريان المائع في حالة التغير مع الزمنللبرنامج 

  

 على ١٠,٠٠٠) إلى ١٠٠٠من (النطاق المدروس لرقم رينولدز في وقد تم عرض النتائج   

وآذلك تم حساب وعرض بعض المتغيرات الهندسية مثل إجهاد القص ومعامل . شكل سرعات المائع

 وقد مثلت هذه النتائج المتغيرة مع الزمن آدوال متغيرة مع رقم رينولدز .الاحتكاك ومعامل الجر

بعض نتائج الدراسة مع نتائج مناظرة من أبحاث سابقة للتأآد من دقة مقارنة  وتمت. وزاوية الدوران

 .البرامج المستخدمة
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NOMENCLATURE 

a radius of the sphere 

CD  dimensionless drag coefficient, 
22

2
1 aU

D

∞ρπ

 

Cf local friction coefficient, 
2

2
1

∞U

o

ρ

τ  

m number of steps of the numerical mesh network in the x-direction 

n number of steps of the numerical mesh network in the z-direction 

r radius of a circular cross section of the sphere by a plane perpendicular to the main 

stream direction 

R dimensionless radius of a circular cross section of the sphere by a plane 

perpendicular to the main stream direction, 2r/aRe 

Re Reynolds number, 2U∞a/ν  

t* time 

t dimensionless time, 
2

*

a
t

t
ν

=  

tss dimensionless time to reach steady state 

Tx dimensionless shear stress in the meridional direction at the surface of the sphere, 

 
2

2Re/

∞Uρ
τ  

u meridional (x-direction) component of velocity 

u* potential flow velocity component in the x-direction, 

 -(∂ψ/∂r)/(r sin θ) = U∞ sin θ [ 1 + a3/(2r3)] 



 xv

U dimensionless meridional component of velocity, u/U∞ 

U* dimensionless potential flow velocity component in the x-direction, u*/U∞  

U∞ free stream velocity  

w radial (z-direction) velocity component 

w* radial (z-direction) velocity component of potential flow, 

(∂ψ/∂θ)/(r2 sin θ) = -U∞ cos θ [ 1 - a3/r3] 

W dimensionless radial velocity component, w/ U∞ 

W* dimensionless radial velocity component of potential flow, w*/U∞ 

x meridional coordinate  

X dimensionless meridional distance along the surface measured from the 

 stagnation point, 2x/ Re a 

z  distance from the sphere's surface measures along the normal to the surface in the 

radial direction  

Z  dimensionless distance perpendicular to the surface in the radial direction, z/a 

Greek Symbols: 

ρ          density 

θ center angle measured from the frontal stagnation line . 

µ dynamic fluid viscosity 

ν kinematic viscosity, µ/ρ 

τ shear stress in the meridional direction at the surface of the sphere, 
0z

u
∂
∂µ  



 xvi

ψ stream function of external potential flow far away from the droplet, given by 

ψ θ= −
⎛
⎝
⎜

⎞
⎠
⎟∞0 5 12 2

3

3. sinu r a
r

 

Subscripts: 

s at separation point 

ss steady state 

 



CHAPTER I 
 
 

INTRODUCTION 
 
 

1.1 General 

 The flow about a solid sphere is of importance in many engineering applications. 

Example of such applications are solid fuels combustion, ballistics of projectile motion, 

re-entry of missiles, fiber coating applications and axial flow turbo-machinery. 

  

In the present study, transient impulsive laminar flow around a solid sphere at high 

Reynolds numbers (1000≤ Re ≤ 10000) is numerically investigated utilizing a finite-

difference technique. The governing boundary-layer equations are developed, non-

dimensionalized and solved. 

 

1.2 Scope of the Present Work 

 In the present work, a finite-difference method has been used to analyze the flow 

field around a solid sphere subjected to a uniform gas stream. The model is based on the 

boundary-layer theory and the following assumptions: 

1. Laminar, axisymmetric, unsteady flow around the solid sphere. 

2. Incompressible Newtonian fluid with constant physical properties. 



 

 

2

3. Body forces are negligible. 

4. Reynolds number is large enough to apply the boundary-layer theory but not to 

introduce turbulence which occurs at Re ≈ 300,000. 

5. The solid sphere is initially at rest and suddenly subjected to a uniform gas stream 

with a constant axial velocity (U∞). 

6. The flow outside the boundary-layer is the potential flow around the sphere. 

 

This chapter included an introduction and the scope of the present work. Chapter 

II presents the literature survey. Chapter III will be devoted to the problem formulation, 

non-dimensional form of the governing equations as well as the boundary layer 

simplification. In Chapter IV, the grid system and finite-difference forms of the governing 

equations are presented. The overall solution methodology and the method employed for 

calculating the engineering parameters are discussed in Chapter V. The results are 

presented and discussed in Chapter VI for the velocity profiles and in Chapter VII for the 

engineering parameters. Finally, the conclusions and recommendations are included in 

Chapter VIII followed by the references and an appendix. 

 

 

 

 

 
 
 



CHAPTER II 
 
 

LITERATURE SURVEY 
 
 
2.1  Introduction 

The literature survey for the forced flow around solid spheres can be classified into 

two main categories. First, forced flow over solid spheres without heat/mass transfer. This 

category can also be subdivided into two main cases; steady and unsteady flows. Second, 

forced flow over solid spheres with heat/mass transfer. This later category can also be 

subdivided into three main cases as follows: 

1. Steady flow and steady heat transfer 

2. Steady flow and transient heat transfer 

3. Unsteady flow and transient heat transfer 

The present survey refers to the above mentioned two categories with emphasis on 

the unsteady case of the first category. 

 

2.2 Forced Flow Over a Solid Sphere Without Heat/Mass Transfer 

2.2.1 Steady Flow 

Considerable effort was given to the numerical modeling of steady flow around a 

sphere at moderate Reynolds number (0.1 ≤ Re ≤ 100) by Jenson [1] and Dennis and 
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Walker [2]. Hamielec et al. [3] and Pruppacher et al. [4] who used different numerical 

methods to study the drag coefficient and vortex structure of steady flow. 

 

In 1985, El-Shaarawi et al [5] investigated numerically the steady axisymmetric 

laminar boundary-layer flow about a rotating sphere which is subjected to a uniform 

stream in the direction of the axis of rotation for Reynolds number of 10,000 and for spin 

parameter ranging from 0 to 10,000. A finite-difference scheme was developed to solve 

the governing boundary-layer equations. Results were presented for the meridional and 

azimuthal velocities and for the wall-shear-stress components. 

 

2.2.2 Unsteady Flow 

Less attention has been given to unsteady flow problem over a sphere. Rimon and 

Cheng [6] studied numerically the transient axisymmetric flow for the uniform 

incompressible, homogeneous fluid flow around a sphere. Complete Navier-Stockes 

equations were solved for 1 ≤ Re ≤ 1000 where a recirculatory wake appears. Time 

dependent stream function-vorticity equation in a finite-difference representation on an 

expanding polar grid system by Dufort-Frankel approximation for time and space was 

applied. They presented the detailed vorticity distribution around the sphere and values of 

drag coefficient which agree with standard drag curve over the investigated range of 

Reynolds number. They recommended curvilinear coordinates with variable mesh size as 

being highly desirable to obtain quantitative results and reported that downstream outflow 

boundary condition is of great importance. 
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Dennis and Walker [7] investigated numerically the transient flow past a sphere 

which is impulsively started from rest with constant velocity in a viscous fluid. They 

reported that the calculation of the flow at early times was performed using boundary-

layer variables which leads to more accurate solutions. The problem was formulated in 

terms of stream function and vorticity. Numerical solutions were presented for cases of 

Re=20, 40, 100, 200, 500,1000 and ∞. 

 

The flow around an accelerating spherical particle of diameter ranging from 50 to 

200 µm in the Reynolds number range 0.1≤ Re ≤100 was studied by Li and Boulos [8]. 

The flow around the sphere is assumed to be laminar and two-dimensional axisymmetric. 

They calculated the drag coefficient and compared it with the theoretical predictions of 

added mass term and Basset history term. Appropriate corrections for those two terms 

were proposed as functions of the acceleration rate and the particle diameter. 

 

Unsteady axisymmetric incompressible laminar flow generated by spherical 

particle injected into a constant-property Newtonian fluid oscillating with time in the 

same direction of the particle motion was investigated by Kim et al. [9]. The equations 

governing the accelerated motion of the spherical particle were solved numerically using 

an axisymmetric implicit finite-difference algorithm. The results were compared with the 

numerical solution of the full Navier-Stokes equations for unsteady, axisymmetric flow 

around a freely moving sphere injected into an initially stationary or oscillating fluid. The 

comparison for the particle Reynolds number in the range of 2 to 150 and the particle to 
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fluid density ratio in the range of 5 to 200 indicates that the existing equations deviate 

considerably from the Navier-Stokes equations. Therefore, a new equation for the particle 

motion was proposed. The temporal structure of the near wake of the unsteady, 

axisymmetric flow around a freely moving sphere injector into initially stagnant fluid was 

also examined. It was found that as the sphere decelerates, the recirculation eddy size 

grows monotonically even though the instantaneous Reynolds number of the sphere 

decreases. 

 

2.3 Forced Flow Over a Solid Sphere With Heat/Mass Transfer 

2.3.1 Steady Flow and Steady Heat Transfer 

In 1992, El-Shaarawi and Al-Jamal [10] investigated the laminar forced 

convection about a rotating sphere that is subjected to a uniform stream in the direction of 

the axis of rotation. The boundary-layer equations governing this case were solved using a 

finite-difference scheme for a fluid of Pr = 0.7 over wide range of Reynolds number and 

Taylor number. The traditional kinds of heating condition were considered: uniform wall 

temperature and uniform surface heat flux. Results at considerably large values of spin 

parameter (Ta/Re2) up to 20,000 were presented for the local and average Nusselt 

numbers. Results show that heat transfer for air flowing past a sphere can considerably be 

increased by rotating it about a diameter parallel to the air stream direction. 
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2.3.2 Steady Flow and Transient Heat Transfer 

Abramzon and Elata [11] presented a numerical study of the problem of 

unsteady convection from a sphere at finite Peclet numbers in a Stokesian flow field 

which is suddenly introduced into a fluid of different temperature. They reported that the 

advection of the convection process accelerates the approach of equilibrium. 

 

Feng and Michaelides [12] obtained an asymptotic solution for the heat transfer 

from a sphere, which undergoes a step temperature change in a Stokesian velocity field. 

The solution obtained is for finite but low Peclet numbers. They found that in the case of 

step temperature change, the history terms are reduced to an analytical expression of the 

error function. 

 

2.3.3 Unsteady Flow and Transient Heat Transfer 

Michaelides and Feng [13] performed an analytical analysis analogous to those 

for the derivation of the equation of motion of the sphere. The temperature field was 

decomposed into the undisturbed field and a disturbed one where the disturbance is due to 

the presence of the sphere. They derived a solution to the unsteady conduction problem 

from a sphere at low Peclet numbers and discovered the existence of a history term, 

analogous to the "Basset" term in the equation of motion of a sphere. 

 

Recently, Feng and Michaelides [14] extended the analytical methods used in 

their earlier work and obtained an analytical solution for the general problem of transient 
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heat transfer from a particle with arbitrary shape in a transient temperature field. The 

velocity field is not restricted to be Stokesian, as in most of the previous studies. Results 

are applied to the case of a sphere undergoing a step temperature change and a good 

agreement was observed with the derived expressions for the transient heat transfer from a 

sphere at low Peclet and asymptotic steady-state solutions. 

 

The initial laminar thermal boundary-layer flow past an impulsively started 

translating and spinning rotational symmetric body of uniform temperature is investigated 

by Ozturk and Ece [15]. It was assumed that the sphere surface temperature was raised 

above the ambient temperature impulsively at the start of the motion. Velocity 

components and temperature were expanded in series in powers of time. General results 

were applied to a sphere. It was found that the surface heat flux is reduced in the 

neighborhood of the point of separation and enhanced by the reversed flow inside the 

separated region. 

 

Mansoorzadeh et al. [16] developed a numerical simulation of flow past a 

heated/cooled sphere. A Galerkin finite element method is used to solve the 3-D 

incompressible Boussinesq equations in primitive variable form. The drag coefficient for 

adiabatic flow shows good agreement with the standard correlations over the range of the 

Reynolds numbers investigated (Re =25, 100, 400). It is shown that the drag can vary 

considerably with heating of the sphere. 
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Then, Takhar et al. [17] carried out an analysis to determine the development of 

momentum and heat transfer occurring in the laminar boundary-layer of an 

incompressible viscous electrically conducting fluid in the stagnation region of rotating 

sphere caused by the impulsive motion of the free stream velocity and the angular velocity 

of the sphere. At the same time, the surface temperature is also suddenly increased. The 

analysis included both short and long solutions. The boundary-layer equations governing 

the flow were solved numerically using an implicit finite-difference scheme. It was found 

that the shear stresses in the longitudinal and rotating directions and the heat transfer 

increase with time, magnetic field, buoyancy parameter and the rotation parameter. 

 

The conducted survey demonstrates a gap in the literature for results of unsteady 

flow around a sphere at high values of Reynolds number (i. e. Re > 1000). The present 

work aims at covering the still existing gap by solving the boundary-layer equations 

governing the unsteady impulsive flow about a solid sphere subjected to a uniform gas 

stream at high values of Reynolds number. A finite-difference scheme developed by El-

Shaarawi et al. [5] has been utilized and extended here to take into consideration the 

unsteady term of velocities in the momentum equations. Numerical results of velocity 

components around the sphere at different times will be presented for a wide range of 

Reynolds number. Moreover, engineering parameters such as wall shear stress, drag 

coefficient and friction coefficient will be calculated. 

 

 

 



CHAPTER III 
 
 

GOVERNING EQUATIONS 
 
 

3.1 Introduction 

 In this chapter, the governing equations that describe the transient impulsive flow 

around the solid sphere are presented. The detailed derivation of these equations starting 

from the Navier-Stokes equations for spherical polar coordinates, transformation of the 

governing equations to the orthogonal curvilinear coordinates, non-dimensionalizing, and 

order of magnitude analysis that is carried on to simplify the equations are found in [5] 

and [18]. 

 

3.2 Assumptions 

 The main assumptions that are employed in the derivation of the governing 

equations are given hereunder: 

1. Laminar, axisymmetric, unsteady flow around the solid sphere. 

2. Incompressible Newtonian fluid with constant physical properties. 

3. Body forces are negligible. 

4. Reynolds number is large enough to apply the boundary-layer theory but not to 

introduce turbulence. 
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5. The solid sphere is initially at rest and suddenly subjected to a uniform gas stream 

with a constant axial velocity (U∞). 

6. The flow outside the boundary-layer is the potential flow around the sphere. 

 

3.3 Governing Equations 

 In this work, the orthogonal curvilinear coordinates shown in Figure (3.1) are 

used. The x-axis is measured along the surface of the sphere starting from the front 

stagnation point and extends in the meridional direction till the rear stagnation point. The 

z-axis passes through the sphere origin where its zero value is at the surface of the sphere. 

Refer to Appendix A for the detailed transformation of the governing equations from 

spherical polar coordinates to its orthogonal curvilinear coordinates. 
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   Fig. 3-1: Orthogonal curvilinear coordinate system 

 

 

 

 

 

 

 

X

θ

Z 

U∞ 

Stagnation point 

r



 

 

13

3.3.1 Governing Equations in Dimensional Form 

 Based on the assumptions mentioned in paragraph (3.2), the governing equations 

in the orthogonal curvilinear coordinate system are as follows: [5,18] 
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Radial Momentum Equation 

⎥
⎦

⎤
⎢
⎣

⎡
+

−
+

−
∂
∂

+
−

∂
∂

+
+

∂
∂

+
∂

+∂
+

+
∂
∂

−=
+

−
∂
∂

+
∂
∂

+ 222

2

2

22

* )(
cot2

)(
2

)(
2

)(
θ])[(

)(
11

)( za
u

za
w

x
u

zax
w

zax
w

z
wza

zaz
p

za
u

x
wu

z
ww

t
w θν

ρ∂
∂ cot

 

(3.3) 

3.3.2 Dimensionless Form of Equations 

The following non-dimensionalizing parameters are used to obtain the 

dimensionless form of the governing equations: 
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Using the above dimensionless parameters and carrying out an order of magnitude 

analysis, the final form of the governing boundary-layer equations becomes: [5,18] 

Continuity Equation 
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Meridional Momentum Equation 

2

2*
*

2
Re

Z
U

X
UU

Z
UW

X
UU

t
U

∂
∂

∂
∂

∂
∂

∂
∂

+=++
∂

∂            (3.5) 

 The radial momentum equation is dropped out completely since all its terms are of 

a lower order of magnitude. It should be noted that although the third term in the 

continuity equation has a lower order of magnitude than the other three terms, it was kept 

in the equation to take curvature effects into consideration (El-Shaarawi [19]). 

 

3.3.3 Boundary and Initial Conditions 

 To determine the required number of boundary and initial conditions, it is 

necessary to investigate the boundary-layer equations presented in the previous section. In 

these equations, only the first derivative of U with respect to X is available. Therefore, 

only one boundary condition in the meridional direction is required. This boundary 

condition can be determined at the front stagnation point. The derivative of U with respect 

to Z is of second order, therefore, two boundary conditions in the radial direction should 

be specified. These two boundary conditions can be determined at two locations; at the 

surface of the sphere where the value of U is zero due to the no slip condition at the 
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sphere’s surface and at the edge of the boundary-layer where the value of U can be taken 

equal to the value of the potential flow around a sphere. 

 Only the first derivative of W with respect to Z is present. Hence only a boundary 

condition at one location is enough and can be determined at the surface of the sphere 

where the value of W is zero (i. e. no suction or blowing is assumed). The initial condition 

is easily determined from the assumption that the solid sphere is initially at rest. 

 In summary, all boundary conditions required for the governing equations can be 

written in the following dimensional forms: 

at x = 0, z > 0,  t* > 0 (stagnation line) u = 0 , w = w* 

at z = 0, x ≥ 0,  t* ≥ 0 (sphere surface) u = w = 0        (3.6) 

at z ≥ δ , x > 0,  t* > 0    u = u* , w = w* 

at t* = 0      u = w = 0 

Meridional as well as radial potential velocity components which are applied at the 

edge of the boundary-layer can be obtained from the theoretical potential flow around a 

stationary sphere [20]. Considering the sphere radius as “a”, stream function as “ψ” and 

the potential function as “φ” we have: 
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2
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r
aru θϕ            (3.8) 

Meridional and radial velocity components for the potential flow are related to the 

previous two equations by the following relations: 
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Using the non-dimensional parameters defined previously in equation (3.1), we get the 

following dimensionless form of the potential flow velocity components: 
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Similarly, the final form of the non-dimensional boundary conditions can be written as; 

at X = 0, Z ≥ 0,  t > 0  U = 0 , 
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at Z = 0, X ≥ 0,  t ≥ 0  U = W = 0 

at Z ≥ δ , X > 0,  t > 0  
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Now, having the governing equations in the final dimensionless forms as well as 

the dimensionless boundary conditions makes the problem well posed and amenable to 

the numerical solution. 

 



CHAPTER IV 

 

NEMERICAL REPRESENTATION OF THE 

GOVERNING EQUATIONS 

 

4.1 Introduction 

 The governing equations developed in the previous chapter are nonlinear second 

order equations. Since there is no analytical solution for this type of equations, 

approximate methods of solution are used to solve them. The method used in this work is 

the finite-difference approximation. In this method the governing equations are first 

transformed to difference equations by superimposing on the domain of solution a grid of 

points in the form of a mesh and the derivatives are expressed along each mesh point 

(referred to as a node). Therefore, the differential governing equations can be written for a 

set of nodes of the grid converting them to algebraic equations that are linearized to a 

system of linear algebraic equations and then solved by an appropriate technique for 

matrix inversion. In this chapter, the finite-difference representation of the governing 

equations as well as their boundary and initial conditions are presented [18]. 
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4.2 Numerical Grid 

 Figure (4.1) shows the numerical grid which is used to solve the governing 

equations for a given value of time. The grid consists of two sets of perpendicular lines 

which represent the meridional direction (circles) and the radial direction (straight lines). 

The intersections of these lines constitute the spacial mesh points (nodes) where the 

solutions of the governing equations are obtained for a given value of time. The circles are 

concentric and start from the surface of the sphere with constant Z values and extended 

until the edge of the boundary-layer. The straight lines pass through the center of the 

sphere and each of them is a constant X-line (at a constant angle). 

 

The spacial grid consists of (n + 1) points in the radial direction where the first 

being on the sphere (Z = 0) and the last is located outside the boundary-layer edge. On the 

other hand, the grid has (m + 1) meridional stations starting from X=0 (at the front 

stagnation line) and extending until the angle of flow separation.  The index i represents 

the radial value of the mesh points (Z-direction) starting with i = 1 at the surface of the 

sphere (Z = 0) till i = n + 1 in the free stream while the index j represents the meridional 

value of the mesh points (X-direction) starting from j = 1 at the front stagnation line (X = 

0) till the point of separation where j = m + 1. Similarly, the index k represents the value 

of the dimensionless time (t), starting with k=1 for t = ∆t. Therefore, the finite-difference 

representation of the special mesh points will be as follows: 

Zi = (i – 1) ∆Z  where i = 1, 2, 3,….., n + 1 

Xj = (j – 1) ∆X where j = 1, 2, 3,….., m + 1 
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 Here, ∆X and ∆Z represent the step sizes of the meridional and the radial 

directions, respectively, and the subscripts denote the location of the variable under 

consideration, e.g. Ui,j,k means the meridional velocity at the i’th radial location and j’th 

meridional direction at the k’th time interval . 
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Fig. 4-1: Spacial numerical grid for a given time 
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4.3 Linearizing Technique 

 The finite-difference formulation of the governing equations should retain the 

same characteristics of the parent equations developed in the previous chapter. The 

governing boundary-layer equations are parabolic in nature with the terms in the marching 

direction (X) are the convective terms while those in the transverse (Z) are diffusive. 

Therefore, backward differences are utilized for the convective terms and central 

differences are utilized for the diffusive terms. 

 For each meridional location, the variables with subscript (j) will be assumed to be 

known and those with subscripts (j + 1) are assumed to be unknown for all values of (i). 

The solution for all (i) variables will be organized in a matrix form solved along the 

constant (j) lines then it marches forward for the next meridional step till the separation 

occurs at which the solution stops for the current time step and restarts from the beginning 

for the next time step. The whole solution will terminate when the steady state condition 

of flow is reached. 

 The governing equations are approximated by finite-differences in separate 

domains [21] where the location of each derivative was chosen to ensure stability and 

consistency of solution. Following the technique used in [21] a ringed point will represent 

the location where derivatives are calculated while the cross points represent the grid 

points involved in the finite-difference approximation. For the ringed points that do not 

coincide on the grid points, derivatives are approximated and an average value is taken 

[18]. The grid points involved in the difference representations of the governing equations 

are shown in Figure (4.2). 
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 The order by which the numerical solution is obtained starts by solving the 

meridional momentum equation for Ui,j+1,k+1 , then the continuity equation has to be 

solved for Wi,j+1,k+1  . Therefore, the term W found in the meridional momentum equation 

will be represented by Wi,j,k+1 (i. e. from the previous meridional step), while in the 

continuity equation U will be expressed as Ui,j+1,k+1 since it would have been already 

obtained from the solution of the preceding momentum equation. Then the whole 

procedure is repeated for the next time step until the steady state condition of flow is 

reached. 

 

4.4 Finite-Difference Representation of the Derivatives 

 Following the notation described in the previous section and that shown in figure 

(4.2), the finite-difference representation of the various derivatives present in the 

governing equations can be written as follows: 
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4.5 Finite-Difference Representation of the Meridional Momentum Equation 
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Therefore, the meridional momentum equation can be written as: 

for i = 1 : C1U0 + A1U1 + B1U2 = D1 

for i = 2 : C2U1 + A2U2 + B2U3 = D2 

for i = 3 : C3U2 + A3U3 + B3U4 = D3         (4.12) 

for i = n : CnUn-1 + AnUn + BnUn+1 = Dn 

Or  CnUn-1 + AnUn   = Dn - BnUn+1 

These equations can be expressed in a matrix form as follows: 

A1 B1          U1  D1 

C2 A2 B2         U2  D2 

 C3 A3 B3   0     U3  D3    (4.13) 

  . . .        .    . 

   . . .       . =   . 

    . . .      .    . 

  0   Cn-1 An-1 Bn-1   Un-1  Dn-1 

      Cn An   Un  Dn’ 

 

Where,  Dn’ = Dn –Bn Un+1          (4.14) 

 

4.6 Finite-Difference Representation of the Continuity Equation 
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Equations can be represented, for a given j, as: 

for i = 1 : A1W1 + B1W2 = D1  (W1= 0 “sphere surface”) 

for i = 2 : A2W2 + B2W3 = D2          (4.18) 

for i = n-1 : An-1Wn-1 + Bn-1Wn = Dn-1  

for i = n : AnWn + BnWn+1 = Dn  

 

4.7 Finite-Difference Representation of the Boundary and Initial Conditions 

The finite-difference form of the boundary conditions is as follows: 

at j = 1, i ≥ 1 and k>1   Ui,1,k = 0     (4.19-a) 
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at i = 1, j ≥ 1 and k>1   U1,j,k = W1,j,k = 0              (4.19-c) 

at i = n+1, j > 1 and k>1  
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at t = 0  (k = 1)    Ui,j,1 = Wi,j,1 = 0            (4.19-e) 

 

 



CHAPTER V 
 
 

METHOD OF SOLUTION 
 
 

5.1 Introduction 

 The purpose of this chapter is to show, in details, the method of solution for the 

problem under study. This method will be eventually used in the computer programs to 

generate the solution of the problem at the specified boundary and initial conditions. 

 Engineering parameters such as the shear stress at the surface of the sphere, the 

flow separation angle and the drag coefficient were also calculated during the solution and 

their values were presented for a wide range of Reynolds number. 

 

5.2 Numerical Grid 

 The numerical grid parameters were selected to be variable and have small values 

in the meridional direction especially at the points where high gradients are expected as in 

the case of the flow near the separation point. Along each meridional station, the grid size 

is assumed constant (∆Z = 0.001) where a minimum number of mesh points was assumed 

(n = 20). The convergence criterion, which will be explained in the next section, was 

checked at the outermost point (n+1). If the convergence criterion was met, the solution 

proceeds to the next meridional step, otherwise the number of steps is increased by two 
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and the solution is repeated for the same meridional station until the criterion is met. The 

solution proceeds in the marching X-direction with an equal grid size (1°) until the point 

of separation is reached then the program adjusts itself and returns one meridional step 

back to reduce the X-direction grid size to (0.1°) in order to accurately determine the point 

of flow separation [18]. 

 Grid independence test was conducted to verify the effect of reducing the grid size 

on the study results. It was found that further reduction in the grid size will result in an 

insignificant change on the obtained values. Figure 5.1 shows the effect of reducing the 

grid size on the values of meridional velocity at θ = 60° and Re = 5000. 

 

5.3 Criterion for Convergence 

 For the flow around a solid sphere, a minimum number of mesh points in the Z-

direction for a certain meridional step was assumed to be 20. Upon calculating the 

meridional velocity component along this line, the tangent of the velocity at the 

uppermost point was calculated and the slope of the velocity (∂U/∂Z) is calculated at the 

uppermost point (n + 1). Then the slope of the potential flow around the sphere is 

calculated at the same point and the two values are compared. If both slopes are matched 

within a certain arbitrary specified tolerance (a value of 0.005 was chosen in the present 

work), the solution is supposed to be convergent and this would determine the edge of the 

boundary-layer. Otherwise, the number of the radial steps (n) is increased by two and the 

procedure is repeated until the matching criterion is met [18]. 
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Fig. 5-1: Effect of reducing grid size on the values of meridional velocity at θ = 60°, 
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5.4 Flow Separation 

 External fluid particles accelerate in the region 0≤ θ ≤ 90 and decelerate in the 

region where θ > 90, hence the pressure decreases in the accelerated region and then 

increases in the decelerated region [20]. Since the external pressure is suddenly imposed 

at the boundary-layer, the transformation of the pressure into kinetic energy takes place in 

the accelerated region and a great amount of the kinetic energy of the fluid particles 

adjacent to the wall is consumed in moving against the friction forces. In the decelerated 

region, the remaining kinetic energy is too small to keep these particles moving in the 

region of the high pressure, so, they would be eventually arrested and the external high 

pressure would force them to move in the opposite direction detaching from the surface of 

the sphere and the point of flow separation can be detected by the condition of zero 

velocity gradient at the wall (∂U/∂Z = 0). Therefore, the flow separation would be 

accompanied by the following: 

1. a vanishing velocity gradient 

2. a larger boundary-layer thickness due to the increase of the number of the 

radial steps required to satisfy the matching criterion at the edge of the 

boundary-layer, and 

3. a larger value of the radial velocity component due to the increase of the 

outward flow direction. 

 The program is developed such that a constant meridional step is followed in the 

marching X-direction until the flow separation occurs where zero or negative 
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(unexpected) values of U can be obtained. Then a finer mesh is used in X-direction (i.e. 

for ∆X) and the point of separation is obtained [18]. 

 

5.5 Calculating Engineering Parameters 

 Upon computing the velocity field for the whole domain of numerical solution, the 

following engineering parameters can be calculated. 

5.5.1 Shear stress at the Surface of Sphere 

 Shear stress can be calculated as 
0=∂

∂
−=

zz
uµτ         (5.1) 

 Or, in dimensionless form  
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 Eqn. (5.2) can be written as  
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5.5.2 Friction Coefficient 
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5.5.3 Drag Coefficient 
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5.5.4 Vorticity at the Surface of Sphere 
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 The finite-difference representation will be: 
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5.6 Solution Procedure 

 Two programs were developed to solve the governing finite- difference equations 

obtained in Chapter IV. The first program is used only to determine the boundary-layer 

thickness assuming steady state conditions of flow. The output of this program is used as 

an input to the second program which is mainly used to solve the governing equations in 

transient conditions. The numerical solution is obtained by first selecting values of 

Reynolds number which is the main controlling parameter of these equations. The 

selected Reynolds number is fixed each time the two programs run. Then the solution 

proceeds as follows; 

5.6.1 Steady-State Solution (1st Program): 

1. The program starts in the marching X-direction; the variables in the first 

meridional station j = 1 (front stagnation line) are known where the boundary-

layer thickness is assumed to be zero (U = 0 and W is obtained from the potential 
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flow distribution). So, the program starts to obtain solutions at the second 

meridional station (j = 2) assuming a number of radial grid points of 20. 

2. The finite-difference equation representing the meridional momentum equation is 

solved first using Thomas algorithm. The obtained values of U are then used to 

solve the finite-difference equations representing the continuity equation to 

calculate the values of W. 

3. The convergence criterion at the uppermost point is checked. If the criterion is not 

met, the number of radial steps (n) is increased by two and the solution is repeated 

again. 

4. Steps 2 & 3 are repeated until the convergence criterion is met. Then the obtained 

values for U & W are reported and prepared to be the initial values for the next 

meridional step. 

5. The final value of n is saved in a separate data file to be used in the second 

program as described in the next section. 

6. The solution then proceeds in the marching X-direction repeating the previous 

steps (2 through 5) until the separation point is reached. 

5.6.2 Transient Solution (2nd Program) 

1. The program starts in the marching X-direction; the variables in the first 

meridional station j = 1 (front stagnation line) are known where the boundary-

layer thickness is assumed to be zero (U = 0 and W is obtained from the potential 

flow distribution). The initial values of U and W are assumed to be zero 

throughout the boundary-layer. So, the program starts to obtain solutions at the 
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second meridional station (j = 2) utilizing the value of n obtained from the first 

program. 

2. The finite-difference equations representing the meridional momentum equation is 

solved first using Thomas algorithm. The obtained values of U are then used to 

solve the finite-difference equations representing the continuity equation to 

calculate the values of W. 

3. The obtained vales for U & W are stored and prepared to be the initial values for 

the next meridional step. 

4. The solution then proceeds in the marching X-direction repeating the previous 

steps (2 & 3) until the separation point is reached. 

5. Engineering parameters such as the shear stress at the sphere surface, drag 

coefficient and friction coefficient are calculated 

6. The whole solution is then advanced and repeated for the next time step until the 

steady state condition of flow is reached when there is no change in the values of 

meridional velocity at (θ = 105) for two consecutive time steps. 



CHAPTER VI 
 
 

RESULTS AND DISCUSSION 
 
 

6.1 Introduction 

 In this chapter, the meridional velocity profiles as well as the radial velocity 

profiles are presented. These profiles are plotted at different times, for different Reynolds 

numbers and at different meridional angles to show the effect of these parameters on the 

flow characteristics. 

 

6.2 Meridional Velocity Profiles 

 Figures 6-1a, 6-1b and 6-1c show the transient development of the meridional 

velocity component U for Re = 5000. They are plotted at three different meridional 

stations (angles) measured from the front stagnation point (θ = 30°, θ = 60° and θ = 90°). 

Initially (at t = 0), the meridional velocity is zero throughout the boundary-layer. As the 

time elapses (t > 0), momentum diffusion starts at the boundary-layer edge and spreads 

until it reaches the surface of the sphere. The gradual increase in the values of U continues 

until the steady state condition of flow is reached.  
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Fig. 6-1a: Transient development of meridional velocity for Re = 5000, θ = 30° 
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Fig. 6-1b: Transient development of meridional velocity for Re = 5000, θ = 60° 
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The same plots are repeated for another Reynolds number (Re = 10,000) as shown 

in Figures 6-2a, 6-2b and 6-2c and the same trend is also shown in these figures. It is 

worth noting that the boundary –layer thickness in this case is less compared to its 

corresponding values for lower values of Reynolds number. This is due to the thinning 

effect to the hydrodynamic boundary layer at high Reynolds number due to higher 

velocity gradients within the boundary layer; whereas lower values of Reynolds number 

result in less velocity gradients within the boundary layer requiring thicker boundary 

layer. This notice will be emphasized in the subsequent figures. A comparison between 

the meridional velocity profile at θ = 60° and Re = 10,000 of the present work and the 

corresponding profile for the steady state work of El-Shaarawi et al. [5] at (Ta/Re2) = 0 

shows that both profiles lay at the top of each other. 
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Fig. 6-1c: Transient development of meridional velocity for Re = 5000, θ = 90° 
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Fig. 6-2a: Transient development of meridional velocity for Re = 10,000, θ = 30° 
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Fig. 6-2b: Transient development of meridional velocity for Re = 10,000, θ = 60° 
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Fig. 6-2c: Transient development of meridional velocity for Re = 10,000, θ = 90° 
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The effect of Reynolds number on the boundary layer thickness is also shown in 

Figure 6-3a for t =0.00010 and at certain meridional angle (θ = 60°). Three different 

values of Reynolds number Re = 1000, Re = 5000 and R = 10,000 are selected where it is 

noticed that as the Reynolds number increases, the boundary-layer thickness decreases 

and vice versa. As indicated earlier, this is due to the high velocity gradient, within the 

boundary-layer, at higher Reynolds number which requires less boundary-layer thickness 

for the velocity to increase from its value at the sphere surface to the free stream value. 

The same trend is also observed at different times, t = 0.00040, t = 0.00070 and steady 

state condition in Figures 6-3b, 6-3c and 6-3d, respectively. 

 

The boundary layer development as the meridional angle increases is shown in 

Figures 6-4a, 6-4b, 6-4c and 6-4d at given values of time (t = 0.00010, t = 0.00040, t = 

0.00070 and steady state). Values of meridional velocity U are plotted for a fixed value of 

Reynolds number (Re = 5000) and at three meridional angles (θ = 30°, θ = 60° and θ = 

90°). It is clear from the figures that the boundary-layer thickness increases from its zero 

value at the front stagnation point until it reaches its maximum value at the point of flow 

separation. This is due to the increased momentum transfer in the radial direction as the 

angle increases. 
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Fig. 6-3a: Meridional velocity at θ = 60° for different Reynolds numbers, t = 0.00010 
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Fig. 6-3b: Meridional velocity at θ = 60° for different Reynolds numbers, t = 0.00040 
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Fig. 6-3c: Meridional velocity at θ = 60° for different Reynolds numbers, t = 0.00070 
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Fig. 6-3d: Meridional velocity at θ = 60° for different Reynolds numbers at steady state 
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Fig. 6-4a: Meridional velocity for Re = 5,000 at different angles, t = 0.00010 
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Fig. 6-4b: Meridional velocity for Re = 5,000 at different angles, t = 0.00040 
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Fig. 6-4c: Meridional velocity for Re = 5,000 at different angles, t = 0.00070 
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Fig. 6-4d: Meridional velocity for Re = 5,000 at different angles at steady state 
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 The transient behavior of the meridional velocity for Re = 5000 and at a given 

value of radial location (Z = 0.020) is shown in Figure 6.5. Values of meridional velocity 

are plotted at various meridional angles. It is clear from the figure that as the time elapses 

(t >0), the meridional velocities increase until the steady state condition of flow is 

reached. The figure also shows that as the meridional angle increases, the meridional 

velocities increase up to θ = 60° then decrease. Therefore, as the meridional angle 

approaches the separation point, the steady state values of the meridional velocity start 

decreasing. 

 

 The transient behavior of the meridional velocity for Re = 5000 and θ = 30° 

plotted at different radial locations is shown in Figure 6.6. As the time elapses, the 

meridional velocities increase until the steady state condition of flow is reached. The 

figure also shows that the meridional velocity values increase when moving away from 

the surface of the sphere. This is due to the increased momentum transfer in the radial 

direction. 
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Fig. 6-5: Transient behavior of meridional velocity for Re = 5000 and Z = 0.020 at different angles 
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Fig. 6-6: Transient behavior of meridional velocity for Re = 5000 and θ = 30° at different radial locations 
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6.3 Radial Velocity Profiles 

 Figures 6-7a, 6-7b and 6-7c show the transient development of the radial velocity 

component W for Re = 5000 and at three different meridional angles (θ = 30°, θ = 60° and 

θ = 90°). It is clear that all of these profiles start with a zero value at the surface of the 

sphere where there is no suction or blowing. However, they end at different values of 

radial location (Z) where the numerical solution was terminated when the solution 

criterion was satisfied. Profiles are negative for meridional angle θ < 90° while they have 

positive values for θ > 90°. This behavior shows that the radial component of velocity is 

pushing the boundary-layer fluid towards the sphere’s surface in the accelerated region of 

the flow. Compared with the W-profiles in the adverse region (θ > 90°) where the 

tendency changes to suction of the fluid, the radial component of velocity assist increasing 

the boundary-layer thickness till the maximum thickness is reached at the point where the 

flow separates. 

The same plots are repeated for another Reynolds number (Re = 10,000) as shown 

in Figures 6-6a, 6-6b and 6-6c and the same trend is also shown in these figures. It is 

worth mentioning, too, that the effect of increasing Renolds number on the thickness of 

the hydrodynamics boundary layer is clear in these figures and is viewed for θ = 30° in 

Figures 6-7a and 6.8a and for θ = 60° in Figures 6-7b and 6-8b and finally for θ = 90° in 

Figures 6-7c and 6-8c. 
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Fig. 6-7a: Transient development of radial velocity for Re = 5000, θ = 30° 
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Fig. 6-7b: Transient development of radial velocity for Re = 5000, θ = 60° 
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Fig. 6-7c: Transient development of radial velocity for Re = 5000, θ = 90° 
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Fig. 6-8a: Transient development of radial velocity for Re = 10,000, θ = 30° 
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Fig. 6-8b: Transient development of radial velocity for Re = 10,000, θ = 60° 
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Fig. 6-8c: Transient development of radial velocity for Re = 10,000, θ = 90° 
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For specific values of times (t = 0.00040, t = 0.00070 and steady state), Figs. 6-9a, 

6-9b and 6-9c show the radial velocity profiles at certain meridional angle (θ = 60°) for 

three different values of Reynolds number (Re = 1000, Re = 5000 and R = 10,000). 

Increasing the Reynolds number always has the effect of decreasing the boundary-layer 

thickness as illustrated previously. Hence the smallest boundary-layer thickness 

corresponds to the highest value of Reynolds number (Re = 10,000), while the highest 

thickness was reported for the lower value of Reynolds number used (Re = 1000). 

 

 Figures 6-10a, 6-10b and 6-10c show the radial velocity profile for different 

meridional angles θ = 30°, θ = 60° and θ = 90° at different time steps t = 0.00040, t = 

0.00070 and steady state, respectively. They are plotted for a fixed value of Reynolds 

number (Re = 5000). It is clear from the figures that the boundary-layer thickness 

increases from its zero value at the front stagnation point until it reaches its maximum 

value at the point of flow separation. 
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Fig. 6-9a: Radial velocity at θ = 60° for different Reynolds numbers, t = 0.00040 

0 0.02 0.04 0.06 0.08
Z

-0.03

-0.02

-0.01

0

0.01

W Re = 1000

Re = 5000

Re = 10,000

t = 0.00070
θ = 60°

 

Fig. 6-9b: Radial velocity at θ = 60° for different Reynolds numbers, t = 0.00070 
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Fig. 6-9c: Radial velocity at θ = 60° for different Reynolds numbers at steady state 

0 0.02 0.04 0.06
Z

-0.1

-0.05

0

0.05

0.1

0.15

0.2

W

θ = 90°

θ = 30°

θ = 60°

Re = 5000
t = 0.00040

 

Fig. 6-10a: Radial velocity for Re = 5000 at different angles, t = 0.00040 
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Fig. 6-10b: Radial velocity for Re = 5000 at different angles, t = 0.00070 
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Fig. 6-10c: Radial velocity for Re = 5000 at different angles at steady state 



CHAPTER VII 
 
 

ENGINEERING PARAMETERS 
 
 

7.1 Introduction 

 In this chapter, the results of calculating engineering parameters of interest are 

presented for various values of Reynolds number. These parameters include the shear 

stress at the surface of the sphere, the friction coefficient, the drag coefficient and the 

surface vorticity. Other parameters such as the variation of flow separation angle with 

time and the time required to reach steady state condition are also reported, in this chapter, 

for a wide range of Reynolds number. 

 

7.2 Surface Shear Stress 

 Figures 7-1a, 7-1b and 7-1c show the transient development of the dimensionless 

shear stress around the sphere plotted for three values of Reynolds number Re =1000, 

5000 and 10,000, respectively. At early time, the values of shear stress around the sphere 

are low due to low velocity within the boundary-layer. As time passes and due to 

momentum diffusion within the boundary-layer, the velocity increases which results in a 

corresponding increase in the shear stress until the steady state condition is reached. 
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Fig. 7-1a: Transient development of the surface shear stress for Re = 1000 
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Fig. 7-1b: Transient development of the surface shear stress for Re = 5000 
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Fig. 7-1c: Transient development of the surface shear stress for Re = 10,000 
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These figures also show that steady state condition is reached earlier for high 

Reynolds numbers. That is, less time is noticed for Re = 10,000 compared to Re = 5000, 

whereas the case of Re = 1000 required the largest time to reach steady state. This is 

illustrated clearly in Figure 7-2 where the effect of Reynolds number on the surface shear 

stress at a given time (t = 0.00040) is shown. It is clear from the figure that increasing the 

Reynolds number has the effect of increasing the shear stress around the sphere, due to the 

increased velocity gradient at higher Reynolds number, until the steady state distribution 

is attained. 

 The transient behavior of the surface shear stress for Re = 5000 and Z = 0.020 

plotted at various meridional angles is shown in Figure 7-3. It is clear from the figure that 

as the time elapses (t >0), the surface shear stresses increase until the steady state 

condition of flow is reached. The figure also shows that as the meridional angle increases, 

the surface shear stress values increase due to the increase in meridional velocities. 

However, as the meridional angle approaches the separation point, the steady state values 

of the shear stress start decreasing. This behavior is related directly to meridional 

velocities behavior which was explained in page 46. 
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Figure 7-2: Effect of Reynolds number on the surface shear stress at a given time (t = 0.00040) 
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Figure 7-3: Transient behavior of surface shear stress for Re = 5000 at different angles 
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7.3 Friction Coefficient 

Figures 7-4a, 7-4b and 7-4c show the transient development of friction coefficient 

plotted for three values of Reynolds number Re =1000, 5000 and 10,000, respectively. At 

early time, the values of friction coefficient are low due to low shear stress values at the 

surface of the sphere at that incident of time. As time passes and due to increasing the 

shear stress (as described in the section 7-2), the coefficient of friction increases 

accordingly until the steady state condition is reached. 

The effect of Reynolds number on the coefficient of friction at a given time (t = 

0.00040) is shown in Figure 7-5. It is clear from the figure that increasing the Reynolds 

number has the effect of decreasing the values of friction coefficient although the shear 

stress increases with increasing Reynolds number. This is because the dimensionless 

value of the coefficient is the result of dividing the shear stress by the velocity pressure 

that includes square of the velocity. Increasing Reynolds number would increase U∞ 

significantly and hence decreases the coefficient of friction. 

 

7.4 Drag Coefficient 

Figure 7-6 shows the variation of the drag coefficient with time plotted for three 

values of Reynolds number (Re = 1000, 5000 and 10,000). It is clear from the figure that 

as time passes, the drag coefficient increases until the steady state condition of flow is 

reached. The figure also shows that increasing the Reynolds number results in decreasing 

the steady state coefficient of drag. This is because the dimensionless value of the drag 

coefficient includes a term (i. e. R) which is inversely proportional to Reynolds number.  
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A comparison between the steady state drag coefficient of the current investigation 

at various Reynolds numbers and the results of El-Shaarawi et al. work [5] is shown in 

Table 7-1. The two results are almost the same. 
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Fig. 7-4a: Transient development of friction coefficient for Re = 1000 
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Fig. 7-4b: Transient development of friction coefficient for Re = 5000 
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Fig. 7-4c: Transient development of friction coefficient for Re = 10,000 
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Fig. 7-5: Effect of Reynolds number on the friction coefficient at a given time(t = 0.00040) 
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Fig. 7-6: Transient behavior of drag coefficient at different values of Reynolds number 
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Table 7-1: Comparison between the steady state drag coefficient of the present analysis 

and the results of El-Shaarawi et al. work [5] 

CD Re Present analysis El-Shaarawi et al.work [5] 
1000 0.21123 0.21123 
3000 0.12250 0.12252 
5000 0.09496 0.09498 
7000 0.08027 0.08030 

10,000 0.06716 0.06716 
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7.5 Surface Vorticity 

 Figure 7-7 shows the transient development of the vorticity at the surface of the 

sphere along the meridional direction plotted for Re = 1000. At early time, the values of 

surface vorticity are low due to low rotation of fluid particles near the sphere surface. As 

time elapses and due to momentum diffusion within the boundary-layer, the rotation of 

fluid particles increases which results in a corresponding increase in the surface vorticity 

until the steady state condition is reached. A comparison between the steady state surface 

vorticity of the current work at Reynolds no of 100 and the boundary-layer analysis by 

Hamielec et al. [1] is shown in Figure 7-8. A good agreement between the two results is 

shown in the figure. 

 

7.6 Variation of Separation Angle with Time 

 Figure 7-9 shows the variation of the angle of flow separation with time plotted for 

three values of Reynolds number (Re = 1000, 5000 and 10,000). The angle of external 

flow separation increases with time since as the time passes, the meridional velocity 

increases and hence the boundary layer thickness decreases making separation occur at 

higher values of θ. This figure shows also the effect of Reynolds number. Increasing the 

Reynolds number causes the flow to separate at earlier time since it requires less time to 

reach steady state condition. The figure also shows that increasing Reynolds number 

increases the angle at which flow separates. This is due to thinning the boundary layer at 

high Reynolds numbers. 
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7.7 Time to Reach Steady State 

 Figure 7-10 shows the effect of Reynolds number on the time required to reach 

steady state. It is clear from the figure that increasing the Reynolds number decreases the 

time required to reach the steady state condition. This is due to higher velocities in the 

boundary-layer resulting from increasing Reynolds number. 
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Fig. 7-7: Transient development of surface vorticity for Re = 1000 
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Fig. 7-8: Steady state surface vorticity compared with boundary-layer solution of [1]
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Fig. 7-9: Effect of Reynolds number on the variation of separation angle with time 
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Fig. 7-10: Effect of Reynolds number on the time required to reach steady state 



CHAPTER VIII 
 
 

CONCLUSIONS & RECOMMENDATIONS 
 

 
8.1 Conclusions 
 

A finite-difference scheme has been developed and successfully used to solve the 

3-D boundary-layer equations governing the unsteady impulsively started fluid flow about 

a solid sphere. The present scheme has succeeded in obtaining solutions for considerably 

larger values of Reynolds number. For the studied range 1000 ≤ Re ≤10,000, results are 

presented for the meridional and radial velocity profiles, the surface shear stress, the 

friction coefficient, the drag coefficient and the external flow separation angle. The time 

to reach steady state is also obtained and presented. 

 

The obtained results show that the Reynolds number has a significant effect on the 

flow characteristics around the sphere. Increasing the Reynolds number results in 

reducing the time required to reach the steady state condition, increasing the shear stress 

at the sphere’s surface and decreasing both the drag and friction coefficients. The exterior 

flow separation angle was found to increase with time until the steady state condition is 

reached and its value increases with increasing the Reynolds number. It was also found 

that the drag coefficient increases with time until the steady state condition is achieved 
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and its value decreases as the Reynolds number increases. A comparison between the 

computed values of drag coefficient and surface vorticity with some data found in the 

literature was carried out and good agreement between the present analysis and these 

values was obtained. 

 

8.2 Recommendations for Future Work 

 It is recommended to extend the present work to cover the following cases; 

1. Rotating sphere. 

2. Forced and mixed convection heat/mass transfer. 
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APPENDIX A 
 
 

ORDER OF MAGNITUDE ANALYSIS FOR 
 

THE GOVERNING EQUATIONS 
 
 
 

  Re >>1   , δ <<1 

  
∞
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A.1 Order of Magnitude Analysis for the Continuity Equation 
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The third term in this equation has a lower magnitude compared to other terms and 

can be safely dropped. However, this term will be retained in the equation since it 

would lead to a simpler solution algorithm for the continuity equations described in 

Chapter 3. 

 

A.2 Order of Magnitude Analysis for the Meridional Momentum 

Equation 
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It is obvious that: O(Re δ2) ≈ 1 or Re ≈ O(
2

1
δ

) 

   O(P) ≈ 1 

Terms of order δ and more can be safely dropped and the meridional momentum 

equation becomes: 
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The last term in the equation can be further simplified as follows; 
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The last term is of order δ and can be safely dropped. Hence the meridional 

momentum equation becomes; 
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At the edge of the boundary layer, meridional velocity component is U* which is the 

potential flow around a sphere and it is a function of X only. Substituting in the 

momentum equation leads to; 
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The potential flow component U* does not change with time and this led to further 

simplification of the above equation; 
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The meridional momentum equation becomes; 
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Multiplying the whole equation with (Re/2), the final form of meridional momentum 

equation becomes; 
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A.3 Order of Magnitude Analysis for the Radial Momentum Equation 
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From the above equation, we get 1=P/δ which indicates that the variation of pressure 

in the boundary layer is proportional to δ and it can be neglected. Therefore, dropping 

the terms of order δ and higher order leads to safely dropping the whole equation. 
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