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ABSTRACT

A new technique for the design of switched capacitor high-
pass ladder filters using the MLDD transformation is pro-
posed. It is shown that by realizing the resistive source
termination of the high-pass continuous ladder proto-type
filter with a special delay free circuit, a much superior
response is obtained. A new transormation named the modi-
fied bilinear transformation for the design of switched
capacitor high-pass ladder filters is also proposed. Using
this transformation and the proposed design tecnique, it is
shown that the magnitude response of the switched capacitor
high-pass ladder filter approximates the response of the
continuous high-pass ladder proto-type' much better than the
MLDD transformation. However, in some of the applications
this is achieved at the cost of a higher order filter.
Finally, an interactive package for the design of switched
capacitor high~pass Butterworth and Chebychev fiters using
the MLDD and the modified bilinear transformations is pre-

sented as a bonus.
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Chapter I
INTRODUCTION

1.1 Historical Background

The realization of passive RLC filters started in the
1920s[18]. Since inductors are physically large, electri-
cally lossy and noisy, and unsuitable for miniaturization,
their replacement by active~RC filters began in the mid
1960s[5,20]. The evolution of active-RC filters was mainly
due to the development of low-cost high-performance mono-
lithic operational amplifiers. The next step in miniaturiza-
tion was the realization of fully integrated filters which
started in the early 1970s. This technique makes use of
metal-oxide-semiconductor (MOS) integratéd circuit technology
which offers high quality capacitors, low-leakage charge
storage and offset-free switches[20]. However, direct inte-~

gration of an active-RC filter leads to difficulties.

Active~-RC filters are mainly used in telecommunication
applications which require time constants of the order 0.1
milli-seconds. In integrated circuits, MOS capacitors are
usually made smaller than 100pF, because for an oxide thick-
ness of 700 Angstroms, a 1pF capacitor requires about 3 mil~

square chip area. With a capacitor of 10pF, a time constant

8€c!t




2
of the order 0.1 milli-seconds can be accomplished with a
resistor of the order 10 Mega-Ohms. Such a resistor made by
using a poly-silicon line occupies an area of 1600 nmil-
square, which is approximately 10 percent of the average
chip area of an analog MOS integrated circuit[20]. There-
fore, the large chip area required for constructing an inte-
grated resistor is a major difficulty in the direct integra-

tion of active-RC filters.

The second major difficulty of MOS resistors is their
non-linear characteristics. Furthermore, since both capaci-
tors and resistors have absolute accuracies in the range of
5-~10 percent, and their errors are uncorrelated, the overall
error of the RC time constant can be as high as 20 percent.
This error also depends on the temperature and signal lev-

el[20}].

1.2 Evolution of Switched-Capacitor Filters

The difficulties in the direct integration of active-RC fil-
ters can be overcome by simulated resistors which are
obtained by periodical switching of capacitors between two
circuit nodes at a sufficiently high rate. The type of fil-
ters emerging from this theory are «called switched-
capacitor(SC) filters which are analog sampled data. cir-
cuits[23]. The periodic sampling of analog signals have been
used for many years. The first known record of sampling ana-

log signals is found on pages 420-425 of "Treatise on Elec-

8Ecl




3
tricity and Magnetism" by James Clerk Maxwell[l]. The theory
of sampling analog signals was further developed in the late
1950s and several schemes that used switches and capacitors
to simulate filters were proposed in the 1960s[13,16].
However, the practical realization of integrated circuit
switched-capacitor filters was possible only in the late
1970s[5,23] when MOS technology provided high-quality capa-

citors, offset-free switches, and moderate quality op-amps.

To show that a simulated resistor can be constructed from
capacitors and switches, consider the circuit given in Fig.
1.1(a). Without any loss of generality, assume that both
switches are open and the capacitor C is initially dis-
charged. It is further assumed that the voltage sources

V1 and V2 are constant during all or most of the phase peri-

od. The clock waveforms used for driving the switches are
shown in Fig. 1.2. As it can be observed from these wave-

forms, the phases ¢1 and ¢2 are non-overlapping.
At t=(n-3/2)T+t1, the clock pulse $4 is applied to switch 1.

This pulse closes switch 1 and causes a charge transfer from

the voltage source V1 to the capacitor. In practice, a

finite resistance R is associated with the switch. This
resistance which is connected in series with the capacitor
prevents the instantaneous charging of the capacitor C.
Definitely, the RC time constant must be much smaller than

T/2 in order to let the capacitor charge completely to Vl

8EC!|
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6
The charge transfered to the capacitor while switch 1 was

closed can be written as

Q((n-1)T)=CV, (1.1)

At t=(n—1)T+t1, the clock pulse ¢, is applied to switch 2,

while just before this time, due to the non-overlapping

characteristics of the clock waveforms, the clock pulse ¢1

has already gone to the its low state and switch 1 has
opened. During this period, the capacitor is discharged and

then charged to VZ' therefore the net charge transfered to

the capacitor becomes

Q((n=1/2)T)=CV,~CV,=C(V,-V, ) : (1.2)

At t=(n-1/2)'1‘+t1, the clock pulse $1 is again applied to
switch 1, while just before this time the clock pulse ¢ has

gone to its low state. Therefore, the state of the two
switches, 1 and 2 in this time interval become closed and
open respectively. The capacitor is again discharged and

then charged to Vl’ The net charge transfered to the capaci-

tor becomes

8ect




7
Q(nT)=C(V;-V,) (1.3)

This sequence of events will continue indefinitely and the
net charge transfer for the even and odd phase periods are
given by equations (1.2) and (1.3) respectively. To show
that the two switches and the capacitor shown in Fig. l1.1(a)
simulate the resistor of Fig. 1.1(b), we proceed as follows:

First, define the resistance of Fig. 1.1(b) as

R = = (1.4)

under the assumption that V1 and V2 are constants.

The current flowing in a circuit is defined by
i = _dﬁ |
i at (1.5)

Therefore, under the steady state condition, the charge
flowing from the left dotted line of Fig. 1.1(a) can be

written as

N

nT+t
1

Q = i dt (1.6)
1 J.(n—l/2)T+tl 1l

But, since switch 1 is open for (n-l)T+tlst<(n-1/2)T+tl,

then il=0 during this time interval. Therefore, equation

(1.6) can be written as

8g€clt




nT+t
1

Q= I(n-l)T+tl e (1-7)

Since Ql given by equation (1.7) is equal to the charge giv=~
en by Eg. (1.3), we obtain, after equating these two equa-
tions and dividing by T

nT+t

i
I il dt = Il(aver) (1.8)

1 1
TQANT) ="
T T (n-l)T+tl

Substituting equation (1.3) into (1.8) gives

V_
172 _T
I,(aver) C (1.9)

Comparing Eq. (1.4) and (1.9), the following relationship is

obtained
= __.T

The above relationship is wvalid when 1=Il(aver). This

occurs when V., and V2 are constant during the clock period

1
T. Therefore, under the above assumptions, we have shown
that a capacitor with two switches driven by two non-

overlapping clock pulses simulates a resistor of wvalue

T/C[5,23].

agct




9
It can be concluded from the above results that an
active-RC filter can now be realized by replacing all resis-

tors by equivalent SC branches. A time constant T1=R1C2 will

be transformed according to equation (1.10) into a new time

constant T2=TCZ/Cl. If we let the clock frequency fc=1/T’
then this new time constant becomes T2=Cz/fccl’ which

depends on the ratio of two capacitances and the clock fre-

quency fc. The clock frequency fc can be accurately control-

led by using a crystal resonator in the clock oscillator and
the capacitor ratios can be realized to an accuracy as good
as 0.1 percent in MOS technology. Therefore, the new time
qonstant can be made as accurate as 0.1-0.5 percent. Fur-
thermore, the area for resistors is highly reduced by using
SC equivalent branches. For a resistor wvalue of R=10 Mega-=-
Ohms, if a 100KHz clock frequency is applied, then equation
(1.10) dictates a capacitance value of C=1pF. The new area
occupied by this capacitor is about 3 mil-square compared to
an area of 1600 mil-square required to construct the above
mentioned resistance wvalue. This means that by replacing
the above resistance with its equivalent SC branches a
reduction in chip area has been accomplished by a factor of

533[20].

=R EAL




10
1.3 Switched Capacitor Filters as Analog Sampled Data Circuits
As was mentioned earlier, switched capacitor filters are
analog sampled data circuits. Due to this property, they are
most conveniently analyzed and designed like digital fil-
ters, in the z-transform domain. The system given in Fig.
1.3(a) shows the most general form of a switched capacitor
network{17]. An analog signal that requires filtering is
first passed through a continuous anti-aliasing filter.
This is usually a second order low-pass active-RC filter
with a sufficiently high cut-off frequency which converts
the infinite bandwidth input signal into a band-limited one.
The band-limited analog signal is then passed through an

input sample-and-hold circuit (S/H)i and is sampled at
intervals of l/fcl. The discrete signal coming from the out-

put of the sample~and-hold circuit passes through the
desired SC filter. The filtered discrete signal is again

passed through an output sample-and-hold circuit (S/H) o and
is resampled at intervals of 1/ch. Finally, the desired

signal coming from the output of the sample-and-hold circuit
passes through a continuous reconstruction filter which con-
verts the sharp transitions in the sampled-data waveform
into smooth ones. The typical magnitude responses of the
three filters used in an SC network are depicted in Fig.

1.3(b).

8€¢CL
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12

Theoretically, a switched capacitor network can be con-
trolled by multiple clock frequencies. However, usually in
practice, two phase clocks are used. In most of the cases,
the sample-and-hold operations are inherently performed by
the SC filter. When this is so, the SC filter includes the
three blocks shown inside the dashed rectangle. -Further-
more, if the input or the output of the SC network is inter-
faced with another digital or sampled-data filter, such as
D/A or A/D converters, some of the hardware shown in Fig.
1.3(a) is not necessary. As an example, suppose that the
output is interfaced with a digital circuit, then, in such a
case, the continuous reconstruction filter is not anymore
needed and the sample-and-hold circuit is usually incorpo-
rated with the digital circuitry. However, a drawback to
this case 1is the extra requirement of synchronization
between the clocks that control the SC filter and those that

control the external sampling operations.
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Chapler I1I
SWITCHED CAPACITOR FILTER DESIGN USING
RESISTOR SIMULATION

The simplest SC filter design technique is the direct
replacement of resistors in an active-~RC filter by their sC
equivalents. In this techhique, the active-RC filter is
first designed to meet certain desired specifications. The
details of active~RC filter design can be found in referenc-
es[9,17,24,25,33,38] 1listed in the bibliography. Once the
active-RC filter is designed, each resistor is replaced by
an SC equivalent circuit which will be described in the fol-

lowing Sections.

2.1 Parallel SC Resistor Simulation

2.1.1 Operation and Analyses
It has been shown in Chapter 1 that the switched capacitor

shown in Fig. 1.1 simulates a resistor of value R=1/ch.

This configuration is called parallel SC realization of a
resistance. Before proceeding into further design details,
consider the active-RC integrator shown in Fig. 2.1. It is
a known fact that the circuit shown in Fig. 2.1 is a basic
building block of active~RC filters. The input output rela-

tion is given by

- 13 -
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Figure 2.1 Active-RC Integrator.

14

8ECI



15

t
v t) =
out( ) Rlcz I_m vin('r) dt (2.1)

Taking the Laplace transform of both sides of equation
(2.1), we obtain

=V _(s)
1N

vV (s) =

= (2.2)
out sR C
1 2

The switched capacitor version of the active RC~-integrator

shown in Fig. 2.1 can be obtained by replacing R1 by its

parallel SC equivalent circuit. The resulting SC integrator

circuit is shown in Fig. 2.2. The clock waveforms ¢1 and ¢2

are shown in Fig. 1.2. The circuits shown in Fig. 2.1 and

Fig. 2.2 are equivalent only when the sampling frequency fC

is much higher than the 3-dB frequency of the input signal.
Actually, ewven under these conditions, these two circuits
are not exactly equivalent. In order to observe the exact
relation between an active-RC integrator and an SC integra-
tor, it is necessary to analyze the SC integrator circuit

using sampled data techniques.

Switched capacitor circuits are usually analyzed by mak-
ing use of the law of conservation of charges rather than
Kirchoff's Current Law. This law makes the analysis much
easier since charges in an SC network remain finite in con-
trast to currents which can sometimes be impulses. Further-~

more, the charges in an SC network are stored charges and

R A
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in

.l
1 I + ‘ Vout

Figure 2.2 Switched Capacitor version of an active=RC inte-
grator using a parallel equivalent branch for resistor simu-

lation.
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the storage devices are the plates of a capacitor[36].

The operation of the SC circuit shown in Fig. 2.2 at dif-
ferent clock phases is depicted in Fig. 2.3(a) and Fig.
2.3(b). The description of this operation is given below.

At t=(n-1)T, switch 2 has been closed long enough to charge

the capacitor C1 to a voltage Vin(n-l), while switch 2 was

open. During this time, the input was isolated from the out-

put and the capacitor C2 maintains its previous charge.
At t=(n—1)T+t1, the clock pulse ¢, goes to its high state

and switch 2 becomes closed while switch 1 has already

opened. Therefore, the capacitor C1 becomes isolated from

the input voltage and the charge stored during the previous

state is transfered to the capacitor C2 in the.direction as

shown in Fig. 2.3(b).:

At t=(n~1/2)T, the charge distribution due to one full peri-
od is complete and the charge transfer is repeated again for
all the other clock periods. To distinguish the charge

transfer which takes place when the clock waveform ¢1 is
high, from the one when the clock waveform ¢2 is high, let
the clock phase ¢, represent the odd phase and the clock
waveform ¢ represent the even phase. Then, the charge asso-

ciated with the odd phase will be represented by the super-

script "o" and the charge associated with the even phase

will be represented by the superscript "e" on the voltages

8gcl
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C C
2 2
—{- I
—>
A
o——— o- ;
in Vin _l__-* .
0 I + 0
(a) : (b)
A
Gty _——ﬁ‘ﬂ
A 1 C, 1L I

@ v @ ¥o-h) v(n)
= Vin(n'l) o V?n(n
6 Vo(n-1) Vg(n-%)

(c) (d)

.qF_

Figure 2.3 Operation of the switched capacitor integrator of
Fig. 2.2; (a) during odd phase (b) during even phase (c)
Equivalent circuit for the capacitors showing the charge

storage at t=(n-1/2)T and (d) at t=nT
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characterizing these charges.

The charge stored on a capacitor at any phase can be rep-
resented by a voltage source in series with that capacitor,
where the polarity of the voltage source represents the
polarity of the stored charge. Using this representation,

the charge storage on the two capacitors C1 and C2 is

depicted in Fig. 2.3(c), where the op-amp has been omitted

for clarity.

To obtain the difference equation characterizing . the
operation of the circuit, the conservation of charge law is

applied at node A of Fig. 2.3(c). The resulting difference

equation is given by
C, Vo (n-1) + C,V(n-1/2) - C_v°
1 Vin 20 2Vo-1)=0 (2.3)

Taking the z-transform of both sides of equation (2.3), we

obtain

-l. o -1/2. e -1 o
C,z Vin(z)+sz Vo(z)—sz V(@ =0 (2.4)

As was mentioned earlier, during the odd phases, the capaci-

tor C2 maintains the charge acquired from the previous even

phase. Therefore at t=nT, the equivalent circuit showing the

charge storage on capacitor 02 is as shown in Fig. 2.3(d).

The conservation of charge law at node A givés

8E¢Cl
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(32 Vo(n) - szo(n-l/2) =0

(2.

20

5)

taking the z-transform of both sides of equation (2.5) and

simplifying, we obtain

o -1/2 e
Vo(z) =z Vo(z)

Substituting (2.6) into Eq. (2.4) gives

-l.0 ~-1/2 e -3/2 e
Clz Vin(z) + sz Vo(z) - sz Vo(z) =0

(2

(2

The transfer function of the SC circuit shown in Fig. 2.2

obtained from Eqg. (2.7) as

e
e VO(Z) Cl ~-1/2
H (2) = -.— %

o C
V. (2) 2 1-z
in

Using (2.6), Eg. (2.8) can also be expressed as

(2

(2

.6)

.7)

.8)

.9)

The integrator defined by the transfer function given by

equation (2.8) has a half delay in the forward path. This

transfer function is obtained if the output of the SC cir-

_BECT!
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cuit shown in Fig. 2.2 is sampled at the even clock phases.
Such an integrator is known as Type I Lossles Discrete Inte-
grator(LDI)[5,6]. The reason that this integrator is called
the LDI integrator can be seen as follows:

- From Eg. (2.2), the transfer function of the analog integra-

tor can be written as

vV  (s)

Hey = 22— _ _ - (2.10)
V. (s) sR C
in 1 2

For sinusoidal signals, substituting s=jw into the transfer

function of the analog integrator, we obtain

Voutomo 1
Hiw) == = - (2.11)
V. (jw) iwR C
in 1 2

On the other hand, for discrete frequencies, substituting

z=exp(jwT) into Eq. (2.8) gives

T Cl -jwT/2
oe W e
€ )=-— |F— (2.12)

C -jwT
2 |1l-e

Multiplying the numerator and denominator by exp(jwT) gives

. T C l
oe jw 1
H (e ) = -
C. jwi/2 -jwi/2 (2.13)
2 (e -e )
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Using Euler's formula in (2.13), the transfer function of

the SC integrator becomes

wT
jwT Cl 2
oe jw .
H (e ) = -
jwTC .owT (2.14)
2 mn(Zj

Equation (2.14) gives the exact transfer function of the SC
integrator when its output is sampled at the end of even

clock phases. For wT<<l, sin(wT/2)2wT/2 and Eq. (2.14) can

be written as

H (e )= _" (2.15)

Comparing (2.15) with Eq. (2.11), it can be observed that

R1=T/cl=1/fccl‘ Therefore, when the sampling frequency is

much higher than the frequency of the input signal, the ana-
log integrator is equivalent to a switched capacitor inte-
grator. The error in the magnitude of the SC integrator,
which is given.by the factor (wT/2)/sin(wTl/2) becomes appre-

ciable when the signal frequency f>fC/100 [20].
Assuming that the signal frequency f<fc/100, then, replacing
R1 by T/C1 in the transfer function of the analog integrator

gives

__8ET}
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1

sTC
2

H(s) = - (2.16)
A direct comparison of (2.16) and (2.8) indicates that

replacement of all RC integrators by the SC circuit of Fig.
2.2, is equivalent to replacing s by (1-z-1/Tz—1/2) provided
that the output of the SC circuit is sampled at the end of
even phases. This is the well known lossless discrete inte-
grator(LDI)[6] transformation which has found wide applica-
tion in the design of switched capacitor fil=-
ters(5,8,12,26,27].

The LDI transformation can also be written as

1 -
s=Lll2_, 172

T (2.17)

The mapping properties and its use in the design of sSC fil-

ters will be discussed in detail in the next Chapter.

The integrator defined by the transfer function given by
Eg. (2.9) has a full delay unit in the forward path. This
transfer function is obtained if the output of the SC cir-
cuit shown in Fig. 2.2 is sampled at the end of odd clock
phases. Such an integrator is known as a Type I Direct Dis-
crete Integrator(DDI)[6]. Following an analysis similar to
that for the LDI integrator, the discrete frequency response

of Eq. (2.9) can be written as

_ 8¢egl
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00 jwT _1 |e
e )=- ) (2.18)
C ~jwT
2 {l-e
Using Euler's formula in (2.18), we obtain
wl
oo jwT ! 2 —jwT
H e )= exp(—E) (2.19)
jwTC CowT 2
2 mn(z)

Equation (2.19) gives the exact transfer function of the SC
integrator when its output is sampled at the end of the odd

clock phase. The magnitude of Eqg. (2.19) can be written as

wT
oo jwT Cl 2
H (" )= (2.20)
wTC wT
2 |sin( ) )

By the same argument given previously, if wT<<1l, then the
error in the magnitude of the SC integrator is negligible.
In order to observe the frequency transformation character-
izing the Type I DDI integrator, we proceed as follows:

Multiplying the numerator and denominator of Eqg. (2.18) by

exp(jwT) gives

-C
oo jwT 1 1
H (e )= - (2.21)
C wT
2 (e -1
Since exp(jw'I‘)=1+ij-(wT)2/2—...., then, for wT<<1l, the

terms with second or higher degree can be neglected and Eq.

(2.21) becomes

_8ggl
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H (e Y= T 2.22
jwT C ¢ )
2
Comparing (2.22) and (2.11), it can be observed that

R1=T/C1=1/fcc1 and the Type I DDI integrator becomes equiva~

lent to the analog integrator. Furthermore, a direct compar-
ison of (2.16) and (2.9) indicates that replacement of all

RC integrators by the SC circuit of Fig. 2.2 is equivalent

to replacing s by (l-z-l/Tz*l) provided that the output is
sampled at the end of the odd clock phase. This is the well
known forward-difference(or forward Euler) mapping(1l,3] used
in the design of digital filters from an analog prototype.
The phase shift of the LDI integrator discussed previously
is /2 which is exactly the same as the phase shift of the
analog integrator. However, the phase shift of the Type I
DDI integrator is given by

wT

jwT, «
J =5 -5 (2.23)

Arg Hoo(e
This shows that the Type I DDI integrator has an additional

phase lag term of WT/2 radians. This is the major difference

between the two SC integrators discussed so far.
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2.1.2 Effects of Stray Capacitances

The switched capacitor integrator shown in Fig. 2.2, unfor-
tunately, suffers from a very serious shortcoming, which is
the existence of several stray capacitances between various
nodes(and lines) and ground. This makes the integrated cir-
cuit implementation impractical. The parasitic capacitances

due to the switches M1 and M2 of the SC integrator shown in

Fig. 2.2 is depicted in Fig. 2.4. The most serious problem
caused by switches is the clock feed-through, where a por-
tion of the control voltage appears at the Source and Drain
terminals of the switch. Since the clock signal is making

very large transitions, it can easily couple from the Gate

to Source or Drain through CGS or CGD’ respectively. The

values of cGSl’ cGDl’ CGSZ and CGD2 are usually in the range

of 0.02pF. Therefore, if the effect of feed-through is not
minimized, these capacitances can effeét the performance of
the SC circuit[7,14]. In general, the clock feed-through is
dependent upon the switch configuration and the size of the
capacitors in the circuit. The best technique to reduce its
effect is to use the largest possible capacitors and to keep

the clock swings as small as possible[1l,7,14].

A second important non-ideal characteristics of the MOS
switches are the parasitic capacitances from the Source to
Bulk(substrate) and from the Drain to Bulk, denoted as

CBS and CBD respectively. If the parasitic capacitors are

ae€ct
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Figure 2.4 Illustration of the parasitic capacitances due to

the switches M1 and M2 of the SC integrator shown in Fig.

2.2.
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connected to a voltage source or to a virtual ground of an
op-amp, then they do not affect the performance of the SC

circuit[5]. Therefore, the effects of C and C

BS1 BD2’ 2%
shown in Fig. 2.4 are negligible and the only two parasitic
capacitances that affect the performance of the SC circuit

are cBDl and CBSZ' Furthermore, there exist parasitic capa-

citances from the top and bottom plates of C1 to the Bulk.

However, since the bottom plate of C1 is connected to the

ground, its effect can be eliminated[1]. The parasitic capa-

citance from the top plate of C1 to the substrate is in par-

allel with C and CBSZ' These capacitances are combined

BD1
into a single parasitic capacitance Cp as shown in Fig. 2.5.
They can cause serious error, because C1 is usually small.

In addition to this, Cp can sometimes‘be voltage dependent

which can result into non-linear distortion. Suppose that

the top plate parasitic is 0.1C1 and CBD1=CBSZ=O'lpF' then
an error of 30 percent may be realized if C1 is designed to
be 1pF[1l]. Therefore, if a high accuracy is desired for Cqv

it must be chosen such that Cl>5pF. In general, since

C2>>Cl, a large area is required for this SC integrator[20].

The existence of the above parasitic capacitances has
caused the development of switched capacitor integrators

which are insensitive to parasitic effects[5,23]. The SC
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Vin M1 M2
oy
————— + out
- -1 _
co T ¢
p ! 1
L L 1

Figure 2.5 Switched Capacitor integrator of Fig. 2.2, show-

ing the combined effect of the parasitic capacitances.
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infegrator shown in Fig. 2.6(a) is a stray insensitive ver-
sion of the SC integrator shown in Fig. 2.2. The operation
of this stray-free SC integrator is similar to the operation
of its stray sensitive version, except for the non-inverting
property. Hence the two transfer functions for the stray

insensitive integrator can be written as

Cl -1/2
oe
H (2 = — (2.24)
C -1
2 1-2z
C -1
als] 1 y4
H (Z) = _1 (2.25)
2 1-z

By a similar argument used to derive the relationship
between the analog integrator and the stray-sensitive SC
integrator, it can be shown that the non-inverting parallel
SC branch is equivalent to a negativé resistance. Hence,
under the assumption that wT<<1l, the stray-insensitive SC
integrator is equivalent to the analog integrator shown in
Fig. 2.6(b). Due to this property, the non-inverting paral-
lel SC branch can not be directly used in replacing the
resistors in an active-RC filter. However, as it will be
shown in the next Chapter, the circuit shown in Fig. 2.6(a)
is a very useful building block in the design of SC ladder

filters.
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Figure 2.6 (a) Stray-insensitive SC integrator (b) Analog

integrator with negative resistance.
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The stray-free property was achieved at the cost of two
extra switches. The reason for this insensitivity is due to
the following factors:
Every capacitor terminal is either switched between ground
and voltage source, which are low impedance nodes or between
ground and a virtual ground which are both at the same
potential. Hence, they do not affect the performance of the

SC integrator[20].

Furthermore, in the case of strayFinsensitive SC integra-

tor, the capacitors C1 and C2 need not be much larger than

the parasitic capacitances. However, they should still be
much larger than the capacitance between the lines leading
to their electrodes which varies between 1-5 fF

15

(1 fF=10" ""F). This allows C1 to be chosen as small as O.1pF

which leads to a reduction of 10-50 in. size with comparison
to the stray-sensitive integrators. In addition to this,
the accuracy is highly improved and the errors can be

reduced to 0.1-0.5 percent[20].

2.1.3 Design Example

The concept of parallel SC resistor simulation to design SC
filters from active-~RC prototypes will be demonstrated by an
example. The interested reader may refer to reference [1]

for further details.
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Example 2.1

Consider the Tow-Thomas three op-amp biquad shown in Fig.
2.7.
This circuit has both low-pass and band-pass transfer func-

tions simultaneously available at Vl and V2, respectively.

The transfer functions in the continuous domain are given

by[17]
~(r /r )
Vv 2 l'RaR CSCG;
H S)= =
n v c (2.26)
in 2 _1 2 1
S + S+
RC r RR CC
15 1 23 56
and
.
- s
V2 Rz.Cs
H S) = =
o) v R < (2.27)
in 2 ] 2 1
s + S+

RC r RR.CLC
15 1 23 56

The ideal design equations for this network are

r
R 2 L
2 "r 2 (2.28)
1 wR CC
0 356
Q__
R =
| w C (2.29)
o 5
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Figure 2.7 The Tow-Thomas circuit.
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2
r wR
R 123 for H 2.30
= 0. .
4 r b d LP ( )
2 o
or
R l f
= or H .31
4 blCS BP (2 )

where bo and b1 are the gain constants of the low-pass and

band-pass filters respectively.

Suppose that we wish to design a switched capacitor low-
pass filter using the Tow-Thomas circuit for a given filter
specifications. First, we design the normalized filter and
then perform the necessary magnitude and frequency scaling
to meet the required specifications. This makes the design

more general.
For a normalized low-pass filter with wo=1 rad/sec,
assume that r2=r1=1 Ohm, CS=CG=1 F and R3=1 Ohm. Computing

R2 and R1 using equations (2.28) and (2.29), we obtain; R,=1

2

Ohm and R1=Q Ohms. Furthermore, assuming a maximum gain of

1, then, bo=wg and R4 is computed from Eg. (2.30) as 1 Ohm.

Now, suppose that the given specifications require a low-

pass SC filter with w°=1000 rad/sec, Q=5 and a maximum gain

of 1.
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In this design technique of SC filters, it is not neces-
sary to perform magnitude scaling since all the resistors
are replaced by SC equivalent branches and all the capaci-
tances are usually normalized with respect to the smallest
capaéitancé of the circuit. This smallest capacitance is

usually named as the unit capacitance Cu which ranges

between 0.5pF and 2pF, depending on the technology used. To
replace the resistors by their equivalent branches, we have
to calculate the capacitance associated with each branch
using Eqg. (1.10). Furthermore, we have to choose the sam-
pling frequency such that wT<<1l.

Choice of fc=100 KHz guarantees that wT<<1l. Next, applying a
frequency scaling of kf=1000 to the capacitances c5 and C6

gives

Cg=C¢=1/1000 F

The capacitances associated with each SC equivalent branch
are calculated as

Cc;=(1/Ry£_)=1/500,000 F

C,=(1/R,£_)=1/100,000 F

C3=(1/R3fc)=1/100,000 F

C4=(1/R4£_)=1/100,000 F
Since the minimum capacitance is Cl’ then all the capaci-
tance values are normalized with respect to Cl. This gives

the following normalized capacitance values

8€Cl
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C1=Cu
C2=SCu

C =SCu

3

Cc =5Cu

4

CS=SOOCu

Ce

=SOOCu

The switched capacitor realization of the Tow-Thomas circuit
is shown in Fig. 2.8. It should be noted that the last op=-
amp section of the Tow-Thomas circuit behaves as an invert-
ing amplifier. One of the advantages of SC filters in com-
parison to active-RC filters is the ability to invert a
signal without requiring additional amplifiers. For the Tow-
Thomas circuit, this inversion was accomplished simply by
replacing the summing resistor with a non-inverting parallel
SC equivalent branch. The exact transfer functions of this

SC filter are found by applying the law of conservation of

charges as[1]

-2
Vv -A A
LP 1 2Z
H(z) = v = 1 2 (2.32)
in 1-(2-A )z +H1+A A -A)z
3 ¢ 1 2 2
v -1 -l
H(z) = 8P _ ~Az (l-z )
v (2.33)

. -1 -2
in 1-(2-A )z +(1+tA A -A)z
3 ¢ 1 2 2
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Figure 2.8 Switched Capacitor realization of the Tow-Thomas

circuit using parallel SC equivalent branches.
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where A=C4=/C5,A1=C4/C3,A2=CZ/C6 and A3=C4/C1

2.2 Series SC Resistor Simulation

2.2.1 Operation and Analyses

A second type of SC integrator which is commonly used as a
building block in the design of SC filters makes use of a
series SC equivalent branch to simulate a resistor. This
circuit is shown in Fig. 2.9. The clock waveforms used for
driving the switches are sho.wn in Fig. 1.2. Using the con-
servation of charge analysis as explained in Section 2.1.1,
the operation of this circuit is analyzed as follows:

At t=(n-3/2)'1‘+t1, ¢, goes high and switch Sl is closed,

while just before this time, switch S2 has already opened.

During this time, C1 charges to the instantaneous value of
Vin(n-l). A current flows through C2 "in the direction as

indicated in Fig. 2.10(a). This implies that the charge on

C2 changes by an amount equal to the charge deposited on Cl.
At t=(n-1)T+t1, ¢, goes high. This makes a short circuit
across the terminals of C1 which will be discharged com-
pletely. Since switch S1 is closed during this time, C2

maintains the charge acquired from the previous state.
At t=(n-1/2)T, the charge distribution due to one full peri-
od is complete and the charge transfer repeats in a similar

fashion for all the other periods.
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Figure 2.9 Switched Capacitor Integrator using a series

equivalent branch for resistor simulation.
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Figure 2.10 Operation of the switched capacitor integrator
of Fig. 2.9; (a) during odd phase (b) during even phase (c)
Equivalent circuit for the capacitors showing the charge

storage at t=(n-1)T and (d) at t=(n-1/2)T
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To obtain the difference equation characterizing the per-
formance of this circuit, the conservation of charge law is
applied at node A. The equivalent circuit showing the dis-
tribution of charges is shown in Fig. 2.10(c) for t=(n~1)T.

This difference equation is given by
C,V (n-1) + C,Vo(n-1) - C.V® (2.34)
1Vin + GV (n-1) - C,V (n-3/2) =0 .

At t=(n-1/2)T, the conservation of charge law at node A

gives
e o]
C?_Vo(n-l/2) - szo(n—l) =0 (2.35)

The equivalent circuit showing the charge distribution at
this instant is shown in Fig. 2.10(d). Taking the

z-transform of both sides of equation (2.34), we obtain
-1..0 -1..0 -3/2 e
- = 2.36
Ciz Vi (@ +Cyz 'V (2)-Cyz V(@) =0 ( )

Multiplying both sides of equation (2.36) by z gives

o o ~1/2 e
CyVin(@ + Cv (@) - C,z "V (@=0 (2.37)

Next, taking the z~-transform of both sides of Eq. (2.35) and

multiplying by zl/z, we obtain
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-172
Vi(2) = z V() ' (2.38)

Using Eqg. (2.38) to eliminate Vg(z) in Eq. (2.37) gives the

following transfer function

oe

Ho@) = 4 -_— (2.39)
o C
V. (2) 2 1l-z
n

Moreover, if we use Eg. (2.38) to eliminate Vi(z) in Eq.

(2.37), the following transfer function is obtained

Hoz = 22— ._L1 L (2.40)

The transfer function given by Eq. (2.39) is identical to
the one given by Eqg. (2.8). Therefore, by the same argument
presented in Section 2.1.1, sampling the output of the SC
integrator at the end of even clock phases realizes the LDI
transformation. This shows that the SC integrator shown in
Fig. 2.9 is equivalent, in operation, to the SC integrator
shown in Fig. 2.2, provided that their outputs are sampled

at the end of even clock phase.

On the other hand, if the output of the SC integrator
shown in Fig. 2.9 is sampled at the end of odd clock phase,

the transfer function given by Eg. (2.40) is obtained. Com-
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paring this transfer function with the one given by Eq.
(2.9), it can be observed that no delay exists in the for-
ward path. This type of integrator is called Type II Direct
Transform Discrete Integrator(DDI). To observe the charac-
teristics of this integrator, we proceed as follows:

Substituting z=exp(jwT) into Eq. (2.40) gives

(2.41)

After multiplying the numerator and denominator by exp(jwT)

and simplifying, Eq. (2.41) becomes

-C
H%™Ty = = |—2— | cxp(iw/ (2.42)
B wT C wT exp(wT/2) ’
2 | sin( ” )

The phase shift of Type II DDI integrator is given by the

following equation

)_£+wl
2" 2 (2.43)

Arg Hoo e jwT

A comparison of (2.42) and (2.19) shows that the magnitude
of Type II DDI integrator is the same as the magnitude of
Type I DDI integrator. The only difference is the leading

phase shift instead of a lagging one.
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By Euler's formula, exp(;ij)=1-jwt-(wT)2/2+... . For

wT<<l, the second and higher order terms can be neglected,
therefore Eg. (2.41) can be written as

0o jwT 1 1
H (e ) = c i (2.44)

Comparing (2.44) with Eq. (2.11), it is easily observed that

R1=(T/Cl)=1/fcc1 and the Type II DDI integrator becomes

equivalent to the analog integrator as shown in Fig. 2.1.
Furthermore, if we compare Eq. (2.44) with Eq. (2.16), we

can conclude that, replacement of all RC integrators by the

circuit of Fig. 2.9 is equivalent to replace s by (1-z-1/T),
provided that the output is sampled at the end of odd clock
phase. This is recognized as the backward-difference
(backward~Euler) mapping[1,31] used in the design of digital

filters from an analog prototype.

Unfortunately, the series equivalent branch used in the
SC integrator shown in Fig. 2.9 is stray sensitive due to
the reasons explained in Section 2.1.2. The stray insensi-
tive version of this integrator which has been extensively
used in the design of SC filters[3,8,12,26,27] is shown in
Fig. 2.11. The transfer functions of this integrator are

also given by equations (2.39) and (2.40).
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Figure 2.11 Stray-insensitive version of the switched capa-

citor Integrator shown in Fig. 2.9
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2.2.2 Switched Capacitor Filter Design Using Series SC Resistor
Simulation

As was mentioned in the previous Section, replacement of
resistors in an active-RC filter by series equivalent
branches is equivalent to applying the backward-difference
mapping to the transfer function of an active-RC filter.
This mapping, unlike the forward-difference mapping, trans-
forms a stable RC active filter into a stable SC filter.

Assuming that a sample-and-hold circuit (S/H)i is cascaded

with an SC filter as shown in Fig. 1.3, the resulting trans-

fer function denoted by HRE(W) becomes[1]

sin wT
HreMW) = Hiw) =5 (2.45)

where H(w) is the transfer function of the SC filter
obtained from the transfer function of the active RC-
prototype by the direct application of the backward trans-
formation and sin(wT)/wT is the spectrum for a zero order
sample-and-hold circuit as shown in Fig. 2.12. The design
procedure is similar to the one presented in Section 2.1.3.
However, as was mentioned earlier, this design is accurate
only when wT<<1. When the signal frequency is not much
smaller than the sampling frequency, a set of prewarping
equations based on a prewarping algorithm can be used to
obtain more accurate results. The interested reader is

referred to pages 193-194 of reference [1] for further
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Figure 2.12 A zero-order sample-and-hold circuit.
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details. The design of SC filters based on series SC resis-
tor simulation will be demonstrated by an example.

Example 2.2

Consider the Delyiannis-Friend bandpass circuit [38] shown
in Fig. 2.13

The continuous domain transfer function of this circuit is

given by

H(s) = ) (2.46)

Assuming that 03=C4=C the center frequency LR and the selec-

tivity Q are given by

w =
o o/RR (2-47)
R
Q:'l‘ —2 (2.48)
2 R

R,=40? , = (2.49)

8€¢C!}




I
2
oL
I

Figure 2.13 Delyiannis-Friend band-pass filter.
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Suppose that we are asked to- design a bandpass SC filter

using series SC equivalent branches with wo=1000 rad/sec,

Q=4 and a sampling frequency of 100 KHz. Using the
Delyiannis-Friend circuit as the active RC-prototype, the

component values are calculated using equation (2.49) and

(1.9) as
—a02
R,=4Q“=64 Ohms
C=c3=c4=(1/2w°Q)=1/8000 F

By Eq. (1.9), the capacitances associated with each resistor

branch are calculated as

¢;=(1/R,£_)=1/100,000 F

5
CZ=(1/R2fC)=1/64x10 F

Normalizing all capacitances with respect to CZ, we obtain
Cl=64cu
Cz=cu
Cc=C

=C =800Cu

3 74
The desired SC filter which is shown in Fig. 2.14 is

obtained by replacing R1 and R2 with the stray-insensitive

series equivalent branches. The transfer function of this

SC filter is obtained by using the backward transformation,

s=(1-z-l/T) in Eq. (2.46). After simplification, we obtain

8g€c¢t
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Figure 2.14 Switched capacitor implementation of Fig. 2.13
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HE) = - (2.50)
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cc cc 2
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2

where T=1/fc. The exact transfer function can be obtained by

applying the law of conservation of charges.

2.3 Bilinear SC Resistor simulation

2.3.1 Operation and Analyses

Consider the SC integrator shown in Fig. 2.15(a). With a
similar discussion presented in the previous Sections, the
circuit is analyzed using the law of conservation of charg-
es. At t=(n-1)T, the conservation of charge law at node A
gives

o e o e
CyVin(h-1) - C,V;(n-3/2) + C,V (n-1) - C,V (n-3/2)=0 (2.51)

1'in
Taking the z~transform of both sides of Eq. (2.51), we

obtain

-1 0 -3/2. e -1, 0 -3/2. e
Ciz Vi(@-C)z Vin(@ + Cyz 'V (2) -~ C,z V (2)=0 (2.52)

Multiplying both sides by z gives

o, - -1/
C,V;,(@-C,z

2. e fa} -1/72 e
Vin(z) + szo(z) - sz Vo(z) =0 (2.53)
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Figure 2.15 (a) Bilinear SC integrator (b) Equivalent cir-
cuit for the charge distribution at t=(n-1)T (c) Equivalent

circuit for the charge distribution at t=(n-1/2)T
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At t=(n-1/2)T, the law of conservation of charges at node A
yields
e

o e ]
Clvin(n'llz) - Clv.m(n-l) + szo(n—l/2) - szo(n-l) =0 (2.54)

Taking the z-transform of both sides, we obtain

-1/2 e -1 0 ~-1/2 e -1 o
Ciz "V @d-Ciz v, (@) + Cpz " V(2)-Cyz 'V (2) =0 (2.55)
. . . 1/2 _.
Multiplying both sides by z yields

-1/2_ 0

e ~-1/72 o e
Vin(z) + C2V o(z) - sz Vo(z) =0

C,V. -

1Vin(? - C,2 (2.56)
The equivalent circuit for the charge distribution at these
two phases are shown in Fig. 2.15(b) and 2.15(c) respective-
ly. 1If the output is sampled at both the even and odd phas-

es, the transfer function of the SC circuit can be obtained

by summing equations (2.53) and (2.54) and can be written as

o] e
Vo(z) V sV c:1 , -1/2
[o] o] +2Z
H(z) = = = —
V. (2) o e C -1/72 (2.57)
in V. +V, 2 1-z
in n

This SC integrator operates somehow different than the SC
integrators presented in the previous Sections. The first
obvious difference is in the charge transfer of +the SC

equivalent branch. The capacitor: C1 is discharged and
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charged twice at every clock .period T. The second obvious
difference is in the definition of the transfer function of
the circuit. Unlike the previous integrators, the transfer
function of this circuit is obtained by sampling the output
at both phases. This doubles the effective period. There-
fore, in order to establish a basis of comparison, a new

period is defined as
=T ) ,
Ty=% (2.58)
Defining a new discrete frequency as zl=exp(ij1), then,
from equation (2.58), this new discrete frequency can be
written as
z2,=2

(2.59)

Substituting (2.59) into (2.57) gives the following transfer

function

(2.60)

Substituting zl=exp(ij1) into Eg. (2.60), we obtain

8gclt
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T, < 1+eJWTl (2.61)
H(e ) = - :
C2 -ij1
t-e

Multiplying both sides of Eg. (2.61) by exp(ijl/Z) gives

. jwT /2 —j
wT -C [ ) 1 JWTI/Z}
H(e l) . —lle te
C (Wl /2 —jwT/9 (2.62)
2 1 1
€ -e

Equation (2.62) can be written as

ijl -C : cos(le /2)
H(e ) =7 (2.63)
]Cz sin(wT 1 /2)

For wT<<1], sin(le/Z)‘-'le/z and cos(wT1/2)=1. Therefore, Eq.

(2.63) becomes

wT -2C
1 1

)=
wT C-
1 2

(2.64)

A direct comparison of Eq. (2.64) and (2.11) shows that the
SC integrator shown in Fig. 2.15(a) is approximately equiva-

lent to the active-RC integrator of Fig. 2.1 when R1=T1/2C1.

Substituting this value of R1 into Eg. (2.10) gives

~-2C
1

sTC
1 2

H(s) = (2.65)
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Comparing Eg. (2.65) with (2.60) shows that replacement of

all RC integrators by the SC circuit of Fig. 2.15(a) is
equivalent to repalacing s by 2(1-z11)/T1(1+zil). This is

the well known Bilinear Transformation which is very widely

used in the design of digital filters from an analog model.

With the information given in Section 2.1.2, it can be
shown that the Bilinear SC equivalent branch shown in Fig.

2.15(a) is stray-sensitive to parasitic effects.

2.3.2 Switched Capacitor Filter Design Using Bilinear Resistor
Simulation

The design of SC filters based on the Bilinear SC resistor
simulation is similar to the previous design techniques
except for a few differences. The Bilinear Transformation
transforms stable active~RC filters into stable SC filters.
This property is shared with the backward difference trans-
formation. In discrete filter design it is preferable that
the transformation used maps the imaginary jw-axis of the
s-plane onto the unit circle of the z-plane. This makes sure
that the shape of the gain response can be preserved[17,31}.
The Bilinear Transformation, unlike the backward difference
mapping, satisfies the above property. However, due to the
non-linear relationship between the discrete and continuous
filter frequencies introduced by the Bilinear transforma-
tion, the SC filter specifications has to be prewarped. For

the backward difference transformation, this was not neces-
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sary when wT<<l. Details of prewarping for different trans-

formations will be studied in detail in Chapter 3.

A general procedure for the design of SC filters based on
an element by element resistor simulation in analog RC fil-
ters using the Bilinear transformation is presented
below([1].

1. The desired passband and stopband limit frequencies, wd's
»

of the SC filter are prewarped to obtain the correspond-

ing Qa's of the active~RC prototype filter, using the
relation

w T
Q z tan ( ¢ ) 2.66
= an .
a T 2 ( )

2. The active-RC prototype is designed from the prewarped

specifications using Qa's.
3. Each resistor Rm in the active RC circuit is replaced by

the Bilinear SC equivalent branches, where Rm is given by

T
R =1 (2.67)
m 2C_

Since T1=T/2, where T is the sampling period, Rm becomes

8ECl




m 4Cm

For design examples and further details,

referred to reference [1].
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(2.68)

the reader

is
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Chapter II1
SWITCHED CAPACITOR LADDER FILTER DESIGN

In the previous Chapter, we have presented the conceptually
simplest design technique of SC filters. Unfortunately, for
higher order and more complicated filters, some of the
required pole-Q's are usually very high and the element wval-
ue sensitivities of the corresponding section become too
high for reliable fabrication. This leads to a very low

yield and the circuit becomes uneconomical for fabrica-

tion{[20].

The most widely used SC filter design is based on the
signal-flow-graph(SFG) representation of the current-voltage
relations of a passive ladder prototype filter. The proto-
type filter used is usually a doubly-terminated LC ladder
network that is designed to effect maximum power transfer
from source to load over the filter passband. These filters
have very low sensitivities to variations in their component
values. It has been shown [5,23] that this low sensitivity
is preserved in the switched capacitor filters whose design
are based on the SFG representation of these ladder proto~

type filters.

- 61 -
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In this design technique, .the SC filter is obtained by
replacing each reactive component of the SFG by SC building
blocks. For the low-pass and band-pass SC ladder filters,
the building blocks used are either LDI or Bilinear SC inte-
grators which have been presented in Chapter 2. Replacing
the reactive components by the SC integrator building
blocks, actually corresponds to applying the LDI or Bilinear
transformation(depending on the type of SC integrator used)
to the transfer function of the passive prototype ladder
filter[1,5,8,11,12,26,27,28]. Unfortunately, these two
transformations can not be directly used to design SC high
pass ladder filters[4,21,22,29,34,35]. In the following
Sections, we shall present the use of different transforma-

tions in the design of SC ladder filters.

3.1 Use of LDI Transformation in the Design of SC Ladder Filters

3.1.1 Properties of LDI transformation
The LDI transformation was introduced in Chapter 2 and is

repeated here for convenience
1 172 -1/
s=3(z -z 2} (3.1)

where 1/T is the sampling frequency. This transformation
maps part of the imaginary axis (-2/T<Q<2/T) in the s-plane
onto the unit circle in the z-plane. The relationship

between the continuous-time frequency 2 and the discrete-
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time frequency W can be found by letting s=0+jQ and

z=exp(jwT) in Eq. (3.1). This gives
. L2 . T,
O’+jQ=]?Sln(!'2v_) (3.2)

Equating the real and imaginary parts yields

o =0 and Q:%sin(vzv—T) (3.3)

Equation (3.3) shows that the continuous time frequencies
are not linearly related with discrete frequencies. This
property of the LDI transformation requires the SC filter
specifications to be "prewarped" according to Eqg. (3.3). The
warping effect of Egqg. (3.3) is shown in Fig. 3.1. On the
same graph, the @=w curve has been also plotted for compari-
son. From Fig. 3.1, it can be observed that the effect of
warping increases as WwT approaches =, because the non-

linearity of the curve increases in this region.

The Lossless Discrete Integrator transfer function is

given by[6]

4
H @ =P =p T (3.4)

where P is a constant. It has been shown in Section 2.1.1
that, if the output of the SC integrator shown in Fig. 2.2

is sampled at the end of even clock phase, the transfer
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Figure 3.1 Warping effect of the LDI transformation
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function becomes identical to the LDI transfer function.
However, it has been shown in Section 2.1.2 that this SC
integrator is sensitive to parasitic effects. In the same
Section a stray-insensitive version of this integrator was
also presented. The transfer function of the stray-
insensitive integrator which is shown in Fig. 2.6(a) 1is

repeated here for convenience.

N

(3.5)

Comparing Eqg. (3.4) and (3.5) shows that the two transfer
functions become equivalent by choosing P equal to the capa-

citor ratio cl/CZ' Therefore, the stray-insensitive SC inte~

grator shown in Fig. 2.6(a) actually realizes the LDI trans-
fer function. The general design of SC. ladder filters based
on the LDI transformation is studied in the following Sec-

tion.

3.1.2 Design of SC Ladder Filters Based on the LDI Transformation

3.1.2.1 Low-Pass SC Ladder Filters

The following design procedure for the design of low-pass SC
ladder filters has been compiled from various references
[1,5,8,11,12,26,27,28] and put into a compact form. Suppose
the following SC low-pass filter specifications:

Amax: maximum attenuation in the passband region
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Amin: minimum attenuation.in the stopband region
wp : passband edge frequency
LA stopband edge frequency

Step 1

Obtain the low-pass continuous filter specifications ©_ and

Qs by prewarping wp and W according to Eq. (3.3).

Step 2
Transform the low-pass continuous filter specifications into
the normalized low-pass continuous filter specifications by

using s=S/SZp transformation.

Step 3
Design the low-pass continuous filter by using the trans-

formed specifications in step 2.

Step 4
Apply S=s/$2p transformation to the low-pass continuous fil-

ter of step 3 to obtain the denormalized low-pass continuous

ladder prototype.

Step 5
Obtain the SFG of the low-pass continuous ladder filter

obtained in step 4.
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Step 6

Realize the resistive source termination and the reactive

components of the SFG using the method explained below.

To demonstrate the above design procedure, suppose that
for a given SC low-pass filter specifications, the applica-
tion of steps 1 through 4 has resulted in a 4'th order all-
pole low-pass ladder prototype as shown in Fig. 3.2(a). The
reactive components are thé shunt- capacitors and series
inductors. The source termination is the resistive component
which is connected at the input port. The load termination
is the resistive component located at the output port. There
are several techniques to obtain the signal~-flow-graph(SEG)
of a ladder structure. The interested reader may refer to
the references[17,25,33,38] listed in the bibliography. In
this thesis, we have used the techniqﬁe presented in refer-
ences [17,18], where all series elements or combination of
elements are represented by their admittances and all shunt
elements or combination of elements are represented by their
impedanées. The SFG of the 4'th order low-pass doubly termi-
nated ladder filter shown in Fig. 3.2(a) 1is obtained as
follows:

First, the voltage and current relations for the circuit are
obtained such that loop and node equations involve only

integrations. These relations are shown below.

v, o=V -V (3.6a)
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- _S '
1 = = | (3.6b)
1, = I_-I, (3.6¢)
v, = sél (3.6d)
1L
I, = SZ§L (3.6e)
V, = V-V, (3.6f)
I, = I,-I, h ' (3.69)
vy = 523 (3.6h)
3L
v
1, = SLZL (3.61)
V, = V3-Vg (3.63)
Vg = IRy | (3.6Kk)
vV, = Vg (3.61)

Using the above voltage current relations, the signal-flow-
graph is obtained as shown in Fig. 3.2(b). Each node (volt-
age or current) is defined by the signal paths flowing into
it. The factor written next to each arrow is the gain of the
path. Each reactive component corresponds to an analog inte-
gration. Since the actual implementation will use wvoltage
controlled voltage sources (operational amplifiers) as inte-~
grators, it is necessary to transform the current nodes to

voltage nodes. This is accomplished by multiplying all cur-
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rent nodes by a scaling resistance R so that the currents Ii

1
are now represented as voltages Vi=RIi. In order to maintain

the proper relationships between the voltage and current
nodes, the gain factors must also be scaled by a factor of
R. The final form of the SFG which is used in the design of

SC low-pass ladder filters is shown in Fig. 3.2(c).

The next step in the design is to replace the reactive
components of the SFG shown-in Fig.  3.2(c¢) by differential
input switched capacitor LDI integrators as shown in Fig.
3.3(a). The realization of the source and load terminations
is one of the major difficulties in the design of SC ladder
filters. One realization technique is to use series or par-
allel SC equivalent branches across the feedback of the
first and the last SC LDI integrator building blocks[8,12].
Such a building block is shown in Fig. 3.3(b). However,
when this is done, the overall transfer function of the SC
network becomes different from the transfer function of the
low-pass SC ladder filter, which is obtained from a continu-
ous filter prototype by the direct application of the LDI
transformation. This wvariation in the transfer function
causes a distortion in the magnitude response of the SC fil-
ter. Davis et. al.[l1l2] proposed a solution to the above
problem by solving a set of non-linear equations using
numerical techniques. However, discussion of these features

is beyond the scope of this thesis.
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(a) A differential input SC LDI building block.

(b) Modified LDI building block to realize the resistive

source termination.
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3.1.2.2 Band-Pass SC Ladder Filters

The design of SC band-pass ladder filters based on the LDI

transformation is similar to the design of SC low~pass LDI
ladder filters. The design procedure for geometrically sym-

metric band-pass ladder filters is shown below.

Suppose the following SC low-pass filter specifications:

Amax : maximum attenuation in the passband region
Amin : minimum attenuation in the stopband region

wpl’wpz: passband filter frequency

WgqrWgo'! stopband filter frequency

Step 1

Obtain the band-pass continuous filter specifications ﬂpl'

sz, Qsl and Qsz by prewarping w w

pl’ "p2‘ Vs1 and Ws2

according to Eg. (3.3).

Step 2

Make the prewarped specifications geometrically symmetric,

such that

Q

p19p2=gslﬁ

—a2
sz—Qo

Hence obtain the normalized low-pass continuous filter spec-

ifications.

Step 3

Design the low-pass continuous filter by using the trans-

formed specifications in step 2.
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Step 4

2

Apply S=(s +Q§)/sB transformation to the low-pass continuous

filter of step 3 to obtain the band-pass continuous ladder

prototype, where

B=Q

p2%

Pl

Step 5
Obtain the SFG of the band-pass continuous ladder filter

obtained in step 4.

Step 6
Realize the resistive source termination and the reactive
components of the SFG using the method explained for the

design of SC low-pass ladder filters.

For further details, the reader is referred to Chapter 4 of

reference [1].

3.1.2.3 High-Pass SC Ladder Filters

The design of high-pass LDI ladder filters have been studied
by Taylor et. al.[34,35] and Baher[4]. Baher[4] has shown
mathematically that the basic LDI building blocks are capa-
ble of providing high-pass filters with amplitude selectivi-
ty. However, these filters cannot be obtained from a lumped
prototype. Beside this, the design technique requires the
use of damped building blocks for the realization of resis-
tive source and load terminations. These are conventional

SC blocks with series or parallel SC branches on the feed-
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back path. As was mentioned in the previous Sections, the
use of damped building blocks for realizing resistive source
and load terminations results in distortion of the magnitude
response of the SC filter. Such a distortion is completely

undesirable.

The design procedure of Taylor et. al.[34,35] makes use
of unit element prototypes. To obtain SC high-pass LDI lad-
der filters, Taylor et. al. cascades each unit element in
the low-pass prototype with a gyrator of the same impedance.
However, with this design technique, the selectivity of the
high-pass filter will in general be poorer that the desired
one. Furthermore, their method is not applicable to the

design of elliptic SC ladder filters[35].

3.2 Use of Bilinear Transformation in the Design of SC Ladder Filters

3.2.1 Properties of Bilinear Transformation

The bilinear transformation given by Eq. (3.7), unlike the
LDI transformation, maps the entire imaginary axis of the
s-plane onto the unit circle of the z-plane. Hence, the

frequency warping effects are different.

(3.7)

The relationship between the continuous-time frequency 2 and
the discrete frequency w can be found by letting s=0+jQ and

z=exp(jwT) in Eg. (3.7). This gives
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o+i2 = % tan (35 | (3.8)

Equating the real and imaginary parts yields

2 wT,
=0 and Q=Ttan(3_—) (3.9)

Since the continuous-time and discrete-time frequencies are
not linearly related, the Sé filter specifications have to
be "prewarped" according to Eg. (3.9). The warping effect of
Eg. (3.9) is depicted in Fig. 3.4. 1In the same figure, the
curve showing the warping effect of the LDI transformation
has also been plotted for comparison. It can be observed
that the warping introduced by the bilinear transformation

is greater than that of LDI transformation.

The bilinear discrete integrator transfer function is

given by(6]

=P

z 3.10
Bilinear( ) -1 ( )

where P is a constant. It has been shown in Section 2.3
that, if the output of the bilinear .integrator shown in Fig.
2.15(a) is sampled at both phases, then the transfer func-
tion becomes identical to the bilinear discrete integrator
transfer function. However, this circuit is sensitive to

parasitic effects. Many stray insensitive building blocks
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Figure 3.4 Warping effect of the Bilinear transformation
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that realize the bilinear transfer function is available in
the literature[21,27,28,29]. One such building block pro-

posed by Lee et. al.[28] is shown in Fig. 3.5.
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Figure 3.5 First order low-pass SC building block realiz-

ing the bilinear transfer function.
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3.2.2 Design of SC Ladder Filters. Based on the Bilinear
Transformation

Several design techniques have been proposed for the design
of SC ladder filters using the bilinear z-transformation.
However, the discussion of these methods is far beyond the
scope of this thesis. One of the methods utilize the same
procedure given in Section 3.1 for the design of SC low-pass
and band-pass ladder filters wusing the LDI and Bilinear
transformations. The buildiﬁg block shown in Fig. 2.15(a),
though stray-sensitive, can be used for realizing the reac-

tive components of the prototype SFEG.

A unique problem exists in the design of bilinear high-
pass (and band-stop) filters[20]. Gregorian et. al.[20] say
that, for an input sample-and-hold signal of discrete fre-

quency f=fc/2, the input branch does not transmit any charge

to the first op-amp for z=-~1. Therefore, for a high-pass

response, which requires V (z) to be non-zero at z=-1, the

out
transfer impedance of the rest of the circuit must be infi-
nite. This causes instability if the high-pass ladder filter
is designed using the design procedure presented in Section
3.1. This problem has been overcome by using impedance scal-

ing[21,28].

In the design method proposed by Lee et. al.[28] for the
high-pass SC ladder filters, some of the branches used were

stray-sensitive. This 1is definitely undesirable. Lin et.

ecel
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al.[29] have proposed a circuit technique to transform the
high-pass filter proposed by Lee et. al.[28], into a stray-

insensitive one. However, no details are given.

On the other hand, the method proposed by Hokenek
et.al.[21], uses stray-insensitive SC branches, however, the
design procedure is not as direct as the one that we shall

propose in Chapter 4.

3.3 Use of MLDD Transformation in the Design of SC High-Pass
Ladder Fillers

3.3.1 Properties of the MLDD Transformation

'fhe modified lossless discrete differentiator(MLDD) trans-
formation given by Eq. 3.11, was originally proposed by Bru-
ton[6] for the purpose of realizing low-sensitivity high-

pass leapfrog digital ladder filters.

-1/2 -3/2
s = 2 z 4
T 2 (3.11)
1+2

where 1/T is the sampling frequency. To see the effect of
this transformation on the design of SC high-pass ladder
filters, we let s=0+j and z=exp(jwT). Hence Eqg. (3.11)

becomes

2 sin(w1/2)

o+)§2 =] T cos(wT) (3.12)
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where 2 and w are the continuous and discrete angular fre-

quencies respectively. Equating the real and imaginary

- parts of Eq. (3.12) gives

_ _2 sin(wT/2)
=0 and Q_T cos(wT) - (3.13)

The plot of Eq. (3.12) in Fig. 3.6 shows the warping effect
of the MLDD transformation. Note that this curve is com-
- pletely different from the Qarping_curves for bilinear and
LDI transformations in the sense that MLDD transformation
exhibits non-linearity when wt approaches =/2, whereas the

LDI and bilinear transformations exhibit non-linearity when

wT approaches =.

The MLDD transfer function[6] is given by

-1/2  -3/2
H (2 =p ¥4/@8%— ' (3.14)
mldd -3/2
1+z

where P is a constant. The switched capacitor realization of
the MLDD transfer function was originally realized by Horio
et. al.[22]. Switched capacitor, MLDD building blocks pro-~
posed by Horio et. al.[22] is shown in Fig. 3.7. If the
output of this SC building block is sampled at the end of

clock phase 2, then, its transfer function can be written

as[22]
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I
i
2
o ¢~ " b2~ h>\\\\\g
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os —|—¢1 i ' - Vout
5 =

Figure 3.7 Stray-insensitive MLDD building block of Horio

et.al. with two op-amps.
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v t(Z) (3l -172 =372

oe ou Z -Z

H (@ = . = (3.15)

(V?(z)—VZ(z)) % 1.z

where Cl/Cz=2C4/CS, Cl=cla and inputs are sampled-and-held

signals. In addition to the two op-amp MLDD building block,
Horio et. al. have also proposed a single op~amp MLDD build-
ing block as shown in Fig. 3.8. However, it can easily be
observed that the top plates of the capacitprs used in this
single op-amp configuration- are stray-sensitive. Further-
more, two of the feedback caﬁacitors.have floating nodes and
the op-amp has an open feedback path between switching
intervals. These factors make such a configuration physical-

ly unrealizable.
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)

1
S T / Vout

Figure 3.8 Single op-amp MLDD building block of Horio et.

al..

8ECI



86

3.3.2 Design of High-Pass Ladder Filters based on the MLDD
Transformation

First of all, it should be pointed out that the design pro-
cedure proposed by Horio et. al. for the design of SC high-
pass ladder filters using the MLDD transformation is very
loosely stated. In the next Chapter, we shall propose a new
and more concrete design procedure for the design of high-

pass ladder filters based on the MLDD transformation.

In the realization by Horio et. al., the resistive source
termination of the analog ladder filter is realized using a
stray-insensitive parallel feedback path across the first
building block. As was mentioned earlier and as it will be
shown in the next Chapter, such a realization results in a
very large distortion in the magnitude response of the SC
filter. This distortion can be completely removed by a new
realization technique that will be  proposed in the next

Chapter.

- BETL.



Chapter 1V
A NEW SWITCHED CAPACITOR HIGH-PASS FILTER
REALIZATION USING THE MLDD TRANSFORMATION

The properties and application of the MLDD transformation to
the design of SC high-~pass ladder filters have already been
discussed in Section 3.3. In this éhapter, a new switched
capacitor realization for the design of SC ladder filters
using the MLDD transformation is proposed. By realizing the
resistive source termination of the continuous filter proto-
type with a special delay-free circuit, a much superior mag-

nitude response is obtained[32].

4.1 Design Procedure

Suppose the following SC high-pass filter specifications

Amax: maximum attenuation in the passband region
Amin: minimum attenuation in the stopband region
wp : passband edge frequency
L stopband edge frequency

With the above specifications, a switched capacitor high-

pass ladder filter is designed using the following steps:

- 87 =
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Step 1
Obtain the high-pass c¢ontinuous filter specifications

R and Qs by prewarping w_ and Wy according to:

p p
Q=g_sin§wT£2)
T cos(wT)

Step 2
Transform the high-pass continuous filter specifications
into the low-pass continuoqs filter specifications using

s=9p/s transformation.

Step 3
Design the low-pass continuous filter by using the trans-

formed specifications in step 2.

Step 4

Apply S=9p/s transformation to the low-pass continuous fil-

ter of step 3 to obtain the high-pass continuous ladder pro-

totype.

Step 5

Obtain the SFG of the high-pass continuous ladder filter

obtained in Step 4.

Step 6
Realize the resistive source termination and the reactive
components of the SFG using the method explained in the fol-

lowing Sections.

8gcl
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4.2 SFG Synthesis of High-Pass SC Ladder Filters

Consider the signal flow graph of an even, n'th order high--

pass continuous Chebychev filter as shown in Fig. 4.1. The
resistive source termination is the leftmost vertical compo-

nent of the SFG with gain R/Rs. The reactive components are

those sections containing the reactive term, and the load
termination is the rightmost vertical component with gain

RL/R' From this signal flow graph, it can be observed that

each component except the load termination has a differen-
tial input. Furthermore, each reactive component represents
a differentiator in contrast to the low-pass case, where

each reactive component corresponds to an integrator.

In the design of high-pass SC ladder filters using the
MLDD transformation, each reactive component in the SEG is
replaced by a building block realizing the MLDD transfer
function. As was mentioned earlier, 'the resistive source
termination can be realized by a series or parallel type SC
feedback path across the first MLDD building block{8,12].
However, the overall transfer function of the SC network
becomes different from the transfer function of high-pass SC
ladder filter, which is obtained from a continuous filter
prototype by the MLDD transformation. This wvariation in the
transfer function causes a distortion in the magnitude
response of the SC filter. We propose that realizing the

- resistive source terminations separately by a delay free,

8gCl
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Viy V, v, Vg_ - Ve Vo
1 -1 1 T 1
R 17 sL, |SC:RY RL‘
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= Vg = V| = Vz' = VI‘OI

Figure 4.1 SFG for an n'th order high-pass continuous Che-

bychev filter(n even).
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differential input SC amplifier of constant gain R/Rs will

| give a much better magnitude'response; This is because for
- the proposed configuration, the overall transfer function of
the high-pass SC ladder filter will be exactly the same as

the transfer function obtained from the high-pass continuous
ladder filter by the direct application of the MLDD trans-
formation. The resistive load termination corresponds to a
feedback from the output to the input of the final reactive

. component of the SFG. By setting RL-equal to R, this feed-

- back becomes unity and can be realized by a direct connec-

tion.

4.3 A New MLDD Building Block for the Design of High-Pass SC
Ladder Filters
- The MLDD transfer function[6] was introduced in Section 3.3
and is repeated here for convenience.
~-1/72 -3/2

Pntgg = 7 z__:Tzz—_ ()
where P is a constant.
: We have realized the MLDD transfer function by a fully dif-
ferential op-amp as shown in Fig. 4.2. The analysis and
- derivation of the transfer function of this circuit is shown
" below.
. The clock waveforms driving the two switches are shown in
Fig. 1.2. For the analysis, we have assumed ideal switches

and ideal fully-differential op-amps.
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-+
+ 1C|2 }___Z/Nl +_> 1 Qv..
0

Figure 4.2 Stray-insensitive, fully differential MLDD

building Block
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At t=(n-1/2)T, the equivalent circuit for the charge distri-

bution at node N1 becomes as shown in Fig. 4.3(a). The

application of the conservation of charge law at node N1

gives
—C12 C
+0 22 -e -0
[V (n-1/2)—V (n—l)]_ V (n-1)+ v (n-1/2)-v(n-1)]
C +C +C 2 C +C
¢ 12 22 5) ( 12+ ) o °
ccC
35 V+e - 3/2 4.2
+ - .
(C+C )XC +C +C ) o (n ) ' ¢ )
3 5 12 22

For the inverting input, the equivalent circuit for the
charge distribution at node N2 is shown in Fig. 4.3(b). The

application of the conservation of charge law at node N2

yields
[Ve (n-1/2) Vo 1 - -
n— - - - -— -
N2 N§n N= (C C C )[V (n 1/2)- V(n -1)] (C C - l(n 1)
21 Cd
C
+ £l [V (n 1/2) - V( 1]
- n-
©, +C, +C ) (4.3)

For an ideal differential op-amp, the voltage at the invert-
ing input terminal equals the voltage at the non-inverting

input terminal. Hence we can write

Vy1 (n=1/2)-Vy; (n=1)=Vy, (n=1/2)-Vg, (n-1)

Therefore, equating Eq. (4.2) to Eg. (4.3), we obtain

82|
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-C (0
12

cCC
Vin-1)+ 22— 12 ety 23
n- -1/2)-V (n-1)] +
C +C +C) 2 C
(12 2+ ) ( lérC +C) o

+e
V (n-3/2)
o C+C )C +C C
22 5 (35)(1222)

0

C
11 +0

21
V(n-1) + __—[V (n l/2)—V (n -]
(Cl l-l-sz-CB) 1 {C + C21 C)

vV (n-1/ (2.4)
(c: +c21 o )[ (n 2) - V (n-l)]

Substituting v’£=-v‘i‘=vi for i=0,1,2 and taking the

z-transform of both sides of equation (4.4) gives

-C 172 Cscs 3/2
12 -l o 22 -lo - e - e
C +C +C)° V2 (C +C +C [z V(2)-z Vs (C4C)(C 4C,sC 5 viz)
+C + o
(€, 5C,3C; 57 C5) 12225

21 -1/

o] 2e -1 o]
= ' z V(2+ z V(@-z V()]
(C +C +C ) 1 (C +C +C s} o]

11 21 8 11 21

8 -1/2

(4.5)
- - v
(€ +C +C )[z (2) z (z)]
11 21 8

Letting

C
11

T (C+C__+C_) " (C._+C_+C ) (4.6)
8 11 21 12772275

and
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T 3(C +C _+C ) _ 2(C +C +C
Cg+C\ 1 *C,) Cg*C ¥,

C cCcC
22 3 5 (4.7)

T 2AC +C +C) (C +CYC +C +C
(€T *CY (\3 $(C 5" *C)

Substituting A and B into equation (4.5), we obtain

Az~ (V}@-v3() = Bz o) Va2V (4-8)

At t=nT, the equivalent circuit for the charge distribution
at node N1 becomes as shown in Fig. 4.3(c). The application

of the conservation of charge law at node N1 gives

-C C
(a] e +e 22 -0 -e
V. (n)-V (n-1/2) = - S 4.9
N l(n) Nl(n 1/2) cc v‘J (n-1/2) +(c N )[Vo(n) Vo(n 172)] (4.9)
7 22 7 22

For the inverting input, the equivalent circuit for the
charge distribution at node N2 becomes as shown in Fig.

4.3(d). Applying the conservation of charge law at node N2

vields
C cCC
o} e 8 -Q -e 6 -0
Vv én)-v (n-1/2) =" [V (n)-V (n-1/2)]+ V (n-1)
N N2 (C+C +C ) o 0 (C +C )(C +C +Cg o
B8 6 21 4 6 6 21
C
21 [V+°( ) v+e( 1/2)]
+ n)- n-
(C +C +CE? o o (4.10)
6 21

Equating (4.9) to (4.10) under the ideal op-amp assumption,

we obtain
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(n 1/2) V (n 1)

.l

N1 _L
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o e , _
VN1 (n) VN (n

1/2)

t=(n-1/2)T (c) at node N1 when t=nT (d) at node N2 when t=nT

E 22
V:?n-l) v ?n 1) e
| ] v ?n-§> (D) Vot
E('n-—) e v Tn-3) \+
o 2 _
it (5
=
| (a) (c)
3 e (n -1/2) V ('\ 1) NZ(n) -ve (n-l/Z)
A | ]
Cy T €21 ‘s T ¢ Cq
v c("']) + N\ v%n-1) e V;?n-%) e v Tn- ) -
° Vl?n-ﬂ) +> o ° ° ch"o?"")
e O W O O
Vtn=3) v -0 o v Cn) 4*%
| = T
(b) (d)
Figure 4.3 Equivalent circuit for the charge distribution:
(a) at node N1 when t=(n-1/2)T (b) at node N2 when
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-C

022 C
+e -0 -e -0 -
vV (n-1/72) + [V (n-v (n-172)) = vV (n)-v (n-1/2
C+C o C +C n 2
( . 22) ( 7+ 22) o a] (C8 +C6+C ) o o
ccC C
6 4 -0

+ Vin-1s——2—"m) V-l (2-11)
(C +C )C +C +CB) o (C+C +C ) o on— ]
4 6 6 21 6 21 8

Substituting v‘£=-v‘i=vi for i=0,1,2 and taking the

z-transform of both sides of equation (4.11) gives

-C

C -C C
1 -1/72 e 22 =172 e (a] 4 6 -1 o
z V (2) + [z V(2)-V (2)]= z V (2)
(C+C ) o (C+C ) o 0 (C +C)C +C C) o
1 22 7 4 6 6 21 8
C C
V2 - 22— %2 A% (a.12)
+ Z)-z 2)] - 2)-z z .
(C +C +C8) 0 o (C +C +C8) o o
6 21 6 21
Letting
C 2C C
E - 21 22 7
T (C4C +C_ ) (C +C ) - 3(C +C
6 8 21) ( 7 22) ( 7+ 22)
ccC
_ 4 6
" (C+C )C+C +C ) (4.13)
4 6 6 B 2}

Substituting equation (4.13) into equation (4.12) and sim-
plifying gives

-1/2 e
-2z V (2)
o

Vo) = (4.14)
o 1

(1-z )
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Next substituting Eq. (4.14) into Eq. (4.8) and simplifying

yields

-1 -2
r A 4

-1/2  -5/2
z +Z

v = & V(@ - V(2]
O(Z)_B( l(z— 22

(4.15)

After multiplying both the numerator and the denominator of

Eg. (4.15) by zl/z, the transfer function of the circuit can

be written as follows,

e
vV @) ~1/2  -3/2

[Vo (2)-v O(z)] I+z
1 2

To reduce the complexity of equations (4.6),
(4.13), without any loss of generality, let

C11°C127C, and C,,=C,,=C,

Solving for C3 through C8, we obtain

C3 = (3/4)C,
c, = 2C,
Cg = (3/2)C,
Cg = 2C,
c, = 2c,

08 = (3/2)C2

(4.16)

(4.7)

(4.
(4.
(4.
(4.
(4.

(4.

and

17a)
17b)
17c)
17d)
17e)

17f)
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Under these conditions, the transfer function given by Eq.

(4.16) will be reduced to

V:(z) 2c -2 -3/2
- ( ) (4.18)

[v':(z)-v Z(z)] €2 ez

Equation (4.18)is similar to Eg. (4.1) with P=201/C2, which

shows that the SC circuit shown in Fig. 4.2, realizes the

MLDD transfer function.

4.4 Building Block For Redlizing the Resistive Source Termination of
the Continuous Ladder Filter Prototype

Consider the SC circuit shown in Fig. 4.4(a), which is pro-
posed for the realization of the resistive source termina-
tion.

At t=(n-1/2)T, the equivalent circuit for the charge distri-
bution at the inverting input is shown in Fig. 4.4(b). The
application of the conservation of charge law at the invert-

ing input results in the following difference equation:

e fo) ‘e
Crs1(V1(-172) - V; (1-1)) + g,V S(n-1/2) = 0 (4.19)

Taking the z-transform of both sides of Eq. (4.19) gives

-1/72 e

-l o =172
Rs1Z V(@) -Crgz Vi (2)+Cpy zvse(z)=0 (4.20)

C
522

Assuming the input signal Vin is sampled-and-held such that
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(a)

Figure 4.4 (a) Stray-insensitive op-amp for realizing the

resistive source termination (b) Equivalent circuit for the

charge distribution at the inverting input for t=(n-1/2)T.
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e ~-1/2 o
Vin@® =2 "V () (4.21)

Substituting Eq. (4.21) into Eq. (4.20), we obtain

Vse(z) = (Crg;/Crso) [Vin(@) - Vi (4.22)

Eg. (4.22) shows that the circuit proposed in Fig. 4.4(a)
realizes a differential amplifier of <constant gain

CRSI/CRSZ' which makes it a suitable building block for

realizing the resistive source termination of the continuous

ladder filter prototype.

4.5 Design Example
Consider the design of a high-pass SC Chebychev filter using

the following specifications:

Amax=1 dB, Amin=25 ds, fp=10 kHz (or wp=62.83 kad/sec),

fs=6.5 kHz (or ws=40.84 krad/sec), 1/T=80 kHz.

Using the design procedure described in Section 4.1, the
order of the filter is found to be 4. The circuit for the
prewarped continuous high-pass ladder filter and its corre-
sponding SFG are shown in Fig. 4.5(a) and 4.5(b), respec-
tively. Realizing the source termination with the building
block circuit shown in Fig. 4.4(a) and the reactive compo-

nents with the circuit shown in Fig. 4.2, the SC filter
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Vs Vo Vs
‘.—ru_ls |1 Ia 11 14
R H ) T
. C. C, *
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vlll VS vI v2 v3 v4 VS vﬁ
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(b)

Figure 4.5 (a) Fourth order continuous high-pass Chebychev

ladder filter. (b) SFG of 4.5(a).
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required to meet the given specifications is obtained as

shown in Fig. 4.6.

For an even order high-pass Chebychev filter, load resis-

tance RL is usually calculated to give the value for maximum
power transfer. For the above example, Ry is calculated to

be 0.376 Ohms. As was mentioned in Section 4.2, this has to
be equated to R in order to accomplish unity feedback for
the realization of the resistive load termination. Source

resistance RS is usually taken as 1 Ohm. For the source ter-

mination, the gain of the SFG has to equated to cRSl/CRSZ°

This gives the capacitor ratio for the first section as

0

RS1
RS2 S

P

= 0.376 (4.23)

0

The capacitance ratios of the reactive components can be
calculated by equating the gain of each reactive component
of the SFG to the gain of the MLDD transfer function as giv-
en in Eg. (4.18). This results in the following capacitance

ratios for the reactive sections:

o L
cil = R_% = 1.170 (4.24)
12
c RC
21 . TZ = 0.326 (4.25)
Caz
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Figure 4.6 Fourth order SC high-pass Chebychev ladder fil-

ter based on the MLDD transformation.
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C L
EfZL = if% = 0.868 (4.26)
32
C RC
c41 = T4 = 0.440 (4.27)
42
Capacitance wvalues 013 through c18' C23 through 028’ C33

through C38, C43 through C48 can be calculated using Equa-

tions (4.23) through (4.27) and Eq. (4.17) respectively. As
was mentioned earlier, in SC filter design, the capacitance
values are normalized with respect to the smallest capaci-~
tance in the circuit. For SC ladder filters, the normalized
capacitances are calculated for each section separately. For
the above design example the normalized capacitances have

been calculated to be as follows:

Normalized Capacitances for the source termination

Crs1 = Cu

C 2. 659Cu

RS2

Normalized Capacitances for the Section No: 1

Cy; = 1.561C,
C12 = 1.333Cu
c13 - cu

014 = 2.667Cu
C15 = 2.OOOCu
016 = 2.667Cu
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c

17 2.667Cu

Cc

18 2.OOOCu

" Normalized Capacitances for the Section No: 2

C21 = Cu

C,yy = 3.0640u
Cyg = 2.2980u
Cog = 6.128Cu
Cyg = 4.596C
Cog = 6.128C,
Cymg = 6.1280u
Cog = 4.596Cu

Normalized Capacitances for the Section No: 3

C3; = 1.567C,
Cy, = 1.333C,
C33 = Gy

C34 = 2.667C,
Cy5 = 2.000C,
Cyq = 2.667C,
C3, = 2.667C,
Czg = 2.000C,

Normalized Capacitances for the Section No: 4

e INAL
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c41 - Cu

Cyqp = 2.272C,
Caz = 1.704cC,
Caq = 4.544Cu
Cyus = 3.408Cu
C46 = 4-.544Cu
Cy7 = 4.5440u
Cag = 3.4080u

From the above normalized capacitance values, the total
capacitance for the integrated circuit realization of the SC

high-pass filter is calculated to be 107'13Cu'

The simulated magnitude responses of the high-pass SC
ladder filter using the proposed design and of that using
Horio et. al.'s design are shown in Eié. 4.7. The magnitude
response of the high-pass continuous ladder filter is plot-
ted on the same graph for comparison. It can be observed
that the proposed technique approximate the high-pass con-
tinuous ladder filter response much better than Horio et.
al.'s realization, which used a parallel stray-sensitive SC
feedback path for the resistive source termination. Fur-
thermore, the reactive components have been realized by a
differential op-amp which has a better performance at high

frequencies[19] than a single output op-amp.
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Figure 4.7 Simulated responses of design example.
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Chapler V
A NEW TRANSFORMATION FOR THE DESIGN OF
SWITCHED CAPACITOR HIGH-PASS LADDER FILTERS

In this chaptér, a new transformation for the design of
- switched capacitor high-pass ladder filters is proposed. It
will be shown that, by realizing the resistive source termi-
nation with a differential, delay-free op-amp, the magnitude
response of the SC high-pass ladder filter will closely
approximate its continuous counterpart. This new transforma-
tion has been named the modified bilinear transformation due
to its resemblance to the well known bilinear transforma-

tion.

5.1 The Modified Bilinear Transformation

5.1.1 Definition and Mapping Properlies
Consider the following transformation from the z-plane to

the s-plane
-1/2 172
2 1-z 2 z_ -1

TT 2120 T e
l1+z z +1

(5.1)

- Wwhere 1/T is the sampling frequency. From the theory of

- complex variables, it is a known fact that the function zl/2

- 109 -
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is a double valued function. Therefore, every point on the
z-plane, except the origin, is mapped onto two distinct
points on the s~plane. This is obviously undesirable,
because, if the discrete-time filters are to be derived from
continuous-time filters, then a one-to-one correspondence
should exist between poles(zeros) on +the s-plane and
poles(zeros) on the z-planei31]. This means that the trans-
formation given by Eg. (5.1) has to be defined such that a
one-to-one mapping is accomplished from the s-plane to the
z-plane. A second requirement is that Eq. (5.1) maps the
interior of the unit circle on the z-plane onto the left
half of the s-plane, so that stable analog filters results
into stable discrete~time filters[31l]. To satisfy the above

requirements, we define the following mapping.

1/2 and z=reje. Then, there are exactly two dif-

Let w=z
ferent values of w corresponding to any choice of r, 0, giv-

en by

_ M2 @)

1= for-mr<@<w (5.2a)

and

172 j
wy=r 281(9/2+Tr) =-w, for-m<@<m (5.2b)

1/2

where, for definiteness, r is taken to be the positive
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square root of r. The two functions, Wy and W, are called

the branches of w. By choosing a branch cut extending from O
to-=» , the two branches can be made analytic everywhere on

the z-plane, except at the two points z=0 and z=®If Wy is

taken as the desired branch, then a one-to-one mapping G(z)

is established from the z-plane to the s-plane. The inverse

mapping G-l(s)=z can be easily computed to be as follows:

2
1+(T/2)s (5.3)
1-(T/2)s

The mapping properties from the z-plane to the s-plane of
this new transformation can best be described by first map-
ping the unit circle on the z-plane, corresponding to branch

1/2

Wy, onto the w-plane. Since w=z . then the unit circle on

the z-plane defined by the branch Wi, is mapped onto a semi-

circle on the right hand side of the w-plane as shown in
Fig. 5.1(a). The inner part of the unit circle on the
z-plane is mapped into the inner part of this semi-circle.
With the above definition of w, the transformation from the
w~plane onto the s-plane is given by

w-1

wil (5.4)

S =

—4IN
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'This is the well known bilinear transformation from the
w-plane onto the s-plane whose mapping properties are
‘described in detail in Fig. 5.1(b). It can be observed that
‘the semi~-circle located on the right hand side of the
w-plane is mapped onto a semi-circle of radius 2/T located
on the left hand side of the s-plane. The mapping from the
z-plane to the s-plane can'now be established by combining
the two mappings shown in Fig. 5.1(a) and 5.1(b). This
result is shown in Fig. 5.1(c). Therefore, the modified bil-
inear transformation maps the unit circle of the z-plane
onto a part of the Q-axis of the s-plane, namely -2/T<Q<2/T.
This property of the modified bilinear transformation is
similar to that of the LDI transformation. Furthermore, the
inside of the unit circle on the z-plane is not completely
mapped onto the left hand side of the s-plane, but into a
semi-circle of radius 2/T. This implies, when defining the
modified bilinear transformation in the above manner, that
it is necessary to impose a constraint on the analog proto-
type of the SC high-pass ladder filter. Since the mapping
of any stable pole in the s-plane outside the semi-circle of
radius 2/T is not defined, the constraint should make sure
that the poles and zeros of the continuous high-pass filter

are inside this semi-circle.
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Figure 5.1 Mapping properties of the modified bilinear
transformation.
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5.1.2 Warping Effects

To see the effect of the modified bilinear transformation on
the design of SC high-pass ladder filters, we let s=o+jQ and
z=exp(jwT). Hence Eg. (5.1) becomes

. 2 wT,
o +jQ =7 tan(}") (5.5)

where @ and w are the continuous and discrete angular fre-

quencies, respectively. Equating the real and imaginary

parts of Eq. (5.5) gives
=0 and Q=2 tan( %} (5.6)

The plot of Eq. (5.6) in Fig. 5.2 shows the warping effect
of the modified bilinear transformation. Note that, this
curve 1is different from the curves showing the warping
effect of the LDI, Bilinear and MLDD transformations in the
sense that the continuous and discrete angular frequencies
are almost linearly related between wT=0 and wT=1 with a

slope of 0.542.
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Figure 5.2 Warping effect of the modified bilinear transfor-

mation.
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5.2 Design Procedure

The design procedure for switched capacitor high-pass ladder
filters using the modified bilinear transformation is simi-
lar to the design procedure proposed in chapter 4, except
for an extra condition in step 4 to make sure that the poles
of the continuous high-pass filter are inside the semi-

circle of radius 2/T.

We have investigated the use of the modified bilinear
transformation in the design of SC high-pass ladder filters
from analog proto-types for two classes of analog filters:
Chebychev and Butterworth. From this investigation, the fol-
lowing observations can be made:

Since the poles of a continuous Butterworth high-pass filter

lie on a circle of radius Qp [33], as long as the sampling

frequency is chosen higher than the Nyquist rate, Eq. (5.6)

guarantees that Qp will be less than 2/T. Therefore, for the

design of SC high-pass Butterworth ladder filters, it is not
necessary to compute the poles of the high-pass continuous
ladder proto-type and the design procedure follows the same
steps as proposed in chapter 4 without any constraint. On
the other hand, the poles of a continuous low-pass Chebychev
filter lie on an ellipse of minor axis sinh(a) and major
axis cosh(a), where a is given by[38]
0.1 Amax_l)-llzJ

a:(LN) sin h'l[(lo (5.7)
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In Egq. (5.7), N is the order of the filter and Amax is the

maximum attenuation in the passband region. By the pole-
reciprocity theorem[38], the poles of the high-pass continu-
ous Chebychev filter are the reciprocal of the poles of the
normalized low-pass continuous Chebychev filter multiplied

by the factor Qp. Since sinh(a)<cosh(a), the reciprocal of

these two functions become (1/sinh(a))>(1/cosh(a)). This

implies that Qp/sinh(a)>9p/cosh(a).

From the above discussion, we can conclude that, the
worst case takes place when a pole of the high-pass continu-

ous Chebychev filter is located at Qp/sinh(a). Therefore,

this pole location can be taken as an upper-bound for 2/T.
If the sampling frequency is chosen such that

2/T>9p/sinh(a), then all the poles of the high-pass continu-

ous Chebychev ladder filter will lie inside the semi-circle
of radius 2/T. The above inequality can be utilized effi-
ciently for hand-held calculations. However, if the designer
has computer facilities available, he can do a better design
by computing the location of the pole which is farthest from
the origin and choosing 2/T larger than its magnitude. This
computation is performed only for even order high-pass Che-
bychev filters, because for odd order filters, there is

always a pole located at Qp/sinh(a).
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5.3 Building Block For Realizing the Modified Bilinear Transfer

Function

The modified bilinear transfer function can be defined as

_1/2
HEz) = p 12—
= oy (5.8)
l+z

where P is a constant.

We have realized this new transfer function by a fully dif-
ferential op-amp as shown in Fig. 5.3. The analysis and
derivation of the transfer function of this circuit is shown
below.

The clock waveforms driving the two switches are shown in
Fig. 1.2. For the analysis, we have assumed ideal switches

and ideal fully-differential op-amps.

At t=(n-1/2)T, the equivalent circuit for the charge distri-
bution at node N1 becomes as shown in Fig. 5.4(a). The
application of the conservation of charge law at node N1
gives

cC

e o +e +0
V (n-1/2) -V  (n-1)= V (n- - -
N1 N1 ) C +C +C : l(n 1/2) Vl(n bl
1 2 3
C
2 ~-e -0 C
[V (n-172) -v (n-1)] -
0 o

+0

+ -

C +C +C C +C +C Vo(" D (5.9)
1 2 3 1 2

For the inverting input, the equivalent circuit for the

charge distribution at node N2 is shown in Fig. 5.4(b). The
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C
1 52
T 73
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C
+ Cl 2” 03 +
LTRSS -
V1+"L NL |, _ - VO—
C T '
1 Cz” , C3

Figure 5.3 Stray-insensitive, fully differential building

block for realizing the modified bilinear transfer function.
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application of the conservation of charge law at node N2

yields

C
e
1
(n -1/2) - V (n-l)- (C C C})[ (n -1/2) - V(n—l)]

c c

-0
V n-1/2) - v (n-1)] - -
(C +C +C )[ ( ) - (n ) (C +C+C ) V° (n-1) (5.10)
2 1 2 3
For an ideal differential op-amp, the voltage at the invert-

ing input terminal, equals the voltage at the non-inverting

input terminal. Hence, we can write

1(n 1/2)-Vyp (n-1)=V. (n 1/2)-v. (n-l)

Therefore, equating Eq. (5.9) to Eq. (5.10) and simplifying,

we obtain

V] %(0-1/2) - v}°(n-1)] + C,lV, (r-1/2) - V_%(n-1)] - c v:%n-1)

= C)[V, (n-1/2) - V,%n-1)] + C IV (n-1/2) - V2 on-1] - Cy v n-1) (5-11)

Substituting v"i=-v‘i=vi for i=0,1,2 and taking the

z-transform of both sides of equation (5.11) gives
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iz 1/2Ve( -z VT(Z)]‘[ -1/72,, Vi@ -2 Vz(z)] 121

(5.12)
Ry, - }
= 2C,[z 2v‘*( ) -z lvg(z)] +2C,z lvg(z)

Choosing C3=202 and substituting in Eqg. (5.12), after sim-~

plification, we obtain

C Vi@ - 2 A - V(@) - 27V = 20, v8) + 2 VAV (5-13)

At t=nT, the equivalent circuit for the charge distribution
at node N1 becomes as shown in Fig. 5.4(c). The application

of the conservation of charge law at node N1 gives

Cc
1
1 v -1/2)z ———— -
(n ) - (n12) (C C C)[ (n) V(n 1/2)]
2
C 03
EE—CZE‘)'[V (n) v (n—l/2)]-(c"""'c__2 c ')Vo (n-l/z) (5.14)

For the inverting input, the equivalent circuit for the
charge distribution at node N2 becomes as shown in Fig.

5.4(d). Applying the conservation of charge law at node N2
vields
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C

V2 -vE ey s ——— v T o v 1/2)
n)- n- = nj) - n-
N2 N2 (C +C +C) 2 2 122
1T s
c c
9

+0 +€ (5.15)
[V (n)-V (n-1/2)] -
o o

-8
V (n-1/2)

g — _—
C+C +C C +C+C o
¢ 1 2 3 ¢ 1 2 3)

- Equating (5.14) to (5.15) under an ideal op-amp assumption

and simplifying, we obtain

cl[v'l'°(n) - v‘l“e(n-l/z)] + cz[v;°(n) - V;e(n—IIZ)] - C4 V§+(n-l/2)

= cl[v;°(n) - V;e(n—l/Z)] + C,V2(n) - V;e(n-llz)] - C4 V;e(n—l/Z) (5.16)

Substituting v’;=-v'i‘=vi for i=0,1,2 and taking the

. z-transform of both sides of equation (5.16) gives

-1/72 e

c,1v3@ - 2~y -1/2, e

(@] - V3(@) -2 s

= 2C,Iv3(2) + 27 A2 (5.17)

Adding equation (5.13) to (5.17) and simplifying, we obtain

¢, V0@ + V5@ - VY@ + Va@mi-zH

i (5.18)
= 20,10v(@) + V@122

- Defining

(o]

e
V (2)+V (2

H(z) = = = (5.19)
Ve@v @) - Vv @n
« 1 1 2 2

and using Egq. (5.18) we obtain
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(n 1/2)- V (n -1) (n -1/2)-v

i (n=1)

N1 _ N2

C. ——

3

@

=
(b)

(n) -v&¢_ (n-1/2)

N1 (n) v , (n=1/2)

N1

N2

? C C C
*?n 1/2) v ?"“) v ‘En -1/2)

; N v ?n--)

: ?n) Vo?n) +?n)

vitn-1) e v;?n—i) L Vt-1) v*‘(n 1) e

| o0 (3) v Tn-
| _ Q .
VT?n-%) e Vo?n—%) v ?n -1/2) +?n--)

I
(]
Il

Figure 5.4 Equivalent circuit for the charge distribution
of Fig. 5.3: (a) at node N1 when t=(n-1/2)T (b) at node N2

when t=(n-1/2)T (c) at node N1 when t=nT (d) at node N2 when
=nT
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-1/2
VvV (2) Cl (1-z )
0

= -1/2
Vl(z)—vz(z) 2(32 (1+z )

H(z) = (5.20)

which becomes the modified bilinear transfer function with

P=C1/202. This implies that sampling the output of the SC

circuit shown in Fig. 5.3 both at the even and the odd
clock phases realizes the modified bilinear transfer func-

tion.

5.4 Building Block For Realizing the Resistive Source Termination
Consider the SC circuit shown in Fig. 5.5, which is proposed
for the realization of the resistive source termination in
the design of SC high-pass ladder filters using the modified
bilinear transformation.

At t=(n-1/2)T, the equivalent circuit for the charge distri-
bution at node N1 becomes as shown in Fig. 5.6(a). The

application of the conservation of charge law at node N1

gives

C, IV} (n-1/2) - Vi o(-1)] + C,lV>%(n-1/2) - V_%n-1)]
-0
~CyVq (1-1) = (C4C,+CIVy, (n-1/2) - Vg (-1 (5.21)

For the inverting input, the equivalent circuit for the
charge distribution at node N2 is shown in Fig. 5.6(b). The

application of the conservation of charge law at node N2
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Figure 5.5

Stray-insensitive

C2|| Cz
. N
o— N2 [+
wl >
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op-amp for

realizing the

resistive source termination to be used in the design of SC

high-pass ladder filters using the modified bilinear trans-

formation.
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yields

+e +e
C\[Vy (n-1/2) - V;%(n-1)] + cz[v;e(n-l/?.) - v;'°(n-1)

+e
+C. V' ¥n-1/2) = N o
NValn-1/2) (C1+C2+C2)[VN2(n-l/2)-VNZ(n-l)] (5.22)

For an ideal differential op~amp, the voltage at the invert-

ing input terminal equals the voltage at the non-inverting

input terminal. Hence, we can write

Vfu(n-l/Z)-VI?u(n-l )=v§2 (n-1/2)-Vg,(n-1)

Therefore, equating Eq. (5.21) to Eqg. (5.22), we obtain

cl[v*l“e(n-l/Z) - v‘l‘°(n-1)] + cz[v;e(n-l/Z) - v;°(n-1.)] - sz;"(n-l)

+e +0 +e : 5.23
= Cy[Vy (n-1/2) - V37(n-1)] + C,V2 (n-1/2) + CZ[V;e(n—l/Z) - V;O(n—l) ( )

Substituting V;=-V;=Vi for i=0,1,2 and taking the

z-transform of both sides of equation (5.23) gives

2 -1/2 e

Cl{[VT(z)z_U - z_lv?(z)] -1z VZ(Z)—Z-IV;(Z)]}

= 30,0z A8 - 2" V(@] (5.24)
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At t=nT, the equivalent circuit for the charge distribution
at node N1 becomes as shown in Fig. 5.6(c). The application

of the conservation of charge law at node N1 gives

cl[v‘l“’(n) - v'l'e(n-l/Z)] + cz[v;°(n) - V;e(n-IIZ)] + czv;"(n)

= (C+C+C )V, (M) - Vi, (n-1/2)] (5.25)

For the inverting input, the equivalent circuit for the
charge distribution at node N2 becomes as shown in Fig.

5.6(d). Applying the conservation of charge law at node N2
yields

+0 +e e+ +0 +e
(Zl[V2 (n) - V2 (n-1/2) - C2V0 (n-172) + CZ[Vo n) - Vo (n~1/2)]

=(CI+CZ+CZIVRZU”"V§20“4/2H ' (5.26)

Equating (5.25) to (5.26) under an ideal op-amp assumption,

we obtain
cl[v;°(n) - v‘l“e(n—uzn + czv;°(n) + cz[v;°(n) - V;e(n-l/Z)]
(5.27)

= C,[V,°(n) - V5 (n-1/2)] - C,V2%(n-1/2) + C,v: () - V2S(n-1/2)]

Substituting V;'_=-V_i=vi for i=0,1,2, and taking the

z-transform of both sides of equation (5.27) gives
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vzz(n-1/2)-v:2(n-1)

V;?n-%) 6
V;?n) e

-
V;?n-l) ]y +
o 2
V;?n-%)
+
(b)
(n) Vnz(n-l/Z)
N2
cz = t.‘.2 ——
V;?n-%) . -
e t(5)
V;?n) e
-
(d)

Equivalent circuit for the charge distribution

(a) at node N1 when t=(n-1/2)T (b) at node N2

when t=(n-1/2)T (¢) at node N1 when t=nT (d) at node N2 when

t=nT
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-1/ - 3
C Vi@ - 2 A - v - 2V Vi@ = 3C,Ve@ - 27 A2 (5.28)

Adding equation (5.24) to (5.28) and simplifying, we obtain

C,iV{(2) + Vi(2)] - [Vo(2) + V(@B -z "2

= 3C,Vo(@) + V(@123 (5.29)

Therefore, the transfer function of +this circuit can be

written as

C Ve (2) + Vo(z) V (2)
1 0 o] ]
H(Z): 3C = e o e = v (5-30)
2 {[v l(z)+Vl(z)] - [V2 (z)+V:(Z)]} l(z) B VZ(Z)

Equation (5.30) is similar to the transfer function of a

differential amplifier of constant gain Cl/BCz. This makes

it suitable for the realization of the source termination in
the design of SC high-pass ladder filters using the modified
bilinear transformation. To distinguish the capacitance
ratios of the building block for the resistive source termi-
nation from those of the reactive components, we shall use

CRSl and cRSZ instead of Cl and C2 respectively, as the

capacitances of the resistive source termination.
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5.5 Design Example
Consider the design of a high-pass SC Chebychev filter using

the folowing specifications:

Amax=1 dB, Amin=25 dB, fp=10 kHz (or wp=62_83 krad/sec)’

fs=6'5 kHz (or ws=40.84 krad/sec), 1/T=80 kHz.

Using the design procedure described in section 4.1, the
order of the filter is found to be 5. For the above value
of sampling frequency all the poles of the high-pass contin-
uous ladder filter lie inside the semi-circle of radius 2/T.
The circuit for the prewarped continuous high-pass ladder
filter and its corresponding SFG are shown in Fig. 5.7(a)
and 5.7(b), respectively. Realizing the source termination
with the building block circuit shown in Fig. 5.5 and the
reactive components with the circuit shown in Fig. 5.3, the
SC filter required to meet the given specifications is

obtained and shown in Fig. 5.8.

By the same argument applied in the design example in
chapter 4, the gain of the transfer function of the SC
building block realizing the resistive source termination,

given by Eg. (5.31), is equated to R/Rs. For an odd order

continuous Chebychev high-pass filter, the load resistance

RL is 1 Ohm. Hence, the capacitance ratio becomes
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Figure 5.7 (a) Fifth order high-pass continuous Chebychev
ladder filter. (b) SEFG of 5.7(a).
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Figure 5.8 Fifth order SC high-pass Chebychev ladder filter

based on the modified bilinear transformation.
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= = 3.00 (5.31)

The capacitance ratios of the reactive components can be
calculated by equating the gain of each reactive component
of the SFG to the gain of the modified bilinear transfer
function as given in Eqg. (5;20). This results in the follow-

ing capacitance ratios for the reactive sections:

c 4L, .
Cll = RTl = 4.709 (5.32)
12
c 4RC
021 = Tz = 9.215 (5.33)
22
c ar,
c31 = RT3 = 3.35 (5.34)
32
c 4RC
041 = T4 = 9.215 (5.35)
42
c 41,
051 - RTS = 4.709 (5.36)
52
Capacitance values Cl3, 023, C33, C43 and 053 can be calcu~
lated using the relation Ci3=20i2. As was mentioned earlier,

in SC filter design, the capacitance values are normalized
with respect to the smallest capacitance in the circuit.

For SC ladder filters, the normalized capacitances are cal-
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culated for each section separately. For the above design

example the normalized capacitances have been calculated to

be as follows:

Normalized Capacitances for the source termination

C

RS1 3. OCu

Crsz = Cy

Normalized Capacitances for the Section No: 1

C11 = 4.7090u
c12 = cu
C13 = 2.00Cu

Normalized Capacitances for the Section No: 2

Cpq = 9.215C,
Ca2 = G
C,3 = 2.00C,

Normalized Capacitances for the Section No: 3

Cyy = 3.350C,
C32 = Cy
C33 = 2.00C,

Normalized Capacitances for the Section No: 4

C

41 9.2150u

Caz = Cy

2€21
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C43 = 2.OOCu

 Normalized Capacitances for the Section No: 5

Cgy = 4.709C,
Csy = Cy
Cgy = 2.00C,

From the above normalized capacitance values, the total
capacitance for the integrated circuit realization of the SC

high-pass filter is calculated to be 124.4Cu.

The simulated magnitude responses of the high~pass SC
ladder filter using the proposed design technique is shown
in Fig. 5.9. The magnitude response of the high~pass con-
tinuous ladder filter is plotted on the same graph for com-
pariéon. It can be observed that with the proposed technique
the new transformation gives very accurate results and the
response of the high~pass SC filter becomes almost the same

as the continuous ladder filter response.

oget
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(a),(b) Simulated responses of design example.
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Chapter VI
AN INTERACTIVE PACKAGE FOR DESIGNING SWITCHED
CAPACITOR HIGH-PASS LADDER FILTERS

6.1 Description of Package

In this chapter we shall demonstrate the use of the interac-
tive package that we have prepared for the design of
switched capacitors high-pass ladder filters using the MLDD
and the modified bilinear transformations. The package is
-based on the procedure proposed in chapters 4 and 5. Two
classes of filters are handled in this package: Butterworth
and Chebychev. The program requests for the high-pass filter
parameters and it provides all the necessary design inf.orma-
"tion for the user. In addition to this, the program gives
the magnitude and phase responses of the switched capacitor
“and continuous filter prototype and it draws the circuit of

the resulting SC high-pass filter.

The package which performs the main design, has been
"named as HPSCl. The compilation and running of the program
: should be done under the PLOTSYS system. In order to observe
:the magnitude and phase response, the computer terminal used
'must have a color display capability. A second program

‘named as HPSC2 provides the user with the magnitude and
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phase response of the filter whose design parameters were
provided via the program HPSCl. This program was written to
avoid the user from entering the same data to the package
HPSCl in order to observe the responses in detail. There-
fore, once the desired parameters are provided to the pack-
age HPSCl, the user can observe the magnitude and phase
response to any extent by adjusting the window data of the
- PLOTSYS menu and using the program HPSC2. Furthermore, the
program writes all the necessary information in an output
~file which has also been named as HPSCl. Some of this

information is also shown on the screen interactively.

In chapter 5, we have mentioned that, in the design of SC
| high~pass ladder filters using the modified bilinear trans-
: formation, the sampling frequency should be chosen such that
; the poles of the high-pass continuous filter lie inside the
; semi-circle of radius 2/T. This package takes care of this
; constraint and gives a warning message whenever the above
condition is not satisfied. The next section describes the

- interactive use of the package.

6.2 Using the Package

? Suppose that.we have been asked to design a switched capaci-
; tor high-pass Chebychev ladder filter using the modified
i bilinear transformation using the following specifications:

Amin=20 dB, Amax=0'5 dB, fp=5 KHz, fs=2 KHz, 1/T=100 KHz.
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Furthermore, suppose that we would like to observe the mag-
nitude and phase response from 4800 Hz to 50 KHz in incre-

ments of 200 Hz. Once we run the HPSCl program on the

PLOTSYS menu, the package will request for the above parame-

ters in the following manner:

HELLO. WELCOME TO FIDANBOYLU'S PACKAGE

FOR DESIGNING HIGH PASS SWITCHED CAPACITOR
LADDER FILTERS.
PLEASE ENTER THE FOLLOWING PARAMETERS

AMIN = MINIMUM STOPBAND ATTENUATION IN DB.

20.0

AMAX = MAXIMUM PASSBAND ATTENUATION IN DB.

Y

0.5

FP = PASSBAND EDGE FREQUENCY IN HERTZ.
5000.0

FS = STOPBAND EDGE FREQUENCY IN HERTZ.
2000.0

FSAMP= SAMPLING FREQUENCY IN HERTZ.

)

100.E3
WHAT TYPE OF FILTER DESIGN DO YOU NEED?

TYPE 1 FOR BUTTERWORTH AND 2 FOR CHEBYCHEV.

J
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WHAT TYPE OF TRANSFORMATION DO YOU WANT?

TYPE 1 FOR MLDD AND 2 FOR MBIL.

ORDER OF THE FILTER = 3
THE HALF POWER FREQ. OF THE HP CONT. FILTER IS =

0.1348E+05 RAD/SEC

NORMALIZED CAPACITANCES FOR THE SOURCE TERMINATION
CRS1 = 3.000000 CU
CRS2 = 1.000000 cu

NORMALIZED CAPACITANCES FOR SECTION NO: 1

C(11) = 15.919755 CU
c(12) = 1.000000 CU
c(13) = 2.000000 CU

NORMALIZED CAPACITANCES FOR SECTION NO: 2

C(21) = 23.171890 CU
c(22) = 1.000000 CU
c(23) = 2.000000 CU

NORMALIZED CAPACITANCES FOR SECTION NO: 3

C(31) = 15.919755 CU
c(32) = 1.000000 CU
C(33) = 2.000000 CU
THE TOTAL CAPACITANCE FOR THE SC FILTER = 152.022799 CU

DO YOU WANT TO SEE THE MAGNITUDE AND PHASE RESPONSE?




IF YES TYPE 1 OTHERWISE TYPE O

2 1
PLEASE

FINT =

4800.0

FEND

50.E3

FINC

200.0

ENTER THE FOLLOWING PARAMETERS.

INITIAL FREQUENCY FOR PLOTTING(IN HERTZ)

FINAL FREQUENCY FOR PLOTTING(IN HERTZ)

INCREMENT FREQUENCY FOR PLOTTING(IN HERTZ)
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The magnitude and phase responses obtained from this pro-

- gram are shown in Figures 6.1 and 6.2 respectively. Further-

- more, the circuit of the desired SC high-pass ladder filter

| which was also drawn by this package is shown in Fig. 6.3.
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Figure 6.1 (a),(b) Magnitude response of a third order SC
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Figure 6.2 (a),(b) Phase response of a third order SC high-

pass Chebychev ladder filter.
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Chapter VII
CONCLUSIONS

In this Chapter, we shall give a critical comparison of our
findings with the results obtained by others. This will fol-

low with a summary and suggestions for future work.

7.1 Comparison of Resulls

In Chapter 4, we have proposed a new technique for the
design of switched capacitor high-pass ladder filters using
the MLDD transformation. By realizing the resistive source
termination with a special delay free building block, we
have shown that the magnitude response of the SC high-pass
ladder filter designed using this technique approximated the
magnitude response of the high-pass continuous filter much
closer than that of Horio et. al.. The reactive components
are realized by a differential op-amp which has a much bet-
ter performance than the single output op-amp at high fre-
quencies. The proposed technique is much simpler than those
presented by others. Beside this, the proposed design tech-
nique preserves completely the sensitivity properties of the
SC high-pass ladder filters. This is not the case in the
techniques proposed by others for the design of SC high-pass

filters.
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In Chapter 5, we have proposed a new transformation for
the design of switched capacitor high-pass ladder filters.
The SC high-pass ladder filters designed using this trans-
formation give a magnitude response which is almost the same
as the response of the high-pass continuous ladder filter.
The only problem in the use of this transformation is in the
design of SC high-pass Chebychev ladder filters which
require the sampling frequency to be chosen large enough to
assure that the poles of the high-pass continuous filter are
located inside a semi-circle of radius 2/T. The modified
bilinear transfer function is also realized by a differen-
tial op-amp. Since this transformation is based on the same
design technique proposed in chapter 4, sensitivity proper-
ties of the SC high-pass ladder filters are completely pre-
served. The results obtained from the use of this transfor-
mation are better than those obtained from the use of the
MLDD transformation. However, in some of the applications
this has been achieved at the cost of a higher order SC

high-pass filter.

7.2 Suwmmary

The most widely used SC filter design is based on the SFG
representation of the current-voltage relations of a passive
ladder prototype filter. Switched-capacitor low-pass and
band-pass ladder filters have been successfully designed by

using the LDI and bilinear transformations. A number of
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techniques have been previously reported for the design of
switched capacitor high-pass ladder filters based on the LDI
and bilinear transformations. However, these techniques have
certain limitations and are not as direct as those tech-

niques used for the design of SC low-pas and band-pass fil-

ters.

Horio et. al. have proposed a switched capacitor high-
pass filter design technique based on the MLDD transforma-
tion. However, in their design technique, the resistive
source termination is realized by a parallel SC feedback
path across the first building block. It has been shown that
realizing the resistive source termination by a parallel SsC
feedback path across the first building block, changes the
overall transfer function of the SC filter. This variation
in the transfer function causes a distortion in the magni-
tude response of the SC filter. We have shown that realizing
the resistive source termination separately by a delay free

differential input SC amplifier of constant gain R/Rs, gives

a much better magnitude response. This is because, with the
proposed configuration, the overall transfer function of the
high-pass SC ladder filter will be exactly the same as the
transfer function obtained from the high-pass continuous
ladder filter by the direct application of the MLDD trans-
formation. We have realized the MLDD transfer function with
a differential op-amp which has a much better performance at

higher frequencies. With the design procedure that we have
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proposed, the design of SC high—pass ladder filters will be
as direct as in the low-pass and band-pass case. With our
technique, the magnitude and phase responses of the high-
pass SC ladder filters have turned out to be much closer to

the ideal responses of the high-pass continuous ladder fil-

ters.

We have proposed a new transformation for the design of
SC high-pass ladder filters which has been named the modi-
fied bilinear transformation. We have used the technique
that we have proposed for the design of SC high-pass ladder
filters using the MLDD transformation. The magnitude and
phase responses of the SC high-pass ladder filters obtained
from the use of this transformation are almost the same as
those of the high-pass continuous ladder prototype filter.
For the design of SC high-pass Chebychev filters using the
new transformation, the sampling frequency has to be chosen
such that, all the poles of the high-pass continuous filter

lie inside a semi-circle of radius 2/T.

As a bonus, we have prepared an interactive package for
designing SC high-pass Butterworth and Chebychev filters
based on the MLDD and modified bilinear transformations. The
package gives all the necessary information to the designer,
it provides with the magnitude and phase response of the

resulting filter and it draws the complete circuit.
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7.3 Suggestions for Futwre Work

The work presented in this thesis can be extended in the

following directions:

1. The design of switched capacitor high-pass elliptic lad-
der filters based on the new modified bilinear transfor-
mation has not been investigated in this thesis, there-
fore, it stays as an open problem.

2. The use of the new modified bilinear transformation for
the design of switched capacitor low-pass and band-pass

filters should be investigated.

3. The use of the MLDD transformation for the design of
switched capacitor low-pass and band-pass filters needs

also investigation.

4. A sensitivity analysis of the proposed SC high-pass lad-
der filters to the variation of capacitance values should

be performed.

5. The proposed package can be easily extended to be used
for the design of SC low-pass and band~pass ladder fil-

ters using the LDI and bilinear transformations.



APPENDIX A

HPSC1 FORTRAN FILE

REAL FNTL(900),DBHS(900),DBHZ(900), PHAHS (900) , PHAHZ(900)
REAL*8 OMGP,OMGS,FP,FS,T,PI, FSAMP

REAL*8 FINT,FR, FEND,FINC,WP,WS

REAL*8 LLP(50),CLP(50),LHP(50),CHP(50),C(600)

REAL*8 RL,CLMIN,CCMIN, TOTCAP, TOTC

REAL*8 ALPHA(50),BETA(50)

REAL*8 ROOT(50), ROOTM

COMPLEX*16 S,Z1,22,23,%,HS,HZ, TR,CJ

COMPLEX*8 HS1,HZ1

O kkk ek

C*  THIS PACKAGE WAS WRITTEN BY KEMAL MEHMET FIDANBOYLU AS A PARTIAL
C*  FULLFILLMENT FOR THE DEGREE OF MASTER OF SCIENCE IN ELECTRICAL
C*  ENGINEERING (JUNE 1987).

(LTI T TS

CALL PLOTS(0,0,1)
Ck*

CH* DESIGN OF

Ck*

Ck* N'TH ORDER BUTTERWORTH AND CHEBYCHEV SWITCHED CAPACITOR
Cx* HIGH PASS LADDER FILTERS

Ck*

Ch* USING
Cx*

- Ch¥x* ¥%%% MLDD TRANSFORMATION **%%*

BN LT T T

G IEE WITH = S=(2/T)*(2%%-1/2 - Z**-3/2)/(1+Z%*-2)

. Ch¥kk

| Ok ko

- C¥*%& %% QR ***%* NEW MODIFIED BILINEAR TRANFORMATION %%
N TTT

AL WITH S=(2/T)*(1-2*%*=1/2)/(142%*%=-1/2)
L ChE kR

| Qk*%*

| CkEkkk

' WRITE(6,100)

100 FORMAT(//,4X,'HELLO! WELCOME TO FIDANBOYLU"S PACKAGE')
WRITE(6,101)

101 FORMAT(//,4X,'FOR DESIGNING HIGH PASS SWITCHED CAPACITOR')
WRITE(6,110)

110 FORMAT(//,4X,' LADDER FILTERS. ")
WRITE(6,120)
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120

130

131
140

141
150

151
160

161l

170

171
C %%k

180

181

182

183

Ch*k¥k

190

191

192

FORMAT(///,4X, 'PLEASE ENTER THE FOLLOWING PARAMETERS.')
WRITE(6,130)

FORMAT(//,4X, 'AMIN = MINIMUM STOPBAND ATTENUATION IN DB.')
READ(5,*) AMIN
WRITE(7,131) AMIN

FORMAT(//,4X, 'AMIN=MINIMUM STOPBAND ATTENUATION IN DB.=',F10.3)
WRITE(6, 140)

FORMAT(//,4X, 'AMAX = MAXIMUM PASSBAND ATTENUATION IN DB.')
READ(5, *) AMAX
WRITE(7,141) AMAX |

FORMAT(//, 4X, ' AMAX=MAXIMUM PASSBAND ATTENUATION IN DB.=',F10.3)
WRITE(6,150)

FORMAT(//,4X, 'FP = PASSBAND EDGE FREQUENCY IN HERTZ.')
READ(5,*) FP
WRITE(7,151) FP

FORMAT(//,4X, 'FP = PASSBAND EDGE FREQUENCY IN HERTZ.=',E1ll.4)
WRITE(6, 160)

FORMAT(//,4X, 'FS = STOPBAND EDGE FREQUENCY IN HERTZ.')
READ(5,*) FS
WRITE(7,161) FS

FORMAT(//,4X, 'FS = STOPBAND EDGE FREQUENCY IN HERTZ.=',Ell.4)
WRITE(6,170)

FORMAT(//,4X, 'FSAMP= SAMPLING FREQUENCY IN HERTZ.')
READ(5,*) EFSAMP
WRITE(7,171) FSAMP

FORMAT(//,4X, ' FSAMP= SAMPLING FREQUENCY IN HERTZ.=',Ell.4)

WRITE(6,180)
FORMAT(//,4X, '"WHAT TYPE OF FILTER DESIGN DO YOU NEED? ')
WRITE(6,181)
FORMAT(//,4X, 'TYPE 1 FOR BUTTERWORTH AND 2 FOR CHEBYCHEV')
READ(5,*) ITYP
IF(ITYP.EQ.1)THEN
WRITE(7,182)
FORMAT(//,4X, 'HIGH PASS SC BUTTERWORTH FILTER DESIGN.')
ELSE
WRITE(7,183)
FORMAT(//,4X, "HIGH PASS SC CHEBYCHEV FILTER DESIGN.')
ENDIF

WRITE(6,190)
FORMAT(//,4X, 'WHAT TYPE OF TRANFORMATION DO YOU WANT? ')
WRITE(6,191) -
FORMAT(//,4X, 'TYPE 1 FOR MLDD AND 2 FOR MBIL')
READ(5,*) ITRAN
IF(ITRAN.EQ.1)THEN
WRITE(7,192)
FORMAT(//,4X, 'WITH MODIFIED LOSSLESS DISCRETE DIFFERENTIATOR
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*TRANSFORMATION' )

ELSE
WRITE(7,193) |
193 FORMAT(//,4X, 'WITH MODIFIED BILINEAR TRANFORMATION. ')
ENDIF
L ke
Ck % %
T = 1./FSAMP
PI = 4.DO*DATAN(1.DO)
CJ = DCMPLX(0.DO, 1.D0)
WP = 2.DO*PI*FP
WS = 2.DO*PI*FS
‘ Cx%¥%
Cx¥%%x*%

IF(ITRAN.EQ.1)THEN

C** OMGP = PREWARPED PASSBAND FREQUENCY OF THE FILTER IN RADIANS.
C** OMGS = PREWARPED STOPBAND FREQUENCY OF THE FILTER IN RADIANS
OMGP = OMGPR1(FP,T)

OMGS = OMGPR1(FS,T)

ELSE
OMGP = OMGPR2(FP,T)
OMGS = OMGPR2(FS,T)
ENDIF
c
CH*%% WARNING
c .
IF(OMGP.LE.0.DO.OR.OMGS.LE.O.DO) THEN
WRITE(6,194)
194 FORMAT(//,4X, 'YOU ARE EITHER GIVING WRONG PARAMETERS')
WRITE(6,195)
195 FORMAT(//,4X, 'OR CHOOSING A LOW SAMPLING FREQUENCY')
WRITE(6,196)
196 FORMAT(//,4X, 'TYPE A NUMBER TO RETURN BACK')
READ(5, *) WNG
STOP
ELSE
CONTINUE
ENDIF
o
C*%%%* END WARNING
c
c****
IF(ITYP.EQ. 1)THEN
CALL ORDERB(N, AMAX, AMIN, OMGP, OMGS )
C*
C**%% WARNING
C*

IF(N.LE.1)THEN
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197
198

199

C*
O % % %

C*

c*
CHxk*

C*
1197

1198

1199

C*
CHhidk
C*
C*

201

WRITE(6,197)
FORMAT(//,4X, 'YOU ARE EITHER GIVING WRONG PARAMETERS')
WRITE(6,198)
FORMAT(//,4X, 'OR CHOOSING A LOW SAMPLING FREQUENCY')
WRITE(6,199)
FORMAT(//,4X, 'TYPE A NUMBER TO RETURN BACK')
READ(5, *) WNG
STOP
ELSE
CONTINUE
ENDIF

END WARNING

CALL OMGZRB(N, AMAX, OMGZLP)
ELSE

CALL ORDERC(N,AMAX, AMIN, OMGP, OMGS)
WARNING

IF(N.LE.1)THEN
WRITE(6,1197)
FORMAT(//,4X, 'YOU ARE EITHER GIVING WRONG PARAMETERS')
WRITE(6,1198)
FORMAT(//,4X, 'OR CHOOSING A LOW SAMPLING FREQUENCY')
WRITE(6,1199) .
FORMAT(//,4X,'TYPE A NUMBER TO RETURN BACK')
READ(5,*) WNG
STOP
ELSE
CONTINUE
ENDIF

END WARNING

CALL OMGZRC(N,AMAX, OMGZLP)
N2=N/2 ‘
S = CMPLX(1.0,0.0)
CALL TRENC(TR,OMGP,S,ALPHA,BETA, N, AMAX, ROOT)
ROOTM = 1.D-20
DO 201 KE=1,N2
IF(ROOT (KE) .GT . ROOTM) THEN
ROOTM = ROOT (KE)
ELSE
CONTINUE
ENDIF
CONTINUE
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EPS = SQRT(10.%*(.1*AMAX)-1.)
AC = ARSINH(1./EPS)/FLOAT(N)
AW = OMGP/SINH(AC) |
IF((2*N2).LT.N)THEN |

AW=AW
ELSE
AW=ROOTM
ENDIF
C*
IF((2./T).LE.AW.AND. ITRAN.NE. 1) THEN
WRITE(6,200)
200 FORMAT(//,4X,' THE TRANSFORMATION IS NOT VALID.')
WRITE(6,202) AW/2.0
202 FORMAT(//,4X, 'YOU SHOULD MAKE THE SAMPLING FREQUENCY
*MORE THAN',E12.4,' HZ')
WRITE(6,203)
203 FORMAT(//,4X, 'TYPE A NUMBER TO RETURN BACK')
READ(5,*) DELAY
STOP
ELSE
CONTINUE
ENDIF
C*
ENDIF
C****

WRITE(6,300) N
WRITE(7,300) N
300 FORMAT(//, 4X, 'ORDER OF THE FILTER = ',1I2)
OMGZHP = OMGP/OMGZLP
WRITE(6,310) OMGZHP
WRITE(7,310) OMGZHP
310 FORMAT(//,4X,'THE HALF POWER FREQ. OF THE HP CONT. FILTER IS
* =',E11.4,' RAD/SEC')

Cx*
C** CALCULATION OF CAPACITANCE VALUES.
C**
IF(ITYP.EQ.1)THEN
CALL LPBUTW(N,LLP,CLP,RL)
ELSE
CALL LPCHEB(N,AMAX,RL,LLP,CLP)
ENDIF .
- C%k*
IF(ITRAN.EQ.1)THEN

- C*
C* CALCULATION OF CAPACITANCE VALUES FOR THE MLDD SC FILTER
C*x

WRITE(6, 702)

WRITE(7,702)
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702 FORMAT(/, 'NORMALIZED CAPACITANCES FOR THE SOURCE TERMINATION' )
CRS1 = 1.0
CRS2 = 1.DO/RL
TOTCAP = CRS1+CRS2
WRITE(6,700) CRS1
WRITE(7,700) CRS1
700 FORMAT(/, 4X, 'CRS1 =',F12.6,' CU')
WRITE(6,701) CRS2
WRITE(7,701) CRS2
701 FORMAT(/, 4X, 'CRS2 =',F12.6,' CuU')
DO 710 I10= 1,N,2
I11= 110 + 1

I12= I10*10
LHP(I10) = 1.DO/(CLP(I10)*OMGP)
C(I12+2) = RL*T/LHP(I10)
C(I12+3) = 0.75DO*C(I12+2)
C(I12+4) = 2.DO*C(I12+2)
C(I12+5) = 1.5DO*C(I12+2)
C(I12+6) = 2.DO*C(I12+2)
C(I12+7) = 2.DO*C(I12+2)
C(I12+8) = 1.5DO*C(I12+2)

C*
- WRITE(6,712) 110
WRITE(7,712) 110
712 FORMAT(//,4X, 'NORMALIZED CAPACITANCES FOR SECTION NO:',I2)

CLMIN = 1.0D30
DO 720 J1=I12+2,112+8
IF(C(J1).LT.CLMIN)THEN
CLMIN = C(J1)
ELSE
CONTINUE
ENDIF
720 CONTINUE
IF(CLMIN.GE.1.0D0) CLMIN=1.DO
C(I12+1) = 1.DO
DO 721 J11=I12+1,112+8
IF(J11.LE. (I112+2))THEN
TOTC = 2.D0*C(J1l)/CLMIN
ELSE
TOTC = C(J11)/CLMIN
ENDIF .
TOTCAP = TOTCAP+TOTC
WRITE(6,722) J11,C(J11)/CLMIN
WRITE(7,722) J11,C(J11)/CLMIN
722 FORMAT(/,4X,'c(',I3,') =',F20.6,' CU')
721 CONTINUE

IF(I11.GT.N) GO TO 402
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c*
I13= I11*10
CHP(I11l) = 1.DO/(LLP(I11)*OMGP)

C(I13+2) = T/(RL*CHP(I1l1))
C(I13+3) = 0.75DO*C(I13+2)
C(I13+4) = 2.DO*C(I13+2)
C(I13+5) = 1.5DO*C(I13+2)
C(I13+6) = 2.DO*C(I13+2)
C(I13+7) = 2.DO*C(I13+2)
C(I13+8) = 1.5DO*C(I13+2)

C*
WRITE(6,714) Ill
WRITE(7,714) Il1
714 FORMAT(//,4X, 'NORMALIZED CAPACITANCES FOR SECTION NO:',I2)
CCMIN = 1.0D30
DO 730 J2=I113+2,I13+8
IF(C(J2).LT.CCMIN)THEN
CCMIN = C(J2)
ELSE
CONTINUE
ENDIF
730 CONTINUE
IF(CCMIN.GE.1.0D0O) CCMIN=1.DO
C(I13+1) = 1.DO
DO 731 J21=I13+1,I13+8
IF(J21.LE. (I13+2))THEN
TOTC = 2.DO*C(J21)/CCMIN
ELSE
TOTC = C(J21)/CCMIN
ENDIF
TOTCAP = TOTCAP+TOTC
WRITE(6,732) J21,C(J21)/CCMIN
WRITE(7,732) J21,C(J21)/CCMIN

732 FORMAT(/,4X,'C(',13,') =',F20.6,' CU')
731 CONTINUE
710 CONTINUE

402 CONTINUE
WRITE(6,740) TOTCAP
WRITE(7,740) TOTCAP
740 FORMAT(//,4X,'THE TOTAL CAPACITANCE FOR THE SC FILTER =
1 *F20.6,' CU')
: C¥*
; ELSE
. C*
. C* CALCULATION OF CAPACITANCE VALUES FOR THE MBIL SC FILTER
:c*
WRITE(6,750)
WRITE(7,750)
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750 FORMAT(/, 'NORMALIZED CAPACITANCES FOR THE SOURCE TERMINATION')
CRS1 = 3.DO*RL

IF(CRS1.GE.1.D0)THEN

CRS2 = 1.DO

ELSE
CRS2 = 1.D0/(3.DO*RL)
CRS1 = 1.DO

ENDIF

TOTCAP = 2.DO*CRS1+6.DO*CRS2
WRITE(6,760) CRS1
WRITE(7,760) CRS1
760 FORMAT(/,4X, 'CRS1 =',F12.6,' CU')
WRITE(6,761) CRS2
WRITE(7,761) CRS2
761 FORMAT(/,4X, 'CRS2 =',F12.6,' cU')
DO 770 170= 1,N,2
I71= 170 + 1

172= I170%10
LHP(I70) = 1.DO/(CLP(I70)*OMGP)
C(I72+1) = 4.DO*LHP(I70)/(RL*T)
IF(C(I72+1).GE.1.DO)THEN
C(I72+2) = 1.DO
ELSE
C(I72+2) = 1.DO/C(I72+1)
C(I72+1) = 1.DO
ENDIF
C(I72+3) = 2.DO*C(I72+2)"

c*
WRITE(6,772) I70
WRITE(7,772) 170
772  FORMAT(//,4X, 'NORMALIZED CAPACITANCES FOR SECTION NO: ',I2)
DO 781 J71=172+1,172+3
IF(J71.LE. (I72+2))THEN
TOTC = 2.DO*C(J71)
ELSE
TOTC = 4.DO*C(J71)
ENDIF
TOTCAP = TOTCAP+TOTC
WRITE(6,782) J71,C(J71)
WRITE(7,782) J71,C(J71)

782 FORMAT(/,4X,'C(',13,"') =',F20.6,' CU')
781 CONTINUE
C*
IF(I71.GT.N) GO TO 403
I173= I71*10
CHP(I71) = 1.DO/(LLP(I71)*OMGP)
C(I73+1) = 4.DO*RL*CHP(I71)/T
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IF(C(I73+1).GE.1.DO)THEN
C(I73+2) = 1.DO

ELSE
C(I73+2) = 1.DO/C(I73+1)
C(I73+1) = 1.DO

ENDIF
C(I73+3) = 2.DO*C(I73+2)

c*
WRITE(6,784) I71
WRITE(7,784) I71
784  FORMAT(//,4X,'NORMALIZED CAPACITANCES FOR SECTION NO:',I2)
DO 791 J81=I73+1,I73+3
IF(J81.LE. (I73+2) ) THEN
TOTC = 2.DO*C(J81)
ELSE
TOTC = 4.DO*C(J81)
ENDIF
TOTCAP = TOTCAP+TOTC
WRITE(6,792) J81,C(J81)
WRITE(7,792) J81,C(J81)

792 FORMAT(/,4X,'C(',13,"') =',F20.6,' cU')
791 CONTINUE
770 CONTINUE

403  CONTINUE
WRITE(6,799) TOTCAP
WRITE(7,799) TOTCAP

799 FORMAT(//,4X,'THE TOTAL CAPACITANCE FOR THE SC FILTER =',
*F20.6,' CU')

C**
C** END OF CALCULATION OF CAPACITANCE VALUES
C**
ENDIF
C*x*
WRITE(6,311)
311 FORMAT(/,'DO YOU WANT TO SEE THE MAGNITUDE AND PHASE RESPONSE')
WRITE(6,312)

312 FORMAT(//,4X,'IF YES TYPE 1 OTHERWISE TYPE 0')
READ(5, *) STP
c*
IF(STP.EQ.0)THEN
STOP
ELSE
CONTINUE
ENDIF
C*
WRITE(7,320)
320 FORMAT(//,2X,'FREQUENCY(HZ)',6X, 'MAGNITUDE(DB)', 14X,
*'PHASE (DEGREES)')
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321

330

340

350

360

Ckxkk
Chid¥k
Ch**k
Chk ik
Ch¥dsk

C** I

C*

WRITE(7,321)

FORMAT(/,14X, 'CONT. FILTER',4X,'SC FILTER',6X,'CONT.FILTER',

*5X,'sC FILTER')
WRITE(6,330)

FORMAT(//, 4X, 'PLEASE ENTER THE FOLLOWING PARAMETERS.')
WRITE(6,340)

FORMAT(//,4X, 'FINT = INITIAL FREQUENCY FOR PLOTTING(IN HERTZ)')
READ(S,*) FINT
WRITE(6,350)

FORMAT(//,4X, 'FEND = FINAL FREQUENCY FOR PLOTTING(IN HERTZ)')
READ(S5, *) FEND
WRITE(6,360)

FORMAT(//, 4X, ' FINC=INCREMENT FREQUENCY FOR PLOTTING(IN HERTZ) )
READ(5, *) FINC

FOLLOWING PROGRAM SEGMENT GENERATES DATA FOR PLOTTING THE
MAGNITUDE AND PHASE RESPONSE FOR
CHEBYCHEV AND BUTTERWORTH FILTER
I11=0
FR = FINT
DO 500 I=1,895
I1=11+1
1 IS FOR COUNTING
W = FR*2.DO*PI
S = CMPLX(0.0,W)
Z1 = CDEXP(-W*T*CJ/2.)
Z2 = CDEXP(-3.*W*T*CJ/2.)
Z3 = CDEXP(=2.*W*T*CJ)
IF(ITRAN.EQ. 1) THEN
Z = (2.DO/T)*(21-22)/(1.D0+23)
ELSE
Z = (2.DO/T)*(1.D0-Z1)/(1.D0+Z1)
ENDIF

IF(ITYP.EQ.1)THEN |
CALL TRFNB(TR,WP,S,N)

HS = TR
HS1 = HS
CALL TRFNB(TR,OMGP,Z,6N)
HZ = TR .
HZ1 = HZ
ELSE

CALL TRENC(TR,WP,S,ALPHA,BETA,6 N, AMAX, ROOT)
HS = TR
HS1 = HS

CALL TRFNC(TR,OMGP,Z,ALPHA,BETA,N, AMAX, ROOT)
HZ = TR
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C*
C*

C*
C*

C*

88

90

HZ1l = HZ
ENDIF

IF(REAL(HS1).EQ.O.0)THEN
APHS=AIMAG(HS1)/ABS(AIMAG(HS1))
PHAHS (I )=APHS*90.0

ELSE IF(REAL(HS1).GT.O.0.AND.AIMAG(HS1).LT.O.0)THEN
THETAS = ATAN(ABS(AIMAG(HS1))/ABS(REAL(HS1)))
PHAHS(I) = -180.0*THETAS/PI

ELSE IF(REAL(HS1).LT.0.0.AND.AIMAG(HS1).GT.0.0)THEN
THETAS = ATAN(ABS(AIMAG(HS1))/ABS(REAL(HS1)))
PHAHS(I) = 180.0-180.0%*THETAS/PI

ELSE IF(REAL(HS1).LT.O.0.AND.AIMAG(HS1).LT.O.0)THEN
THETAS = ATAN(ABS(AIMAG(HS1))/ABS(REAL(HS1)))
PHAHS(I) =-180.0+180.0*THETAS /PI

ELSE
PHAHS(I) = (180.0/PI)*ATAN(AIMAG(HS1)/REAL(HS1))

ENDIF

IF(REAL(HZ1).EQ.O.0)THEN
APHZ = AIMAG(HZ1)/ABS(AIMAG(HZ1))
PHAHZ(I) = APHZ*90.0

ELSE IF(REAL(HZ1).GT.0.0.AND.AIMAG(HZ1).LT.0.0)THEN
THETAZ = ATAN(ABS(AIMAG(HZ1))/ABS(REAL(HZ1)))
PHAHZ(I) = -180.0*THETAZ/PI

ELSE IF(REAL(HZ1).LT.O0.0.AND.AIMAG(HZ1).GT.0.0)THEN
THETAZ = ATAN(ABS(AIMAG(HZ1))/ABS(REAL(HZ1)))
PHAHZ(I) = 180.0-180.0%*THETAZ/PI

ELSE IF(REAL(HZ1).LT.0.0.AND.AIMAG(HZ1).LT.0.0)THEN
THETAZ = ATAN(ABS(AIMAG(HZ1))/ABS(REAL(HZ1)))
PHAHZ(I) =-180.0+180.0*THETAZ/PI

ELSE
PHAHZ(I) = (180.0/PI)*ATAN(AIMAG(HZ1)/REAL(HZ1))

ENDIF

RMGHS = CDABS(HS)
RMGHZ = CDABS(HZ)

DBHS(I) = 20.0%ALOG10(RMGHS)

DBHZ(I) = 20.0*ALOG10(RMGHZ)

WRITE(7,88) FR,DBHS(I),DBHZ(I),PHAHS(I),PHAHZ(I)
FORMAT(2X,F10.2,2X,E12.4,2X,E12.4,2X,F12.3,2X,F12.3)
FNTL( I )=ALOG10 ( SNGL(FR)) ‘

WRITE(8,90) FNTL(I),DBHS(I),DBHZ(I),PHAHS(I),PHAHZ(I)

FORMAT (2X,F10.4,F12.4,F12.4,F12.3,F12.3)

FR = FR + FINC

IF(FR.GT.FEND)GO TO 600
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500 CONTINUE
C***k*x
C¥*%%  FOLLOWING PROGRAM SEGMENT OBTAINS THE PLOTS FOR THE
C#***%  MAGNITUDE AND PHASE RESPONSE
c****
600 CONT INUE
CALL PLOT(4.0,4.0,-3)
CALL NEWPEN(1)
CALL FACTOR(1.0)

C**

C** AXI, IS THE AXIS LENGTH
c**
AXL = 10.
CH* WRITE(7,*) Il
IF(I1.EQ.895)THEN
FEND=FR-FINC
WRITE(7,*) FEND
ELSE
FEND=FEND
ENDIF

Ck vk

C*** PROGRAM SEGMENT FOR ADJUSTING SCALING
c***
FSINT=SNGL(FINT)
FENTL(I1+1) = ALOG1O(FSINT) ,
ENTL(I1+2) = (ALOG1O(SNGL(FEND))-FNTL(I1+1))/AXL

O %

PMIN1= 1.E30
PMAX1= 1.E-30
PMIN2= 1.E30
PMAX2= 1.E-30
PMIN3= 1.E30
DO 50 IP2=1,I1
IF(DBHS(IP2).LE.PMIN1) THEN
PMIN1 = DBHS(IP2)
ELSE IF(DBHS(IP2).GE.PMAX1) THEN
PMAX1 = DBHS(IP2)
ENDIF
Ck%x*
IF(DBHZ(IP2).LE.PMIN2) THEN
PMIN2 = DBHZ(IP2)
ELSE IF(DBHZ(IP2).GE.PMAX2) THEN
PMAX2 = DBHZ(IP2)
ENDIF
c***
IF(PHAHZ(IP2).LE.PMIN3) THEN
PMIN3 = PHAHZ(IP2)
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50
C* * %

Cxx ¥

CHxk
Ch**x

C %

Ck ¥k

CHrxk
Ck* %
ke % %

ENDIF
CONTINUE

DBHS(I1+1) =IFIX(PMIN1 - 4.)
DBHS(I1+2) =IFIX(1.+(PMAX1-DBHS(I1+1))/AXL)

DBHZ(I1+1) =IFIX(PMIN2- 4.)
DBHZ(I1+2) =IFIX(1.+(PMAX2-DBHZ(I1+1))/AXL)

IF(DBHS(I1+1).LT.DBHZ(I1+1)) THEN
DBHZ(I1l+1) = DBHS(I1l+1)

ELSE ,
DBHS(I1+1) = DBHZ(I1l+1)

ENDIF

IF(DBHS(I1+2).GT.DBHZ(I1+2)) THEN
DBHZ(I1+2) = DBHS(I1+2)

ELSE
DBHS(I1+2) = DBHZ(I1+2)
ENDIF
PHAHS(I1+1) = -200.0
PHAHZ(I1+1) = -200.0
PHAHS(I1+2) = 400./AXL
PHAHZ(I1+2) = 400./AXL

CALL LGAXS(0.0,0.0,21HFREQUENCY (HZ)
* -21,AXL,0.0,FSINT, FNTL(I1+2))
CALL AXIS(0.0,0.0,21HMAGNITUDE (DB) ,
* 21,AXL,90.0,DBHZ(I1+1),DBHZ(I1+2))
CALL NEWPEN(2)
CALL FLINE(FNTL,DBHS,-I1,1,0,2)
CALL NEWPEN(3)
CALL FLINE(FNTL,DBHZ,-I1,1,0,2)
CALL NEWPEN(2)
CALL SYMBOL(0.5,11.1,0.4,22H__ CONTINUOUS FILTER ,0.0,22)
CALL NEWPEN(3)
CALL SYMBOL(0.5,10.5,0.4,25H__ SWITCHED CAPACITOR F. ,0.0,25)
CALL NEWPEN(1)
CALL RECT(-2.5,-2.0,14.0,14.,0.,3)
CALL PLOT(17.0,0.0,-3)
CALL NEWPEN(1)
CALL LGAXS(0.0,0.0,21HFREQUENCY (HZ)
* -21,AXL,0.0,FSINT,FNTL(11+2))
CALL AXIS(0.0,0.0,21HPHASE (DEGREES)
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* 21,AXL,90.0,PHAHZ(I1+1),PHAHZ(I1+2))
CALL NEWPEN(2)
CALL FLINE(FNTL,PHAHS,-I1,1,0,2)
CALL NEWPEN(3)
CALL FLINE(ENTL,PHAHZ,-I1,1,0,2)
CALL NEWPEN(2)
CALL SYMBOL(0.5,11.1,0.4,22H__ CONTINUOUS FILTER ,0.0,22)
CALL NEWPEN(3)
CALL SYMBOL(0.5,10.5,0.4,25H__ SWITCHED CAPACITOR F. ,0.0,25)
CALL NEWPEN(1)
CALL RECT(-2.5,-2.0,14.0,14.,0.,3)
LR R Y Y Y Y A E Ea LI
FOLLOWING PROGRAM SEGMENT DRAWS THE CIRCUIT
OF THE SC HIGH PASS LADDER FILTER
Fe % % % ok % e % v Yo %k ke K e ok ok ok vk T e ok ok Tk ok T o ok e ok S e v ok ok ok Tk T ok ok o T e o e e
CALL PLOT(-20.,16.,-3)
CALL FACTOR (1.5)
CALL NEWPEN(1)
IP=3
ID=2
A =0.28
2A1=0.18
=-0.068
IF(ITRAN.EQ. 1) THEN
khkkhkhkhkkhkddhhhdkhdkhkhhdhhhdhkdrrdhrddehrhhhhhhhhkrrhrr
PROGRAM FOR DRAWING SC LADDER FILTER RESULTING
FROM THE MLDD TRANFORMATION.
hhkhkkhkkdhkhkdkhdkdhhkhhhkhhkhrhrrbhrrhrrdhhohhhhhkdkddhhk
CALL RSMLDD(0.0,0.0)
X=1.0
Y=0.6
DO 10 I= 1 ,N2
Fl=(2%I-1.)%10.
CALL BMLDD1(X,Y,Fl)
X=X+5.2
Y=Y
F2=I%2.%10.
CALL BMLDD2(X,Y,F2)
X=X+5.2
Y=Y
10 CONTINUE
c*
C*

Qaaaan

aaan

IF( (2%N2).LT.N)THEN
F1=N+*10.
CALL BMLDD1(X,Y,F1)
X=X+9.2
Y=Y
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V1=1.0
X12=X+3.4*V1
ELSE
V1=2
X12=X+4.0*V1
ENDIF
ELSE
C 3222233232 I 2L ST LA XTI IL TSI IL I T T T LRI XXX
C PROGRAM FOR DRAWING SC LADDER FILTER RESULTING
c FROM THE MODIFIED BILINEAR TRANFORMATION.
(o4 dhkhkhhkrhdkdkhhdkkhrdhtdtdhhhhkhkrhhhbdkhhkdkhhdhdkhhkhkdhhthddk
CALL RSMBIL(-5.0,0.6)
X=1.0
Y=0.6
DO 20 I= 1 ,N2
F1=(2*I-1.)*10.
CALL BMBIL1(X,Y,F1)
X=X+5.8
Y=Y
F2=I%2.%10.
CALL BMBIL2(X,Y,F2)
X=X+5.8
Y=Y
20 CONTINUE
c*
IF((2*N2).LT.N)THEN
F1=N*10.
CALL BMBIL1(X,Y,F1)
X=X+9.35
Y=Y
V1=1.0
X12=X+3.4*V1
ELSE
X=X-0.5
Y=Y
V1=2.0
X12=X+4.0*V1
ENDIF
C*
ENDIF
c* _
X11=X+4.3*V1
X13=X+4.6*V1
X14=X13 + 0.15
X15=X+4.*V1-.6
X16=X13+.4
CALL PLOT(X15,Y+.6,IP)
CALL PLOT(X13,Y+.6,ID)
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CALL PLOT(X14,Y+.6,IP)
CALL CIRCLE(X14,Y+.6,0.,360.,.075,5)
CALL PLOT(X11,Y+.6,IP)
CALL PLOT(X11,Y+6.8,ID)
CALL PLOT(X12,Y+6.8,ID)
CALL SYMBOL(X16,Y+.4,0.3,5HV ,0.0,5)
CALL SYMBOL(X16+A,Y+.4+B,0.15,5H0 ,0.0,5)
CALL PLOT (80.,80.,999)
STOP

END
Chxdkhkhdhhhdhdhhdhhhdkhkdbhbdhhkdhdbdhdhhdhrhhhrhhrhritrdd
C**
FUNCTION OMGPR1(F,T)

c**
C* FUNCTION SUBPROGRAM FOR PREWARPING MLDD
c*
C* **OMGPR1l IS THE PREWARPING EQUATION FOR MLDD TRANFORMATION. **
C**

REAL*8 F,T,PI,W

PI = 4.DO*DATAN(1.DO)

W=2.DO*PI*F

OMGPR1= (2.DO/T)*DSIN(W*T/2.DO)/DCOS(W*T)

RETURN
END
c***********************************************
C*x*
C**
FUNCTION OMGPR2(F,T)
c**
Cx FUNCTION SUBPROGRAM FOR PREWARPING MBIL
Cc*
C* OMGPR2 IS THE PREWARPING EQUATION FOR MODIFIED BILINEAR TRANSE.
C**
REAL*8 F,T,PI,W
PI = 4.DO*DATAN(1.DO)
W=2.DO*PI*F
OMGPR2= (2.DO/T)*DTAN(W*T/4.DO)
RETURN
END
C***********************************************
c**
C**
FUNCTION ARCOSH(X)
C**

C* FUNCTION SUBPROGRAM FOR INVERSE HYPERBOLIC COSINE
C**

REAL*8 X
ARCOSH = DLOG(X+DSQRT(X**2-1.D0))
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RETURN

END
C 3 3 3 e o o o o o ok ok s o o o S sk vk ok ok ok ok ok ok ok o ok ok ok ok ok ok ok ok ok ok ok o o ok o o ok ok ok
C*
C*
FUNCTION ARSINH(X)
C# *

C* FUNCTION SUBPROGRAM FOR INVERSE HYPERBOLIC SINE
C*%*

ARSINH = ALOG(X+SQRT(X*%2+1.))

RETURN

END
% 5 vk e sk e e s o sk o ke ko ok e ok ok ok ok ok ok ok ok ok vk ke ok ok ok ok ok ok ok ok sk ok e ok e e ke ok
C*x#
C**

SUBROUTINE ORDERB (N, AMAX, AMIN, OMGP, OMGS)
Ck*

C* SUBROUTINE FOR CALCULATING THE ORDER OF BUTTERWORTH FILTER
C* THE ORDER OF THE FILTER IS CALCULATED AS "N"
C**
REAL*8 OMGP, OMGS, A3
Al = 10.**%(AMIN/10.)~1.
A2 = 10.*%(AMAX/10.)-1.
A3 = 2.*DLOG10(OMGP/OMGS)
OR = ALOG10(Al/A2)/A3
N = IFIX(OR+1.)

RETURN

END
Chhkkddkkdhhdhhdhdhhhhhhdhdhdhhhhkhkhhddhhhhhhdddhdhdhks ks
C*#*
C#*

SUBROUTINE ORDERC(N, AMAX, AMIN, OMGP, OMGS)
CH*

C* SUBROUTINE FOR CALCULATING THE ORDER OF CHEBYCHEV FILTER
C* THE ORDER OF THE FILTER IS CALCULATED AS "N"
C*x%
REAL*8 OMGP, OMGS, A4,A3
Al = 10.**(AMIN/10.)-1.
A2 = 10.**%(AMAX/10.)-1.
A3 = SQRT(A1l/A2)
A4 = ARCOSH(OMGP/OMGS)
OR = ARCOSH(A3)/A4
N = IFIX(OR+1.)

RETURN

END
e e de e e e e sk vk e vk v ok ok ok e ok ok vk ok ok e o o ok ok ok ok ok 5k ok ok ok ok ok ok ok ok ok ok o o o o o e ok
C* %
Ck*
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SUBROUTINE OMGZRB(N, AMAX, OMGZLP)
Ck*
C* SUBROUTINE FOR CALCULATING THE HALF POWER FREQUENCY
C* OF THE BUTTERWORTH FILTER.

C**

Al = 10.%%(.1*AMAX)-1.

P2 = 1./FLOAT(2*N)

OMGZLP= 1./Al**P2

RETURN

END
c***********************************************
C**
C**

SUBROUTINE OMGZRC (N, AMAX, OMGZLP)
C*x*

C* SUBROUTINE FOR CALCULATING THE HALF POWER FREQUENCY
C* OF THE CHEBYCHEV FILTER.

C**

EPS = SQRT(10.%*(.1*¥AMAX)-1.)

P2 = 1./FLOAT(N)

OMGZLP= COSH(P2*ARCOSH(1./EPS))

RETURN

END
Chhkhkhhhkhhkhhkhkhhhkddhhkhhdddhhhhhkhdhhhhkhhdkddhdi
C* *
C* %

SUBROUTINE TRENB(TR,W,S,N)
C**
C* SUBROUTINE FOR OBTAINING THE TRANSFER FUNCTION
C* OF THE BUTTERWORTH FILTER
C**

COMPLEX*16 TR, S,HBN
REAL*8 PSI(50),W

PI = 4.DO*DATAN(1.DO)
N1 = (N-1)/2
N2 = N/2

IF((2*N2).LT.N)THEN
C* POLES FOR ODD ORDER _
HBN=DCMPLX(1.DO,0.D0O)
DO 10 K=1,N1
PSI(K)= PI*K/FLOAT(N)
HBN =(W**2+2.DO*DCOS (PSI(K))*W*S+S**2)*HBN/S**2
10 CONTINUE
HBN = HBN* (W + S)
TR = S/HBN
ELSE
C* POLES FOR EVEN ORDER
HBN=DCMPLX(1.D0,0.D0)

- 167 -




DO 20 I=1,N2
PSI(I)= PI*(2.DO*I-1.D0)/(2.DO*N)
HBN =(W**2+2.DO*DCOS(PSI(I))*W*S+S*%2)*HBN/S**2
20 CONTINUE
TR = 1.DO/HBN

ENDIF
RETURN
END
C e ¥ e v ok e e o e o S vk o ok ok ok e e e ok ok ok o e e ok ok ok e ok ok ok o ok ok ok ok ok e o ok e e v ok ke ok
C*
SUBROUTINE TRENC(TR,W,S,ALPHA, BETA,N, AMAX, ROOT)
C**
C* SUBROUTINE FOR OBTAINING THE TRANSFER FUNCTION
C* OF THE CHEBYCHEV FILTER
Ck %

COMPLEX*16 TR, S,HBN
REAL*8 ALPHAl,W,B,Bl,RIPL
REAL*8 ALPHA(1l),BETA(1l),DN1,DN2
REAL*8 ROOT(1),ROOTA,ROOTB,ROOTC, ROOTAL, ROOTAZ
PI 4.DO*DATAN(1.DO)
EPS = SQRT(10.%*(.1*AMAX)-1.)
RIPL= 1.DO/DSQRT(1.D0 + EPS**2)
A = ARSINH(1./EPS)/FLOAT(N)
N1 = (N-1)/2
N2 = N/2
IF((2*N2).LT.N)THEN
C* POLES FOR ODD ORDER
HBN=DCMPLX(1.D0,0.DO0)
DN1=1.DO
DO 10 K=1,N1
B = (2.DO%K-1.D0)*PI/(2.DO*N)
ALPHA(K) = SINH(A)*DSIN(B)

BETA(K) = COSH(A)*DCOS(B)
HBN =(W¥%2+2.DO*ALPHA(K)*W*S+ (ALPHA(K)**2+BETA(K)*%2)*S##2) %
*HBN/S#**2

DN1 =(ALPHA(K)**2 + BETA(K)#**2)*DN1
10 CONTINUE
N3= N1+1 ,
Bl= (2.DO*N3-1.D0)*PI/(2.DO*N)
ALPHAl = SINH(A)*DSIN(B1)
DN2 = DN1*ALPHA1
HBN = HBN*(W + ALPHA1*S)
TR = DN2%S/HBN
ELSE
C* POLES FOR EVEN ORDER
HBN=DCMPLX(1.D0,0.D0)
DN1=1.DO
DO 20 I=1,N2
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20

B = (2.DO*I-1.DO)*PI/(2.DO*N)
ALPHA(I) = SINH(A)*DSIN(B)
BETA(I) = COSH(A)*DCOS(B)

ROOTA = ALPHA(I)**2 + BETA(I)¥%*2

ROOTB = 2.DO*ALPHA(I)*W

ROOTC = W¥*2

ROOTA1l = (ROOTB/(2.DO*ROOTA) )*%2

ROOTA2 = DABS(ROOTB**2-4.DO*ROOTA*ROOTC)/((2.DO*ROOTA)**2)

ROOT(I)= DSQRT(ROOTA1l+ROOTA2)
HBN =(W#*2+2.DO*ALPHA(I)*W*S+(ALPHA(I)**2+BETA(I)*%2)%S*%2)%*
*HBN/S%*2
DN1 =(ALPHA(I)**2 + BETA(I)**2)*DN1
CONTINUE
DN2 = DN1*RIPL
TR = DN2/HBN
ENDIF
RETURN
END

Chhkkkddhkhkhdhhdhbdhkhhhhhkhhkddhhhhrrhhdrhhrhhkrbhhhhdk

Ck k%

Chkk
Ck k%
Ck k%
Ck k%

SUBROUTINE LPCHEB(N,AMAX,RL,LLP,CLP)

SUBROUTINE WHICH COMPUTES THE VALUES OF CIRCUIT
ELEMENTS IN THE LOW PASS CHEBYCHEV LADDER FILTER.

REAL*8 LLP(1),CLP(1),Al,A2,A3,A4
REAL*8 PI,H1,H,RL, ZETA '

PI = 4.DO*DATAN(1.DO)

EPS = SQRT(10.0%*(.1%AMAX)-1.0)

H1 = DSQRT(1.DO+(1.DO/EPS**2))

H = (H1 + (1.DO/EPS))**(1./FLOAT(N))
ZETA= (H-(1.DO/H))
N2 = N/2
ID = 2%N2
DO 10 M=1,N
M2 = 2%M
M3 = 4*M-3
M& = 4*M-1
M5 = 2%M-1
M6 = 2%M+1
M7 = 4*M+1
CLP(1) = 4.DO*DSIN(PI/(2.DO*N))/ZETA

Al= 16.DO*DSIN(M3*PI/(2.DO*N))*DSIN(M4&*PI/(2.DO*N))
A2= ZETA**2+4.DO* (DSIN(M5*PI/(1.DO*N)))**2

LLP(M2) = Al/(A2*CLP(M5)) ,

A3= 16.DO*DSIN(M4*PI/(2.DO*N))*DSIN(M7*PI/(2.DO*N))
A4= ZETA**2+4.DO* (DSIN(M2*PI/(1.DO*N)))**2

CLP(M6) = A3/(A4*LLP(M2))
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10 CONTINUE
IF(ID.LT.N)THEN
C* FOR ODD N RL=1
RL=1.DO |
CLP(N) = 4.DO*DSIN(PI/(2.DO*N))/(ZETA*RL)
ELSE
C* FOR EVEN N RL=VALUE FOR MAXIMUM POWER TRANSFER
RL = 1.D0+2.DO*EPS*%2-2.DO*EPS*SQRT(1.0+EPS*%2)
LLP(N) = 4.DO*RL*DSIN(PI/(2.DO*N))/ZETA
ENDIF
RETURN

END
c***********************************************

Ok *

SUBROUTINE LPBUTW(N,LLP,CLP,RL)
REAL*8  LLP(1),CLP(1),PI,RL
CH**
C*** THE FOLLOWING PROGRAM COMPUTES THE VALUES OF CIRCUIT

C*** ELEMENTS IN THE LOW PASS LADDER BUTTERWORTH FILTERS.
O %%

PI = 4.DO*DATAN(1.DO)
RL = 1.DO
DO 30 K = 1,N,2
Kl =K+ 1
K2 = 2%K-1
K21 = 2%K1l-1
N2 = 2+%N

CLP(K) = 2.DO*DSIN(K2*PI/N2)
IF(X1.GT.N)RETURN
LLP(K1) = 2.DO*DSIN(K21*PI/N2)
30 CONTINUE
RETURN
END
C***********************************************
C* SUBROUTINE FOR DRAWING THE FIRST BUILDING
C* BLOCK OF THE MLDD TRANSFORMATION
Ck%**
SUBROUTINE BMLDD1(X,Y,F1)
IP=3
ID=2
Gl=1.0
G2=2.0
A1=0.20
A2=0.20
=-0.068
X1=X+2.2
X2=X1+.3
X3=X+2.4
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X5=X-.5
X6=X~-.05
Y1=Y+.5
Y2=Y1+1.4

SEGMENT FOR DRAWING CONNECTIONS

DRAW

DRAW

DRAW

DRAW

DRAW

DRAW

DRAW

DRAW

DRAW

DRAW

DRAW

TO CONNECT F-DOPAMP
CALL PLOT(10.8+X,6.

LEFT TOP
1+Y, IP)

CALL PLOT(8.9+X,6.1+Y, ID)

TO CONNECT F-DOPAMP

LEEFT BOTTOM

CALL PLOT(8.9+X,3.+Y, IP)
CALL PLOT(10.+X,3.+Y,ID)
TO CONNECT S-OPAMP BOTTOM
CALL PLOT(10.2+X,.6+Y, IP)

CALL PLOT(10.2+X,1.

+Y, ID)

CALL PLOT(7.0+X,.6+Y,IP)
CALL PLOT(10.2+X, .6+Y,ID)
TO CONNECT S-OPAMP TOP

CALL PLOT(10.2+X,6.

8+Y, IP)

CALL PLOT(7.2+X,6.8+Y, ID)
TO CONNECT TO THE NEXT -DOPAMP RIGHT TOP

CALL PLOT(10.2+X,6.

8+Y, IP)

CALL PLOT(10.2+X3,6.8+Y,1ID)
TO CONNECT TO THE NEXT -DOPAMP RIGHT BOTTOM

CALL PLOT(10.8+X,1.

+Y,IP)

CALL PLOT(10.8+X,.6+Y, ID)

CALL PLOT(10.8+X3,.

TO CONNECT F-DOPAMP
CALL PLOT(10.2+X,6.

6+Y, ID)

RIGHT TOP
1+Y1, IP)

CALL PLOT(10.2+X2,6.1+Y1,ID)

TO CONNECT F-DOPAMP
CALL PLOT(10.2+X,6.

RIGHT BOTTOM
1+Y1, IP)

CALL PLOT(10.2+X3,6.1+Y1,1ID)

TO CONNECT F-DOPAMP
CALL PLOT(9.4+X1,3.
CALL PLOT(8.8+X1,3.

TO CONNECT F-DOPAMP .
CALL PLOT(9.4+X1,4.
CALL PLOT(9.4+X1,2.

TO CONNECT F-DOPAMP

.RIGHT BOTTOM

+Y, IP)

+Y, ID)

RIGHT BOTTOM LINE

1+Y1, IP)

5+Y1, ID)

RIGHT TOP LINE LAST ONE

CALL PLOT(10.2+X2,6.1+Y1,IP)
CALL PLOT(10.2+X2,4.7+Y1,ID)
CALL PLOT(10.2+X2,2.5+Y1,IP)
CALL PLOT(10.2+X2,2.0+Y1, ID)
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CALL PLOT(8.5+X2,2.0+Y1,ID)
CALL PLOT(8.5+X2,1.7+Y1,ID)

C
C CALL FOR DRAWING INPUT SWITCHES
c

CALL VSW(10.2+X,3.+Y,G1)
CALL HSWL(10.2+X,2.2+Y,G2)
CALL CP(10.2+X,2.1+Y)
CALL SYMBOL(10.25+X,2.2+Y,0.2,5HC ,0.0,5)
c CALL SYMBOL(10.25+X+Al,2.2+Y+B,0.075, SHL ,0.0,5)
CALL NUMBER(10.25+X+A2,2.2+Y+B,0.12,F1+1.,0.0,-1)
CALL HSWL(10.2+X,1.8+Y,G1)
CALL VSW(10.2+X,1.9+Y,G2)
CALL DPUMLD(10.2+X,3.+Y)
CALL VSW(10.8+X,3.+Y,G1)
CALL HSWR(10.8+X,2.2+Y,G2)
CALL CP(10.8+X,2.1+Y)
CALL HSWR(10.8+X,1.8+Y,G1)
CALL VSW(10.8+X,1.9+Y,G2)
CALL FBCPL(10.2+X,4.4+Y)
CALL SYMBOL(9.39+X,3.28+Y,0.2,5HC ,0.0,5)
c CALL SYMBOL(9.34+X+Al,3.27+Y+B,0.075,5HL ,0.0,5)
CALL NUMBER(9.34+X+A2,3.27+Y+B,0.12,F1+2.,0.0,-1)
CALL FBCPR(10.8+X,4.4+Y)
CALL SYMBOL(11.21+X,3.28+Y,0.2,5HC ,0.0,5)
CALL SYMBOL(11.16+X+Al,3.27+Y+B,0.075,5HL ,0.0,5)
CALL NUMBER(11.16+X+A2,3.27+Y+B,0.12,F1+2.,0.0,-1)

QaaoaQ a

CALL FOR DRAWING THE EXTRA CAPACITOR(CS8)

CALL PLOT(9.4+X6,6.1+Y, IP)

CALL PLOT(9.4+X6,4.7+Y, ID)

CALL CP(9.4+X6,4.7+Y)
CALL SYMBOL(9.5+X6,4.75+Y,0.2,5HC ,0.0,5)

C CALL SYMBOL(9.5+X6+Al,4.75+Y+B,0.075, 5HL ,0.0,5)

CALL NUMBER(9.5+X6+A2,4.75+Y+B,0.12,F1+8.,0.0,-1)

CALL PLOT(9.4+X6,4.5+Y, IP)

CALL PLOT(9.4+X6,3,0+Y, ID)

c
C CALL FOR DRAWING THE NEGATIVE FEEDBACK SWITCHES
c

CALL VSW(9.4+X5,6.1+Y,G2)

CALL HSWL(9.4+X5,5.3+Y,G1)

CALL CP(9.4+X5,5.2+Y)

CALL SYMBOL(9.415+X5,5.25+Y,0.2, 5HC ,0.0,5)

c CALL SYMBOL(9.415+X5+Al,5.25+Y+B,0.075, 5HL ,0.0,5)

CALL NUMBER(9.415+X5+A2,5.25+Y+B,0.12,F1+4.,0.0,-1)
CALL VSW(9.4+X5,5.0+Y,G1)

- 172 -

:



CALL HSWL(9.4+X5,4.9+Y,G2)

CALL CP(9.4+X5,4.1+Y)
CALL SYMBOL(9.415+X5,4.15+Y,0.2,5HC ,0.0,5)

c CALL SYMBOL(S.415+X5+Al, 4.15+Y+B,0.075, 5HL ,0.0,5)

CALL NUMBER(9.415+X5+A2,4.15+Y+B,0.12,F1+6.,0.0,-1)

CALL HSWL(9.4+X5,4.2+Y,G2)

CALL HSWL(9.4+X5,3.8+Y,G1)

CALL VSW(9.4+X5,3.9+Y,G2)

o
C CALL FOR DRAWING THE POSITIVE FEEDBACK SWITCHES
c

CALL VSW(9.4+X1,6.1+Y1,G1)
CALL HSWR(9.4+X1,5.3+Y1,G2)
CALL CP(9.4+X1,5.2+Y1)
CALL SYMBOL(8.77+X1,4.9+Y1,0.2,5HC ,0.0,5)
c CALL SYMBOL(8.77+X1+Al,4.9+Y1+B,0.075, 5HL ,0.0,5)
CALL NUMBER(8.77+X1+A2,4.9+Y1+B,0.12,F1+7.,0.0,-1)
CALL VSW(9.4+X1,5.0+Y1,G2)
CALL HSWR(9.4+X1,4.9+Y1,G1)
CCC SECOND STAGE
CALL VSW(10.2+X2,4.7+Y1,G1)
CALL HSWL(10.2+X2,3.9+Y1,G2)
CALL CP(10.2+X2,3.8+Y1)
CALL SYMBOL(10.4+X2,3.7+Y1,0.2,5HC ,0.0,5)
c CALL SYMBOL(10.4+X2+Al,3.7+Y1+B,0.075,5HL ,0.0,5)
CALL NUMBER(10.4+X2+A2,3.7+Y1+B,0.12,F1+3.,0.0,-1)
CALL HSWL(10.2+X2,3.5+Y1,G1)
CALL VSW(10.2+X2,3.6+Y1,G2)
CALL CP(10.2+X2,2.7+Y1)
CALL SYMBOL(S.7+X2,2.3+Y1,0.2,5HC ,0.0,5)
c CALL SYMBOL(9.7+X2+Al,2.3+Y1+B,0.075,5HL ,0.0,5)
CALL NUMBER(9.7+X2+A2,2.3+Y1+B,0.12,F1+5.,0.0,-1)
CALL HSWL(10.2+X2,2.8+Y1,G1)
RETURN
END
C***********************************************
C* SUBROUTINE FOR DRAWING THE SECOND BUILDING
C* BLOCK OF THE MLDD TRANSFORMATION

Ck %%
SUBROUTINE BMLDD2(X,Y,F2)
IP=3 :
ID=2
A1=0.20
A2=0.18
B=-0.068
G1=1.0
G2=2.0
X1=X+2.2
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DRAW

DRAW

DRAW

DRAW

DRAW

DRAW

DRAW

DRAW

DRAW

DRAW

DRAW

X2=X1+.3
X3=X+2.4
Y1=Y+.5

TO CONNECT F-DOPAMP LEFT TOP
CALL PLOT(10.8+X, (1.3+Y),IP)
CALL PLOT(8.9+X, (1.3+Y),ID)

TO CONNECT F~-DOPAMP LEFT BOTTOM
CALL PLOT(8.9+X,4.4+Y,IP)

CALL PLOT(10.+X,4.4+Y, ID)

TO CONNECT D-OPAMP BOTTOM
CALL PLOT(7.8+X, (.6+Y), IP)

CALL PLOT(10.2+X, (.6+Y), ID)

TO CONNECT D-OPAMP TOP
CALL PLOT(10.2+X, (6.8+Y), IP)
CALL PLOT(7.4+X, (6.8+Y), ID)

TO CONNECT TO THE NEXT -DOPAMP RIGHT TOP
CALL PLOT(10.8+X, (6.8+Y), IP)
CALL PLOT(10.8+X3,(6.8+Y), ID)

TO CONNECT TO THE NEXT -DOPAMP RIGHT BOTTOM
CALL PLOT(10.2+X, (.6+Y), IP)

CALL PLOT(10.2+X3, (.6+Y), ID)

TO CONNECT F-DOPAMP RIGHT TOP
CALL PLOT(10.2+X, (.4+Y1),IP)
CALL PLOT(10.2+X2,(.4+Y1), ID)
TO CONNECT F-DOPAMP RIGHT BOTTOM
CALL PLOT(10.2+X, (6.1+Y1),IP)
CALL PLOT(10.2+X3, (6.1+Y1), ID)
TO CONNECT F-DOPAMP RIGHT BOTTOM
CALL PLOT(9.4+X1, (4.4+Y), IP)
CALL PLOT(8.9+X1, (4.4+Y),ID)
TO CONNECT F-DOPAMP RIGHT BOTTOM LINE
CALL PLOT(9.4+X1, (3.9+Y1),IP)
CALL PLOT(9.4+X1, (2.4+Y1),ID)
TO CONNECT F-DOPAMP RIGHT TOP LINE (LAST ONE)
CALL PLOT(10.2+X2,(2.1+Y1), IP)
CALL PLOT(10.2+X2,(.4+Y1),ID)
CALL PLOT(10.2+X2, (4.3+Y1),IP)
CALL PLOT(10.2+X2,(4.8+Y1), ID)
CALL PLOT(8.5+X2, (4.8+Y1),ID)
CALL PLOT(8.5+X2,(5.1+Y1),ID)

CALL FOR DRAWING THE EXTRA CAPACITOR(CS8)

X6=X- .05
YT=Y-1.7
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CALL FOR DRAWING INPUT SWITCHES

CALL PLOT(9.4+X6,6.1+YT, IP)
CALL PLOT(9.4+X6,4.7+YT, ID)
CALL CP(9.4+X6,4.7+YT)
CALL SYMBOL(9.5+X6,4.20+YT,0.2,5HC ,0.0,5)
CALL SYMBOL(9.5+X6+Al, 4.20+YT+B,0.075, SHC ,0.0,5)
CALL NUMBER(9.5+X6+A2,4.20+YT+B,0.12,F2+8.,0.0,-1)
CALL PLOT(9.4+X6,4.5+YT, IP)
CALL PLOT(9.4+X6,3.0+YT, ID)

YS=Y+3.8
CALL VSW(10.2+X,3.+YS,G1)
CALL HSWL(10.2+X,2.2+YS,G2)
CALL CP(10.2+X,2.1+YS)
CALL SYMBOL(10.25+X,2.2+YS,0.2,5HC ,0.0,5)
CALL SYMBOL(10.25+X+Al,2.2+YS+B,0.075, 5HC ,0.0,5)
CALL NUMBER(10.25+X+A2,2.2+YS+B,0.12,F2+1.,0.0,-1)
CALL HSWL(10.2+X,1.8+YS,G1)
CALL VSW(10.2+X,1.9+YS,G2)
CALL DPDMLD(10.2+X,3.+Y)
CALL VSW(10.8+X,3.+YS,G1)
CALL HSWR(10.8+X,2.2+YS,G2)
CALL CP(10.8+X,2.1+YS)
CALL HSWR(10.8+X,1.8+YS,G1)
CALL VSW(10.8+X,1.9+YS,G2)
CALL FBCPL(10.2+X,4.4+Y)
CALL SYMBOL(9.39+X,3.92+Y,0.2,5HC ,0.0,5)
CALL SYMBOL(9.34+X+Al,3.91+Y+B,0.075,5HC ,0.0,5)
CALL NUMBER(9.34+X+A2,3.91+Y+B,0.12,F2+2.,0.0,~1)
CALL FBCPR(10.8+X,4.4+Y)
CALL SYMBOL(11.21+X,3.92+Y,0.2,5HC ,0.0,5)
CALL SYMBOL(1l.16+X+Al,3.91+Y+B,0.075,S5HC ,0.0,5)
CALL NUMBER(11.16+X+A2,3.91+Y+B,0.12,F2+2.,0.0,~1)

CALL FOR DRAWING THE NEGATIVE FEEDBACK SWITCHES

X5=X-.5
YT=Y-1.7
CALL VSW(9.4+X5,6.1+YT,G1)
CALL HSWL(9.4+X5,5.3+YT,G2)
CALL CP(9.4+X5,5.2+YT)
CALL SYMBOL(9.415+X5,5.25+YT, 0.2, 5HC ,0.0,5)
CALL SYMBOL(9.415+X5+Al,5.25+YT+B,0.075,5HC ,0.0,5)
CALL NUMBER(9.415+X5+A2,5.25+YT+B,0.12,F2+6.,0.0,-1)
CALL VSW(9.4+X5,5.0+YT,G2)
CALL HSWL(9.4+X5,4.9+YT,G1)
CALL CP(9.4+X5,4.1+YT)
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CALL SYMBOL(9.415+X5,3.55+YT,0.2,5HC ,0.0,5)
c CALL SYMBOL(9.415+X5+Al,3.55+YT+B,0.075, 5HC ,0.0,5)
CALL NUMBER(9.415+X5+A2,3.55+YT+B,0.12,F2+4.,0.0,-1)
CALL HSWL(9.4+XS,4.2+YT,G1)
CALL HSWL(9.4+X5,3.8+YT,G2)
CALL VSW(9.4+X5,3.9+YT,G1)

c
C CALL FOR DRAWING THE POSITIVE FEEDBACK SWITCHES
C
YU=Y-3.7
¥Y3=YU+.5
c Y4=Y3+1.4

CALL VSW(9.4+X1,6.1+Y3,G1)
CALL HSWR(9.4+X1,5.3+Y3,G2)
CALL CP(9.4+X1,5.2+Y3)
CALL SYMBOL(8.77+X1,5.1+Y3,0.2,5HC ,0.0,5)
c CALL SYMBOL(8.77+X1+Al,5.1+Y3+B,0.075,5HL ,0.0,5)
CALL NUMBER(8.77+X1+A2,5.1+Y3+B,0.12,F2+7.,0.0,-1)
CALL VSW(9.4+X1,5.0+Y3,G2)
CALL HSWR(9.4+X1,4.9+Y3,G1)
CCC SECOND STAGE
Y8=y+.1
CALL CP(10.2+X2,4.7+Y8) -
CALL SYMBOL(9.7+X2,4.85+Y8,0.2,5HC ,0.0,5)
c CALL SYMBOL(9.7+X2+Al,4.85+Y8+B,0.12,5HC ,0.0,5)
CALL NUMBER(9.7+X2+A2,4.85+Y8+B,0.12,F2+5.,0.0,-1)
CALL HSWL(10.2+X2,4.4+Y8,G2)
CALL VSW(10.2+X2,4.5+Y8,Gl)
CALL HSWL(10.2+X2,3.7+Y8,G2)
CALL CP(10.2+X2,3.6+Y8)
CALL SYMBOL(10.3+X2,3.1+Y8,0.2,5HC ,0.0,5)
c CALL SYMBOL(10.3+X2+Al,3.1+Y8+B,0.075,SHC ,0.0,5)
CALL NUMBER(10.3+X2+A2,3.1+Y8+B,0.12,F2+3.,0.0,~1)
CALL HSWL(10.2+X2,3.3+Y8,G1)
CALL VSW(10.2+X2,3.4+Y8,G2)
RETURN
END
c**************************9_&'********************
C* SUBROUTINE FOR DRAWING THE RESISTIVE SOURCE
C* TERMINATION OF THE MLDD BUILDING BLOCKS.
Ok * % )
SUBROUTINE RSMLDD(X,Y)
IP=3
ID=2
G1=1.0
G2=2.0
A =0.28
A1=0.18
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B=-0.068
CALL SYMBOL(6.1+X,7.2+Y,0.3,5HV ,0.0,5)
CALL SYMBOL(6.1+X+A~.05,7.2+B+Y,0.15, SHIN ,0.0,5)
CALL PLOT(7.+X,7.4+Y, IP)
CALL CIRCLE(7.+X,7.4+Y,0.,360.,.075,5)
CALL PLOT(7.+X,7.4+Y,IP)
CALL PLOT(7.7+X,7.4+Y,ID)
CALL PLOT(7.7+X,7.+Y,ID)
CALL VSW(7.7+X,7.+Y,G1)
CALL PLOT(7.7+X,6.3+Y,IP)
CALL PLOT(8.2+X,6.3+Y,ID)
CALL PLOT(8.2+X,7.4+Y, IP)
CALL PLOT(8.2+X,7.2+Y, ID)
CALL VSW(8.2+X,7.2+Y,G2)
CALL CP(7.7+X,6.1+Y)
CALL SYMBOL(7.0+X,6.0+Y,0.2,5HC ,0.0,5)
CALL SYMBOL(7.0+Al+X,6.0+B+Y,0.12, 5HRS1 ,0.0,5)
CALL VSW(7.7+X,5.9,G2+Y)
CALL HSWR(7.7+X,5.8,G1+Y)
CALL SAMPD(7.7+X,5.0+Y)
CALL FBCPL(7.7+X,5.0+Y)
CALL PLOT(7.+X,5.0+Y, ID)
CALL PLOT(7.+X,4.75+Y, ID)
CALL VSW(7.+X,4.75+Y,Gl)
CALL SYMBOL(7.36+X,3.88+Y,0.2,5HC ,0.0,5)
CALL SYMBOL(7.36+A1+X,3.88+B+Y,0.12, SHRS2 ,0.0,5)
CALL PLOT(7.+X,3.85+Y, IP)
CALL PLOT(7.+X,3.6+Y,ID)
CALL PLOT(8.+X,3.6+Y,ID)
CALL PLOT(8.+X,3.8+Y, ID)
CALL PLOT(8.+X,1.2+Y,ID)
RETURN
END
c****************************************************
C SUBROUTINE FOR DRAWING VERTICAL SWITCH
C STARTING POINT : TOP OF SWITCH

C MOVEMENT : IN DECREASING VERTICAL DIRECTION
C LENGTH : 0.9 CM .
c***
SUBROUTINE VSW(X,Y, G)

IP=3

ID=2

X1=X-.1

X2=X-.27

Yi=Y-.3

Y2=Y1-.3

Y3=Y2-.3

Y4=Y1-.25
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CALL
CALL
CALL
CALL
CALL
CALL

PLOT(X,Y, IP)
PLOT(X, Y1, ID)
PLOT(X1,Yl,IP)
PLOT(X, Y2, ID)
PLOT(X, Y3, ID)
PLOT(X,Y, IP)

CALL NUMBER(X2,Y4,.15,G,0.0,-1)

RETURN
END

C % e ok o o v ok 5 g e v vl ok ok ok sk o ok e 5k ok o o ok ok e sk ok e e ok e e ok e sk ok e e e ke e e e e
C SUBROTINE FOR DRAWING FEEDBACK CAPACITOR LEET

C STARTING POINT

C MOVEMENT
C LENGTH

C LOCATION
Chk¥

TOP OF FEEDBACK CAPACITOR

IN DECREASING VERTICAL DIRECTION
1.4 CM

MIDDLE OF OP-AMP,LEFT SIDE

SUBROUTINE FBCPL(X,Y)

IP=3
ID=2

X1=X-.4
Y1=Y-.6
Y2=Y1-.2
Y3=Y2-.6

CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
RETURN
END

PLOT(X,Y, IP)
PLOT(X1,Y, ID)
PLOT(X1,Y1,ID)
CP(X1,Y1)
PLOT(X1,Y2,IP)
PLOT(X1,Y3,ID)
PLOT(X, Y3, ID)
PLOT(X,Y, IP)

Chhkddhhhkkkhkhhkhhhhkdkdhhddhhhhhhrhhrhdkhhhhkdhhddk
SUBROTINE FOR DRAWING FEEDBACK CAPACITOR RIGHT

STARTING POINT

LENGTH

LOCATION

c

Cc

C MOVEMENT
C

o]

CH k%

TOP OF FEEDBACK CAPACITOR

IN DECREASING VERTICAL DIRECTION
1.4 CM

: MIDDLE OF OP-AMP,RIGHT SIDE

SUBROUTINE FBCPR(X,Y)

IP=3
ID=2

X1=X+.4
Y1=Y-.6
Y2=Y1-.2
Y3=Y2-.6

CALL

PLOT(X,Y, IP)
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CALL
CALL
CALL
CALL
CALL
CALL
CALL
RETURN
END

PLOT(X1,Y, ID)
PLOT(X1,Y1, ID)
CP(X1,Y1)
PLOT(X1,Y2, IP)
PLOT(X1,Y3, ID)
PLOT(X, Y3, ID)
PLOT(X,Y, IP)

Chetkhkdkdbhhhhdrhhhdhhrhhhkddkhdhdhdhrhhhdhhhhhrhkht

C SUBROTINE FOR DRAWING CAPACITOR
C STARTING POINT : TOP OF CAPACITOR

C MOVEMENT

C LENGTH
Ok %

IN DECREASING VERTICAL DIRECTION
: 0.2 CM

SUBROUTINE CP(X,Y)

IP=3
ID=2

Y1=Y-.05
¥2=Y1-.1
¥Y3=Y2~-.05
X1=X-.15
X2=X+.15

CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
RETURN
END

PLOT(X,Y, IP)

PLOT(X,Y1, ID)
PLOT(X1,Y1, IP)
PLOT(X2, Y1, ID)
PLOT (X1, Y2, IP)
PLOT(X2,Y2, ID)
PLOT(X, Y2, IP)
PLOT(X, Y3, ID)
PLOT(X,Y, IP)

Chhkkhkhhhhdhhhkhhhhhhkhhhdhhhdhhhddhhhhddhhhrhbhkrhkd

C SUBROUTINE

C STARTING POINT

C MOVEMENT

C LENGTH
Ckk*

FOR DRAWING HORIZONTAL SWITCH TO THE RIGHT
LEFT SIDE OF SWITCH

IN INCREASING HORIZANTAL DIRECTION
0.9 CM

SUBROUTINE HSWR(X,Y,G) .

IP=3
ID=2

Gl=1.
G2=2.

0
0

Yi=Y+.1
Y2=Y-.1
¥Y3=Y+.1
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Y4=Y+.07

X1=X+.3

X2=X1+.3

X3=X2+.3

X4=X2+.08

CALL PLOT(X,Y,IP)

CALL PLOT(X1,Y,ID)

CALL PLOT(X2,Y1, ID)

CALL PLOT(X2,Y,IP)

CALL PLOT(X3,Y,ID)

CALL PLOT(X3,Y2,IP)

CALL PLOT(X3,Y3,ID)

CALL NUMBER(X4,Y4,.15,G,0.0,-1)
CALL PLOT(X,Y, IP)
RETURN
END

c************************************************
C SUBROTINE FOR DRAWING HORIZONTAL SWITCH TO THE LEFT
C STARTING POINT : RIGHT SIDE OF SWITCH
C MOVEMENT IN DECREASING HORIZANTAL DIRECTION

C LENGTH 0.9 CM
Cok %

SUBROUTINE HSWL(X,Y,G)
IP=3
ID=2
G1=1.0
G2=2.0
Y1=Y+.1
Y2=Y-.1
Y3=Y+.1
Y4=Y+.07
X1=X~-.3
X2=X1-.3
X3=X2-.3
X4=X2-.22
CALL PLOT(X,Y,IP)
CALL PLOT(X1,Y,ID)
CALL PLOT(X2,Y1,ID)
CALL PLOT(X2,Y,IP)
CALL PLOT(X3,Y,ID)
CALL PLOT(X3,Y2,IP)
CALL PLOT(X3,Y3,ID)
CALL NUMBER(X4,Y4,.15,G,0.0,-1)
CALL PLOT(X,Y,IP)
RETURN
END
c***********************************************

C SUBROTINE FOR DRAWING SINGLE OUTPUT OPAMP DOWN
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AREA : 1.0 CM SQUARE
STARTING POINT : INVERTING INPUT
MOVEMENT : IN DECREASING VERTICAL DIRECTION
WITH INPUT AND OUTPUT CONNECTIONS
SUBROUTINE SAMPD(X,Y)
IP=3
ID=2
Y1=Y-.2
Y2=Y1-1.
Y3=Y-.15
Y4=Y3+.3
¥5=Y1-.2
Y6=Y5
X1=X-.2
X2=X1+.5
X3=X1+1.
X4=X3-.2
X5=X-.075
X6=X5+.6
CALL PLOT(X,Y,IP)
CALL PLOT(X,Y1,ID)
CALL PLOT(X1,Y1,ID)
CALL PLOT(X2,Y2,ID)
CALL PLOT(X3,Y1,ID)
CALL PLOT(X4,Y1,ID)
CALL PLOT(X4,Y,ID)
CALL PLOT(X3,Y,ID)
CALL PLOT(X3,Y3,IP)
CALL PLOT(X3,Y4,ID)
CALL PLOT(X4,Y1,IP)
CALL PLOT(X,Y1,ID)
CALL SYMBOL(X5,Y5,.15,2H~ ,0.
CALL SYMBOL(X6,Y6,.15,2H+ ,O.
CALL PLOT(X,Y,IP)
RETURN
END
Chhhdhhkdkkdehhdkdkddhhdhhhkhhdrhhhhkhoddbhhhkhdhdkhhkrhrrhs
SUBROTINE FOR DRAWING DOUBLE OUTPUT OPAMP UP
AREA : 1.0 CM SQUARE
STARTING POINT : INVERTING INPUT
MOVEMENT : IN INCREASING VERTICAL DIRECTION
WITH INPUT AND OUTPUT CONNECTIONS
SUBROUTINE DPUMLD(X,Y)
IP=3
ID=2
Y1=Y+.2
Y2=Y1+1.
¥3=Y+.6

anaQaan

aaaaa
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Y4=Y3+3.2

C Y9 FOR -VE OUTPUT
Y9=Y3+2.5
Y5=Y+.2
Y6=Y1+.15
X1=X-.2
X2=X1+.5
X3=X1+1.
X4=X3-.2
X5=X-.075+.05
X51=X-.075
X6=X51+.6
X7=X+.6
CALL PLOT(X,Y, IP)
CALL PLOT(X,Yl,ID)
CALL PLOT(X1,Y1,ID)
CALL PLOT(X2,Y2,ID)
CALL PLOT(X3,Y1,ID)
CALL PLOT(X4,Y1,ID)
CALL PLOT(X4,Y,ID)
CALL PLOT(X4,Y1,IP)
CALL PLOT(X,Y1,ID)
CALL PLOT(X,Y3,IP)
CALL PLOT(X,Y4,ID)
CALL PLOT(X7,Y3,IP)
CALL PLOT(X7,Y9,ID)
CALL PLOT(X,Y,IP)

CALL SYMBOL(X5,Y5,.15,2H- ,0.0,2)
CALL SYMBOL(X6,Y5,.15,2H+ ,0.0,2)
CALL SYMBOL(X5,Y6,.15,2H+ ,0.0,2)
CALL SYMBOL(X6,Y6,.15,2H- ,0.0,2)

CALL PLOT(X,Y,IP)
RETURN

END
Chkkkkdhkdkhdhdkdhdhhkhkdhhhkhdhhhkhkhhhhkhkhhhdhhhhhhhkkrhk

C SUBROTINE FOR DRAWING DOUBLE OUTPUT OPAMP DOWN
C AREA : 1.0 CM SQUARE
C STARTING POINT : INVERTING INPUT
C MOVEMENT : IN DECREASING VERTICAL DIRECTION
C WITH INPUT AND OUTPUT CONNECTIONS
SUBROUTINE DPDMLD(X,Y)

IP=3 )

ID=2

Y =Y+1.4

Yi=Y-.2

Y2=Y1-1.

Y3=Y-.6

Y4=Y3-3.2
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C Y9 FOR +VE OUTPUT
Y9=Y3-2.5
¥Y5=Y-.4
Y6=Y1-.35
X1=X-.2
X2=X1+.5
X3=X1+1.
X4=X3-.2
X5=X~-.075+.05
X51=X-.075
X6=X51+.6
X7=X+.6
CALL PLOT(X,Y,IP)
CALL PLOT(X,Yl,ID)
CALL PLOT(X1,Y1,ID)
CALL PLOT(X2,Y2,ID)
CALL PLOT(X3,Yl,ID)
CALL PLOT(X4,Y1,ID)
CALL PLOT(X4,Y,ID)
CALL PLOT(X4,Yl,IP)
CALL PLOT(X,Y1,ID)
CALL PLOT(X,Y3,IP)
CALL PLOT(X,Y4,ID)
CALL PLOT(X7,Y3,IP)
CALL PLOT(X7,Y9,ID)
Y10=Y+.4
CALL PLOT(X,Y,IP)
CALL PLOT(X,Y10, ID)
CALL PLOT(X7,Y,IP)
CALL PLOT(X7,Y10, ID)
CALL SYMBOL(X5,YS, .15,2H- ,
CALL SYMBOL(X6,Y5,.15,2H+ ,
CALL SYMBOL(X5,Y6,.15,2H+ |,
CALL SYMBOL(X6,Y6,.15,2H- ,
CALL PLOT(X,Y,IP)
RETURN
END
C***********************************************
c* .
C* BUILDING BLOCK 1 FOR MODIFIED BILINEAR
c* TRANFORMATION
C* .
SUBROUTINE BMBIL1(X,Y,F1)
IP=3
ID=2
G1=1.0
G2=2.0
A1=0.20
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A2=0.20

B=-0.068
X1=X+2.4
X2=X1+.3
X3=X+2.4+.6
XC3=X+2.4
X5=X-.1
X6=X5-2.0
X7=X-.05
Y1=Y+.5
Y2=Y1l+1l.4
Y3=Y+0.3

SEGMENT FOR DRAWING CONNECTIONS

DRAW TO CONNECT F-DOPAMP LEFT TOP
CALL PLOT(10.8+X,6.1+Y1,IP)
CALL PLOT(8.1+X,6.1+Y1,ID)
| CALL PLOT(8.1+X,4.7+Y1,ID)
'C DRAW TO CONNECT F-DOPAMP LEFT BOTTOM
1 CALL PLOT(9.0+X,3.+Y,IP)
| CALL PLOT(10.+X,3.+Y,ID)
'C DRAW TO CONNECT D-OPAMP BOTTOM
; CALL PLOT(10.2+X,.6+Y, IP)
CALL PLOT(10.2+X,1.+Y,ID)
CALL PLOT(7.0+X, .6+Y,IP)
| CALL PLOT(10.2+X,.6+Y, ID)
'C DRAW TO CONNECT D-OPAMP TOP
| CALL PLOT(10.2+X,6.8+Y, IP)
; CALL PLOT(7.2+X,6.8+Y, ID)
'C DRAW TO CONNECT TO THE NEXT -DOPAMP RIGHT TOP
| CALL PLOT(10.2+X,6.8+Y,IP)
; CALL PLOT(10.2+X3,6.8+Y, ID)
'C DRAW TO CONNECT TO THE NEXT ~DOPAMP RIGHT BOTTOM
CALL PLOT(10.8+X,1.+Y,IP)
CALL PLOT(10.8+X,.6+Y, ID)
CALL PLOT(10.8+X,.6+Y, IP)
CALL PLOT(10.8+X3,.6+Y, ID)

- aaQaan

DRAW TO CONNECT F-DOPAMP RIGHT TOP
CALL PLOT(10.2+X,6.1+Y,IP)
CALL PLOT(10.2+X2,6.1+Y, ID)
CALL PLOT(10.2+X2,6.1+Y, IP)
CALL PLOT(10.2+X2,4.7+Y,ID)

aan

CALL FOR DRAWING INPUT CAPACITORS
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CALL PLOT(10.2+X,1.0+Y,IP)
CALL PLOT(10.2+X,1.9+Y, ID)
CALL PLOT(10.2+X,2.1+Y, IP)
CALL PLOT(10.2+X,3.0+Y, ID)
CALL CP(10.2+X,2.1+Y)
CALL SYMBOL(9.50+X,2.0+Y,0.2,SHC ,0.0,5)
c CALL SYMBOL(9.50+X+Al,2.0+Y+B,0.125,5HL ,0.0,5)
CALL NUMBER(9.50+X+A2,2.0+Y+B,0.12,F1+1.,0.0,-1)
CALL CP(10.8+X,2.1+Y)
CALL SYMBOL(11.05+X,2.0+Y,0.2,5HC ,0.0,5)
c CALL SYMBOL(11.05+X+Al,2.0+Y+B,0.075,5HL ,0.0,5)
CALL NUMBER(11.05+X+A2,2.0+Y+B,0.12,F1+1.,0.0,-1)
CALL PLOT(10.8+X,1.0+Y, IP)
CALL PLOT(10.8+X,1.9+Y,ID)
CALL PLOT(10.8+X,2.1+Y, IP)
CALL PLOT(10.8+X,3.0+Y,ID)

c
CALL DPUMBL(10.2+X,3.+Y)
CALL FBCPL(10.2+X,4.4+Y)
CALL SYMBOL(9.30+X,3.28+Y,0.2,5HC ,0.0,5)
c CALL SYMBOL(9.25+X+Al,3.27+Y+B,0.075, 5HL ,0.0,5)
CALL NUMBER(9.25+X+A2,3.27+Y+B,0.12,F1+2.,0.0,~1)
CALL FBCPR(10.8+X,4.4+Y)
CALL SYMBOL(11.28+X,3.28+Y,0.2,5HC ,0.0,5)
c CALL SYMBOL(1l.24+X+Al,3.27+Y+B,0.075,5HL ,0.0,5)
CALL NUMBER(11.24+X+A2,3.27+Y+B,0.12,F1+2.,0.0,-1)
e
C CALL FOR DRAWING THE +VE FEEDBACK SWITCHES
c

CALL VSW(9.3+X5,6.1+Y1,G2)
CALL HSWL(9.3+X5,5.3+Y1,G1)
CALL CP(9.3+X5,5.2+Y1)
CALL SYMBOL(9.415+X5,5.25+Y1,0.2, SHC ,0.0,5)
C CALL SYMBOL(9.415+X5+A1,5.25+Y1+B,0.075, 5HL ,0.0,5)
CALL NUMBER(9.415+X5+A2,5.25+Y1+B,0.12,F1+3.,0.0,~-1)
CALL VSW(9.3+X5,5.0+Y1,G1)
CALL HSWL(9.3+X5,4.9+Y1,G2)
CALL PLOT(9.3+X5,4.1+Y1,IP)
CALL PLOT(9.3+X5,2.5+Y1,ID)
CCC SECOND STAGE
CALL VSW(10.2+X6,4.7+Y1,G1)
CALL HSWR(10.2+X6,3.9+Y1,G2)
CALL CP(10.2+X6,3.8+Y1)
CALL SYMBOL(9.5+X6,3.7+Y1,0.2,5HC ,0.0,5)
o CALL SYMBOL(9.5+X6+Al,3.7+Y1+B,0.075, SHL ,0.0,5)
CALL NUMBER(9.5+X6+A2,3.7+Y1+B,0.12,F1+3.,0.0,-1)
CALL HSWR(10.2+X6,3.5+Y1,G1)
CALL VSW(10.2+X6;3.6+Y1,G2)
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Qaan

cCC

CALL PLOT(10.2+X6,2.7+Y1,IP)
CALL PLOT(10.2+X6,2.5+Y1, ID)
CALL PLOT(11.2+X6,2.5+Y1,ID)

CALL FOR DRAWING THE -VE FEEDBACK SWITCHES

CALL VSW(9.4+X1,6.1+Y,G1)

CALL HSWR(9.4+X1,5.3+Y,G2)

CALL CP(9.4+X1,5.2+Y)
CALL SYMBOL(8.77+X1,4.9+Y,0.2,5HC ,0.0,5)
CALL SYMBOL(8.77+X1+Al,4.9+Y+B,0.075,5HL ,0.0,5)
CALL NUMBER(8.77+X1+A2,4.9+Y+B,0.12,F1+3.,0.0,~1)

CALL VSW(9.4+X1,5.0+Y,G2)

CALL HSWR(9.4+X1,4.9+Y,Gl)

CALL PLOT(9.4+X1,4.1+Y,IP)

CALL PLOT(9.4+X1,2.7+Y3,ID)

SECOND STAGE

CALL VSW(10.2+X2,4.7+Y3,G2)

CALL HSWL(10.2+X2,3.9+Y3,G1)

CALL CP(10.2+X2,3.8+Y3)
CALL SYMBOL(10.4+X2,3.7+Y3,0.2,5HC ,0.0,5)
CALL SYMBOL(10.4+X2+Al,3.7+Y3+B,0.075,5HL ,0.0,5)
CALL NUMBER(10.4+X2+A2,3.7+Y3+B,0.12,F1+3.,0.0,-1)

CALL HSWL(10.2+X2,3.5+Y3,G2)

CALL VSW(10.2+X2,3.6+Y3,G1)

CALL PLOT(10.2+X2,2.7+Y3,IP)

CALL PLOT(8.4+X2,2.7+Y3,ID)

RETURN
END

Chhkkhkhkhhhkkhhhhkkhhkhhhkhhhhkhbhdhhhhkrbrhhdhhdid

C*
C*
C*
C*
C*

BUILDING BLOCK 2 FOR MODIFIED BILINEAR

TRANFORMATION

SUBROUTINE BMBIL2(X,Y,F2)
IP=3
ID=2
Al1=0.20
A2=0.18
=-0.068
Gl=1.0
G2=2.0
X1=X+2.4
X2=X1+.3
X3=X+2.4+.6
XC3=X+2.4
X5=X~-.1
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Qaaan

Qaa

DRAW

DRAW

DRAW

DRAW

DRAW

DRAW

DRAW

DRAW

CALL

X6=X5-2.0
YT=Y-1.7
YT1=Y-1.7-0.4
YT3=YT1+0.3
¥8=Y-.1
Y1=Y+.5+0.4
YU=Y-3.7
Y3=YU+.5+0.4
YS=Y+3.8
TO CONNECT F-DOPAMP LEFT TOP
CALL PLOT(10.+X,4.4+Y,IP)
CALL PLOT(8.1+X,4.4+Y,ID)
CALL PLOT(8.1+X,4.7+YT3,1ID)
TO CONNECT D-~OPAMP BOTTOM
CALL PLOT(7.8+X,(.6+Y),IP)
CALL PLOT(10.2+X,(.6+Y),ID)
TO CONNECT D-OPAMP TOP
CALL PLOT(10.2+X,(6.8+Y),IP)
CALL PLOT(7.4+X, (6.8+Y),ID)
TO CONNECT TO THE NEXT ~DOPAMP RIGHT TOP
CALL PLOT(10.8+X, (6.8+Y), IP)
CALL PLOT(10.8+X3, (6.8+Y),ID)
TO CONNECT TO THE NEXT -DOPAMP RIGHT BOTTOM
CALL PLOT(10.2+X, (.6+Y),IP)
CALL PLOT(10.2+X3, (.6+Y),ID)

TO CONNECT F-DOPAMP RIGHT BOTTOM
CALL PLOT(10.2+X, (.4+Y1),IP)
CALL PLOT(10.2+X2, (.4+Y1),ID)

TO CONNECT F-DOPAMP RIGHT VERTICAL LINE
CALL PLOT(9.4+X1, (3.5+Y1),1IP)
CALL PLOT(9.4+X1, (2.4+Y1),ID)

TO CONNECT F-DOPAMP RIGHT BOTTOM LINE
CALL PLOT(10.2+X2, (1.5+Y1),IP)
CALL PLOT(10.2+X2,(.4+Y1),ID)
CALL PLOT(10.2+X2, (.4+Y1l),1IP)
CALL PLOT(10.2+XC3,(.4+Y1),ID)

FOR DRAWING INPUT CAPACITORS

CALL PLOT(10.2+X,1.0+YS,IP)

CALL PLOT(10.2+X,1.9+YS, ID)

CALL PLOT(10.2+X,2.1+YS, IP)

CALL PLOT(10.2+X,3.0+YS, ID)

CALL CP(10.2+X,2.1+YS)
CALL SYMBOL(9.50+X,2.0+YS,0.2,5HC ,0.0,5)
CALL SYMBOL(9.50+X+Al,2.0+YS+B,0.075,5HL
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Cc
Cc

c
C

c

CALL NUMBER(9.50+X+A2,2.0+YS+B,0.12,F2+1.,0.0,-1)
CALL CP(10.8+X,2.1+YS)
CALL SYMBOL(11.05+X,2.0+YS,0.2,5HC ,0.0,5)
CALL SYMBOL(11l.05+X+Al,2.0+YS+B,0.075,5HL ,0.0,5)
CALL NUMBER(11l.05+X+A2,2.0+YS+B,0.12,F2+1.,0.0,~1)
CALL PLOT(10.8+X,1.0+YS, IP)
CALL PLOT(10.8+X,1.9+YS, ID)
CALL PLOT(10.8+X,2.1+YS,IP)
CALL PLOT(10.8+X,3.0+¥S, ID)

CALL DPDMBL(10.2+X,3.+Y)
CALL FBCPL(10.2+X, 4.4+Y)
CALL SYMBOL(9.30+X,3.98+Y,0.2,5HC ,0.0,5)
CALL SYMBOL(9.25+X+Al,3.97+Y+B,0.075, 5HL ,0.0,5)
CALL NUMBER(9.25+X+A2,3.97+Y+B,0.12,F2+2.,0.0,-1)
CALL FBCPR(10.8+X,4.4+Y)
CALL SYMBOL(11.28+X,3.98+Y,0.2,5HC ,0.0,5)
CALL SYMBOL(11l.24+X+Al,3.97+Y+B,0.075,5HL ,0.0,5)
CALL NUMBER(11.24+X+A2,3.97+Y+B,0.12,F2+2.,0.0,~1)

CALL FOR DRAWING THE +VE FEEDBACK SWITCHES

CALL VSW(9.3+X5,6.1+YT,G2)

CALL HSWL(9.3+X5,5.3+YT,G1)

CALL CP(9.3+X5,5.2+YT)
CALL SYMBOL(9.415+X5,4.75+YT,0.2,5HC ,0.0,5)
CALL SYMBOL(9.415+X5+Al,4.75+YT+B,0.075,5HL ,0.0,5)
CALL NUMBER(9.415+X5+A2,4.75+YT+B,0.12,F2+3.,0.0,-1)

CALL VSW(9.3+X5,5.0+YT,G1)

CALL HSWL(9.3+X5,4.9+YT,G2)

CALL PLOT(9.3+X5,4.1+YT,IP)

CALL PLOT(9.3+X5,2.7+YT3, ID)

CALL PLOT(9.7+X5,3.0+YT, ID)

CCC SECOND STAGE

QaQQ

CALL VSW(10.2+X6,4.7+YT3,G1)
CALL HSWR(10.2+X6,3.9+YT3,G2)
CALL CP(10.2+X6,3.8+YT3)
CALL SYMBOL(9.5+X6,3.7+YT3,0.2,5HC ,0.0,5)
CALL SYMBOL(9.5+X6+Al,3.7+YT3+B,0.075, 5HL ,0.0,5)
CALL NUMBER(9.5+X6+A2,3.7+YT3+B,0.12,F2+3.,0.0,~1)
CALL HSWR(10.2+X6,3.5+YT3,G1)
CALL VSW(10.2+X6,3.6+YT3,G2)
CALL PLOT(10.2+X6,2.7+YT3, IP)
CALL PLOT(12.9+X6,2.7+YT3, ID)

CALL FOR DRAWING THE -VE FEEDBACK SWITCHES

CALL VSW(9.4+X1,6.1+¥3,G1)
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CALL HSWR(9.4+X1,5.3+Y3,G2)
CALL CP(9.4+X1,5.2+Y3)
CALL SYMBOL(8.77+X1,5.1+Y3,0.2,5HC ,0.0,5)
c CALL SYMBOL(8.77+X1+Al,5.1+Y3+B,0.075,5HL ,0.0,5)
CALL NUMBER(8.77+X1+A2,5.1+Y3+B,0.12,F2+3.,0.0,-1)
CALL VSW(9.4+X1,5.0+Y3,G2)
CALL HSWR(9.4+X1,4.9+Y3,G1)
CCC SECOND STAGE
CALL VSW(10.2+X2,4.5+Y8,G2)
CALL HSWL(10.2+X2,3.7+Y8,Gl)
CALL CP(10.2+X2,3.6+Y8)
CALL SYMBOL(10.3+X2,3.1+Y8,0.2,5HC ,0.0,5)
c CALL SYMBOL(10.3+X2+Al,3.1+Y8+B,0.075,5HC ,0.0,5)
CALL NUMBER(10.3+X2+A2,3.1+Y8+B,0.12,F2+3.,0.0,~1)
CALL HSWL(10.2+X2,3.3+Y8,G2)
CALL VSW(10.2+X2,3.4+Y8,G1)
CALL PLOT(8.8+X1,4.4+Y, IP)
CALL PLOT(10.2+X2,4.4+Y,ID)
RETURN
END

C e o 3 e o ok o ok e e ok o ok e ok v e o ok ok ok ok ok ok ok vk o o ok e ok ok ok ok ok ok ok ok ok vk o o ok o ok e ok
C#*

C** SUBROUTINE FOR RESISTIVE SOURCE TERMINATION
C** OF THE MODIFIED BILINEAR TRANSFORMATION.
C*x*
SUBROUTINE RSMBIL(X,Y)
IP=3
ID=2
A =0.28
Al1=0.20
A2=0.18
B=-0.068
G1=1.0
G2=2.0
X1=X+2.4
X2=X1+.3
X3=X+2.4+.6
XC3=X+2.4
X5=X-.1
X6=X5-2.0
YT=Y-1.7
YT3=YT+0.3
Y1=Y+.5
YU=Y-3.7
Y3=YU+.5
YS=Y+3.8
C DRAW TO CONNECT F-DOPAMP LEFT BOTTOM
CALL PLOT(10.2+X,1.3+Y,IP)
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QaaQ
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DRAW

DRAW

DRAW

DRAW

DRAW

DRAW

DRAW

CALL

CALL PLOT(8.1+X,1.3+Y, ID)
TO CONNECT F-DOPAMP LEFT TOP
CALL PLOT(10.+X,4.4+Y,IP)
CALL PLOT(8.1+X,4.4+Y,ID)
CALL PLOT(8.1+X,3.3+Y,ID)
TO CONNECT D-OPAMP TOP
CALL PLOT(10.2+X, (6.8+Y), IP)
CALL PLOT(7.4+X, (6.8+Y);ID)
CALL SYMBOL(6.5+X,6.6+Y,0.3,5HV ,0.0,5)
CALL SYMBOL(6.45+X+A,6.6+Y+B,0.15,5HIN ,0.0,5)
CALL PLOT(7.4+X,6.8+Y,IP)
CALL CIRCLE(7.4+X,6.8+Y,0.,360.,.075,5)
TO CONNECT TO THE NEXT -DOPAMP RIGHT TOP
CALL PLOT(10.8+X, (6.8+Y), IP)
CALL PLOT(10.8+X3, (6.8+Y),ID)
TO CONNECT TO THE NEXT -DOPAMP RIGHT BOTTOM
CALL PLOT(10.8+X, (.6+Y),IP)
CALL PLOT(10.2+X3, (.6+Y),ID)

TO CONNECT F-DOPAMP RIGHT BOTTOM
CALL PLOT(10.8+X,Y1+1.0, IP)

CALL PLOT(10.8+X, (.4+Y1),ID)
CALL PLOT(10.2+X2, (.4+Y1), ID)

TO CONNECT F~-DOPAMP RIGHT BOTTOM LINE
CALL PLOT(9.4+X1, (3.9+Y1), IP)

CALL PLOT(9.4+X1,(2.4+Y1),ID)

TO CONNECT F-DOPAMP RIGHT TOP LINE
CALL PLOT(10.2+X2,(2.1+Y1),IP)
CALL PLOT(10.2+X2,(.4+Y1),ID)

CALL PLOT(10.2+X2, (.4+Y1),IP)
CALL PLOT(10.2+XC3, (.4+Y1),ID)

FOR DRAWING INPUT CAPACITORS

CALL PLOT(10.2+X,1.0+YS, IP)
CALL PLOT(10.2+X,1.9+YS, ID)
CALL PLOT(10.2+X,2.1+YS, IP)
CALL PLOT(10.2+X,3.0+YS, ID)
CALL CP(10.2+X,2.1+YS)
CALL SYMBOL(9.30+X,2.0+YS,0.2,5HC ,0.0,5)
CALL SYMBOL(9.30+X+Al,2.0+YS+B,0.125,5HRS1 ,0.0,5)
CALL CP(10.8+X,2.1+YS)
CALL SYMBOL(11.05+X,2.0+YS,0.2,5HC ,0.0,5)
CALL SYMBOL(11.05+X+Al,2.0+YS+B,0.125,5HRS1 ,0.0,5)
CALL PLOT(10.8+X,1.0+YS, IP)
CALL PLOT(10.8+X,1.9+YS, ID)
CALL PLOT(10.8+X,2.1+YS, IP)
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CALL PLOT(10.8+X,3.0+YS, ID)

c
CALL DPDMBL(10.2+X,3.+Y)
CALL FBCPL(10.2+X,4.4+Y)
CALL SYMBOL(9.24+X,3.98+Y,0.2, 5HC ,0.0,5)
CALL SYMBOL(9.19+X+Al,3.97+Y+B,0.125,5HRS2 ,0.0,5)
CALL FBCPR(10.8+X,4.4+Y)
CALL SYMBOL(11.24+X,3.98+Y,0.2,5HC ,0.0,5)
CALL SYMBOL(11.20+X+Al,3.97+Y+B,0.125,5HRS2 ,0.0,5)
C
C CALL FOR DRAWING THE +VE FEEDBACK SWITCHES
c

CALL VSW(9.3+X5,6.1+YT,G2)
CALL HSWL(9.3+X5,5.3+YT,G1)
CALL CP(9.3+X5,5.2+YT)
CALL SYMBOL(9.415+X5,4.60+YT, 0.2, 5HC ,0.0,5)
CALL SYMBOL(9.415+X5+Al,4.60+YT+B,0.125,5HRS2 ,0.0,5)
CALL VSW(9.3+X5,5.0+YT,G1)
CALL HSWL(9.3+X5,4.9+YT,G2)
CALL PLOT(9.3+X5,4.1+YT, IP)
CALL PLOT(9.3+X5,3.0+YT, ID)
CALL PLOT(9.7+X5,3.0+YT, ID)
CCC SECOND STAGE
CALL VSW(10.2+X6,4.7+YT3,G1)
CALL HSWR(10.2+X6,3.9+YT3,G2)
CALL CP(10.2+X6,3.8+YT3)
CALL SYMBOL(9.4+X6,3.7+YT3,0.2,5HC ,0.0,5)
CALL SYMBOL(9.4+X6+Al,3.7+YT3+B,0.125,5HRS2 ,0.0,5)
CALL HSWR(10.2+X6,3.5+YT3,G2)
CALL VSW(10.2+X6,3.6+YT3,G1)
CALL PLOT(10.2+X6,2.7+YT3, IP)
CALL PLOT(11.3+X6,2.7+YT3,ID)
Cc . .
C CALL FOR DRAWING THE -VE FEEDBACK SWITCHES
c
CALL VSW(9.4+X1,6.1+Y3,G1)
CALL HSWR(9.4+X1,5.3+Y3,G2)
CALL CP(9.4+X1,5.2+Y3)
CALL SYMBOL(8.57+X1,5.1+Y3,0.2,5HC ,0.0,5)
CALL SYMBOL(8.57+X1+Al,5.1+Y3+B,0.125,5HRS2 ,0.0,5)
CALL VSW(9.4+X1,5.0+Y3,G2)
CALL HSWR(9.4+XI,4.9+Y3,G1)
CCC SECOND STAGE
Y8=Y-.1
CALL VSW(10.2+X2,4.5+Y8,G2)
CALL HSWL(10.2+X2,3.7+Y8,G1)
CALL CP(10.2+X2,3.6+Y8)
CALL SYMBOL(10:3+X2,3.1+Y8,0.2,5HC ,0.0,5)
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CALL SYMBOL(10.3+X2+Al,3.1+Y8+B,0.125,5HRS2 ,0.0,5)
o CALL NUMBER(10.3+X2+A2,3.1+Y8+B,0.12,2.,0.0,~1)
CALL HSWL(10.2+X2,3.3+Y8,G1)
CALL VSW(10.2+X2,3.4+Y8,G2)
CALL PLOT(8.8+X1,4.4+Y, IP)
CALL PLOT(10.2+X2,4.4+Y,ID)
RETURN
END
c***********************************************
C SUBROTINE FOR DRAWING DOUBLE OUTPUT OPAMP UP
C FOR THE MODIFIED BILINEAR TRANFORMATION
SUBROUTINE DPUMBL(X,Y)
IP=3
ID=2
Y1=Y+.2
Y2=Y1+1.
Y3=Y+.6
Y4=Y3+3.2
C Y9 FOR -VE OUTPUT
Y9=Y3+2.5
Y5=Y+.2
Y6=Y1+.15
X1=X-.2
X2=X1+.5
X3=X1+1.
X4=X3~-.2
X5=X-.075+.05
X51=X~-.075
X6=X51+.6
X7=X+.6
CALL PLOT(X,Y,IP)
CALL PLOT(X,Y1,ID)
CALL PLOT(X1,Y1,ID)
CALL PLOT(X2,Y2,ID)
CALL PLOT(X3,Y1,ID)
CALL PLOT(X4,Y1l,ID)
CALL PLOT(X4,Y,ID)
CALL PLOT(X4,Y1,IP)
CALL PLOT(X,Y1,ID)
CALL PLOT(X,Y¥3,IP)
CALL PLOT(X,Y9,ID)
CALL PLOT(X7,Y3,.IP)
CALL PLOT(X7,Y4,ID)
CALL PLOT(X,Y,IP)
CALL SYMBOL(X5,YS5,.15,2H+ ,0.0
CALL SYMBOL(X6,Y5,.15,2H- ,0.0
CALL SYMBOL(X5,Y6,.15,2H- ,0.0
CALL SYMBOL(X6,Y6,.15,2H+ ,0.0
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CALL PLOT(X,Y,IP)
RETURN
END
c***********************************************
C SUBROTINE FOR DRAWING DOUBLE OUTPUT OPAMP DOWN
C FOR THE MODIFIED BILINEAR TRANFORMATION
SUBROUTINE DPDMBL(X,Y)
IP=3
ID=2
Y =Y+1.4
Yl=Y-.2
Y2=Y1-1.
Y3=Y-.6
Y4=Y3-3.2
C Y9 FOR -VE OUTPUT
Y9=Y3-2.5
Y5=Y-.4
Y6=Y1-.35
X1=X-.2
X2=X1+.5
X3=X1+1.
X4=X3-.2
X5=X~-.075+.05
X51=X-.075
X6=X51+.6
X7=X+.6
CALL PLOT(X,Y,IP)
CALL PLOT(X,Y1,ID)
CALL PLOT(X1,Y1, ID)
CALL PLOT(X2,Y2,ID)
CALL PLOT(X3,Y1,ID)
CALL PLOT(X4,Yl,1ID)
CALL PLOT(X4,Y,ID)
CALL PLOT(X4,Yl,IP)
CALL PLOT(X,Y1,ID)
CALL PLOT(X,¥3,IP)
CALL PLOT(X,Y9,ID)
CALL PLOT(X7,Y3,IP)
CALL PLOT(X7,Y4,ID)
Y10=Y+.4
CALL PLOT(X,Y,IP)
CALL PLOT(X,Y10,ID)
CALL PLOT(X7,Y,IP)
CALL PLOT(X7,Y10, ID)

CALL SYMBOL(X5,Y5,.15,2H+ ,0.0,2)
CALL SYMBOL(X6,Y5,.15,2H- ,0.0,2)
CALL SYMBOL(X5,Y6,.15,2H~ ,0.0,2)
CALL SYMBOL(X6,Y6,.15,2H+ ,0.0,2)
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CALL PLOT(X,Y, IP)
RETURN
END
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APPENDIX B

HPSC1 EXEC FILE

FILEDEF FTO5F001 TERMINAL (LRECL 80 RECFM V

FILEDEF FTO6FO0O01 TERMINAL (LRECL 80 RECFM F

FILEDEF FTO7FO01 DISK HPSCl1l OUTPUT A (LRECL 80 RECFM F
FILEDEF FTO8FOOl1l DISK HPSC1l DATA A
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APPENDIX C

HPSC2 FORTRAN FILE

REAL FNTL(900),DBHS(900),DBHZ(900), PHAHS (900) , PHAHZ(900)
CALL PLOTS(O,0,1)
CALL PLOT(4.0,4.0,-3)
CALL NEWPEN(1)
CALL FACTOR(1.0)

C**
C** AXL IS THE AXIS LENGTH
C**
AXL = 10.
I1=0
DO 20 I=1,896
I1=T1+1

READ(5, * ,END= 30) FNTL(I),DBHS(I),DBHZ(I),PHAHS(I),PHAHZ(I)
20  CONTINUE
30 CONTINUE
I1 = I1 -1
Ck %%
C*** PROGRAM SEGMENT FOR ADJUSTING SCALING
C ¥ %%
FINT= 10.*%(ENTL(1))
FEND= 10.*%(ENTL(I1))
FENTL(I1+1) = ENTL(1)
ENTL(Il+2) = (ENTL(I1)-ENTL(1))/AXL

Ckh**

PMINl1l= 1.E30
PMAX1= .1.E-30
PMIN2= 1.E30
PMAX2= 1.E-30
PMIN3= 1.E30
DO 50 IP2=1,1I1
IF(DBHS(IP2).LE.PMINl) THEN
PMIN1 = DBHS(IP2)
ELSE IF(DBHS(1P2).GE.PMAX1l) THEN
PMAX1 = DBHS(IP2)
ENDIF -
Ck k%
IF(DBHZ(IP2).LE.PMIN2) THEN
PMINZ = DBHZ(IP2)
ELSE IF(DBHZ(IP2).GE.PMAX2) THEN
PMAX2 = DBHZ(IP2)
ENDIF -
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Ckk*

50
Ch*x %

Chkk

Chk*
CH¥*%

Ck %k

Ch k%

Ck %
Ckkk
Ck % *

IF(PHAHZ(IP2).LE.PMIN3) THEN
PMIN3 = PHAHZ(IP2)
ENDIF
CONTINUE

DBHS(I1+1) =IFIX(PMINl - 4.)
DBHS(I1+2) =IFIX(1.+(PMAX1-DBHS(I1+1))/AXL)

DBHZ(I1+1) =IFIX(PMIN2- 4.)
DBHZ(I1+2) =IFIX(1.+(PMAX2-DBHZ(I1+1))/AXL)

IF(DBHS(I1+1).LT.DBHZ(I1+1)) THEN
DBHZ(I1+1) = DBHS(I1+1)

ELSE
DBHS(I1+1) = DBHZ(I1l+1)

ENDIF ‘

IF(DBHS(I1+2).GT.DBHZ(I1+2)) THEN
DBHZ(I1+2) = DBHS(I1+2)

ELSE
DBHS(I1+2) = DBHZ(I1l+2)
ENDIF
IF(PMIN3.LE.-85.0.AND.PMIN3.GE.-91.0)THEN
PHAHS(I1+1) = -100.0
PHAHZ(I1+1) = -100.0
PHAHS(I1+2) = 200./AXL
PHAHZ(I1+2) = 200./AXL
ELSE
PHAHS(I1+1) = -200.0
PHAHZ(I1+1) = -200.0
PHAHS(I1+2) = 400./AXL
PHAHZ(I1+2) = 400./AXL
ENDIF
CALL LGAXS(0.0,0.0,21HFREQUENCY (HZ) ,
* -21,AXL,0.0,FINT,FNTL(I1+2))
CALL AXIS(0.0,0.0,21HMAGNITUDE (DB) ,

* 21,AXL,90.0,DBHZ(I1+1),DBHZ(I1+2))
CALL NEWPEN(2)

CALL FLINE(ENTL,DBHS,~I1,1,0,2)
CALL NEWPEN(3)

CALL FLINE(FNTL,DBHZ,-I1,1,0,2)
CALL NEWPEN(2)
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CALL SYMBOL(0.5,11.1,0.4,22H _ CONTINUOUS FILTER ,0.0,22)
CALL NEWPEN(3)
CALL SYMBOL(0.5,10.5,0.4,25H__ SWITCHED CAPACITOR F. ,0.0,25)
CALL NEWPEN(1)
CALL RECT(-2.5,-2.0,14.0,14.,0.,3)
CALL PLOT(17.0,0.0,-3) |
CALL NEWPEN(1)
CALL LGAXS(0.0,0.0,21HFREQUENCY (HZ) .
* =21,AXL,0.0,FINT,ENTL(I1+2))
CALL AXIS(0.0,0.0,21HPHASE (DEGREES) ,
* 21,AXL,90.0,PHAHZ(I1+1),PHAHZ(I11+2))
CALL NEWPEN(2)
CALL FLINE(FNTL,PHAHS,-I1,1,0,2)
CALL NEWPEN(3)
CALL FLINE(FNTL,PHAHZ,-I1,1,0,2)
CALL NEWPEN(2)
CALL SYMBOL(0.5,11.1,0.4,22H__ CONTINUOUS FILTER ,0.0,22)
CALL NEWPEN(3)
CALL SYMBOL(0.5,10.5,0.4,25H__ SWITCHED CAPACITOR F. ,0.0,25)
CALL NEWPEN(1)
CALL NEWPEN(1)
CALL RECT(-2.5,-2.0,14.0,14.,0.,3)

CALL PLOT(20.0,20.0,999)
STOP
END
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APPENDIX D

HPSC2 EXEC FILE

FILEDEF FTO5F001 DISK HPSC1l DATA A
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