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In this dissertation, we consider multistage production systems in which the
product has an upper specification limit (USL) and a lower specification limit (LSL)
on its quality characteristic and the process deteriorates with time. That is, the
mean setting of the production process drifts continuously with time, in either the
positive (i.e. towards USL) or the negative (i.e. towards LSL) directions. This
causes more defective items to be produced with time. We study this problem for
both single and multistage production systems.

For single stage production systems, we develop a mathematical model which
finds the optimal initial mean setting of the process and the optimal production
cycle length when there are both USL and LSL on the quality characteristic of
the product. We also study the effect of the variance reduction on the total cost
of the model and conduct a sensitivity analysis to study the effect of changes in
model parameters on its solution. Moreover, we develop a model for the single stage
production system for general drift function and general probability density function
of the quality characteristic of the product.

We extend the results of the single stage to multistage production systems. We
develop a mathematical model for these systems to minimize the cost of processes

adjustments, quality, and penalty for failing to deliver demanded items on time.
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The model gives optimal initial mean settings for the processes and optimal pro-
duction cycle lengths for every process in each stage. The parameters of this model
are studied and analyzed to see their effects on the total cost by sensitivity analy-
sis. We also study the effects of the variance of the process at every stage on the
expected total cost per good item for the above model. We extend the multistage
model to incorporate the work in process (WIP) inventory between stages and the
maintenance of the stages through the reduction of the drift rate of each stage.

We develop a new global optimization algorithm for solving the above models.
The algorithm is a hybrid approach which uses tabu search and Hooke and .Jeeves
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and is compared with other global algorithms in the field. Results show that the
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USL
LSL

TI

Nomenclature

the random variate denoting the quality measurement of the product at
time ¢t with mean p(t) and constant variance *;

the mean quality characteristic of the product when the process begins
in an in-control state having variance a?:

the optimal initial process mean;

the elapsed time until the occurrence of the assignable cause.It is a
random variable and is assumed to be exponentially distributed with a
mean of 1/ hours;

= Ae~*", A > 0,7 > 0, the density function of the occurrence time of the
assignable cause;

rate of drift in the process mean once occurrence of the assignable cause:
the process mean at time ¢

pfort <7

=pu+(t—7)8 for t>T;

the probability density function (pdf) of the standardized normal
variate z, the cumulative distribution being ®(z);

the upper specification limit for the quality characteristic;

the lower specification limit for the quality characteristic;

production rate in pieces per hour;

resetting cost;

cycle length (production run) in hours;

the optimal cycle length (production run) in hours;

XVi



Chapter 1

Introduction

1.1 Overview

In many production systems, the product has to pass through a number of processes
performing different types of operation before it attains the desired final form. Such
systems involving production activities in serial stages and holding inventories be-
tween successive stages are designated as multistage production systems (MPS).
MIPS are one of the most common environment in industry. MPS can be classified
into four classes depending on the number of products, number of production stages.
and number of machines at each stage (Goyal and Gunasekaran {1990}). The MPS

classes are as follows:

1. Multistage systems with single machine at each stage and processing a single

product.

2. Multistage systems with single machine at each stage and processing multiple

products.



3. Multistage systems with multiple machines at each stage and processing a

single product.

4. Multistage systems with multiple machines at each stage and processing mul-

tiple products.

We consider the first class in this dissertation.

Examples of multistage production systems may include the following:
e Production of rayon varn (Gunasekaran et al. [1993]).

Production of glass products (Imo and Das [1983]).

e Aluminum production systems (Farkas et al. [1993]).

Soda ash production systems (Wagialla et al. [1992]).

Tron and steel works (Hodgson and Wang [1991]).

Production of condensors (Tsubone et al. [1991]).

Multistage production systems are characterized by the following:

e High dependence: The failure of one stage affects the operation of the others.
This is known as blocking/starvation effect. The level of dependence between
stages depends on the work-in-process (WIP) inventory. If the size of WIP
inventory is infinity, the stages will be independent. On the other hand, if the

size of the WIP inventory is zero, the stages are completely coupled.

¢ Expensive line stoppage: The production line may be stopped, either because

of the failure of one of the stages (uncontrolled stoppage) or because of the



maintenance work (controlled stoppage). When the line is stopped in either

case, this may cause a delay in fulfilling the demand.

The elements of multistage production systems that we are going to study are

listed below:

1. Quality: The traditional role of quality control was basically to eliminate from
production systems those parts that do not conform to specifications. and
to inspect and test finished products for defects. The increased emphasis on
higher quality products at lower costs, combined with the worldwide compe-
tition has magnified the importance of quality control. Quality improvement
has become an essential activity in most organizations, either to maintain ex-
isting customers and market share, or to make new products and technology

more competitive.

2 Maintenance: In recent vears, considerable attention has been devoted to
maintenance role in production systems. The role of maintenance in produc-
tion systems has been recognized as keeping the machines operating as long as
possible, reducing the rate of defectives, minimizing the probability of machine
breakdowns, minimizing lost sales due to breakdown periods, minimizing the

periods on which the workers are idle, and many more.

3. WIP inventory: Buffers are installed between successive stages to keep the
production line operating as long as possible. They also serve as a delay

buffer for nonconforming items to pass to next stages.

4. Production schedule: Today, the competition in the market is very strong.

Firms that do not fulfill their customers’ demands on time, may find them



selves out of the market. Hence, production firms should look very closely to
their production systems and take the necessary actions to meet their schedule

(e.g., maintain the machines more frequently, increase WIP inventory, etc.).

An important special case of multistage production systems is a single stage

production system which has many applications.

1.2 Statement of the problem

Multistage production systems are one of the most important types of production
systems. In this dissertation, we consider single stage as well as multistage pro-
duction systems in which the product has both an upper specification limit (/SL)
and a lower specification limit (LSL) on its quality characteristic and the process
deteriorates with time. That is, the mean setting of the production process drifts
continuously with time, in either the positive (i.e. towards USL) or negative (i.e.
towards LSL) directions. This causes more defective items to be produced with
time. Defective items can be reworked at different costs (or equivalently sold at a
secondary market). Two decisions have to be made at the beginning of each pro-
duction cycle. They are the initial mean setting of the process and the production
cycle. Some of the cost elements that influence these decisions are the resetting cost
and the cost of defective items. Clearly, if the process is reset too often, the resetting
cost is more while the cost of producing defective items is less and vice versa. We
study this problem for both single and multistage production systems.

For single stage production systems, we develop a mathematical model which

finds the optimal initial mean setting of the process and the optimal production



cvcle length when there are both USL and LSL on the quality characteristic of
the product. We also study the effect of the variance reduction on the total cost
of the model and conduct a sensitivity analysis to study the effect of the change
in model parameters on its solution. Moreover, we develop a model for the single
stage production system for general drift function and general probability density
function of the quality characteristic of the product.

We extend the results of the single stage model to multistage production sys-
tems. We develop a mathematical model for these systems to minimize the cost of
processes adjustments, quality, and penalty for failing to deliver demanded items on
time. The model gives optimal initial mean settings for the processes and optimal
production cycle lengths for every process in each stage. The parameters of this
model are studied and analyzed to see their effects on the total cost by sensitivity
analysis. We also study the effects of the variance of the process at every stage on
the expected total cost per good item for the above model. We extend the multi-
stage model to incorporate the work in process (WIP) inventory between stages and
the maintenance of the stages through the reduction of the drift rate of each stage.

We develop a new global optimization algorithm for solving the above models.

The algorithm is a hybrid approach which uses tabu search and Hooke and .Jeeves

schemes.

1.3 Cost of Variance

In Chapter 4 and Chapter 7, we develop variance reduction models for the single
stage and multistage production systems, respectively. A prerequisite to these mod-

els is a function which represents the cost of the variance. In this section, we present



functions for the cost of the tolerance and its relationship to the variance.

One of the concepts that is used to evaluate quality of a manufactured prod-
uct is conformance to specification. Tolerance is defined as the allowable variation
within the design specification (Kapur et al. [1990]). Tolerance is needed because
it is impossible to manufacture products at target due to process variability, ma-
terial imperfections, human error, tool material, and other uncontrollable factors.
Tolerancing plays a key role in design and manufacturing (Zhang and Wang [1993]).
At the design stage, functionality performance and reliability are the major issues
under consideration which implies that tolerances should be set as tight as possible.
However, at the manufacturing stage, looser tolerances are desirable since tighter
tolerances are usually associated with higher cost (Lee et al. [1993]).

There is a considerable amount of literature on tolerancing. Our purpose is not
to study the tolerancing problem nor to review its literature. The aim here is to give
an introduction for the following sections. For a literature review of the tolerancing
problem, see the work by Wu et al. [1988] and a recent one by Abdel-Malek and

Asadathorn [1994].

1.3.1 Relationship between Tolerance and Variance

As shown by Mansoor [1963], most manufacturing processes produce dimensions
with normal distribution. Let z and o denote the mean and standard deviation for
the normal distribution of the quality characteristic, r, of the product. Moreover.
let tol denote the tolerance of r.

Many authors have used the following relationship between tolerance and stan-
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dard deviation, i.e.
tol = 60 (1.1)

Among those are Speckhart [1972], Wu et al. (1988}, Kapur et al. [1990], Lee et al.
[1993], Gerth [1994], Krishnaswami and Mayne [1994], Nigam and Turner [1993].

and Kusiak and Feng [1996].

1.3.2 Cost of Variance (Tolerance)

Cost of tolerance, C(tol), is defined as the amount of expenditure needed to achieve
certain levels of dimensional and geometrical accuracy (Abdel-Malek and Asadathorn
[1994]). It is usually a function of design and manufacturing costs. Naturally, de-
signs which require tighter tolerances have relatively higher costs. Also, machine
tools with a small tolerance range are expensive to acquire and operate. Figure 1.1

shows a typical cost-tolerance relationship.

The curve shown in Figure 1.1 shows two well-known basic features, which are
essential for a cost-tolerance relationship according to normal workshop experience

(He [1991]). These two features are:

1. When tol=0, C(tol) = oo.

9. C(tol) should be a decreasing function of tol, tending to become flat as tol

becomes large.

Several cost-tolerance functions appear in the literature. Table 1.1 shows some of

the commonly used functions.



C(tol)

tol

Figure 1.1: Typical cost-tolerance relationship.

Name Function Reference

Sutherland C(tol) = a(tol)™® Sutherland and Roth [1973]
Reciprocal C(tol) = a/tol Chase and Greenwood [1988]
Reciprocal square | C(tol) = a/(tol)? Spotts {1973

Exponential C(tol) = ae™%t) Speckhart [1972]

Michael-Siddall

C(tol) = a(tol)~be~dt)

Michael and Siddall [1981]

Table 1.1: Cost-Tolerance functions




In these functions, the parameters a, b, d can be estimated using a curve-fitting
approach based on experimental data. The parameter a represents cost of producing
a component, while b and d are constants which depend on the process.

Wau et al. [1988] reviewed and evaluated these functions and they found that the
exponential function is the best for minimizing curve-fitting errors. The exponential
function is also the most widely used in the literature (Kapur et al. [1990]). For
example, it has been used by He [1991], Zhang and Wang [1993], Abdel-Malek and
Asadathorn [1994], Krishnaswami and Mayne [1994].

One can use the exponential function, which represents the cost of tolerance, to
represent the cost of variance by using equation (1.1). Hence, in this dissertation.
the exponential function is going to be used to represent the cost of the variance in
the variance reduction models that will be developed in Chapter 4 and Chapter 7

for the single stage and multistage production systems, respectively.

1.4 Proposed Work

The proposed work in this dissertation can be summarized as follows:
I. For single stage production system, the proposed work is as follows

— to do an extensive literature survey.

to extend Rahim and Banerjee’s [1988] model (SSM).

to develop a Single Stage Variance Reduction Model (SSVRM).

— to conduct a sensitivity analysis of the (SSM) model .

to generalize the single stage model (GSSM).
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II. For multistage production system, the proposed work is as follows

— to develop a model for finding optimal production cycle and initial mean

setting in multistage production systems without buffers (MSM1).
— to conduct a sensitivity analysis of the above model (MSM1).

— to develop a Variance Reduction Model for MultiStage production sys-

tems (MSVRM).

— to develop a model for Multistage Lines without Buffers and with Nonzero
Repair Times (MSM2).

— to develop a simulation model for Multistage Systems with Buffers given
wi's and T;’s (MSM3).

— to develop an optimization model for Multistage Lines with Buffers and

with Nonzero Repair Times (MSM4).

III. Developing a hybrid tabu search algorithm for function minimization (TS-

FGO).

1.5 Organization

In nomenclature, we give the notation that are used in common in all chapters.
Notation required for a specific chapter will be introduced in that chapter. The
dissertation is organized as follows: In chapter 2, we present the literature survey.
Determination of the optimal production cycle and initial mean setting for single
stage model (SSM) is proposed in chapter 3. We also give the generalizations of the

single stage model (GSSM) in chapter 3. A sensitivity analysis and a variance re-
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duction model for SSM is presented in chapter 4. In chapter 5, we develop a Hybrid
Tabu Search Algorithm for Function Minimization. In chapter 6, we propose mod-
els for finding the optimal production cycle and initial mean setting in multistage
production system (MSM1 and MSM2). A sensitivity analysis and a variance re-
duction model for MSM1 is presented in chapter 7. Extensions of MSM1 and MSM2
(MSM3, MSM4) to incorporate buffer storages and to take into consideration repair
times are presented in chapter 8. Finally, we give conclusions and recommendations

for future studies in chapter 9.



Chapter 2

Literature Review for Single and

Multistage Production Systems

In this chapter, we review the literature in single as well as multistage production
systems. This chapter is organized as follows: in section 2.1, we give an introduction.
In section 2.2, we give some applications. We state the assumptions common to the
reviewed models in section 2.3. We highlight the general approach in section 2.4.
In section 2.5, we present the survey of single stage. A review of the literature of

multistage production systems is given in section 2.6.

2.1 Introduction

The literature of single and multistage production systems in which the process de-
teriorates with time are reviewed in this chapter. Many production processes exhibit
a trend or drift in the process mean during the course of operation. This problem

has received little attention (Montgomery [1991a]). On the contrary, we have found

12
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a considerable literature and an increased interest in this problem. Examples of
such operations include machining, drilling, grinding, milling, shaping and molding
(Gibra [1967,1974]) and drawing (Hall and Eilon [1963]). The drift can be either
positive or negative. That is, the drift can either be toward the upper specification
limit or toward the lower specification limit of the measured quality characteristic.
If the process mean drifts to one of the specification limits, the process is going to
produce nonconforming items, since the product’s measurable characteristic must
lie within the specification limits to be considered acceptable. One would tend to
think that when this happens, it may be more economical to stop the production
and reset the process. An example of resetting the process is changing a worn tool.

However, there are cases where it is more economical to continue the production
for some time and then reset the process. So, what is the optimal time to reset the
process and at what level should the process mean be set? The optimal decision
depends on the cost of resetting the process and the cost of producing nonconforming

items.

2.2 Applications
The problem described above occurs in many areas. Some of those are listed below:

1. Optimal production run or production cycle (e.g., Hall and Elion [1963], Gibra
[1967,1974], Rahim and Lashkari [1985], Rahim and Raouf [1988], Jeang and
Yang [1992)).

2. Optimal tool replacement (e.g., Taha [1966], Rahim and Banerjee [1988].
Drezner and Wesolosky [1989]).
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Optimal maintenance policy (e.g., Schneider et al. [1990]).

Communications (e.g., Schneider et al. [1990]).

2.3 Assumptions

In this section, we state the common assumptions to the models discussed in this

chapter. These include the following:

1.

=~
.

The measured quality characteristic is normally distributed.

The variance of the quality characteristic is constant throughout the pro-
cess. Some authors relaxed this assumption (e.g. Albright and Collins [1977].

Arcelus et al. [1981]).
There is a linear (or nonlinear) shift in the mean.

The drift can be either positive or negative.

. The drift can be either deterministic or probabilisetic.

Nonconforming items are treated as worthless. Few authors relaxed this as-

sumption (e.g. Arcelus and Banerjee {1987]).

Only one quality characteristic is considered. Few authors considered two

quality characteristics (e.g. Rahim and Rouf [1988]).

The manufacturing system consists of only one production stage.

. Production is continuous (i.e. transfer lines).



2.4 The general approach

In this problem, several costs are considered. The following is a list of the mostly

considered types of costs in the literature.

C, : cost of sampling.

C; : cost of inspection.

C. : cost associated with investigating an out of control signal.
C. : cost of correcting any assignable cause found.

C}: loss due to producing nonconforming items.

Cp: cost of reworking nonconforming items.

C, : cost of production

C, : cost of adjustment or resetting.

C, : cost due to shutdown.

One way to build the cost model is to sum all cost elements. Hence, the cost

model may be represented as
TC=Cs+Ci+Cr+C.+CL+Cr+Cp+Ca+Cy (2.1)

Equation (2.1) is a general formula. However, one would rarely find an author who
considers all of these costs in one model. Most researchers consider a subset of these
costs in their model. Suppose that a is the vector to be optimized (i.e., TC is a
function of & when one of the parameters in the vector & could be for example the

production cycle length). Then one can optimize the function TC by setting the
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gradient of T'C to zero as shown below

g TC=0 (2.2)

Equation (2.2), of course, is just a necessary condition for optimality. However, in
most quality control applications TC(a) is a convex function and, hence, (2.2) is
also sufficient to guarantee global optimality.

It is usually difficult to get a closed form for a by solving equation (2.2). Hence.
most authors use one or a combination of the following methods to optimize the

function T'C with respect to the parameters in a in (2.1):

1. Numerical solution. Some authors suggested solving equation (2.2) numeri-

cally using any numerical solution procedure (e.g. Newton’s method).

2. Optimization. The function in (2.1) can be minimized using optimization
techniques. These optimization techniques comsist of two categories. The
first category is derivative-free search procedures (e.g., the Hooke and .Jeeves
method). The second category is derivative-based search procedures (e.g..

Newton’s method). For more details see Bazaraa et al. [1993].
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2.5 The literature survey of single stage produc-

tion systems

2.5.1 Positive constant drift with linear trend

Hall and Eilon [1963] were the first to treat the trend in the process in an explicit
manner. They assumed that the process mean is subject to a constant drift with
time and it is moving towards the upper specification limit. Also, they assumed that
the variance remains constant throughout the process. Their model objective was
to maximize the production rate or to minimize the production cost per unit. Taha
[1966] presented a procedure for determining the optimal cycle length for a cutting
tool considering the wear of the tool with time which causes the machine to produce
nonconforming items. He considered one measurable characteristic and he ignored
the effect of the operator, machine, and the raw material. He assumed a linear trend
of the mean with time. Gibra [1967] proposed models for determining the optimal
production run for both stable and unstable processes. His assumptions are similar
to those in Hall and Eilon [1963]. In his cost model. he included the resetting cost
and a penalty for each nonconforming unit. He developed an equation which can be
solved graphically.

Smith and Vemuganti [1968] generalized the model of Taha [1966]. They intro-
duced two parameters in the linear function of the trend of the mean. The first is the
initial mean and the second is the rate of wear of the tool per unit time. These two
parameters are estimated initially from experience and as production continues they
are updated using the sampling information. Kamat [1976] developed a smoothed

Bayes control procedure for controlling the output quality characteristic when its
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basic underlying level is subject to systematic variation such as in tool wear. The
variation is assumed to be linear and nonrandom. He used exponential smoothing
to update the necessary parameter estimates.

Arcelus and Banerjee [1985] extended the work of Bisgaard et al. [1984] to
consider the process in which there is a linear shift in the mean. Their objective
is to select the initial setting of the mean and the run size that will maximize the
expected profit per unit. Items that fail to meet the lower specification are sold as
scrap. Hence, they did not consider the cost of reprocessing. Arcelus et al. [1983]
considered the problem of determining the optimal schedule for producing a finite
number of acceptable parts with a specified probability. The process is subject to
a systematic increase in the process mean and it may be economical to change the
tool and reset the machine after producing a certain number of parts. They struck
a balance between the cost of resetting and the cost of producing nonconforming
items in order to achieve their goal and minimize the total cost of production. They
considered both specification limits.

Pugh [1988] presented methods for determining the optimal setting for a process
mean and the number of parts produced before resetting where the shift in the pro-
cess mean is uniformly distributed. His cost function consists of the cost of resetting.
the cost of producing oversized parts, and the cost of producing undersized parts.
Quesenberry [1988] proposed a statistical process control approach for adjusting a
process which has a linear trend in its mean due to tool wear. He models this tool
wear by a regression model over an interval of tool life. His approach determines the
setting of the mean and the estimated wear since the last resetting. The objective

is to maximize the expected mean square of deviations from nominal target value.
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2.5.2 Positive constant drift with nonlinear trend

Gibra [1974] was the first to consider a nonlinear drift of the process mean in the
positive direction. His optimal procedure establishes decision rules for resetting due
to drift or the occurrence of an assignable cause. His objective is to minimize the
resetting cost and the cost of producing nonconforming items. However, he did not

consider the shutdown cost as well as the negative shift of the mean.

2.5.3 Negative constant drift with linear trend

Rahim and Lashkari [1985] have relaxed the assumption that the variance remains
constant throughout the production period. They developed a cost function to
determine the optimal length of the production run. The cost function consists
of the cost of resetting the process, the cost of rejected items, the lost product
cost due to shutdown, and the cost of sampling. Their objective is to determine
the optimal production run by minimizing the cost function. They found that the
optimal production run depends upon the magnitude and the direction of the shift
and the drift. Rahim and Raouf {1988] considered the problem of determining the
optimal production run for a continuous process having multi-tool machines where
simultaneous gradual changes in the process mean and variance are experienced.
They were the first to consider two measurable quality characteristics. Their work

is an extension of Rahim and Lashkari [1985].

2.5.4 Positive constant drift and positive or negative shift

Albright and Collins [1977] presented a Bayesian model for an optimal on-line control

of a process subject to continuous deterioration. This deterioration is reflected by
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an increase in the variance of the quality characteristic over the long run. They
update the parameter estimates by sampling at each period through the use of an
on-line measuring device. In their cost model, they considered the selling price. the
materials cost, and the reprocessing cost. The model of Rahim and Lashkari {1985
described above is capable of handling both negative and positive constant drift.
Rahim and Raouf [1988] considered both positive or negative drift and positive or
negative shift. Arcelus et al. [1981] considered a nonnegative shift in both mean and
variance. Arcelus and Banerjee [1987] extended the work of Arcelus et al. [1982] to

include the possible rewards for nonconforming items.

2.5.5 Positive shift with no trend

In a recent paper, Chen and Chung [1996] considered the problem of determining
both the optimal initial mean setting and the optimal production run for a process
which shifts to an out-of-control state at a random point of time. They considered
only one specification limit (i.e. lower specification limit) for the quality character-
istic of the product. They developed a profit function for their model and it was
optimized using Hooke and Jeeves algorithm. However, they assumed that the pro-
cess mean shifts to an out-of-control state instantaneously (i.e. there is no trend).

Also, they did not consider both specification limits.

2.5.6 Random drift

Rahim and Banerjee [1988] generalized the model of Gibra [1974] where they as-
sumed that a positive drift starts at a random point of time (and not necessarily

at the beginning). They have assumed that the quality characteristic under consid-
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eration has only an upper specification limit (USL) which is a multiple K of the
standard deviation of the process mean (i.e. USL = p + Ka) (of course if there
is only a lower specification limit (LSL) and the drift is negative then the forego-
ing argument is reversed). In their model, the proportion of defective increases as
the mean drifts towards the upper specification limit. These defective items are. of
course, sold at a lower price. At the end of the production cycle, the process is shut
down for resetting. Clearly, if the production cycle is short, then the proportion of
defective items produced by the process is less, but the frequency of resetting is more
which makes the total cost of resetting more. On the other hand, if the production
cycle is long, then the proportion of defective items produced by the process is more.
but the frequency of resetting is less which makes the total cost of resetting less.
Their model finds the optimal cycle length that strikes a balance between the costs
of resetting and the cost due to defective items.

Schneider et al. {1990] considered the problem of determining the optimal start-
ing level of the process mean and the lower point at which the process mean should
be adjusted back to the starting level for a process subject to random deteriora-
tion. They assumed that the deterioration of the process mean in a given interval
of time is a random variable with some mean and standard deviation. The goal is
to minimize the long-run average production cost. Recently, Kubat and Lam [1992]
presented a simple model for determining the optimal action limit in a slowly dete-
riorating repairable system by continuous monitoring. The deterioration is assumed
to be approximated by a Wiener (Brownian) process with a positive drift. A repair
or replacement order is initiated when the measured value of the parameter reaches

the 'action time'. The optimal action limit is derived by minimizing the expected
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long run average total cost. Related work can be found in Hall and Eilon (1963].

Pate-Cornel et al. [1987], and Lee and Rosenblatt [1988].

2.5.7 Quadratic loss function

Drezner and Wesolowsky [1989] treated a problem which is similar to that in Gibra
[1967]. They developed a simple procedure for determining the start and finish points
for a tool-wear process where the rate of wear is linear and constant. They defined
a quadratic loss function for the deviation from target value, not a step function as
done by Gibra [1967]. They considered two cases: the first is when the quadratic loss
function is symmetrical above and below the target value, and the second is when
it is asymmetrical. Jeang and Yang [1992] considered the problem of selecting the
optimal initial setting of the tool and the cycle of the tool replacement. Their work
is an extension and generalization of the work of Drezner and Wesolowsky [1989].
Theyv assumed that the trend in the mean (in their case the rate of wear) to be a
monotone nonlinear function. The economic loss due to the deviation of the part
dimension from its target value is assumed to be a quadratic function. The goal is
achieved by minimizing the expected cost per unit.

As a summary, the literature surveyed in this chapter is summarized in Table
92.1. For each author, Table 2.1 shows the author(s)’ name, model, objective of the

model, solution methodology and the specification limits considered in the model.



Author Year | Model Objective Solution | S.L.}
Hall and 1963 | = po + at max prod. rate | Graphical | L&U
Eilon min. total cost

Taha 1966 | i = po + at Opt. cyc. length | Numerical | L
Gibra 1967 | = po + at Opt. prod. run | Graphical | L&U
Smith and 1968 | u = po +at Opt. tool adj. Numerical | U
Vemuganti

Gibra 1974 | p = po +at® k #0 | Opt. prod. run | Graphical | L&U
Kamat 1976 | pu = po + at Shift detect. Bayesian | L&U
Arcelus 1982 | p=po+ Aj Min. total cost | Iterative | L&U
et al. Aj:nonnegative shift method

Arcelus 1985 [ pu=po+ A4A; Min. total cost | Iterative | L&U
et al. Aj:nonnegative shift method

Arcelus 1985 | p=po+(j—1)8 Max. unit profit | Numerical | U
and Banerjee d:magnitude of shift

Rahim and 1985 | u = po +at Opt. prod. run | Numerical | L&U
Lashkari = py— at + oo Graphical
Arcelus and | 1987 | pu = po + 4Q; Max. unit profit | Numerical | L&U
Banerjee

Rahim and 1988 | p = pp + at Opt. prod. run | Numerical | L&U
Raouf i =py—at +éo Graphical

Rahim and 1988 [ u=po+(t—1)0 Opt. prod. run | Numerical | U
Banerjee 7: random variable Graphical

Pugh 1988 | p=po+(J—1)8 Opt. prod. run | Numerical | U
Quesenberry | 1988 |y =po +aj Opt. tool adj. Numerical | U
Drezner and | 1989 | u = o +at Opt. cycle Numerical | U
Wesolowsky length

Schneider 1990 {p=po—-Y Min total cost Fibonacci | L

et al. Y : random variable

Jeang 1992 | = po + R(2) Opt. cyc. length | Numerical | U
and Yang R(t): nonlinear

Chen and 1996 | = po + o0 max. profit Hooke & | L
Chung Jeeves

fS.L.: Specification limits considered.
U : Upper specification limit.
L : Lower specification limit.

Table 2.1: Summary of the literature.
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2.6 The literature survey of multistage produc-
tion systems

In this section, we review the related literature in multistage production systems.

Billatos and Kendall [1991] considered a variant of the multistage production
system, where they restricted their attention to machining centers without consid-
ering specific demand requirement for produced items, and no explicit treatment
of upper and lower specification limits. Their approach gives more emphasis on
tool parameter optimization. However, they provide a nice practical example which
requires 5 operations: 2 end milling, T-slot milling, drilling, and tap threading.

Agapiou [1992a] considered the problem of determining the optimum cutting
conditions for multistage machining systems and utilizing the idle time at all stations
as much as possible. He developed a mathematical model for this problem. Agapiou
[1992b] developed an optimization procedure to determine the optimum machining
parameters. Agapiou [1992c| investigated the problem of determining the optimum
machining conditions for single-pass operation while reducing both the production
cost and the production time. Agapiou [1992d] extended the work for multipass
operations.

Alto et al. {1994] developed an expert system for tool replacement policies in
metal cutting operations. Other work related to tool wear can be found in Waschkies
et al. [1994] and Balazinski and Ennajimi [1994].

Gunasekaran et al. [1995] considered a multistage just in time (JIT) production
system. Based on JIT philosophy, they stop the production once the process goes

out of control, hence, zero defects. They developed a mathematical model to find the
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optimal lot sizing with respect to each stage, setup cost reduction, and the process
shift reduction.

However, they did not consider the following points: (1) there is no explicit
treatment of upper and lower specification limits for the quality characteristic of the
product, (2) the size of the work in process is not optimized, (3) the initial setting
of the process mean at each stage is not considered, (4) the process at each stage

has a shift but not a drift.

2.7 Limitations of the reviewed literature

In this section, we highlight the limitations of the literature reviewed in the previous

sections.
1. Limitations of the literature on single stage production systems

e Specification limits: Most of the literature that we reviewed assume single
specification limit. Few authors assumed double specification limits (e.g.

Arcelus and Banerjee [1987]).

e Start of the drift. Most of the reviewed models assume that the drift starts
right from the beginning of the production cycle. To our knowledge. only
Rahim and Banerjee [1988], and Chen and Chung [1996] have assumed
that the drift starts at a random point of time, 7. Moreover, both models

have assumed that 7 follows an exponential distribution.

e Drift function: In many models, the authors assume that the drift func-
tion is linear with time. Few others have assumed that the drift function

is nonlinear (e.g. Gibra [1974], and Jeang and Yang [1992]).
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o Probability density function of the process: Most of the literature that
we reviewed assume that the production process follows a normal dis-
tribution. To the best of our knowledge, only Gibra [1974] relaxed this

assumption, by considering a uniform distribution.

e Joint optimization of the initial mean setting and the cycle length: Most
of the literature that we reviewed optimize either the initial mean setting
or the cycle length but not both simultaneously. To our knowledge, only
Arcelus and Banerjee [1987], Jeang and Yang [1992], and Chen and Chung
[1996] who have considered the joint optimization of the initial mean

setting and the cycle length.
2. Limitations of the literature on multistage production systems

e Specification limits: No explicit treatment of the specification limits either

single or double.

e Drift function: The drift function is only considered to be constant (i.e.

shift and no trend).

e Buffer sizes: Either no buffer is assumed or the buffer sizes are not re-
stricted.
e Initial setting of the process mean: The initial setting of the process mean

is not considered.

e Budget limit: When an investment is wanted to improve the performance

of the multistage system, no constraint is set on the budget.



Chapter 3

Single Stage Production Systems
Model (SSM)

In this chapter, we extend the model of Rahim and Banerjee [1988] by assuming
that there are both upper and lower specification limits. Our model finds the op-
timal initial mean setting and the optimal cycle length when there are both USL
and LSL on the quality characteristic under consideration. Later in this chapter,
we present a generalized single stage model (GSSM) for general drift function and
general probability distribution function of the quality characteristic of the product.
This chapter is organized in the following way. An introduction is given in section
3.1. In section 3.2 we present the statement of the problem. Some new notations
are introduced in Section 3.3. In Section 3.4, we state the assumptions. In section
3.5, we present our model and its solution is given in section 3.6. Then we discuss
the results in section 3.7. In section 3.8, we give the generalization of the proposed

model.

N
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3.1 Introduction

In chapter 2, we have reviewed the work by Rahim and Banerjee [1988]. They
have provided examples of positive as well as negative drift of the process mean.
One example of a negative drift is when the diameter of a spray nozzle decreases
due to clogging which reduces the amount of liquid that passes through the nozzle
(Rahim and Banerjee [1988]). A tool wearout is an example of a positive drift. Many
models have been developed for this problem where the general approach is to find
the optimal production run (cycle length) for the process such that the total cost
per good item is minimized. This total cost usually consists of the cost of producing
defective items and the resetting cost. Clearly, as the cycle length increases. the
former per good item increases, while the latter per good item decreases, and vice
versa. The general approach is to find the cycle length that minimizes the sum of
the two costs.

We assume that the resetting cost, Cp, is constant. However, it can be a func-
tion of the cycle length, Cr(T), as considered by Lee and Rosenblatt [1989]. The
proposed model can be easily modified by simply replacing Cr by Cr(T).

Many models have been developed for the problem in which the process mean
drifts with time which differ in the assumptions put on the process and quality
characteristic under consideration. Most of these models are summarized in chapter
2.

In this chapter, we extend the model of Rahim and Banerjee [1988] by assuming
that there are both upper and lower specification limits on the quality characteristic
which are externally decided (i.e. not a function of the process standard deviation

which is an internal parameter). We also assume that the initial mean setting is a
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controllable parameter, i.e., our model finds the optimal initial mean setting and the
optimal cycle length when there are both USL and LSL on the quality characteristic

under consideration.

3.2 Problem Statement

In this chapter, we consider a production process with known and constant variance.
The quality characteristic of the product has both upper and lower specification
limits, denoted by (USL) and (LSL), respectively. At a random point of time, 7. the
process starts drifting either in the positive or negative direction with rate 8 which
will result in producing defective items (e.g., more oversized or undersized items.
respectively) (see Figure 3.1). Oversized and undersized items can be reworked at
different costs (or equivalently sold at a secondary market). The problem is to decide
what should be the initial mean setting, u, and the length of the cycle time, T,
after which the process mean is reset to its initial setting, which can usually be done
at a certain resetting cost (example of resetting the process is changing a wearing
tool). Clearly, if the process is reset too often, the resetting cost is more while the
cost of producing defective items is less and vice versa. Therefore, the goal is to
find an initial mean setting, 1=, and a cycle length, T™, that strike a compromise
between these two conflicting objectives.

The results of our model (u~,T™) are helpful to engineers at the the shop floor. In
metal cutting processes for example, the initial mean setting, p”, can be translated
through some transformations to the machining parameters (e.g. cutting speed, feed
rate, depth of cut). Taylor’s equation (Conrad and McClamroch [1987], Iakovou

et al. [1996]) is a necessary step in such transformations. Very few papers have
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Figure 3.1: The model.

appeared in the literature which find the optimal cutting parameters and the cycle
length. Conrad and McClamroch [1987] developed a stochastic model which finds
the optimal feed rate and cycle length for the cutting tool. Iakovou et al. [1996]
developed a model which finds the optimal cutting speed and the optimal tool
replacement policy.

In the sequel, we give an example of our problem. Counsider the production of
shafts whose inner diameters have both USL and LSL. Shafts with inner diameters
less than their LSL can be reworked to trim the excess material, and consequently
transform them into good ones. But shafts with inner diameters greater than USL
can not be reworked and thus should be scrapped or sold at a secondary market
at a substantially reduced price. This makes the penalty for producing shafts with
inner diameters less than LSL to be less than the penalty for those shafts with inner
diameters greater than USL.

The above process with a tool-wear (e.g. turning operations), has a negative

drift. That is, as the tool starts to wear out, its shift will be towards LSL, and the
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inner diameters of the shaft gets smaller with time.

The proposed model is different from that of Rahim and Banerjee [1988] in that
both USL and LSL are considered (where only one of these limits is considered in
their model), and that the initial mean setting is considered as a parameter to be
optimized (while in their model, the initial mean setting is considered constant and
given), which might have considerable reduction effect on total cost. The proposed
model is also related to the work of Arcelus and Banerjee [1987] discussed in chapter
2 in that their work and the proposed model consider finding the optimal initial mean
setting, u”, and the optimal cycle length, T~. However, it is different in that they
consider the process to start drifting right from the beginning, while in our model.
we consider that the process starts drifting at a random point in time. In many
realistic situations, the assumption that the drift happens right from the beginning
is clearly unrealistic (e.g., sudden drop in the voltage might be the cause of the drift.

This event usually happens randomly).

3.3 The Notation

We present below some new notation that are needed for this chapter.

g(T) = Xe~*" A > 0,7 > 0, the density function of the occurrence time of

the assignable cause;

C cost of producing an undersized item;
C. cost of producing an oversized item;
Cp cost of producing a good item;

Cr resetting cost;



R production rate in pieces per hour;
ni(t) probability of producing an undersized item at time ¢ (i.e.,x(t) < LSL);
Pu(t) probability of producing an oversized item at time ¢ (i.e.,z(t) > USL):

D|(T,p)  average number of undersized items produced per unit time during T.
given that the process is started at mean setting equals to p;
Du(T,pr) average number of oversized items produced per unit time during 7,

given that the process is started at mean setting equals to p.

3.4 Assumptions

Before we develop our model we make the following assumptions:

1. The process begins in an in-control state having a normally distributed quality

characteristic with mean y and variance ¢2.

2. The process starts deteriorating at a random point of time, and deterioration

is linear with time.
3. The process variance remains constant.

4. The material cost is either independent of the choice of 1 and T (e.g. the
process of producing inner holes in shafts), or their effect on cost of material
can be assumed negligible. This assumption is implicitly made in most of the

literature of this problem.

3.5 The Proposed Model

The probability of an oversized item at time t (i.e., z(t) > USL, pu(t)) is given by
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pu(t) = Prlz(t)>USL| u(t), o?) (3.1)

USL -y

= Priz> |- Prit < 7]

/t Priz > USL (ﬂ: (t- 0)]g(r)d’r

(1—%(

USL—p\\ _x t USL — pft) —Ar
== Ee +/0(1 S eV dr

By integration by parts and after simplification,

USL—p 0t USL—-—pu Ao

put)= 1 —9( = U — [¥( ——0——4'7)

USL—p 6t Ao USL—pu Ad?
~ ~—+ —0—)] x exp(—A{t — 7 — 557

Y b (32)

Thus, the average number of oversized items per unit time during production cycle

T, is
R (T
DT, u) =5 [ pu(t)dt (3.3)
R o USL - USL — USL - T
D(T.n) = R—{7 Bo(——t) - (- —)
L/SL GT USL — USL — 6T
? (—5—“——>+¢<——ﬁ>—o(———“——)>
g o a a
1 USL —p
- :\—exp(—/\{T— 9 - 262 })
USL—u Ao USL—-p Mo 6T
{ & 9)—‘1’( = +6—7)}
USL USL — 0T
+ e (= - (34)
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Similarly, the probability of an undersized item at time t (i.e..z(t) < LSL. pi(t))

is given by
pi(t) = Prlz(t) < LSL | u(t),o?
= Pr[z<———LSL ,u] Prit < 7]
t —_
+ /Pr[szSL et (0= D0 yar (3.3)
0 o
_ LSL—p 6t LSL—p Ao
py= @ (BEETE ek 2
LSL—p 6t Ao LSL —p
- a(BETE B S xewp(-a(t - =5 - 5D (36)

Hence, the average number of undersized items per unit time during production

cvcle T, is
R (T
D(T.p) == | pi(t)dt (3.7)
_ Ro LSL-p LSL—u LSL - 6T
D(T.w) = ZlH(————8(=——)~( =)
LSL - GT LSL — LSL — 6T
¢ (E -y e(==E) - (———“———))
g o
1 LSL L
- Jexp(-MT - ——5— - 292})
LSL—pu Ao LSL—p Ao 6T
{ + ) - (T + = )
LSL - LSL - 6T
vl — e - ) (3.8)

Thus, the expected total cost during the production cycle T', can be calculated



as follows:

E(TC) = Cr + TC.D\(T, 1) + TC.Du(T, 1) + C,T[R — DT, pt) — Du(T, )] (3.9)

Then, the expected total cost per good item is given by

ETCG = E(TC/unit good item) (3.10)
Cr+TCD(T.p) + TC,D(T, 1)

TE= DiT.p) = DT 7

Since C, is a constant, one can see that minimizing (3.10) is equivalent to minimizing

the following function

Cr+TCD(T,p) + TC.Du(T, 1)
T[R - D[(Tv /J) - Du(TV /'l)]

ETCG = E(TC/unit good item) = (3.11)

A plot of a typical E(T'C/unit good item) is depicted in figure 3.2.

It is interesting to note that our model reduces to the one of Rahim and Banerjee
[1988] when: C; = 0 (no LSL), Di(T.u) = 0. C, = U. Du(T.pt) = R — W(T).
USL=p+ Ko, and C, = 0.

It is clear that 8, )\, ¢ are internal parameters of the process while Cj, Cy, Cr

are prices that are external in nature, and R is a production parameter.

3.6 The Solution

Clearly, E(TC/unit good item) is a function of two variables 4 and T. One can

differentiate the function partially with respect to p and T as follows:
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Cost, ETCG

Figure 3.2: Plot of ETCG =E(TC/unit good item) as a function of x and T.

The partial derivative of ETCG (eq. (3.11)) with respect to p is as follows:

dETCG _ A-B

95~ (R=D{T.p) - DT M)V (3.12)

where;

A= (R~ DT p) - Du(T, w)(C/ 22472 + C, 2002

B = (Ci/T + CiD(T, 1t) + CuDy(T, p))(R — 2242 _ 2ol

DT, 1)
ou

_ R, LSL-p
LSL—-u—-6T, ,LSL - 6T 1_ LSL - 8T
e - T g - )
o o ] g o o
LSL—-u,  LSL—p 1 LSL—pu 6T LSL—-—p 6T
ol )& o )= 0¢( o o A o T
1 LSL—-pu Ao? LSL—pu Mo
— o ep(-MT - T - S+ )
LSL—p Mo 60T Ao
+ & 1t "7)—(7)}
1,  LSL—- LSL — T
L {e(RE Ty (=R - =

Ao o o3 o

1 _LSL—p

LSL—p )
o

+

)

+

I} (3.13)
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e S =Ly
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The partial derivative of ETCG (eq. (3.11)) with respect to T is as follows:

JOETCG C-D

= 3.15
9T~ (R Di(T.1) - DulTo 1)) (8.19)
where;
C = 22T ¢ ¢, 20
ADy(T.u)  dDy(T.u)
= SB(Cr/T + CiDUT, 1) + CuDul T )t By
oD(T,n) _ R _LSL-p 6T 8 LSL—y 6T
S = [¢( - )+ A )
1 LSL — Ao’ LSL - o 0T 6
- ;exp(—A{T— M+ - )
LSL Ao LSL—pu X 6T
- m(——a—”+ Z)+Ae(— + = O
B [cr LSL - uq)(LSL /.z) (LSI;—#"Q;TW(LSI;—#_Q—})
LSL u LSL - u 6T
+ o= E) o=~ )
1 LSL—pu Ao
LSL—-u Ao LSL—-pu Mo 0T
(o=t e+ - )
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LSL—-p Ao LSL-p Mo 6T
{ ‘I’( = + ) =& +'§'—7)}
LSL — p LSL—pu 6T
{‘I’( )= (———~ )l
(3.16)
ODJT,x) _ R, _USL—p 6T 8 USL-u 6T ]
7t i Gl (G vl R G —) (3.17)
1 USL-pu A%,  USL-p Ao 6T 0
- Xexp (=MT - 7 o2 }){C.D(—;— t4 - —a')(;)
USL—p Ao USL-u Mo 0T
AQ( +9)/\¢’( 5 +0—J)}]
R RoUSL—pu_  USL—p. USL-p 6T
+ T T2[0( o o a )= o - a)
USL T USL - USL — 6T
¢ (FTE e — e - )
o o o o
1 USL—p  Ao?
USL—pu Ao USL—pu Ao 6T
{ & - +9)"‘I’( S +7—’;‘)}
USL — USL - oT
+ ol et - )

By equating each of the resulting partials (3.12 and 3.13) to zero, one gets two
equations in g and T, which can be solved numerically.

Another, and more direct approach, is to use multidimensional search algorithms.
such as Hooke and Jeeves method, Newton’s method, etc., (Bazaraa et al. [1993])
to optimize the function with respect to both p and T

One can see that both approaches are supposed to converge to a stationary
point in general (which, of course, may not be a local minimum). We conjecture
that the function ETCG is convex, and therefore the stationary point obtained

at termination of the two methods is actually a global (or best) minimum. We
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have plotted the cost functions for several examples and all the resulting plots show
convexity which support the convexity claim. Moreover, the hybrid tabu search
algorithm (TSFGO) which is developed in chapter 5 for global optimization was
used to solve several examples of the above model and the results are identical for
this global approach and the simple Hooke and Jeeves algorithm, i.e., the local
minimum is also global supporting unimodality of the function, and strengthening
our claim of convexity. Of course, the above argument is not a proof and the above
conjecture remains to be proven.

Of course, to confirm this conjecture one has to get the hessian H(u,T) of ETCG

which is the matrix of second partials of ETCG with respect to both p and T or

PETCG P ETCG
%pu oudT
H(u,T) = (3.18)
JPETCG PETCG
dudT T

and check the sign definiteness of H(u,T). Then, if it is positive semidefinite, then
ETCG is actually convex. Looking at equation 3.12 and equation 3.13, it is clear
that this job is formidable. However, we still conjecture that H(u,T) is positive
semidefinite, and therefore ETCG is convex, and even if ETCG is not convex, then
the above methods converge to a point satisfying first order necessary conditions of

optimality.
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3.7 Results and Discussion

We used the optimization procedure of Hooke and Jeeves (Bazaraa et al. [1993])
to determine the optimal initial setting of the process mean, and the optimal cycle
length using equation (3.11). Next, we present an example to illustrate our model.
Example 3.1:

This example has been adapted from Rahim and Banerjee [1988]. Consider
a process which produces shafts. The inner diameter of the shafts have upper and
lower specification limits USL=12 inches, LSL=10 inches, respectively. The process
output can be described by a normal distribution with standard deviation, c=1 inch
(which characterizes the variation of the output of the process). The process mean
drifts with rate #=0.1 inch/hour at a random point of time that is exponentially
distributed with A=0.05 hour. The process produces shafts at a rate of R=3500
units/hour. The resetting cost is Cr=3300.

There are penalty costs for producing undersized or oversized shafts which are
C;=$%8 and C,=$8, respectively.

This example has been solved using Hooke and Jeeves algorithm. In this algo-
rithm, we used the golden section method as a line search subroutine with a final
interval of length 1 x 1072, The results are as follows:
optimal initial setting of process mean, p* = 10.96 inches,
optimal cycle length, T™ = 6.84 hours,

ETCG = $3.89.

The results of this model (SSM) are important and useful. The models in the

literature lack the joint optimization of (1) initial mean setting, and (2) production

cycle length when both specification limits are considered and the drift starts at a
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random point of time. The significance of our model is due to the linking of both

the above two elements in one integrated model.

3.8 Generalization of the drift function only for

the SSM (GSSM1)

In section 3.5, we have developed the SSM for a linear drift function. In this section.
we generalize the SSM for a general drift function. The necessary changes are to
adopt Dy(T, ) (eq. 3.4) and Dy(T, ) (eq. 3.8) for a general drift function.

Let :

fe(z) ~ N(u(t), %)

Fi(z) : CDF of fi(x)

R(t,7) :drift function

The probability of an oversized item at time t, z(t) >USL, is

pu(t) = Prz(t) > USL|u(t),0?]

USL -

¢ r
= Prle > = F)-prft <]+ [Prlz 2 USL —p— R(t.7)
0

ag

|- g(r)d7

g

= [1- @(@%—_‘i)] : /,\e"\’d'r + /[1 - <I>(USL = “a— BT )] - g(T)dT
t 0

4
_ USL=py s, [yoorr USL —p— R(t,7) _
= 1-o(=""H) +0/Ae d'r—-O/@( - ) - g(7)d7
t
_ . USL—p _ USL — pu— R(t, 1)
— At =Xt _—At _ .
= e e @(———a )+ 1—e O/CD( = ) - g(r)dT
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The average number of oversized items per unit time during the cycle T,
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Similarly, the probability of an undersized item at time t, z(t) < LSL, is

= Prz(t) < LSL|p(t), 0%
LS[{;— ,u) + /Q(LSL - /.La— R(t, 1)

= e MY( )-g(r)dr  (3.21)
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The average number of undersized items per unit time during the cycle T',

| =

T
D(T,n) = 7 / pi(t)dt
0

= (1))

T ¢
/ / LSk R(” ). g(r)drdt (3.22)
00

+
N =

In what follows, we present some special cases of the generalized model of the

single stage model (GSSM1).

3.8.1 Special case 1: a positive shift (constant drift func-
tion)

In this section, we present a special case of the generalized model of the single stage
model (GSSM1) where the drift function is constant. The constat drift function has

been considered in the literature (for example, see Chen and Chung [1996]).

Let :
fi(z) ~ N(u(t), 0?)
R(t,T) =d0

The probability of an oversized item at time t, z(t) > USL, is

pu(t) = Prlz(t) > USL|u(t), 0]
USL — p USL — i — R(t,T)

g

= Prfz> |- Prit < 7] + / Prlz > - g(r)dr



1 — &

44
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The average number of oversized items per unit time during the cycle T,

Du(T, 1)

R T
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The probability of an undersized item at time t, z(¢) > USL, is

pi(t)

i

i

t) < LSL|u(t),d?]
LSL — u — R(t,7)

t
Pr(z < éi%i] - Prft < 7] +/Pr[z < > |- g(r)dr
0
o <] t
LSL - p . LSL — u— 60
- )-/Ae d1'+/<1>( . ). g(r)dr
EoE ey <1>(———L5 EoE pa-e (5.25)



The average number of undersized items per unit time during the cycle T'.

Du(T, 1)

T
R
T/Pl(t)dt
ROT LSL - u L LSL-u
—_ e P —H _=At
T[O/@( = E)e dt+0/<1>( L g1 - e )t
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3.8.2 Special case 2: Polynomial Drift Function

In this section, we present a special case of the generalized model of the single

stage model (GSSM1) where the drift function is polynomial. The polynomial drift

function has been considered in the literature (for example, see Jeang and Yanng

[1992]).
Let :

fi(z) ~ N(u(t),0?)
Rit,7)=a+b(t—7)+c(t— T)?

The probability of an oversized item at time t, r(t) >USL, is

pu(t) = Prlz(t) > USLIu(t),o’]

= Pr{z >

t

USL —
- M. >
o ] Pr[t<T]+0/Pr[z__

)| g(r)dr

USL —pu— R(t,T
ag

= - @(——Usi - / Ae=Tdr + / [1- oYL= “0_ R(t,7) ) - g(7)dr
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where v =
t

Let Al = [®(7))- \e=2TdT
0

Integrating by parts

t

b+ 2¢(t —
a1 = o+ (R o)) et
0
5
USL — p —a— bt — ct? . USL—pu-—
= [ = ) - Mgl

where

Bl = /(_b_‘iicz(f_—i)) . @(./)) . e—/\rdT
0

There is no closed form solution for the integral in (3.29).

Thus,

a)}+Bl
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- g(T)dT

USL — it — R(t,
"‘—/q)( S ua R(t T))-g(r)dr

(3.30)
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The average number of oversized items per unit time during the cycle T,

R T
DUT.w) = 7 [putidt
0
_ R, 1. e USL—p, o USL-—p-—a)
= FM-51-eNe(——) - (——F)
T o T
~ /@(USL p—a—bt—ct )dt - [ Bldt]
0 7 0
v USL — USL—p—
= R——R—(l—e"\r)@(gi——ﬁ)—q’( Lo s a))
AT o 7
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R i 1 0522
_ o R T d dt
TO/ —o/o \/ﬁe y
T t
R I b+4+2c(t—7), _sr
rl[m
o USLeama MU R 2 gy (3.31)

The average number of defectives due to LSL can be obtained in a similar way.
In order to evaluate D, (T, ) at different values of T and y, one has to resort to

numerical integration.

3.8.3 Special case 3: Exponential Drift Function

In this section, we present a special case of the generalized model of the single
stage model (GSSM1) where the drift function is exponential. The exponential drift
function has been considered in the literature (for example, see Jeang and Yanng
[1992]).

Let :

fe(z) ~ N(p(t), 0?)
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R(t,T) = aebt=")

The probability of an oversized item at time t, z(t) >USL, is

pu(t) = Prlz(t) > USL|u(t),0’]

USL — p

t g
= Pr{z > ——0—] - Prft < 7] +/Pr[z > USL = p— RE.7)
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Integrating by parts
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where
t
B2 = / (abet=") - §(C)) - e~*"dT (3.34)
0

There is no closed form solution for the integral in (3.34).

Thus,
. USL - USL — i — )
pult) = 1—eMB(— By g( 0_“ ) (3.35)
T _ _ bt
B @(LSL i — ae ) B2

o

The average number of oversized items per unit time during the cycle T',

R T
DT,w) = 7 [put)dt
0
_ R 1 s,/ USL—p USL — p— a)
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T T
USL—p—
Y it — [ Bady)
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_ B[ ob enoar—osEstmegeery gy (3.36)
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The average number of defectives due to LSL can be obtained in a similar way.
In order to evaluate Dy (T, i) at different values of T and y, one has to resort to

numerical integration.
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3.8.4 Example 3.2

We present here a numerical example for GSSM1. We consider Example 3.1 pre-
sented in section 3.7.
Let: LSL=10, USL=12, =1, A=0.05, R=500, Cz=300, C;=8, C,,=8.

Table 3.1 shows the results of solving the generalized single stage model (GSSM1)

with different drift functions.

Drift function 7 T ETCG
Linear:

0.1(t-1) 1096 | 6.84 | 3.89
Polynomial:

0.01 + 0.0001(¢t — 7) + 0.001(f — T)? | 10.97 | 18.12 | 3.77
Exponential:

0.5203(=7) 10.92 | 6.56 | 4.00

Table 3.1: Results of Example 3.2 with different drift functions

Two observations are in order. First, we have observed that the smaller the value
of the parameters of any type of drift function (i.e. a and b for exponential), the
longer the duration of the production cycle (i.e. T).

Second, the polynomial drift function reduces to linear when a =0 and ¢ = 0.

Also, the exponential drift function reduces to linear when a =1 and b=in 0.

3.9 Generalization of the pdf of z only for the

SSM (GSSM2)

In section 3.5, we have developed the SSM for a normal probability density function
of the quality characteristic. In this section, we generalize the SSM for a general

probability density function. The necessary changes are to adopt D, (T, 1) (eq. 3.4)



and D;(T, 1) (eq. 3.8) for a general probability density function.

Let :

fi(zx) :p.d.f. of the quality characteristic r at time ¢ where a < £ < b (e.g. for
normal distribution a = —oo and b = o).

Fi(z) :CDF of fi(z)

R(t,7) = 6(t — 7) : drift function

The probability of an oversized item at time t, z(t) > USL,is

pult) = Pr[x(t ) > USL|u(t), 0?]
= /ft(rd:c ) - Prit <T]+//f, )dz - g(7)dT
USL 0 LSL
= (1-F(USL)) /g dr+/1—FtLSL))()d
= /g(T)dT ~ F(USL) /g dT+/g(T ydr — /F, (USL)f(r)dr
= 1 - F(USL) [ g(r)dT — | F(USL)g(T)dT (3.37)
s [t - |

The average number of oversized items per unit time during the cycle T,

D(T,p) =

R T R T t
_To/ (USL) /g(rd’rdt To/o/ F.(USL)g(r)drdt

t

T ¢
// F(USL)g(r)drdt (3.38)
00

’ﬂl':o

p L=
= Tb/t/ r(USL)g(T)drdt —
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The probability of an undersized item at time t, z(t) < LSL,is

p(t) = Prz(t) < LSL|u(t),0’]
LSL ¢ LSL

= ([ Maydz) Pt <]+ [ | fiardz-g(r)dr
a 0 a

0 t
= F,(LSL) / g(r)dr + / F.(LSL)g(r)dr (3.39)
t 0
The average number of undersized items per unit time during the cycle T,

D(T,p) = )dt

)

-~

~~
o~

F(LSL) / g(r)drdt + F.(LSL)g(r)drdt

Fr(LSL)g(7)d7dt + F.(LSL)g(7)drdt (3.40)

Nl Nl Nl

O Oy O

/]
[]
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3.9.1 Example 3.3

We present here a numerical example for GSSM?2. We consider Example 3.1 pre-
sented in section 3.7. We consider the case where the quality characteristic of the
product follows a uniform distribution (Gibra [1974]) and a linear drift (Rahim and
Banerjee [1988]}).

Let :

fi(z): U(c,d) where ¢ < z < d (i.e. uniform distribution).

R(t,7) =0.1(t — ) : drift function

Let: LSL=10, USL=12, o=1, A=0.05, R=500, C=300, C,=8, C,=8.
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Table 3.2 shows the results of solving the generalized single stage model (GSSM2)

with different parameters.

c d || d& | T | ETCG
10.1[11.9] 10 | 11.8 | 5.59 | 0.137
98 [122]96| 12 |722| 1.72

Table 3.2: Results of Example 3.3 with different parameters

3.10 Generalization of both the pdf of z and the

drift function (GSSM3)

In section 3.5, we have developed the SSM for a normal probability density function
of the quality characteristic and a linear drift function. In this section, we generalize
the SSM for both a general probability density function and a general drift function.
The necessary changes are to adopt Dy (T, 1) (eq. 3.4) and Dy(T, i) (eq. 3.8) for a
general probability density function and a general drift function. Let f,(r) be the
p.d.f of the quality characteristic z at time ¢t where a < r < b (e.g. for normal
distribution a = —oo and b = o0).

The probability of an oversized item at time t, z(t) > USL, is

pu(t) = Pr{z(t) > USLIu(t),0”]

= ( /b fe(z)dz) - 79(T)d7’+/t /b fi(z)dz - g(7)dT (3.41)

USL 0 USL



The average number of oversized items per unit time during the cycle T',

Dy(T,p) = )dt

O'\'~l
]
e
—~~
L

fi(x)dz) -/g(r)drdt

o

SRR
~
2

fe(z)dz - g(T)dTdt] (3.42)

O~ Nlm Nl

S . o
—

<
[
s

The probability of an undersized item at time t, z(t) < LSL,is

p(t) = Pr[z(t) < LSL|u(t),o”]
LSL t LSL

- /ft \dz) /g d~+//f,(1: \dz - g(1)d (3.43)

The average number of undersized items per unit time during the cycle T,

DAT.w) = = /T pult)dt
ROT LSL 20
= /([ ftxido)- [ o(rdrat
0 a t
T ¢ LSL
+ 0/6//f,(r )Ydz - g(7)dTdt] (3.44)

3.10.1 Example 3.4

We present here a numerical example for GSSM2. Ve consider Example 3.1 pre-
sented in section 3.7. We consider the case where the quality characteristic of the

product follows a uniform distribution (Gibra [1974]) and an exponential drift (Jeang

and Yang [1992]).
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Let :
fi(z): U(c,d) where ¢ < z < d (i.e. uniform distribution).

R(t,7)=0.7 €093¢=7) : drift function

Let: LSL=10, USL=12, o=1, A=0.05, R=500, Cp=300, C;=8, C,=8.
Table 3.3 shows the results of solving the generalized single stage model (GSSM3)

with different parameters.

c d c | d T | ETCG
10.1 (119 10 {11.8 | 3.13 ] 0.378
98 122196 12 |4.02] 194

Table 3.3: Results of Example 3.4 with different parameters

The results of this model (GSSM) are important and useful. The models in the
literature lack the joint optimization of (1) initial mean setting, and (2) production
cvcle length for a general distribution of the quality characteristic and a general
drift function. The significance of our model came from linking both of the above
two elements in one general integrated model. Thus, the stated objective in chapter

1 has been accomplished.

3.10.2 Reduction of GSSM3 to Previously Published Mod-
els
1. When 7 = 0, R(t,7) = 6¢, fi(z) ~ N(u(t),0?)

GSSM3 reduces to the models of Hall and Eilon [1963], Gibra [1967], and Taha
[1966].

2. When 7 = 0, R(t, 7) = 0,t%, fi(z) ~ N(u(t),0?)



GSSM3 reduces to the model of Gibra [1974].

3. When ¢(7) ~ Exponential()), R(t,7) = 0(t — 1), fe(z) ~ N(u(t),a?)

GSSM3 reduces to the model of Rahim and Banerjee [1988].



Chapter 4

Variance Reduction and

Sensitivity Analysis Studies of

SSM

In this chapter, we study the effect of reducing the variance on the total cost of the
single stage production system model (SSM). We also present a sensitivity analysis
of the SSM parameters. This chapter is organized as follows: In section 4.1, we
present the variance reduction model for the SSM. In section 4.2, we present the

sensitivity analysis of the SSM parameters.

(S]]
~1
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4.1 Variance Reduction Model for SSM (SSVRM)

4.1.1 Introduction

In most of the models reviewed in chapter 2, the variance of the process is assumed
to be either constant or increasing with time, but in both cases uncontrollable. In
many industrial processes, it has been found that controlling the production run
duration alone (which is achieved by the above mentioned models) is not enough to
reduce the expected cost per good item to an acceptable level, and therefore, one
has to turn to reduction in variance in order to achieve the required reduction in
the expected total cost per good item, which is needed in today’s global competitive
market. A prerequisite for reducing the variance is to the see how much the expected
total cost per good item at the current level of the variance compares with that at
level zero and decide whether to reduce the variance or not. Of course, this decision
also needs information on the cost of achieving the variance reduction.

The review of literature in chapter 2 covers only the dynamic case (i.e. the mean
drifts with time). For the static case, the objective is to find the best mean setting
that minimizes a cost function (e.g. expected total cost per good item). For this
problem, there has been an enormous amount of work (see Al-Sultan and Rahim
[1994] for a survey). One of the more relevant studies is that of Golhar and Pollock
[1992] in which they developed a procedure for studying the cost savings due to
variance reduction in Golhar and Pollock’s model [1988].

In this section, we use the same approach of Golhar and Pollock to study the
effect of variance on the expected total cost per good item for a modified version of

the Rahim and Banerjee [1988] model.
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The proposed analysis could be of use to the practicing production manager or

production engineer, as illustrated below :

1. Bisgaard, Hunter, and Pallesen [1984] stated the following

"In principle, the variance of any process can be reduced by discov-
ering better ways to operate the present process or by modifying it
in some way, perhaps by the incorporation of better machinery. But
such changes cannot be continued indefinitely because eventually a

point of diminishing returns will be reached.”

Clearly the benefit from reducing the variance of a process (like the one de-
scribed in this section) is quantified by the proposed model, and therefore if
the cost of reducing the variance (i.e. cost of the better machinery, costs of
implementation of better ways to operate the process by modifying it) is less
than the benefit gained from doing so, then one can go ahead with the variance

reduction project; otherwise, it is not advisable to entertain it.

2. Golhar and Pollock [1992] mentioned that machine precision (i.e. the inverse
of process standard deviation) can often be improved at a cost. They give an
example where there is a choice among different filling machines that vary in
cost and precision. One can use the proposed model in this chapter to compare

these machines and pick the best one.

3. One can also use the proposed model when studying the reduction of the
variance when considering an automatic control system to replace a manual
one in a plastic coating industry (Twombly and Whiteman [1974]). Reduced

variability of an automatic control system will save raw material (Figure 4.1).
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This saving will have to be compared with the cost of adopting the costly
automatic control system. Therefore, one can use the proposed model to
evaluate the benefit gained from reducing the variance and compare it with
the cost to be incurred to attain that reduction, and then decide whether the

automatic control system should be adopted or not.

With target
optimization Raw
control | material =
saved
Higher ﬁ\
With automatic control
% of
Production
With manual control
= >
Lower Shiflted target Heavier
limit target

Figure 4.1: Raw material saving due to reduction of variance and shift of target
(adopted from Twombly and Whiteman [1974]).

4. There are other situations where the reduction of variance of the process can
be done by training operators, or purchasing more uniform raw material. The
proposed model can assist in deciding whether to go ahead with the variance
reduction project or not, depending on the comparison between the cost of
the variance reduction and the saving due to this reduction. However, one has

to remember that the reduction in the variance due to operator training or



61

more uniform material is more difficult to quantify compared to the above two
cases. Nonetheless, one can use historical data and expert opinions to come

up with a rough estimate.

In summary, the production engineer or production manager can use the proposed

model in this chapter to do the following:

. Evaluate alternative machines with different costs and precisions.

. Make cost-benefit analysis when entertaining changing the process from man-

ual to automatic, or when improving the process performance by other means.

_ Evaluate the benefits obtained from training programs for operators (which
usually help to reduce their variability), and from having more uniform raw
materials, although it is more difficult in these cases to quantify the improve-

ment (reduction) in the process variance.

4. Identify how much extra cost (beyond ideal but not achievable variance of

zero) is attributed to variance, and whether it is sizable to the point that it is

worth investigating to reduce part of it.

4.1.2 The Notation

The following notation are needed in this chapter.

u+ Ko the upper specification limit for the quality characteristic;
p(t) probability of producing a defective item at
time t = Pr(z(t) > p+ Ko);

W(T) average number of non-defective items produced per unit time



during a production period of length T’

U penalty cost per defective item;

T(o) the optimal production run in hours at variance = a?;

T(0) the optimal production run in hours at variance =0;

w(o) the excess expected total cost per good item due to the variance.

4.1.3 The Proposed Variance Reduction Model (SSVRM)

In this section, we study the effect of the process variance on the optimal production
run and the expected total cost per good item for the model of Rahim and Banerjee
[1988]. A closer look at their model reveals that they consider the upper specification
limit (USL) to be equal to u + Ko, ie. itisa function of 0. Normally, USL is
an external requirement on the production dedicated by the customer while o is an
internal process parameter. In Rahim and Banerjee’s model reducing o will reduce
USL by a proportional amount, and hence, exercising control over o would be of
no help. Therefore, we propose the following refinement for Rahim and Banerjee’s
model. We assume that USL is given while ¢ is a controllable parameter.

The derivation of p(t) and W(T') follows immediately from Rahim and Banerjee
[1988] by substituting K = U—S{;—'-E Hence, the probability of a defective item at

time ¢ is given by

p(t) = Prlz(t) > USL| u(t),o’] (4.1)
= Pr[z2 ﬁ%:_#_] - Prit < 7}
. /oz — (#; (=10 e
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= (1- <I>(———U SL—#yo-x + / (1- <I>(————D SL - u) YAe *dT
o
After integration by parts and simplification,
_ USL—-—u 6t USL—-p Ao .
p)= 1 —8(— £ - 2) - [#(—+ ) (42)
USL—p 6t Ao USL—p Ao?
( ~ _a+ 9)]xexp( Mt — 7 _292})

The average number of good items per unit time during production cycle T is

W(T(0)) = % /0 T ) dt (4.3)

R [E(USL—;L(I)(USL—;L)_(USL—u_0T(a)
T(c) 8 o a c o
'SL — 6T SL - 'SL —
USL—-p ( ))+O(L u) '(LSL p 6T(o)
o o o o

1 USL—-pu Ad?
- Xexp(—/\{T(a)— 7 ~ 352 9

USL—-—p Ao USL—pu Mo 60T(o)

{ & o + 9) ®( o + 9 o

USL — USL — 9T (o
#) a( p_ 8T(g)

g ag

% (

)}

+ —{‘I’( )}

The expected cost per good item is given by

Cr + RUT(0)
T(c) - W(T(c))

ETC = E(TC/unit good product) = (4.3)

Our model which can be obtained from theirs by substituting K = Q—SL—E has

the advantage that USL is independent of . This is desirable as control over o
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does not change USL.

4.1.4 Effect of variance on total cost

We will use the approach by Golhar and Pollock [1992] to study the effect of o on
the expected total cost per good item. Let us define the following

w(o) : is the excess expected total cost per good item due to the variance.

E(TC/unit good item|o > 0) : is the expected total cost per good item,
for a certain value of o > 0
E(TC/unit good item|o = 0) : is the expected total cost per good item

when o = 0.

Thus, the function ¥(g) can be defined as follows
¥(g) = E(TC /unit good item|s > 0) — E(T'C/unit good item|o = 0) (4.6)

E(TC [unit good item|o = 0) is derived as follows:

The probability of a defective item at time ¢ given that 0 =0 is as follows

0 t< 7+ L5k=s

p(t) = , (4.7)
1 t>7+4 LSk

P(t) = /: 1 g(r)dr (4.8)

SL—p
[

o= Lst=e) _ -



Let

T(o) : is the optimal production run at variance = o?, and

T(0) : is the optimal production run at variance =0.

T(c) and T'(0) are the minimizers of E(T'C/ unit good item|c > 0) and

E(TC /unit good item|o = 0) respectively.

The average number of good items per unit time during production cycle T given

that 0 =0 1s
R (0)
WTO) = 7 / (1 — P(t))dt (4.9)
R &5 r T
= T_(O_)/o 1dt + 755 fusge (! — P(t))dt
R USL-p, R st _USL—p
R -aust=e) _ a1
+ Yol e
: : _~ _ CrtURT(0) ,
E(TC / unit good item|oc =0)= T(0) - W(T(0)) (4.10)
~ Cp + URT(0)
- R(YSL=s) 4 R[1 - e~ MEF([T(0) — (YSLzay) 4 §[e_,\(v_s_g;z) — e-AT()]
_ . . _ Cr+URT(0) /
ETC = E(TC/unit good item | ¢ > 0) = T(o) - W(T(o)) (4.11)

Therefore, (o) is the excess cost that one expects to pay per good item due

to the increase in the value of ¢ from ¢ = 0 to its current value. ¥(c) is given as
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follows

_ Cr+URT(0) L7
Ylo) = (o) W(T(0)) (4.12)
Cr + URT(0)

R(ZSL=2) + R[1 — e 5| [T(0) - U5L=t] 4 £[eM 577 — em3TW)]

An algorithm has been developed to compute ¥(c) and is called SSVRA. A
fowchart of SSVRA is provided in Figure 4.2. (o) represents the difference be-
tween the current performance (at the current ¢), with the ideal best performance

(at 0 =0).

Analysis of (o)

In the sequel, we study and analyze the function ¥(c) as it is given in (4.12).
One can note from (4.12) that the function (o) is not defined when either T(0)=0.
or T'(o)=0.

We study each of the above cases separately.

Case 1: T(0)=0

When ¢ = 0, the minimum value of T'(0) is ﬁ’,;—"ﬂ Hence, T(0) = 257,"—:-‘1 # 0.
Case 2: T(0)=0

When ¢ > 0, we consider two subcases:

Case 2.1
If we make the assumption that T(c) > 0, then the function will be defined.

If not , then we have to study the function when T'(c) — 0 which is discussed

next.



Use line search to find
T(0) when G =0

Calculate ETC1=E(TC/unit good item | G=0)

Do G = minimum to maximum

—Q

Use line search to find T(C)

Calculate ETC2=E(TC/unit good item|G>0)

l

Calculate Y(0O)=ETC2-ETC1

/—\Continue >

Figure 4.2: Flowchart for computing ¥(g) (SSVRA).
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Case 2.2

To study the function when T(¢) — 0, we investigate the following limit:

. Cr+URT(0) ,
o8 To) - W(T(a)) (4.13)
by L’Hopital’s rule,
. Cr+ URT(0) ) UR
lim = lim
T(o)—0 T(0) - W(T(0)) T(a)—0 T'(c) - W(T(0)) + W(T (o))
UR
= 4.14
0+ lim’[‘(a)_.() "V(T(O’)) ( )
Hence, the limit exists if
T(lgllo W(T(g)) #0 (4.135)
by L’Hépital’s rule,
_ . RE-p()dt
T(lclrl)lio W(T(e)) = 1'(15520 T (o)
_ . RO pT)
T(o)—0 1
T L —
= R@(%——‘i) £0 (4.16)
Plugging (4.16) into (4.14), we get
Cr+URT(0) _ U (4.17)

r(li?lo T(o) - W(T(0)) &(L3L=2)

g

Therefore, (o) is well-defined.
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Example 4.1

We consider the example given by Rahim and Banerjee [1988] where U = $1.00. R
= 500/hr, Cr = $ 340, USL = 0.208, § = 0.0L.

Solution

The plot of the total cost per unit good item as a function of T and o is shown in
Figure 4.3. 1(c) is plotted in Figure 4.4. It is clear that as ¢ increases from 0. the
expected total cost per unit good product increases sharply, and later it levels off
in a diminishing return fashion. This is expected, since the effect of the change in

o becomes less important as ¢ increases in value.

Figure 4.3: Plot of ETC =E(TC/good item) as a function ofo and T'.

Another way of studying the effect of o on the expected total cost per unit

good item can be done by taking the partial derivative of ET'C with respect to o.
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Figure 4.4: Plot of ¥(0o).

Differentiating (4.11) with respect to ¢ yields

9ETC _OETC 0T(0) |
3o~ oT(e) o (4.18)

QETC _ RU[T(a)W(T(0))] = (Cr+ RUT(0))(W(T(a)) + T(a)W(T(a))) , 4,

0T (o) ~ (T(o) - W(T(0)))?
where
W'(T(0)) = Q%)—) (4.20)
_ R 4 USL—u_fT(0), USL —p  6T(0)
B T(a)[q)( ¢ o (a)+( c 0o )
) ¢(USI;—/.L GTia))i)_{@(LSL ,u+2\0_£)

USL —pu + Ag GT(J
o o

7 )} x exp(—M{T (o)

— &



USL—p Ao, 1 USL —p
- S T -
USL —p 0T (o) Aa 0
- 2(,2}{< 19 2
o USL-pu. USL— USL-p 6T(o
- el e . T
DSL OT(e). USL—u. USL—pu OT
S TR LG TCEL S P EE LS
g g g (22 o
1 USL—p o? USL—p Ao
USL - /.l

)

USL—-p Mo 6T(0)
+ —_—
o 0 c
USL-—p 6T (o)
o o

- & )}+;{‘I>(

- 9 1

If we equate (4.19) to zero, we will get
T?*(0)W?(T(0)) = —CpW(T(0)) — CrT(c)W'(T(c)) — RUT*o)W'(T(0)) (4.21)

Now, differentiating (4.22) with respect to o, we get

%7;(—“)—)(2 T (0)*W(T(0)) +2Cr +2RUT(0)) (4.22)
- T arwrion + T -Cr - RUT0)
Solving for a_%'g)’ we get
oT(o) _ 1 W (T(a)) . R
e = TIW (T(a))[ e (2T(a)*W(T(0)) + 2Cr + 2RUT(0))]
w(—}% — rUT?*0)) (4.23)

do
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To complete (4.23), we need to get M%-(ﬂl and "’iﬂ—(%@l We can get M%,T;(ﬂl by
differentiating (4.4) with respect to o. Similarly we can get 0_“/%?312 by differenti-
ating (4.20) with respect to o.

Although the expression is very involved, we have numerically evaluated r%’gg
for different values of 0. We have plotted "—gTa—C- versus o and it is shown in Figure

4.5. Figure 4.5 shows that it is decreasing as o increases, that is ETC is a concave

function, for this example. We conjecture that it is true in general. Rigorous proof

JETC?
fa?

requires demonstrating that either <0or a_g’g_c decreases as o increases, both

of which are beyond the scope of this dissertation.

TE+09
6E+09
6E+09 A
5E+09
JETC
G sg.09 -
4E+09

4E+09

JEL08 -

3Ew09 -

: =. JETC
Figure 4.5: Plot of <5~

Similarly, we have numerically evaluated _3_5(01) for different values of 0. We
have plotted a—Ta—gﬂ versus o and the figure was similar to Figure 4.5. Again, Q%(aﬂ
decreases for this example. One interpretation is that the higher the variance, the

more likely that more items are produced with X < USL (when the mean of the

process increases beyond USL).



4.1.5 Optimization model for SSVRM

In section 4.1.4, we have proposed a function, ¥(c), that represents the excess cost
per unit good itme due to the increase in the value of ¢ form o = 0 to its current
value. In this section, we use this function in an optimization model to find the
optimal percent reduction in the variance.

In this model, we use the exponential function (Speckhart [1972]) to represent
the cost of the variance as discussed in section 1.3.

Next, we present our mathematical model for variance reduction in a single stage

production system. But first, we introduce the following notation.

a percentage of reducing the variance:
a,b parameters of the cost of the variance;
B limited budget allocated for the variance reduction program.
max ¢(o) — v((1 — a)o) - (ae 8- _ ae™b) (4.24)
subject to
(a1~ _ qe=*) < B (4.25)
0<a<l (4.26)

In the above model, the objective function is simply the net saving which results
from the variance reduction program. The net saving can be calculated as the

reduction in the total cost due to the variance reduction program minus the cost of
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applying the variance reduction program. The first constraint makes sure that the
cost of reducing the variance does not exceed the available budget for the variance
reduction program. The second constraint sets a lower and an upper bound on the
decision variable a.

The mathematical model will find the optimal value of a which in turn tell us

how much reduction is going to be made to the current variance.

Example 4.2

We consider the example given by Rahim and Banerjee [1988]. Let the parame-
ters of the exponential function which represents the cost of the variance be a = 10
and b = 0.1. Let the available budget for the variance reduction program be B =$50.
The current system is operated with ¢=0.1 and 7" = 15.058 with ETC =$0.0831
per unit good item.

After solving the model, the optimal percent reduction in the variance, a"=14.75%.
That is, the value of the reduced variance is ¢=0.0852. The new production cycle
length is, T=15.697, and the new ETC=%0.0658 per unit good item. The reduction
in the variance costs $9.91.

The results of this model (SSVRM) are important and useful. The models in
the literature lack the optimization in the variance reduction. The significance of

our model comes from optimizing the reduction in the variance.



4.2 Sensitivity Analysis of SSM

4.2.1 Partial Derivatives of the Parameters

Sensitivity of the optimal solution of SSM model developed in chapter 3 to values of
its parameters can be analyzed by taking partial derivatives of ETCG with respect
to various parameters. However, the resulting expressions are formidable to handle.

and therefore may not be of practical use. For example, the rate of change of 0 is

as follows:
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Therefore, we use design of experiments to do the sensitivity analysis.

4.2.2 Design of Experiments

In this section, we conduct a factorial experiment to study the effects of the input
parameters on the total cost of the single stage model (SSM) presented on chapter
3.

There are 7 input parameters for the single stage model. We assign two levels
to each input parameter in the factorial experimental design. Table 4.1 shows the
input parameters and their assigned levels. Note that the low level values of the
input parameters are exactly the same as in the example of the single stage model

presented in section 3.7. This example has been taken from Rahim and Banerjee

[1988].
Levels
Parameter Factor Low High
C A 8 29
C. B 8 28
Cr C 300 5000
R D 500 8000
A E 005 84
6 F 0.1 6.5
o G 1.0 1.4

Table 4.1: Input parameters and levels used in the experiment.



It should be noted that if the levels of the input parameters are varied over
different ranges, the experimental results may be different. However, the levels used
for this study are not unrealistic.

The factorial experimental design used for the sensitivity analysis is 2% design. A
total of 27 or 128 runs are required to conduct the experiment. A test for curvature
has been conducted (Montgomery [1991b]). The result of the test shows no evidence
of curvature in the response surface over the selected ranges of the parameters (see
Table 4.1). Hence, the 2¥ design that is going to be used is justified.

Since the solution procedure (i.e. Hooke and Jeeves algorithm) used to solve the
single stage model is deterministic, this experiment can not be replicated. Thus.
there is no estimate of error.

One approach to solve this problem is to assume that certain high-order in-
teractions are negligible and combine their sum of squares to estimate the error.
This approach is justified by the fact that most systems are dominated by some
of the main effects and low-order interactions and most high-order interactions are
negligible.

Therefore, before we construct the ANOVA table, we assume that 4-order inter-
actions and higher are negligible to get an estimate of error.

The results of all the runs of this experiment are given in Appendix C. Table
4.9 shows the ANOVA table. It can be noted that the main effects (i.e. A-G) and
interactions AB, AG, BG, CD, CE, CF, DE, DF, EF, CDE, CDF, CEF, and DEF
are significant at level 1%.

It can be noted from Table 4.2 that the most significant factor is § which is

the drift rate. The second most significant is o, followed by Cy, Ci, Cr, R, and A.
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Hence, when one is interested in improving the production system, he should look
very carefully to # and o. The most significant interaction is between 8 and Cp.
For a fixed value of 8, as Cg increases, ETCG increases. However, for a fixed value
of Cp, as 6 increases, ETCG decreases. The second most significant interaction is
between # and R, followed by 6 and A, Cr and R, Cg and A, R and A. C; and o,
C, and ¢, C; and C,. The most insignificant interaction is between # and A. This
is because when 8 increases, ETCG increases for a fixed value of A and when A
increases, ET'CG increases for a fixed value of 6.

Next, we discuss the effect of the parameters of the model on p*, T", and ETCG".

1. Effect of the parameters on (1~

e As () increases, more penalty is put on rejecting an undersized item and hence
y~ increases to make the probability of producing this kind of defective items
less. As expected, the opposite is true for C,, i.e., g~ decreases as C, increases

to make the probability of producing oversized items less.

e As the drift rate @ increases, u~ decreases which is expected to counteract that
increase in the drift rate if 8 is positive. Of course, the fact that the optimal
cycle length T~ gets decreased makes the effect of 6 on p” much less than the

previous case.

If the drift is negative, then the above stated effects of C, Cy, and 6 on u~

will be reversed.

¢ For the other parameters, namely A, o, Cp, and R, the effects of their values

on p~ are minimal due to the adjustments made to T~ which offset their effects.



2. Effect of the parameters on T~

e Clearly, as C; or C, increases, more penalty is incurred when producing de-
fective (undersized or oversized) items, and hence optimal cycle length, T~.
becomes smaller to guard against this (i.e. to reduce the number of defec-

tives).

e As 6 or ) increases, the probability of producing defective items increases, and

hence T™ becomes smaller to guard against producing defectives.

e As the resetting cost per cycle, Cg, gets higher, clearly one would iike to avoid

resetting frequently and hence T~ increases.

e The standard deviation o effect is subtle, since as it increases, the dispersion
of the quality characteristic around p~ is higher, and hence the probability of
producing good items is higher when p~ is way above USL (or way below LSL

in case of negative drift) and hence T~ increases.

e With the same probability of producing defectives, as the production rate R
increases, more defective items are produced per unit time and hence as R

increases, T~ decreases.
3. Effect of the parameters on ETCG™

e Clearly, as C; or C, (which are costs assigned to producing undersized and
oversized items, respectively) increases and as Cp increases, the cost per good

item, ETCG", increases.

e As )\, 0, or 0 increases, the performance of the system deteriorates which makes

the cost per good item, ETCG™, increase.
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e As the production rate, R, increases, one would be able to use shorter cvcle
time T, which makes the probability of producing defective items less, which

in turn, makes ETCG™ decrease.

Our results are in line with Rahim and Banerjee [1988] conclusions for their
model. One should note that the above observations apply only when the parameter
levels are as in Table 4.1. It is not clear what the results would be if different levels

are used.



Source SS df MS F-ratio
Main Effects:
A 1825.207 1 1825.207 222.397
B 1984.244 1 1984.244 241.775
C 1678.331 1 1678.331 204.525
D 1652.821 1 1652.821 201.392
E 1271.954 1 1271.954 154.984
F 2083.704 1 2083.704 253.894
G 2012.742 1 2012.742 245.248
Interactions:
AB 124.8939 1 124.8939 15.218
AC 2.9712 1 2.9712 0.362
AD 2.9103 1 2.9103 0.333
AE 5.0216 1 5.0216 0.612
AF 3.3849 1 3.3849 0.412
AG 175.0778 1 175.0778 21.333
BC 15.136 1 15.136 1.844
BD 14.8342 1 14.8342 1.808
BE 2.2156 1 2.2156 0.27
BF 21.3146 1  21.3146 2.597
BG 167.2129 1 167.2129 20.374
CD 081.2639 1 981.2639 119.565
CE 817.3949 1 817.3949 99.598
CF 1235.872 1 1235.872 150.588
CG 4.0107 1 4.0107 0.489
DE 806.2843 1 806.2843 98.244
DF 1217.154 1 1217.154 148.307
DG 3.9314 1 3.9314 0.479
EF 1190.305 1 1190.305 145.036
EG 0.7508 1 0.7508 0.091
FG 5.6619 1 5.6619 0.69
ABC 0.3092 1 0.3092 0.038
ABD 0.3022 1 0.3022 0.037
ABE 0.12 1 0.12 0.015
ABF 0.4477 1 0.4477 0.055
ABG 10.0831 1 10.0831 1.229
ACD 1.3049 1 1.3049 0.159
ACE 2.5161 1 2.5161 0.307
ACF 1.5257 1 1.5257 0.186
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ACG
ADE
ADF
ADG
AEF
AEG
AFG
BCD
BCE
BCF
BCG
BDE
BDF
BDG
BEF
BEG
BFG
CDE
CDF
CDG
CEF
CEG
CFG
DEF
DEG
DFG
EFG
Residual
Total

0.0469
2.4635
1.4925
0.0461
4.017
0.0685
0.0614
7.2455
1.1156
11.0381
0.074
1.0943
10.8108
0.0725
1.901
0.001
0.1015
526.9485
727.5236
1.8444
775.8567
0.3164
2.7431
765.4739
0.3096
2.6871
0.7495

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

0.0469
2.4635
1.4925
0.0461
4.017
0.0685
0.0614
7.2435
1.1156
11.0381
0.074
1.0943
10.8108
0.0725
1.901
0.001
0.1015
526.9485
727.5236
1.8444
775.8567
0.3164
2.7431
765.4759
0.3096
2.6871
0.7495

525.2464 64 8.206975

22694.76 127

0.006
0.3
0.182
0.006
0.489
0.008
0.007
0.883
0.136
1.345
0.009
0.133
1.317
0.009
0.232

0.012
64.207
88.647

0.225
94.536

0.039

0.334
93.271

0.038

0.327

0.091

Table 4.2: ANOVA for the single stage model.



Chapter 5

A Hybrid Tabu Search Algorithm

for Function Minimization

In chapter 6, 7 and 8, we develop mathematical models for multistage production
systems. The objective functions in these models are generally nonconvex. Hence.
in order to find the global optimal solution of these models, we need an algorithm
for global optimization.

In this chapter, we present a new tabu search algorithm for finding the global
optimal solution. We call it "TSFGO’. This chapter is organized as follows: an in-
troduction is given in section 5.1. In section 3.2, we give a brief introduction to tabu
search. We present and state the proposed algorithm in section 3.3. Computational

results and discussion are presented in section 3.4.

83
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5.1 Introduction

Global optimization problems arise in many practical engineering problems. These
optimization problems have the feature that the objective function may not nec-
essarily be convex and therefore may possess many local minima in the region of
interest. For applications of global optimization, see Térn and Zilinskas [1989)].

A standard global optimization problem can be defined as follows:

Given a continuous function f : R* — R, find a point = € R" satisfying fr) <
f(z) for allz € R™.

Classical nonlinear programming algorithms including derivative-based (e.g.. the
steepest descent method, Newton's method, the method of conjugate gradients) and
derivative-free methods (e.g., Rosenbrock’s method, Hooke and Jeeves’ method.
Nelder and Mead’s method) have not been successful in solving these problems.
For more details on these methods, see Bazaraa et al. [1993] and Rekalitis et al.
[1983]. In general, these methods converge to 2 stationary point for which there is
no guarantee of even local optimality.

There have been attempts by several researchers to develop global algorithms
for nonconvex function minimization problems. For example, Corana et al. [1987]
have developed a simulated annealing-based algorithm which handles multimodal
functions, and provides the global minimum irrespective of the initial point in most
of the cases. However, this algorithm is very costly in terms of the number of func-
tion evaluations needed to obtain the solution even though it performs well in terms
of the quality of the solution. Aluffi-Pentini et al. [1985] presented a simulated
annealing algorithm which follows the paths of a system of stochastic differential

equations. This method found the global minimum for all test functions that were
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used. However, both methods require a large number of function evaluations. Re-
cently, Dekkers and Aarts [1991] proposed a simulated annealing algorithm which
outperformed the one of Aluffi-Pentini et al. [1983].

Genetic algorithms have also been proposed in the literature for global optimiza-
tion. For example, see Hajela [1990] and Pham and Yang [1993]. These algorithms
use genetic techniques on the solution space of the problem. This is done by defin-
ing an injective mapping from a pre-defined set to the solution space in R". The
pre-defined set is a collection of binary vectors, each one representing a point in the
solution space, and the genetic algorithm is used to go from one point to another in
the solution space. A complete representation of the solution space is not possible
using these algorithms, as all real variables cannot be represented completely by
a pre-defined set of binary vectors. Hussien and Al-Sultan [1994] have solved this
problem, and proposed generating search directions (rather than solution points)
using genetic algorithms. These directions are used in Hooke and Jeeves’ algorithm.
Their algorithm is very efficient.

There are verv few algorithms that use tabu search. Hu [1992] developed a tabu
search algorithm particullary suited for optimal engineering design. His algorithm
assumes that each variable of the problem is bounded by a known closed interval.
A set H of different steps of each interval is computed. Then the algorithm will
generate random neighbors from the current point which are contained in a ball
of radius h; € H. The best of these neighbors is selected and its corresponding
h; stored in the tabu list. In his experiments, Hu tested his algorithm with one-
and two-dimensional problems only. He compared it with random search and with

the genetic algorithm of Hajela [1990]. Hu's algorithm requires 2" possible random



86

moves to be examined for the general problems of n variables.

In this chapter, we present a new tabu search based algorithm for solving the
above discussed problem which is more efficient than the most competitive algo-
rithms in the literature, i.e., it requires less function evaluations. This algorithm has
two features. First, the algorithm resembles Hooke and Jeeves’ algorithm (Bazaraa
et al. [1993]) in the sense that it goes through an exploratory search and pattern
search. Second, the algorithm generates random search directions and performs a
line search on each direction and the direction of the best point is stored in the tabu
list. That is why we call it a hybrid tabu search algorithm. The algorithm shares
some spirit with that of Hussien and Al-Sultan [1994] in the sense that it generates

directions and uses them in an optimization algorithm. However, we use tabu search

rather than genetic algorithm.

5.2 The Tabu Search Scheme

Tabu search is a metaheuristic that guides local heuristic search procedures to ex-
plore the solution space beyond local optimality. It was introduced by Glover [1986.
1989, 1990] specifically for combinatorial problems. Its basic ideas have also been
also proposed by Hansen [1986] and Hansen and Jaumard [1987] with another name
"steepest ascent mildest descent”. Since then, tabu search has been applied to a
wide range of problem settings in which it has consistently found better solutions
than methods previously applied to these problems. For example, tabu search has
been applied to flow shop scheduling (Widmer and Hertz [1989)], Taillard {1990]).
architectural design (Bland and Dawson {1991], time tabling problem (Hertz [1991])).

among others.
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The tabu search starts at some initial point and then moves successively among
neighboring points. At each iteration, a move is made to the best point in the neigh-
borhood of the current point which may not be an improving solution. The method
forbids (makes tabu) points with certain attributes with the goals of preventing cy-
cling and guiding the search towards unexplored regions of the solution space. This
is done using an important feature of the tabu search method called tabu list. A
tabu list consists of the latest moves made so that recently visited points are not
generated again. The size of the tabu list can be either fixed or variable. In its

simplest form, tabu search requires the following ingredients:
e Initial point
e Mechanism for generating some neighborhood of the current point

Tabu list

Aspiration criterion

Stopping criterion

For more complete description of this method, see Glover [1989,1990].

5.3 The Proposed Algorithm

As explained in section 3.1, our algorithm uses the optimization technique of Hooke
and Jeeves where the directions are generated randomly and a line search is per-
formed along each generated direction to determine the optimal step length. Then

the best nontabu improving point (or best nontabu if no improving point is found)
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is selected and its associated direction is stored in the tabu list. This procedure is
repeated and controlled by tabu search.

Specifically, the algorithm starts at some point, say r,, and it goes through
several iterations. At each iteration k, the algorithm goes through m exploratory
searches (cycles) and one pattern search. The point z; of each iteration becomes
the starting point z; for the m cycles resulting in the points 29, 23, ..., Zm+1. [0 each
cycle, r directions are generated randomly, and a line search is performed along
each direction. The direction that gives the minimum functional value is selected
provided that it is nontabu or it is tabu and it improves on the best solution found
so far. Then, this direction is stored in the tabu list. A direction is said to be
tabu if it is the negative of any direction in the tabu list, otherwise it is said to be
nontabu. After m cycles, the algorithm performs a line search along the direction
zm41 — 21 to generate the next point Ty and this constitutes the pattern step.
If k = ITERMAX, where ITERM AX is the maximum number of nonimprov-
ing iterations, or the improvement between two consecutive iterations is less than
a predetermined value, the algorithm stops; otherwise the algorithm goes through
iteration k + 1 starting from the point zx4). Next, we formally present the proposed

algorithm. A flowchart of the algorithm TSFGO is depicted in Figure 5.1.

Statement of the Algorithm (TSFGO)

Initialization Step
Choose r (the number of random search directions to be used in each cycle). Choose
m (the number of cycles to be performed in each iteration). Choose a suitable

size (T'LS) for the tabu list, TL. Choose ITERMAX (the maximum number of
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nonimproving iterations). Choose € (the desired accuracy of the percentage of im-
provement in the objective function between two consecutive iterations). Choose a
starting point z;. Let 2z, = z,.

Let TL = ¢, BFV = f(z).

Let £k =j = 1, and go to the main step.

Main Step

1. Perform m cycles

1.1 Generate r different random directions, dy, ds, ..., d, (see Section 3.3.1).

Let A= and d~ be such that

flz; + X°T) = min f(z; + Aidi)

(or d~ is the best direction in this cycle with respect to the generated
directions. and A~ is the corresponding optimal step length as discussed

in Section 5.3.2).
1.2 Check Tabu Status

1.2.1 =1

122 If (d* € TL) or (d" € TL and f(z; + A°d") < BFYV) then go to step
1.3: otherwise, replace [ by ! + 1. Let the [th best direction (step
length) be d~ (A") (i.e. this is the best direction among all generated
directions in this cycle excluding those considered earlier in this step)

and repeat this step.

1.3 Update Current Point

Let iyl = 35 + A d-
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Store d* in T'L and update it accordingly (see Section 5.3.3).

If f(z; + \"d”) < BFV then BFV = f(z; + A*d™).

1.4 If j = m go to step 2; otherwise, replace j by j + 1 and go to step 1.1.

2. Perform pattern search

Let d = zm41 — 1. Let X be an optimal solution to the problem
i Zm d
min f(zZm+1 + Ad)

(see Section 5.3.2)

Let Tpsq = Zms1 + Ad, and go to step 3.

3. Check stopping criterion

If either f(zx) or f(zk+1) is equal to zero, let improv=l, k=0. If both are

equal to zero, let improv=0.
If neither f(zx) nor f(zx+1) is equal to zero then let improv =| %—rf—) l.
If k = ITERMAX or improv < ¢, stop; otherwise, let j = 1. and z; = Ty,

and replace k by k + 1, and go to step 1.

5.3.1 Generation of random search directions

In our experiments, we used the following scheme for generating the random search

directions.

Let d; be the i** component of the direction d, where 1 < 7 < n and n is the

dimension of the problem. To generate a direction, perform the following steps:

l.i=1



Start

Choose:

r: no. of random directions

m: no. of cycles

TLS: size of the tabu list (TL)

ITERMAX: maximum no. of nonimproving iterations

€: desired percentage of improvement between two
consecutive iterations (0 <€ < 1)

X{: starting point

Generate d; randomly (see section 5.3.1)

|

Perform a line search along d; to find the

optimal step size ( ki*)

*

*
BEST = f(2j+A; dj)

*
Apest = A
dpest = d;

Figure 5.1: Flowchart of TSFGO.
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BEST =BFV

Zj41 =72+ Mpest dbest

l

Store dpeqe inTL

Letd =2,y -2

|

Perform a line search along d to find the

®
Xke] SZmei + A d

Figure 5.2: Flowchart of TSFGO (continued).

optimal step size { A%




Yes

f(x})=0 and

y
|Improv =0

fxye4.1)=0

Improv = {(f(xy, 1 )-fxy)) / fxy) !

j=

Z] = Xg4]
k=k+l

Figure 5.3: Flowchart of TSFGO (continued).

Print
Xg4| © optimal point
f(xy4 () : optimal function value
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2. Let rand ~ U[0,1]. rand is a random number uniformly distributed between

0 and 1.

-1 if0<rand <

I DR L

3.di=% 0 if%<1‘and§
1 f2<rand<1

4. If i = n, stop; otherwise let i = ¢ + 1 and go to step 2.

5.3.2 The Line Search Scheme

Many line search schemes exist in the literature. However, all of them assume that
the function is unimodal which is not usually encountered in global optimization
problems. We have tried many of these, but unfortunately they failed. Therefore,
we propose to use an exhaustive line search scheme which decides first on the general
location of the minimum along the direction and then do a more fine search in the

vicinity of the minimum.
We used the following line search scheme in our experiments. Let [a,b] be the
interval of uncertainty on which the line search is to be performed. Let r and d be

the current point and direction respectively. Given the parameters of the scheme J.

k, s, and &y, perform the following steps:
1. A*=A=ga, min= f(z+ Ad).
2. Let A= A+k. If A\ > b, go to step 4; otherwise go to step 3.
3. If f(z + Ad) < min, then min = f(z + Ad), and A" = A. Go to step 2.

4. a=N=8b=X+d min=fz+Xd),\"=A=a,k=k/s.



5. Let A= X+ k. If A > b, go to step 7; otherwise go to step 6.
6. If f(z + Ad) < min, then min = f(z 4+ Ad), and A" = A. Go to step 5.
7. Let § = d/s. If § < &, stop; otherwise go to step 4.

A" is the optimal step length. However, one has to qualify this statement by the
fact that the accuracy and reliability of the line search scheme are controlled by
the constants &, k. s, and &;. Both reliability and accuracy can be enhanced by
finding the best values of these parameters by parameteric study which could be at
the expense of more function evaluations. Hence, a balance between reliability and

accuracy on one hand and the number of function evaluations on the other hand is

sought.

5.3.3 Storing in the Tabu List

In our algorithm, the chosen direction, (dbest ), has to be stored in the tabu list. TL.
in step 1.3. We store in TL the negative of the chosen direction, (dpes:) as follows:
The tabu list (T'L) is a two dimensional array, say TL(i. ), where 1 < i <TLS.
1 < j < n,and TLS is the tabu list size as defined in the initialization step and
n is the problem dimension. For example, let dpest=(1,0,-1) and i=1. Then, dies: 1s
stored in TL as follows: TL(1,1)=-1, TL(1,2)=0, TL(1,3)=1.

We illustrate how we check whether a direction, d, is stored in TL or not by an
example. Suppose that T'L has one element and it is given as in the above example.
Suppose that we want to check whether the direction d=(1,1,1) is in TL or not.
Then, we go and check if d;=TL(1,5) for 7=1,2,3. Clearly, d;=1 is not equal to
TL(1,1)=-1. Hence, d isnot in T'L.
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TL has a fixed size, TLS. Each time a new element needs to be stored in TL.
the new element is appended at the end of TL, and the oldest element is removed

form TL.

5.4 Computational Results and Discussion

In this section, we discuss various implementation details and results of our compu-

tational experiments.

5.4.1 Parameter Setting

Tabu search is a parameter sensitive technique similar to simulated annealing and
genetic algorithms. We have conducted an extensive parametric study for the pro-
posed algorithm on the test problems in section 5.4.2. The results of this study show

that the following two sets of parameters give the best performance:

e Set I: A compromise between solution quality and number of function evalu-

ations.
r=2n
m=4

Tabu list size = 20
ITERMAX =2

€= 10"

o Set 2. A very good solution quality with probably more function evaluations
and more computation time.

r=n



m =10
Tabu list size = 25
ITERMAX =95

e = 10710,

In our experiments we used Set I.
We have also conducted an extensive parameteric study for the line search scheme
on the test problems in section 5.4.2 and we have found that k =1, § = 0.3, s = 10,

and 87 = 0.05 work very well for the test problems given in section 5.4.2.

5.4.2 Test problems

We test our algorithm using a set of test functions known from the literature. These
test functions are taken from Dixon and Szegd [1978] (see Appendix A). We per-
form two experiments. In the first experiment, we compare our algorithm with the
methods shown in Table 5.1.

In the second experiment, we compare it with the methods shown in Table 5.2

using the Rosenbrock test function in 2 and 4 dimensions (see Appendix B).

[ Method Name Reference |
A Multistart Rinnooy Kan and Timmer [1984]
B Controlled Random Search Price {1978]

C Density Clustering Térn [1978]
D Clustering with dist. function  De Biase and Frontini [1978]
E Multi Level Single Linkage Rinnooy Kan and Timmer [1987]
F Simulated Annealing Dekkers and Aarts [1991]
G Simulated Annealing based on
stochastic differential equations Aluffi-Pentini et al. [1983]
TS Tabu Search This dissertation

Table 5.1: Methods used for the first experiment.



98

Since all the algorithms shown in Table 5.1 are tested on different machines.
we use the standard unit of time as shown in Dixon and Szegé [1978] which make
comparisons machine-independent. One unit of standard time is equivalent to the

running time needed for 1000 evaluations of the Shekel 5 function using the point

(4,4.4.4).
[ Method Name Reference |
Simplex  Simplex method Nelder and Mead [1964]
ARS Adaptive Random Search Masri et al. [1980]
SA Simulated Annealing Corana et al. [1987]
GA Genetic Algorithm Hussien and Al-Sultan [1996]

Table 5.2: Methods used for the second experiment.

5.4.3 Results and discussion

Table 5.3 shows the number of function evaluations for each method. In Table 5.4.
wue computation times in units of standard time for each method are given. For
methods A-G, numbers of function evaluations and computation times are taken
from Dekkers and Aarts [1991]. Table 5.4 shows no results for method G, since the
running time available is only in absolute computer time.

Note that the number of function evaluations and running time used in generating
the initial random sample are not counted in many methods. For example, for the
initial random sample, the Multi Level Single Linkage method (Rinnooy Kan and
Timmer [1987]) uses 1000 function evaluations and the Simulated Annealing method
(Dekkers and Aarts [1991]) uses 10n function evaluations.

Tables 5.3 and 5.4 show that the results of our algorithm are very encouraging.

Note that our algorithm never failed in finding the global minimum in all the tested
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Function GP BR H3 H6 S5 ST S10
Method
A 4400 1600 2500 6000 63500 9300 11000
B 2500 1800 2400 7600 3800 4900 4400
C 2499 1558 2584 3447 3649 3606 387
D 378 397 732 807 620 788 1160
E 148 206 197 487 404 432° 564
Fe 563 305 1439 4648 363* 558 797
Ge 5349 2700 3416 3975 2446 4739 4741
TS® 281 398 578 2125 733 735 1203

a:The global minimum was not found in one of four runs.
b:The average number of function evaluations of four runs.

c:The number of function evaluations of the initial sampling are not included.

Table 5.3: Number of function evaluations of the first experiment.

Function GP BR H3 H6 S5 S7 S10

Method
A 45 2 7 22 13 21 3
B 3 4 8 46 14 20 2
C 4 4 8 16 10 13 15
D 15 14 16 21 23 20 30
E¢ 0.15 025 05 2 1 12 -
Fe 09 09 5 20 0.8 15 27
TS® 022 03 102 7.2 147 1.38 3.34

a:The global minimum was not found in one of four runs.

b:The average running time of four runs.
¢:The running time of the initial sampling was not counted.

Table 5.4: Running time in units of standard time of the first experiment.
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problems, while methods E and F failed in problems 57 and S5, respectively. and
our algorithm is still competitive in terms of efficiency.

We observe that the quality of the solution, number of function evaluations.
and running time are very much dependent on the initial starting point. Thus, the
comparisons provided above are not entirley fair since the different methods may
start at a different initial point. In addition, the type of language used to code each
method, the data structure used, and the machine on which each method is tested.
are also influencing factors for execution time.

Another important point is that the first and second derivatives of each of the
tested functions can be easily obtained. Hence, methods which utilize these tools
have an advantage over other methods. Unlike other methods, our algorithm does
not require the derivatives of the function. Moreover, it can handle functions that
are not differentiable and functions that are not even explicit.

For the second experiment, Tables 5.5 and 5.6 show comparisons of our algorithm
with the algorithms shown in Table 5.2 using the Rosenbrock function in 2 and 4
dimensions. Results are taken from Corana et al. [1987] and Hussien and Al-
Sultan [1994]. Computation times are not reported in Corana et al. [1987], and we
relied on function evaluations to measure efficiency. Our algorithm outperformed
previous methods in terms of number of function evaluations except the Simplex
method which fails to get the global solution in some cases. Table 5.6 shows that
our algorithm is reliable.

The results of this algorithm (TSFGQ) are important and useful. Qur algorithm
outperforms the algorithms in the literature in both efficiency and reliability. Thus.

the stated objective in chapter 1 has been accomplished.



Method Simplex ARS SA GA TS
Starting Point
2 dimensions:
1001,1001 993 3411 500001 | 2389 1954
1001,-999 276 131841 508001 | 2214 1762
-999,-999 730 15141 524001 | 3254 2483
-999,1001 907 3802 484001 | 3412 2671
1443,1 907 181280 | 492001 | 2115 1616
1,1443 924 2629 512001 5781 4121
1.2,1 161 6630 488001 1548 1195
4 dimensions:
101,101,101,101 1869 519632 | 1288001 | 228534 | 16528
101,101,101,-99 784 194720 | 1328001 | 213422 | 27940
101,101,-99,-99 973 183608 | 1264001 | 264521 | 13995
101,-99,-99,-99 1079 195902 | 1296001 | 299321 | 11443
-99,-99,-99.-99 859 190737 | 1304001 | 44567 | 14007
-99,101.-99,101 967 4172290 | 1280001 | 234512 | 16572
101,-99,101,-99 870 33878 1272001 | 193134 | 11471
201,0,0,0 1419 209415 | 1288001 | 182131 | 25413
1,201,1,1 1077 215116 | 1304001 | 283946 | 8884
1,1,1,201 1265 29069006 | 1272001 | 214312 | 34083

Table 5.5: Number of function evaluations of the second experiment.
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Method Simplex | ARS SA GA TS
Starting Point
2 dimensions:
1001,1001 49E-10 | 1586.4 | 1.8E-10 | 1.2E-12 | 7.1E-11
1001,-999 7.4E-10 | 8.6E-9 | 2.6E-9 | 2.3E-10 | 1.5E-9
-999,-999 2.7E-10 | 1.2E-8 | 1.2E-9 | 44E-12 | 4.2E-9
-999,1001 9.2E-10 583.2 | 4.2E-8 | 3.4E-10 | 6.1E-9
1443,1 5.4E-11 | 4.7E-10 | 1.5E-8 | 3.3E-10 | 7.2E-9
1,1443 2.2E-10 1468.9 | 1.6E-9 | 1.2E-10 | 3.4E-9
1.2,1 2.4E-10 | 35.53E-7 | 2.0E-8 | 2.2E-18 | 2.6E-10
4 dimensions:
101,101,101,101 3.70 1.9E-6 | 3.0E-7 | 4.8E-9 | 5.1E-8
101,101,101,-99 5.46E-17 | 1.7E-6 | 1.8E-7 | 2.1E-9 1.6E-7
101,101,-99.-99 | 9.8E-18 | 3.8E-6 | 5.9E-7 2.2E-8 | 8.3E-8
101,-99,-99,-99 | 3.4E-17 | 2.3E-6 | T4E-8 3.0E-9 | 14E-7
-99.-99,-99,-99 8.3E-18 | 2.7E-6 | 3.3E-7 | 3.7E-9 | 6.3E-7
-99,101.-99.101 1.2E-17 | 2.6E-6 | 2.8E-7 | 3.9E-8 | 9.53E-7
101,-99,101,-99 | 6.0E-18 3.7 2.3E-7 | 4.1E-8 | 4.3E-7
201,0,0,0 3.70 1.1E-6 | 7.3E-7 | 3.0E-8 | 3.7E-7
1,201,1,1 9.4E-18 | 1.2E-6 | 4.6E-7 | 5.8E-8 | 7.2E-7
1,1,1,201 3.9E-17 | 2.2E-6 | 5.2E-7 | 4.3E-8 | 6.1E-7

Table 5.6: Final functional value of the second experiment.
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Chapter 6

MultiStage Production Systems
Without Buffers Model

In this chapter, we extend the models developed in chapter 3 to multistage pro-
duction systems. This chapter is organized as follows: in section 6.1, we give an
introduction. In section 6.2, statement of the problem is presented, followed by
notation in section 6.3. Assumptions are given in section 6.4. The proposed model
and its solution are given in section 6.5. Results and discussion are presented in

section 6.6. Extended models are given in sections 6.7 and 6.8.

6.1 Introduction

In chapter 3, we have presented models for a single stage production system. In this
chapter, we consider a multistage production system where processing at each stage
is performed by a process that deteriorates with time. We assume that processes

are subject to random deterioration. Items produced are required to conform to
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the given specifications for the quality characteristic related to the process at every
stage. If a product does not conform to these specifications, then there is a penalty
incurred which depends on the stage at which the product does not conform to
specifications, and whether the lack of conformity to specification is due to the
quality characteristic under consideration is above the given upper specification
limit, or below the given lower specification limit. It is also assumed that there is a
certain demand per unit time for finished items, and a penalty is incurred for not
delivering demanded items.

From the above, it is clear that the costs involved include cost of maintenance
(processes’ adjustments), cost of rejected items due to lack of conformance to either
upper or lower specification limits, and costs of failing to deliver demanded items.
The decisions to be made are: finding the optimal initial setting of the process mean.
and the optimal production cycle time for every process. The general approach is
to build a model to find the optimal values of these decision variables such that the
total cost is minimized.

A literature review of the models of multistage production systems have been
presented in chapter 2.

In this chapter, we develop a mathematical model to minimize the cost of mainte-
nance (processes’ adjustments), quality, and penalty for failing to deliver demanded
items. The model gives optimal initial settings and optimal cycle lengths for ev-
ery process in each stage. We use the hybrid tabu search algorithm (TSFGO) to

optimize the model.
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6.2 Problem Statement

In this chapter, we consider a production system with n stages where each stage
consists of a process with known and constant variance. The quality characteris-
tic produced by the process at each stage i has both upper and lower specification
limits, denoted by (USL;) and (LSL;), respectively. At a random point of time.
process i starts drifting either in the positive or negative direction which will re-
sult in producing more defective items (e.g., more oversized or undersized items.
respectively). Oversized and undersized items can be reworked at different costs (or
equivalently sold at a secondary market). The problem is to decide for every stage
what should be the initial mean setting, and the length of the cycle time after which
the process mean is reset to its initial setting, which can usually be done at a certain
resetting cost (an example of resetting a process could be sharpening or changing a
wearing tool). Clearly, if process i is reset too often, the resetting cost is more while
the cost of producing defective items is less and vice versa. Therefore, the goal is
to find initial mean settings and cycle lengths for processes 1,2,...,n, that strike a
compromise between these two conflicting objectives.

As mentioned in chapter 2, processes such as machining, drilling, grinding, draw-
ing, stamping, and moulding (Hall and Eilon [1963] and Gibra [1967,1974]), are some
examples of processes that deteriorate with time. Below we give some examples of
multistage production systems that have deteriorating processes.

As a first example, consider a production system of two stages. This production
system will produce shafts where the first stage makes the outer diameters of the
shafts while the second stage makes their inner diameters. The outer diameters

have upper and lower specification limits as USL, and LSL,, respectively while
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the inner diameters have upper and lower specification limits as USL, and LSL,.
respectively. At the first stage, raw materials are processed to produce outer di-
ameters of the shafts. The process of the first stage has a positive drift towards
the USL,. The process of the second stage will produce the inner diameters of the
shafts. The process of the second stage has a negative drift. That is, as the tool
starts to wear out, its shift will be towards LS Lo, and the inner diameter of the shaft
gets smaller with time. Shafts with outer (inner) diameters greater (less) than their
USL, (LSL,) can be reworked to trim the excess material, and consequently trans-
form them into good ones. But shafts with outer (inner) diameters less (greater)
than LSL; (USL;) can not be reworked and thus should be scrapped or sold at
a secondary market at a substantially reduced price. This makes the penalty for
producing shafts with outer (inner) diameters greater (less) than USL; (LSL,) to
be less than the penalty for those shafts with outer (inner) diameters less (greater)
than LSL, (USL,). Moreover, at the end unfulfilled demand will be penalized.

As a second example, consider the production system with three stages which
produces the part considered by Egbelu [1993]. The three stages consists of turning.
milling, and drilling, operations respectively. Egbelu [1996] showed another example
of three stages.

The third example can be found in Park and Steudel [1991]. They considered
the production of 98 types of gears. Their production system consists of six stages.
Other examples can be found in Raz [1986], Abdou and Cheng [1993], and Billatos
and Kendall [1991}.
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6.3 The Notation

The following notation are needed in this chapter.

zi(t)

Hi

ai(:)

pi(t)

the random variate denoting the quality measurement of the product
characteristic ; at time ¢ with mean x(t) and constant variance ¢%;

the mean quality characteristic i of the product when the process begins
in an in-control state having variance o%;

the optimal initial mean for process i:

the elapsed time until the occurrence of the assignable cause for
process ¢ is a random variable and is assumed to be exponentially
distributed with a mean of 1/\; hours;

\e=%% X > 0,7; > 0, the density function of the occurrence time of
the assignable cause for process

rate of drift in the mean of process i;

the process mean at time ¢ for process :

=p; fort < 7w

=pi+(t—-7n)f for t>m

the upper specification limit for the quality characteristic z;

the lower specification limit for the quality characteristic ;

the arrival rate of nondefective items at stage i;

resetting cost for process t;

cycle length (production run) in time units for process ¢;

cost of producing an undersized item for quality characteristic z;

cost of producing an oversized item for quality characteristic ¢;



pri(t)

pri(t)

P{(T;, i)

w

n

R

Regy
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probability of producing an undersized item at time ¢ ;

(i.e.,z:(t) < LSL;) for process ¢;

probability of producing an oversized item at time ¢ ;

(i.e.,r;(t) > USL;) for process i;

percentage of undersized items produced per unit time

during T, given that process i is started at mean setting equals to y;:
percentage of oversized items produced per unit time

during T}, given that process i is started at mean setting equals to u;:
demand/unit time;

penalty for unfullfilled demand/item;

number of stages;

production rate for process at the first stage;

effective (actual) production rate of the production system.

6.4 Assumptions

We make the following assumptions:

1. Process i, i=1,2,...,n begins in an in-control state having a normally distributed

quality characteristic with mean y; and variance o7.

2

2. Process i, i=1,2,...,n starts deteriorating at a random point of time, and de-

terioration is linear with time.

3. Variance of process i, i=1,2,...,n remains constant.
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4. The material cost is either independent of the choice of y; and T;, i1=1.2.....n

(e.g. the process of producing inner holes in shafts), or their effect on cost

of material can be assumed negligible. This assumption is implicitly made in

most of the literature of this problem.

5. There is enough supply for raw material at the first stage, and the production

rate for every process is less than or equal to the succeeding process.

6. Resetting (repair) time for each stage is negligible (i.e. instantaneous).

7. There is no buffer storage between stages.

6.5 The Proposed Model

The probability of an oversized item at time ¢ (ie.. z;(t) > USL;), pri(t) at process

i, is given by

pri(t) = Przi(t) >USL, | pi(t), o?]

USL;

= Pr[z> ___a~— #i] . Prit < 7]

t — . —_— .
. / Priz > USL: — (pi + (t — 7
0 .

gi

)0i)]gi(7’i)d7'i

; USL; —u; 0it Us
prif)= 1 —@(="——= - =) - [
_ pUSLizm 8t de:
g g, 0,‘
x exp(—Ai{t— USL: —

0;

(6.1)

(6.2)
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Similarly, the probability of an undersized item at time ¢ (i.e.,xi(t) < LSL;).

pri(t), at process i is given by

pri(t) = Prizi(t) < LSL; | pi(t), o7

- Prfz< L_SLG_-#_] - Prit <7
+ /0‘ Pr(z < LSL:— + G Ti)Gi)]gi(Ti)dTi (6.3)

LSL; —pi 6t LSL; — pi + AiT

prit) = @ (FEE - e+ )
LSL, — M 6,-t /\,'0’,'
- _a,-+9.-)]
LSL;—#,' /\,'0’2’2
x exp(—\{t — 5. ~ 2 3] (6.4)

The percentage of undersized items during time T; for stage i is given by

iT 1 L i d 6-
PiTuw) = 3 [ prito)dt (6.5)
: 1 d; LSL,'— i LSL,'— i LSL,'—- ‘ G,T;
Pi(Tam) = mlgh(=—Fle(=2mh) - (=R - =)
LSL; - u; 6;T; LSL; — p; LSL; — u; 6;T;
3 B 2 (2R - o )
gg ag; g; ag; ag;
1 LSL; —p;i  Xio?
~ Fexp(-N{T - S - S
LSL, — M /\,'0',' LSL, — Ui /\,'0',' 9,71,
{@(FH STy (R T - )
1 LSL; — p; LSL; — pi  6T;
e R e (66)
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Similarly, the percentage of oversized items during time T; for stage . is given by

1 i .
PTom) = = [ pritoyt (6.7)

1.0: USL; — u; . USL; — p; USLi — i 6T,

iz"iv 1 = - _
PUTw) = 1= {FlH e — (== = =)
USLi—w; 6:T:,, USLi—pi, USLi—pi 8T:
 ( - R B - o )
ag; g; g; g g
1 USL; — ;i  \io?
USL; — i | Aioi USL; — i Moy 6T,
(o= 4 S — e S - )
1 USL; — p; USL; —pi 0T}
+ /\i{fb( s ) — &( o o H} (6.8)
The percentage of defectives for stage i is given by:
Pi= PH(Ti, ) + PiT, i), i =1,..,n (6.9)
The production rate for stage i + 1 can be expressed as:
Ry =R[[0-P)i=1,...n (6.10)
j=1

where R; = R and R is the production rate for the first stage.

The effective (actual) production rate of the production system or the rate of deliv-

ering nondefective finished items is given by:

Reff = Rn+1



= RI[(1- P} (6.11)
Jj=1
Thus, the expected total cost can be calculated as follows:
n .. . Ct
E(TC) = S_(RACIP(Tiv ) + CLPi(Tr i) + 22] + W - maz(0.Q — Reys(6.12)
i=1 i

The model described above can be posed as a nonlinear programming (NLP)

problem. This NLP problem may be written as follows:

min T [R(C} Pi(T: i) + CLPYTiy i) + S8] + W - maz(0,Q — Regy)
subject to

Pj = PTi, i) + PiTipi)y i =1,...m

Ry =RI(1-P))i=1..n

R =R

Resr=RIT;- (1 - P))

Clearly, by using proper substitution, the above NLP can be transformed to an

unconstrained NLP.

6.6 Results and Discussion

One can find the optimal process means (i.e. p;'s) and the optimal cycle lengths
(i.e. Ty's) by minimizing E(T'C) using any unconstrained optimization procedure
(e.g. Hooke and Jeeves method (Bazaraa et al. [1993])). However, the result will be

at best a local minimum. Therefore, we have used the hybrid tabu search algorithm
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(TSFGO) developed in chapter 3 to find the global minimum of the proposed model.
Next, we present an example to illustrate our model.
Example 6.1:
We consider the example given by Billatos and Kendall [1991] with some addi-
tions needed by our problem statement. The data of the example is given in Table
6.1. Also, let W =3, R =110 and @ = 100.

This example was solved using both Hooke and Jeeves algorithm, and TSFGO al-

Stage, ] g; C;z C; C:‘ USL, LSL, /\, 0,

1 049 | 100 0.1 | 0.1 14 10 0.5 0.1
0.663 | 100 { 0.15 { 0.15 13 11 041 -0.2
2.13 | 100 0.2 | 0.2 24 15 03] 0.1
2.15 {100}0.25]0.25] 22 14 1027} 0.15
229 (100} 0.3 | 0.3 | 25.5 15 (0.1]-0.25

OV W N

Table 6.1: Data for the example.

gorithm. The results are given in Table 6.2 and Table 6.3. Notice that the percent

Stage,t | p T; R;
11.96 | 12.80 110
12.20 | 4.88 | 109.94
20.08 | 12.26 | 92.35
1847 | 7.27 | 87.78
20.88 | 13.61 | 83.66

E(TC) = $125.17 and R.;;=81.03

QU b= W N

Table 6.2: Results of Example 6.1 using Hooke and Jeeves algorithm.

reduction in the expected total cost by using TSFGO algorithm over Hooke and
Jeeves algorithm is 10.7%. For other examples, this percent reduction ranges from
4% to 38%.

The results of this model (MSM) are important and useful. The models in the

literature lack the joint optimization of (1) initial means settings, and (2) production
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Stage,: i T; R;
11.15(20.87| 110
12.20 | 4.88 | 109.78
18.75 | 21.38 | 92.21
17.65 | 12.73 | 88.56
20.85 | 13.59 | 83.95

E(TC) = $111.81 and Reff=81.32

v N

Table 6.3: Results of Example 6.1 using TSFGO algorithm.

cycle lengths when considering multistage production systems. The significance of
our model came from linking both of the above two elements in one integrated model.
Thus, the stated objective in chapter 1 has been accomplished.

Next, we discuss ways of improving the performance of the above system, which

consequently reduces the total cost.

6.6.1 Process Improvement

For the given example, one can see that this system is not capable of meeting the
demand. One approach to solve this problem is by improving the performance of
the process. This may include variance reduction and drift rate alleviation. Possible
ways of reducing the variance include training of operators, regulating the current.
etc. We have examined reengineering the production system of the example by
reducing the variance of each process at each stage by 20%, 30%, and 70% (for
simplicity, we assume that all variances are reduced at the same rate). Results are
shown in Table 6.4, 6.5, and 6.6 respectively.

One can see that by reducing the variances of the processes, the total cost per
unit time is reduced. However, this can only be done at a certain cost (which
includes operator retraining, better raw material, homogeneity, regulating the cur-

rent, etc.). Let us assume that the net gain from the above reduction in the variance



Stage,i | ui T; R;

11.59 | 18.14 | 110

12.19 | 4.65 | 109.69
19.71 | 15.84 | 100.17
18.71 | 9.49 | 98.70
21.10 | 15.27 | 93.94

E(TC) = $ 78.23 and R.;;=92.88.

W LN~

(1]

Table 6.4: Reduction of o; by 20% each.

Stage,i Hi T, R,’

1 11.37 | 20.38 110

2 12.23 | 5.10 | 109.87 -

3 19.79 | 17.57 | 102.98 E(TC) = $ 59.47 and Re;;=97.47.

4 18.98 | 9.10 | 102.19

5} 21.36 | 16.97 | 98.09

Table 6.5: Reduction of o; by 30% each.

Stage,i | T; R;

1 10.58 | 35.39 110

12.69 | 9.80 | 108.18
17.55 | 35.41 | 101.66
16.58 | 35.39 | 101.48
23.42 | 30.53 | 100.102

E(TC) = $ 24.07 and Reff=100.

Ut e W N

Table 6.6: Reduction of g; by 70% each.
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(i.e., reduction in E(T'C) - cost of variance reduction) is computed, and that 30%
reduction was found to be the best.

Further reduction of the total cost can be done by considering the maintenance of
the system. Proper maintenance of the system (e.g. use lubricants more frequently)
will reduce the drift rate, hence improving the capability of the system. Suppose
that, we have been able to reduce the drift rate by 20% for all processes (e.g.
sharpening the cutting tools) (again for simplicity, we assume reduction at the same
rate). Like the variance reduction above, one has to weigh benefits and costs in

considering drift rate reduction. Result of this reduction is shown in Table 6.7.

Stage,: i T; R;
11.37 | 30.09 | 110
12.28 | 6.56 | 108.66
19.69 | 20.30 | 101.39
18.75 | 8.33 | 100.65
21.34 | 19.90 | 100.07

E(TC) = $ 45.35 and Reff=99.50.

Gt = LN~

Table 6.7: Reduction of §; by 20% each.

Hence, one can see that the production system can be improved by reducing the
variances and the drift rates of the processes. However, this has been shown by an
example using the reduction of both variances and drift rates by fixed amounts in
all stages (e.g. reduction of 6; by 20% each). To find the optimal percent reduction
in the variance of the process at each stage, one needs to develop a model. This

topic is discussed in chapter 7.
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6.7 Extensions to Multistage Lines without Buffers

and with Nonzero Repair Times (MSM2)

In section 6.5, we have assumed zero repair times (i.e. repair times are negligible) and
zero buffers. In this section, we relax this assumption (assumption 6) while keeping
the remaining as they are. In sectoin 6.8, we treat the case when assumptions 5 and
6 stated in section 6.4 are relaxed.

In this section, we develop a model (MSM2) which finds the effective production
rate when repair times (downtimes) are nonzero as was the case in section 6.5. In
order to develop MSM2, we need to define the availability of the line.

We define the availability of the line (4) as the percentage of time the line is up

(i.e. working). That is

4= Total time the line is up
- Total time

(6.13)

where total time includes total time the line is up and total time the line is down.
Our model is motivated by the following observation: One can note that the
availability of the line using MSM1 is unity since we assumed instantaneous repair
times. By the inclusion of repair times, the availability of the line may decrease and
hence the effective production rate of the line, R.f¢, may also decrease. Using this
observation, we propose the following formula for estimating Ress for a multistage

line with nonzero repair times.

Reff = -4 Rgff (614)
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where Rgf 7 1s the effective production rate using MSM1. Thus, the only requirement
is to estimate A which is developed hereunder.

Let:

T be the cycle time (uptime) of stage 1.

D; be the repair time (downtime) of stage .

R; be the production rate of stage 1.

Pi be the percentage of defectives for stage .

The percentage of defectives for stage i has been presented in section 6.5 and it

is given by:
Py = P{(T;, 1) + Pi(Teo ) (6.15)

We assume that D;’s are deterministic and known. Also, we assume that the line
satisfy assumption 3. In section 6.8, we show how to treat the case when assumption
5 is relaxed.

For a series system with units that have uptimes (7;) and downtimes (D;), Barlow

and Proschan [1975] have proved the following result

1

A= ——5" 6.16)
1+Zi=1% (

However, the above formula is valid for a system with no defectives. For a system

with defectives, the above formula is modified as follows:

1

A= ——5-
1+¥h, &



where

. __ T

P 6.18
1— P&—l ( )

and P9=0.
Now, in order to calculate the effective production rate for a multistage line with

nonzero repair times, one has to do the following steps:
1. Find RY;; using MSML.
2. Find A using equation (6.17).
3. Calculate R.ss using equation (6.14).

Next, we demonstrate the performance of MSM2. The performance of MSM?2
has been verified and compared with simulation. The simulation model has been
developed using SLAM II package and is shown in Appendix F. We performed two

experiments. The input parameters for the two experiments are shown in Table 8.8.

Stage, 1 L /\,' 9,' ag; R,' D'SL,' LSL,
1 10710501} 1 |110 12 10
2 10710501 1 |110 12 10

Table 6.8: Data for testing MSM2.

The first step is to solve the problem using MSM1 to get Rgff by assuming
D, = Dy = 0. The solution came out to be R, = 48.24 with py = pp = 10.7 and
T, = T, = 9.42. For the second experiment, we fix T; = 9 and T, = 5 while keeping
= po = 10.7. Rg,f = 48.07 for the second experiment.

For estimating A and Ress in SLAM II, we have used the replication/deletion

method (Law and Kelton [1991]) with 10 replications. We have calculated the
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confidence interval (CI) for A and R.sy for each case. In Table 6.9, we show the

half length of the confidence interval. We have also used the method of Common

Random Numbers (CRN) (Law and Kelton [1991]) to reduce the variance of the

simulation output.

Table 6.9 shows the results for different repair times for both experiments. Ascan

be seen, MSM2 performed very well in estimating the availability and the effective

production rate of the line.

Stage 1 Stage 2 MSM2 SLAM II
Exp. T1 D1 Tg D2 A Reff A CI Reff CI
942 1 9.42 1 [0.848 40.90( 0.854 0.0003 41.19 0.21
942 2 942 2 10.737 35.55|0.740 0.0003 36.14 0.21
942 3 942 3 |0.651 31.40]| 0.668 0.0008 32.20 0.24
942 4 942 4 |0.583 28.15|0.392 0.001 29.06 0.08
1 942 1 942 4 |0.716 34.38|0.723 0.0001 35.36 0.22
942 2 942 4 0666 32.13|0.671 0.001 32.99 0.26
942 3 942 4 |0.622 30.02|0.627 0.0007 30.60 0.14
942 4 942 1 |0.668 32.23|0.673 0.0004 3291 0.20
942 4 942 2 |0.637 30.75|0.631 0.001 31.35 0.20
942 4 9.42 3 |0.609 29.40| 0.618 0.0007 30.22 0.13
9 4 5} 3 10547 26.29 | 0.543 0.001 26.83 0.12
9 2 b} 3 10.617 29.65]| 0.618 0.0002 30.48 0.21
2 9 1 b} 3 [0.663 31.87 | 0.663 0.001 32.76 0.21
9 4 G 2 [0.588 28.26|0.588 0.001 29.05 0.14
9 4 b 1 {0634 30.47|0.634 0.001 3135 0.20
9 4 5] 4 10507 24.37|0.508 0.002 25.14 0.16

Table 6.9: Comparison of MSM2 with SLAM II package.

6.8 Extensions of MSM2

In section 6.7, we have presented an extended model for production lines without

buffers and with nonzero repair times with the following assumption:
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Assumption 5: Production rate for every stage is less than or equal to the suc-
ceeding stage.

However, when the production rates are not equal and do not satisfy assumption
5, one needs to modify the production rates in order to satisfy this assumption. We
assume that the production rate for every process is adjustable. In this section, we
present two approaches for dealing with the above case.
First Approach: Modification

The basic idea of this approach is to keep or modify the production rate of every
stage so that assumption 5 is satisfied.

The Modification approach that we are proposing consists of the following steps:
Step 1: Let RM=R;, i=1, ...,n.
Step 2: Let i=n.
Step 3: If RM, > RM then set RM =R}; otherwise continue.
Step 4: Let : =1 — 1.
Step 5: If i = 1, stop; otherwise go to step 3.

where n is number of stages, RM is the new production rate of stage i for the
modified line. Upon applying the Modification approach, one can use MSM2 model
which is developed in section 6.7.

To test the performance of the Modification approach, we performed the following
experiment. We consider a line of two stages without a buffer. Table 6.10 shows
the results of this experiment. As can be seen from Table 6.10, the Modification

approach is very effective.



Cases | MSM2 with Modification | SLAM [I

R1 R2 01 (p)] A Reff A Reff
110 100| 1 1 ]0.39 28.49 0.539 29.09
2 2 10.63 10.06 0.63 10.10

1 05]0.39 39.37 0.59 39.98

0.5 1 |055 37.45 0.55 38.23

220 110} 1 1 | 0.57 27.77 0.57 28.57
2 2 |0.66 10.35 0.66 10.56

1 0.5]0.57 38.46 0.57 39.65

0.5 1 [0531 34.48 0.51 35.09

330 120 1 1 [0.60 28.90 0.60 29.42
2 10.70 11.14 0.70 11.17

1 0.5]0.60 39.84 0.60 41.17

0.5 1 |0.33 35.84 0.54 36.63

Table 6.10: Comparison of MSM2 with Modification with SLAM II package.

Second Approach: Homogenization

The basic idea of this approach is to convert a nonhomogeneous line into a
homogeneous one. In the literature, this approach is called Homogenization. This
approach has the advantage that models developed for homogeneous lines can be
utilized even with nonhomogeneous lines.

We adopt this approach to our problem. The Homogenization approach that we

are proposing consists of the following steps:

Step 1: Let
Rmiu = min {R,}

1<i<n
Step 2: Let R¥ = Rmin , i =1,...,7n.

where n is number of stages, R is the new production rate of stage i for the
homogenized line. Of course, when the production rates are equal (i.e. homogenous

line), assumption 3 is satisfied. Upon applying the Homogenization approach. one



can use MSM2 model which is developed in section 6.7.
Clearly, the production rate of every stage using the Modification approach is
greater than or equal to the production rate of the corresponding stage using the

Homogenization approach.



Chapter 7

Variance Reduction and

Sensitivity Analysis Studies of

MSM1

In chapter 6, we have proposed a model for multistage production system (MSM1).
In this chapter, we study the effect of reducing the variance on the total cost of
MSM1. We also present a sensitivity analysis for the same model. This chapter is
organized as follows: the variance reduction model for MSM1 is presented in section

7.1. Sensitivity analysis of MSM1 is given in section 7.2.

7.1 Variance Reduction of MSM1 (MSVRM)

In chapter 1, we have discussed various cost functions for the variance and we have
suggested to use the exponential function to represent the cost of the vanance.

Hence, in the model covered in this chapter we are going to represent the cost of
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the variance by an exponential function.

7 1.1 Variance Reduction Model for MSM1

In this section, we present a mathematical model for variance reduction in multistage

production systems. First, we introduce the following notation.

E[TC|oy, ..., 0n]

E[TCI(]. - 01)0'1,

n

max NS =

subject to

expected total cost given 01, ...,0n;

,(1 — ay)o,] expected total cost given (1 — ay)oy, ..., (1 — a,)on:
number of stages;
percentage of reducing the variance at stage ::
optimal percentage of reducing the variance at stage &
parameters of the cost of the variance at stage &
limited budget allocated for the variance

reduction program.

E[TC!UI’ srey an] - E[TCI(]. - 01)0'1, ey (1 — an)o'n}
_(Z aie—b.‘(l—a-’)a’i _ Z a,-e"b""") (7.1)
i=1 i=1

> a;e”bill-ailei _ Zaie'b“") <B (7.2)
i=1 i=1

0<a; <1, i=1,..,n (7.3)
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In the above model, the objective function is simply the net saving (:V.S) which
results from the variance reduction program. The net saving can be calculated as
the difference between the reduction in the total cost due to the variance reduc-
tion program plus the cost of applying the variance reduction program. The first
constraint (i.e. 7.2) makes sure that the cost of reducing the variances does not
exceed the available budget for the variance reduction program. The second set of
constraints (i.e. 7.3) sets lower and upper bounds for the decision variables (a;’s).

The mathematical model will find the optimal values of the a;’s which in turn
tell us how much reduction is going to be made to the current variance at each stage.

One could look at the above model as a capital budgeting problem where one
is given a budget of B and is interested in spending it for cost reduction through
reduction of variances of different stages and the question is how much to invest at

each stage to give the maximum saving.

7.1.2 Solution Procedure (MSVRA)

In order to solve the mathematical model of the variance reduction in the multistage
production system, the scheme depicted in the flowchart of Figure 7.1 is proposed.

In this scheme, we use the algorithm "TSFGO’ which was developed in chapter 5.

7.1.3 Example 7.1

Consider Example 6.1 of the multistage production system model presented in sec-
tion 6.6 which has been taken from Billatos and Kendall [1991]. This example was
chosen in particular to see the improvement on the multistage production system

when the variance reduction program is implemented. Table 7.1 shows the values



Given: ©y,...,Op
I
Use TSFGO to find y;*, T1;* by

minimizing E[TClo;]
Let ETC1* be E[TClo;] at optimality.

1

Choose:

r: no. of random directions

m: no. of cycles

TLS: size of the tabu list (TL)

ITERMAX: maximum no. of nonimproving iterations

£: desired percentage of improvement between two
consecutive iterations (0 <e < 1)
X|: starting point

z|=X]
BFV =f(x))
TL=¢
k=j=1
e
i=1
BEST =0
O

Generate d; randomly

5

Perform a line search along d; to find the optimal

step size ( ?\.i*).

In order to do that, one needs to evaluate the o;'s
objective function (NS) foreach stepsize(A). | >
That is to find

ETC2*

ETC1*-ETC2*-(Sa:e0i1-8)0)). Tape(0i01)) |« - =257 - -
To find ETC2*, let a=z{+ A d; and goto

subroutine E2.

SUBROUTINE E2

For a given set of
(1-ay)oy,--s (1-o)0p , use
TSFGO to find Wy;*, To;* by
minimizing E[TCI(1-c;)0;]

Let ETC2* be

E[TCI(1-0;)0;] at

optimality.

Figure 7.1: Flowchart of the algorithm MSVRA.
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*
f(z;+4; * d;) <BEST

Yes
*®
BEST = f( Zj +A.i dj )

*
Apest = A
dpese = 4

®<——i=i+l

No

Yes

dbest eTL

No BEST < BFV Yes
BEST < BFV
Yes

BEST =BFV

Zj41 =% * Mpest pest

Store dbest in TL

Yes
Letd =zpy -2

©

Figure 7.2: Flowchart of the algorithm MSVRA (continued).

ohaiilig



&

Perform a line search along d to find the

optimal step size ( A%

1
*
Xel =Zmel + A d

Yes f(xy)=0 and

fxy4 =0

Improv =0

Improv = (f(xy.4. 1 )-f(xg)) / fxp) |

\
A

j=

Zl = Xl
k=k+l

Print the optimal values
l.ll‘. ey ],ln‘ .Tl‘. vee s Tn‘. Bl" ey Bn‘. Blt. vee s Bn-l‘

Figure 7.3: Flowchart of the algorithm MSVRA (continued).
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of the parmeters a; and b; of the exponential function, which represents the cost of
the variance, appeared in the model in (7.1) and (7.2). The budeget allocated for
the variance reduction program is B=$100.

The example is solved using the algorithm (MSVRA) proposed in the previous
section. Table 7.2 shows the current production system before applying the vari-
ance reduction program. Its expected total cost is ETC 1=$111.81 and its effective

production rate is R.pr=81.32.

Stage, i | a; | b;
1 10 ] 0.1
2 19| 0.7
3 121 0.4
4 201 0.3
5} 141 0.1

Table 7.1: Values of the parameters a; and b; for Example 7.1.

Stage, 1] o | m | It
1 0.49 | 11.15 1 20.87
0.663 | 12.20 | 4.88
2.13 | 18.75 | 21.38
2.15 | 17.65 | 12.73
2.29 |20.85 | 13.99

L W N

Table 7.2: Current production system

Table 7.3 shows the optimal percentage of reduction of the variance at each stage.
The new expected total cost is ET'C2=$24.56 and its effective production rate is

Resr=101.13.

The amount of money needed for applying the variance reduction program is as
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Stage, i| o | o7 | w5 | Ir
1 0.67 | 0.16 | 10.25 | 36.82
0.87 | 0.09 | 12.85 | 10.03
0.25 | 1.59 | 17.74 | 43.67
0.36 | 1.37 | 16.55 | 28.96

0.84 | 0.36 | 24.56 | 35.65

U LN

Table 7.3: Improved production system

follows

Amount of money needed = (D _ age~billader %" a;e”%%) = $12.58
=1 ]

=1
The net saving due to applying the variance reduction program is as follows

Net Saving = 111.81 — 24.56 — 12.58 = $74.67

The percentage reduction in total cost is

111.81 — (24.56 + 12.38).

Percentage reduction in total cost = ( ) x 100 = 66.78
111.81
The percentage increase in Resy is
i . 101.13 — 81.32
Percentage increase in Resf = ( TS ) x 100 = 24.36

The results of this model (MSVRM) are important and useful. The models in

the literature do not consider variances reduction in a multistage production system.



7.2 Sensitivity Analysis of MSM1

In this section, we conduct a fractional factorial experiment to study the effects of
the input parameters on the total cost of the multistage model (MSM1).

There are 15 (34-6n, where n is number of stages) input parameters for the multi-
stage model. We assign two levels to each input parameter in the fractional factorial
experimental design. Table 7.4 shows the input parameters and their assigned lev-
els. Notice that the values of the low level of the input parameters are taken from
Example 6.1 of the multistage model presented in section 6.6. This example is based
on the example of Billatos and Kendall [1991]. For ease of exposition. we consider

only the first two stages.

Levels
Parameter Factor Low High
|54 A 3 )
Common Q B 100 130
R C 110 200
o1 D 049 0.6
0, E 0.1 0.2
Stage 1 AL F 0.5 0.6
c} G 0.1 0.2
C} H 0.1 0.2
Ch ] 100 130
09 K 0.663 0.8
6, L -0.2  -0.1
Stage 2 Ao M 0.4 0.5
C? N 0.15 0.3
C? 0] 0.15 0.3
c? P 100 130

Table 7.4: Input parameters and levels used in the experiment.

Since the number of runs for a full factorial design of this experiment is huge

(i.e. 2'3), a fractional factorial design is going to be used. The fractional factorial
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experimental design used for this experiment is 2177 design. This design is of
resolution V, since the minimum number of letters in a word appearing in the
defining relation (Figure 7.4) is 5 (Montgomery [1991b]). A total of 28 or 256 runs
are required to conduct the experiment. This fractional design has been taken
from standard fractional designs proposed by National Bureau of Standards (NBS).
Applied Mathematics Series, Vol. 48, which appeared in the book of McLean and
Anderson [1984]. This design corresponds to Plan 128.15.8 in that book. In this
design, the defining relation as proposed by NBS (McLean and Anderson [1984])
is given in Figure 7.4. The complete set of fractions are given in Appendix D.
Experimental design and results of this experiment are given in Appendix E.

Based on the results of the sensitivity analysis of the single stage, some of the
two-order interactions are important and the rest are not important. Thus they are
eligible for pooling for error. We have used those results here in this experiment.
Table 7.5 shows the ANOVA table. It can be noted that Factors A, B, C, E, J.
K, L, N, O, P, AB, AC, BC, LM and MP are significant at level 1%. That is. the
parameters W, Q, R, 61, C, 02, 62, C?, C2, and C% (i.e. all main factors except
o1, A1, CL, CL, and \y), and the interactions between W and @, W and R. Q) and
R. 05 and Az, and Ay and C} are significant.

One can see from Table 7.5 that the most significant factor is R which is the
production rate of the first stage. This is expected since the effective production rate
of the multistage system is dependent on R (see equation (6.11)). As expected, the
second and third most significant factors are @ and W. The order of the remaining
significant factors is as follows: 6, 02, 61, Cf, C 2 C%, and CE. Therefore, for one to

improve a multistage production system, he should concentrate on the production
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Plan 128.15.8. 1/128 replication of 15 factors.
Factors: A,B,C,D,E,F,G,H,J,K.L,M,N, O, P.

| = ABEGN = ACEFNP = BCFGP = DEFGO = ABDFNO = ACDGNOP = BCDEOP
= ADHKO = BDEGHKNO = CDEFHKNOP = ABCDFGHKOP = AEFGHK = BFHKN
= CGHKNP = ABCEHKP = BCHJNOP = ACEGHJOP = ABEFHJO = FGHJNO
= BCDEFGHJNP = ACDFHJP = ABDGHJ = DEHJN = ABCDJKNP = CDEGJKP
= BDEFJK = ADFGJKN = ABCEFGJKNOP = CFJKOP = BGJKO = AEJKNO
= ABKLOP = EGKLNOP = BCEFKLNO = ACFGKLO = ABDEFGKLP = DFKLNP
= BCDGKLN = ACDEKL = BDHLP = ADEGHLNP = ABCDEFHLN
= CDFGHL = BEFGHLOP = AFHLNOP = ABCGHLNO = CEHLO = ACHJKLN
= BCEGHJKL = EFHJKLP = ABFGHJKLNP = ACDEFGHJKLNO = BCDFHJKLO
= DGHJKLOP = ABDEHJKLNOP = CDJLNO = ABCDEGJLO = ADEFJLOP
= BDFGJLNOP = CEFGJLN = ABCFJL = AGJLP = BEJLNP = CDGHJMO
= ABCDEHJMNO = ADEFGHJMNOP = BDFHJMOP = CEFHJM = ABCFGHJMN
= AHJMNP = BEGHJMP = ACGJKM = BCEJKMN = EFGJKMNP = ABFJKMP
= ACDEFJKMO = BCDFGJKMNO = DJKMNOP = ABDEGJKMOP = BDGMNP
= ADEMP = ABCDEFGM = CDFMN = BEFMNOP = AFGMOP = ABCMO
= CEGMNO = ABGHKMNOP = EHKMOP = BCEFGHKMO = ACFHKMNO
= ABDEFHKMNP = DFGHKMP = BCDHKM = ACDEGHKMN = ABCDGHJKLMP
= CDEHJKLMNP = BDEFGHJKLMN = ADFHJKLM = ABCEFHJKLMOP
= CFGHJKLMNOP = BHJKLMNO = AEGHJKLMO = BCGJLMOP = ACEJLMNOP
= ABEFGJLMNO = FJLMO = BCDEFJLMP = ACDFGJLMNP = ABDJLMN
= DEGJLM = ADGKLMNO = BDEKLMO = CDEFGKLMOP = ABCDFKLMNOP
= AEFKLMN = BFGKLM = CKLMP = ABCEGKLMNP = GHLMN = ABEHLM
= ACEFGHLMP = BCFHLMNP = DEFHLMNO = ABDFGHLMO = ACDHLMOP
= BCDEGHLMNOP.

Figure 7.4: Defining relation of the fractional factorial design.



Source SS df MS F-ratio
Main Effects:

A 100445.3 1 100445.3 286.534

B 695927.3 1  695927.3 1985.228

C 1371034 1 1371034 3911.063

D 16.82313 1 16.82313 0.04799

E 2423.034 1 2423.034 6.912038

F 153.8696 1 153.8696 0.438934

G 141.6636 1 141.6636 0.404115

H 596.8544 1 596.8544 1.702609

J 1519.488 1 1519.488 4.334548

K 30398.25 1 30398.25 86.71519

L 41146.17 1  41146.17 117.3751

M 1.493181 1 1.493181 0.00426

N 1404.258 1  1404.258 4.005839

0 2033.39 1 2033.59 5.801095
P 1994.08 1 1994.08 5.688387

Interactions:
AB 45314.84 1  45314.84 129.2668
AC 88170.7 1 88170.7 251.519
BC 561158.9 1 561158.9 1600.783
DG 153.4117 1 153.4117 0.437628
DH 80.28947 1 89.28947 0.25471
EF 114.4512 1 114.4512 0.326488
EJ 202.0274 1 292.0274 0.833048
FJ 17.79304 1 17.79304 0.050737
GH 5325238 1 5.325238 0.015191
KO 9.89044 1 9.89044 0.028214
LM 1240.552 1 1240.552 3.538845
LP 15.62352 1 15.62352 0.044568
MP 834.1794 1 834.1794 2.379611
NO 15.60881 1 15.60881 0.044526
Residual 79224.93 226 350.5528
Total 3025894 2335

Table 7.5: ANOVA for the multistage model.
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rate of the first stage (i.e. R). The most significant interaction is between Q and R.
As Q increases, E(T'C) increases, when R is fixed. However, as R increases, E(TC)
decreases, when Q is fixed. The second most significant interaction is between W
and R, followed by W and Q, Az and 85, A, and C.

An interesting observation is that all the parameters of the first stage and their
interactions are not significant except §; and C}. All the conclusions of the sensi-
tivity analysis of the single stage model regarding the effect of the parameters on
wi's. Ti’s, and E(T'C) which were preseted in section 6.5 are also applicable to the
multistage model.

One has to remeber that the above observations apply only for the given levels
of the input parameters (see Table 7.4). It is not clear what would be the the results

if these levels were changed.



Chapter 8

Models for MultiStage

Production Systems With Buffers

In chapter 6, we have presented models for multistage production systems without
buffers (MSM1 and MSM2). In this chapter, we extend these models to incorpo-
rate buffer storages between stages and the maintenance of the stages through the
reduction of the drift rate of each stage. This chapter is organized as follows: an
introduction is given in section 8.1. In section 8.2 we present the statement of the
problem. Some new notation are introduced in Section 8.3. In Section 8.4, we state
the assumptions. A simulation model for multistage systems with buffers (MSM3)
is developed in section 8.5. In section 8.6, the optimization model for multistage

production systems with buffers (MSM4) is presented.
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8.1 Introduction

In chapter 6, we have developed models for finding the the initial mean settings of
the processes and the cycle times in multistage production systems without buffers
(MSM1 and MSM2). In those models, we assumed that no buffer is allowed between
stages. Moreover, we assumed that the drift rate of each process is uncontrollable.

These assumptions if relaxed might reduce the expected total cost. However. they
make the model complicated from the mathematical point of view which necessitates
the use of simulation in analyzing the model.

In this chapter, we relax the above assumptions. The relaxed assumptions are
more realistic and may increase the effective production rate which may result in

reducing the expected total cost.
In order to remove confusion about the various models, we highlight below the

proposed models in this chapter and the differences between them:

e First model (Simulation), MSM3. This is a simulation model for multistage
lines with buffers for estimating the effective production rate of the line and

the WIP (Work In Process) in each buffer, for fixed values of wi's and T;'s.

o Second model (Optimization), MSM4. This is a model for finding the optimal
initial mean setting of the processes, the optimal cycle lengths, the optimal

buffers sizes, and the optimal percent reduction in drift rates of the processes.

The system that is going to be studied in this chapter is fully described in the
next section. A literature review of multistage production systems has been given

in chapter 2.
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8.2 Problem Statement

Consider a multistage production line which consists of n stages and n—1 interstage
buffers, (B, ..., Ba—1). We consider discrete parts production. A part flows from
stage 1 to B, then to stage 2, and so on until it reaches stage n, after which it leaves
the system (see Figure 8.1). It is assumed that there are always parts available at
the input of the line and that spaces are available at the output of the line. Each

buffer, B;, has a finite capacity, K.

NANERVANER IR

Figure 8.1: A multistage production system.

On each stage i, the process mean (y;) starts drifting at a random point of time,
;. We assume that 7; is exponentially distributed and that the drift is linear with
time. Every time process i, completes a cycle time, T; (a decision variable). process
i is stopped for repair. The repair time (D;) is assumed to be deterministic and
known. Process i resumes its operation after the repair is completed. When process
i is under repair, the parts in buffer B;_, tends= to increase while the parts in B;
tend to decrease. After some time, B;_; becomes full and process ¢ — 1 is blocked
and thus it is forced to stop. This is known as blocking. On the other hand, B;
becomes empty and process i + 1 is starved and thus it is forced to stop. This is
known as starvation.

In this chapter, we develop a mathematical model for finding the optimal initial

settings of the processes means (u;'s), the production cycle times (T7’s), the optimal
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percent reduction in drift rates (3;’s), and the optimal buffer sizes (B7's) for the

above described problem.

8.3 Notation

We present below some new notation that are needed for this chapter.

R; production rate of stage i;

P; percentage of defective items at stage i

Q demand/unit time;

w penalty for unfulfilled demand ($/item);

Resy effective (actual) production rate of the production system (item/unit time):
3; percentage of reduction in drift rate at stage i

B; buffer size after stage ;

WIP, average number of parts in buffer ;

K; maximum capacity of buffer i;

H inventory holding cost per unit time per item;

VA total available budget for investment in drift rate reduction.

8.4 Assumptions

Before we develop our model we make the following assumptions:

1. The process at each stage begins in an in-control state having a normally

distributed quality characteristic with mean y; and variance 7.
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2. The process at each stage starts deteriorating at a random point of time, which

is exponentially distributed, and deterioration is linear with time.
3. The process variance at each stage remains constant.

4. The material cost is either independent of the choice of y; and T; (e.g. the
process of producing inner holes in shafts), or their effect on cost of material
can be assumed negligible. This assumption is implicitly made in most of the

literature of this kind of problem.

[S1}

. Demand per unit time is deterministic and known.
6. The investment in drift rate reduction leads to favorable results.

7. Parts are transported between stages in discrete fashion (i.e. individually).

8.5 The Proposed Simulation Model for Multi-
stage Systems with Buffers given p;’s and T;’s

(MSM3)

In this section, we develop a simulation model which estimates the effective produc-
tion rate and the WIP at each buffer of multistage lines with buffers and stages
have nonzero repair times (downtimes).

We are going to develop the simulation model of multistage production systems
with buffers (MSM3) using our own modelling. Therefore, we will develop our own

code for MSM3. This enables us to link it with our global optimization algorithm
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(TSFGO). The linkage between the simulation model (MSM3) and the optimization
algorithm TSFGO is shown in section 8.6.4 as in the second model.

One may think that developing MSM3 using SLAM II package will serve the
purpose. This is true if one is only interested in estimating the effective production
rate and the W I P at each buffer for a specific multistage line, and he is not interested
in optimizing the line. Suppose that he is intereseted in finding the optimal buffer
sizes, then he has to run (manually) his SLAM II model for each possible alternative
(combination). The number of alternatives grows very fast with the number of
buffers and maximum capacity of each buffer. One can see how much effort and time
are needed to optimize the multistage line using SLAM II model. In order to save
time and effort, and to link the simulation model with our optimization algorithm
(TSFGO), we have automated the process by developing our own simulation code
for MSM3.

Before we present our simulation model for multistage production systems with
buffers (MSM3), we present a simulation model for two-stage lines with buffers
(TSM). In addition, repair times are treated as nonzero. This step is needed since
the building block for MSM3 is the model for two-stage line with buffer (TSM).
Hence, first, we develop a simulation model for two-stage lines with buffers and
nonzero repair times (TSM) in section 8.5.1. Secondly, we develop a simulation

model for multistage lines with buffers and nonzero repair times (MSM3) in sectoin

8.5.2.
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8.5.1 Simulation Model for Two-Stage Lines with a Buffer

and with Nonzero Repair Times (TSM)

In this section, we develop a simulation model for two-stage lines with a buffer and
with nonzero repair times. The availability of the line is similarly defined as in

equation (6.13), that is

A= Total time the line is up

1
Total time (8.1)

However, total time now includes total time the line is up, total time the line is
down for repair, total time the line is down because of blocking, and total time the
line is down because of starvation.

Equation (6.14) proposed in section 6.7 can not be applied here since we do not
have a model for estimating R, for a line with buffers and with zero repair times.
Hence, we will develop a simulation model for estimating Ress and average content
of the buffer (WIP) for a two-stage line with a finite buffer and with nonzero repair
times.

One can note that the possible states of a stage are four, namely, up, down.
blocked, and starved. Since we have two stages, the overall possible states is 16.
However, since the state {first stage is blocked, second stage is starved} never hap-
pens, the overall possible states becomes 15. These states are shown in Table 8.1.
Corresponding to each state, there is a corresponding action that should be taken.
These actions are also shown in Table 8.1.

When the production line consists of only two stages and one buffer, one should

remember that states 4, 8, 11, 12, 13, 14, and 13 are not applicable since we assume
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Status
State | Stage 1 | Stage 2 Action
1 up up Advance the uptime of both stages and
change the content of the buffer if necessary.
2 up down Advance the uptime of stage 1,
advance the downtime of stage 2, and
change the content of the buffer if necessary.
3 up starved Advance the uptime of stage 1 and
change the content of the buffer if necessary.
4 up blocked Advance the uptime of stage 1 and
change the content of the buffer if necessary.
) down down Advance the downtime of both stages.
6 down up Advance the downtime of stage 1,
advance the uptime of stage 2, and
change the content of the buffer if necessary.
7 down starved Advance the downtime of stage 1.
8 down blocked Advance the downtime of stage 1.
9 blocked up Advance the uptime of stage 2 and
change the content of the buffer if necessary.
10 blocked down Advance the downtime of stage 2.
11 blocked | blocked Advance the clock time.
12 starved up Advance the uptime of stage 2 and
change the content of the buffer if necessary.
13 starved down Advance the downtime of stage 2.
14 starved | blocked Advance the clock time.
15 starved | starved Advance the clock time.

Table 8.1: Possible states and actions for a two-stage line with buffer.
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that the first stage in the line is never starved and the last stage is never blocked.
However, they are shown here since two-stage model (TSM) is going to be used as
a building block for the model of multistage line with buffers.

Utilizing Table 8.1, we have developed the algorithm TSMA. This algorithm
consists of 3 modules. The first module is for checking the status of each stage and
update them (if necessary) according to the present situation. The second module
is for generating a random variable, representing quality characteristic i at stage .
from a normal distribution with a mean y; and a variance ¢7. This random variable
is checked against the specification limits of the product to determine whether or not
the current item is defective. The third module is for taking the necessary actions
according to the current state of the line with the help of Table 8.1. Figure 8.2
shows the flowchart of TSMA.

To demonstrate the performance of the algorithm TSMA, we have performed
the following experiments. The input parameters for the following experiments are
the same as in Table 6.8. We consider T} = 9, D, = 4, To = 3, Dy = 4. For each

buffer level, we consider four cases:
e case 1 (o) =1, 09 = 1): current system.
e case 2 (0, = 2, 02 = 2): stage 1 worsen, stage 2 worsen.
e case 3 (0, = 1, gp = 0.5): stage 1 the same, stage 2 improved.
e case 4 (o, = 0.3, 03 = 1): stage | improved, stage 2 the same.

We have verified and compared the performance of TSMA with SLAM Il package.

The simulation model using SLAM II package is shown in Appendix G.
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Figure 8.2: Flowchart of TSMA.
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For estimating R.s; and average WIP in SLAM II, we have used the repli-
cation/deletion method (Law and Kelton [1991]) with 10 replications. We have
calculated the 95% confidence interval (CI) for R.ss and average WIP for each
case. In Table 8.2, we show the half length of the confidence interval. We have also
used the method of Common Random Numbers (CRN) (Law and Kelton [1991]) to
reduce the variance of the simulation output.

Table 8.2 shows the complete results. Note that when the buffer level is 1000.
there are no results for SLAM II. This is due to the limitations of the SLAM II
package. Hence, one of the advantages of our simulation algorithm, TSMA, is that
it can handle larger buffer levels.

As it is shown in Table 8.2, the performance of TSMA is very good. The esti-
mation of Ry and the average WIP is quite accurate. As expected, increasing the
capacity of the buffer increases both R.ss and the average WIP. Notice that, when
stage 1 has improved (i.e. case 4), the average W IP has increased. This is because

more good items are now produced by stage 1.

8.5.2 Simulation Model for Multistage Lines with Buffers

and with Nonzero Repair Times (MSM3)

In sections 8.5.1, we have presented a model for two-stage lines with buffers. In this
section, we develop a model for multistage production lines (MSM3) by generalizing
and extending the two-stage model (TSM).

As we said before, the building block for the multistage model (MSM3) is TSM.
The basic idea behind MSM3 is to divide the production line into two-stage line

subsystems in such a way that will reflect the behavior of the whole line. More
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Cases TSMA SLAM 11
Buffer | 0, 02 | Resy Avg. WIP | Ry  CI  Avg. WIP  CI
10 1 1 | 24.87 2.73 25.56 0.26 2.69 0.04
2 2 | 9.17 1.69 9.33 0.06 1.67 0.05
1 0513448 2.74 3540 0.23 2.71 0.03
05 1 |31.34 3.72 31.88 0.11 3.80 0.03
100 1 1 |27.62 31.10 28.48 0.20 31.16 0.96
2 | 10.43 13.09 10.50 0.21 14.06 0.71
1 0.5]3848 31.33 39.33 0.31 31.47 0.69
05 1 |34.96 33.30 34.86 0.25 57.87 1.15
360 1 1 |33.89 93.55 3426 0.20 94.74 0.87
2 2 110.94 19.81 11.01 0.09 20.50 1.42
1 0.5]46.29 96.70 47.81 0.30 95.52 1.37
0.5 1 |40.81 436.2 41.34 0.19 459.59 1.61
1000 1 1 |34.44 94.68
2 2 |{11.06 21.87
1 0.5]47.86 99.94
0.5 1 {91.32 812.45

Table 8.2: Comparison of TSMA with SLAM II package.

specifically, we first consider the first and second stages with the buffer between
them as a separate subsystem and analyze its behavior, then we consider the second
and the third stages with the buffer between them as a separate subsystem and
analyze its behavior, and so on until we reach the final stage. Hence, we have n — 1
two-stage subsystems where n is number of stages. The aforementioned division
of the production line into two-stage subsystems is known in the literature as the
Decomposition principle. We have developed an algorithm that implements the idea
above and we call it MSM3A. Figure 8.3 shows the flowchart of MSM3A.

An experiment has been performed to test the performance of MSM3A. We
consider a line of three stages and two buffers. We select Ty =9, D1 =4, T; =5,
Dy, = 4, Ty = 6, D3 = 2. Table 8.3 shows the cases used in the experiment. The

performance of MSM3A has been verified and compared with SLAM II package.
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The simulation model that has been developed using SLAM II package is shown in
Appendix H.

For estimating R.;s and average WIP;'s in SLAM II, we have used the repli-
cation/deletion method (Law and Kelton [1991]) with 10 replications. We have
calculated the 95% confidence interval (CI) for R.ss and average WIF;'s for each
case. In Table 8.4, we show the half length of the confidence interval. We have also
used the method of Common Random Numbers (CRN) (Law and Kelton [1991]) to
reduce the variance of the simulation output.

Table 8.4 shows the results of this experiment. As can be seen from Table 8.4.
MSMB3A is fairly close to SLAM II package. The average percentage of absolute de-
viation from SLAM II package is about 2%. From Table 8.4, the algorithm MSM3A
found R.s; within the confidence interval in all the cases except for five cases where
it is overestimated. The estimates of average W IP found by MSM3A are within the
confidence interval in all the cases except for four cases where it is underestimated
and one case where it is overestimated. However, for those cases where the estimates
are bevond the confidence interval, the estimates are not substantially far from the
confidence limits.

Two observations from case 1 and 2 are in order. First, since stage 1 and stage 3
have been improved, the effective production rate of the line has increased. Second,
the average WP of the first buffer after stage 1 has increased. This is because more

good items are now produced from stage 1.



Buffer | Production Rates | Variances
Case 1 2 Rl R2 R3 a1 g9 g3
1 10 10 | 110 110 110 1 1 1
2 10 10 {110 110 110 0.5 1 0.5
3 10 10 {220 220 220 1 1 1
4 10 10 | 220 220 220 0.5 1 0.5
B} 10 10 [ 330 110 220 1 1 1
6 50 50 {110 110 110 1 1 1
7 50 200 | 110 110 110 1 1 1
8 100 100 | 110 110 110 1 1 1
9 100 100 | 110 110 110 0.5 1 0.5
10 | 200 100} 110 110 110 1 1 1
11 | 200 100|110 220 330 1 05 1
12 | 200 100/{ 330 220 110 1 1 1
13 | 200 100 330 220 110 1 05 1
Table 8.3: Cases used for testing MSM3A.
MSM3A SLAM II
Avg. Avg. Avg. Avg.
Case | Ry WIP, WIP | Reyy cl1 wIip, cI WIP, C(CI
1 17.08 2.75 046 |16.13 0.18 3.13 0.05 0.67 0.03
2 28.24 3.96 062 |[27.82 0.24 441 011 087 0.02
3 3431 2.72 065 |33.04 063 3.18 0.03 0.69 002
4 55.37 3.54 0.78 | 55.19 0.28 424 0.03 087 0.01
3 20.38 3.27 029 |19.71 025 335 0.16 034 0.05
6 18.05 1564 391 |17.95 0.18 1598 0.26 3.533 021
7 18.09 14.42 507 |18.10 024 1447 023 4.99 0.53
8 19.15 3198 6.11 |19.17 0.18 3196 1.12 35.59 0.539
9 32.31 61.05 9.17 |32.14 035 61.89 092 883 044
10 |21.30 69.35 6.77 |21.533 0.74 68.57 135 7.61 121
11 30.74 24.11 3.09 {3059 024 2396 075 299 0.16
12 12697 35.06 14.91 |26.79 0.18 3432 0.78 1296 0.66
13 |37.70 4138 28.19 [36.03 1.06 38.06 099 2721 0.88

Table 8.4: Comparison of MSM3A with SLAM II package.



8.6 The Optimization Model for Multistage Pro-

duction Systems With Buffers (MSM4)

In this section, we present an optimization model for the multistage production
systems with buffers that was described in section 8.2. We present first the cost

elements of the expected total cost (the objective function). Later, we present the

constraints.

8.6.1 The Objective Function

The objective function is the sum of the following costs: (a) cost of producing defec-
tives, (b) cost of unfulfilled demand, (c) cost of restoration, (d) cost of investment in
drift rate reduction program, and (e) cost of inventory between stages. These cost

elements are derived hereunder.

(a) Cost of producing defectives

The percentages of undersized and oversized items at stage i (P}, Pi, respectively)
have been presented in chapter 6.

The percentage of defectives for stage i is given by:
Pézf)ll(ﬂ’.u't)-*-P;(nv#l) 1i= 17'--7n‘ (82)
Hence, the expected cost of producing defectives at stage ¢ is as follows

S Ri{CIP{(Te ) + CLPA(T o)) (8.3)

i=1



(b) Cost of unfulfilled demand

Given a demand per unit time @, the cost of unfulfilled demand can be obtained as
W -maz(0,Q — Resy) (8.4)

where R is the effective production rate of the production system or the rate
of delivering nondefective finished items, which is estimated using the algorithm

MSM3A.

(c) Cost of restoration

This cost is incurred when restoring the process at each stage and it is given by

" i, _
.;Tf (8:3)

(d) Cost of investment in drift rate reduction program

For a fixed cycle time, T, as the drift rate, §, decreases, the percentage of defectives
decreases. To study the relationship between the cost and the drift rate, we have
conducted many simulation experiments. A typical plot of the cost versus the drift
rate is shown in Figure 8.4. One can see that the relationship between them can be
empirically approximated by an exponential function.

Hence, in this model we are going to represent the relationship between the cost

and the drift rate by an exponential function as follows

C8;) =yt ew (8.6)
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Figure 8.4: Plot of C(8).

where C(6;) is the cost of attaining 6;, and yi and y5 are constants.

Thus, the amount of money needed for the investment in the drift rate reduction

program is given by

n n
(Zyi eV (1=8:)0i _ Zl/i e¥20i) (8.7)
=1

=1
(d) Cost of inventory between stages
This cost is due to the waiting items in each buffer and it is given by

n—-1
S WIP, H (8.8)
i=1

where W I P, is the average content in buffer i, which is estimated using the algorithm

MSMB3A.



8.6.2 The Constraints

The constraints of the proposed model composed of (a) constraints on buffer sizes.
(b) a constraint on budget of investment, and (c) constraints on 3;’s. These con-

straints are given hereunder.

(a) Constraints on buffer sizes

The following constraints ensure that each buffer size does not exceed its capacity
0< B; <Kj; Jgd=1,..,n-1 (8.9)

(b) A constraint on budget of investment

The following constraint makes sure that the investment on drift rate reduction does

not exceed the available budget
(S yh =30 %7yt ey < Z (8.10)
=1 =1

(c) Constraints on J;’s

The following set of constraints sets lower and upper bounds on the decision variable

(8:)

0<8i<1 ,i=1,.,n (8.11)



8.6.3 Problem formulation

The expected total cost per unit time can be obtained by summing the cost elements
(8.3), (8.4), (8.5), (8.7), and (8.8). The formulation of the problem of multistage

production systems with buffers (MSM4) can be given as

min ETC = ZR,— [C{ P (Ty, i) + CLPi(Ti, pi))] + W - max(0,Q — Refy)

i=1
n ] n n n—1
+y %,ﬁ + (S gl ew1=30 Nyl ety + S WIP H (8.12)
i=1 11 i=1 i=1 i=1
subject to
0< B; <K;, i=1,...,n—1, and integers (8.13)
(Y yp w5 Sy ) < 2 (8.14)
=1 =1
0<3:;<1, 1=1,..,n (8.13)

The decision variables are:

L. owi, 1=1, ..., n.

2. T;, 1=1, ... , n.

3. 8;,1=1, ... ,n.

4. B,', i=1, N 1.



8.6.4 Solution Methodology and Linkage between Simula-
tion and Optimization

The solution methodology for the above model (MSM4) is our hybrid tabu search al-
gorithm (TSFGO). TSFGO was designed for unconstrained optimization problems.
However, one can still use TSFGO for constrained optimization problems by using
a feasibility check.

The feasibility check can be explained as follows: For a given direction. trial
points are generated by varying the step size () over the given range. Each trial
point that satisfies the constraints is going to be inserted in a list called candidate list.
Hence, the candidate list contains only feasible points. The point in the candidate
list that has the best objective function is accepted as a legitimate neighbor for the
current point. If the candidate list is empty, a new random direction is generated.
A flowchart of the solution procedure for solving MSM4 is shown in Figure 8.6.

In the sequel, we show how we link the simulation algorithm MSMB3A to the
optimization algorithm TSFGO. The simulation algorithm MSM3A estimates Ress
and WIP; (i=1, ..., n — 1) when the following decision variables (u;, Ty, Ji, i=1. ...
,n) and (B;, i=1, ... , n—1) are given. For ease of notation, we combine them
together in one parenthesis (u;, T3, Gi, B;). The estimation process of R.sy and
W IP; using MSM3A is shown schematically in Figure 8.5.

The objective function, ETC, of the model MSM4 consists of the following cost

elements:
1. £y R [CIP{(Tiy i) + CLPu(Tir )]

2. W max(O,Q - Reff)
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Figure 8.5: Estimation process using MSM3A.
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Hence, each time the objective function has to be evaluated, we have to use
the simulation algorithm MSMB3A in order to evaluate the second and the fifth cost
elements.

In the optimization algorithm TSFGO, the objective function has to be evaluated
for each trial point during the optimization search. The calls for evaluating the
objective function are explicitly made in the line search subroutine when a direction
is given and an optimal step size is sought. Each time thereisa call for evaluating the
objective function, the subroutine which contains the simulation algorithm MSM3A

is called. Figure 8.6 shows the link between MSM3A and TSFGO.
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8.6.5 Results and Discussions of MSM4

Before we present our results, we make note of the following experiments:

e Ezperiment 1. u;, T; are optimized, and B; are fixed. No investment on the

drift rate reduction program is allowed.

o FEzperiment 2. u;, T;, and B; are optimized. No investment on the drift rate

reduction program is allowed.

e Ezperiment 3. p;, T;, and B; are optimized. There is an investment on the

drift rate reduction program.

We have used the hybrid tabu search algorithm (TSFGO) for solving the MSM4
model. Table 8.5 shows the data of Ezperiment I. Table 8.6 shows the results of
this experiment. The expected total cost, ETC, is $181.59 and R is 69.31. The
data of Ezperiment 2 are shown in Table 8.7. Table 8.8 shows the results of this
experiment. The expected total cost, ETC, is $173.74 and R,y is 73.89. Note that
ETC has decreased and R,/ has increased. This is due to the optimization in buffer
sizes, B;'s. Table 8.9 shows the data of Ezperiment 3. Table 8.10 shows the results
of this experiment. The expected total cost, ETC, is $126.09 and Ry is 87.33.
Further reduction in ET'C have been made possible when all the decision variables
are optimized. Note that the buffer sizes have increased for the last experiment.
One possible reason is that the processes are producing more good items since their
drift rates have been reduced.

The results of this model (MSM4) are important and useful. The models in the
literature lack the joint optimization of (1) initial means settings, (2) production

cycle lengths, (3) buffer sizes, and (4) percent reduction in drift rates for a multistage
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production system with buffers. The significance of our model is due to the linking

of all the above four elements in one integrated model.

Parameter | Stage 1 | Stage 2 | Stage 3
LSL; 12 10 13
USL; 18 16 19

o; 0.41 0.39 0.25
Ai 0.40 0.50 0.30
6; 0.80 0.60 0.90
R; 140 210 180
Ci 1.20 1.40 1.70
C: 1.50 2.20 2.40
ch, 150 190 120
D; 3 2 4
Parameter Buffer 1 Buffer 2
B; 10 10

Q =100

W =2.00

H =2.30

Table 8.5: Data of Ezperiment 1 for testing MSM4.

T, | Avg. WIP,

M
Stage 1 | 12.21 7.38
Stage 2 | 10.54 9.27
Stage 3 | 14.03 5.18
Buffer 1 3.10
Buffer 2 3.25

Table 8.6: Results of MSM4 for Ezperiment 1.



Parameter | Stage 1 | Stage 2 | Stage 3
LSL; 12 10 13
USL; 18 16 19

o 0.41 0.39 0.25
Ai 0.40 0.50 0.30
0; 0.80 0.60 0.90
R; 140 210 180
C} 1.20 1.40 1.70
Ct 1.50 2.20 2.40
Ch 150 190 120
D; 3 2 4
Parameter Buffer 1 Buffer 2
K; 200 200

Q =100

W =2.00

H =250

Table 8.7: Data of Ezperiment 2 for testing MSM4.

i T. | Bi Avg. WIPR,
Stage 1 | 12.20 7.39
Stage 2 | 10.43 9.30
Stage 3 | 13.75 35.19
Buffer 1 8 2.14
Buffer 2 17 4.74

Table 8.8: Results of MSM4 for Ezperiment 2.



Parameter | Stage 1 | Stage 2 | Stage 3
LSL; 12 10 13
USL; 18 16 19

o; 0.41 0.59 0.25
Ai 0.40 0.50 0.30
g; 0.80 0.60 0.90
R; 140 210 180
C} 1.20 1.40 1.70
ct 1.50 2.20 2.40
Cs, 150 190 120
D; 3 2 4
el 25 40 35
el 0.10 0.20 0.10
Parameter Buffer 1 Buffer 2
K; 200 200

Z =200

Q =100

W =2.00

H =230

Table 8.9: Data of Experiment 3 for testing MSM4.

i T: 3 | Bi Avg. WIP,

Stage 1 | 12.84 8.63 0.83
Stage 2 | 12.22 9.85 0.64
Stage 3 | 14.27 6.68 091

Buffer 1
Buffer 2

15
22

6.08
8.95

Table 8.10: Results of MSM4 for Ezperiment 3.



Chapter 9

Conclusions and

Recommendations for Future

Study

In this chapter, we highlight the main conclusions and we give some directions for
further research. This chapter is organized as follows: In section 9.1, we give some
practical applications to industry. We list the main conclusions in section 9.2. In

section 9.3, we provide some extension for future study.

9.1 Industrial Applications

In this dissertation, we have considered practical problems which may rise in many
industrial environments. We have developed several mathematical models to solve
those kind of problems. The proposed models in this dissertation can be applied to

different kind of industries. For example:

166



167
1. Pulp and paper industry (Arcelus and Rahim [1994]).
2. Glass industry (Arcelus and Rahim [1991]).
3. Pharmaceutical industry (Golhar {1987], Gupta and Golhar [1991]).
4. Canning industry (Golhar and Pollock [1988]).

5. Rubber industry (Albright and Collins [1977)).

6. Industries having metal cutting operations (Hall and Eilon [1963], Gibra [1967.1974].

Quesenberry [1988]).
7. Shafts production (Arcelus et al. [1982]).

8. Communication (Schneider et al. [1990]).

9.2 Conclusions

In this dissertation, we have developed the following models :

e A model for finding the optimal initial setting of the process mean and the
optimal production cycle length of a single stage production system when the
quality characteristic has a normal distribution function and the drift function

is linear.

e A model for finding the optimal initial setting of the process mean and the
optimal production cycle length of a single stage production system when the
quality characteristic has a general distribution function and the drift function

is general.
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e A model for studying the effect of variance reduction on the model of single

stage production system.

e A model for finding the optimal initial setting of the process mean and the
optimal production cycle length for every process at each stage for a multistage

production system without buffers and with zero repair times.

e A model for studying the effect of reducing the variance of every process at

each stage on the model of multistage production system.

¢ A model for finding the effective production rate for a multistage production

system without buffers and with nonzero repair times.

e A simulation model for estimating the effective production rate and the WIP

for a two-stage production system with a buffer and with nonzero repair times.

e A simulation model for estimating the effective production rate of the line and
the W IP for each buffer for a multistage production system with buffers and

with nonzero repair times.

¢ A model for finding the optimal initial setting of the process mean, the optimal
production cycle length, the optimal percent reduction in drift rate, for every
process at each stage, and the optimal buffer sizes for a multistage production

system with buffers and with nonzero repair times.

As a summary, the models developed in this dissertation are listed in Table 9.1.

Similarly, the algorithms are summarized in Table 9.2.
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Model Description Section

SSM Single stage production system model 3.5

GSSM1 Generalized drift function for the single stage production 3.8
system model

GSSM2 Generalized probability density function of the qual- 3.9
ity characteristic for the single stage production system
model

GSSM3 Generalized drift function and probability density func- 3.10
tion of the quality characteristic for the single stage pro-
duction system model

SSVRM Single stage variance reduction model 4.1

MSM1 Multistage production system model 1 6.5

MSVRM Multistage variance reduction model 7.1

MSM2 Multistage production system model 2 6.7

TSM Two-stage lines with a buffer and with nonzero repair 8.5.1
times model

MSM3 Multistage production system model 3 8.5.2

MSM4 Multistage production system model 4 8.6

Table 9.1: Summary of the developed models.

Algorithm Description Section

SSVRA Single stage variance reduction algorithm 4.1.4

TSFGO Tabu search algorithm for global optimization 5.3

MSVRA Multistage variance reduction algorithm 7.1.2

TSMA Algorithm for two-stage lines with a buffer and with 8.5.1
nonzero repair times

MSM3A Algorithm for multistage lines with buffers and with 8.5.2

nonzero repair times

Table 9.2: Summary of the developed algorithms.
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9.3 Recommendations for future studies
Some aspects of the problem need further investigations. These may include the
following:
1. For the models SSM, MSMI, and MSM2, one may extend the work by con-
sidering:

A shock model having a decreasing or an increasing hazard rate.

An attribute quality characteristic.

e More than one quality characteristic.

Doing preventive maintenance actions before the complete resetting.

o The defective items are reworkable.
2. For the model MSM3, one may extend the work by considering:

e The uptimes and downtimes of each stage to be random variables.
3. For the model MSM4, one may extend the work by considering:

e The reduction in the variance of each process.
e A deadline for delivering the demand.

e One of the extensious in 1.



Appendix A

Test Functions for The First

Experiment of Testing TSFGO

The following test functions are taken from Dixon and Szegd [1978].

GP (Goldstein and Price).

Flzr,z2) = [L+(z1 + T2+ 1)%(19 — 14z + 3z} — 142, + 62125 + 313)]
X [30 + (22, — 37)*(18 — 32z) + 121}

+ 481y — 361,72 + 2713)] (A.1)

S={re R} -2<12:<2,i=1,2},Zmin = (0,-1), f(Zmin) = 3. (A.2)

There are 4 local minima.
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BR (Branin).
fz1, z2) = a(zy — bz} + czy — d)* + e(1 — f)cos(zy) +e (A.3)

where a = 1,b=5.1/(4n2),c = 53/m,d = 6,e = 10, f = 1/(8).
S={1‘€R2|—5§r1$10and0§x2§15},
Imin = (—7, 12.275); (7, 2.273); (37,2.473), f(Tmin) = 5/ (47).

There are no more minima.

H3 and H6 (Hartmann’s family).

f(.l') thexp( Zau pz] ) (A-‘L)

aij G Dij

3 10 30 1 0.3689 0.1170 0.2673
1 10 35 1.2 0.4699 0.4387 0.7470
3 10 30 3 0.1091 0.8732 0.3547
0.1 10 35 3.2 0.03815 0.5743 0.8828

B DN ] e
(=]
’—l

Table A.1: H3 (n=3 and ¢=4).

S={:L‘€R"|O§:c,-§1,15j_<_n}. (A.3)

These functions both have four local minima, Zioe = (Pit; .- Pin)» f(Ttoc) = —Ci
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) aij Ci

1 10 3 17 335 17 8 1

2 005 10 17 01 8 14 12

3 3 35 17 10 17 8 3

4 17 8 005 10 01 14 3.2

; Dij

1 0.1312 0.1696 0.5569 0.0124 0.8283 0.5886
2 0.2329 0.4135 0.8307 0.3736 0.1004 0.9991
3 0.2348 0.1451 0.3522 0.2883 0.3047 0.6550
4 0.4047 0.8828 0.8732 0.3743 0.1091 0.0381

Table A.2: H6 (n=6 and g=4).

S5, S7 and S10 (Shekel’s family).

q
f(z) = _Z((I_ai)r(-l"‘ai)'*‘ci)—l (A.6)
i=1
with n=4, ¢=5, 7, 10 for S5, S7, S10, respectively, r = (zy, iy zn)¥ and
a; = (@i, -y fl.’n)T-
S={reRI0<;<1,1<i<4} (A.7)

These functions have 3, 7 and 10 local minima for S5 and S7 and S10, respectively.

Tioe = (1/Ciy ..., 1[cg).



] a; C;
1 4 4 4 4 01
2 1 1 1 1 02
3 8 8 8 8 0.2
4 6 6 6 6 04
5 3 7 3 7 04
6 2 2 9 06
7 53 5 3 3 03
8§ 8 1 8 1 07
9 6 6 2 0.5
10 7 36 7 36 05

Table A.3: S5, S7, S10.
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Appendix B

Test Functions for The Second

Experiment of Testing TSFGO

The following Rosenbrock test function in 2 and 4 dimensions is taken from Rosen-

brock [1960] and Corana et al. [1987].

f(;l‘l,.l‘z)=100(1'2—.['%)2—(1—1'1)2 (Bl)

3
f(z1, 29,23, 24) = Z 100(zi1 — I?)z —(1- Ii)z (B.2)

=1

175



Appendix C

Experimental Design and Results

of the Single Stage Model

Input parameters Output

Run|{C, C. R r A 0 oy T ETC*

1 S 8 300 500 .05 .1 1][10.96528 6.848591 3.892789
2 29 8 300 500 .05 .1 1]11.39918 6.124778 7.234078
3 8 28 300 500 .05 .1 1]10.535125 5.6911 7.123296
4 29 928 300 500 .05 .1 1{10.9951 4.881759 13.48709
5 8 8& 5000 500 .05 .1 1|10.86556 14.82629 5.102528
6 29 8 5000 500 .05 .1 1 [11.31747 13.33445 8.67459
7 8 28 5000 3500 .05 .1 1{10.49247 11.89227 8.691729
8 29 928 5000 500 .05 .1 1|10.93776 10.42447 15.17985
9 8 & 300 8000 .05 .1 1[10.9909 3.335264 3.740678
10 29 8 300 8000 .05 .1 1|11.43066 2.902217 7.048868
11 8 928 300 8000 .05 .1 1[10.56785 2.798358 6.930168
12 29 928 300 8000 .05 .1 1|11.00811 2.375064 13.27538
13 8 8 5000 8000 .05 .1 1|10.96485 6.929901 3.898129
14 29 8 5000 8000 .05 .1 1|11.40901 6.087684 7.24055
15 8 928 5000 8000 .05 .1 1]10.55119 5.751163 7.130127
16 29 28 5000 8000 .05 .1 1|10.99286 4.9435 13.49454
17 8 8 300 500 84 .1 1/10.762 5.006712 3.981472
18 29 8 300 500 84 .1 1|11.2432 4.11411 7.363197
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19]8 28 300 500 8.4 .1 1]10.38277 4.108641 7.24114

20129 28 300 3500 84 .1 1]10.86039 3.279335 13.64397
218 8 5000 500 8.4 .1 1]10.38638 1254373 5.488385
22199 8 5000 500 84 .1 11092699 10.37705 9.298338
2318 28 35000 500 8.4 .1 1]10.06824 1042784 9.161037
24 1929 28 3000 500 8.4 .1 1}10.60717 8.328611 15.89519
258 8 300 8000 84 .1 1]10.91256 1.989052 3.759121
26|29 8 300 8000 84 .1 1|11.36771 1.628221 7.07414

278 28 300 8000 84 .1 1]|10.50505 1.628048 6.954513
28129 28 300 8000 8.4 .1 1{10.95893 1.308446 13.30556
298 8 5000 8000 8.4 .1 1]10.7588 5.075849 3.988788
30129 8 5000 8000 8.4 .1 1]11.23995 4.171801 7.372691
318 28 35000 8000 84 .1 1]10.3763 4.206682 7.250552
321929 28 3000 8000 8.4 .1 1]|10.83815 3.321326 13.65508
33|18 8 300 3500 .05 6.5 11099118 1.729906 4.631314
34|29 8 300 3500 .05 6.5 1|11.41352 1.720319 8.015055
3508 28 300 3500 .05 6.5 1{10.58837 .964884 8.454625
36129 28 300 300 .05 6.5 1|11.00502 .9515721 14.76523
3718 8 5000 3500 .05 6.5 1]|10.98972 6.68051 8.183702
38129 8 5000 3500 .05 6.5 1| 11.35431 6.679236 11.7687

3918 28 3000 300 .05 6.5 1|10.66885 3.67904 14.92167
40 129 28 5000 3500 .05 6.5 1|11 3.669703 20.9622

418 8 300 8000 .05 6.5 1]|10.99358 .4993633 3.880338
42129 8 300 8000 .05 6.5 1]|11.42646 .4821245 7.205804
43|18 28 300 8000 .05 6.5 1]10.58314 .3501298 7.13135

44 |29 28 300 8000 .05 6.5 1|11.00776 .3238261 13.48072
458 8 5000 8000 .05 6.5 1|10.99003 1.763418 4.653016
46 129 8 5000 8000 .05 6.5 1|11.4125 1.754529 8.03823

4718 28 5000 8000 .05 6.5 1|10.58914 .9860441 8.495077
48 |29 28 35000 8000 .05 6.5 1 |11.00502 .9745136 14.80389
498 8 300 500 8.4 6.5 1105632 .2983256 8.102164
5029 8 300 500 84 6.5 1|[11.06611 .2608653 12.30366
51/8 28 300 500 84 6.5 11029005 .238457 12.51761
52129 28 300 300 8.4 6.5 1]|10.76774 .204447 19.42562
538 8 5000 300 84 6.5 1|9.857007 .6268779 44.03499
54129 8 35000 500 8.4 6.5 11032699 .5717363 51.82003
558 28 35000 500 8.4 6.5 1]9.770086 .51331 54.32648
56|29 28 35000 500 84 6.5 11021354 .4617918 63.64792
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37
38
29
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74

79
76
7
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96

28
28

28
28

28
28

28
28

28
28

28
28

28
28

28
28

28
28

28
28

300
300
300
300
5000
5000
5000
5000
300
300
300
300
5000
5000
5000
5000
300
300
300
300
3000
5000
5000
3000
300
300
300
300
5000
5000
5000
5000
300
300
300
300
5000
5000
5000
5000

8000
8000
8000
8000
8000
8000
8000
8000
500
500
500
500
500
500
500
500
8000
8000
8000
8000
8000
8000
8000
8000
500
500
500
200
500
500
500
200
8000
8000
8000
8000
8000
8000
8000
8000

8.4
8.4
8.4
8.4
8.4
8.4
8.4
8.4
.05
.05
.05
05
05
.05
.05
.05
.05
.05
.05
.05
.05
.05
.05
05
8.4
8.4
8.4
8.4
8.4
8.4
8.4
8.4
8.4
8.4
8.4
8.4
8.4
8.4
8.4
8.4

]

[ = T )

1.4
1.4
1.4
14
14
1.4
14
1.4
1.4
1.4
1.4
1.4
1.4
1.4
1.4
1.4
1.4
14
1.4
1.4
1.4
1.4
1.4
1.4
1.4
1.4
1.4
1.4
1.4
1.4
1.4

10.88258
11.34522
10.49846
10.94893
10.55559
11.05935
10.28617
10.76313
10.95507
11.62185
10.3501

10.99428
10.82262
11.49877
10.25303
10.9188

10.98907
11.64868
10.35103
11.01189
10.95436
11.62096
10.32868
10.99657
10.71673
11.42544
10.13287
10.8363

10.26547
11.04428
9.763812
10.53672
10.89423
11.57838
10.27398
10.9576

10.71245
11.42294
10.12502
10.8453

1312395
1136628
1076232
9.150998E-02
3020234
.2640535
.2410625
.2068403
7.828424
6.832294
6.403545
5.566342
16.98081
15.11547
13.74014
11.9189
3.740512
3.27708
3.188049
2.715993
7.88109
6.931613
6.593647
5.610994
5.914537
4.861386
4.844192
3.878978
14.92264
12.30195
12.36324
9.860761
2.360646
1.89401
1.933708
1.495075
5.991581
4.934473
4.957761
3.81291

4.304945
7.742653
7.651269
14.07514
8.23625

12.46192
12.68721
19.61086
7.438627
14.16098
13.92007
26.06426
8.811105
15.84859
15.73082
27.99117
7.265059
13.94348
13.69508
25.82232
7.444709
14.16858
13.92799
26.07277
7.528946
14.29673
14.04413
26.22703
9.176109
16.46589
16.19289
28.69679
7.284559
13.97108
13.72162
25.85489
7.336977
14.30741
14.05471
26.23925
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97

98

99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128

29
8
29
8
29
8
29
8
29

28
28

300
300
300
300
5000
5000
5000
5000
300
300
300
300
3000
5000
5000
5000
300
300
300
300
5000
2000
5000
5000
300
300
300
300
5000
3000
5000
5000

500
500
500
500
500
500
500
500
8000
8000
8000
8000
8000
8000
8000
8000
500
200
500
300
500
200
500
500
8000
8000
8000
8000
8000
8000
8000
8000

.05
.05
.05
.05
.05
.05
.05
.05
.05
.05
.05
05
.05
05
.05
.05
8.4
8.4
8.4
8.4
8.4
8.4
8.4
8.4
8.4
8.4
8.4
8.4
8.4
8.4
8.4
8.4

1.4
1.4
1.4
1.4
1.4
1.4
1.4
1.4
1.4
1.4
1.4
1.4
1.4
1.4
1.4
1.4
1.4
1.4
1.4
1.4
1.4
1.4
1.4
1.4
1.4
1.4
1.4
1.4
1.4
1.4
1.4
1.4

10.98327
11.62209
10.38227
11.00661
10.98151
11.53487
10.49772
10.99924
10.99054
11.6491

10.35988
11.01432
10.98325
11.62414
10.37785
11.00395
10.41727
11.16065
9.975616
10.69756
9.387155
10.12512
9.22167

9.930051
10.84705
11.54066
10.2563

10.93756
10.40754
11.15021
9.983944
10.69141

1.739744
1.730483
9970675
.9789494
6.684698
6.686662
3.688083
3.677753
5363185
.5106406
3880324
.36028
1.771849
1.768055
1.018791
.9956863
3533873
.3044949
.2846234
.2390527
765023
.6804668
6345288
.5548984
1521346
1305248
1255341
.1050632
357697
.3085633
2861713
2421572

8.381848
15.19272
15.57819
27.64244
12.97888
20.15302
24.04323
35.62937
7.430631
14.13649
13.9322

26.06153
8.409777
15.22333
15.63008
27.69125
12.07893
19.94366
19.98705
32.6926

49.86227
62.74227
64.57121
80.27138
7.900771
14.74932
14.52558
26.72815
12.22466
20.12179
20.17479
32.89734

Table C.1: Experimental design and results of the single stage model.



Appendix D

Fractions of the Experimental

Design of the Multistage Model

(1) ajkmn bjmnp abkp clmp
acjklnp bejin abcklm djlmo adklno
bdlnop abdjklmop cdjop acdkmnop bedmno
abcdjko ekmno aejo bejkop abemnop
ceklnop acejlmop  bcejklmo  abcelno dejkin
adelm bdeklmp abdejlnp  cdejkmnp acdep
bedek abcdejmn  fklmop afjlnop bfjklno
abfimo cfko acfjmno befijkmnop abcfop
dfikp adfmnp bdfkmn abdfj cdfjklm
acdfin bedfklnp abedfjlmp eflnp aefjklmp
befjlm abefkln cefmn acefjk beefjp
abcefkmnp defjmnop  adefkop bdefo abdefjkmno
cdefjlno acdefklmo bedeflmop abcdefjklnop gjklmnop
aglop bgklo abgjlmno cgjkno acgmo
becgkmop  abegjnop  dgknp adgjmp bdgjkm
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abdgn cdgklmn acdgjl bedgjklp abcdglmnp
egjlp aegklmnp  beglmn abegjkl cegjm
acegkn bcegnp abcegjkmp degmop adegjknop
bdegjno abdegkmo  cdeglo acdegjklmno bcdegjlmnop
abcdegklop fgin afgkm bfgmp abfgjknp
cfgjlmnp acfgklp bcefgl abefgjklmn  dfglmno
adfgjklo bdfgjlop abdfgklmnop cdfgnop acdfgjkmop
bedfgymo abcdfgkno  efgjkmo aefgno befgknop
abefgjmop cefgjklop acefglmnop beefgklmno  abcefgjlo
defgkl adefgjlmn  bdefgjklmnp  abdefglp cdefgkmp
acdefgjnp bedefgjkn ~ abcdefgm hjki ahlmn
bhklmnp abhjlp chjkmp achnp bchkn
abchjm dhkmo adhjno bdhjknop abdhmop
cdhklop acdhjlmnop bedhjklmno abcdhlo ehjlmno
aehklo behlop abehjklmnop cehjnop acehkmop
bcehmo abcehjkno  dehn adehjkm bdehjmp
abdehknp cdehlmnp acdehjklp bedehjl abcdehklmn
fhjmop afhknop bfhno abfhjkmo cfhjlo
acfhklmno befhlmnop  abefhjklop dfhlp adfhjklmnp
bdfhjlmn abdfhkl cdfhm acdfhjkn bedfhjnp
abedfhkmp efhjknp aefhmp befhkm abefhjn
cefhjklmn acefhl bcefhklp abcethjlmnp defhklmnop
adefhjlop bdefhjklo abdefhlmno cdefhkno acdefhjmo
bedefhjkmop  abedefhnop ghmnop aghjkop bghjo
abghkmno cghlno acghjklmo beghjlmop abcghklnop
dghjlnp adghklmp  bdghlm abdghjkln cdghjmn
acdghk bedghp abcdghjkmnp eghkp aeghjmnp
beghjkmn abegh ceghklm aceghjln beeghjkinp
abceghlmp deghjklmop adeghlnop bdeghklno abdeghjlmo
cdeghjko acdeghmno bcdeghkmnop abcdeghjop  fghkln
afghjlm bfghjklmp  abfghlnp cfghkmnp acfghjp
befghijk abcfghmn  dfghjkmno adfgho bdfghkop
abdfghjmnop cdfghjklnop acdfghlmop bedfghklmo  abcedfghjlno
efghlmo aefghjklno  befghjlnop abefghklmop cefghop
acefghjkmnop bceefghjmno abcefghko defghj adefghkmn
bdefghmnp abdefghjkp cdefghjlmp acdefghklnp  bcdefghin
abcdefghjklim
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Table D.1: Fractions of the experimental design of the multistage model.



Appendix E

Experimental Design and Results

of the Multistage Model

E.1 Experimental Design

Input parameters

Run | P Q R 01 01 /\1 Cll Ci C}z (2p)] 02 /\2 Clz Cf Cf{
1 3 100 110 49 1 5 .1 .1 100 .663 -2 4 .15 .15 100
2 5 100 110 49 .1 5 .1 .1 130 8 -2 .5 .3 .15 100
3 3 150 110 49 .1 5 .1 .1 130 663 -2 5 3 .15 130
4 5 150 110 49 .1 5 .1 .1 100 .8 -2 4 15 15 130
) 3 100 200 49 .1 5 .1 .1 100 663 -1 .5 .15 .15 130
6 5 100 200 49 .1 5 .1 .1 150 .8 -1 4 3 15 130
7 3 150 200 49 1 5 .1 .1 130 663 -1 4 3 .15 100
8 5 150 200 49 .1 5 .1 .1 100 .8 -1 .5 .15 .15 100
9 3 100 110 6 .1 35 .1 .1 130 663 -1 .5 .15 .3 100
10 5 100 110 6 .1 5 .1 .1 100 .8 -1 4 3 3 100
11 3 150 110 6 .1 5 .1 .1 100 663 -1 4 3 3 130
12 5 130 110 6 .1 5 .1 .1 150 .8 -1 5 .15 3 130
13 3 100 20 6 .1 5 .1 .1 150 663 -2 4 .15 .3 150
14 5 100 200 6 .1 5 .1 .1 100 .8 -2 5 3 3 130
15 3 150 200 6 .1 5 .1 .1 100 663 -2 5 3 3 100
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150 200 6 .1 .5 .1 .1 150 .8 -2 4 15 3 100
100 110 49 2 5 .1 .1 100 .8 -2 5 3 3 100
100 110 49 2 5 .1 .1 150 663 -2 4 .15 .3 100
150 110 49 2 5 1 .1 150 8 -2 4 .15 3 130
150 110 49 2 5 .1 .1 100 663 -2 .5 .3 .3 130
100 200 49 .2 .5 .1 .1 100 .8 -1 4 3 3 1350
100 200 49 2 .5 .1 .1 150 663 -1 .5 .15 .3 130
150 200 49 2 5 .1 .1 150 .8 -1 .5 15 3 100
150 200 49 2 5 .1 .1 100 663 -1 4 .3 .3 100
100 110 6 2 .5 .1 .1 130 .8 -1 4 3 15 100
100 110 6 2 .5 .1 .1 100 .663 -1 .5 .15 .15 100
150 110 6 2 5 .1 .1 100 .8 -1 .5 15 15 130
150 110 6 2 5 .1 .1 130 663 -1 .4 3 .15 130
100 200 6 2 5 .1 .1 150 .8 -2 5 3 15 130
100 200 6 2 .5 .1 .1 100 .663 -2 .4 .15 .15 130
150 200 6 .2 5 .1 .1 100 .8 -2 4 .15 .15 100
150 200 6 2 5 .1 .1 130 663 -2 5 .3 .15 100
100 110 49 .1 6 .1 .1 100 8 15 153 3 150
100 110 49 1 6 .1 .1 130 663 -1 4 3 3 130
150 110 49 1 6 .1 .1 150 .8 -1 4 3 3 100
150 110 49 1 6 .1 .1 100 663 -1 .5 .15 .3 100
100 200 49 .1 6 .1 .1 100 .8 -2 4 15 3 100
100 200 49 .1 6 .1 .1 130 663 -2 5 3 .3 100
150 200 49 .1 6 .1 .1 130 .8 -2 5 3 3 150
150 200 49 .1 6 .1 .1 100 663 -2 4 .15 .3 130
100 110 6 .1 6 .1 .1 150 8 -2 4 .15 .15 130
100 110 6 .1 6 .1 .1 100 663 -2 5 3 .15 130
150 110 6 .1 6 .1 .1 100 .8 -2 .5 3 .15 100
150 110 6 .1 6 .1 .1 150 663 -2 4 .15 .15 100
100 200 6 .1 .6 .1 .1 150 .8 -1 .5 .15 .15 100
100 200 6 .1 6 .1 .1 100 663 -1 4 3 .15 100
150 200 6 .1 .6 .1 .1 100 .8 -1 4 3 15 130
150 200 6 .1 6 .1 .1 130 663 -1 .5 .15 .15 150
100 110 49 2 6 .1 .1 100 663 -1 4 3 .15 130
100 110 49 2 6 .1 .1 150 .8 -1 5 15 15 130
150 110 49 2 6 .1 .1 150 663 -1 .5 .15 .15 100
150 110 49 2 6 .1 .1 100 .8 -1 4 3 15 100
100 200 49 2 6 .1 .1 100 663 -2 5 3 .15 100
100 200 49 2 6 .1 .1 150 .8 -2 4 15 .15 100
150 200 49 2 6 .1 .1 150 663 -2 4 .15 .15 130
150 200 49 2 6 .1 .1 100 .8 -2 5 3 15 150
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G GO Ut GO Ot GO Ut GO Ut GO Ot GO Ut GO OF GO Ot GO Ut GO Ot G0 UT O U1 G Ut QO OF Lo UL Ot O O oy W

100 110 6 2 6 .1 .1 130 .663 -2 5 3 .3 130
100 110 6 2 6 .1 .1 100 .8 -2 4 15 3 130
150 110 6 2 6 .1 .1 100 .663 -2 4 .15 .3 100
150 110 6 .2 6 .1 .1 150 .8 -2 .53 3 .3 100
100 200 6 2 6 .1 .1 150 663 -1 4 3 .3 100
100 200 6 .2 6 .1 .1 100 .8 -1 .5 15 3 100
150 200 6 2 6 .1 .1 100 663 -1 .5 .15 .3 130
150 200 6 .2 6 .1 .1 150 .8 -1 4 3 3 130
100 110 49 .1 .53 .2 .1 150 .8 -1 353 3 3 130
100 110 49 .1 5 .2 .1 100 .663 -1 4 .15 .3 130
150 110 49 .1 .53 2 .1 100 .8 -1 4 .15 .3 100
150 110 46 .1 3 .2 .1 150 663 -1 .5 3 .3 100
100 200 49 .1 5 2 .1 130 .8 -2 4 3 3 100
100 200 49 .1 5 .2 .1 100 .663 -2 .5 .15 .3 100
150 200 49 .1 5 .2 .1 100 .8 -2 .5 .15 3 130
150 200 49 .1 5 .2 .1 150 663 -2 4 3 .3 130
100 110 6 .1 5 2 .1 100 .8 -2 4 3 .15 130
100 110 6 .1 5 2 .1 150 .663 -2 .5 .15 .15 130
150 110 6 .1 5 2 .1 150 .8 -2 .5 .15 .15 100
150 110 6 .1 5 .2 .1 100 .663 -2 4 3 .15 100
100 200 6 .1 .5 2 .1 100 .8 -1 .5 .3 .15 100
100 200 6 .1 .5 .2 .1 150 663 -1 4 .15 .15 100
150 200 6 .1 5 2 .1 150 .8 -1 4 .15 .15 130
150 200 6 .1 5 .2 .1 100 663 -1 .5 .3 .15 130
100 110 49 2 5 .2 .1 150 .663 -1 4 .15 .15 130
100 110 49 2 5 .2 .1 100 .8 -1 5 3 .15 130
150 110 49 2 5 .2 .1 100 663 -1 .3 .3 .15 100
150 110 49 2 5 2 .1 130 .8 -1 4 .15 .15 100
100 200 49 2 5 .2 .1 130 .663 -2 .5 .15 .15 100
100 200 49 2 5 2 .1 100 .8 -2 4 3 15 100
150 200 49 2 5 .2 .1 100 .663 -2 4 3 .15 130
150 200 49 2 5 2 .1 150 .8 -2 .5 .15 .15 130
100 110 6 2 5 .2 .1 100 663 -2 5 .15 3 130
100 110 6 .2 53 2 .1 150 .8 -2 4 3 3 1350
150 110 6 2 5 .2 .1 150 663 -2 4 3 .3 100
150 110 6 2 5 2 .1 100 .8 -2 .5 .13 3 100
100 200 6 2 5 .2 .1 100 663 -1 4 .15 .3 100
100 200 6 2 5 .2 .1 150 .8 -1 5 3 3 100
150 200 6 2 5 2 .1 130 663 -1 5 3 3 130
150 200 6 2 5 .2 .1 100 .8 -1 4 .15 3 130
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97 |3 100 110 49 .1 6 .2 .1 150 663 -2 .4 .3 .15 100
98 |5 100 110 49 .1 6 .2 .1 100 .8 -2 .5 .15 .15 100
99 |3 150 110 49 .1 6 .2 .1 100 663 -2 .5 .15 .15 130
100{5 150 110 49 .1 6 .2 .1 150 .8 -2 4 3 .15 130
1013 100 200 49 .1 6 2 .1 150 663 -1 .5 .3 .15 130
1025 100 200 49 .1 6 2 .1 100 .8 -1 4 15 .15 130
1033 150 200 49 .1 6 .2 .1 100 663 -1 .4 .15 .15 100
1045 130 200 49 .1 6 .2 .1 150 .8 -1 .5 3 .15 100
105(3 100 110 6 .1 6 .2 .1 100 663 -1 5 .3 .3 100
1065 100 110 6 .1 6 2 .1 130 .8 -1 4 15 .3 100
1073 150 110 6 .1 6 .2 .1 150 663 -1 .4 .15 .3 130
1085 150 110 6 .1 6 .2 .1 100 .8 -1 5 3 3 130
109{3 100 200 6 .1 6 .2 .1 100 663 -2 4 3 3 130
110{5 100 200 6 .1 6 .2 .1 150 8 -2 .5 15 3 130
1113 150 200 6 .1 6 .2 .1 15 663 -2 .5 .15 .3 100
1125 150 200 6 .1 6 .2 .1 100 .8 -2 4 3 3 100
113(3 100 110 49 .2 6 .2 .1 150 .8 -2 5 15 3 100
114|535 100 110 49 2 6 .2 .1 100 663 -2 4 3 .3 100
1153 150 110 49 2 6 .2 .1 100 .8 -2 4 3 3 130
116 |5 150 110 49 2 6 .2 .1 1350 663 -2 .5 .15 .3 130
11713 100 200 49 2 6 .2 .1 130 .8 -1 4 15 3 130
1185 100 200 49 2 6 .2 .1 100 663 -1 5 .3 .3 130
1193 150 200 49 .2 6 .2 .1 100 8 -1 .5 3 3 100
1205 150 200 49 2 6 .2 .1 130 .663 -1 .4 .15 .3 100
12113 100 110 6 .2 6 2 .1 100 .8 -1 4 .15 .15 100
12215 100 110 6 2 6 .2 .1 150 663 -1 .5 .3 .15 100
1233 150 110 6 2 6 .2 .1 130 .8 -1 .5 3 15 130
1245 150 110 6 2 6 .2 .1 100 .663 -1 .4 .15 .15 130
1253 100 200 6 .2 6 .2 .1 100 .8 -2 .5 .15 .15 130
1265 100 200 6 2 6 2 .1 150 .663 -2 4 3 .15 130
1273 150 200 6 2 6 2 .1 130 .8 -2 4 3 .15 100
12815 150 200 6 2 6 .2 .1 100 .663 -2 .5 .15 .15 100
1293 100 110 49 1 5 1 .2 130 8 -1 4 15 .15 100
1305 100 110 49 .1 .5 .1 .2 100 663 -1 .5 .3 .15 100
1313 150 110 49 .1 5 .1 .2 100 .8 -1 5 3 15 130
1325 150 110 49 .1 .5 .1 .2 150 .663 -1 4 .15 .15 130
13313 100 200 49 .1 .5 .1 .2 130 .8 -2 .5 15 15 130
1345 100 200 49 .1 .5 .1 .2 100 663 -2 4 .3 .15 130
1353 150 200 49 .1 .5 .1 .2 100 .8 -2 4 3 .15 100
13615 150 200 49 .1 .5 .1 .2 150 663 -2 .5 .15 .15 100
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13773 100 110 6 .1 53 .1 .2 100 .8 -2 .5 .15 3 100
1385 100 110 6 .1 5 .1 .2 150 663 -2 4 .3 .3 100
13913 150 110 6 .1 .5 .1 .2 150 8 -2 4 3 3 130
1405 150 110 6 1 .5 .1 .2 100 663 -2 5 .15 .3 130
14113 100 200 6 .1 5 .1 .2 100 .38 -1 4 15 3 130
1425 100 200 6 .1 .3 .1 .2 150 663 -1 .5 3 .3 130
1433 150 200 6 .1 .5 .1 .2 150 .8 1.5 3 3 100
144|535 150 200 6 .1 5 .1 .2 100 663 -1 4 .15 .3 100
1453 100 110 49 2 5 .1 .2 150 663 -1 5 3 .3 100
1465 100 110 49 2 5 .1 .2 100 .8 -1 4 15 3 100
14713 150 110 49 2 5 .1 .2 100 .663 -1 4 .15 .3 130
1485 150 110 49 2 5 .1 2 150 .8 15 3 3 140
14913 100 200 49 2 5 .1 .2 150 663 -2 4 3 3 130
1505 100 200 49 2 5 .1 .2 100 8 -2 5 15 3 130
15113 150 200 49 2 5 .1 .2 100 663 -2 .5 .15 .3 100
1525 150 200 49 2 5 1 2 150 .8 -2 4 3 3 100
153/3 100 110 6 .2 .5 .1 .2 100 663 -2 4 .3 .15 100
1545 100 10 6 2 5 .1 .2 150 38 -2 .5 .15 .15 100
15513 150 110 6 .2 5 .1 .2 150 663 -2 .5 .15 .15 130
165 130 110 6 2 .5 .1 .2 100 .8 -2 4 3 .15 130
157|3 100 200 6 2 5 .1 .2 100 663 -1 .5 .3 .15 130
1585 100 200 6 2 5 .1 .2 150 .8 -1 4 .15 .15 150
150!3 150 200 6 2 5 .1 .2 150 .663 -1 4 .15 .15 100
1605 150 200 6 2 5 .1 .2 100 .8 -1 .5 3 15 100
16113 100 110 49 1 6 .1 .2 150 663 -2 .5 .15 3 130
1625 100 110 49 .1 6 .1 .2 100 .8 -2 4 3 3 130
1633 150 110 49 .1 6 .1 2 100 663 -2 4 3 .3 100
1645 150 110 49 1 6 .1 2 150 .8 -2 .5 .15 3 100
165/3 100 200 49 1 6 .1 .2 150 663 -1 4 .15 .3 100
166{5 100 200 49 .1 6 .1 2 100 .3 -1 .5 3 3 100
16713 150 200 49 .1 6 .1 .2 100 663 -1 5 .3 3 130
1685 150 200 49 .1 6 .1 .2 150 .8 -1 4 15 3 130
1693 100 110 6 .1 6 .1 2 100 663 -1 4 .15 .15 130
1705 100 110 6 .1 6 .1 .2 130 .8 -1 .5 3 15 130
1713 150 110 6 .1 6 .1 .2 150 663 -1 .5 .3 .15 100
1725 150 110 6 .1 6 .1 .2 100 .8 -1 4 15 .15 100
17313 100 200 6 .1 6 .1 .2 100 .663 -2 .5 .15 .15 100
1745 100 200 6 .1 6 .1 .2 150 .8 -2 4 3 15 100
17513 150 200 6 .1 6 .1 .2 150 663 -2 4 3 .15 130
176 {5 130 200 6 .1 6 .1 .2 100 .8 -2 .5 .15 15 130
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17713 100 110 49 2 6 .1 .2 150 .8 -2 4 3 15 130
178{5 100 110 49 .2 6 .1 .2 100 663 -2 .5 .15 .15 130
1793 150 110 49 2 6 .1 2 100 .8 -2 5 .15 .15 100
1805 150 110 49 .2 6 .1 .2 150 663 -2 4 3 .15 100
18113 100 200 49 2 6 .1 .2 150 .8 -1 .5 3 .15 100
1825 100 200 49 .2 6 .1 .2 100 .663 -1 4 .15 .15 100
18313 150 200 49 2 6 .1 .2 100 .8 -1 4 .15 15 130
1845 150 200 49 2 6 .1 .2 150 663 -1 5 3 .15 130
1853 100 110 6 .2 6 .1 .2 100 .8 -1 5 3 3 130
1865 100 110 6 2 6 .1 .2 150 .663 -1 4 .15 .3 130
1873 150 110 6 2 6 .1 .2 150 .8 -1 4 .15 .3 100
18815 150 110 6 2 6 .1 2 100 663 -1 .5 .3 .3 100
189 (3 100 200 6 .2 6 .1 .2 100 .8 -2 4 3 3 100
1905 100 200 6 .2 6 .1 .2 150 .663 -2 5 .15 .3 100
1913 150 200 6 .2 6 .1 .2 150 .8 -2 5 13 3 130
19215 150 200 6 .2 6 .1 .2 100 663 -2 4 3 .3 130
1933 100 110 49 .1 5 2 .2 100 663 -2 5 3 3 130
1945 100 110 49 .1 5 2 .2 150 .8 -2 4 .15 3 130
1953 150 110 49 .1 5 2 .2 150 663 -2 4 .15 3 100
196 |5 150 110 49 1 5 2 .2 100 .8 -2 5 3 3 100
1973 100 20 49 .1 5 2 2 100 663 -1 4 3 3 100
1985 100 200 49 .1 .53 2 .2 130 .8 -1 .5 15 3 100
1993 150 200 49 .1 5 .2 .2 150 .663 -1 5 .15 .3 130
2005 150 200 49 .1 5 .2 .2 100 .8 -1 4 3 3 130
20113 100 110 6 .1 .5 2 2 150 663 -1 4 3 .15 130
2025 100 110 6 .1 .5 .2 .2 100 .8 -1 .5 15 .15 130
20313 150 110 6 .1 .5 .2 .2 100 .663 -1 5 .15 .15 100
2045 150 110 6 1 5 2 2 150 .8 -1 4 3 15 100
205|3 100 200 6 .1 .5 2 2 130 663 -2 .5 3 .15 100
2065 100 200 6 .1 .5 .2 .2 100 .8 -2 4 .15 .15 100
20713 150 200 6 .1 .53 2 .2 100 663 -2 4 .15 .15 130
2085 150 200 6 .1 5 2 .2 130 .8 -2 5 .3 15 130
209 |3 100 110 49 2 5 2 .2 100 .8 -2 4 .15 .15 130
21015 100 110 49 2 .5 .2 2 150 663 -2 5 .3 .15 130
21113 150 110 49 2 5 2 .2 150 .8 -2 5 3 .15 100
2125 150 110 49 2 5 .2 .2 100 663 -2 4 .15 .15 100
2133 100 200 49 2 5 2 2 100 .8 -1 .5 .15 .15 100
2145 100 200 49 2 .5 2 2 150 663 -1 4 3 .15 100
2153 150 200 49 2 5 2 2 150 .8 -1 4 3 .15 130
21615 150 200 49 2 .5 .2 .2 100 663 -1 5 .15 .15 130
217(3 100 110 6 2 5 .2 2 150 .8 -1 5 15 3 130
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218 |5 100 110 6 2 .5 2 .2 100 663 -1 4 3 .3 130
2193 130 110 6 2 .53 .2 .2 100 .8 -1 4 3 3 100
22015 130 110 6 2 5 2 .2 150 663 -1 .5 .15 .3 100
922113 100 200 6 2 .5 .2 .2 130 .8 -2 4 .15 3 100
292 |5 100 200 6 2 5 .2 .2 100 663 -2 .5 3 .3 100
2233 150 200 6 2 53 2 .2 100 .8 -2 5 3 3 130
224 |5 150 200 6 2 5 .2 2 150 663 -2 .4 .15 3 130
225|3 100 110 49 .1 6 .2 .2 100 .8 -1 4 3 .15 100
29615 100 110 49 .1 6 .2 .2 150 663 -1 .5 .15 .15 100
227 |3 150 110 49 1 6 .2 .2 150 8 -1 .5 15 15 130
228|5 150 110 49 .1 6 2 .2 100 663 -1 4 3 .15 130
229 (3 100 200 49 .1 6 .2 .2 100 .8 -2 .5 3 15 130
230 |5 100 200 49 .1 6 .2 .2 1350 663 -2 .4 .15 .15 130
2313 150 200 49 .1 6 .2 .2 130 .8 -2 4 15 .15 100
23215 150 200 49 .1 6 2 .2 100 663 -2 .5 3 .15 100
2333 100 110 6 .1 6 .2 .2 150 .8 -2 5 3 3 100
2345 100 110 6 .1 6 .2 .2 100 663 -2 .4 .15 .3 100
23513 150 110 6 .1 .6 .2 .2 100 .8 -2 4 15 3 130
236 |5 150 110 6 .1 6 .2 .2 130 663 -2 5 3 3 130
2373 100 200 6 .1 6 .2 .2 130 .8 -1 4 3 3 130
23815 100 200 6 .1 6 .2 .2 100 663 -1 .5 .13 .3 130
2393 130 200 6 .1 .6 .2 .2 100 .8 -1 .5 15 3 100
2405 130 20 6 .1 6 2 .2 130 663 -1 4 3 .3 100
24113 100 110 49 2 6 .2 .2 100 663 -1 .5 .15 .3 100
24215 100 110 49 2 6 .2 .2 130 .8 -1 4 3 3 100
243{3 150 110 49 2 6 .2 .2 130 663 -1 4 3 .3 130
244 |5 150 110 49 2 6 2 .2 100 8 -1 .5 13 3 150
2453 100 200 49 2 6 .2 2 100 .663 -2 4 .15 .3 130
246 {5 100 200 49 2 6 2 2 130 .8 -2 5 3 3 130
247 |3 150 200 49 2 6 .2 .2 130 663 -2 .5 3 .3 100
248 |5 150 200 49 2 6 .2 .2 100 8 -2 4 15 3 100
2493 100 110 6 2 6 .2 .2 150 .663 -2 .4 .15 .15 100
2505 100 110 6 2 6 .2 .2 100 .8 -2 5 3 .15 100
25113 150 110 6 2 6 .2 .2 100 663 -2 .5 3 .15 130
2525 150 110 6 2 6 .2 .2 130 .8 -2 4 15 .15 130
25313 100 200 6 2 6 .2 .2 150 .663 -1 .5 .15 .15 130
2545 100 200 6 .2 6 .2 .2 100 .8 -1 4 3 15 130
2553 150 200 6 2 .6 .2 .2 100 663 -1 4 3 .15 100
256 |5 150 200 6 2 6 .2 .2 150 .8 -1 .5 15 .15 100

Table E.1: Experimental design of the multistage model.



E.2 Experimental Results

Output

Run | 4] IT 7 T ETC"

1 10.89081 12.67044 16.09991 10.89081 89.26627
2 11.85704 12.30849 6.571999 5.525211 136.9653
3 12.01389 12.47201 12.20331 7.83292 232.3918
4 11.58309 12.33549 15.83106 6.247237 376.9231
3 12.07903 12.36307 10.76574 10.76574 33.55952
6 11.61182 12.59132 16.68729 15.74694 43.75159
7 12.18233 12.23533 10.51584 8.984275 39.77925
8 11.1004 12.24581 8.054111 9.803755 36.19281
9 11.58482 12.36104 7.021291 8.606115 58.398

10 12.13626 12.13562 9.897673 6.625797 115.4578
11 11.59706 12.24827 12.91871 8.402944 207.8558
12 11.84054 12.25595 8.744054 8.277237 363.3722
13 11.95855 12.56399 13.57508 9.447792 49.21775
14 11.4265 12.5316 18.4906 8.541109 57.65366
15 11.77999 12.6358 11.77999 10.20448 60.99925
16 11.35239 12.19743 7.036497 5.468983 61.45547
17 10.99829 12.81253 8.631838 12.56322 136.4087
18 10.83045 12.63927 12.42185 10.53978 139.8798
19 10.98114 12.67022 10.84122 11.71636 280.1645
20 11.19675 12.45332 7.331262 6.748674 356.2789
21 11.2389 12.26553 16.38521 10.0757 50.91274
22 11.08995 12.33239 11.55574 9.726874 43.41487
23 11.15576 12.44643 12.02801 11.84774 42.439359
24 10.86138 12.39411 14.64915 11.66999 37.29133
25 11.31004 12.31004 9.508966 9.543064 88.82634
26 11.39411 12.4265 8.523011 9.638278 65.13117
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27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
30
o1
52
33
o4

-

35
36
a7
38
39
60
61
62
63
64
65
66
67

11.14986
11.27678
10.63211
11.01223
10.92811
11.03194
11.28802
12.11006
11.62378
12.03262
11.44748
11.98583
11.15062
12.22986
11.00883
11.85524
11.23533
11.94254
11.43465
11.13798
11.67445
11.43375
11.1947

11.25883
11.35404
11.34932
10.83352
10.90707
10.94243
10.97346
11.47905
10.9819

11.24699
11.55707
11.09829
11.53219
11.3317

10.99955
12.19801
11.30917
11.95855

12.25495
12.22356
12.69815
12.47973
12.58309
12.52254
12.39479
12.28002
12.11871
12.2761

12.44666
12.44666
12.47905
12.54451
12.28304
12.38193
12.76806
12.50035
12.27565
12.37889
12.36528
12.58701
12.26973
12.33289
12.35404
12.26649
12.76148
12.73194
12.51144
12.73386
12.47905
12.39343
12.43083
12.55707
12.28925
12.25495
12.4526

12.30872
12.30872
12.22356
12.2231

11.23479
9.519818
11.06604
11.97962
11.58309
9.372594
7.955918
10.17935
10.86617
9.552661
14.73491
8.520951
9.020611
11.6496

10.16134
8.417675
12.25549
8.792304
10.2641

19.80445
11.70396
18.12064
10.92945
9.96761

9.776217
6.067958
11.37999
12.97967
12.66573
7.440273
9.470463
12.7178

10.69964
8.868743
11.93387
10.24371
9.056522
11.47928
9.483395
19.27882
11.51423

8.882532
8.572819
10.46829
8.987768
9.681186
8.49966
11.58428
9.131377
6.193422
7.902604
8.15841
7.802621
7.988222
9.270398
5.433892
6.185379
11.23533
8.922732
9.040996
11.74445
11
15.95413
9.065098
10
10.93887
3.985132
11.38043
11.90227
9.259752
10.86768
7.955238
7.177102
7.888814
8.487225
9.064868
9.232475
9.805375
9.256626
10.04487
8.142965
5.783617

229.0691
332.2199
57.58823
39.7048

81.56789
48.51494
85.05163
80.41449
238.2143
304.6013
44.25266
95.90907
87.99222
46.63042
104.8045
96.30713
267.3203
365.3247
38.81905
29.93422
44.2967

31.06193
28.08896
112.254

208.7786
353.1212
44.20414
41.25734
42.80985
144.7795
93.48947
147.9032
226.4169
410.7522
43.23843
40.75719
40.67837
57.98631
89.52457
66.56713
219.6995
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68
69
70
71
72
73
74
7
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108

12.02691
11.46978
11.44861
11.65028
12.20933
11.52297
11.35379
12.24574
11.3995
11.85175
11.61334
11.82086
11.55822
11.28066
10.81594
11.28834
10.947
10.788
10.97573
11.04227
11.32247
11.47973
10.96648
11.13656
11.25663
11.04957
10.96238
10.87454
11.2231
11.07593
11.41209
11.65783
11.7137
11.46741
11.04983
11.22698
12.10431
11.69493
11.72299
11.46216
11.7139

12.40659
12.37303
12.63932
12.51212
12.38908
12.52297
12.55455
12.64732
12.21456
12.34866
12.26568
12.38643
12.54908
12.25549
12.02792
12.30917
12.37395
12.51144
12.55707
12.43706
12.62809
12.45889
12.63715
12.47767
12.44666
12.26649
12.46717
12.38643
12.28788
12.26339
12.70228
12.29717
12.45889
12.34342
12.7152

12.41184
12.43284
12.30081
12.23533
12.44148
12.30475

7.9407
10.22867
10.15832
11.5316
9.979022
10

10
7.900428
12.61838
10.03199
11.55802
10.1051
15.33349
8.915062
12.11177
8.862061
8.378493
14.41851
11.55707
11.85201
11.26636
8.435334
12.63669
11.15155
10.03239
11.43214
13.08004
14.35554
10.18857
21.08819
10.76137
11.87432
15.74311
10.11112
22.78121
19.66465
11.17258
11.30081
11.05907
11.8933
12.4288

9.34729
7.046649
9.808607
8.297169
8.338331
8.545464
8.399971
10.7428
4.6648
10.50309
8.566924
11.38643
13.79356
8.703511
4.35641
8.520951
7.326398
8.27701
9.148261
8.168149
10.34218
7.862288
11.53205
8.84845
7.244168
8.89916
12.51992
11.38643
9.914383
5.881343
10.83028
5.861551
8.329558
8.38785
17.69692
11.68963
13.20082
8.390692
5.918049
12.82104
9.997494

322.4011
60.35502
43.16794
73.1038
59.709
107.1844
116.4859
269.2322
325.2947
39.98743
34.14052
42.93401
35.3976
61.94627
113.7886
196.8795
360.3304
36.81832
46.65448
46.68529
126.5106
84.10345
196.3382
241.1254
389.198
35.1189
49.34707
46.37093
46.92656
61.29157
162.0032
218.1255
398.1641
45.5336
30.87432
24.49497
43.34376
46.48292
98.72126
216.6373
362.3459
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109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149

11.73522
11.14813
10.98544
11.43916
10.9389

11.65893
11.19896
10.97916
11.25495
10.84396
10.58134
11.10998
11.04102
11.0119

11.21456
11.14556
11.0168

11.04995
11.0404

10.94243
11.4464

11.43308
12.17019
11.7026

11.01431
10.86373
12.20732
11.86358
11.80838
12.0111

11.61343
11.20654
11.47205
11.38643
10.9114

11.58048
11.15189
11.11747
11.15837
11.23087
10.96358

12.54383
12.78076
12.21954
12.49617
12.43082
12.61576
12.60965
12.5316

12.25495
12.4265

12.2881

12.34717
12.22644
12.20757
12.29739
12.26605
12.73522
12.44406
12.50922
12.52968
12.22283
12.21108
12.2904

12.28066
12.50983
12.55024
12.32172
12.59648
12.45889
12.32027
12.37719
12.36788
12.51212
12.38643
12.34759
12.30872
12.39272
12.25495
12.32057
12.16302
12.42582

9.264552
10.5818

8.252989
11.75132
9.248796
9.198035
8.203507
11.37418
10.22378
14.40146
11.46837
12.6231

11.66522
10.49498
10.16565
10.73119
13.39226
12.5207

8.374301
13.32891
17.17893
11.4884

9.487727
15.33252
9.214658
26.83868
8.352797
12.67738
12.25595
9.691506
8.845523
12.50304
12.89855
8.581178
22.49253
14.1123

8.899599
11.14986
10.31196
9.236628
12.9162

9.199773
11.57676
5.444686
8.174886
6.787405
11.56449
10.54803
8.520725
8.93576

12.54634
8.822301
10.11064
7.372071
7.29672

9.366712
9.313969
11.47973
8.438753
8.091516
8.470323
3.74571

6.808604
9.844407
9.472276
8.897967
8.893874
6.243731
9.300142
7.744054
6.065793
6.504673
5.966872
13.86045
9.318826
11.29224
9.865954
11.25841
8.745047
9.838442
6.528717
8.179528

25.95147
58.60349
33.03167
87.82361
102.1846
157.1835
275.2184
370.487

52.65712
42.13876
47.04989
37.44312
79.87563
64.34575
237.6365
326.7577
42.45042
50.82069
80.78128
34.28825
66.71556
50.40187
230.3862
320.5888
51.1917

42.25324
51.18425
37.28172
96.24483
92.74742
261.6398
344.1869
42.5169

51.61532
43.99329
32.21358
66.43254
112.5892
208.9086
365.4767
56.48113




150
151
152
133
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190

11.41197
10.89058
11.5472

11.21478
11.52617
11.40103
10.99932
11.07772
11.24487
10.97148
11.19405
11.41162
11.37776
11.08494
11.66321
11.1433

11.05209
11.93859
10.90944
11.61021
11.61767
11.61721
11.69461
12.1679

11.59117
12.03473
11.92311
11.08494
10.94682
11.39343
10.87185
11.22707
11.15528
11.13283
11.71735
10.95254
11.28415
11.28599
11.17698
10.83885
10.89597

12.73444
12.3973

12.58191
12.54565
12.54499
12.45145
12.67022
12.45852
12.19702
12.41882
12.27966
12.41162
12.32244
12.17055
12.30105
12.39544
12.39343
12.46765
12.36104
12.30081
12.37395
12.32865
12.27966
12.46893
12.61239
12.49213
12.54078
12.55105
12.46239
12.39343
12.42238
12.36073
12.2881

12.26649
12.27966
12.41435
12.26007
12.24699
12.3427

12.49729
12.46216

8.588029
12.51531
8.948002
9.783951
6.044053
8.588326
11.39411
12.68913
8.996477
12.91611
12.47493
18.31969
14.29296
17.10795
12.90333
22.9405
10.37441
14.83931
11.50369
11.24827
11.4265
9.756059
11.31228
9.210545
12.71395
9.535146
10.24745
12.72138
13.16833
11.04462
11.92964
10.08217
11.703
12.13134
8.755239
9.783513
9.577232
8.835177
11.28762
11.85878
12.26347

11.41197
6.932481
10.59731
9.51663
9.115209
7.268399
10.72322
11.72277
9.104412
11.86616
10.08562
7.083512
3.65172
4.297535
5.337681
12.87719
11.39343
12.61006
10.14265
9.896144
11.1504
8.435334
6.126613
8.994058
9.420263
9.273607
8.391285
9.80974
7.224313
7.192073
7.922773
11.20757
10
10.2476
8.176875
11.49696
9.305441
8.663172
8.387134
8.915062
7.672546

35.74189
40.48581
143.2932
87.57615
161.6009
233.6258
426.5754
38.04531
47.75069
32.2023

39.25432
75.08131
134.4721
210.3803
375.1904
31.61119
46.59208
41.32218
49.88392
54.66778
116.3421
201.2677
343.243

36.72821
49.83699
53.83346
83.51237
117.8899
102.3289
242.8449
357.1706
44.84527
28.95753
37.86164
48.19855
91.05724
83.66021
238.9841
317.0972
55.45986
45.13843
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191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229

11.63737
11.28786
12.33874
11.37776
11.38243
11.56467
11.906
12.25572
11.36943
12.08308
11.78329
11.70283
11.61699
11.43531
12.45296
11.79266
11.55802
11.27932
11.0586
11.10705
11.2231
11.43817
11.15433
10.93409
11.23579
11.03194
11.14217
11.21488
11.17002
11.5497
11.20362
11.26583
11.6472
11.00014
11.6849
12.26795
11.20139
11.32014
11.54315

12.41359
12.63409
12.4239
12.17627
12.33437
12.28788
12.34111
12.32865
12.36943
12.26928
12.31235
12.32165
12.44666
12.2187
11.75013
12.63263
12.6131
12.46767
12.37035
12.469
12.39411
12.41045
12.44679
12.25617
12.3812
12.26842
12.34294
12.27966
12.2761
12.36943
12.47905
12.43149
12.41162
12.39343
12.11912
12.31205
12.1964
12.22059
12.62877

6.126613
7.951012
7.109055
16.02846
18.59375
11.04524
12.40612
9.638732
11.5497

12.99598
10.14545
10.80115
11.44666
19.38179
9.249873
12.77567
12.24976
11.02056
9.264514
6.81744

9.829445
6.707415
10.32827
11.51212
10.05255
9.256626
11.34294
8.613568
7.626813
8.540433
11.45957
10.72567
7.009378
11.56399
9.008079
7.347063
18.53026
17.30637
12.57896

7.38256
10.92876
7.214831
4.758423
6.710997
5.548649
11.06501
12.06433
8.720701
10
9.854546
10.25595
9.915289
5.758254
5.388718
10.96276
9.473744
7.751193
6.873091
7.648611
6.969444
8.117863
12.57077
8.999773
11.25595
7.975289
9.764413
8.581178
6.318319
8.450299
8.776897
7.677847
6.538203
7.711524
6.204056
8.179388
7.70338
8.025473
9.390918

82.42761
96.65872
84.31284
130.8324
215.7583
377.2412
37.98789
45.54959
43.32991
51.96934
63.01568
105.9523
196.0347
346.1244
60.32357
37.0681

38.9918

87.93939
98.39539
119.3352
250.4017
353.8159
32.44274
39.08069
50.68834
38.16048
88.15556
80.68227
231.5835
320.7902
51.65005
48.36628
75.22038
52.35546
81.81329
63.89655
224.1273
316.9955
51.30979
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230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256

11.11755
11.35266
11.64732
11.75856
11.70228
11.75597
11.85658
11.77531
11.13732
11.04754
11.72277
11.2447

11.21488
11.08038
11.0809

10.54778
10.96214
11.4106

11.59706
11.03865
11.12679
11.44666
10.91461
11.13817
11.35895
11.24727
11.10428

12.58505
12.34088
12.44266
12.48911
12.52297
12.44666
12.63142
12.2231

12.52636
12.25568
12.40425
12.24592
12.34444
12.24603
12.21456
12.58093
12.59117
12.68351
12.20204
12.48149
12.55745
12.39434
12.43828
12.41427
12.41875
12.31205
12.34027

12.64983
13.40521
11.8947

12.75527
8.207582
10.47891
13.04066
12.03216
19.50979
24.50147
15.51789
9.585099
8.785116
11.24103
10.36796
12.23547
11.21037
9.72623

8.574179
8.680073
9.716345
8.608262
11.76761
12.99887
10.09744
11.00014
11.83894

9.500113
6.094903
7.695993
7.445977
8.386895
8.468544
10.3227

8.948132
14.42435
10.87774
12.07236
7.308131
6.614722
8.970456
7.938836
9.723983
8.609605
11.31105
3.647791
7.794401
8.589943
6.800108
8.041223
9.244167
12.62679
9.999407
10.60562

42.68493
42.80683
40.32382
103.7625
108.6078
256.0371
394.9999
57.5102

34.42195
35.49051
40.3588

45.08387
112.5484
215.1414
357.2584
48.10978
66.0455

88.76967
51.55777
81.19608
150.7416
229.3061
403.0957
39.12162
45.59526
35.15463
37.12536

Table E.2: Experimental results of the multistage model.
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Appendix F

SLAM II Model for Two-Stage

Lines without a Buffer
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Figure F.1: SLAM II Model for Two-Stage Lines without a Buffer.




Appendix G

SLAM II Model for Two-Stage

Lines with a Buffer
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Figure G.1: SLAM II Model for Two-Stage Lines with a Buffer.



Appendix H

SLAM II Model for Multistage

Lines with Buffers
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Figure H.1: SLAM II Model for Multistage Lines with Buffers.
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