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ABSTRACT 
 
 
FULL NAME OF STUDENT: HUSSAIN YAHYA AL-FADHLI 

  TITLE OF STUDY:    PERFORMANCE EVALUATION OF (HVOF) 
THERMAL SPRAY COATING USING INCONEL-
625 POWDER 

         
MAJOR FIELD:  MECHANICAL ENGINEERING   
DATE OF DEGREE: June 2003 
 
 

A variety of metallic and ceramic coatings are available to protect metallic 
surfaces from high temperature, wear, and corrosive environments. These coatings are 
applied by one of many commercially available thermal spray techniques. In Saudi 
ARAMCO, high velocity oxygen fuel (HVOF) spraying technique is widely used to 
enhance erosion and corrosion resistance of steel surfaces and frequently used to repair 
worn away parts and equipments; which will improve availability and reduce operational 
cost. There are several setting parameters that can be adjusted by the applicator which 
can affect the performance of the applied coatings among which the powder feed rate and 
the spray distance are of prime importance. The aim of the present study is to examine 
the influence of varying powder feed rates and spray distances on nickel-based alloy 
powder coatings (Diamalloy-1005) applied on steel substrates using HVOF.   

 Four different coatings were produced employing low (5 lb/hr) and high (20 lb/hr) 
feed rates each sprayed at a spray distance of 9 and 12 inches. A variety of tests were 
employed to evaluate the performance of the different coating conditions. Microstructural 
investigation involved estimating oxide and porosity contents.  Mechanical properties of 
the coatings were characterized by microhardness and tensile bonding strength tests. 
Accelerated corrosion tests and mass loss due to jet impingements tests were carried out 
to characterize corrosion and erosion resistance.    

 Experimental results suggest that for a given spray distance, the higher powder 
feed rate was associated with increased porosity contents and lower coating hardness. 
Coats produced at longer spray distance for a given feed rate exhibited higher oxidation 
content and lower hardness. Higher corrosion rates and higher mass losses were 
characteristics of coats produced at the higher feed rate with increased susceptibility at 
the higher spray distance. Limited bonding strength tests showed that HVOF coatings 
applied with higher feed rate exhibited lower bonding strength.  Coatings applied with 
lower feed rate showed bonding strength more than 10,000 Psi. 
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 ملخص الرسالة
 

 
حسين يحى عيسى الفاضلي                                                             : الاســــــــــــــــم   

 
)652انكونيل(تقييم آفاءة التغليف المعدني ذو السرعة العالية باستخدام مادة : عـنوان الرسالـة    

 
                                                                        هندسة ميكانيكية     : الـــتــخـــصـــص 

 
م                                                                             2003/ يونيو: : تـاريـخ الـتـخـرج   

 
 
 

ظح المعدنية من درجات الحرارة العالية  يجب أخذ التغليف المعدني ذو السرعة العالية بعين الاعتبار لحماية الاس

المعدنية ليست السبب الوحيد لاستخدام هذا النوع من التغليف بل الهدف الأساسي اتآآل البيئي إلا أن حماية الأسطح lو

عوضًا عن ,هو إطالة عمر هذه الأسطح مما يلعب دورًا أساسيًا في إبقاء مكائن الإنتاج الصناعي عاملة بفعالية أآبر

.تقليل تكلفة الصيانة الدورية  

 

ئيسي على خصائص هذا النوع من التغليف وخاصةً الجزيئات والجدير بالذآر أن هناك عوامل أخرى ذات تأثير ر 

انكونيل (آمية البودرة المذابة من مادة :ومن أهم هذه العوامل . الغير مذابة ونسبة الأآسسجين الموجودة في التغليف

.ومسافةالضخ) 625  

 

صائص التغليف المعدني ولقد آان الغرض من هذه الرسالة هو دراسة مدى تأثير و فاعلية هذين العاملين على خ 

؛ علمًا بأن هذه العوامل لها تأثير جذري على مسامية التغليف ومدى تحمله لمواجهة ) 625انكونيل (المكون من مادة 

وهناك تجارب عديدة عملت لتحديد جودة هذا النوع من التغليف مثل ؛ البحث في خصائص جزيئات المواد . التآآل

فقد أجريت اختبارات على مدى تآآل هذا النوع ,إضافةً إلى ذلك .  مدى صلابتها قياس نسبة الأآسجين فيها وقياس,

وعلى هذا يتم تحديد مدى تحمل . من التغليف ومدى تحمله لقوة ضغط السوائل الحاملة لجزئيات الرمل آمياه البحر

.هذه المادة للظروف البيئية في منطقة الخليج العربي  

 

المدفوعة إلى جهاز التغليف آلما ) 625انكونيل (أنه آلما ازدادت آمية بودرة لقد اتضح من خلال هذه الدراسة  

ازدادت مسامية المنتج و نقصت صلابته ؛ آما أنه آلما ازدادت مسافة الضخ آلما أعطيت جزيئات التغليف مجالاً 

.يرمما يجعلها تتأآسد وبالتالي تكون أآثر عرضة للتآآل بشكل آب, أآبر لتفقد طاقتها الحرآية  
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Chapter  1 
 

 
INTRODUCTION AND BACKGROUND 

 
 

1.1  INTRODUCTION  

In the oil and gas industries, wear and corrosion of the internal parts of rotating and 

stationary equipment have direct effects on equipment durability and reliability.  Thermal spray 

coating is a technology that has provided a significant improvement to the material surface 

properties.  Material properties like wear and corrosion resistance play major roles in the surface 

behavior [17].  

Materials, either in powder or wire forms, are melted and propelled to metallic substrate 

surface to form a coating.  Regardless of the type of spray equipment and coating material (wire 

or powder), thermal spraying is involved with projection of molten or semi-molten particles 

against the substrate material.  As the particles impact the surface, they are flattened and form 

thin splats or lamellae (Figure1.1).   The splats bind to the substrate and to each other.  The 

flattened particles build up and form the coating.  Thermal spray systems typically consist of a 

gun, which uses combustible gases or an electric arc; gas control console or power supply;  and a 

powder or wire feeder [2]. 
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The High Velocity Oxygen Fuel (HVOF) thermal spray process has been basically 

developed to produce extremely high spray velocity.  The system consists of six major 

components, including powder feeder, control unit, gas & fuel cylinders, spray gun, and air 

compressor.  Fuel (Propane), air and gas (O2 ) are adjusted in the control unit to produce the 

required combustion reaction with the specified temperature.  Powder is injected into the system 

using nitrogen gas as a carrier, which is propelled at a high pressure to the surface (Figure 1.2).  

Combustion of the gases provides the exhaust velocity that plays a major factor in accelerating 

the particles sufficiently to achieve adequate bonding.  The kinetic energy of the particles is so 

great, in fact, that most porosity, typical in a traditionally applied coating, is essentially reduced 

[4]. 

Low porosity and denser coatings are more wear resistant and can provide more 

protection per thousandth of an inch applied [1].  There are many parameters that need to be 

adjusted and optimized to achieve the best bonding with optimum coating quality.  Among the 

key variables are surface preparation parameters such as grit type, blasting conditions, grit feed 

rate and sample surface roughness, or operational parameters like powder feed rate, stand off 

distance, gun pressure, work piece transfer speed and work piece surface temperature [26]. This 

work aims to investigate the effects of varying HVOF spray parameters on the structure of 

Inconel-625 coating (Ni 21.5-Cr 8.5-Mo 3-Fe 0.5-Co). Results can be utilized to optimize the 

coating performance according to the intended applications. 
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Figure1.1  Schematic diagram of thermally sprayed spherical particle impinged  
      onto a flat substrate, [Pejryd, 1998]. 
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Figure1.2  Schematic diagram of HVOF spray system, [Sulzer Metco, 2002]. 
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1.2  INTIATION OF THERMAL SPRAY COATING  

Thermal spraying was first discovered and used in the beginning of last century and 

research in this field progressed ever since.  The recognized beginning of Thermal Spraying is 

believed to be in 1911 in a flame spray process that was developed by Schoop from Switzerland.  

Other major thermal spray processes include wire spraying detonation gun deposition (invented 

by R.M. Poorman, H.P. Sargent, and H. Lamprey and patented in 1955), plasma spray (invented 

by R. M . Gage, O. H. Nestor, and D. M. Yenni and patented in 1962), and high velocity oxygen 

Fuel (invented by G. H. Smait, J. F. Pelton, and R.C. Eschenbach and patented in 1958), [32]. 

1.3 THERMAL SPRAY COATING TYPES  

The group of thermal spray processes includes flame spraying, arc spraying, plasma 

spraying, detonation gun spraying, and (HVOF) spraying. 

1.3.1  Flame  Spray Process 

Flame spray process uses combustible gas as a heat source to melt the coating material 

(Figure 1.3).  This process is basically the spraying of molten material onto a surface to provide a 

coating. Coating material in both powder and wire form can be sprayed.  The heat source is fuel 

gas–oxygen flame.  Different fuel gases may be used including acetylene (C2H2) and propane 

(C3H8).  The particle velocity is low (40 m/sec) because of the relatively low pressure and low 

flow rate [9]. 
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Figure 1.3  Schematic diagram of the flame spray process. 
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1.3.2 Arc Spraying Process   

In the Arc Spray Process a pair of electrically conductive wires are melted by means of 

an electric arc (Figure 1.4).   The molten material is atomized by compressed air and propelled 

towards the substrate surface.  The impacting molten particles on the substrate rapidly solidify to 

form layers of coats.  Electric arc spray coatings are normally denser and stronger than their 

equivalent combustion spray coatings. Low running costs, high spray rates and efficiency make it 

a good tool for spraying large areas and high production rates. 

Disadvantages of the electric arc spray process are that only electrically conductive wires 

can be sprayed and if substrate preheating is required, a separate heating source is needed.  The 

main applications of the arc spray process are anti-corrosion coatings of zinc and aluminum and 

machine element work on large components [2]. 

1.3.3  Detonation Gun Process  

The Detonation gun basically consists of a long water cooled barrel with inlet valves for 

gases and powder (Figure 1.5).  Oxygen and fuel (acetylene most commonly) is fed into the 

barrel along with a charge of powder [23].  A spark is used to ignite the gas mixture and the 

resulting detonation heats and accelerates the powder to supersonic velocity down the barrel.  A 

pulse of nitrogen is used to purge the barrel after each detonation. This process is repeated many 

times a second.  Operation frequency is typically four to eight cycles per second, giving a 

relatively low spray rate of 0.5 to 2 Ib/hr (0.3 to 0.9 Kg/hr) [ 3]. The high kinetic energy of the 

hot powder particles on impact with the substrate result in a build up of a very dense and strong 

coating [13]. 
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Figure 1.4  Schematic diagram of the electric arc spray. 

  8



  

 

 

 

 

 

 

Figure 1.5  Schematic diagram of the detonation gun spray system. 
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1.3.4  Plasma Spray Process 

The Plasma Spray Process is basically the spraying of molten or heat softened material 

onto a surface to provide a coating. Material in the form of powder is injected into a very high 

temperature plasma flame, where it is rapidly heated and accelerated to a high velocity (Figure 

1.6).  The temperature of the gas can be 15,000-20,000oC, depending on the gas used.  The hot 

material impacts on the substrate surface and rapidly cools forming a coating. Typical thickness 

applied by the plasma spray process is from 100 to 200 mills depending on the application and 

the type of material.  

Plasma spraying has the advantage that it can spray very high melting point materials 

such as refractory metals like tungsten and ceramics like zirconia unlike combustion processes.  

Plasma sprayed coatings are generally much denser, stronger and cleaner than the other thermal 

spray processes with the exception of HVOF and detonation processes. Plasma spray coatings 

probably account for the widest range of thermal spray coatings and applications and makes this 

process the most versatile.  Disadvantages of the plasma spray process are relative high cost and 

complexity of the process [32]. 
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Figure 1.6  Schematic diagram of the plasma spray system. 
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1.3.5  High Velocity Oxygen Fuel (HVOF) Spraying 

The High Velocity Oxygen Fuel (HVOF) Thermal Spray Process is basically the same as 

the powder flame spray process except that this process has been developed to produce extremely 

high spray velocity (Figure 1.7).  This process is relatively new compared to other thermal spray 

Methods.  Fuel (kerosene, acetylene, propylene and hydrogen) and oxygen are fed into the 

chamber, combustion produces a hot high pressure flame which is forced down a nozzle 

increasing its velocity. The coating material, which is a powder, is fed into the high energy gas 

stream where the expanding gas forces the particles through a nozzle at supersonic velocity.  Gas 

velocity have been measured in the range from 1,500 to 2,000 m/s (4,900 to 6,500 ft/s), on the 

order of five times the speed of sound [23].  Flame temperature is relatively low, on the order of 

2,900oC (5,250oF), making it difficult to spray ceramics and refractory metals.  Since dwell time 

(time when the powder is in the flame) is short, heat transfer to large powder particles may not be 

sufficient.  It requires finer powder particle size and tighter particle size distribution than other 

processes. The Ideal Stochiometric combustion equation for propane is: 

                C                3283 5OH + 8322 /222004 HCmolKJHHCO −=∆+  

The compressed air pinches and accelerates the flame and acts as a coolant for the HVOF 

gun [13].  The coatings produced by HVOF are similar to those produce by the detonation 

process.  HVOF coatings are very dense, strong and show low residual tensile stress or in some 

cases compressive stress, which enable thicker coatings to be applied than previously possible 

with the other processes [13].  The very high kinetic energy of particles striking the substrate 

surface does not require the particles to be fully molten to form high quality HVOF coatings.  

This is certainly an advantage for the carbide type coatings and is where this process really excels 

[12]. 
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HVOF coatings are used in applications requiring the highest density and strength not 

found in most other thermal spray processes. New applications, previously not suitable for 

thermal spray coatings are becoming viable [6]. 
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Figure 1.7   Schematic diagram of the HVOF spray system. 
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1.4 COMPARISON BETWEEN THERMAL SPRAY PROCESSES  

The different thermal spray processes described have different characteristics.  As shown 

in Table 1.1 the heating temperature and particle velocity affect the coating properties.  Both 

spray distance and powder feed rate as a setting parameters produce different heating temperature 

and particle velocity.  The HVOF- and D-Gun spray processes are characterized by higher 

particle velocities, consequently, the coated layers exhibit higher density and bond strength than 

coating produced by other processes [4]. 

Numerous feedstock materials are commercially available for powder spraying (Table 

1.2). Nickel-based materials including Inconel-625 which is of our interest in this study, produce 

coatings that are generally hard and resistant to oxidation [17]. They may be used for mid-range 

to high-temperature service applications with some capable of service temperatures up to 1000°C 

(1850°F) [10]. Chemical compositions for these materials range from stainless steel type 

materials to super alloys, as well as NiCrAl and NiCoCrAl materials.   
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Table 1.1   Characteristic of thermal spray processes and coatings, [2]. 

Spray Process Temperature 
(oC) 

Velocity 
(m/sec) 

Adhesion 
(MPa) 

Porosity 
(%) 

Flame Spray (Powder) 3100 60-70 6-10 7-12 

Flame Spraying (Wire) 3100 120-140 10-15 5 

Arc Spraying  7000 100-170 10-20 3-15 

Plasma Spraying  15000 150-600 20-70 1-8 

Detonation Gun Spray  4200 600-800 60 <1 
High Velocity Oxygen 
Fuel (HVOF) 2750 600-1200 >70 1-2 

 

 

 
Table 1.2 Powder and wire feedstock materials [13]. 

 

Powder/Wire 
Types 

Material Types 

Self-Fluxing 
Powders Cobalt Base Nickel Base  

Abradable  
Powders Al Base Cobalt 

Base Copper Base Nickel Base 

Ceramic Powders Al Oxide Chrome 
Oxide Titanium Oxide Zirconium Oxide 

Metal Alloy 
Powders Al. Base Co Base Cu Base Iron Base Mo Base Ni Base 

Carbide Powders Chrome Carbide Tungsten Carbide 

Arc Wires Pure Metals Al Base Cu Base Iron Base Nickel 
Base 

Tin 
Base 

Combustion Wires Pure metals Al Base Cu Base Iron Base Ni Base Tin 
Base 
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1.5 HVOF COATING PROPERTIES AND APPLICATIONS 

1.5.1 Restoration of Worn Machine Parts 

The restoration of worn machine parts to their original dimensions and the build up of 

improperly designed or fabricated components were the earliest uses of thermal spray coatings.  

The reason why HVOF is preferred and used other than welding is due to the absence in 

distortion and heat affected zone, minimal residual stresses and less in oxidization.  In the repair 

processes there are some characteristics need to be attained such as low shrinkage, ability to meet 

thick deposits, good adhesive and cohesive strength, finish characteristics compatible with the 

component, low cost feed stock and application hardware, and high deposition rate and 

efficiency. 

1.5.2  Erosion-Corrosion Resistance 

The adverse effect of fluids on a solid surface is the result of the complex interaction of 

chemical and physical forces.  Direct exposure to liquids, gases, and particulate solids can 

quickly produce chemical corrosion or erosion of a solid surface. The high-speed movement of 

these corrosive fluids prevents the formation of protective oxides and permits this hostile 

interaction of corrosion or erosion to take place. Cavitation occurs when pressure changes in the 

liquid lead to the formation and collapse of vapor bubbles. This produces high-pressure shock 

waves that can destroy metallic surfaces. Particles within the fluid can impact the surface, 

damaging it even further [24].  HVOF with it’s different powder characteristics could suit most 

applications to minimize the erosion or corrosion of the internal parts of the industrial 

equipments.   The repair shops could customize it’s requirements with the presence of the HVOF 
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coating.  For instance, a carbon steel pump shaft could be coated with Inconel-625 to increase its 

corrosion resistance.  The same shaft could be enhanced in terms of wear resistance if coated 

using Tungsten Carbides (WC) [2]. 

1.5.3   Wear Resistance 

The single most common use for thermal spray technology is to retard and control wear.  

HVOF are used to enhance the hardness and finish characteristics of repaired surfaces, to 

minimize the effects of mechanical wear, and extend product life.  In doing so, maintenance and 

operational costs are reduced and productivity and profits are increased. While there are several 

different wear phenomena that occur, such as abrasive wear, adhesive wear, fretting or sliding 

wear, they have a common result: surface material is lost, ultimately causing a functionally 

significant change in dimension and impaired performance.  Mastering the wear process will 

directly affect the equipment reliability and durability.  

1.6  PARAMETERS AFFECTING THE HVOF COATING           
       CHARACTERIZATION  

There are many parameters that have a direct effect on the HVOF coating 

characterization.   These could be either surface preparation parameters such as grit type, blasting 

conditions, grit feed rate and sample surface roughness or operational parameters like powder 

feed rate, stand off distance, gun pressure, work piece transfer speed, work piece surface 

temperature and different equipments from different manufacturer produce different coatings 

structure  [31]. 
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1.6.1 Powder Feed Rate  

The powder feed rate represents the amount of powder injected to the system.  The 

powder feeder is the system that controls the flow of the powder utilizing the nitrogen gas as a 

carrier.  The recommended powder feed rate by the HVOF equipment manufacturers 

(Sulzermetco) for the Inconel-625 is in the range 5 to 20 Ib/hr.  If the amount of powder is very 

high the probability of having non-melted particles in the surface is high [26]. 

1.6.2 Spray Distance 

The spray distance is how far the spray gun is from the work piece.  The recommended 

spray distance by the HVOF equipment manufacturer (Sulzermetco) for the Inconel-625 is in the 

range of 9 to 12 Inches.  If the spray distance is very small, the probability of having overheating 

in the substrate is high and if the spray distance is too big, the particles temperature will drop 

before it hits the surface.  This drop in temperature will affect the coating bonding [19]. 
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1.6.3   Scope of the Work 

Since HVOF coating finds wide application in industry, investigation into influence of 

coating parameters on the resulting coating properties, such as bonding strength, miocrostructure 

including void formation, interface properties and wear resistance are essential. 

In the present study, the influence of the stand-off distance (distance between the gun 

nozzle exit and workpiece surface), powder feed rate on the microstructure, wear resistance, 

electrochemical response and the tensile bonding of the coating is investigated experimentally.  

To achieve the mentioned objective, an experiment is designed to include two levels of stand-off 

distance and two levels of powder feed rate.  In order to secure standards, the work piece were 

prepared in accordance to Sulzermetco (HVOF equipment manufacturer) standards, and it was 

tested according to ASTM C 633 for tensile, ASTM G-5 for electrochemical test.  The coatings 

of the workpiece were achieved at Mechanical Services Shops Department while microstructure 

analysis, jet impingement test and electrochemical test were conducted in the Research and 

Development Center R&DC in Saudi Aramco.  The tensile bonding tests were carried out at the 

advanced material science lab of KFUPM.   
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Chapter 2 
 
 

LITERATURE REVIEW 
 
 

2.1  REVIEW OF PREVIOUS STUDIES   

The following section is a brief review of the previous investigations carried out in this 

field with special attention being paid to the investigations carried out on HVOF coating 

parametric, microstructural, wear and corrosion experimental studies. 

Berget, J., [2] Carried out an experimental analysis on the influence of different HVOF 

spray parameters and powder characteristics (WC-Co-Cr) on the structure, erosion and erosion-

corrosion properties of the sprayed coating.  Spray parameters investigated were: (i) the energy 

input, (ii) powder feed rate and (iii) the spray distance.  All of these parameters were critical for 

the coating porosity and the fraction of retained tungsten carbide (WC). A high energy input 

increased decomposition of WC and thereby a reduction fraction of retained WC.  The porosity at 

high energy input was low.  An increase in the powder feed rate increased both the fraction of 

retained WC and the porosity.   A long spray distance (12-15 inches) may have also increased 

WC decomposition.  Powder characteristics studied include: (i) average WC particle size (ii) 

relative amount of Co and Cr in the metallic binder phase and (iii) powder grain size distribution.  

The powder and coating were characterized by different methods including Scanning Electron 

Microscope (SEM), Optical Microscope and X-ray diffraction (XRD).  Erosion and erosion-
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corrosion properties of the coatings were investigated by specially developed equipment.  

Smaller WC particles were superior from the point of view of erosion and erosion corrosion 

performance.  An increase in Cr content increased the erosion-corrosion resistance at low erosive 

conditions.  Powder with narrow grain size distribution resulted in coating with higher quality 

than corresponding powder with wider grain size distribution. 

Hackette, C., [8] Carried out an experimental study of the influence of the gas dynamics 

on the HVOF particles properties and results showed the effect of these properties on the coating 

integrity.  Within this experimental process a hot combustion driven, supersonic jet was used to 

propel particles onto a surface, thus forming metal coating that provides wear, temperature, and 

corrosion resistance. The author studied the fundamental physics of the spray process and 

confirmed this study with several experiments.  A simple numerical model was developed to 

predict the behavior of the spray particles in the HVOF jet.  The results of computation indicated 

that independent control of spray particle velocity and temperature was possible through 

schematic variation in combustion chamber pressure and particle injection location within the 

nozzle.  This hypothesis was confirmed through a series of experiments in which stainless steel 

particle velocity and temperature were measured using trace velocimeter and two color radiative 

pyrometer, respectively. Combustion chamber pressure had strong effect on particle velocity.  

Injection location was used to control the residence time of a particle within the flow, thus 

allowing manipulation of particle temperature without a measurable effect on velocity.  The 

results of these experiments revealed that the behavior of the compressible gas flow of the HVOF 

spray process strongly influenced spray particle properties, which, in turn, affect coating 

properties.  
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Shimizu, Y., et al., [27] carried out an experimental study on the enhancement of the 

HVOF coating deposition efficiency and hardness.  Three different guns of varied geometry were 

designed and tested experimentally.  The spraying process was simulated numerically for each of 

the nozzle geometries to understand their effectiveness in influencing the velocity and 

temperature of the sprayed particles.  The coating was characterized using optical and scanning 

electro microscope (SEM) , Micro-Vicker hardness test and X-Ray Difractometry (XRD).  Result 

showed that with the use of convergent and divergent gun type nozzle , the extent of the melting 

of the alumina particles will be increased.  This was exhibited by an increase in the deposition 

efficiency (amount of material adhered to amount of material sprayed) to the extent of 45%.  

However, the sharp change in the convergent and divergent nozzle geometry, result in fusion and 

agglomeration of alumina particles leading to the spitting during the spraying process.  The result 

showed that alumina coating of excellent hardness 920-1290 HV, with a relatively dense 

microstructure could be obtained in HVOF method irrespective of the gun nozzle geometry, 

providing the spraying parameters are properly controlled. 

Skandan, G., [28] studied the wear properties of HVOF sprayed hard coatings produced 

from different powders feed stock materials.  The different materials were WC/Co conventional 

powder produced from Metco with size 2-5 micro meter and the second material were WC/Co 

nano particles produced from Nanodyne powder Co. with size 0.03 micro meter in diameter.  The 

third material which is the one of interest is a combination of the two materials produced by 

blending the conventional powder with the nano-phase powder (Multimodal), followed by heat 

treatment to bond the agglomerated particles together.  For each powder, a sliding wear test were 

conducted using ball and disk tribometer at sliding speed of 18-30 mm/s, load 9.8 N and sliding 

distance from 24-12000 m.  Wear volume of both WC/Co disk and  Si3N4  ball were determined 

and showed that multimodal powder offers about 50% improvement in abrasive and sliding wear 
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properties relative to the other materials.  Amount of decarburization were decreased from 83% 

in Nanograined WC/Co to 10% in conventional powder and to 1.7% in multimodal powder. 

  Krepski, R., [13] studied the erosive wear, cavitation erosion on the HVOF and plasma 

spray caused by turbulent flow of pumps and turbines.  This flow can induce local pressure drops 

below the vapor pressure of the liquid, nucleating gas bubbles.  The shock waves from the 

collapse of these bubbles causes the surface damage.  The author studied several thermal spray 

coatings that might suit applications such as metallic materials, ceramics and carbides.  Results of 

the studies reveal that the main problem of metallic coating is the presence of oxide films 

between splats, which provide preferred path for crack propagation.  Spray and fuse chromium 

was found to be the best of metallic materials tested. Aluminum oxide which has high inherent 

strength and alumina-zirconia which has a dispersion of submicron zirconium oxide are good 

performers.  For this application, the fact that ceramic splats are incompletely bonded to each 

other may be an advantage that allow some elastic response under the oscillating stress field. 

Legoux, J.G., et al., [14] made an experimental study on four different High Velocity 

Thermal Spray Guns using one powder WC-10Co-4Cr.  A parametric study was carried out for 

each type.  These parameters are Nozzle size, gas rate, and powder feed rate.   The results were 

compared in terms of deposition efficiency, substrate temperature, particle velocity, particle 

temperature, porosity, hardness and volume loss.  Spray conditions were ranked according to 

porosity, hardness and deposition efficiency.  

Gourlaouen, G., [7] made an experimental study on a stainless steel sample to show the 

effect of spray parameters on the coating properties.  HVOF spraying process is widely used to 

improve components life in service.  However, many parameters can affect metallic coating 

properties, especially unmelted particles and oxidation level.  Flame parameters such as 

combustion ratio and temperature, are of prime importance. The aim of their work was focused 
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on the influence of those parameters on stainless steel coating as a substrate.  The conclusion of 

this study showed that the influence of the combustion temperature was small.  On the contrary, 

an increase of the flame power led to higher oxidation with low unmelted particles rates and the 

deposition efficiency was improved.  Among the three parameters studied, the combustion ratio 

had significant influence.  Its increase, in the domain considered, was involved with a decrease of 

the oxygen content, and consequently of the micro hardness, but an increase of the number of 

unmelted particles resulted in a decrease of the deposition efficiency.   

Brandt, O., [5] studied the wear resistance of different carbide coatings using standard 

abrasive wear testing methods. Two commercial HVOF flame spray processes were used to 

apply various tungsten carbide coatings.  Process parameters influencing the coating properties 

were compared with regard to wear resistance. Standard tests used were (ASTM G 65-85). The 

total wear length was 80m (divided into four steps) using a steel wheel instead of a rubber wheel.  

The weight loss was measured on a laboratory scale of 0.0001 gm.  The wear test carried out at 

room temperature without cooling.  The test specimen was constructed of Steel ST 37–II (I = 

60mm, w = 35mm, t = 10mm) with a 0.5 mm coating of HVOF WC 17% Cr.  Results showed 

that wear resistance of the coating increased with increased fuel/oxygen flow ratio, and this is 

mainly due to the enhancement gained in the energy input.  The best wear resistance and the 

highest hardness were reached with specific flame condition (fuel/oxygen flow ratio of 0.2).  An 

oxidizing flame condition (fuel/oxygen flow ratio <0.6) yielded a lower hardness of the coating 

with corresponding decrease in wear resistance.  Reducing the spray distance from the base line 

condition 250 mm (9.8 Inches) led to an increase in the hardness and wear resistance.  Increasing 

the spray distance increased the hardness of the coating as well, but its wear resistance decreased. 

 

 

  25



  

 

Suman, S., [30] studied the morphology, composition and erosion-cor-rosion behavior of 

Ni-Cr-Si-B cermet coating overlaid on a carbon steel substrate by high-velocity oxygen-fuel 

(HVOF) thermal spraying. He studied the coating in three different conditions as sprayed 

followed by a resin impregnation process carried out under vacuum and as sprayed followed by a 

high temperature vacuum fusion operation.   His experimental work involved using an impinging 

jet facility with suitable electrochemical monitoring.  The electrochemical experimental results 

were supported by post test microscopical analysis using light microscopy, scanning-electron 

microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD) and atomic 

force microscopy (AFM) to characterize changes in the microstructure of the coatings after 

erosion-corrosion.  The microscopy of as sprayed and vacuum sealed coatings showed almost 

similar microstructures typical for thermal sprayed coatings with good adherence and low 

porosity, however after vacuum fusion, the microstructure changed significantly forming a basal 

with characteristics different from the bulk coating away from the interface.  Erosion-corrosion 

tests were carried out in a solid-free sea-water impinging jet of velocities 17, 25, 50 and 72 m/s at 

temperatures of 180oC and 500oC.  The behavior of the coatings was followed by undertaking 

electrochemical (E/C) monitoring during the impingement corrosion process.  This involved 

anodic polarization scans which have demonstrated the effect of the impinging jet and increased 

temperature in reducing the resistance of the coating under erosion-corrosion conditions in 

comparison with corrosion in static sea-water and corrosion at ambient temperature.  
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Chapter 3 
 

 

EXPERIMENTAL SET-UP 
 

 

3.1  HVOF SPRAYING EQUIPMENT 

A Sulzer Metco Manual Hybrid Diamond Jet (using propane fuel gas) with DJ9H - Hand 

held gun body, 9MP-DJ powder feed rate control, and DJFW precession flow meter were used to 

produce the coating (Figure 3.1(a)).  Air, fuel and oxygen were maintained at pressures 105, 90 

and 150 psi, respectively.  The work specimen was maintained at 300 oF and rotating at 250 

rev/min using a Dean Smith B-5 lathe machine (Figure 3.2). 
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3.1.1 Spraying Gun 

The Sulzermetco HVOF spraying process uses oxygen and fuel gas to produce a high velocity 

gas stream in the gun nozzle.  This gas stream, when ignited as it exits the gun, becomes 

luminous white, supersonic flames that contains diamond-shape shock waves (hence the name 

“Diamond Jet”) (Figure 3.1(b)).  The combination of high fuel gas and oxygen flow rates and 

high pressure lead to the generation of supersonic flame.  The gun could accommodate different 

fuel gases including acetylene (C2H2), ethylene (C2H2), propylene (C3H6), propane (C3H8) and 

Hydrogen (H2).  The coating material, which is powder, is fed into the high energy gas stream 

where the expansion gas forces the particles through the nozzle at supersonic velocity.  The high 

kinetic energy of the powder gives well bonded coatings with high bond strength and low 

porosity [2].   HVOF systems from different manufactures may be quite different. Dave Harvey 

et al [9] describe different HVOF systems and important differences between them. Significant 

details making them quite different from each other are powder feed position in the spraying gun 

and gas flow rates.  In some systems the powder is fed in the combustion, in other systems is fed 

in the exhaust barrel.  Feeding powder in the combustion chamber, like the gun we are using’ 

maximize the heat transfer to the powder particles. This increase in the heat transfer, in parallel 

with the spray distance and the powder feed rate variable variation plays a major roll in coating 

oxidation. Hybrid cooled spraying gun specifications are available in Appendix A. 
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Figure 3.1(a)   High velocity oxygen fuel system (Sulzermetco, 2002). 

 

Figure 3.1 (b)  Schematic diagram of DJ HVOF spraying gun (Sulzermetco, 2002). 
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3.2  POWDER MATERIAL 

Nickel base alloy (Diamalloy 1005) manufactured by Sulzermetco company with 45 ± 11 

µm size was used.  These particles had spherical shape and are similar to Inconel-625 properties 

and composition (Table 3.1).  It is used in corrosive and erosive applications like seawater 

environments. 

 

Table 3.1.  Chemical Composition of Diamalloy 1005 Powder. 

 

Chemical Composition Powder Material 

Ni Cr Mo Fe Co 

Inconel-625 

 

66.5 21.5 8.5 3 0.5 
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             Figure 3.2  Photograph of the HVOF system and the work piece during spraying. 
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3.3  WORKPIECE 

The work piece material was Carbon Steel AISI 4140 of cylindrical shape and had the 

following dimensions: Diameter (D) = 1 inch and Length (L) = 6 inches.  Microstructure 

investigations were made on a cross section of the work piece (Figure 3.3).  Workpieces were 

fabricated at Saudi Aramco, Mechanical Services Shops Department (MSSD). 

 

3.3.1  Sample Preparation 

One of the major problems is how to relate the sample spraying to the actual work, which 

is difficult since the samples are very small in comparison to the actual parts.  According to 

MSSD capabilities, the samples were spayed in special mechanism that is closely related to the 

actual work (Figure 3.4).  The limitation of the system was that the samples have to be sprayed 

while it is rotated.   The mechanism will make varying the spray distance more easy, in which we 

could spray more than one sample with different spray distance at one setup. Since the objective 

was to coat the samples tip, an epoxy was added to the cylinder surface.  This epoxy prevented 

the bonding in between the coating and the cylinder outer surface.  Another advantage of having 

this setup is to allow making the adhesion test according to ASTM C 633. 
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                      Figure3.3  Schematic diagram of the coated sample. 
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                 Figure 3.4   Photograph of samples mechanism. 
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3.3.2  Surface Preparation 

Since the quality assessment is part of this study objective, proper attention has been paid 

to the condition of the substrate surface prior to spraying.  Samples were cleaned using a steam 

cleaning process.  The main advantage of the cleaning is to remove any contamination at the 

surface.  To ensure the removal of the hydrocarbon on the surface, the samples were sent to the 

oven for preheating.  Preheating temperature was 300oF and the duration was two hours. The 

samples were grit blasted using (Al2O3) grit blasting sprayed at pressure of 80 psi (Figure 3.5).  

Roughness was characterized by a profilometer, which yields an arithmetic average of peak and 

valley positions relative to the mean surface plane.  The profilometer reading was from 20 to 30 

µm.   After finishing the grit blasting the samples were sent immediately for spraying before it 

suffers from moisture contamination. 
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                   Figure 3.5  Photograph of grit blasting chamber. 
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3.4  HVOF PROCESS PARAMETERS VARIATION  
 

3.4.1 Powder Feed Rate  

The powder feed rates were varied from 5 lb/hr to 20 lb/hr (Table 3.2).  These two 

variations represent the lowest and the highest rate recommended by the equipment 

manufacturer.  Wide variation was chosen to see the real effect of the powder feed on the coating 

integrity.  The literature pointed out that if the powder feed rate increases at constant energy 

input, the same amount of energy can be used to melt a high amount of powder, but particle 

temperature will decrease.  The reduction in the particle temperature will result in a more porous 

coating.  Coating build up rate also can be affected by the powder feed rate.  When the build up 

rate is high, the probability of having cracks within the surface region will increase.  

 
Table 3.2   Spray parameters for the coated samples. 

 
 

Coating Number of Samples 
Fabricated 

Powder Feed 
Lb/hr 

Spray Distance 
Inches 

1 3 5 9 

2 3 5 12 

3 3 20 9 

4 3 20 12 
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3.4.2 Spray Distance 

Spray distance control is an important factor that affects the coating structure.  In this 

experiment, the lowest (9 inch) and highest (12 inch) recommended by the equipment 

manufacturer were applied (Table 3.2).  Many factors can be affected by the spray distance 

variation such as coating oxidization, porosity, particle temperature at impact, loss of kinetic 

energy and coating build up rate.  Possibility of having more oxidization is increased when the 

spray distance is lengthened. At longer spray distance, the particles temperature will decrease and 

the coating will be more porous. Conversely, the substrate will be over heated and the percentage 

of unmelted particles will increase when the spray distance is short.  Different powders with 

different spraying parameters are available in Appendix A. 

 

3.5  COATING CHARACTERIZATION  
 

3.5.1  Microstructure Analysis  

SEM (Philips XL-30) equipped with energy dispersive spectrometer (EDS), Model DX-4 

by EDAX (Figure 3.6) and optical microscopy (REICHERT MEF4 A) were used to characterize 

the structure and the porosity of the coating.  Samples were cut in half using a diamond cutoff 

wheel. The samples were ground and polished using ECOMET3 disc at rotational speed of 120 

rpm using water as a lubricant.  The equipment used was manufactured by Bulhler.  The time at 

each step was three to four minutes.   Each coating condition had two identical samples for each 

microstructural analysis.  The characterization was done for each case separately. Porosity was 

quantified using the image analysis software integrated with the electron microscope.  This 

occurred through capturing the digital image of the coated sample using the backscattered 

electron detector and optimizing the gray levels of the sample surface defects such as porosity. 
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3.5.2 Microhardness Test Preparation  

Microhardness was measured using a Leica Vm Htmot hardness tester that has a test load 

of 500 g according to ASTM E-384.  The microhardness test was considered for each coating set.  

For instance, variation of hardness with spray distance, variation of hardness with powder feed 

rate and variation of hardness with coating thickness for each case.  The hardness tests were 

taken in the coated area of the prepared sample. Nine vertical and horizontal readings were taken 

for each sample with optical microscope observation.  The specimens were metallographically 

polished. The indenter is a pyramidal of normal dimensions and could be charged with a load of 

0.1 N to 50 N.  As per literature review, measurements under low load such as (0.5N) describe 

the micohardness under different lammela and measurements under  high load such as (10, 15 N) 

describe the microharness of the whole coating [13]. 
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                      Figure 3.6  Photograph of ESEM (Philips XL-30). 
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3.6  ELECTROCHEMICAL TEST PREPARATION 

The procedure for corrosion rate determination in the simulated solution by the 

electrochemical technique as per ASTM–G 5 can be summarized as: 

¾ Preparing the electrochemical cell (Figure 3.7). 

1. The cell, reference electrode and graphite were cleaned with distilled water.  The 

electrodes were put in their position in the cell. 

2.  Around 800 ml of sea water solution was put in the cell. 

3. The specimen to be tested was fitted in the working rod of the cell and placed in its 

position in the cell. 

¾ Running the electrochemical test  

1. The electrochemical cell is connected to the EG&G Model 273-A potentiostat (Figure 

3.7). The test, Tafel or polarization is chosen and the input data are given to the setup 

screen of the computer. 

2. Wait for 40 to 60 min for CorrE r to stabilize. (  is defined as the open circuit 

potential measured just prior to the start of the run.)  

CorrE

3. The test was run from the setup screen.  It took around one hour for the Tafel run and 10 

minutes for the polarization run. 

4. Output curves and results (βanode, βcathode, , RCorrI p, Corrosion rate in mpy) were given in 

the output screen. 

5. Calculate the corrosion current (Icorr) and the corrosion rate (C.R) utilizing the equation; 

[2] 

                                  ( ) pca

ca
corr R

IRC 1
3.2

.. ∗
+∗

∗
=

ββ
ββ

α  
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 Where:   
 
   =aβ Anodic Tafel Slope. 

     =cβ  Cathodic Tafel Slope 

           Polarization Resistance =pR

 
The Tafel test was done only once for each coating condition to obtain Tafel constants  

anodeβ and cathodeβ  [15]. anodeβ  and  cathodeβ  values were used in the linear polarization runs.  The 

input data for Tafel and polarization runs are given in Table 3.3.  Sample Tafel and polarization 

curves are given in Figures 3.8(a) and 3.8(b).  

 

 Table 3.3.   Input data for  Tafel and linear polarization of the electrochemical  
                              techniques. 
  
 

Input Data  

Tafel Polarization 
Minimum Potential  -0.25 V -0.1 V 

Maximum Potential  +0.25V +0.1 V 

Scanning rate 0.16 mV/s 0.16 mV/s 

anodeβ  - From Tafel test 

catghodeβ  - From Tafel test 

Sample Area Depend on the  
sample 

Depend on the sample 

Sample Density  8.51 8.51 

Equivalent weight 26.41 26.41 
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                       Figure 3.7   Photograph of  EG&G Model 273 potentiostat. 
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        Figure 3.8(a).  Sample plot of linear polarization resistance (lpr) for coating 1. 
     

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

        Figure 3.8(b).  Sample plot of  Tafel polarization for bulk material (Inconel-625). 
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3.7  JET IMPINGEMENT TEST PREPARATION 

Erosion tests were carried out in a 1% sand contaminated seawater impingement jet at 

velocity of 40 m/s, temperature of 50oC and pressure of 200 psi and 250 psi after heating, (Figure 

3.9).  This test simulates the effect of particles and fluid high flow on the solid HVOF coated 

surfaces at the worst summer temperature. Special Teflon holders were fabricated to ensure the 

prevention of any anticipated leakage.  The timing of the first run was one day (24 hours) and the 

second run was 11 days (264 hours).  Microscopic analysis using scanning-electron microscopy 

(SEM) were performed to characterize changes in the microstructure of the four different 

coatings after erosion.  In addition, weight loss measurement was considered to provide a 

measure for the amount of material loss that each coating could produce based on its spray 

parameters. 

  45



  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
                    Figure 3.9  Photograph of jet impingement testing machine. 
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3.8  TENSILE BOND STRENGTH  

The tensile bond strength evaluates the degree of adhesion of a thermally sprayed coating 

to a substrate.  The test was conducted as per ASTM C 633 standard.  The test consists of coating 

jointly two cylindrical specimens same base material used, one specimen is coated and the other 

not by an adhesive epoxy of tensile strength exceeding 12,000 Psi to ensure the failure of the 

HVOF coating before the adhesive, (Figure 3.10).   

The test specimen is 1 inch diameter and the thickness of the applied coating is 0.020 

inches that comply with the used standard.  The surface of the coated and the non-coated 

specimen prepared mechanically using SiC paper (Grade 60).  During the grinding process water 

was used as lubricant and cleaner.  The prepared specimen was cleaned using acetone to remove 

any contamination. 

The adhesive epoxy used is Ultrabond 100 that could resist up to 12,000 Psi if prepared 

and cured properly.  To have full cure, the sample are exposed to high temperature for certain 

period of time, while maintaining the contact pressure applied.  Full cure is obtained upon 

exposure of the sample to 150oC for 80 min.  The two joined specimen are hold using a newly 

fabricated and modified Aluminum holder that hold both specimen aligned vertically. 

The test is conducted using INSTRON 8807 tensile testing machine.  The machine 

clamping on the specimen is hydraulic, that requires precise alignment of the samples.  

Concentricity check for all samples are performed to ensure having zero misalignment and 

whenever there is misalignment, it is removed using lathe machine. 
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   Figure 3.10 Schematic diagram of the HVOF coated specimen for tensile bonding test. 
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3.8.1  Testing Specimen Preparation 

In the work done in this thesis all test specimens were designed in a way to adopt this 

kind of test.  From such a setup it was too easy to get more than one sample sprayed at the same 

time Figure 3.11.  The coating thickness was 0.020 inches which comply with the standard used.  

After spraying, the coated specimen were prepared by making fine grit blasting and then cleaning 

both surfaces coated and non coated by acetone to take out any contamination. 

3.8.2  Bonding Adhesive 

An adhesive epoxy that could exceed 12,000 psi was not available with many adhesive 

manufacturers.  The epoxy used in this test was a German made epoxy (HTR Ultrabond 100) 

manufactured by HTR Hamburg GMBH, with a tensile strength exceeding 14,000 psi.  To have 

full curing of the adhesive, the samples were exposed to high temperature 190oC for 35 min.  The 

rate of tensile load was between 0.013 mm/s to 0.021 mm/s.
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                  Figure 3.11 Preparation setup of the sample for tensile bond strength. 
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Chapter 4 
 
 

RESULTS 
 
 
 
4.1  COATING MICROSTRUCTURE ANALYSIS 

Many spray parameters could affect the coating microstructure.  These could be either 

surface preparation parameters such as grit type, blasting conditions, grit feed rate and 

sample surface roughness or operational parameters such as powder feed rate, stand- off 

distance, gun pressure, workpiece transfer speed, output energy and work piece surface 

temperature. 

In the present study, only two parameters were varied, the stand off distance and the 

powder feed rate.  The reason why we have selected these two parameters is that these are the 

only ranged parameters as per the manufacturer specification, while the rest are all fixed.  

The given range of the stand-off distance is (9 inches to 12 inches) and for the powder feed 

rate is (5Ib/h to 20Ib/h).   

4.1.1  Porosity   

Specimen was prepared for porosity test by cutting the sample in half using a 

diamond cutoff wheel.   Care was taken to insure that the cutting wheels engages first into the 
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coating then the substrate to avoid detaching.  The sectioned specimen was embedded in the 

resin for mounting. The samples were then grounded and polished using ECOMET3 disc at 

rotational speed of 120 rpm and using water as a lubricant.  The time at each step was three 

to four minutes.   Each coating condition has two identical samples for each microstructural 

analysis.  The porosity quantification was done for each case separately. 

 

Porosity was quantified using the image analysis software integrated with the electron 

microscope.  This was done through capturing the digital image of the coated sample using 

the backscattered electron detector and optimizing the gray levels of the sample surface 

defects such as porosity. 

Coatings 1 and 2 were sprayed applying low powder feed rate 5 lb/h with different 

spray distances (Table 3.2).  Variation of the porosity on both coatings is shown in Figures 

4.1(a, b) and 4.2(a, b). Coatings 3 and 4 were sprayed applying high powder feed rate 20 Ib/h 

with different spray distances as shown in Figures 4.3(a, b) and 4.4(a, b). A summary of two 

runs for porosity measurements with the four different coatings is shown in Table 4.1. Figure 

4.5 shows the porosity variation with powder feed rate.  It is observed that as the powder feed 

rate increase coating porosity increase.  Figure 4.6 shows the porosity variation with the 

spray distance. It is noted also that as the spray distance increases porosity increases, and it 

was also shown that the powder feed rate variation is the determining factor of porosity 

change. An area of (200µm x 200µm) was selected for image analyzer measurements to 

ensure representative data (Figure 4.7). 

 
 Figures 4.8(a, b, c, d) show random variation of porosity with coating thickness that 

vary from 300µm to 500µm.  Figure 4.8 does not show significant dependence of porosity 
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with thickness.  Note that this variation of coating buildup might result from the variation of 

the coating build up rate during spraying process.  Porosities within the coating have 

distribution of sizes and could vary from (5.0 µm x 10 µm) to (6.0 µm x 21.0 µm) as shown 

in Figure 4.9. 

 

Table 4.1.  Porosity readings of the coated samples 
 
 

Coating Run 1 
Porosity % 

Run 2 
Porosity % Average 

1 2.1 1.8 1.95 

2 2.9 3.1 3 

3 5.2 5.1 5.2 

4 5.7 5.9 5.8 

 
 

  53



  

 
 

 
 
 
 
 

 

 

 

 

 
Coating

SubstratSubstrate e

Coating 

 

 

 

 

 

              Figure 4.1(a)   Optical micrograph of coating 1 (500x). 
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              Figure 4.1(b)  SEM image of coating 1 (2000x). 
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               Figure 4.2(a)   Optical micrograph of coating 2 (500x). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

              Figure 4.2 (b)   SEM image of coating 2 (2000x). 
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                Figure 4.3(a)  Optical micrograph of coating 3 (500x). 

 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                Figure 4.3(b)  SEM image of coating 3 (2000x). 
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  Figure 4.4(a)   Optical micrograph of coating 4 (500x). 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
                                           
                                          Figure 4.4(b)  SEM image of coating 4 (2000x). 
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      Figure 4.5   Porosity variation vs powder feeding rate. 
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                                      Figure 4.6   Porosity variation vs stand-off distance. 
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           Figure 4.7  SEM image of the area of the measured porosity  
           (200 µm X 200 µm) for coating 4. 
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      Figure 4.8(a).  SEM image of the change of porosity with thickness  
       for coating 1.  

 
 

   
 
 
 
 
 
 
 
   
 
 
 
 
 
 
 
 
     
   
       Figure 4.8(b).  SEM image of the change of porosity with thickness 
       for coating 2. 
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    Figure 4.8(c)   SEM image of the change of porosity with thickness  
    for coating 3.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
           Figure 4.8(d)  SEM image of the change of porosity with thickness 
            for coating 4. 
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    Figure 4.9 SEM image showing the porosity sizes for coating 3 at 2000x. 
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4.1.2  Oxidation Test Results 
 

Oxygen content on the coating has a great effect on the coating integrity.  Different 

setting parameters may produce different oxygen content.  Oxygen content was estimated 

using a semi quantitative analysis of the energy dispersive spectrometer (EDS), Model Xl-30 

by EDAX attached to the Philips scanning electro microscope, model XL-30.  

Three different readings were taken for coating 1 with approximate area of (17.1 x 

15.1) µm2 and all shows similar results (average oxide content of 4.2 wt%).  Due to the high 

work load on the machine (EDS analyzer), the oxide content for coating 2, 3 and coating 4 

were measured only twice. A flat polished sample was analyzed.  Since the oxygen atomic 

weight is very small in comparison with iron (Fe), chromium (Cr)…etc, this technique of 

analysis will quantify the oxygen with minimum accuracy through other elements like iron 

Fe, Cr, Ni…etc will have high accuracy.  It is thought that the oxide in the coating is 

primarily chromium oxide (Cr2O3), (Figures 4.10-4.13). 

 

4.1.2-1 Spray Distance   

In coatings 1 and 3 the spray distance was 9 inches, and it shows low oxidization 

content, (Figure 4.10 & 4.12).  However, Figures 4.11 & 4.13 show a slight increase of the 

oxide content in the coating sprayed at 12 inches.  This indicates that as the spray distance 

increases, coating oxide content increases. 
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4.1.2-2 Powder Feed Rate 

A summary of two run for coating oxide content variation is shown in Table 4.2. 

Figure 4.14 shows that the stand off distance is the more influencing parameter on coating 

oxidization. Figure 4.15 shows that there is a slight variation on the oxide content if powder 

feed rate were changed.  It is noted that as both spray distance and powder feed rate increase, 

oxide content in the coating increase.  Also, the effect of spray distance is more pronounced 

at low feed rate. 

 
 

Table 4.2.  Oxygen content in the coated samples. 
 
 

Coating Run 1  
Oxide Content Wt %

Run 2 
Oxide Content Wt %

Average Oxygen 
Content Wt % 

1 4.2 4.1 4.15 

2 8.0 8.2 8.1 

3 7.1 6.9 7 

4 9.5 9.3 9.4 
 
 
 
 

4.1.2-3  Coating Structure Change  

Electrochemical etching on the coating surface shows that, the coating internal 

structure is changing from coating to another according to the sprayed parameters (Figure 

4.16 (a, b)).  This variation in the structure could be related to porosity content as well 

fraction of unmelted particles.  The complex morphology of the coating buildup made 

quantitative optical analysis questionable. 
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 Figure 4.10 Amount of oxide in coating 1 “(17.7x15.1) µm2 area analysis: 2000x”. 
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ure 4.11   Amount of oxide in coating 2 “(17.7x15.1) µm2 area analysis: 2000x”. 
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re 4.12   Amount of oxide in coating 3 “(17.7x15.1) µm2 area analysis: 2000x”. 
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ure 4.13   Amount of oxide in coating 4 “(17.7x15.1) µm2 area analysis: 2000x”. 
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         Figure 4.15 Variation of coating oxygen content with spray distance. 
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            Figure 4.16(a) Optical micrograph of electrochemical etched surface of  

                          coating 2. 500x. 
 

 

 
  Figure 4.16(b) Optical micrograph of electrochemical etched surface of  
                            coating 3. 500x. 

  72



  

4.2  MICROHARDNESS TEST RESULTS 

4.2.1 Variation of Microhardness Along Coating Thickness 

Microhardness test was performed with a 500 g test load and it was taken in the same 

samples used for porosity quantification, in which both have the same surface preparation 

mentioned before.  Figure 4.17 shows the locations of microhardness test indenter for all 

coated samples.  The microhardness reading of each coating is shown in Table 4.3.  Figure 

4.18 shows variation of microhardness with coating thickness.  An average of the three points 

(1, 4, 7), (2, 5, 8) and (3, 6, 9) were considered for the microhardness variation along 

thickness for the four coatings.   It is noted that as we go far from the substrate, coating 

microhardness decrease for all examined coatings. 

 
Table 4.3 Microhardness readings for the four coated samples (Vicker). 

 

 1 2 3 4 5 6 7 8 9 Avg. Stan. 
Dev. 

Coating 1 445 440 421 450 443 419 448 443 418 436 13 

Coating 2 438 426 404 439 428 403 438 423 402 422 15 

Coating 3 405 397 340 410 385 396 408 378 395 390 21 

Coating 4 330 315 300 318 313 298 316 336 301 317 12 
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       Figure 4.17 Location of the microhardness indenter for coating 1 
                                    (300 µm x 300 µm). 
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  Figure 4.18 Variation of microhardness with coating thickness. 
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4.2.2   Microhardness Variation with Spray Distance 

Coating 1 and coating 3 were sprayed at minimum spray distance (9 inches) while 

coating 2 and coating 4 where sprayed at maximum spray distance (12 inches).  Figure 4.19 

shows that as the spray distance increased, the measured microhardness decreased for the 

same feed rate.  This behavior can be clearly seen when comparing coatings 1 and 2; and 

coating 3 and 4. 

 

 

4.2.3  Microhardness Variation with Powder Feed Rate  

Coating 1 and coating 2 were sprayed at minimum powder feed rate (5 Ib) while 

coating 3 and coating 4 where sprayed at maximum powder feed rate (20 Ib).  Figure 4.20 

shows that as the powder feed rate increased, the resulted coating exhibited reduced 

microhardness at the same distance of spray.  Comparison of coatings 1 and 3; and coatings 2 

and 4 reveals this behavior. 
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             Figure 4.19  Variation of microhardness with spray distance. 
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          Figure 4.20 Variation of microhardness with powder feeding rate. 
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4.2.4 Variation of Surface Microhardness  

Table 4.4 shows the surface microhardness variations for the four coatings at five 

different points.  Figure 4.21 shows the locations were the microhardness is taken at the 

coating surface.  Results of the measurements reveal that there is insignificant difference 

between the microhardness measurements at the surface of a given coating.  However, as 

both spray distanced and powder feed rate increased, coating surface microhardness 

decreased as can be inferred from Figure 4.22.    Results indicate that variation of the 

microhardness is more pronounced with variation in the applied feed rate. 

 
 

Table 4.4   Surface microhardness reading for the 4 coatings. 

 
 Point 1 Point 2 Point 3 Point 4 Point 5 Average Stand. 

Dev. 
Coating 1 435 442 429 451 446 440 8 

Coating 2 424 412 416 423 417 418 5 

Coating 3 390 385 397 401 387 392 6 

Coating 4 341 334 347 348 337 341 6 
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              Figure 4.22  Micrhardness variation with powder feed rate at the coating surface. 
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4.3 CORROSION TEST RESULTS 

Figure 4.23 shows the linear polarization curves for coating 1 and coating 2.  The 

linear polarization method was utilized to determine the effect of the different spray 

parameters on coating corrosion resistance.  Sea water was selected as the electrolyte, 

because most of the application of the Inconel-625 is on the corrosive environment.  The 

corrosion test was made according to ASTM G 5.  Table 4.5 lists the measured Rp and the 

calculated ICorr for all coatings.   

 

4.3.1 Corrosion Resistance with Spray Distance  

The Rp (Polarization Resistance) value of coating 1 is more than the Rp value of 

coating 2.  It can be shown that coating 1 is better than coating 2 in terms of corrosion 

resistance.  Coating 1 and coating 2 both have the same powder feed rate (5 Ib/h), but they 

differ in the spray distance.  

The plot presented in figure 4.24 shows the linear polarization of coating 3 and 

coating 4.  The slope of both plots reveals that Rp value of coating 3 is more than Rp value of 

coating 4, (Table 4.5).  This indicates that coating 4 has high susceptibility to corrosion than 

coating 3.  Since both coatings have the same powder feed rate (20 Ib/h) and they differ in 

the spray distance only, this means that at high powder feed rate, the spray distance effect on 

coating corrosion is more pronounced.  
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4.3.2  Corrosion Resistance with Feed Rate  

 

Figure 4.26 shows the effect of powder feed rate variation on the corrosion rate of the 

four different coatings in reference to the bulk material (Inconel-625 solid rod).  Coating 1 

and coating 2 are much better in terms of corrosion resistance than coating 3 and coating 4.  

It is evident that as the powder feed rate increased, the corrosion rate increased. 

 
 
 
 
 
 

Table 4.5.   Rp and ICorr values for coatings 1-4 with values of the bulk material  
      for reference. 

 
 

Material Βa Βc B Rp ICorr 

Bulk (Solid Rod 
Inconel 625) 

0.067 0.108 0.017978 10.14 0.001773 

Coating 1 0.064 0.109 0.017532 3.96 0.004427 

Coating 2 0.065 0.109 0.017704 2.64 0.006706 

Coating 3 0.064 0.109 0.017532 0.731 0.023984 

Coating 4 0.064 0.11 0.017591 0.465 0.037831 
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    Figure 4.23   Linear polarization plot for coating 1 & 2. 
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       Figure 4.24  Linear polarization plot for coating 3 & 4. 
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  Figure 4.25  Linear polarization plots for all coatings in reference with the bulk 
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Figure 4.26   ICorr for the different coatings as well as ICorr  for Inconel-625   

bulk material. 
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4.4  EROSION TEST RESULTS 

Figures 4.27(a, b) show the surfaces of coating 1 and coating 2 after implementing the 

jet impingement test (erosion test).  Weight loss measurements for all coatings for one day 

(24 hours) run are shown in table 4.6(a) and for 11 days (264 hours) run are shown in Table 

4.6(b).  Two samples of each coating condition were tested and the results showed a slight 

variation in between the samples of similar coating condition.  However, the variation in 

between the coating conditions was clear.  These measurements were taken before and after 

cleaning the tested samples and no significant effect of cleaning on weight measurements 

was observed.   

The final weight loss measurements were taken after cleaning.  Figure 4.28 shows 

that the coating erosion is highly affected by the powder feed rate than spray distance.  It was 

noted also that as both spray distance and powder feed rate increased, coating erosion 

increased (Figure 4.29).   
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      Figure 4.27 (a)  Erosion effect due to flow impingement on coating 1 
                           surface at 50x. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                 Figure 4.27(b)  Erosion effect due to flow impingement on coating 2 
                                 surface at 50x 
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Table 4.6(a).  Average weight loss for the four coatings (erosion test) for one day run. 

 

Coating Initial Wt 
(g) 

Final Wt (Before 
Cleaning) (g) 

Final Wt (After 
Cleaning) (g) 

Wt Loss 
(g/day) 

Avg. Wt 
Loss 

(g/day)  
14.0930 14.0844 14.0787 0.0143 1 22.8460 22.8360 22.8310 0.015 0.0146 

13.4512 13.4357 13.4312 0.020 2 13.1994 13.1704 13.1644 0.035 0.0275 

13.5385 13.5295 13.5012 0.0373 3 13.1995 13.1899 13.1565 0.0429 0.0401 

16.4889 16.4791 16.3989 0.090 4 13.2127 13.2039 13.1140 0.0987 0.0943 

 

 

Table 4.6(b).  Average weight loss for the four coatings (erosion test) for 11 days run. 

 

Coating Initial  
Wt (g) 

Final Wt  
(Before Cleaning) 

(g) 

Final Wt (After 
Cleaning) (g) 

Wt Loss 
(g/day) 

Avg. Wt 
Loss 

(g/11day) 
14.0787 14.0135 14.0072 0.0715 1 22.8310 22.7436 22.7380 0.093 0.0822 

13.4312 13.3058 13.3002 0.131 2 13.1644 12.9429 12.9369 0.2275 0.1792 

13.5012 13.2089 13.2028 0.2984 3 13.1565 12.8615 12.8563 0.3002 0.2991 

16.3989 15.6396 15.6339 0.765 4 13.1140 12.2815 12.2757 0.8383 0.8017 
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        Figure 4.28 Summary of comparison between the sp
                              feed rate effects on coating erosion. 
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                                       Figure 4.29   Erosion variation with powder feed rate. 
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4.5 RESULT OF BONDING TEST  

The tensile bond strength test was performed using INSTRON 8870 tensile testing 

machine at a minimum recommended rate of 0.03 in/min. The epoxy used in this test was a 

German made epoxy (HTR Ultrabond 100) manufactured by HTR Hamburg.GMBH with a 

tensile strength ,as per manufacturer specification, exceeding 14,000 Psi.  To have full curing 

of the adhesive, the samples were exposed to high temperature 150oC for 80 min as per 

ASTMC633.  Total of 8 samples were tested, two samples from each coating. One sample 

prematurely failed during testing due to its misalignment.   

Due to the non-uniformity of the adhesive distribution in between the coating and the 

substrate, the test of the first sample failed at 0.035 KN load.  This problem was avoided by 

using another technique to ensure having a uniform distribution in between the coating and 

the substrate. This technique was to put a tape around the epoxy to hold it during the heating 

process and to put the sample with the holder in the oven on vertical position rather than 

horizontal to allow the adhesive to distribute evenly around the coating.   Other techniques 

were used also to enhance bonding in between the coated and the non coated samples during 

the test.  These techniques are:-  
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a)  New Method of Surface Preparation 

The first surface preparation was done using fine grit blasting, but since in some of 

the coated samples, the failure occurs on the epoxy at the surface of the sample and at low 

load, fine machining of the surface was used instead as another try.    In this case also, the 

epoxy failed before the coating at very small load. The last method of surface preparation 

was to grind both the coated and the non-coated samples using 60 Grade SiC paper grinder 

and then clean them twice, first using water and then acetone immediately before putting the 

adhesive to remove any contamination on the prepared surface. 

b)   Fabricating New Sample Holder 

A new Aluminum sample holder was fabricated with more precise alignment of the 

two joined samples (Figure 4.30).  This holder was fabricated because some of the samples 

failed during the set up of the machine due to their misalignment.  The holder was also 

modified to allow putting the tape around the adhesive after pressing. In addition, a 

concentricity check was made for all samples to ensure having minimum misalignment.   
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Table 4.7. Average fracture strength of the four different coatings. 
 

COATING AVERAGE FRACTURE STRENGTH (Psi) 
Coating 1 (5 Ib/hr     9 inches) 10081 
Coating 2 (5 Ib/hr   12 inches) 10302 
Coating 3 (20 Ib/hr   9 inches) 7343 
Coating 4 (20 Ib/hr 12 inches) 4428 
 
 
 
4.5.1 Coating Fracture Strength  
 

Figure 4.31 show a sample of σ-ε curves for each coating.  It is shown that coating 1 

and 2 with high powder feed rate exhibit high fracture strength than coating 3 and 4 with low 

powder feed rate.  The plot of these curves don’t show a straight lines as used to be in the σ-ε 

curves for solid metals and this is might be due to the microcracks between the coating and 

the epoxy. 

Table 4.7 shows the average of two fracture strength tests of the four different 

coatings tested.  These data show that the powder feed rate is more influencing parameter on 

coating bonding than spray distance.  As the powder feed rate increased, coating bonding 

decreased. 

 

4.5.2 Variation of Fracture Strength with  Feed Rate and Spray Distance  
 

Figure 4.32 shows the variation of coating fracture strength with powder feed rate and spray 

distance.  It is shown that as powder feed rate increases, fracture strength of the coating 

decreases.  In this case, the spray distance is an affecting parameter at high powder feed rate 

(20 Ib/hr) rather than at low feed rate (5 Ib/hr). 
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Figure 4.30  Aluminum sample holder for aligning coated and non- 

coated specimens. 
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   Figure 4.31  Sample σ-ε curves for each coating. 
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      Figure 4.32  Coating fracture strength variation with powder feed rate. 
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Chapter 5 
 
 

DISCUSSIONS 
 
 
 
5.1    EFFECT OF SPRAY PARAMETERS ON COATING 

MICROSTUCTURE 
 

Studying the effect of spray parameters such as (powder feed rate and spray distance) 

on the coating microstructure is vital in determining thermal spray coating quality.  By 

analyzing a cross section of four different coating conditions, it is possible to determine 

differences between these coatings in terms of porosity and oxide level. 

 

5.1.1 Porosity Variation Due to Powder Feed Rate and Spray Distance  
 
 

Increasing spray distance produces more porous coating (Figures 4.6).  This is 

probably because at long distances, particles temperature drop which results in low bonding 

between splats.  Regardless of the amount of powder injected to the system, porosity has a 

proportional relation with the spray distance within specified range.  This range for Inconeel-

625 powder is 9-12 inches. 
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Figure 4.6 shows that coating 1 (5 Ib/h feed rate and 9 inches spray distance) is the 

best in terms of low porosity.  However, this level of porosity as per the literature review is 

the maximum that HVOF coating should produce in comparison with other thermal spray 

systems (Table 1.1).  The reason is that in this study the parameters (spray distance and 

powder feed rate) considered are the maximum and the minimum values recommended by 

the manufacturer or something else need to be adjusted or modified in the spraying process.  

It was expected that the results of the study will reveal the effect of the parameters variation 

on coating quality and might not be used as optimization for the HVOF coating system 

unless it considers all other values in between the specified range and many other affecting 

parameters other than spray distance and powder feed rate.  

It was also clear that the powder feed rate has more effect on porosity change than 

spray distance (Figure 4.6).  This is probably because when increasing the powder feed rate 

from 5 Ib/h to 20 Ib/h at constant energy input, the same amount of energy is used to melt a 

high amount of material.  Hence, one should expect to find non-melted particles within the 

coating.  The presence of non-melted particles increases coating porosity and reduces the 

bonding between splats.  Producing a high amount of porosity up to 5.8 % (Table 4.1), at 

high powder feed rate is an indication that the powder feeder should be set near to its 

minimum value.   

The results suggest that high quality, HVOF sprayed coatings of low spray distance 

and low powder feed rate provide significantly better coating quality in terms of low porosity 

and consequently better coating integrity than the coating produces at high powder feed rate 

and high spray distance.  This work also indicates that there is a relationship between coating 
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porosity and coating hardness, corrosion and erosion resistance that will be discussed in 

detail in the following sections. 

 
5.1.2 Oxidation Variation Due to Spray Distance and Powder Feed Rate  

 

EDS x-ray particle analysis for coatings 1-4 reveals that oxygen content in coating 1 

and coating 3 with minimum spray distance ( 9 inches) is lower than coating 2 and coating 4 

with maximum spray distance (12 inches), (Figures 4.10-4.13).  It is assumed that at longer 

spray distance with fixed feed rate the oxidation level is higher and this is probably due to the 

reduction of the momentum of the particles (splats).  The reduced momentum increases the 

traveling time of the particles.  This enhances the probability of oxidization of the particles.  

In other words, the reduction in momentum will allow particles to slow down and oxidize 

before it hit the substrate surface. The effect of spray distance on coating oxidization is more 

pronounced than the effect of powder feed rate (Figure 4.14).   

Increasing the powder feed rate with fixed spray distances increased the oxide content 

(Figure 4.15).  This is probably due to the reduction in the cooling rate within the coating 

when the amount of powder injected is high.  One should keep in mind that the quantitative 

measurement of oxygen content is less accurate as compared to heavier elements such as Fe 

and Ni.  Thus, the oxygen measurements are used for comparison purposes rather than 

absolute values. 
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5.2    EFFECT OF SPRAY PARAMETERS ON COATING 

MICRHARDNESS 
 

The Vicker microhardness test is used for all coatings studied.  The microhadnness 

measurements were made on longitudinal and transverse sections.  In this work, the 

microhardness test is used to determine the effect of both spray parameters (spray distance 

and feed rate) and coating thickness on HVOF coating microhardness.  

 
5.2.1 Microhardness Variation Due to Powder Feed Rate and Spray 

Distance 

 Microhardness measurements on both coating cross section and coating surface reveal 

that coating 1 and coating 2 with low powder feed rate are harder than coating 3 and coating 

4.  This is might be due to the differences in coating porosity in which the more porous 

coating has less hardness.  Since the increment of the porosity was due to the increment of 

the spray distance and the powder feed rate, one could think that the best hardness properties 

could be obtained when the spray distance and the powder feed rate are low. Also, the effect 

of powder feed rate is more influencing at high spray distance than low spray distance 

(Figures 4.19-4.20).  Results shows that coating porosity is more influencing on coating 

micrhardness than coating oxidation.  This is probably due to the small variation in coatings 

oxygen content than porosity.  

 

 

 

 

  102



  

5.2.2 Microhardness Variation with Coating Thickness 

Table 4.3 and Figure 4.18 show that a way from the substrate surface, the hardness 

decreases.  However, this reduction is minimal and comes from the weakness of the splats 

bonding far from the surface.  This slight difference in the coating hardness does not 

significantly affect the overall hardness of the coating. This is primarily due to the uniformity 

of porosity distribution within the coating.   

 

5.3  INFLUENCE OF SPRAY PARAMETERS ON COATING 
CORROSION RESISTANCE  

 
Another advantage of using HVOF coating is to reduce corrosion on equipment 

internal parts.  However, this significant feature could be affected by spray parameters 

variation.  This variation in spray parameters such as spray distance and powder feed rate 

could increase or decrease the coating porosity or oxidization ,as shown before, that may 

result in variation in the coating corrosion resistance.  Although Inconel-625 is recognized as 

a good corrosion resistance, process parameters variations could significantly affect it.  

Applications of the HVOF powder are the best suited in seawater where it faces aggressive 

corrosive environment. 
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5.3.1 Corrosion Resistance Variation Due to Spray Distance 

 
Table 4.5 shows the ICorr values for all coatings in reference with the bulk material 

(Inconeel-625 rod).  This is mainly aimed to see the difference between the Inconel-625 as a 

bulk material from that in powder form.  The bulk material shows an excellent ICorr value that 

result from having less porosity and oxidization. 

It is clear in this study that porosity and oxide level can significantly affect the 

coating susceptibility to corrosion.  To have better corrosion resistance coating, spray 

distance has to be short with its specified range (9-12 Inches).  

  

 
5.3.2 Corrosion Resistance Variation Due to Powder Feed Rate 

The results of the ICorr variation with powder feed rate shown in Figure 4.26 reveal 

that as powder feed rate increased coating corrosion increased.  In addition, the effect of the 

powder feed rate is more pronounced at long spray distance.  This is supporting the earlier 

comments that, the more porous, oxidized coating is the less corrosion resistance. 

A possible explanation from the observation that the more porous coating has more 

susceptibility to corrosion is that, during the operation process of the equipment the 

electrolyte will penetrate the coating through its porosity and the solution will be stagnant in 

these voids making a good environment for corrosion.  Another important variable that 

enhances corrosion is the presence of non-melting particles within the coating.  These non-

melted particles will produce different structures in the coating that will support having 

enhanced corrosive environment. 
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Increasing the powder feed rate produce more porous coating with the presence of non-

melted particles.  This results in reduced corrosion resistance of the HVOF coating.   

 
 
5.4 INFLUENCE OF SPRAY PARAMETERS ON COATING 

EROSION  RESISTANCE  
 
 

The reason why this study considered erosion as a wear test among all other types of 

wear tests is to obtain the results that reflect the practical work of the Inconeel-625 powder in 

the industrial field.   The coated components in the equipments are subjected to high flow 

impingent of particles contaminated solution.  This high flow will impinge the coating 

surface resulting in surface erosion.   

 Weight loss measurements for all coatings show that coating 1 is better than coating 2 

and coating 3 is better than coating 4 in all cases for the two and the 11days experimental run 

(Table 4.6 (a,b)).  This indicates that variation in the spray distance will affect the coating 

resistance to erosion regardless of the powder feed rate.  Results indicate that as powder feed 

rate increased coating erosion increased at long spray distance (Figure 4.28).  Figure 4.29 

shows that the powder feed rate is more affecting parameter in terms of coating erosion than 

spray distance.  This is because as powder feed rate increased, porosity and oxidation 

increased, microhardness decreased and coating erosion resistance decreased. 
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5.5  BONDING TEST ANALYSIS OF THE HVOF COATING 

 
As indicated in the ASTM C 633 used in this test, the significance and use of such a 

test is to control quality and should not be considered to provide an intrinsic value for direct 

use in making calculations, such as in determining if a coating will withstand specific 

environmental stress.  Because of residual stresses in thermal spray coatings, actual stress 

depends upon the shape of a particular coated part.  Also, in use, a coating may be stressed in 

a more complex manner than is practical for a standard test.     

In this study, coatings with minimum powder feed rate showed high bonding strength.  

However, coatings with high powder feed rate showed low bonding (Table 4.7).  This is 

probably because as the powder feed rate increased, porosity increased, hardness decreased 

and tensile bonding decreased.  Although there is a clear variation in tensile bonding with 

respect to spray distance effect at high powder feed rate, this effect is almost negligible at 

low feed rate and this indicates also that powder feed rate is the most influential parameter 

(Figure 4.32) 
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Chapter 6 
 

 
CONCLUSIONS 

 
 
 

The effects of the spray distance and the feeding rate of HVOF coating were studied. 

Four different coatings were analyzed : i) minimum spray distance with minimum powder 

feed rate (Coating 1); ii) maximum spray distance with minimum powder feed rate (Coating 

2); iii) minimum spray distance with maximum powder feed rate (Coating 3); and iv) 

maximum spray distance with maximum powder feed rate (Coating 4).  Microhardness, 

corrosion, erosion and bonding tests were used to test these coatings performance.  

Microstructural investigations for the four coatings conditions were carried out in an attempt 

to characterize these conditions and determine the coating quality prior to testing. 

In light of the results of this study, microstructral investigations reveal that the best 

coating integrity are obtained with low powder feeding rate and low spray distance within the 

manufacturer specified range.  This combination produced less porosity and less oxide level 

in the coating.  On the other hand, the worst condition of the microstructral study was 
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obtained when the coating was produced at maximum powder feeding rate and maximum 

spray distance (Coating 4).  Coating 4 exhibited the highest oxide content and porosity within 

the coating structure. 

Microhardness results show that the best coating microstructure has the highest 

hardness and vise versa. This is probably due to low porosity in the coating.  Hardness test   

results obtained from coating cross section is compatible with the hardness test results  

obtained from the coating surface.   

Corrosion studies also revealed that the coating with low porosity and low oxide     

content was the coating that had lower ICorr.  Comparison of the Inconeel-625 powder and 

Inconel-625 solid bar reveals the existence of slight difference in corrosion resistance for the 

best coating integrity (Coating 1) and larg difference for the worst coating integrity (Coating 

4).  Moreover, the spray distance parameter showed greater influence on  ICorr than the 

powder feeding rate.  This is closely related to increased oxide content. 

The four coatings conditions are also compared using erosion test.  The results show 

that the resistance of erosion decreased with increased in oxide content and porosity level.   

Although, there was some difference between the four coating conditions during the first 24 

hours erosion test, HVOF coating of all samples showed an excellent resistance to erosion.   

 

Tensile bonding studies also revealed that, the powder feed rate is the mostly 

affecting parameter on coating bonding.  Also, the effect of spray distance is more at high 

powder feed rate.  HVOF coating with minimum powder feed rate has a fracture strength of 

more than 10,000 Psi which is an excellent adhesion for thermal spray coating. 
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The present study of HVOF sprayed Inconel-625 coating has demonstrated that 

spraying process variables are important factors where corrosion and erosion are concerned.  

Low porosity and oxide content generated from low powder feeding rate and short spray 

distance within the specified range from the equipment manufacturer, produce hard coating 

surface with good corrosion and erosion resistance.  These coatings are also applicable for 

the severe corrosion and erosion environments of different industrial applications. 
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Chapter 6 
 
 

RECOMMENDATIONS 
 
 
 

Mechanical Services Shops Department at Saudi Aramco (MSSD) is implementing 

the thermal spray as a repair facility since 1986 utilizing plasma spray and since 1990 

utilizing HVOF.  More than 400 jobs on yearly basis are performed by MSSD saving the 

company around ($ 3,000,000/year) which makes studying such case important.  Because of 

that, the following recommendations could be highlighted to (MSSD). 

• Avoid setting the HVOF powder feeder at its maximum flow rate (20 Ib/h) or near to 

that. This will produce more porous and oxidized coating.  5 to 12 Ib/h is 

recommended. 

• Adjust the spray distance of the gun to be between 9-10 Inches.  This will produce the 

best coating quality, less porosity, less oxidization, more corrosion and erosion 

resistance.  If the spray distance is too long, the temperature of the particle will drop 

and the coating becomes more porous.  Too short spray distance makes the control of 

the substrate surface temperature more difficult. 

• Utilize proper solvents to remove the aluminum oxide accumulated over the     

substrate that is caused by the grit blasting material.  This will enhance forming a 
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corrosion layer between the coating and the substrate. Some economical study for this 

case might be needed. 

• Carry out a technology item with King Fahd University of Petroleum and Minerals 

(KFUPM) to expand the utilization of the HVOF coating process in many different 

functions in the repair area than limiting the utilization for shaft coatings only.  

Conducting such a study will save Saudi Aramco a lot of money. 
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APPENDIX A 

 
 

SYSTEM SPRAYING PARAMETERS USING DJ9W SPRAYING GUN 
(SULZERMETCO 200) 

 
 
 
 
 

PRESSURE FLOWMETER READING FLOW-1 POWDER   FEEDER SPRAY 
PARAMETERS 

OXYGEN FUEL AIR OXYGEN FUEL AIR OXYGEN FUEL AIR N2 N2 AIR 
PRESS. PRESS. PRESS. F.M.R. F.M.R. F.M.R FLOW FLOW FLOW F.M.R. FLOW VIB 

SPR. 
RATE 

SPR. 
DIST. 

Coating 
Material 

  
 (Diamalloy) (bar) (bar) (bar)       NLPM NLPM NLPM   NLPM bar (Ib/hr.) (Inch) 

1003 10.3 6.2 7.2 24 40 50 152 72 399 55 12.5 1.4 5-20 9-12 
1004 10.3 6.2 7.2 24 40 50 152 72 399 55 12.5 1.4 5-20 9-12 
1005 10.3 6.2 7.2 24 40 50 152 72 399 55 12.5 1.4 5-20 9-12 
1006 10.3 6.2 7.2 24 40 50 152 72 399 55 12.5 1.4 5-20 9-12 
1007 10.3 6.2 7.2 24 40 50 152 72 399 55 12.5 1.4 5-20 9-12 
1008 10.3 6.2 7.2 24 40 50 152 72 399 55 12.5 1.4 5-20 9-12 

 
2003 10.3 6.2 7.2 24 40 50 152 72 399 55 12.5 1.4 5-15 7-10 
2004 10.3 6.2 7.2 24 40 50 152 72 399 55 12.5 1.4 5-15 7-10 
2005 10.3 6.2 7.2 24 40 50 152 72 399 55 12.5 1.4 5-15 7-10 
2006 10.3 6.2 7.2 24 40 50 152 72 399 55 12.5 1.4 5-15 7-10 
3001 10.3 6.2 7.2 24 40 50 152 72 399 55 12.5 1.4 5-15 7-10 
3002 10.3 6.2 7.2 24 40 50 152 72 399 55 12.5 1.4 5-15 7-10 

 
3004 10.3 6.2 7.2 24 40 50 152 72 399 55 12.5 1.4 5-15 7-10 
3005 10.3 6.2 7.2 24 40 50 152 72 399 55 12.5 1.4 5-15 7-10 
3006 10.3 6.2 7.2 24 40 50 152 72 399 55 12.5 1.4 5-15 7-10 
3007 10.3 6.2 7.2 24 40 50 152 72 399 55 12.5 1.4 5-15 7-10 
4006 10.3 6.2 7.2 24 40 50 152 72 399 55 12.5 1.4 5-15 7-10 
4008 10.3 6.2 7.2 24 40 50 152 72 399 55 12.5 1.4 5-20 7-10 
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APPENDIX B 
 

HYBRID COOLED SPRAYING GUN SPECIFICATIONS, 
[SULZERMECTO, 2000] 

 
 

 
 

 

Hybrid Cooling 
 

 

VARIABLE S.I. Units                           U.S. Units 
 

 
Gas Velocity 
 

 
2140 m/s 

 
7000 ft/s 

 
Combustion pressure 
 

 
6.9 bar 

 
100 psig 

 
Total heat output 

113 kw 
 

385,000 BTU/h 
 

Heat loss to water (cooling capacity) 8.8 kw 30,000 BTU/h 

 
Maximum inlet water temperature 

 
23.9 C 

 
75 F 

 
Minimum water flow 

 
9.51/min 

 
2.5 US gal/min 

Water Quality 
 

Drinking water quality or better 
 

Maximum Spray rate 150 g/min 20 lb/h 

Oxygen (O2) pressure 12 bar 170 psig 

Oxygen flow 307 NLPM  
700 SCFH 

Air pressure 7.2 bar 105 psig 

Air flow 439 NLPM 1000 SCFH 

 
NITROGEN (N2) carrier pressure 12.1 bar 175 psig 

Nitrogen carrier flow 18 NLPM 40 SCFH 

Propane (C3 H8 )Pressure 6.2 bar 90 psig 

WEIGHT-DJM gun body 1.24 kg 2.7 lb 

Weight – DJ8H OR DJ9H gun body 1.70 kg 3.7lb 

Weight-gun handle 0.23 kg 0.5 

Weight – front gun section 2.17 kg 4.8lb 
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