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In this thesis, a new technique for control system design is developed. It consists
of two steps: 1) design of an H ., state feedback control law; 2) recovering the achievable
performance using 2 state observer. The resulting controller will ensure internal
stability and under cerain conditions minimizes the H . -norm of the closed-loco
transfer function. The controller computations willreduce to solving one algebraic H .,
Ricatti equation compared to two algebraic H . Riccati equations using the H _design
method.

For discrete time systems, a recovery procedure for the LQG/LQR method using
current estimator for compensators with large processing time is introduced.

A simplified LQG/LTR frequency domain design method for SISO discrete time
minimum phase systems is developed. For this method, it is shown that the contro!ier
computations will reduce to selecting the zeros of the controller, and the poles of the
controller will be the same as the zeros of the plant.

Several design examples are used to illustrate the theoretical developments of
this thesis.
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INTRODUCTION

The last two decades have brought major developments in the design techniques
of multivariable feedback systems that can stabilize a plant despite its model
uncertainty and can also reduce the semsitivity of the systems to external plant
disturbances. The most known are the Linear Quadratic Gaussian with Loop Transfer
Recovery (LQG/LTR) and the H . design techniques. The objective of any design
method is to find a compensator to meet seme design specifications. These
sppdﬁaﬁmsrdmmmmhnlshbﬂity,smbﬂity-mm to modeling exrors and
good perfarmance.

An exposition of the LQG/LTR design method was given by Doyle and Stein
[12]). The philosophy of the LQG/LTR design method is to design a state feedback
loop with desirable performance and robustness properties assuming that all the states
are available for feedback (this is called loop shaping). Then, to recover those
properties using a state observer with appropriately selected gains which will provide
an estimate for the states of the system (this is called loop transfer recovery).
Specifically, 1f the plant is minimum-phase, then the state feedback loop can be
approximated (recovered) over a large frequency range by the loop with the
observer-based compensator. Since minimum-phase requirement is critical for good
Tecovery, this is a drawback to the applimtic;n of this method. However, experience
has been that the recovery procedure still works but the convergence breaks down near

the frequencies where the non-minimum phase zeros are. Moreover, loop transfer
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- recover. procedures - for non-minimum phase systems have been proposed [15], [13].
The LQG/LTR methodology has been applied to many MIMO feasibility studies
involving helicopters [1], submarines [24] and engines [29].

The application of LQG/LTR has been extended to design compensators for
discrete-time systems. Basically, the same design methodology wasattempted [28].The
results were inferior to that of the continnous-time case, becanse of the fact that
discrete-time feedback systems do not possess all the attractive features which are
properties are not guaranteed. Moreover, loop shaping for discrete-time systems is
more involved. The loop-shaping procedures used for discrete-time systems [28] are
still not as effective as its confinuous counterpart. Thus, there is a need to consider
other methods (e.g.H-method) of designing suitable state feedback gains that result
in loops with desired shapes.
forthe compensator processing time. When the processing time isnegligible (compared
to the sampling time) current estimators can be used which result in perfect recovery
[28].On the other hand, it is more appropriate to use prediction estimators when the
processing time is significant [26]. Here, we will show that current estimators can also
be used for the case of large processing time by introducing a unit-step delay in the
control loop.

It is shown in [9] that for minimum-phase continuous-time SISO systems, the
LQG/LTR design method centers on locating the zeros of the controller such that the
system has desired specifications and closed-loop stable. The poles of the controller
willbe the same as the zeros of the plant. In this thesis, we will show that this procedure
willbe also applicable to discrete-time systems and willresult in perfect recovery under
the condition of minimum-phase and negligible processing time.

A new approach to feedback design is the H . design method which was first
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-introduced by Zames [8]. Mathematically - the 7 _ control problem is to minimize a
weighted infinity norm of some closed-loop transfer function or a combination of
transfer functions over the set of controllers that satisfy the internal stability
requirements. In a typical H . control problem, the plant would incorporate additional
frequency dependent weights which are selecied o express particular stability and
performance specifications relevant to the design objectives. Selecting the weights in
the H . design method is an important part that requires engineering judgement and
experience. Many frequency domain control design problems can be formulated as H .
control problem, for example, sensitivity minimization problem, stability-robustness
problem (the general H . control problem) [15].

Frequency domain approaches have been initially proposed to solve the H.
control problem [5] [15], but the computation of the controller is rather involved.
Recently, considerable interest has been focused on state-space approaches for the
solution of the H . control problems, which reduced the general H . control problem
to solution of two algebraic Riccati equations [13].

H ..control problem with state feedback has been studied by several researchers
in recent years F18] [19] [23] [13]. 1t is shown that the H . state feedback gain for which
the closed-loop system is stable and the closed-loop transfer function is minimized,
can be obtained by solving one algebraic Riccati equation. An interesting result [23]
shows that if the measured outputs are the state of the system, then the infimum of the
H .norm of the closed-loop transfer function using linear static state feedback equals
the infimum of the H . norm of the closed-loop transfer function over all stabilizing
dynamic state feedback controﬁexs. This result motivates us to use a hybrid control
structure consisting of H ., state feedback gain and state estimator for the case when
all the states are not available for feedback. This new design method developed here
consists of two steps: assuming all the states are available for feedback, design an H .,

state feedback control which will minimize the H. norm of the state feedback
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closed-loop transfer function, then recover the achievable performance using a state
estimator. This method will be called H. state feedback with closed-loop transfer
recovery (H ./CLTR) and it will ensure internal stability and that the H . norm of the
closed-loop transfer function for stable plants is minimized. Moreover, the
computations of an H . /CLTR coatroller will invoive one algebrzic Riccafi equation
only.

An explicit development of H .. control problem for discrete-time system is not
yamname,amptﬁxmmewmkme-mfeedback[m[lm.Hm;m
suffer from some computational difficulties related to the solution ofa Riccati equation.
Therefore, the bilinear transformation will be used to transfer discrete-time problem
into continuous-time one, camry out the computations using continuous H. /CLTR
design method, then transform back the controller.

1.1 Thesis Contributions

- A new technique for control system design is developed. This design technique
consists of two steps: 1) assuming that all the states are available for feedback,
design H , state feedback control law which will minimize the H . norm of the
state feedback closed-loop transfer function; 2) recover the state feedback
closed—loop:_ transfer function using state observer. The resulting controller will

ensure inte(:'nal stability and for stable plants minimizes the H . norm of the
closed-loop transfer function

A recovery procedure using current estimator for discrete time systems with

large compensator processing time is introduced.
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- =~ A simplified LQG/LTR frequency domain design method for SISO minimum
phase discrete time systems is developed.

1.2 Organization of the Thesis

Chapter 1. Introduction.

Chapter 2. Continuous Time Feedback Control Systems and the H . /CLTR
Design Method

In this chapter basic definitions of continmous time feedback control systems and
controller synthesis techniques known as LQG/LTR and H . will be briefly reviewed.
The H _ state feedback with closed loop transfer recover (H . /CLTR) design method
is introduced. This new design method developed here uses the H_ state feedback
gains combined with state observer to design the compensator.

Chapter 3.  Discrete Time Feedback Control Systems and the H . /CLTR
Design Method

This chapter examines the same issues as chapter 2 but for discrete time systems.
A recovery procedure using current estimators for compensators with large processing
time is presented. The H./CLTR method explained in chapter 2 can be used with
bilinear transformation to design compensators for discrete time systems. A simplified

LQG/LTR frequency domain design method for SISO minimum-phase systems is
introduced.

Chapter 4. Examples

Chapter 4 presents several examples that illustrate compensator design



- - techniques for continuous -and discrete time systems.

Chapter 5. Conclusion.
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H_ICLTR H_ state feedback with Closed Loop Transfer Recovery

LT

Linear Time Invariant

-

H, norm: The H, norm is defined in the frequency domain for a stable transfer
matrix G{s)-as

172
Ic(sHl,: = (é[ trace[G(jw)'G'(jw)]dw)

H _norm : The H . norm is defined in the frequency domain for a stable
transfer matrix G5} as

16(s)].: = sup,. . 0[G(jw)]

The transfer function of a system with state space realization

x=Ax + Bu

y=Cx+ Du

is given by

A B
G(s)=[c D]

=C(sl-A)'B+D



.- -» - -Matrix Inversion Lemma-- --- -- - -~
If A and C are nonsingular nxm and mxn matrices, respectively. Then

[A+BCDY '=A"'-A'B[DA'B+C'Y ' DA™!
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-~ - - - -CHAPTER2
CONTINUOUS TIME FEEDBACK
CONTROL SYSTEMS AND THE H JCLTR DESIGN METHOD

2.1 Introduction

In this chapter basic definitions of continuous time feedback control systems are
) briefly reviewed. This includes plant model, uncertainties, type of inputs, control
objectives, and performance and robustness specifications. Also, in this chapter we
techniques we. shall be concerned with here are the linear quadratic Gaussian with
loop transfer recovery (LQG/LTR) and the H _ optimal control which is relatively a
new approach to feedback design. We shall state the main results of these methods.
" For more details, we refer the reader to [12], [20], [15], 28] for LQG/LTR method
and [15), 5], [13] for H. method and [24], [1}, [29], [21] for application of these
techniques to specific design examples. Also in this chapter, a new technique is
developed for control system design. In this technique we combine the H.
state-feedback method described in [18] with the Closed-Loop Transfer Recovery
(CLTR). This method will be called H J/CLTR technique.

2.2 Control System Description

2.2.1 Classical Feedback System

The block diagram of the standard feedback control system is shown in Fig.2.1.
It consists of the plant Gf5), compensator K(s) forced by command input (),

measurement noise () and disturbance (d). The measured variable (y) is corrupted
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u
R(s) G(s)

O

Fig.2.1 : Standard Feedback Control System
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-by the-noise (n).-The- compensator -K(s) determines the plant input u on the basis of
the exror e (e=r-y).The objective of the control system is to keep the ouiput (y) close
to the reference (7).

The dynamical behaviour of the plant is modelled in the time domain bya linear
time-invariant system as

2(t)=Ax(t) + Bu(t) (2.2.1-1)

y()=Cx(t)+ Du(t) (2.2.1-2)
where x € R*, y € R™, u € R”are the state output, and input vectors respectively and
A,B,C,2nd D are constant matrices of appropriate dimensions. The transfer function
of the plant is G(s) = C(s[ - AY'B+D.

2.2.2 Plant Model and Uncertainty Description

The dynamical behaviour of a plant is described not only by a single linear
time-invariant model but by a family of models. This family can be parametrized in
many different ways.The most common types of uncertainty structures [22] are shown
in Fig.2.2.

In Fig. 2.2a the actual model Gfs) is assumed to be related to the nominal plant
G,(5) by an additive uncertainty, i.e.

G(s)=G,(s)+ L,(s) iwhere L,(s)=6G(s)-G,(s) (2.2.2-1)

where in Fig. 2.2b, the actual model is related to the nominal plant by a multiplicative
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(b)

eol (O

{c)
Fig.2.2 : Types of Uncertainty.(a) Additive.(b) Multiplicative
at the Input.{(c) Multiplicative at the Output



— - — input uncertainty, ie.-— -- —- - -- —

G(s)=6G.(s) U+L(s)] ;
where L(s)=G.'(s)IG(s) -G .(s)] (2.2.2-2)
and in Fig. 2.2cby a multiplicative output uncertainty, i.e.

G(s)=U+L,(5)] G.(s) swhere L, (s)=[G(s)-G,(s)16; (s)(2.2.2-3)

The uncertainty is typically constrained by the following magnitude bounds.

o(L.(jw)) £ Il (w) ,w20 (2.2.2-4)
o(L(jw)) £ l(w) , w20 (2.2.2-5)
a(L.(jw)) < l(w) ,w=0 (2.2.2-6)

The main sources of uncertainty are
* parameter variations
* order reduction
* time delays
* neglected non-linearities

2.2.3 Input Specifications

The inputs are all external signals entering the feedback loop at some point. For
the control system design, the inputs have to be specified. The specifications include
a description of the magnitude, energy and frequency content of the signals. These
specifications are usually given as a weighted L2 norms [28].



| W syl <1 -
[ wao(s)d(sn], <1

[ (W (sin(s)], <1

where W, W;, and W, are appropriate weighting that reflect the magnitude and
frequency content of the commands (r), disturbances (d), and noise (7} respectively.

2.3 Control Objectives

In order for the compensator to work well on the actual plant the following
objectives have to be met:

* nominal stabili
* nominal performance
* robust stability

2.3.1 Sensitivity and Complementary Sensitivity Functions

The most important relationships between inputs and outputs in Fig.2.1are

y=(+GK)'d ;for n=0 (2.3.1-1)
e=(I+GK)'(d-r) ;for n=0 (2.3.1-2)
y=GK(I+GK) '(r-n) ;for d=0 (2.3.1-3)

The sensitivity function is defined as
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ST - - oo S(s)=(+GK)! . @31-4)

and the complementary sensitivity is defined as

T(s)=GK{+GK)! (2.3.1-5)

S(s)+T(s)=1 (2.3.1-6)

The sensitivity function S(5) relates the external inputs (d-r) to the error (e). It also
expresses the affect of the disturbance (d} on the output (y). The performance of the
feedback control system can be judged by the behaviour of the sensitivity function. To
climinate the effect of the disturbazce (d) on the output y, we need to make S(s) as
small as possible, if GX is strictly proper (which is always the case for physical systems)
then

limS(s)=lim(I+GK) '=1 (2.3.1-7)

s$o- s

Thus, S{s5) can be made small only over a finite frequency range, and S(5) can not be
made equal to zero due.to the physical imitations.

The complementary sensitivity 7T(s) relates the reference (r) to the output (y).
Therefore, to have the output (y) follows the reference input (), T(s) should be made
unity. However, because of (2.3.1-7)

HmGk(I+Gk) '=0

se
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---- - .- ~ - . -Thus T(s} can be made equal to-unity over a finite frequency range only.

The complementary seasitivity T(s) also describes the effect of the measurement noise
(n) on the output (y). Thus 7(s) should be made as small as possible to supress the
noise. This shows the trade-offs inherent in feedback design, i.e.

* reference mput tracking and disturbance rejection which require S=0,T =1
* suppresion of measurement noise which require S=1,7 =0
2.3.2 Nominal Stability

The minimal requirement oa the compensaior is to stabilize the closed-loop nominal
system. The conditions for nominal stability can be derived in terms of the internal
stability of the system. A linear time invariant system is internally stable if the transfer
function between any two points of the control system is stable (i.e.,have all poles on
the open left half plane (LHP) ) [22). For example, for the system in Fig.2.3the system
isstable ifand only all elements in the 2x2 transfer matrix (2.3.2.-1) have all their poles
in the open LHP.

h -1 + -1
(y)=(c,1<(_1‘+c,.1<l) u c.,K)’lc,) (r) 232-1)
u) \K(I+6,K)"' ~-K(+G,K)'G,) \u



Go(s)

Fig.2.3 : Internal Stability Block Diagram
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2.3.3 Nominal Performance

The most basic objective of a feedback compensator is to keep the error between the
plant output (j) and the refereace (7} small when the overall system is affected by the
external signals (7),(n),and (d). The singular values of S, (S, isthe sensitivity function
for the nominal plant G,) determine the disturbance attenuation since S, is the
closed-loop transfer function from disturbance (d) to the plant output (y). Thus a
disturbance attenuation performance specification may be written as [22].

o(S.(jw)) <iW ™ (jw)i (2.3.3-1)
where | W' (jw) | is the desired disturbance attenuation factor. Allowing W (jw)
to depend on frequency w enables one to specify a different attenmation factor for
each frequency wz Note that o(G ,K )is small for high frequencies and therefore

a(S))=e(I+G,K)Y'=I w large

Thus, tight performance specifications are only meaningful in the low frequency range
where G K is large, then the performance specification reduces to

6(I+G,K)=0(G K)2|W(jw)]| w small (2.3.2-2)
2.3.4 Robust Stability

Assume that all the plants G in the family of plants describing the system have the
same number of right half plane (RHP) poles and that a particular compensator K
stabilizes the nominal plant G,. Then, the system is robustly stable with the
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-compensator- Kifand only ifthe complementary- sensitivity functions 7~ _for the nominal
plant G, satisfies the following Bound (assuming that the uncertainty is multiplicative
at the system output, (Le.G=(I+L,)G, and o(L,)<l,)[22].

o(THL <1 ,yue|T, L] <1 (2.3.4-1)

Note that for high frequencies G, K is smail and

o(T,)=0(G K(I+G K)') = &(GK)

therefore (2.3.4-1)becomes

6(G K)SI;' w large (2.3.4-2)

Thus, the loop gain (G , K ) has to be shaped to fall below the uncertainty bound I,
If the uncertainty is multiplicative at the input such that

G=G,(I+L) and o(L)S<

then the system is robustly stable with compensator K if and only if

o(KG,) £I;' w large (2.3.4-3)

Thus, the loop gain 6 (K G ), which isgenerally not equal to 6 (G , K ), has to be shaped .
to fall below the uncertainty bound ;'

2.3.5 Summary

The design specifications can be reduced to bounds on the maximum and minimum

singular values of the loop gain G, K (assuming multiplicative output uncertainty) as
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- o o T TG (jwK(Guw)) 2 W, (jw)l T w small  (2.3.5-1)
(G, (jw)K(ju) SIW;'(jw)l w large (2.3.5-2)

or as bounds on the sensitivity and complementary sensitivity functions as

o(S,(jw)) <IWi(jw)l
o(T,(jw)) S| W3 ' (w) |
' if the system is nominally stable, these conditions will ensure good performance and
robust stability. These conditions are depicted graphically in Fig. 2.4.

2.4 LQG/LTR Design Method

The LQG/LTR design method assumes that a nominal model is available, which is
Iinear time-invariant and is represented by a state differential and output equations

xX{t)=Ax(t) + Bu(t) (2.4-1)

y()=Cx(t) (2.4-2)
where x € R"isthe plant states, u € R ™is the plant input, y € R ™is the plant output,
and A4,B,Care constant real matrices of appropriate dimensions. The transfer function
of the nominal s&ﬁem is given by

G.(s)=C(sI-A)'B (2.4-3)

This design procedure attempts to find a compensator K(s) which will stabilize the
nominal closed-loop system of Fig. 2.1. and satisfy performance and robustness
conditions (2.3.5-1)and (2.3.5-2).



logw

Fig. 2.4: Performance and Robustness specifications
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The internal. LQG/LTR- -compensator - is-shown in Fig. 2.5. where a full state linear
feedback gain K_operates on an estimate of the plant states provided by a linear filter
with gain K, . The design is accomplished by determining the free parameters K_ and
K, so that the compensator K{5s) is constructed.

Since the plant and compensator operate on vector signals, their transfer functions do
not commute, and an analysis point of reference must be chosen. All design objectives
and model uncertaintiecs must be expressed in terms of bounds on signals that occur
at this point reference. The designer must choose one of two possible points of
reference; these are the plant input node, denoted by (i), and the plant output node,
denoted by () (Fig. 2.5).

The LOQG/LTR design method involves two basic steps (assuming that the input node
isused as the reference point): a full-state feedback design with loop transfer function
which has the desired loop shape and then an approximation of this full-state loop
transfer function with a realizable LQG controller using a recovery procedure.

2.4.1 Linear Quadratic Regulator (LQR)
The first step in designing LQG/LTR compensator is to design a full-state feedback

system with loop transfer function L(s)=K.(s/- A)"'B to produce the target
feedback loop shown in Fig. 2.6.

L(s) should satisfy the performance and robustness constraints of Fig. 2.4.K_ is found
by solving the following linear quadratic regulator problem
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Fig.2.5 : LOG/LIR Compensator
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minimize J f (x Qx+ u"Ru)dt Q=20 R>0
]

NI'-'

subject to XxX=Ax+Bu xe€R" , ueR”™

u=-Kcx
where K is defined by the following Riccati equation

ATP_+P_A+Q-P_BR'B"P_=0 (2.4-4)

K.=R'B7P, (2.4-5)

where it isassumed that (4,B) lsslabilmble and (4,H) is detectable. Also, there is no
loss of generality in taking Q = H” H,and R = p I where H is an mxn matrix [32].

Shaping the singular values of loop transfer function L(s)=K.(SI—-A)'B is
based on the following Kalman equality equation [12]

U+ LGw)Y R+ L(jw)]= R+ W (ju)W (jw) (2.4-6)
where W(s)=H(sI- A)"'B

The design parameters pand H influence the loop transfer function L(s) in the following
way [12):
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s [L(jw)] = J-% o [W (jw)] (2.4-7)

Since loop transfer function depends on the original - plant dynamics, additional
dynamics may be appended to the original plant to achieve certain objectives. For
ampﬁhmgmsmybeappmded to the original plant to achieve zero steady state

€IT0T.

The performance specifications (Fig. 2.4) can be achieved by choosing H such that at
low frequencies

. 1
W(jw) ij

At high frequencies, under the assumption of minimum phase on H(sI — A) "B, it
is shown in [12] that the gain K behaves asymptotically as

J—;; K. WH as p-o

from which it follows that the maximum asymptotic crossover frequency of the loops
is [12]

[(HB]

Jo

Thus, from (2.4-8) we can select p to adjust the crossover frequency consistent with the

We max =0

(2.4-8)

stability robustness constraints.



.- 2.4.2. Loop Transfer Recovery -- -

The second step in designing LQG/LTR compensator is to construct an
approximation of the full-state loop transfer function L{s) of section 2.4.1with a
realizable compensator wsing a recovery procedure. The loop transfer function L(s)
is only an infermediate design fonction since it assumes that all the states are
available for feedback. Thus the second step of the design is to provide an estimate
ofthembyplocasingtheoutpmmts using state estimators. There
axemnyLTRpmcedmwhichallmnbefqnmﬂa!ed in terms of
Luenberger-observer [4]. Also, it should be pointed out that the state feedback
design of section 2.4.1can be performed completely independent of the specific
LTR procedure chosen.

2.4.2.1 The Luenberger Observer

Let the LTI plant model be represented by

x=Ax+Bu ,X€R" ,uerR™
y=Cx ,yeR™
with n>m , (C:A) observable and (C,B) of full rank.

Assume the piant is controlled by an observer-based compensator with state
feedback

u=-K_x

[4

where K. is the state feedback gain and X is the state estimate. The states are

estimated using a Luenberger observer [4].



i - Z=Dz+Gu+Ey
w=K x=Pz+Vy (2.4.2.1-1)

where z is the observer state vector.

The observer matrices 7,D,E,G,P,V satisfy [4]
1) Disthe stability matrix
) TA-DT =EC
i) G=1B
iii) K. =PT+VC

condition (i) and (iii) imply that the observer error

e(t)=z(t)-Tx(t)
satisfies é(t) = De(t)
and lime(t)=0

(& X ]

because D isa stability matrix. Based on the equations for the plant and compensator,
it is possible to determine the following transfer function of the compensator K{s)

K(s)=V +P(sI-D+GP) "(E-GV)

The exact LTR at the input loop breaking point is defined as



- KGw)G(juwy=K . (jwl-A)'B for all w
This condition isequivalent to B=0,thus it can be met only asymptotically. The recovery
error matrix is defined as [6]
E(s)=K_(sI-A) 'B-K(s)G,(s)

E(s) can be written as

E(s)=M(s)(I+M(s)) ' (I+L(s))

M(s)=P(sI-D)'G
The transfer matrix M(5) is called the recovery matrix [6].M(5) is of great significance

because itdescribes the mismatch between the actual and the desired transfer function.

It can also be used to compare the different LTR procedures. The exact recovery is
obtained ifand if

E(jw)=0 fo:r all w
or

M(jw)=0 for all w
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-.2.4.2.2 The FullOrder Obscrver - - — - -

The full-order observer is the most used obsexver type and it appears from the
Luenberger obsezver by the following selection of the matrices in the Luenberger
observer [4]

FC

< WM N QU
I

A-
B
I d
F
0
T =1

where F is the observer gain matrix.
The recovery matrix is given by

M(s)=K (sI- A+FC)'B

The Kalman Buey Filter (KBF) is a full-order observer and is defined by the following
equations [4]

X=Ax+Bu+K,(y-7)
y=Cx

where K. is the filter gain defined by the following Riccati equation
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AP;+P;A"+R_-P,C"R;'CP;=0
K,=P,C"R.!

and the compensator transfer function is
K(s)=K.(sI-A+BK_+K,C) 'K,

Comparing with the Luenberger observer, we get

D=A-K.C
G=B

K

K
0
I

E
| 4
T

Based on these matrices, the recovery matrix isM(s)= K (sI- A+ K;C) 'B.
Now in order to approximate the loop transfer matrix L(5) of seqion (2.4.1), the
parameters R, and R, without loss of generality can be taken asR, =TT and R, = I,
where I’ = g B. It is shown [12] that

lim K(s)G(s) = L(s) (point wise in s)
g _

2.4.2.3 The Minimal-Order observer
let the plant defined by the LTI model
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TrmT e Xx=Ax+Bu ;x€R" ,ueR’

y=Cx ,yeR™
and the matrices A, B and C be partitioned as

All AIZ] [Bl]
A= ,B=
[Azx An) B,
cC=[I. o]

Then the minimal-order observer is given by [16]

D=A22 - Vz Alz

G=B, - V, B,

P ]

E=A,-V, A,+A, V,-V, A4,, V,

V=K I
CVz

K.=[K, K.]
r=[-Vv, 1]
where D, G, P, E and V are the Luenberger observer matrices, and -V, is the

minimal-order observer gain. The recovery matrix of the minimal-order observer is
given by

M(s)=K,(sI-Ap+V,+ Alz)-l(Bz‘ Va B))



2.5.1 Introduction

- This section isconcemed with H . optimal control. This relatively new approach
to feedback design isbriefly explained. In this section, we shall use the representation
shown in Fig. 2.7,which is called the Linear Fractional Transformation (LFT) of K(s)
and P(s). P(s) is related to the nominal plant and some frequency weighting functions
as will be shown in the next sections. The signal w of Fig. 2.7 contains all external
inputs, inciuding disturbances, sensor noise, and commands; the output z is an exror
signal; yis the measured variables; and u is the control input. A state-space algorithm
to design the compensator K(s) which is described in [13] will be briefly summarized.

Suppose that P(s) is partitioned as

P(s)*[Pn(S) Plz(s)]

Pu(s)  Py(s)
so that
z=PLu(s)w + P(s)u
y=Py(s)uw + Pyp(s)u

Then we can write

z = [Py(s)+ Pyp(S)K(S)U ~ P(s)K($)) ' Pou(s)lw

(25.1-1)

(2.5.1-2)

(2.5.1-3)

(2.5.1-4)

Define F(P-K)=[Pu($)+Plz(s)K(s)(I"Pzz(s)K(S))_lPZI(S)]

Then z=F(P,K)w

By suitably defining P(s), a number of practical design problems can be put into form

(15}



} K(s)

Fig.2.?7 : Linear Fractional Transformation



.--- - - - -~ minimize - | - F(P,K) .-
where the minimization is over all realizable controllers K(s) which stabilize the
closed-loop. This is known as the H _-optimization problem. In this section we will
show different H . problems and the state-space algorithms for the general H.
problem.

can be written as (section 2.3)

‘ V!‘Sc' I <v
where S, = (I+G,(s)K(s))"
and W', (s)is an appropriate frequency weighting.
Since we require that

F(P,K)=W ,(I+G K)'

and W, (I+G,K)' = W,[I-G,K(U+G,K) "] (2.5.2-1)

comparing (2.5.2-1)and (2.5.1-4)we get

Pu(s)=Wi(s) , Pu(s)=-W,(s)G.(s) Pu(s)=I1 ,Ppu(s)=-GCG.(s)
2.5.3 Robust Stability Problem
The requirement for robust stability can be written as (section 2.3)

I WzTO l.SY

where T,=G,(s)K(s)(I+G,(s)K(s)) 'and W,(s) is an appropriate
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.. frequency weighting. - - - - - - - . -
Since we require that

F(P,K)=W,(S)G,(S)K(s)(I+G,(s)K(s))"' (25.3-1)

Comparing (2.5.3-1)and (2.5.1-4)we get
Pp(s)=0 , Pp(s)=W(s)G,(s) . Pu=I , Pxp(s)=-G,s)

2.5.4 Mixed Performance and Robustness Problem (General H . Problem)

Now, suppose that we wish to obtain good performance and to maintain stability
in the presence of plant uncertainties. This objective can be achieved if

. Vlso
w,r,|. =Y
2 Ol m

To put this into standard form, we require that

[V,S,]
F(P.K) =

W.T,

from section (2.5.3)and (2.5.2),we see that we should choose

W -W ( )Go )
Pu(s)=[o ‘(S)]'Plz($)=[ Vzl(:)ce((:) ]'le($)=] v Por(s)=-G,(s)

The feedback structure with the frequency weighting is shown in Fig.2.8

2.5.5 State-Space Solutions to mixed sensitivity and robustness H . Problem
In this section, a state-space approach for all controllers solving a mixed sensitivity

and robustness H . problem [13]is provided. For a given scalar y > O, we want to find
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. all controflers such that the 77 norm of the closed-loop transfer function is strictly less

. than 'y. Necessary conditions for the existence of such controller is that the stabilizing

solntions to two algebric Riccati equations are positive semi-definite and the spectral
radins of their product is less than y* [13].

2.5.5.1PlantAngmunztim_1
The angmented plant P(s) is givea by

' : Wi(s)  —WiGo(s)
P (s) P1,(s)
p(s)-[ ] ) 0 M
| P, (s) P(s) I -G,(s) ]

.= AP | \BP .= A-I B wl
G.(s): [Cp Dp] . Wa(s): [C_, D,,,]

Ae B
VZ(S)' . [Cd Dﬂ]
and the realization of the angmented plant P(s) is given by [15]
A B, B,
P(s):= ¢, D, D,
Cz Dzl D22

with the respective matrices

A, 0 0
A =-|-B, C, A4,, O

B., C, O A,
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— - 0 _— — BP
Bx = B-l ’ Bz = —Bnle
0 B..D,

D, -D_,D
D“g[ ol] ' D‘zz[p.;vp] P Pumd  P=mT0
1 4
The weighted performance and robustness problem block diagram is shown in Fig.
2.8.

2.5.5.2 Controiler Design Algorithm
The realization of the transfer matrix P(s) is taken to be of the form

A B, B,
P(s):= | C, o) D,,

The following assumption are made

i) (4, By isstabilizable and (C,,d) is detectable.
i) {A,B,) is stabilizable and (C,,4) is detectable.
iii) D’x-z[cx D,} = [O I].

iv) B, r o
[DJD = = [1]

The problem considered here is to find all admissible controller K{(s) such that
|7l <y, where T, isthe closed-loop transfer function given by
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T T Ta(s)=Pu(sY+ P(s)K(sYU = Px(s)K(s)) ' Py (s)

The H . solution involves two algebraic Riccati equation

ATX+XA+X(y?B,B] - B,BH)X + CIC,=0

AY+YAT+Y(y?CiC,-CiC,)Y + B,BT=0

(2;5.5.2— 1)

(2.5.5.2-2)

There exists an admissible controfler soch that |7 | <y if the following three

conditions hold.

i) The solution X of equation (2.5.5.2-1) is positive semi-definite.
ii) The solution Y of equation (2.5.5.2.-2)is positive semi-definite.

iii) The spectral radius of the product XY isless than yZ(p(XY) <v?).

‘When these conditions hold, orie such controller is [13]

ke - [z ]

A=A+vy?B,B1X+B,C - BC,

B

- -1
U-v?rx) vcl

C=-BlX

To find the controller which minimize |7 ., |., it is necessary to use the algorithm

iteratively, feducing P (XY') until the limiting value v ,is reached or until one or other
of the two Riccati equations (2.5.5.2-1) and (2.5.5.2-2) fails to have a positive

semi-definite solution.
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2.6 H. State-Feedback with Closed-Loop Transfer Recovery (H JJCLTR)

In section (2.5), it is shown that the design of an H . controller for the mixed
performance. and robustness problem involves solving two algebraic Riccati equations
nuanvelyunﬁlcamnpe:fmmnce and robustness specifications are satisfied. In [23]
it is shown that ifall the states of the plant can be measured, then the infimum of the
norm of the closed-loop transfer function using linear static state-feedback equals the
infimum of the nomm of the closed-loop transfer function over all stabilizing dynamic
state-feedback controllers. The design of an H . state-feedback control Iaw can be done
by solving on¢ ‘algebraic Riccati equation iteratively [18]. These facts motivates us to
useahybndwngolstmcnneconssungofsmeesnmator and H _ state-feedback gains
for the case when all the states are not available for feedback. The design procedure
developed in this section consists of two steps:

1) Assuming that all the states are available for feedback, design an H.

state-feedback control which will make the H . norm of the state-feedback
closed-loop transfer function less than same constant y > O.

2) Recover the achievable performance, using state estimator. This means that
we want the closed-loop transfer function with the new control law (state
feedback gains and state estimator) to be equal to the state-feedback
closed-loop transfer function of step (1).
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H .norm of the closed-loop transfer function isless than Y. Moreover, the computations
of an H.JCLTR controller will be reduced to solving one algebraic Riccati equation.

2.6.1 Probiem Formmiation

x=Ax+B,w+B,u
Z=Clx+Dllw+D12u (2-6-1-1)

y=C,x+D,yw+ Du

where x € R"is the state, w € R* is the disturbance, u € R" is the control, 2 € R/ is
the error, and y € R™ is the measured output. The weighting functions are assumed
to be absorbed in the plant description.

We assume that (4,B,) is stabilizable, (4,C,) is detectable and D,, = 0, the controller
will be based on a state feedback:

u = -K,. x (2.6.1-2)

where X is the estimate of the state xand K_ is the H . state-feedback gain.
And a full-order observer

X = (A-K,C)x+K;y+Byu (2.6.1-3)

where K, is the observer gain and let the closed-loop system denoted by 7 .(s), be
formed by the plant (2.6.1-1)with the controller (2.6.1-2)and (2.6.1-3). Then our main
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.- concemn is to find an observer-based- controller with which the resulting closed-loop
" system is internally stable and satisfies |T.(s)|. <v. The HJCLIR controller
structure is shown in Fig.2.9.

2.62 H.State Feedback Control

Consider fthe system (2.6.1-1), with the assumptions that
Ca=I ,Dz;=0 ,and D,,=0,the H. statefeedback gain K. can be found by
the following procedure from [18].

Let a constant Y > O be such that Y2I - D},D,, >0

suppose rank Dy, =: i<j
letUeR™ and I,e R™ be any matrices such that
rnk (Z,)=rank (U) =i,and D,,=U%,
let & € R“™ "™ pe such that $TL=0 ($=0 if i=m)
let 4= E3(5,5]) {(UTRUY '(5.20)7'%,

where R : = I+ D, (y2I - D1,D,,) ' D7, and let

Ay=A+ Bn(YZI = DLDl!)-lD{lCI

By=B,+ Bx(Yz‘ DLDu)-lDLDu



u Pis)
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lx >

Fig.2.9 : B /CLIR Controller Structure
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- ‘e R L

- 2
Ca={1+D,,(y*I- DL,D,,) D, )’C,
-1

Dy=B,(y’I-D},Dy)*?

N

Ey={1+D,(v*I-PL,D,) ' DL Dy,

Using the above definitions, the system (2.6.1-1)is said to satisfy the following algebraic
Riccati equation with constant vy if (for any @> () there exists €> O such that the
Riccati .

 Ap=ByEE,CuY X+ X{Ay—ByEE Cp}+ XD DX -XB,ZBpX

1

- ZXB,@’@B};X +Co{I-E E,ER}C,,+€Q=0 (2.6.2-1)

has a positive definite solution X and the H . state feedback given by

KC=<§IE¢T¢+3"}B;X+3HEI,C,, (2.6.2-2)

willensure that A-B,K. isa stability matrix and the state-feedback closed-loop function

T.(s)=(C,-D,K)(sI-A+B,K,)'B,+D,, (2.6.2-3)
satisfies the following H . norm i)ound

l.T“ l- <Y

The following algorithm can be used to find the state-feedback gain K.
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(1) -Given 4, B, B;, G, Dy;, Dy, compute U/, 3, $and
let O=1I.
(@  let y>Obe such that y>I - DI, D,, >O0.
Compute Ag,By.Cyg,Dpg,Fy,Eg.
(€)] lete~=1.
4  Solve (2.6.2-1).If X>0,go to (5). Otherwise, if (2.6.2-1)does not
have a positive definite symmetric solution even for a sufficiently
small €(<< 1), then increase 'vand go to (2).

(5) Ify<specified performance level, compute K as in (2.6.2-2).
Otherwise, decrease v,and go to (2).

2.6.3 Full-Order State Observer
The full-order state-observer which is given by
#=(A-K,C,)% + K ,(y-C,%)+Byu
can be used to provide an estimate for the states of the system described in (2.6.1-1).

First, we need to calculate the closed-loop transfer function 7 .(s). From (2.6.1-1),
(2.6.1-2)and (2.6.1-3),it follows that

¢ A -B,K, B
[’f]= K [’f]+ ! w (2.6.3-1)
X K,Cz A—K,CZ—Bch X KfDZI

z=[C, -D,K.] [ﬂ + Dyw (2.6.3-2)
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e = x—-X (2.6.3-3)

t0 (2.6.3-1)and (2.6.3-2)yields
6 A-K;C, 0 [e] -B,+K; D, _
[x] [—K ,Ca A- BzK,] 21" k,D, w(2.6.3-4)

=[-C, €C,- DK} [;] + Dyw (2.6.3-5)

From (2.6.3-4),we can see that the closed-loop system will be internally stable if the
matrices A—- K;C, and A - B,K .are stability matrices. The matrix A — B, K,
is stable from section (2.6.2)and the matrix A~ K ;C,is to be made stable by the
proper choice of observer gain K.

From (2.6.3-4)and (2.6.3-5),T .(s)is given by [33]
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T Ts)=Dii+(Cy ~ DK )(sI= A+ B,K.) "B,
+Cy(sI-A+K,C,) (B, -K,;Dy)
—(C,— DK )(sI- A+ B,K.) ' (sI - A)
X(sI-A+K,C,) " (B,- K Dy) (2.6.3-9)

Comparing (2.6.3-9)and (2.6.2-3),T .(s)can be written as

T (s)=Tg(s)+a(s) (B,-K,Dy)
a(s)=C,(sI-A+K,C,) ' (B,-K,;Dy)
where —(C,—- D, ;K )(sI- A+ B,K.) '(sI- A)

x(sI— A+K,Cp)"

From section (2.5.5.1)we have D,, = I , thus

T(s)=T(s)+a(s) (B,-K,) (2.6.3-10)

A perfect recovery (i.e.7 .(5) = T (s))is possible if K; = B,

' Now, we investigate the stability of the matrix A~ B,C . From section (2.5.5.1)we
have
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SRRt Sl ¢ Rl Ht e A, 0 0
B,=| Bu; sCo=[-C, o 0] ,A=-|-B,C, Ag; 0
o B,C, O A,
Thus, the matrix
A, 0 0
A-B,C,=] -2B,C, A, 0

The matrix A — B, C,will be stable ifand only if the matrices A,, A,, and A,
are stable. The matrices A,;.A,,can be made stable by the appropriate choice of
the weighting functions W ,(s) and W ,(s). Thus, the requirement that
A - B:C; is stable will be such that 4, is stable. A4, is stable if the nominal plant
transfer function G ,(s) is stable. Therefore, K, can be chosen to be equal to B, for
stable plants and will result in perfect recovery. Using (2.6.1-2) and (2.6.1-3), the
compensator K({5) is given by

K(s)=-K.(sI-A+B,K_+K,C,) 'K,
If the unstability of the plant is caused by poles at the origin, the matrix 4, can be
replaced byanewmatrix;i,,,whete 1-1,=A,,,except for the zero eigenvalues are
replaced by ones at A, where A is a small negative number. Changing the zero
eigenvalues of A, to a small negative number will make the matrix ;lpstable, so that
this design method can be applied directly and will have a very little effect on the
behavior of the plant except at.very low frequencies.
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-If the unstability- of the plant is not cansed by poles at the origin, only approximate
recovery of the state-feedback transfer function is posstble. Looking at the closed-loop
transfer function which is given by

T (s)=T,(s)+a(s)L ; where L=B,;-K;
an approximate recovery can be achieved if L is minimized subject to the constraint
that A - K ,C,issiable. The minimization of L can be solved by minimizing [ L] -

The state-space realization (A,, B, C ,)of unstable plants can always be written in
the following form

c,=[C. C.]

Where (A,, B,,C,)is the state space realization of the unstable part of the plant,
and (A,, B,,C,) is the state space realization of the stable part of the plant.

Thus, 4, B, and C, matrices of the augmented system (section 2.5.5.1)are given by

A, 0; 0 0 0
0 A, 0 0 0
A = ,B,=
-B,,C. -B,,C, A, 0 By,
B..C. B.,C, 0 A, 0

CZ = [-Cu -Cs 0 0 ]
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.- Now,since 4; isstable and A, -and A, can be selected to be stable, L can be
chosen as

Ll 0 K,,
: L, o o
L, o o

and the problem of minimizing |L}Z will reduce to minimizing |L,}% , which is
equivalent to minimizing | K ;;|. The matrix A - K ,C, is

A.~K,C, -K,,C, 0 o
o . A, o o
-2B,C, O A, 0
0 o . 0 <7,

which is stable if A, — K4, C . is stable. Thus the observer design for unstable plants
willbe : Find K ;, which satisfies A, — K ;,C, is stable and | K 4, | Zis minimized.
A procedure which solves this problem is given in appeadix A.
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Chapter 3

DISCRETE TIME FEEDBACK
‘CONTROL SYSTEMS AND THE H JCLTR DESIGN METHOD

3.1 INTRODUCTION

In the previous chapter, useful design techniques for continuous time -systems are
described. Here, some basic definitions of feedback discrete time control systems are
considered. These definitions relate to plant model, uncertainties, type of inputs,
method for discrete time systems is reviewed. It is shown how this method differs for
discrete systems and how-itisaﬁ’ected by compensator processing time. A recovery
procedure using current estimator [7] for the case when the compensator processing
time is large (compared to the sampling time) will be introduced. A simplified
LQG/LTR frequency domain approach for compensator design for SISO
minimum-phase discrete systems is developed. The discrete-time H . state-feedback

control has not been studied extensively except for the work in [17] and {10}, which
employ an algebraic Riccati equation for }he solution of the H . state-feedback

problem. However, in order to solve the Riccati equation, an iterative algorithm is
used. This isinefficient from a computational point of view.Moreover, these algorithms
as expericned by the author fail to converge to a solution even for very simple low
order examples. Therefore, the H ./CLTR design method for discrete-time system will
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- utilize the frequency domain- bilinear- transformation - to transform -the discrete-time

problem into a continuous-time one, carry out the computation using continuous-time
H JCLTR and then transform back the solution.

3.2 Control System Description

3.2.1 Classical Feedback System

The block diagram of the standard discrete-time feedback control system is shown in
Fig.3.1.Xt consists of the plant G(zJ, compensator K(z) forced by command input (7),
measurement noise () and disturbance (d). The measured variable () is corrupted
by the noise (n). The compensator X{z) determines the plant input (1) on the basis of
the error (e) (e=r-y).The objective of the control system isto keep the output (y) close
to the reference (7).

The dynamical behaviour of the plant is modelled in the time domain by a linear
time-invariant system as

: X,y = Ax, + Bu, (3.2.1-1)
y;=Cx,+ Du, (3.2.1-2)

where x,€R® ,y,€R™ ,u;eR” are the state, output, and input vectors
respectively and A4,B,Cand D are constant matrices of appropriate dimensions. The
transfer function of the plant isG(z) = C(zI - A)"*B+ D

3.2.2. Plant Model and Uncertainty Description



R(z)
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Fig.3.1 : Standard Feedback Control System

2
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- The dynamic behaviour ofa plant isdescribed not only bya single linear time-invariant
model but by a family of models. This family of plants can be represented by a nominal
model which has the same number of unstable poles as any member of the family of
plants.'l‘henncatamty can be parametrized by many different ways. As in section 2.2,
the wncertainty can be described by [28]

6(2)=Go(2)+ Lo(2)
o[L (e’)]1<1 (0) .050<m
G(z)=GCG () + L(z)]
o[L,(e’®)}<1,(0) ,050<m
G(z)=[1+L,(2)]G,(z)
oL, (e’®)1<1,(8) ,050%<m
'3.2.3 Inputs Specifications

The inputs are all external signals entering the feedback loop at some point. For the
control system design, the inputs have to be specified. The specifications inciude a
description of the magnitude, energy and frequency content of the signals. These
specifications are usually given as a weighted L? norms [28]

|z (zyr(zn ], <1
FANCEILIE V] IR
lZ"{V,,(z)n(z)}llz <1

where W,, W; and W, are appropriate weightings, that reflect the magnitude and

frequency content of the commands (7}, disturbance (d), and noise (n) respectively.



3.3 Control Objectives

In order for the compensator t0 work well on the actual plant the following objectives
have to be met

* Nominal stability
* Nominal performance
*Robust stability

3.3.1 Nominal Stability

The minimal regnirement on the compensator is to stabilize the closed-loop nominal
system. The conditions for nominal stability can be derived in terms of the internal
stability of the system. A linear time-invariant system is internally stable if the transfer
functions between any two inputs of the control system are stable (i.e.,have all poles
inside the unit circle) [22]. As in section 2.3,the system shown in Fig. 3.2 is internally
stable ifand only ifall the elements in the transfer matrix (3.3.1-1)have all poles inside
the umit circle.

+ -1 + -t
(y) = (G.K(z 6K L UrGKYC, (r) E33.1-1)
u K({I+G,K) -K(I+G,K)'G,) \u

3.3.2 Nominal Performance

The most basic objective of a feedback compensator is to keep the error between the
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- ——— - plant output yand the reference rsmall when the overall syéwmisaﬂ'ected by external
signals r,nand d. From Fig. 3.1the error can be written as

~e = r=y={U+G K)'(r-d)+(+G,K)'G Kn (3.3.2-1)
In order to quantify performance, a measure of smallness for the error has to be defined
. Using (3.3.2-1),the performance specifications can be written as [28]

fw.a+e x)'wi'l. <1 (3.3.2-2)
lw.a+e . ky'w]. <1 (3.3.2-3)
lwv.cr+c.0y'e kw ], <1 (3.3.2-4)

The above conditions are satisfied if

o[I+G, K12 §,(0) (3.3.2-5)
o[I+G K12 £,(0) (3.3.2-6)
1
+ > -
o[I+(G,K) 1253 (3.3.2-7)
_oW.(e™)]
1:(0) oIV (&™) Ji=r,d,n

Measurement noise is often small and aswewﬂlsee in the next section, the plant
uncertainty put amore restrictive bound on o[ I + (G ,K ) '), this will reduce (3.3.2-5)
-(3.3.2-DHo

olI+G,K] 2 f(8)



Assume that all the plant G in the family of plants describing the system have the same
number of enstzble poles (poles in | = |> 1) and that a particular compensator K
stabilizes the nominal plant G,. Then [28]

a) if the uncertainty is additive and if

L)+ 6 (2)K ()T ] <1

or
[1+G.(K()IL(x)|. <

the closed loop system will be robustly stable.
b) if the uncertainty is multiplicative at the. system input and if

1+ 6. ()K= 6.(2)K ()L ()], <1
or
o[1+(G.(e™)K () ']> 1(8) O<e<n

the closed-loop system will be robustly stable.

¢) if the uncertainty is multiplicative at the system output and if
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e LRI (DG K (T < 1

or

o[ 1+(6.(e")K (™)) *]> 18), O<6<n
3.3.4 SUMMARY

The design specifications can be reduced to bounds on minimom singular values of
the retom difference /+G,K and the inverse retumn difference I+ (G, K)™*
(assuming multiplicative oufput uncertainty) as

o[I+6,K] 2f(0) 0<0<mn (3.3.4-1)
o[I+(G,K)'] 21,(8) 0<8<m (3.3.4-2)
These bounds can be transformed into bounds on the sensitivity and complementary
seasitivity functions as
o[S7'1 2 7(8)

where § is the sensitivity function’
using
we get
"~ o[S] <F7Y(O) (3.3.4-3)
Also

o[T7']121,(8)

Where T is the complementary sensitivity functions and as above we get
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TTTT T T TemIsTie T (8384-4)
If the system is nominally stable, these conditions will ensure good performance and
robust stability. These conditions are depicted graphically in Figs. 3.3and 3.4.

3.4 LQG/LTR Design Method for Discrete Time Systems

The LQG/LTR design method assumes that a nominal model is available, which is
finife-dimensional linear time-invariant and is represented by a state difference and
output equations

Xy = Ax+ By,
y.=Cx; iz0

where x, € R "isthe plant states, u, € R ™isthe plant inputs, ¥, € R ™isthe plant output,
and 4,B,Care constant real matrices of appropriate dimensions, the transfer function
of the nominal plant is given by G ,(z) = C(zI — A) 'B.

The design method attempts to find a controller K(z) which will stabilize the closed
loop system (Fig. 3.1)and satisfies the performance and robustness constraints (Figs.
3.3and 3.4).

Since the plant and conipensator operate in vector signals, their transfer functions do
not commute, and an analysis point of reference must be chosen. All design objectives
and model uncertainties must be expressed in terms of bounds on signals that occur
at this point of reference. The designer must choose one of two possible points of

reference. These are the plant input node denoted by u, or the plant output node
denoted by y (Fig. 3.1).
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Fig. 3.3: Performance specifications on the output
return difference and sensitivity function
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Thecompensator mmm@%@rm&mmsym Using
ﬂzcontmllawu(-—K,x‘(d:esameconnollawasmconnmms systems) may not
be realizable. This is because, if the dynamic order of the plant is high, time delay due
to the computation m«ﬂ:Mﬂthy Tthe control lawu, = —K . x;
musedwhmtheeompmm pmcemngnmlshrge,ﬁxeperfoxmnce of the system

" will be greatly deteriorated or the system miay become unstable [27}. Therefore, two
cases can be distinguished. -

3.4.1 Compensator Processing Time is Negligible

The LQGIL’]ZR dwgn method fo:compensator wnhneghglble processing involves

) A
I+L(z) and I+L7'(z), where L(z)=K.(zI-A)'B, have the
desired shapes of Fig.3.3and Fig respectively. 3.4. K_is found by solving the following
linear quadratic regular (LQR) problem [32]..

minimizeJ=§(Z° x,0x,+u,Ru, ,Q20,R20

subject to x¢.1=Axi+Bu.,- X€ER" ,ueR”™



. - -— --—--The solntion-to this optimization -problem-is given by- -

u,= -cht

w@gkm&mmmmwmmmwm

ATP_A-P_+Q-ATP_B(R+B"P_B) 'BTP_.A=0
K.=(R+B"P_B) 'BTP.A
where itisassumed that (4,B) isstabilizable and (A, H , )isdetectable and Q= H_H
, H 4 € R™_ Shaping the singular values of the return difference I+L(z) and the
inverse retumn difference I+ L™'(2) is based onméfonowingdisaae Kalman

[I+L(2)]" (R+B"P.B)[I+T(2)]=R+W"(2)W(2) (3.4.1-1)
- where

W(z)=H_(zI-A)'B (3.4.1-2)
Comparing (34 1-1)and (2.4.1-6)we see that they are very similar except for the term
BT P_B,itis the presence of this term that causes the discrete LQR to have inferior
properties as compared to the continuous time LQR. The B” P Bterm prevents the
separation of the loop transfer function terms from the LQR weighting matrices (this
is because P, depends on R and Q). This separation was possible in continuous time
LQR and itled to a wayto select the weighting matrices so that the LQR loop transfer
function has the desired loop shape.

The following loop shaping procedure for multi-input multi-output systems isdescribed
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Letting R =p I and taking the determinant of 3.4.1-1,we get

| det(I+ L(2)) 1B, = det(pI + W " (2)W (2))
where BZ=det(pI + B'"PB)and
det(I+L(z))=det(I+ K (zI-A) ")B) N

A.(z)

=det((zI - A) ')det(zI- A+ BK )= m

A(z)=det(zI- A)=2"+a,z"" ...+ a,

A (z)=det(zI-A+BK.)=z"+ a,z*'...+a,
ie Af) and Az) are the open loopanddomdloopcharactenshcs polynomials,
respectively. Also 4(z) can be written as

t 3
A(z)=iI_ll(z-n,.). o<im,sl, i=1,2,...,q and j;I1>Y, i=q+1,....n

For large values of p

- 1, g=n
: YY"\ n n, g<n
: i=g+1}

- Thus when o[ W ]is large, we have

\—:5 (1 +%af[V(z)]) <o¥[r+ L(z)]S(l + %af[w(Lz)]) (3.4.1-3)
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- -~ Now-— -—--- assuming- -~—-W(z)~'—i-'r;--'is—- - --minimom - - - - phase and

H,B=..=H_A*?B=0, and det(H_A*")+#0,,

W] _ oo - SIW(2)]
o’ [H, A B] soll+1(=)]= o*[H.A*B]

(3.4.1-4)

Equations (3.4.1-3 to 3.4.1-4)show the effiect of p and H o the refurn difference and
meygivemideamhowmseieathan tomﬁsfytheloopshapeoonsuaints imposed
on the returm chﬁuwe.Alsofmmtheabovenlsdmrthatmeloopttansferﬁmcnon
depends mtheongmalp]antdymm.'musnnnybemy mappend additional
dymmmm@év&nommmmqumm additional
integrators in the plant.

To manipulate the singular values of 7+ L™ '(z) . It is shown in [28] that a good

stability margin can not be obtained by using small values of p. Thus to get a large
values of o[ I + L™ (z)]at high fréquencies, large values of p should be used.

Thus for large values of p we have [28]

o[I+L"'(2)]=po[BTP,A(zI - A)'B (3.4.1-5)

Where P, is the solution to the.following Lyapunov equation

ATP,LA-P,+HTH_ =0



-~ 2)The loop transfer fimction Lz) of step (1) isonlyan intermediate design function

since it assumes that all the states are available for feedback. The loop transfer
function L{z) should be recovered by a realizable LQG controller. The following
LTR procedure is described in'[28]. -

A KBF is defined by the following equation
Xijoyu= AXgyyy + Bu,+ K;()’i- CXyir) (3.4.1-3)

where X ;;,_,is the least squares estimate of X; given {¥o.¥15---  »Y¥e-1)and
the filter gain K }is defined by the following equations:

AP,AT-P,+R_- AP,CT(R,+CP,CTY'C P,A"=0 (3.4.1-4)
kf=P,C"(R,+CP,C")"

K;=A K}

It is shown in [28] that if G ,(z )is minimum phase, and CB is full rank, then letting
R,=0 and R_.=BB"in(3.4.1-3),then K{=B(CB)' and we get a perfect
recovery (i.e. K(2)G,(z)=.L(z)),and the compensator transfer becomes

K(z)=z K [zI-A+K:C]' K% (3.4.1-5)
where K .isrelated to K by

69
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-..g?g‘x '%f‘;'-

e Hae-wewillshow-ﬂxe mednmsn—-bywh:dltheper&ctrwovaylsobtamed.

Usmgﬂ:emtnxmvetsmnlemm(seum 1.3),(3.4.1-5)can be written as

.‘

K(-Zr) zK (2 - A)?:{I+K"C(zl Ay ke

snbsumlmgl( KA (wea:easumngﬂmﬂ:edxsaeteumesystanxsobmned
bysamplmgacnnnmousnmesym),and KP-AK’, then
*33:

- - E; -
R

K(z) zK (ZI-AY AT+ AKIC(2I - AY'} 'AKS

-ch(zI A)"{I+Kf(:(z1 AY'AY KE

.K(z)-zK‘(zI-;; A) Kf{l CL;L A+AK’C] ‘Ak?)

“q‘r

substituting K% = B(CB)" weget -

~ - ey

-

K(z)={K(zI- AY " B{z(CBY *{I- C(zI- A+ K?C) ' K?)
= L(z)z(CB)'{I- c(zI- A+ K2C) ' K®) (3.4.1-6)

Now, let

R(z)=z(CBY {1~ C(zI- A+ K2C)'K?)
= 2(CB) {I + C(zI- A) K}
= z{CB+C(zI - A)'Kk2CcB}”

noting that K 7CB = AK!CB= AB(CB) 'CB= AB, thus
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- R(2)= Z{CUF (A - A A - o
= z{C(zI - A) *[(zI - A)+ A1B}"'
= z{zC(zI- A)'B}"'
= z{zG(z)}! (3-4.1-7)
Now from (3.4.1-6)and (3.4.1-7),K¢z) is given by

" K(2)={zL(z)} {zG()}’ (3:4.1-8)

Which shows how perfect recovery is obtained (.e. K (2)G(z) = L(2)).

3.4.2 Compensator Processing Time is Not Negligible

The problem of large compensator processing time can be solved by introducing a unit
step delay in the coatroller. This will result in the following optimal control law for the
quadratic cost function [27]

u;=-K, [Ax.,+B u,,] i1 (3.4.2-1)
the structure of this regulator is shown in Fig. 3.5.The loop transfer functions at th:c
input of the plant in Fig. 3..5isl.(z) =K. (zI+BK.) "A(zI-A)'B ’
The first step in the LQG/LTR method is to chose K. such that
[+1(z) and I+i"(z) satisfy the performance and robustness constraints
(Figs. 3.3and 3.4). The loop transfer function L(z) is only an intermediate design
function since it assumes that all the states of the plant are available for feedback. The
loop transfer function L(z) should be recovered by a realizable LQG controller. The



"Fig.3.5 : State Feedback Control with A Unit-Step Control



xui— +K}(yi Cxyim1) (3.4.2-2)

%4+ Bu, (3.4.2-3)

"=‘(1 K FC)% it KiYinn (3.4.2-4)

R I S 13!

let S,y = Zyvijier and using (3.4.2-4)and (3.4.2-3)we get

Sim=U-KiC)A S;+(I-KiC)BU,+Kly,.,

Thus, we can write

[zI-(I-K{C)A) S=(I-KiC)BU+=zK! Y (3.4.2-5)
ThecthWU.g:-Kc[Afi-"i-x+Bui-1]mbewrimas
U=K.(zI+BK)'AX (3.4.2-6)

Using (3.4.2-5)and (3.4.2-6) and noting that X = S, we get
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-~ fzF+ (F- K1C)[K(zF + BK ) A~ ATy S =2KiYy— -
Thus

{I (CI K’C)(zI+BK,) 'A)S = K’Y - (3.4.2-7)

From 3.4.2-6,3.4.2-7and nonng that K’ = AK% we get

U=K(zI+BK,)" {I-(A-KC)(zI+BK) "} 'K}Y
=K [z[- A+BK . +KiCT'K%Y

Thus, the compensator K () is given by

- ;l’; K(z) K (ZI A+BK +K’C) K’ -—;' i_ ->.

2 ;‘fif-fl;é;(?)ﬁls'nnnmum phase, and CB is a full mnk, and letting
R,=0 and R,= BB inthe Riccati equation of the filter, weget[28]

Ki=4B(CB)™! (3.4.2-8)

and the recovery is perfect i.e. K(2)G () = L(=).

The following proof of the above result is described in [26]

Let R(z) = }((z)c,(z) =K. (zI-A+BK .+ K5C) 'Kj{C(zI-A)'B
where K ;is g;iven by (3.4.2-8).R(z} can be writfen as

R(z)éx,(z1+31<c)“ {I- A[I-B(CB) 'C)(zI+BK )"
X AB(CBY 'C(2I-A)'B (3.4.2-9)
Noting that |
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<.

———-H-B(Cﬂf‘CTB*:o—— e (3.4:2-8)

and (zI+BK.)'=z"'I- z'B(zI+K_B) 'K, (3.4.2-10)

_ s X (CBY'C(zI-A)'B (3.4.2-12)
Q= I—B(CB)"‘C. v (3.4.2-13)
then &7

" R(2)= K,(él?{gxc)"A(I- z7'QA) '(I-0)(=I- A)'B (3.4.2-14)

contzining @ in (3.4.2-13)can be writen as

Y
.—_:/

z"‘QA)"‘ [(I-z7'QA)+(z'QA- Q)]
P (3.4.2-15)
Noting that QB=0, from (3.4.2-10)- (3.4.2-15)it follows that

R(z)=K.(zI+BK ) 'A(zI- A)™'B

=L(2)



3.5 Simplified LQG/LTR Design Method fmSBOWTmSym

The perfect recovery for MIMO Discrete systems obtained in section (3.4.1)is
possible only for square minimum-phase systems safisfying det [CB] *O. The
xequimi:ent that det [CBj #* O. easures that the nominal system transfer function
G ,(2)has the maximum possible number (7-m) (where n is the order of the system
and m is the number of inputs) of finite zeros and minimum possible number (m) of
infinite zeros [14]. The compensator transfer function is given by (section 3.4.1).

K(z)=zK(zI- A+K5c)' K% (3.5-1)

By choosing R,,= BB° and R,=0 in the KBF Riccati equation (3.4.1-4),the
poles of the compensator K{z) which are the eigen values of A — K ;C, will be located
at the (n-m) minimum-phase zeros of the plant G, (z) and the remainder m at the origin
[14]. The mechanism by which the perfect recovery is obtained isthat the (n-m) poles
of K(z) will cancel the (n-m) minimum-phase zeros of G,(z) and the (m) origin poles
of K(z) will cancel the m origin zeros introduced by the factor zin (3.5.1).

The perfect recovery conditions if transformed to SISO systems will be that the
nominal system transfer function should have (n-1) minimum-phase zeros. Thus, G, (z)

can be written as

¥

(2+20)(2+Zg2) =~ = =2+ Zga-1)

G =
) S & )@ P - (27 D)

fzl <l,i=1,...,n-1

and the compensator K{(z)

(Z+ 2z )(2+ 2p2)————(Z+ Zgp-1)

K
() = T )z za) (27 Zn)




note that the poles ofK(z) are" me“““'féofe : (2).
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(z+zk.)(z+§33)%‘{?;;f(z+zn-l)

L(z) =

(Z+Pgl)(z*’15'gz)—“ -(Z"' pgn)

shouldsansfythepuformanee andmbuslxms specifications given in section (3.4).

iil) The compensator K{z) willbe given by

(2+ 2y )(Z2+ Zp3) -~~~ (2 + Zp-1)
(Z"‘Zg,)(Z'FZgz)----(Z"’ Zgn-l)

K(=)

4g,i=1,—,n1 arethechosen ZEroS.
Zy,i=1,—,n-1 are the zeros of G,(z).

and thus, perfect recovery is obtained (i.e. K (2)G,.(z) = L(z)).



> L{z} I

Fig.3.7 : Loop Transfer Function
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dﬁkﬂmsmhmimﬁesmmmufme&nwﬁkmmnapanm The proposed
mhmmsmmaﬂmnﬂkmmnqmmmmmMEmm:Hmwmxuﬂmmuqqup
u:asﬁma%aumﬁrunmlsmmn(&ﬂcmkﬂ The well-known bilinear

pmmannﬁuuq@mnnmmaummma&mn:ankmymnﬂBummmmmm
mmgummmmgmm:ﬂgmmmsmﬂﬂmnmmﬂmmh&kmemMMm.

;}ifdxmmﬁmeummﬂawhmmuﬂndmnmﬂhm:maﬂw
thnumﬂ&ﬁﬁhyaﬂsnmmpmmmﬁ(fmeﬁM&uumﬂmmmmxwm

=

&mmﬁymmmd

The bilinear transformation is a bijective map between the z-plane and the
w—plane.Whe:icouvuﬁngcﬁscxdnsystantopswdo—eonﬁnuous systems by the
bilinear transformation, the following substitution is made

I +aw

z
l-aw

where a is a positive constant. For, conversion of a w-plane system into a z-plane
qunmémmmhgmmmmmnhﬂmmmﬂ

(l) z-1
w & |~
a) z+1

80
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M__% sig&_; v e
- %ﬁxnsed—'ﬁﬂsampled-dan systems, q is usually set to

(e-1I)

c-\/é. H(<I>+I)"
B _gz‘ ,q.ﬁ
D=J- H(<I>+I) 'r

b=(I-aA)' (I+aA)
T=J2a (I-aA)'B
H=J2a c(-aA)™"

J=D+aC(I-aA)'B
3.6.2 Cotroller Design in the wplane

The following discrete controller design algorithm is proposed. It is assumed,
to start with, that we have a discrete nominal plant G ,(2) and bounds on the sensitivy
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—-- --~---—-(W¢)-MWWFTQT)-W'~ - -
The algorithm is

) Map G ino the wplane using the bilincar transformation.

'2)  Map the bound on Sfz) and T(z) into the W-piane.

3) Pmoeedthhthedesgnmeﬂlodglvmmm(‘ZG)asxfnwete
in the s-plane. *

4) After the design is done, map the controller back into the z-plane
via the bilinear transformation.

3.7 Design Considerations foxSampled—Data Systems
Inthewptewousseeumsﬂlevdsammmed ondiscteteumesystems.
Howwerﬂnetﬁsueteumesystemwmbeobtmned bysamphngaconunuousume
system and we are concerned about robustness and performance of the sampled-data
sys(emofl’ig.i%.&'l‘lms we are interested inhmwinghowﬁ:eeonﬁnuous plant
description of section 2.2.2can be transformed into an equivalent description on the

Here equivalence is in the sense that if the discrete time system is stable in the face of
discrete uncertainty, then the sampled-data system will be stable in the face of plant
uncertainty. Another issue ishow the performance requirements asdescribed in section
2.3.3can be translated into reqixiremaxts on the discrete time system.

Consider plant G(s). It is seen in section 2.2.2that one way of describing the plant

is
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Fig.3.B : Sampeled-Data Control Systen




-

3
(3
by

- -————G(s}&g I+ E(s) - — - -

dmzctmmd byﬂ,eﬁ,ngm‘"’"‘“g "";& .

WhaeG,(s)lsanommalplznt,La(s) mmemweﬂamtywhdus

o(L . (jw))<1l (w) , w20

and Gfs) and G,(s) have the same number of unstable poles. However, in many
practical cases more canbe said about the uncertainty. For example, to name a few,
paramater variations, model reduction. In such cases, the plant can be described as

LB (6(s.8)  BeS)

whetedleSreprwenls sayﬂnevahmofﬂ:epammete:s.’l‘hm it is a simple matter to
getﬂxe(hscxeteeqmvaleutoftheconmmous time plant. Namely

G(2)={G(=,B)|BeS})
and G{z) can be represented as

G(z)=Go(z)+ Lo(2)

where G(2z,B) isthe ZOH equivalent of G(s,B), G.(2)isthe ZOH equivalent
of G,(z)and L,(z)isan additive uncertainty which is characterized by the following
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..(O)mnberconwmdazsz“(e) max o[G(e”.B) - G ()]

W7 g

mmu&@gmmw (section 4.1).

ammmlphnt@al;oundonﬂlehtg&sngularvalmofpethnbahm (cither

add:nvewmnlnpl!@nve)*asdwuibed in section 2.2.2 For this case a comprehensive
treatment ngentO] ‘l‘lwrmltm[fi()]xstlntlfforazmple,thcphntls

of L (jw)]< !, (w), w20

and if aliasing is negligible, then the equivalent discrete time system is given by

G(2) =G ()1 + Li(2)]

S[L(e™ <l(w), ws

~lA



42 DoubleMas-SpﬁngSyStein—IQGlL’l‘R Design Method

Consider the system of Fig. 4.1.1t consists of two unit masses which are connected by
a spring and a damper with an uncertain spring constant and damping coefficient:

Kow=1<k<k_, =2

bam=.1<b<b,_,. =.5

It is desired to control the position of the second mass with a force applied to the first

mass. This isa control problem with two uncertain parameters but a known model.



Fig. 4.1 :Double Mass-Spring System
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which, when transformed, become,

s2+bs+k —(bs+k)][
~(bs+k) s®+bs+k] Ld(

d(s) _ bs+k

u(s) s?(s%+2bs+2k)

This will be called the real plant.
4.2.2. Nominal Model and Uncertainties

Wewﬂld&l with the parameter uncertainty as a model uncertainty. Because this is
SISO system we can reflect all the uncertainties to the input or the output of the plant.
The variation in the spring constant and. damping coefficient is treated as a
multiplicative uncertainty as follows

G($)=(1+An(5))Go(5) = Go(s)(1+A,(5))
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- __where Ga;isw mmg—fs)smmal transfer function, and

-(s)xsﬁlemnlnpbmhve uncalamty
(3pmeﬁengyg4nn&ias

s?(s2+2b,s+2k,)

where Ko Sko < Kpax, andib,.._Sb,Sbm

A Gw)I<A(w) ,w20

Vmax
es2 15658
’;‘*.

A DL } 0

Thecmuuller—anomml state—swe rmhmnon of the nominal plant is:

x-l 0 l 0 ) 0 xl 0
X, o o 1 o X5 0

N + u
X3 o 0 o 1 X3 0]-
X, o 0 -2k, -2b, x, 1

d=[(k,.b, 0 0] | "%| = Cx

The values of k, and b, are selected to be 1.5and .25 respectively.
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- Fig.4.2 : Uncertainty Bound

- -~ § wex
R e

Y

—100
10-2 10-—1 loo 10" 102

108

Frequency (Rad/Sec)



. H=[0 1.0 25 15] ; p=1.0

Now,wemed todmgn acompmsamr K(s) such that:
K (jw)G(jw) = K (jwl ~ A) ' B for those frequencies w where the sensitivity
and robust stabilization requirements are relevant. Using the results of section 2.4,

K(s) is given by

K(s)=K(SI-A+BK_+K,C) 'K,

where the KBF gain K, is given by

=[9.9920x10° 3.1735x10®° 5.0386x10° 4.000]

The poles and zeros of the compensator are:
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Fig.4.3 : LQR Loop Transfer Function and the Uncertainty Bound
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..,5"4:- RO

— e e ——— [=3:1498+5 4572 = ——
) -3.1498-5.4572i | '
-6.3022
—0.0600

poles 1.0x10?

~.1250=1.2183i
zeros -.1250+1.2183i
-.1329

mmmmmmﬁaﬁm'm’m&ﬁﬁgumm
. the recovery is perfect at low frequencies. Thehme-tmszs toastep-mput for
different k'sand b’sare given in Fig.4.5.

e el

"’aé".:;' e
SdechngtheamphngpenodtobeT = 1.0sec. ﬂerOHeqmvalent ofthenommal
system given in section 4.2is *

oZ+2

G, (2)=
(=) z*+2.60932%+2.997322-2.16692+ .7788

Note that the system is non-minimum phase. The variation of the spring constant and
damping coefficient can be treated as a multiplicative uncertainty as follows. Let k be
the spring constant and bbe the damping coefficient, then the actual system isa member
of the following set
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Fig.4.4 : Designed and Recovered Loop Transfer Functions
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Fig.4.5 : Step Response
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{65€z:kb) tF<kS2; 1SbSSy- o o

[L.(e’®)] <1.(0) , 050<m

”

G(e’*, k,b)-G, (')

max
G.(e’®)

-150<S

} 6<0<n

Step 1: Design:the target loop transfer function L(z) = K .(=I - A)B, where K. is
the LQR gaintinatrix, such L(z) satisfies the loop shape constraints. In this case, the
constraints are that | 1 + L™ (e’®) |> I,.(e’®), zero steady state error, and that the

bandwidth is as large as possible. The LQR gain matrix is found, as shown in section
3.4, by solving the regulator Riccati equation with the parameters p and H. Here H
and p are chosen as

H=[0 1.0 -.6093 .7788],p=10
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O

ng;a47and48$!nwme1QRmﬁﬁn(ﬁﬂ'ummdinvetse-rmdiﬁ'amwim
thenmlnplmemmmmybmndwhldlshowsﬂmﬂwmcﬁnmformbuststabﬂny
K.-[.2647 -.3951 .3486 -.1821]

Step 2:Recover the designated mgthopuansfuﬁnummgﬂmm.tsofm
3.4,the following compensator is designed

334923 - .5047 2%+ .444 = - .2341

K(z)=
(=) z3+ 67052 +.3282 0007

‘Figiires 4.9 and 4.10 show the "_' ==
K(z)G.(z).Asseen mtheﬁgnmg ' Iecovetyxsnotcomplete. This is due to the

.__~..,-g s

fact that G ,(z)is non-minimum pln_s_g_’gqivévu’ the system satisfies the uncertainty

requirements (| 1 +(K(e*)G,(e’*)) " > la(e’*)).
The time-responses to a step-input for different k’sand b’sare given in Fig. 11.

4.3 Hydraulic Actuator

Consider the SISO hydraulic actuator described in [25]. The nominal transfer function
of the system is given by

9000
s¥+30s%+700s+ 1000

G.(s)=

the system is stable and the poles of G,(s)are



Fig.4.7 : 1LQR Return Difference
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Fig.4.87 .l:QR Inverse Return Difference and Uncertainty Bound
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Plant output

Fig. 4.11: Step Response
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[
=]
b

-14.239 +21:305¢
-14.239 -21.305i
-1.5229

It is desired to use the LQG/LTR method described in section (2.4) to design a
compensator and compare the resulting compensator performance with the one
designed using H . design method described in section (2.5) and the H JCLTR design
method of section (2.6).

4.3.1 Design Specifications

In this example, it is necessary to have a closed loop bandwidth of 30 (rad/sec). This
will ensure that the singular values of the complementary sensitivity function be
attenvated at frequencies beyond w =30 (rad/sec). Thus, the system will have
sufficient stability margin to tolerate variations in the loop transfer function which may
arise from unmodeled dynamics at and beyond this frequency. Also, we want to
minimize the singular values of the sensitivity function as much as possible, this ensures

good attenuation of plant disturbances and insensitivity to small plant variations.
4.3.2 LQG/LTR Design

Here we want to design an LQG/LTR compensator which has the property tha: the
closed-loop system will have zero-steady error to arbitrary constant (step) commands
and/or disturbances. This specification implies that we must have an integrator in the
input channel. Therefore the transfer function of the nominal system augmented with

one integrator becomes
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Cals)=LGu(5)

and G,(s)will be used in the following design steps. The state-space realization
(4,B,C) of G ,(s) is given in table 1.

The first step of the LQG/LTR procedure is to shape the state-feedback loop transfer
function L(s) = K .(sI — A)™' B such that L(s) satisfy the design specifications. The
following state-feedback was found to satisfy such specifications.

K . =[28.2905 .1750 -3.8196 =6.1719]

The frequency response of L{s) is shown in Fig. 12. The second step of the design
procedure is to use a KBF to provide an estimate for the states. The KBF gain should
be chosen such that

K(s)G (s)> K _(sI-A)'B
for the frequencies of interest. The optimal KBF gain was found to be

K,=[1.0x10" +.4325x10% 109.0398 .1557]

and thus the compensator K(s) will be

K(s)= %Kc(sl— A+BK +K,C)'K,

The frequency response of the loop transfer functions K (s)G.(s)is shown in Fig.
13. The results of the design can be seen from Fig. 14 and 15 for the sensitivity and

complementary sensitivity functions where the bandwidth is found to be close to the
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) 0 0 0 1
1 -30 -700 -1000 0
4=l » 1 o 0 B=to
o 0 1 0 0
c~[0 o 0 9000]

Table 4.1 : State Space Matrices for G,(s)
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Fig.4.12 State Feedback Loop Transfer Function
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Fig.4.13: Designed and Recovered Loop Transfer Functions
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Fig.4.14: Sensitivity Function
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Fig.4,15: Complementary Sensitivity Function
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desired value.-The graphs also shows the minimization of the sensitivity function.

4.3.3. H. Design

The H . design procedure starts by selecting some weighting functions which reflect

the desired performance and robustness specifications. The design specifications of

section (4.3.1)can be achieved by selecting the following weights on the sensitivity and
. itivi : y

S

Wi(s)=v —_s-i- 001

where yisa constant which can be adjusted until the optimal solution is achieved.

9.5(s+ 10)

V)= 300

The plots of the singular value of b/, (s)(for y=2.0).and Iv' .(s) are shown in
Fig. 16.

The plant should be augmented with weights as in section (2.5). The state-space
realization of the augmented system is given in table 4.2.Using the computer program
ROBUST-CONTROL TOOLBOX [25] for several increasing values of vy until the
computer program responds that no solution exists for any larger v, the desired
robustness and performance specifications were achieved byusing v = 2.0.The resuits

are shown in Figs. 17, 18 and 19. Fig. 17 clearly indicates that the frequency resposnse
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3.0000e+ 001 -7.0000e+ 002

3.1853e+ 001!
1.000Ge+000 o 0 o
i 0 0 -1.0000e-003  2.8668e+002
0 ~3.1853e-002 0 -1.3166e+001
o 9.994%e-001 0 —4.1558e-0G1
0 1
(4] [4)
B,={1} . B,=|0
[4) 0
(1) 0
o 0 2.4000e+302 0 o
c, = }o 0 o o 0
o .0 0 3.0166e+001  8.5487e+004
cC, =[O (4 (4] 2.8668e+ 002 -8.9954e+003)
0 o"
by | Du] _ g 1.0000e—00§
Dz Dy, 1.0000e+000 | o_}

Table 4.2 : State Space Matrices of the Augmented System

-9.0004e+003 ;
~2.8683:4002 |



Fig.4.17: Closed Loop Function
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Fig.4.18: Sensitivity Function
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of the closed-loop transfer function isalmost one for the frequencies of interest. Figs.
18 and 19 show that the seasitivity and the complementary sensitivity functions are
moved close to their respective upper limitsW;' and I3 respectively. The final
H _ control law has five states, is stable and has the realization

K(s)=Cx(sI-Ax) "By

The matrices Ax, By and C gare given in table 4.3.
4.3.4 H_CLTR Compensator Design

Here, an H JCLTR compensator will be considered. The same weightings Iv’ ;{s)}
and W »( s )will be used here again. This design is accomplished in two steps. The first
step is to find the state-feedback gain where all the states of the augmented system
(table 4.2)are assumed to be available for feedback. The resulting state-feedback gain
is given by

K.=1x10°.0001 0.350 -.0134 -.i520  +4.5003]
Since the plant is stable the observer gain K ; can be selected to equal to B, (section
2.6). Thus, K ;is given by

K;,=<foc o 1 o oY

This will give the following compensator

K(s)=-K.(sI-A+B,K ,+K,C.)'K,



-1.2394e+ 001 -3.178l e+ 006 1.213Se+ 006 1.3784¢+007

1.0060e+006 -5.5737e-032 -2.6667e-032 1.2727e-016

A= 0 0 -1.0000e-003 -0

2.3323e-031 -3.1853e—-002 =2.0171e-029 -1.3166e+001
1.1586e-033 9.9949e~ 001 6.5482e - 032

-4.1958¢- 001

-6.6646e-019
-4.3256e-019
1.0000e+ 000
—2.149Se-017

2.1037e-020

B,=

C,=[-1.2364e~ 004 -3.1774e+ 006 1.213Se+ 006 1.3784e+ 007

Table 4.3 : State Space Matrices for K(5)
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-3.0823e+ 008
5.2578e-015

-9.000-1e+ 003

—2.8683e+ 002

- 3.0823c+008]
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Fig. 20 shows the closed-loop transfer function for the state-feedback system and the
recovered closed-loop transfer function, which appeared to be identical indicating
perfect recovery. The sensitivity and complementary sensitivity functions are shown in
Figs. 21 and 22 where they have been pushed flat against their respective limits I+ ;'
and W3' .

4.3.5 Comparison Between the Designs

The capability of each design method to meet both stability margin and disturbance
attenuation requirements can be used as a basis for comparison between the different
design methods. In this example the H . compensator and H JJCLTR compensator
have satisfied the design specifications. The bandwidth requirement was not satisfied
using LQG/LTR design. The best bandwidth was achieved using LQG/LTR was 10
rad/sec, in contrast to the both H . designs which produced a bandwidth of 30 rad/sec.

The order of the compensator was the same in all designs.

4.4 Hydraulic Actuator - Discrete H /CLTR Controller

The design method for discrete H ./CLTR controller described in section (3.6)
willbe used here to design an H JJCLTR discrete controller for the hydraulic actuator

given in section (4.3). The ZOH of the plant transfer function G ,{s) is

~-.0752z%+ .553z + .295
23-2.6822+2.42z— .741

G.(z)=

Now, &,(=)1s transformed to the l/-plane using the bilinear transformation. The
design will be done as if the system is in the s-plane, and the same weighting functions

W,(s) and W ,(s) of section (4.3) will be used here again. The state-space
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realization of the augmented system is given in table 4.4.The state feedback gain which

satisfy the requirement that the magnitude of the state feedback closed-loop transfer
function is equal to one for the frequencies of interest is given by

K.,=1x10%296 - 3.10 1.119 .099 -.095 .002]

Since the system is stable, K ;= B,

K;=[-2.47 -.67 2.12 .127 -.095 -.002]"

The controller K (s)is given by

K(s)=-K.(sI-A+B,K . +K,C,) 'K;
The results of the design are shown in Figs. 23,24,and 25._Fig. 23 shows the magnitude
of the state feedback closed-loop transfer function and the recovered closed-loop
transfer function which are shown to be identical indicating perfect recovery. The
sensitivity and complementary sensitivity functipns are shown in Figs. 24 and 25 where
they have been pushed flat against these limits W ™' and 173" respectively.

The last step of the design is to use bilinear transformation to transform the

compensator K (s)into the z-plane. The state space realization of the compensator
K (z) is given in table 4.5.



S.6447e-001

fred

-y

[~ -1.8338e-001 -1.9953e-001
-5.6277e-001 -9.1745e-001  9.7945e-001
A- -1.8690e-001  -9.5530e-001 -2.4363e¢+ 000
-7.4214e-002 3.2741e-001  1.7236e+000
4.8057¢-002 2.1360e-001  1.1491e+000
| -1.170Se-002  -S.1787¢-002  -2.757Ce- 001
1.1236e-002 1.9220e-003  -1.028S5e-004 |
-5.8763e-002 -7.8623e-003 -6.1710e-00S
2.351Se-001  1.8500e-002 -6.1665e~-003
-1.4479e+001  1.7100e+001  -9.2634e-001
-2.6411e+001  1.4104e+001 -6.0311e+000
4.5827¢+000  6.8348e+000  -3.001Se+002 |
-2.4730e+ 000 [ 1.7890e+ 001 |
~6.6997e- 001 2.0588e+ 001
B | 2-1180e+000 B 9.81472+ 000
! 1.2738e-00} 2 | —3.6721e+000
-9.5108e- 002 -2.4022¢+000
| ~1.96S4e-003 | 5.8162e-001 |
" -1.8059e+001  6.0018e-002] [-1.9083e-001 ]
2.0596e + 001 1.1877e-001 -3.0940e-001 |
7 | ~1-0039¢+001 1.6576e~-001 c1| ~5-6135e-002 5
' | 5.9508e-001 6.3333e- 001 2} ~3.5700e+ 000 ;
9.0546e-002  2.1304e+000 1.1104¢+000 |
| -2.9396e-003  5.8696e-001 | | -1.6592e-002
(o D 1.6667e-001 -6.2372e- 005
| __i_—“ ’ "] - 0 | 3.5528e-003
LDzl Dn

1.0000e+000 ! -3.7423e-004

Table 4.4 : State Space Matrices of the Augmented System



Gain (db)

125

Fig. 4.23Designed and Recovered Closed—Loop Transfer Function
0

S -] —

—14-— - -

—16
10-3

Frequency {Rad/Sec)



Gain (db)

20

Fig.4.24: Sensitivity Function

126

10}

T 3 v V% T

T T 5 1% ¥ L S S

—10L—

—40

—-50

|

Sens:.t:l.v:.ty I-‘mx:tlm o

I|llll N3 1 2

10-3

Frequency

103

(Rad/Sec)



Gain (db)

10

Fig-4.25: Complementary Sensitivity

Function

o1 * 111

Frequency

103

(Rad /Sec)

106



~6.747e+ 002
-7.7262e+ 002
-3.6117e+002
1.3007e+ 002
6.5880e+ 001
-6.3821e+ 000

.

1.5802¢+ 001
1.80S1e+001
8.4204e+ 000
-2.8917e~ 000
-6.8875e-001
1.7571e-001

| 6.6702e+002
7.6702e+ 002
3.6336e+ 002
-1.2909e+ 002
-6.5702e +002
| 6.3427e+ 000 ]

D=[1.8747e+001]

7.0323e+ 002
8.050S5e+ 002
3.7587e+ 002
-1.3536e+002
—-6.8560e+ 001
6.6416e+ 000

~2.8887¢-001 |
-3.3008e- 001
~1.5411e-001
5.0374e-002
6.2540e-003
-2.0332e-001

[ -1.8852e+001]
1.9619e+ 001
-6.9141e+000
-3.4342e-001
4.4034e-001

c’=

—2.4783e+ 002
-2.833Se+ 002
-1.3148e+002
4.7720e+ 001
2.4170e+ 001
-2.341S5e+ 000

| -8.0526e-003 |

125

-1.2394e+ 001

1.4097e+ 001
- 6.5053e+ 000
3.2205e+ 000
9.6868e-001
-1.0252e-001

Table 4.5 : State Space Matrices for K{(z)
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4.5 Large Space Structure

In this example, we want to design a controller using LQG/LTR, H. and
H JCLTR design methods for the LSS described in [21]. A 4-state reduced order
model from 116-state original model will be used in the design. The state-space
realization (A,, By, C,)of the reduced model is givenin [25].

where
~.99 005  .4899  1.9219
4 = -009 9876 1.9010 -.4918
¢ -.4961 -1.900S .511.703C 4.97i6
-1.921S  .4907 -7.7879 -398.3118
7827 -.6140
g - | 6130 .7826
g 7835  .5960
| .6069  .7878
c - |-7829 6128 -.78l6 -506i
y | -.6144  .7820 -.5984  .7884 ]

4.5.1 Design Specifications

The design specifications are [25])
1) Robustness Specifications:

-20 db/decade roll-off above 2000 rad/sec.
2) Performance Specifications:

Minimization of the sensitivity function.
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Those specifications lead toﬂicfoﬂowingwdghﬁng_ﬁmctiom for performance
and robustness respectively [25]

(1+s=) 0'
oif1+=)*
Wi(s)=v (1+%) .
(1+5)
0 _—
i o1{1+:3)
where ygoes from one to 1.5.
S
0
W.(s) = 2000 )
0 2000

A plot of the singular values of ¥, (s)(for y=1.5) and I/ ,(s)isshown in
Fig. 26.

4.5.2 LQG/LTR Design

In his section, an LQG/LTR compensator is to be designed. The closed-loop
feedback system should have zero steady-state error to arbitrary constant (step}
commands and/or disturbances. This specification implies that we must have an
integrator in each input channel. Also, we would like to have all loop singular values
to be identical at both low and high frequencies. This requirement makes the system

has about the same speed of response in all directions. This system will be augmented
with two integrator, and is given by

A B O..
A, = [ g 9] .B,,=|: “2] .C.={C, O,
Ozxs O2.2 P )

N
“
)
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To balance the loop singular values, we will choose the weighting matrices of the LQR
problem of section 2.4as [20]

where

H,=—-[C44;'B,]"' and H,=CI[C,CIT"
and R = p I, where p is selected to adjust the crossover frequency consistent with the
stability-robustness coustraints.

This choice of the weighting matrices will make all singular values of the state-feedback
loop transfer function L(s) = K .(sI - A,) ' B, roll-off at -20 db/dec at both low
and high frequencies. The state-feedback gain is given by

1.8311 0.0006 |7

0.0006 1.8308
0.7236 -0.5655

0.5734+ 0.7290
-0.6206 -0.4797
| -0.4594  0.5960

K.=1.0x10°

The singular values of L(s) are shown in Fig.27 where itis shown that the two singular
values are identical and satisfy the robustness bound [/ , (s ). The next step isto design

the compensator K{(s) such that L5} is recovered. Using the results of section 2.4
K(s)=K.(sI-A,+B,K.~K,C,)'K,

where the filter gain X, is given by



(db)

Gain

140

120

100

80

60

40 |

20

Fig.4.27 : State Feedback Transfer Function

T LR T T 1

e e - e — e al o -a

b - e . ——

S - P A
i i f % % 2333y x 2 P i roagx i 1 i1 3 X i

10-3 100 103 10¢

Frequency (Rad/Sec)



134

" 1.001 -0.0118
0.119 0.9999
0.0045 -0.0035
10
K;=1.0x10 0.0039 0.0047
0.0014 0.0010
| 0.0007 -0.0010 |

The singular valoes of the loop transfer function
K(5)Go(s) (Ga(s)=C.(sI-A)"' B,)are shown in Fig.28 which clearly
shows that it approximate L(s).

The sensitivity and complementary sensitivity are shown in Figs. 29 and 30. There it
shows the minimization of the seasitivity function and the robustness bound is satisfied
by the complementary seasitivity function.

453 H_Design

Here, we consider the design of an H . compensator for the LSS using the
ROBUST CONTROL TOOLBOX [25]. The first step in this design is to form the
augmented system p(5) using the nominal model G(s) and the weightings W,(s) and
W,(5) as in section 2.5.The state-space realization of p(s) is given in Appendix B. The
design parameter Y will be increased from one until the computer program responds
that no solution exists for any larger v. The optimal v was found to be 1.5.The design
results are shown in Figs. 31, 32 and 33. Fig. 31 shows that the closed-loop singular
values are almost one for all frequencies of interest. The sensitivity and complementary
sensitivity are shown in Figs. 32 and 33 where it is shown that they have been pushed
flat against these limits V7' and v ;' The compensator has eight states , is stable
and proper, and has the realization

K(s)=C,(sI- A) ' B,
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Fig.4.30 : Complementary Sensitivity Function
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where 4, , B,,C, are given in Appendix B.

45.4 HJCLIR Design

The design of H /JCLTR compensator involves two basic steps. The first step
is to find the state-feedback gain for the augmented system given in table 6. The
closed-loop transfer function of the state-feedback system should equal to unity for
the frequencies of interest. The optimal state-feedback gain was found to be

K. =1.0x10°

Since the plant is stable, the observer gain K can be selected to be equal to B, (section

2.6). Thus, K;is given by

[ -40.5808
54.4967
~-22.6707
-16.7562
46.1146
-52.6213
-0.003S
-0.0015

This will give the following compensator

1.8666
-0.3510 0.1914
0.1602 -0.0880
0.8344 -0.6226
1.5027
-0.1605 0.0639
-0.0047  0.0022
| -0.0250 0.0186

-1.3926 ]

-1.1166

S54.4904% |
40.5855
-16.7456

22.6844
-52.6214
-46.1145
-0.0030

0.0016

(2]



K(s)=-K.(sI- A+ K,C,+ B,K.)K,;

Fig. 34 shows the singular values of the state-feedback closed-loop transfer function
and the recovered singular values of the closed-loop transfer function which are
idmﬁcaﬁ!indimﬁngper&dmuy.lhesingtﬂarvalwofdwsensiﬁﬁtyand
complementary sensitivity functions are shown in Figs. 35 and 36 where they have been
pushed flat against their respective Iimits W;' and W3’

45.5. Comparison Between the Designs

The two compensators designed using H . method and H JCLTR method
have met the stability robustness and performance specirfcations. The bandwidth
requirement was satisfied using these two compensators whica is 2000 rad/sec. In
contrast, the best that was achieved using LQG/LTR compensator was a bandwidth
of only 300 rad/sec.
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CHAPTER 5

CONCLUSION AND RECOMMENDATIONS

5.1 Conclusions

In this thesis, a new technique for control system design isdeveloped. This design
technique consists of two steps: 1) design an H . state feedback control, so that the
closed-loop transfer function is minimized; 2) recover the achievable performance
using state observer. The resulting controller willensure internal stability and minimize
the closed loop transfer function. For discrete time systems the bilinear transformation
can be used to transform the discrete time problem into continuous time one, cary
out the computations using continuous time techniques, and transform back the
solution.

A recovery procedure using current estimator for discrete time systems with large

compensator processing time is introduced.

A simplified LQG/LTR frequency domain design method for SISO minimum

phase discrete system is presented.

Several design examples have been used to illustrate the theoretical developments

of this thesis. These examples include continuous and discrete time control problems.

5.2 Recommendations

The following points can be considered for ruture work:



~)

il

Discrete-time solution for the H _, state-feedback so that the H ,/CLTR can be

implemented in the discrete-time and design can be done for discrete-time

Loop-shaping procedure for the state feedback loop transfer function of section
(3-4.2) which is given by

L(z)=K _(zI+ BK Y 'A(zI- A) 'B.
For sampled-data systems; how the performance and robustness specifications
can be transformed from s-plane to z-plane ?
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* APPENDIX A
Observer Design

The problem of minimizing | K ;|7 (where K, is the observer gain) can be
formulated as follows. Let the state space representation of the design system given
by (A€eR™,BeR™P,CeR™. let (A.C)=(0"'AQ,CQ) be the
observable canonical form by infroducing a state similarity transformation as in [3]

X(@®)=Q 'x(t) (4-1)
where
CQ=(0 C.).1C,|I#0 (A-2)
and
e o ]
-1 In-m 7 .
Q AQ[ 0 ] = I, {A-3)
0
Ko I, |

where n;,i=1,n - 1 indicates the number of the observability indexes which are

grt;ater than iand vis the greatest observability index.
an

- 0 .
]‘.=[1 ]} n,., .,and (=1.....v=i =)
The general state observer is given by
2(t)=Fz(t)+ K,y ()~ Hu(l) (1-9)
2@)=T'z(@)

The solution of (A-5) which estimates X (! )is shown in [3]

F = aJordan formed matrix {A-6)



K;=(T3-FT)[I° ]‘CI’l (5-7)
H=TQ'B (4-8;
And T is formed by the row vectors of the form

t;=(0..0:0..0,1,0..0:0:0..0,1,,0..0:...:0..0,A""*.0..0)  (4-9)

where the non-zero entries of ¢;;are at the jih position from the right of each block
and Aisthe ith eigen value of F. The format (A-9) is for distinctly real A’ s . To ensure
the non-singularity of T, wemay require that v ;number ofj’sequal top, p=1,....m

Since T is an explicit function of the observer poles (A’ s),and K;depends on T and F
by equation (A-7), we can miaimize | K ;}Z by choosing the eigen structure T and F.

A.1 Example
Let A, Cbe in the observable canonical form given by

— o -6 _
A=[I 5] ,c=[0 1]

Because the system is single output, T has no freedom in its forms except the poles
Aps s

From (A-9)

if A,#A, F=

if ANy=N, F=




from (A-7) and for the case when A, # A,
- 0
Kf(TA—F'I')[l]
-6+SA,— A3
K,= 2
—6+3Sk,— A3

Thus A, and A,can be chosen to be any negative real number and such that
{ K ;] %is minimized. This can be soived by nonlinear programming methods.



APPENDIX b

DATA FOR THE LARGE SPACE STRUCTURE

The state space-realization of the angmented system for the large space structure design

example discussed in section (4.5) is given by:

~-2.4523e+ 001
-3.458%¢- 004
~3.0551e-002
~7.7701 e+ 000
$.9096e+ 001
4.7067¢+ 000
9.1236e-004
-1.2053e-001

-5.9216e+ 001
4.7169e+ 000
-3.1416e+ 000
-3.7614e+ 001
-1.6990e+ 002
1.9318e-004
=1.1938e-003
-8.0289e-003

[ -4.0581e+001
S5.4497e+ 001
-2.2671e+ 001
-1.6756e+ 001
4.6115e+ 001
-5.2621e+ 001
-3.4803e- 003

L. —-1.4600e-003

5.4490e+ 001 ]
4.0586¢+ 001

-1.6746e+001
2.2684e+ 001
-5.2621e+ 001
- 4.6114e+001
-3.0010e~003
1.6267e-003

3.2248e-004
-2.4529e+ 001
7.7662e+ 000
-3.040Se-002
-4.7074e+000
S5.910Se+ 001
1.4677e-001
1.5458e-003

-4.7161e+000
-5.9226e+ 001
3.759Se+ 001
-3.1431e+ 000
-1.5480e-004

- 1.6990e+ 002
1.9568e-002

-3.1578e-004

—6.2501e-002 -1.60%91le+001
1.6087e+ 001 -6.2561e—-002
-6.5680¢e+ 000 -2.8572e-004
2.2037e—-004 —6.5741e+ 000
2.9958e + 000 3.5869e+ 001
3.58SSe+ 001 2.9969e+ 000
4.3794e- 001 -3.9326e-003
5.8382e- 003 3.6120e-001

-8.2370e-002  1.602Se+000 |
-1.9671e+000 -6.0396e—002
1.1829e+000  4.0093e-002
-5.4201e-002  9.6419e-001
4.993¢-001  1.0807e¢+001
~-1.3268e+001  4.5207e-001
-3.1171e+002  5.5893e+000
~6.6203e+000 -3.9828e+002

" 2.9603e + 000

~3.9690e+ 000 }

{38

-3.9399e+ 000
-8.9808e+ 000
-6.6282e¢+ 000
S.6545e - 002
-1.2732e¢-001
2.2025¢+ 000
| 1.3792¢+ 000

-2.9379e+ 000 |
-6.6341e+000 |
8.9737e~ 000 :
- 6.6836e- 002 !
-9.7200e-002 |
1.6586e+000 |
- 1.8046e+ 000 |
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- -} —4.0688e+001- $5.463%e+001 ~2.4384e+ 001 -1.8020e+ 001
c. = S.463Se+ 001 4.0691 e+ 001 -1.8012¢+ 001 2.4394e+ 001
1 "1 5.7500e+006 -7.2030e-006 -3.2723e-00S -2.5258e ~ 005
-7.4254e-006 -5.3128e—- 006 -2.3847e¢-005S 3.3487e- 005
-4.611S5e+001 S5.2621e+ 001 2.1224¢+ 000 1.3966e+ 000
S.2621e+001  4.611Se+001  1.7232¢+000  -1.7348¢+000.
-3.4744¢-006 1.7983e-006  4.4768e-002 —-6.9921e-002
3.7053e-006  2.8927e-006
-2.086Se-002 2.7970e-002 S.91S3e-002 4.37S51e-002
2 2.8018e-002 2.0830e-002 4.3690e- 002 -5.9233e~- 002
-2.7865e-003 3.1738e-003 2.8153e-001 2.6499e~ 001
3.1776e-003 2.7840e-003 2.1387e-001 -3.480S5e-001
6.0000e-002 0 0 0!
Do 1 D 0  6.0000e-002 0 0!
[Ll.T"] - 0 0 | 4.1126e-006 5.2801e-006 |
D2 2 0 G | 4.0306e-006 5.7135-006 !
1.0000e+000  1.0000e+000 o 0]

The state space realization of the H . compensator for the large space structure is given

by:

T-1.1041e+010
3.2592e + 009
7.5163e+ 009

4, =| 2.4841e+010

1.9840¢+008
1.0218e+ 008
| -1.7993¢+ 009

-8.8697e+ 009

2.6366e+ 009
6.0798e + 009
1.9956e+010

-1.5941e¢+008

8.2679e+ 007

-1.4557e+ 009
-4.0827e¢+ 009

1.7844¢+ 009

-8.1632¢+ 008
-1.8726e+ 009
—4.0119e+ 009

-8.1706e+008
3.706Se+ 008
8.5034e+ 008
1.8370e + 009

3.2383e+ 007 -1.4824e+007
-2.59Sle+ 007 1.178Qe+ Q07
4.5325e+ 008 -2.0578e+ 008

7.1782e¢+ 008
~4.4154e+ 008
-1.0104e+ 009

1.612e+ 009

1.3150e + 007
~1.4127e+ 007

2.4581 e+ 008

3.3165e+ 008

2.2587 e+ 007
-1.1868e+ 007
-2.7192e+ 007

-5.076Se+ 007
4.1156e+00S
-3.7852e + 005
6.5983e+ 006
1.0425e+ 007

-4.9356e + 009
1.4565e+ 009
3.3589e+ 009
1.1105e+ 010
-8.8692e+ 007
$.5660e+ 007
-8.0406e + 008

1.4752¢+ 008 |
-4.3723e+ 007
- 1.0083e + 008
-3.3191e+008
2.6511e+ 006
-1.3709e + 006
2.4139e+ 007
6.7902e+ 007 |




[
wn
[#))

[ 4.0581e+001 5.4490e+001
S.4497¢+001  4.0586e+ 001
~2.2671e+001 -1.6746e+001
B = -1.6756e+001  2.2684e+001
£ 4.611Se+001 ~5.2621e+001
-5.1621e+ 001 ~4.6114e+001
-3.4803¢-003  -3.0010e-003
| -1.4600¢-003  1.6267e-003 _

c 1.864Se+ 009 3.4857e+ 008 ~1.5909¢+ 008 -8.3341e+ 008
. 1.3911e+009 —1.8960e+ 008 8.7195e+ 007 6.2192e+ 008

—1.5008e+ 009 1.5868e+ 008 4.6626e+ 006

2-4941e+oc7§
1.1153e+008 -6.2504e+007 2.2131e+006

- 1.856Se+ 007_!



