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CHAPTER ONE

INTRODUCTION

1.1 GENERAL

Many engincering systems have mechanical components , that can be modcled by
rotating structural beams . TIixamples are turbomachines , turbine blades , aircraft
propellers , helicopter rotors , high speed flexible mechanisms , robot manipulators ,

and spinning spacc structures .

The dynamic behaviour of beams and shafts has been the subject of intensive
study for many ycars . The finite element method , in conjunction with digital
computers , has been proven to be a powerful technique for the design of complex

structures .

The lateral vibration of heams was usually approximated by the Bernoulli-Euler
differential cquation ( Classical Theory ) . Corrections due to the cffect of rotary
inertia ( Rayleigh Theory ) and transverse shear deformation ( Timoshenko Theory )
may be of importance il the effect of the cross-sectional dimensions on frequencics
cannot be neglected , or when higher modes and frequencics of vibrations are desired .
These effects may also cause appreciable perturbations of all modes when the theory of
beams is employed as a hasis for study of complicated structures ; such as wings of
airplancs and missile structurcs . There has been a considerable interest recently in

developing techniques for the solution of equations of rotating tapered beams .




Although analytical solutions may be possible for some special cases , numerical

methods have become important due to the difficultics in the solution of tapered beams

Scveral studies were dirccted to the cvaluation of natural frequencics and mode
shapes of a rotating uniform beam undergoing transverse vibrations . [Early
investigations by Schilhansl | 1 | and Pruelli | 2 ] have shown that rotation of a beam
tended to increase its natural frequencics of flexural motion . Rotating flexible
components arc known to cxperience centrifugally induced tensile force that tend to
increase the cffective torsional and flexural stilThess . The rotary inertia is cquivalent to
an increase in mass and thercfore will causec a decrcase in natural [frequency.

Furthermore , the effect is more pronounced and influencial at the higher frequencies .

Vibrations of rotating beams have heen cxtensively studicd by numerous authors
using a variety of methods ; for example , the Southwell principle , the Rayleigh-Ritz
method , the perturbation technique , the Myklestad method , the transfer matrix
approach , the method of integral cquations , the Galerkin procedure and scveral forms

of the finite clement techniques | 3 | .
1.2 LITERATURE SURVEY

Untill the middie 1960s , most of the work was based on continuum methods such
as Rayleigh-Ritz and Galerkin methods . More recently finite clement methods are

being introduced [ 4.
1.2.1 NON-ROTATING BFEAMS

Vibration analysis of’ non-rotating tapered heams has been addressed by a few

investigators . A detailed literature review of this subject is given by Downs | 5] .




The published material which is of relevance to this work can be classificd under

the following headings and is theroughly reviewed in [ 6 | :

I - Uniform and tapered Bernoulli-Fuler beams.
2 - Uniform Timoshenko heams.

3 - Tapered Timoshenko beams.

A considerable number of Timoshenko beam finite elements for usc in vibration
problems have been described in reference | 7 | . In a critical review of many of the
uniform straight beam clements , it was shown that the clements could be classificd as
simple ; having two degrees of frecdom at cach of two end nodes , or complex ; with
additional degrces of freedom , reference I'71. Dugundji [ 8 | obtained simple
expressions for vibration modes of uniform Euler beams . Lin [ 91 developed a finite
clement mcthod for a uniformly loaded cantilever beam with a general cross-section .
Heppler and TTansen | 10 | used trigonometric basis functions in developing a finite
clement method for a uniform Timoshenko beam . The propertics and performance of
these new clements were explored through a scries of illustrative problems that treat

both straight and curved gecometrics . Yuan and Miller | 11 ] developed a higher order

finitc clement for short heams .

Gallagher et al. [ 12 ] have employed the finite element method to estimate natural
frequencies and mode shapes of a non-rotating tapered beam . Sato [ 13 | examined
natural frequencies of axially loaded tapered beams. The most recent work reported by
Williams et al. | 14 | evaluated the first five na-tural frequencies of axially loaded
tapered beams based on stepped representation approach . Although the methods
presented in | 13,14 | consider axial loads | they arc restricted to non-rotating tapcred

beams . Carnegic and Thomas | 15 | studicd the influence of pretwist and taper of non-



rotating beams . Gocl [ 16 ] presented a study to obtain characteristic equations for
linearly tapered beams with clastically restrained ends . Downs [ 5 ].dctcrmincd the
natural frequencies of an isotropic cantilever becams with doubly symmetric cross-
section , based on both Luler and Timoshenko theories for 36 combinations-of lincar
depth and breadth taper . Taber and Viano | 17 | calculated resonant frequencics and
mode shapes by a transfer matrix technique for Timoshenko beams of varying cross-
sections . With the non-uniform beam represented by a scries of uniform segments |,
results were given for longitudinal , torsional and flexural vibration . To [ 18],
examined two integral parts : namely the examination and development of higher order
tapered beam finite ctements and the application of the higher order tapered beam
clements to the transverse vibration of tapercd cantilever beam structures with end
mass and rotary incrtia of the end mass representing a class of tapered mast antenna
structures . Later , To | 19 | developed an explicit mass and stiffness matrices of a
lincarly tapered finite clement in order to provide a means for incorporating , as well as
investigating , the cfTect of the sccondary contributions of shecar dcformation and
rotary inertia in vibration analysis of a class of a mast antenna structures treated as
lincarly tapercd cantilever beam structures . Vesniere de Irassar ct al. | 20 ] used the
Ritz method to determine the fundamental frequency of the transverse vibration of
tapered beams with one end restrained against rotation and carrying a mass at the free

end .
1.2.2 ROTATING BEAMS

A vast amount of published work can be found in the ficld of beam vibrations
dealing with analytical and numerical techniques . In these works , rotating beams with
various gcomctrics have heen considered , added masses and springs , cfTect of pre-twist

were also included .



Likins , Barbera and Baddeley [ 21 | addressed the problem of mathematical
modecling and modal coordinate selection for an clastic appendage attaéhcd to a rigid
base which is constrained to rotate with a constant angular spced about a body-axis
fixed in the incrtial space . They concluded that the continuum model is ideal for an
axial beam , and not infeasible for the radial beam (both within the usual limitations of
beam theory) . Tloa | 22 | presented a finite clement formulation for a uniform rotating
beam with tip mass . Rao and Banerjec | 23 | developed a polynomial frequency
cquation to determine the natural frequencies of a cantilever blade with an asymmetric
cross-section mounted on a rotating disc . Carncgic [ 24 | evaluated the increase in
potential energy duc to rotation and estimated only the fundamental ficquency of
straight uniform beam . Schilhans! [ 1 ] used a successive iteration formula to find the
first flexural frequency of a rotating cantilever beam . Khuliel and Yi | 25 | developed
a finite clement formulation that represents vibrational responsc of a uniform rotating
beam with tip mass during lead-lag motion . This formulation accounts for the
centrifugal force ficld and the centripetal acccleration effects . Kammer and Schlack [
26 | presented a paper in which they studied the cffects of a time-dependant. angular
velocity upon the vibration of a rotating Fuler beam . They assumed that angular
velocity can be expressed as the sum of a steady-state value and a rclatively small
periodic perturbation . A perturbation technique called the Krylov-Bogoliubov-
Mitropolski (KBM) method was used to derive the general cxpressions for approximate
solutions and instability region boundaries . Yokoyama | 3 | developed a finite clement
procedure for determining the frec vibration characteristics of rotating uniform
Timoshenko beams . The effects of hub radius , sctting angle , shear deformation and
rotary inertia on the natural frequencies of the rotating beams have been examined .
The numerical results indicate that the natural frequencies increase with the rotational

speed and / or the hub radius of the beam , that the effect of setting anglc on the



123L
6

higher mode frequencics is insignilicant and that the cffects of shear deformation and
rotary inertia on the natural frequencies increasc appreciably with mode number . Ile
concluded also that the cffects of shear deformation are generally larger than the rotary
incrtia for non-rotating beams , but their relative cflects may be reversed for the higher
mode [requencics of the rotating beams owing to the centrifugal stiffness cllects .
Finally he emphasized that ; although the numerical examples have been limited to the
uniform rotating cantilever beams , the technique deseribed thercin can rcadily be
applicd to non-uniform rotating beams with discontinuitics , as well as with other end

conditions .

Wright ct al. | 27 | applied the method of Trrobenius to obtain cxact solutions for
the frequencics and mode shapes of rotating beam in which both flexural rigidity and
mass distribution vary lincarly . Although the method developed in | 27 | can be
applicd to a rotating tapered beam |, it is confined , however , to such beams in which
(lexural rigidity vary lincarly. Swaminathan and Rao | 28 | computed the first three
frequencics of a pretwisted , tapered and rotating blade using the Raylcigh-Ritz method
including the cffects of the speed of rotation , pretwist angle and width of taper .
Murty and Murthy | 4 | developed a simple [inite element scheme for vibration analysis
of rotors and numerical rcsults have been given for the case of tapered cantilever rotors
They presented two charts which can be used for quick estimation of the fundamental
frequency paramcter of rotating tapered beams with small taper . Magari ct al. | 29 |
developed a rotating blade finite clement with coupled bending and torsion . Stori and
Aboclnaga | 30 | studied the transverse deflections of a straight tapered symmetric
beam attached to a rotating hub as a model for the bending vibration of blades in
turbomachinery . They obtaincd a broad class of blade shapes for which the cquation

of motion can be solved analytically in terms ol hypergcometric functions . Bascd on




this analytic solution , they presented an algorithm for computing the natural bending
frequencies and mode shapes as a function of sctting angle and rotation rate . Khuliel
[ 31 ] derived explicit expressions for the finite clement mass and stiffness matrices
using consistent mass formulation for the vibration of rotating tapered beam . The
results obtained by Khuliel display high accuracy when comparcd with the cxact

solutions given by Wright ct al. [ 271.
1.3 PROPOSED RESEARCH

The few studics reported on rotating tapered beams have been concerned with
obtaining the modal frequencies only for out-of-planc vibration with zero sctting angle,

and have neglected the effects of shear deformation and rotary inertia .

The purpose of the present study is to develop a finite clement procedurc for
analyzing the vibration characteristics ( i.ce. the natural frequencies and associated
mode shapes ) of a rotating tapered heam including shear deformation and rotary
inertia cffects . ‘This formulation is based on a consistent mass approach that accounts

for the centrifugal force ficld .

The governing differential equations for the free vibrations of a rotating beam
undergoing in-planc and out-of-planc deformations are derived using Tlamilton’s
principle . The ecffect of setting angle , shear deformation and rotary incrtia are
incorporated into the finite clement model . xplicit cxpressions for the inertia and
stiffness propertics of a lincarly tapered rotating beam arc derived . The generalized
cigenvalue problem is formulated and solved for a wide range of parameter changes .
Numerical results are presented and compared with other solutions in the literature

whenever possible .




CIHHAPTER TWO

THEORY

2.1 INTRODUCTION

The classical Bernoulli-Tuler theory predicts the frequencies of flexural vibration of
the lower modes of slender beams with adequate  te precision . However , because in
this theory the cffects of transverse shear deformation and rotary inertia arc neglected ,
the crrors associated with it become increasingly large as the beam depth inceases and

as the wavelength of vibration decreases .

In Timoshenko theory , the rotation of the neutral axis » dw/dx is the sum of the

shearing angle , vy, and the rotation of the cross-section due to bending , 0, ( where w

is the transverse displacement and x is the longitudinal axis ) . ( Sce Iig. 2.3 ). The

problem is thus governed by two variables , w and 0 say , rather than by w alone as in

Bernoulli-Tuler theory .

In this chapter , the general assumptions are stated .The strain and stress relations
are presented . The strain |, Kkinetic and potential energy cquations are obtained |
and finally , the general governing differential cquations for the rotating tapered beam

are derived by means of the extended Hamilton’s principle .

The system to be analyzed is shown in Fig. 2.1 . ‘The beam has a length 1, and
spins at a constant angular speed © about an axis fixed in the space undergoing

vibrational motion in a plane fixed in a local system rotating with the heam .



lig. 2.1 Coordinate frame of a rotating tapered beam .

> X
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As shown in Fig. 2.1 , the beam rotates about the global Z -axis . (X,Y,7) is
called a system of global coordiniate axes while ( xy,z ) is a system of body ( local )
coordinate axcs with origin coinciding with the former ( i.c; at the center of the
rotating disc ) . In this study , we have followed the same notations adopted by Khulief

[31].

The beam is considered to be inextensible , and oriented along the major
dimensions ; i.e. the . -axis is along the length of the beam , the y -axis is along the
width and the z -axis is along the thickness . The mid-planc of the heam is inclined to
the planc of rotation at an angle yw . TFor w = n /2, the transversal motion of the beam
cxists in the x-p planc and therefore , is purely lead-lag ; for w = 0 , the motion is

confined to the x-z planc and is purely flapping .
2.2 GENERAL ASSUMPTIONS

1) - The material of the beam is clastic , homogencous and isotropic .

2) - The transverse displacements of the heam are sufliciently small .

3) - The cross-sections initially perpendicular to the neutral axis of the beam remain
plane , but no longer perpendicular to the neutral axis during bending .

4) - The deflection of the beam is produced by the displacement of points of the
centerline normal to its initial straight position .

5) - The hub radius of the rotating disc is neglected .
2.3 FORCES ACTING ON TIIE BEAM

The radial component of the centrifugal force per unit volumc acting on an

clement of the beam at x is given by

Fo= pAx)Qx 2.1

r



where p is the mass density of the beam .

As can be scen from Fig. 2.2 , a displacement of w along the z direction would
result in a component ( — w siny ) in the Y dircction and a component ( wcosy ) in

the 7 direction .

The force F, can be resolved into two components along the Y and .\ directions :

. ~ 2
Fy=F =pAx)Q x (2.2)

Fo=p A()Q? x {—wsiny/x) = — pAx) Q% wsiny (2.3)

The force F, can be resolved into components along the y and z directions ; i.c.,
E=Fycosy = ~p A(x)Q? wsin yeos y (2.4)

F o= = F.siny = pA(x) O wsin’y (2.5)

2.4 STRAIN AND STRESS RELATIONS

Iiig. 2.3 shows a beam clement before and after deformation . The beam is
originally straight and lics along the longitudinal axis : the clement length is dx, while w
is the total lateral displacement ol the section , parallel to z- axis . The angle of
rotation duc to bending is 0, while the angle of distortion duc to shear is y. The total

angle can be written as

dw
= 4
Py 0+ y (2.6)

It is assumed that displacement components v and w arc independent of y
coordinate . It is accepted that u is a lincar function of z coordinate and w is
independent of z coordinate , where © and w arc the longitudinal and lateral

displacements of the beam , respectively .
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)’
~ W Sin y

F_ = p A)Q* x

Iy == p A(x) Q*w sin y

— X
Y
p AXQ? x

W Ccos v — wsiny

Iig. 2.2 Displacement and force components .
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Iig. 2.3 Deformation , displacement and rotation of an clement by shear followed

by bending .
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There is no relative motion in the y-direction at any time of points in. the cross-scction
of the beam (¢, = 0), and it may be concluded that the displacement component v is
zero , where r,, and v are the unit clongation per unit length of the beam and the
displacement. of the beam , respectively , in the y-dircetion . Therelore | displacement
componcents can be written as ¢

w(x,p,z,0)= —z0(x,1) , wWx,py,z,1)=0 , wix,y,z,1)=w(x,t) (2.7)

where the functions arc dependent of time .

Using the strain-displacement relations , a unit clongation in the x-direction is

obtained as :

Jdu A0

N = e = e — 2.8)
P T x %o (28

and a unit shearing strain in the x-7 planc is obtained as

du , ow dw
= S e e = — () 2-()
Yar T Y 9z dx x (2.9)
Applying Hooke’s law , stress-strain relations can be written as :
Gxx =K r‘xr ! Txr. =G Y:rr. (2.'0)
where for an isotropic material

G=FE[2(1+v) (2.11)

wherce v is Poisson’s ratio .

Let us write cquations (2.8) , (2.9) and (2.10) in terms of angle of rotation and

angle of distortion as :

o =-Fz 90

ax (7.\:

vt Gy (2.12)

X,

Using cquations (2.12) , the moment and shear force expressions for a tapered




15

heam can be written in terms of displacement and rotational components as follows :
p

712 70
M(x) = o_zyp dz= — [lx) (2.13)
-; 2 xXx 0o (‘)'x
o2 w
Q)= [t pdz=k'GAX)Y=k'G A(x)(%\‘-: - 0) (2.14)
-> 12 "

where z, and p, are the the thickness and the width of the beam respectively , E I(x) is
the flexural rigidity , G A(x) is the shear rigidity and £ * is the shear constant which is
inserted as a correction factor to account for the fact that 1, is not in reality uniform
over the height of the cross-section , | 36 | . Tt is also mentioned in reference | 34 |,

that & * depends mainly on the cross-section and is given by :

v 20 (1Y)

—— 2 for rectangular cross-section 2.15
124 11v f ( )

and

_ 6(+v)

ke T4 6v

Jor circular eross-section (2.16)

The variations of the shear correction factor as a function of Poisson’s ratio arc

shown in FFig. 2.4
2.5 HAMILTON'S PRINCIPLE

The cquations of motion can be derived by using the cxtended Tamilton's
principle | 36 } which states :
” Of all admissible confignrations that the body can take as it goes fiom configration 1
at time 1, to configuration 2 at time 1,, the path that satisfy Newton's law at cach instant
during the interval ( and is thus the actual locus of confignrations ) is the path that

extremizes the time integral of the Lagrangian during the interval ” .
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This can be written in mathematical form as :

sj (7' = Mdt = sj Ldt=0 (2.17)

h g
where
8 = variation

T = kinetic encrgy

M= total potential encrgy = U 4V

U strain cnergy

V

1l

potential energy

L = Lagrangian = T" -- 11
2.6 STRAIN , KINETIC AND POTENTIAL ENFRGY

The contribution of the kinetic enrgy of the tapered beam due to translation and

rotation is expressed as :
/~(—)jp4(>("“’ ? dv »(—)J/()(i’% dx (2.18)

where L is the the length of the heam and J(x) is the mass moment of inertin per unit

length about the neutral axis of the beam .

But J(x) is related to I(x) by

J(x) = pI(x) (2.19)
where /() is the arca moment of inertia of the beam .

Now , the kinetic energy can be written in the form :

/—(—)ij(n("‘”)’d\+(—)ij()("" ’ (2.20)

The total strain energy of the spinning beam is composed of flexural strain cnergy ,

shear strain energy and strain cnergy due to the centrifugal force F.. Because Q is
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constant , the centrifugal force is also approximately constant , and may be treated as

an axial load that creates strain cnergy .
U=(—)jrl( 9 (92) 2 dx + (—)jk G A(x) (22 -0) 2 dx + (—)J/ (202 dx 1)
where F, is the centrifugal force given by cquation (2.2)
The potential encrgy V due to the centrifugal force F, per unit volume acting on
the beam in the 7 direction is given by | 3 | :

L
)= —( ..;_ )}’; [v" W A(x) dx (2.22)

where F, is given by cquation (2.5) .
2.7 ELASTODYNAMIC EQUATIONS

Substitute cquations (2.20) , (2.21) and ( 2.28 ) into equation (2.17) , onc can

obtain :
85 rd:—aj {(5 )j P/ t(x)(ﬂ‘i)’d + (—)jnl( )(60)2

I,
~ (I F I () 2 e —(—)jk'( A (3% = 0 dx
0

(—)J'I (ﬂ)’d + (_)jr wAG) dx } dt = 0 (2.23)

Performing the variation in the above equation we obtain :

8.’-'2 L dr= J {fl‘ Al: )(ﬂ)ﬁ(—a‘i) dx + ‘:p 1) (ﬂ)s(!‘)_o) dx:

) i

00 L, dw v \
- j EI(x )(—-1 S(‘—) dx — £ k GAG)(Z= 0)5(—0? 0y dx

LA I,
- J' ,',fr(.';_‘i.) S(g_':) dx -+ (%)J'I"" A(x) dw dx) ot (2.24)
0 - - 0
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The order of integrations with respect to x and t is interchangeable and the variation

and differentiation operators arc commutative , so we can perform, the following

intcgrations by parts :

ij( )( )8(—-)dt ij(x) )— (3w) dt

h

= pA(x)(——)Sw | —_[ = (p/f(v)-—)ﬁw dt

—j pA(r)(——)s dt

because dw vanishes at ¢ = 1, and 1,. In a same way , it is obtained that :

2
j p 1) (ZHa Sy de= ~ jp 1) (S 0 e

On the other hand , integration over the spatial variable yiclds

jrl( x) (2 &2 dx) = jrf( %) (2L (50) dx

= £10 (Dys0 1] j—(rl( x) £%) 80 dx

and
I . 1)
£ aw w —for w _ a3
B[k GAR) (5 0)5(—(3x 0) dx _(];k GA) (5= 0) pe (8w) dx
—fk' GA) (22 = 0)80 dx = { & GAG) (22 — 0))5w |
° ox O ox 0
I )
— 9 (1 dw _ ~fra v _ i
£ (‘Jx{k GA(x) ('_ax 0) dw dx .!k GA(x) (_ax 0) 80 dx
Also ,

j/ (--) 5(i7ﬁ) dx jr (M ‘7“’)—(5“;) dx

= F (_‘ZY_) Sw j--(l' (7w) dw dx

(2.25)

(2.26)

(2.27)

(2.28)

(2.29)
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Using the above equations into equation (2.24) produces

j' {—ij(x)("“’)a;w dx— jp l(x)(i’-ﬂ)mdx I"l(x)( )50 |

4

L L
+ j_(r Ix )—-) 50 dx — { k' GA(x) (%} ~ 0)dw | + j%{k' GA) (%ii — 0)) Bwdx
0
+ _’fk' GA) (2 — 050 dxe—F (Pysw |-
> ! ox ' = ax 0

La .. ow 1.5,
LS Al A =WF A dx}} dt = (). .-
+ !ax (F, P Yow dx + (2)£IZA(V)8w x}} dt (2.30)

Alter rearranging , cquation (2.30) takes the form :

h

Fod o 3 i
J U G (K 0AR (G2 = ) = p A (53

h

d aw N

j{—(r 1) 92y + & GAG) (22 - 0) = p o) (ﬂ’—)}so dx

a0 , aw _ - 0w Y g
= EI(x) (57) 50 | (K GAR) (G = 0+ F(S2)dw| ) dr=0  (231)

The virtual displacement 80 and 8w arc arbitrary and independent , so they can be
taken equal 7ero at x = 0 and x = /. and arbitrary for 0 < x < L ; thercfore , we must

have :

aw

—{kPA()(——O)}-M()( ) (17,-)+( )14(\f)"0 (2.32)

('Jx

, w a0, _
——(1 I(x) —) + k' GA(x) (-5; 0) - plx) (—) 0 (2.33)

Now if we substitute the expression of F, from equation (2.5) into cquation (2.32) ,

we obtain :

K GA (B2~ ) = e (22 + Zim 22 4 (Lypam @twsin'y = 0 (234
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In addition , if we write

EI(x) (L’Q) 50 | =0 (2.35)

{K ('A(x)(-——- —-0)+ 1'(—)}5 I (2.36)

a0

We take into account the possibility that cither £ l(x)( ) or 80, on the onc hand ,

and cither { &’ GA(x) (-al -0+ 1;(%:1)} or 3w, on the other , vanishes at any ends

x=0andx = L.

Equations (2.33) and (2.34) are the differential equations of motion that must be
satisfied over the length of the becam and (2.35) and (2.36) represent the boundary
conditions . The four equations together constitute the boundary-valuc problem .
Iiquation (2.35) requires cither the bending moment or the beam rotation variation
vanish at cach end and (2.36) requires that cither the shearing and the axial force or
the deflection variation be zero at cach end . It is the satisfaction of these boundary
conditions that renders the solution of the differential cquations (2.33) and (2.34)

unique .




CHAPTER THREE

FINITE ELEMENT FORMULATION

The clastic bcam configuration can be defined by a properly generated mesh of
finitc beam clements . In this formulation » beam clements are lincarly tapered in two
planes . Any combination of taper ratios in the two plancs arc permitted by the model
developed in this study . ‘The beam is divided into clements of cqual length /7 = /n |
as shown in Fig. 3.1 . The clement consists of two nodes » cach node has two degrees

of freedom of transverse displacement w ' and bending rotation 0.
3.1 CENTRIFUGALLY STIFFENED TAPERED BEAM ELEMENT

It is assumed that the axis of the beam is straight , and deformation is confined to
shear and bending in the direction of longitudinal axis . ‘The later assumption

climinates torsion due to bending . This implics that the centroid C of the cross-section

and shear center coincide | 19]. See Iig. 2.2 .

Assuming that the clastic beam is aligned along the x -axis in the undeformed

state, one can describe the local coordinate vector of an arbitrary point p’ on clement i

with respect to the clement axes , shown in Iig. 3.1 as
fy i i
{w}=IN_114q)
(09 =Nyl 4) (.1

where {4¢'} is a vector of nodal coordinates of the beam clement .
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Fig. 3.1 A beam clement lincarly tapered in two plancs .
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where deformations are confined to onc planc .

The matrices [Nf', li,a and lN“m arc the clemental shape functions ( or

interpolation functions ) with nonzero entrics given by [ 3 [ and | 35 | as :

No= (1=37+ 287+ (1 =8y} /(1+ @)

Ny = U{E = 28"+ 8" 4 (& - &)@ /2) /(1 + @)
Ny = {387 = 28" + g} /(1 + @)

N =1~ 8"+ 8" — (& =) /2) /(1 + D)

No =6 (—&+EY/{1'(1+d))
Nep= {1 =48 + 387+ (1 =g)d}/(1+ D)

No=6 ( E~EY/(1I'(1+d))

Nyp= (=28 +3E2+ 6@} /(1 +d) (3.2)
where
g =Xt (3.3)
and
= 2B ) (KGN (3.4)

The parameter d is known as the shear deformation parameter ( the ratio between the
bending stiffness and the shear stiffness ) , %' is the modulus of rigidity , ' is the
second moment of the cross-sectional arca , /1_’; is the cross-sectional arca of the beam

clement , /' is the clement length , G is the shear modulus and A" is the shear

correction factor depending on the shape of the cross-section . The shear correction

factor k" is given by equations (2.9) and (2.10) .
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3.2 GEOMETRICAL PROPERTIES OF TIHE CROSS-SECTIONAL AREA

In order to define the entrics of the stiffness and mass matrices one needs to

introduce the following paramecters :

U=21M1ﬁ=L~LH1.=L—U

iy oy ir or
Jl
1
n, = l,'.yl,,z V= E(I’iy + 1) (3.5)

To find the cross-scctional arca at any arbitrary location of element 7, let ;

z L —(x+(i-1)0
2 _ L= (X+ (-1 (36)
z, L,
and lct
(i—=1)l'=1' (3.7)
Substitute in the above expression , we obtain :
z, Lo -x-1r
S P S 3.
z, L, , (3.8)
Similarly ,
y, L= x-1
20 = 3.9
v I,oy (3.9)
Since
Ai=y'. 2, (3.10)
Substitutc cquations (3.8) and (3.9) into cquation (3.10) , one can obtain :
N e A R A
A=y, T z, 7 3.1
oy (]
After rearranging , equation (3.11) takes the form :
i 4, i P
A"=7,T{ M= 2,1 + X ) (3.12)

0y ‘oz
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where
A=y z (3.13)

is the cross-scectional arca ol the root of the beam .

IFollowing the same procedure , onc can obtain the expression for the sccond

moment of the cross-scctional arca
[f S . Z, (3.'4)

Substitute cquations (3.8) and (3.9) into cquation (3.14) , we get

C D ia
; -—l-y L, ~ x =L z’“"’” -x~-1)
T 1, o D

or

(3.15)

Alter rearranging , equation (3.15) becomes :

i /, 2 3 i i2 & id
I.= 3 {m L, — (L, + 3 L) 6p, L, x — 2(r, + )y +x ) (3.16)

oy oz

where

1 3 4
lo= 1370 % (3.17)

is the seccond moment of the cross-sectional arca of the root of the beam .

In cquation (3.16) , it is assumed that the flexural motion takes place in the x-z
planc ; flapping motion . Similar expression can be obtained for flexural motion in the
x-y plane by just interchanging the subscripts y and 7 . Fquation (3.16) can be written
in a simpler form as :

, . 2 3 ;
l;== - "13 (o, = nl.\" - uz.\" - ain + .\"4} (3.18)

oy "o

where

2 3
o, = Ly oy =L 3L ey, = 6L, 0= 2(0 4 ) (3.19)
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3.3 STIFFNESS MATRICES

The strain energy cxpression of the i th spinning tapcred beam clement of length

[ is given by :

. 1 L i L i , i .
R O A Ry A (N I AC YN, (3.20)
2 0 ax' ax' ox

wherc 1; is the centrifugal force in the longitudinal direction of the beam clemet . The

first term of cquation (3.20) represents the flexural strain cnergy , while the second
term represents the shear strain encrgy and the last one represents the strain energy

duc to the centrifugal force /77,

Lquation (3.20) can be written in matrix form as :
1, i iy
W= SdV1K'1q) (3.21)

where | K']is the composite stifThess matrix given by

K =KL+ [ £+ &) (3.22)
where
. 1! T, . .
[k} = [ (B E'L B |dx = elastic stiffness matrix (3.23)
0
) ! T
[kl = I [B) kG A8 il dx' = shear stiffness matrix (3.29)
0

A . .

k)| = j KB i"|7 | B lex’ = centrifugal stiffness matrix (3.25)

n

The curvature «" and the shear strain y' within the element arc cxpressed as

= X p g (3.26)
ox
Y =2 o = ng) (3.27)

ax
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where
iy _ 0 i '

(B J=—INJ] (3.28)

ox'
1B = L[N (3.29)

’ '
l”ﬁ=j%lNLI~INU=IBU—¢MI (3.30)

X

As can be scen [rom cquation (3.30) , there is a coupling hetween w' and 0 degrees of

frecdom .

Carrying out the integration of equation (3.23) , the clastic stiffness matrix | ki] is

obtaincd with nonzcro entries as presented in Table 3.1

The explicit expression for the element shear stilfhess matrix | kil is obtained by

s . . . o . nhel iv s
carrying out the integration of cquation ( 3.24 ) . The shear stifThess matrix | kil is

obtained with nonzero entrics as presented in Table 3.2

The centrifugal stifTness matrix is established by evaluating the integral of cquation
(3.25) . In order to do this , onc can define the centrifugal force associated with a
difTerential clement located at point p' of the finite clement i as :

P 0 gioe2 0 gl
(!l'p =pa4.Q ', drp (3.31)
where
A S U YA (3.32)
when small deformations arc considered . The tensile force acting on a scction at p'

duc to the centrifugal cflect , can he calculated by integrating equation (3.31) over the

span between point p' and the free end of the beam as shown in Iig. 3.2 .
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TABLI 3.1 FElastic stifTness matrix of tapered beam clement

i
[ kil = 3E £ 7 | kg;,)l pah=1,2,..4
Ll (1+®)

The nonzero entries of the lower triangular part of | 4 | arc given by :

12 _ 6 24 21 + _]_3_2_1'
35

() — _ {0 — (o) = _—, — —=
k) = Ky = kg = I T,i'“' + 51'“’ : 5“'1

) o) o 6 l l = 3 -
K= = K= S, o= + (504 T + SO0 a)

"

+ %( — 140 + 19)/7

k(;z, - 717((1,2 +20 + 4y, — _]2_(4)2 + 2)m, + -ll?(Sdﬂ._de Ry iaz
- 3'5(5«»2— Bb + 8)/ %a, + 3‘;(%!»’--- 140+ 12)/ "
(1 ( 6 l l 3
K = — g = ';,?“v - 7((l)+4) a, + —5-(5(!) +1Na, = -”—)(34]) +10) ',
+ i(|4¢b+47)l'2
35
K= — %(«b’ + 20 - 2)a, + 'lz'("’z'*?“'—z) o Tls'(s(b2+ 100 = 13)/'a,
+ %(smu 10D~ 16)/ "0, — 3l5(7«lﬂ+ 140 — 26)/°
/(g‘) _ 7]_1'((')2+ 2b 44y, — %((])2+4(b+6) a, + _|1§,(5q)2+ 25D+ 38)]’(12

- %(sfpu 28+ 44)! "ty + 3—15(7"”+42‘D+68)1 g




TABLIE 3.2 Shear stifTness matrix of tapered beam clement

A1 G o
I, L (1+®)

oy ‘oz

| &1 = 1K) sab=1,2,.4

The nonzero entries of the lower triangular part of | A9 | arc given by :

ab

30

®
ki

D)
kz'l

«
K

s, k) I l
——kg?_kgg—l,-"l—'b*-?”
s K 1 1 i | i
—-kgz)‘kf,,)—-—k§’2=7u|“311'2+?{1
L) L) l l 2 ] 3
= K) = 1) = ] l'u,——lipz+—-l2 M
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Fig. 3.2 Location of the tapered beam element
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The resulting tensile force is then
P e TR, SRR
I, = Q7 frci= 0"+ X Alddd + § X' Adx') (3.33)
x i
where A; is given by cquation (3.12) .

Livaluating the intcgral in cquation (3.33) , onc can obtain the following expression :

oA« 2 3
I'p=—-l——°l—- B, - le' - Bzx' - Bsx' - B4x'4] (3.34)
‘oy "oz

where

Bo= Ay = Ap + A,

A, = Lt (= Re2i-1)

° 2
2 i3 3 3. 1
A= 2 (=t 2ie 2
l ,’4 4 4. ]
/\2 = Z (114"'1 +?I—3')
= L

| i
Bz=-2-( no= 2l

n_;%( Li-2p,)
po=+ (3.35)
14

The axial stresses resulting from the tensile force given by cquation (3.34) are
incorporated into the integration of cquation (3.25) , resulting in the centrifugal

stiffness matrix of the rotating beam clement given in Table 3.3 .
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TABLE 3.3 Centrifugal stiffness matrix ol tapered beam clement

A '
L L (1+®)

‘oy ‘oz

| kil = [ 19 rab=1,2,..4
c ah

The nonzero entries of the lower triangular part of [ &9 | arc given by :

K= - 1 = kY = -;ll—i-(Sfb’-i- 100 +6), = (504 100+ &),

___l_ 2 i ___|_ Sh24- 2 ____l_ 24 + 3
55 (3507 + 630+ 36)/ B, — (IS4 60+ 30)1 °B, — = (70*+ 100+ 5)1 B,

0= —po=tog 1 jopre16m+ 1208, — L (35024490 + 30)77
K KD = B = (1007 + 16D+ 1)1, = —=(3507+ 40+ 30)1 °p,

| 3 1 1
= Sgg 2197+ 260+ 14)] B, — (2807 31D +15) B,

©
ka

1 | 1 3
E(Sq’z+ 100 +8)/'B — m(sqﬂ + 6 4 4)1'zB.~ - 3T(-)(7«!»’ +70 +4)°R,

! 2 p | , .
= —— q .{. 4 - +
Togo (0P 44D+ 22)7P, = R (P79 + 4R,

K= -k = —,—'(Tﬂo + 7:()-(5‘1*’+ 8D)IB, + z%b-(ssrb’«n 63D+ 12)1°p,

l 3 l P
+ m(Zld)’ + 40d + 10)/* Ba + 727)'(28(’)2 + 550 + 15)/ B4

@ = — Lsorer0m+20p, + Losor+ 100420, + 07+ 140+ 3y
L% 2y (SP*H 10D 421, + = (SBT+ 10D +2)1 B, + = ) °B,

1 2 A | ? K
4+ ——(49P* - - + P+ +5

@ = _L(s02+ 100+ BB, — —Lo(507+ 140+ 12)/7B, — =L (707 + 210+ 18/
L9¥ 60(.‘!) 100+ 8)I'f, l20(5(]) 140 + 12)/“B, 2I()(“ 2 18)/°p,

1 1 S
=~ e (49D?4- 1520 + 130)/ i‘BJ - m(] 12+ 350 + 30) °p,




3.4 INERTIA PROPERTIES

The contribution of the kinctic encrgy cxpression of the non-spinning ¢ th tapered

beam clement of length I7 due to translational and rotational dcformation is given by :

i [
.i_l’ i, 0w 2 10 i i, a0 2
T = (-2-)}’; pAa, (7) dx + (-2')?’;0 IX(W) dx (3.36)

The first term in cquation (3.36) represents the translational kinctic energy , while
the sccond onc is the rotational kinetic energy .

Iiquation (3.36) can be written in matrix form as follows :

7 = 20V TM 1) (3.37)
where | M '] is the composite mass matrix given by

M =1 M)+ M) (3.38)
where | M ] is known as the consistent mass matrix becausc it is Fo'rmulatcd from the

same shape functions | N7 | and [ N ] that are used to formulate the stiffness matrix .

where
[ M} = J | N :Vl n A.: NI dx' = translational mass matrix (3.39)
o
- il i iy g
[A1]] = j [N 0 T I Nl dx' = rotary inertia mass matrix (3.40)
0

The cxplicit expressions for the clement translational mass matrix | M,'l and the
clement rotary incrtia mass matrix | M,'] arc obtained by carrying out the integration of
cquations (3.39) and (3.40) respectively . ‘The translational and rotary incrtia mass
matrices | M,'] and | M,"I arc obtained with nonzero entries as presented in Tables 3.4

and 3.5 respectively .

Y



TABLI: 3.4 Translational mass matrix of tapcred becam clement

A {
[ M) = LMY s ab=1,2,..4
L L (1+®)Y °

P
oy " “or

The nonzero entries of the lower triangular part of [ MY | are given by :

1 1 2 1 ;
M) = oo (1002 + 1470+ 78) p 1! = (35074 T00+36) iyl © + = (21024 390+ 19)1°

! 2 1 3 1
My = m(35<b1+ 710 +44) p 0" — W(M«b’ 20+ 1) 1"+ 21D+ 360 + 17)1"

_ 1 3 1 a 1 R s
My = m(""’:”' 14D +8) ! " — m(7«b’+ 120+ 6) pd * + (67 + 9D+ 4)]

? = 1 (3507 + 630+ (— L (asp?+630+ ? oy L6302+ +46)"
M) = (35074 630+ 27) /' = o (35T 630+ 2Tyl © 4 (63074 111D +46)]

MY = —L (3507 4+ 630+ 26) 1,17 — TSI 360 +14) 11" + S (42024 690 + 2517

R40 220
M = 7:(-,(70«b’+ 1470+ 78) p, ' ~ -2%(105«)%224«” 120) 0 * + #(126«»% 2700 + 145)17
MY = = h 3507+ 630+ 26) 1 + (1400270 + 12) ol - S (2107 +420 + 19y
MY = — (04 140 +6) 1" + 21+ 140+ 6) g S5 (607 + 120+ 51
MO = — 8—;6(35‘b’+77(b+44) n!?+ z%b-(zmh 50+ 30) pl " — '2§|2'(T(42“’2 + 105®+ 65)(

! AL PR e p
D= _1 72 _ 1y _
MY 340 (7% + 140+ 8) p,/ oD (7P + 16D+ 10) ! © + 3530 (6D + 150 + 10)/




TABLE 3.5 Rotary inertia mass matrix of tapered beam clement

i i
Tl (D MY s ab=1,2,.4
121+ ®) 1

| M=

The nonzero entries of the lower triangular part of | M? | arc given by :

ah

36

) — ") — ") 6 3 12,2 3 ,n 1 A
M) = — M) = My} = 3% _5‘"“| + g’l"z - ﬁ,'“;\ + 7]
r) - (o P l l 2 l 3]
My = = M3 = - 5(5®=Dl'a, + @~ 1), — (10~ 51",
1 A 1 #
+ — - - (D -
140(!’3"’ Nl a, 28( 314
Mg’z) = _l_.(lo(l)z-F 5(!).'.4)[12 — _l__(sq,!_zq)+ 2)1[2““l + _l_(7q)2_7(b+4)lf‘a
30 ° 60) 210 2
- T;-(-)-(l“‘bz—ZO(l)-l- l])["(‘(3 4 -4-%.6(4(])3—-7(').*.4)116
N — ?) — l 3 2 ] A
M) = = MY = = (=1, + 2t - Law+ i,

1 A 1
+ g+ 1)1y — 30+ 1)*
| 2 1 _ 3 |
Msz) = ?6‘(5(1’2_ 5P~ ‘)!I (20 - -6—0—(5(1)2 5D -- 1)1' ﬂl + m(%bz" T — 2)1 '4(12
l l 2 b
= gy BV = 2RO= 11, + (207 20— 1y

M = -3%(1()d>’+ 5B+ 4y, — %(54»%4«1» + )%, + -315(7«1»% b+ 3)1

l S ] a .
= Ter (O 320+ 13) ey + (a0 50 +2)7 ¢

e e
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3.5 GENERALIZED EIGENVALUE PROBLEM

The potential energy ¥/ per unit volume of the beam clement is given by [ 3 | :
II
Vi= ~()f F,wdldd (3.41)
0
Or, in matrix form :

yi= - %{q'}T QP sin™ [ M ] (4) (3.42)

The sum of the individual clement cnergics over the entire beam using cquations

(3.21), (3.37) and (3.42) gives the Lagrangian function , i.c;

L=Y (T'- Ui - vy (3.43)
j=1

Substitute cquations (3.21) , (3.37) and (3.42) into Lagrangc’s cquation ,

(=) - L= (3.44)

we obtain the following governing difTerential equation of the assembled structure for

the free vibrations of the rotating tapered beam :

(LK = Q" sin™ [M,] ) (q) + [M]({7) = (0) (3.45)
where {q} is a vector of all nodal coordinates of the beam and | K] and | M arc the
global stiffness and mass matrices of the whole beam obtained by the standard finite
clement assembly procedure . The term O2 sin2y [ M,] {q} accounts for the

centripetal acceleration contribution that causes a softening cflect on the lcad-lag
frequencies . For the assumed configuration , howcver , the gyroscopic terms have no

contribution to the cigenvalue calculations w1317,

On assuming the solution of cquation (3.44) in the form

{q) =(F)e'"" (3.46)
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we obtain the following generalized cigenvalue problem :

(1K= Qsic [M,] - o’ [M])({F)={0) (3.47)
where {7} is a vector of displacement amplitudes of vibration and « is the frequency
of harmonic vibrations . The solution of cquation ( 3.47 ) gives the natural frequencics

and the corresponding mode shapes .

. &



CHAPTER FOUR

RESULTS AND DISCUSSIONS

A lincarly tapered rotating beam based on both uler-Bernoulli and ‘Timoshenko
theories with its spin axis aligned along the incrtial 7 -axis is considered . The out-of-
pleac transverse vibration can be represented by cquation (3.45) when the plane in
which the beam is hending makes an angle W = 0, with the direction of rotation .
Thercfore , the free vibration of the flapping motion can be expressed as

[MI{Z)}+1KI{q)}=0 @1
where [ M] and | K] arc the assembled mass and stiffness matrices respectively , of

the whole beam . The vector { ¢ } represents all nodal coordinates of the beam .

The cigenvaluc problem associated with cquation (4.1) is given by :
(IKI=2[MD{F})=0 (4.2)
where { 7} is a vector of displacement amplitudes of vibrations and 2 is the frequency

parameter given by :

ko=m \/(\/10/,4 /7'.:;: 4.3)

Solutions of equation (4.2) arc obtained by means of a finite clement program that
cvaluates the spinning cfTect at the clement level developed by Khulief | 25 , 31 ] and
modified by the author for the Timoshenko case . In this program the clement matrices

developed in this thesis and presented in Tables 3.1 to 3.5, arc gencrated . The finite
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clement assembly procedure is then invoked to assemble the mass and stiffaess matrices
of equation (4.2) . The generalized cigenvalue problem is then solved by mecans of

LISPACK routines [ 37 | .

In this analysis , both fixed and hinged end conditions are considered for a wide
range of rotational specd parameter and taper ratios . The explicit cxpressions for the

rotational speed parameter and taper ratios are given by :

n=QL ) JETpA, (4.4)
and

v, =1L/ I,ny , inx-p plane . 4.5)

v, =Ll _ . inx-zplane. (4.6)

A varicty of results ranging up to the tenth frequency arc tabulated for general use
in Tables 4.1 - 431 . These results cover a range of situations including uniform ,
tapered , rotating and non-rotating beams for both fixed and hinged end conditions .
The results arc presented in both tabular and graphical forms . For Fuler-Bernoulli
beams the results were obtained with twelve finite beam elements , while for
Timoshenko casc , they were obtained with twenty five finite beam clements . In both

cases , a consistent mass formulation has been employed .

Comparisons arc made , whenever possible , with exact solutions and numerical
results available in the literature . The case of hinged-frec Timoshenko beam has not
been solved by the investigators in this field and no results for such work could be cited

in the literature .

The first six bending frequencies of transverse vibrations for rotating and non-

rotating , Luler-Bernoulli and Timoshenko beams are examined and plotted in Iiigs. 4.1
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to 4.8 for the clamped-free end conditions and in Figs. 4.17 to 4.25 l'or}thc hinged-free
end conditions at a wide range of rotational speed parameter and taper ratios . The
cfTect of rotation on the frequency ratios (A3 / Ag) for both cantilever and hinged-free
beams for several taper ratios is shown respectively in Tables 4.15 to 4.18 and in Tables
4.31 to 4.34 . This cffect is also shown graphically in Figs. 4.9 to 4.10 and in FVigs. 4.26
to 4.27, respectively for the end conditions mentioned above . The corresponding
mode shapes are also shown in Tigs. 4.11 - 4.16 for cantilever beam and in Iigs. 4.28 -
4.29 for the the hinged-frec beam . For the presented results , values of the taper ratio
in the range 0.0 < v < 1.0 are considered , where » v, = v,= v, for all the analysis unless

otherwisc stated . A morc detail of these results will follow throughout the discussion .

The case of uniform beam corresponds to the value of v = 0.0 , while v= 1.0
define the case of a thetrahedron or wedge . Values of speed ratio y arc taken in the

range 0.0 < n < 12.0 as shown in tabular and graphical forms .

4.1 EULER-BERNOULLI BEAM

As can be scen |, the presented results cither in tabular or graphical forms indicatc
that Tuler-Bernoulli frequencies are higher than Timoshenko frequencies . Neglecting
the effect of shear strain on the beam deflection leads to the the assumption of infinite
shear modulus , (G = @ ). This assumption increases the rigidity of the beam
theoretically , therefore the classical beam frequencies arc higher than Timoshenko
frequencies . Since the effeets of shear and rotary incrtia are a function of the wave
length of the vibrations , they are more marked in the higher modes , therefore the

cffect increases as the mode order increases . The propertics of Ruler-Bernoulli heam

were non-dimensionalized by setting A = o +/ pA LY/ LI, where I is the modulus of
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clasticity , 7 is the second moment of the cross-sectional arca , p is the mass density , A

is the cross-sectional arca and 1, is the heam length |
4.1.1 CANTILEVER EULER-BERNOULLI BEAM

Tables 4.1 through 4.6 present the first ten natural frequencics for out-of-planc
vibrations of a rotating cantilever beam for different values of rotational speed
parameter and taper ratios . The present results show an excellent agrecement with the
results obtained by Downs , | 5], who used a new discretization technique for the
evaluation of the natural frequencics of the non-rotating tapered cantilever beam with

uncqual breadth and taper .

As an example , the percentage errors between the present work and the the exact
solution , [ 271, in the first three frequencics were respectively 0.00 , 0.00 , 0.01 for the
uniform non-rotating cantilever beam » and were 0.00 , 0.00 , 0.00 and 0.00 , 0.00 , 0.00
for the same beam rotating at n = 1.0 and n = 10.0, respectively . Tor the case of
non-rotating tapered cantilever beam , where v = 0.3 , and v = 0.6, the percentage
errors in the first three frequencies , respectively , were 0,00, 0,00 , 0.01 and 0.00 , 0.00

and 0.00 when compared to Downs 15].

Tables 4.1 through 4.7 show that for a fixed taper ratio , the first ten frequencies
increase with increasing speed ratio . This can be seen in Figs. 4.1 - 4.4 for the first six
frequencies . Tt is also shown that as the taper ratio incrcases , the first frequency
increases slightly for 0.0 <y <3.0 as shown in Iigs. 4.5 and 4.6 . It decreases for
0.0 <v<0.5 and incrcases for 0.5<v < 0.9 at the speed ratio of n = 5.0 as shown in
Fig. 4.7 . And finally , it is decreasing when 0.0 £ v<0.6 and is increasing when
0.6<v<0.9 at n = 10.0 as shown in IFig. 4.8 . Tigurc 4.5 shows that for a non-

rotating bcam , The sccond frequency is decreasing for taper ratios ranging from 0.0 to
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0.8 and increasing for 0.8 < v £ 0.9, The same trend can be seen in Figs. 4.6 - 4.8 when
n is equal to 2.0, 5.0 and 10.0 reaching minimum frequencics at taper ratios 0.75 , 0.70
and 0.65 , respectively . The third frequency decreases for y = 0.0 and n = 2.0, and
follows the same trend as the sccond one when n becomes larger . Figures 4.5 - 4.7
show that the fourth , filth and sixth frequencies decrease with increasing taper ratio
and increasing speed ratio in the range 0.0 < n € 5.0, while IFig. 4.8 shows that the fifth
and sixth frequencics are still decreasing when the fourth one changes his behavior by

decreasing in 0.0 < v < 0.8 and increasing for 0.8 <v<0.9,
4.1.2 HINGED FREE EULER-BERNOULLI BEAM

Tables 4.19 - 4.24 show the first ten frequencies of Luler-Bernoulli hinged free
beam for a wide range of taper and speed ratios . The results arc obtained using twelve
finite clement heam ( same as for the cantilever beam ) . Such beams are known to
constitute a semidefinite stifness matrix ( i.e; they include rigid body mode and a valuc
of zero is to be found for the first frequency for a non-rotating beam ) . The rigid body
modes are not shown neither in the tables nor in the figures for this case because they

arc known to take the valuc of the speed ratio v .

As a comparison between the present model and the exact solution , given by
Wright ct al. [ 27 |, the percentage errors in the first three frequencics , were 0.00 , 0.01
and 0.00 for the non-rotating uniform hinged-frec heam . For the rotating uniform
hinged-frec beam , where n = 5.0, the percentage crrors in the first three frequencics ,
respectively , were 0.00 , 0.01 and 0.03 , and when n = 10.0 the crrors were 0.00 % ,

0.00 % and 0.02 % for the first three frequencics , respectively .

As for the cantilever beam , Tables 4.19 - 4.24 show that for a fixed taper ratio ,

the first ten frequencics increase with increasing the speed ratio . This can also be




44

shown in Figs. 4.17 through 4.21 for the first six modes .

The variation of the frequencics versus taper ratios at constant speed ratios are
shown in Figs. 4.22 - 4.25 . The same trend can be seen as described before for the case

of cantilever beam .

4.2 TIMOSHENKO BEAM

In addition to the constant paramcter +/ p A4, L} E I, in Timoshenko hcam

thecory , there are two further parameters expressing the slenderness ratio and cross-
sectional propertics of the beam . The first , related to the slenderness ratio , can be
expressed as r, / I. where r, = m is the radius of gyration of thc cross-scction ,
and /. is the length of the whole beam . The seccond independent variable is the product
G k. Since G/ £ may be taken as a material constant ( which varics little between
materials ) , & may be regarded as the sccond variable . The values of &’ are governed

by purely geometric considerations and are given by cquations (2.15) and (2.16) .

Since , most of the investigations on this problem | 3 , 5 | lack sufficient
information to adequatcly reproduce the samc results at Icast for the non-rotating
tapered Timoshenko beam ( because results for rotating tapered Timoshenko are not
available in the literature) , a computer program was developed to scan over the best
dimensions of the beam in order to reproduce the results given by Downs | 5 | who
suggested valucs of Poisson’s ratio = 0.3, ratio of radius of gyration at cantilever root
to the beam length = 0.08 and a shear correction factor of 0.85 which is a casc of
thick beam . These informations are not sufTicient if one nceds to reproduce the same

results because the dimensions of the cross-sectional area of the beam arc not given .

Since r [ L. = 0.08 gives z, = /12(0.08 I.), where z, is the thickness at the root of
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the beam , this means that 2z, is a function of . In order to reproduce the results

presented by Downs | 5 |, the following beam dimensions arc used : L = 1 m ,

2,= 0277128 m , and y, = z,/3 = 0.092376 m. where z, and y, are the thickness

and the width at the root of the beam respectively .

IT the shear deformation parameter & and the rotary incrtia mass matrix M i] are

cxcluded , the present model reduces to the classical Bernoulli-Tuler tapered beam
model used by Khulief| 31 ]. It is interesting to observe that if the untruncated Iengths

I,, and L, tend to infinity , the taper ratios become zcro | resulting in the casc of a

uniform beam presented by Yokoyama | 3].
4.2.1 CANTILEVER TIMOSHENKO BEAM

Tables 4.7 - 4.14 show the frequency ratios of a cantilever Timoshenko beam at a
wide range of rotational speed parameter and taper ratios . The same obscrvation can
be drawn concerning the increase of frequencics for increasing speed ratio at a fixed
taper ratio as can be seen in Figs. 4.1 - 4.4 . This trend is valid for both Iuler-

Bernoulli and Timoshenko cases .

The results presented for the case of non-rotating cantilever Timoshenko beam
were compared to Downs [ 5 |. Tor the case of uniform beam , the crrors in the first
three frequencics were 0.18 % |, 0.02 % and 0.06 Y respectively . Por a tapered beam
of 0.6 taper ratio the percentage crrors in the first three frequencics , respectively , were
0.13 , 0.12 and 0.05 . Tor a tapered beam of 1.0 taper ratio , the percentage crrors in
the first cight frequencics , respectively , were 0.05, 0.53 , 1.21 , 194,259 ,3.05, 2.82
and 0.71 . This implics that the third through the seventh frequencics for the casc of

1.0 taper ratio , experience a relatively larger crror which may be caused by the
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discretization of the beam and the sharp end of the cantilever . Downs | 5], who used
twelve uncequal subdivisions in his discretization for the this case (v = 1.0) instcad of
cight subdivisions for the other taper ratios . concluded that subdivision of the tapered
beam for dynamic discretization requires considerable care , particularly for taper ratios
closc to one in order to minimize the errors inherent in the discretization process . lle
mentioned also that a similar problem was encountered by Tlousner and Kcightley,
when applying the Myklestad-Prohl technique followed by Stodola itcration to both
wedge and conc . Their subdivision of the cantilever into hundred cqual length
segments proved insufficient to produce results of acceptable accuracy , cven for the
sccond mode and conscquently the outer ten percent of the becam was further

subdivided into thirty cqual segments .

As mentioned carlier , there is no available results in the literature for the rotating

tapered Timoshenko beams .

Figures 4.5 - 4.6 show that the first three frequencics follow the same trend
described for the Tuler-Bernoulli cantilever beam for the different values of taper ratios
at the specified speed ratios . The fourth and fifth frequencics arc both decreasing for
speed ratios such that 0.0 < £2.0. Forn = 5.0 » these two [requencies are decreasing
in 0.0 <v<0.8 and increasing in 0.8 <v<0.9 , While for n = 10.0, wc can scc that
the fourth frequency is decreasing in 0.0 < v < 0.7 and increasing in 0.7 £ v <09, but
the filth onc is increasing for 0.0 <v<0.1 and 0.75<v<0.9, and dccreasing in
0.1 £v<0.75. To end up with the variation of the different frequencices in function of
taper ratios , let us describe the behaviour of the sixth and last frequency . For non-
rotating becam , the sixth frcquency increases in 0.0 < v < 0.4 and dccrcases in
0.4 <v<0.9. For speed ratio greater than 7ero | say n = 2.0, this frequency increases

in 0.0<v<0.3 and dccreases in 03<v<09, and for n = 5.0, it increases in
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0.0<v<035 and 08<v<0.9, and decreases in 0.35<v <08 . Finally , for
n = 10,0, the sixth frequency incrcases in 0,0<Sv<04 and 0.7<v<09, and

decreases in 0.4 < v <0.7.

The cffect of rotation on the frequency ratios ( %,/ A, ) of the cantilever beam is
shown in Tables 4.15 - 4.18 and is represented graphically in Figs. 4.9 and 4.10 , from
which we can conclude that these ratios incrcase for the first , third and fifth
frequencics by increasing the speed and taper ratios while in the first frequency this
ratio is increasing for 0.0 < v <0.5, and is decreasing for 0.5 <v <0.7, as shown in
Figs. 4.9 - 4.10 . T'rom these figures it is confirmed that Timoshenko frequencics are
lower than Euler-Bernoulli frequencies , which means that (A, /2;) < 1. for any value

ofnandv,

In Figs. 4.11 - 4.16 , the first three mode shapes for Luler-Bernoulli , Timoshenko ,
rotating and non-rotating beam at different taper and speed ratios arc shown . It is to
be noted here that the amplitude of Timoshenko mode shapes arc greater than that of
Euler-Bernoulli resulting in the effect of the rotary inertia and shear deformation
incorporated for the Timoshenko beam . As a sccond remark , it is clcar that as the
taper and speed ratio increases , the relative amplitudes of the total deflection decreases
for both Luler and Timoshenko beams and , the amplitudes of modes 2 and 3 for

rotating beam are higher than that of non-rotating onc .
4.2.1 HINGED-FREE TIMOSIHIENKO BEAM

Up to the knowledge of the author , and as mentioned carlier , there is no
available results in the literature for this casc . Iigures 4.17 - 4.21 show that the first

six frequencics increase when the speed ratio increases . This agrees with what we
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mentioned before and is valid for all types of beams studied in this research . In I'igs.
4.22 - 4.25 , the description done before for the behavior of the different frequencies as
a function af the taper ratio at constant speed ratio is almost the same except for the
fifth frequency which is increasing in 0.0 < v 0.4 and decreasing in 0.4 <v<0.9 for
non rotating heam and is increasing in 0.0 < v <0.2 and 0:7 £v<0.9 and decreasing

n02<vs<0.7 at n = 10,0,

Figures 4.26 - 4.27 show the cffect of rotation on the frequency ratios (A, /A ) of
the hinged-free Timoshenko beam which is also shown in Tables 4.31- 4.34 . I'or taper
ratios of 0.0 and 0.2 , thesce ratios of the first , sccond and third frequencics follow the
same trend described for the cantilever beam , while for the fourth frequency , these are
increasing in 0.0 <y < 6.0 and decreasing in 6.0 < <120 for uniform hinged-free
beam and these arc increasing in 0.0 <y < 10.0 and decreasing in 10.0 < n < 12,0 for a
tapered hinged-free beam of 0.2 taper ratio . In the same way , we can describe the
behavior of these frequency ratios of the fifth frequency as well as the other frequency
ratios for the different values of the taper ratios as shown in Figs. 4-26 - 4.27 . It is
also confirmed here that Timoshenko frequencies are lower than Buler-Bernoulli
frequencies as expected . The mode shapes of the hinged-free heam are shown in Figs.
4.28 and 4.29 for v = 0.7, and all that can be said here is similar to the precedent case

concerning the amplitudes of the vibration .

As a concluding remark , the results reveal an interesting obscrvation , that is
concerning the existence of a critical taper ratio where the frequencics of a rotating
beam reverse the direction of change . The centrifingal effect is more dominant than the

softening cfTect resulting from the decrease of the cross-scctional arca .
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TABLE 4.15  Effect of rotation on the frequency vatios ( )y | %) of uniform cantilever
beam (v, = v, = 0.0). .

B . . _w.l’_:':f—.q“l.mn'y ratios
Speed
ratio Mode 1 Mode 2 Mode 3 Mode 4 Mode 5
n -
0 0.94372 0.73794 0.59451 0.48254 0.40270
1 0.94595 | 0. 7<.I 058 1 -0 59647 0.48407 0.40384
2 0.95043 0.74803 | 0.60215 048854 | 040715
3 0.95408 0.75904 | 0.61104 _;.4 9563 0.41237
4 0.95606 0.77206 | ‘()_62;;1 0.50487 - _(;;7—971— |
A) 0.95 68(;— B 0.7, 85- 6_7 ————— " 0.63541 a 0.51568 — ';).4 2681
6 0. 9;;86— - 0.79874 0.64925 0.52748 0.43482
7 0.95668 0.81069 0.66323 0.53967 0.44238
s 0.95643 - 0.82121 | 0.67680 0.55171 B 0.44864
9 _;) 95628 0.83021 - 0.68955 - 0.56307 0.45287
10| osses | osrs | o | esrar | odseer |
o | assew | oser | arner | assioe | oasssz
12 0.95664 0.84 9.?()2 — ‘;)_72 ().(;7 m;).58869 o _().45534

Ayt Timoshenko frequency .
Ay 2 Enler-Bernounlli firequency .
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TABLE 4.16  Effect of rotation on the frequency vatios ( )y [ );.) of a tapered cantilever
beam (v, = v, = 0.2).
Frequency ratios
Speed
ratio Mode 1 Maode 2 Moade 3 Mode 4 Mode 5
i n
0 0.94525 0.76971 0.62996 0.52098 0.44216
! 0.94600 0.77141 0.63143 0.52219 0.44314
2 0.94768 0.77625 0.63569 N0.52576 0.44603
3 0.94927 0.78355 0.64245 0.53148 0.45071
4 0.95331 0.79242 0.65124 0.53908 0.45695
5 0.95078 0.80199 0.66152 0.54818 0.46451
6 0.95087 0.81155 0.67273 0.55843 0.47306
7 0.95076 0.82061 0.68437 0.56939 0.48231
s 0.95058 0.82886 0.69603 0.58076 0.49193
9 0.95042 N.83619 0.70736 0.59217 0.50161
10 0.95031 0.84261 0.71813 0.60337 0.51105
11 0.95028 0.84812 0.72815 0.61411 0.51993
12 0.95033 0.85283 0.73734 0.62418 0.52791

2,2 Timashenko fiequency .

Ay 2 Fuler-Bernoulli fiequency .
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TABLE 4.17  Iffect of rotation on the fiequency ratios ( )y [ ;. ) of a tapered cantilever
beam (v, =v, =0.5).

S Frequency ratios
Speed
ratio Mode 1 Mode 2 Mode 3 Mode 4 Mode §
n
0 0.94685 0.81740 0.69202 0.58958 0.51133
1 0.94566 0.81772 : 0.69260 -()—5' ;() 17 0.51185
2 0.94242 0.8 l 838 -- 7);;;;2 0.591 9:? 0.51342
3 | oose | asioro | osoros | esors | osiser
¢ | 0o | omwss | oo | esoses | osioes
5 0.92755 0.82204 ~.-(-).‘7()5 7 «S’.~ N l-—“0.6l)339_m "' 0.52376
6 0.92273 0.82343 | 0.71015 - 0.60886 0.52879
7 0.91836 0.82474 0.71550 * 0.61492 0.53443
8| oo | omsw | ozies | esar | asss
9 0. 9—” /7] —;;8_26;7 1 0.72663 0.62818 0.54704
10 0.90800 - 0.82764 0. 7.;2 14 0.63; I— ; ) 0.55379
Cn | ossw | s | ozsns | osens | osem
12 0.90303 0.82859 0.74251 “(-)_._(;;;?0 ! _0.5 6766

Ayt Timoshenko firequency .
A+ FEuler-Bernoulli frequency .
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TABLE 4.18  Effect of rotation on the frequency ratios ( X/ X ) of a tapered cantilever
heam ( v, =v,=07).
Frequency ratios
Speed
ratio Moade 1 Mode 2 Mode 3 Mode 4 Mode 5
n - ——— v -
0 0.94673 0.84970 0.74227 0.64848 0.57281
I 0.94578 0.84993 0.74272 0.64892 0.57319
2 0.94307 0.85060 0.74404 0.65022 0.57433
3 0.93903 0.85159 0.74617 0.65234 0.57619
4 0.93412 0.85280 0.74904 0.65523 0.57875
5 0.92882 0.85406 0.75253 0.65883 0.58196
6 0.92348 0.85528 0.75649 0.66305 0.58576
7 0.91836 0.85635 0.76081 0.66780 0.59008
8 0.91401 0.85724 0.76535 0.67298 0.59487
9 0.90888 0.85792 0.76997 0.67850 0.60004
10 0.90468 0.85842 (.77458 0.68426 0.60553
11 0.90079 0.85875 0.77908 0.69017 061127
12 0.89721 0.85896 0.78341 0.69615 0.61719
Aoyt Timoshenko fiequency .
Ayt Euler-Bernoulli fiequency .
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TABLE 4.31

104

Effect of rotation on the frequency ratios ( Ly [ L; ) of wuniform hinged-fiee

beam (v, = v, =0.0),
Frequency ratios
Speed
ratio Mode 1 Mode 2 Mode 3 Mode 4 Mode 5
n
0 0.85008 0.67944 0.54719 0.44663 0.33645
1 0.85267 0.68189 0.54883 0.44779 0.33641
2 0.85957 0.68787 0.55361 0.45118 0.33625
3 0.86872 0.69701 0.56114 0.45644 0.33596
4 0.«§7RI 2 0. 70:?29 0.57085 0.46298 0.33561
5 0.88649 0.72069 0.58208 0.46992 0.33534
6 0.89333 0.73327 0.59415 0.47596 0.33564
7 0.89856 0.74531 0.60642 0.47929 0.33726
8 0.90236 0.75631 0.61830 0.47892 0.34046
9 0.90496 0.76598 0.62932 047568 0.34433
10 0.90661 0.77418 0.63902 0.47087 0.34786
11 0.90747 0.78089 0.64699 0.46527 0.35056
12 0.90771 0.78613 0.65278 0.45940) 0.35237

Ayt Timoshenko frequency .
: Euley-Bernoulli frequency .

A
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TABLE 4.32  Effect of rotation on the frequency ratios ( Ay /A ) of a tapered hinged-
Jree beam (v, = v, = 0.2),
Frequency ratios
Speed
ratio Mode 1 Mode 2 Mode 3 Mode 4 Mode 5
n
0 0.87401 0.71703 0.58912 0.49162 7.39309
1 0.87553 0.71854 0.59039 0.49266 0.39291
2 0.87964 0.72291 0.59413 0.49572 0.39236
3 0.88524 0.72969 0.60008 0.50064 0.39143
4 0.89117 0.73826 0.60791 0.50717 0.39012
5 0.89663 0.74789 0.61717 0.51498 0.38845
6 0.90119 0.75796 0.62743 0.52371 0.38647
7 0.90475 0.76789 0.63824 0.53291 0.38425
8 0.90739 0.77732 0.64922 0.54192 0.38202
9 0.90924 0.78596 0.66003 0.54916 0.38064
10 0.91046 0.79368 0.67040 0.55026 0.38288
11 0.91173 0.80042 0.68013 0.54499 0.38874
12 0.91149 _;.8()6 16 0.68906 0.53757 0.39518

Ay Timoshenko frequency .

Ag 2 Euler-Bernoulli frequency .
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TABLE 4.33  Effect of rotation on the frequency ratios (%7/ X)) of a tapered hinged-
Jiee beam (v, = v, = 0.5).
Frequency ratios
Speed
ratio Mode 1 Mode 2 Mode 3 Mode ¢4 Mode 5
" .
0 0.90549 0.77823 0.66231 0.56807 0.49323
1 0.90525 0.77872 0.66288 0.56861 0.49368
2 0.90452 0.78017 0.66456 0.57018 0.49498
3 0.90332 0.78245 0.66727 0.57277 0.49700
4 0.90171 0.78539 0.67091 0.57626 0.49924
5 0.89971 0.78879 0.67531 0.58055 0.49807
6 0.89694 0.79243 0.68032 0.58554 0.49662
7 0.89480 0.79612 0.68576 0.59108 0.49708
8 0.89202 0.79968 0.69147 0.59705 0.49462
9 0.88911 0.80301 0.69729 0.60329 0.49178
10 0.88615 0.80600 0.70310 0.60972 0.48866
11 0.88317 0.80861 0.70877 0.61620 0.48528
12 0.88024 0.81082 0.71423 0.62261 0.48167

Ay 2 Timoshenko frequency .
Ap 2 Euler-Bernoulli frequency .
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TABLE 4.34  Effect of rotation on the Srequency ratios (L, [ 7.} of a tapered hinged-
Jiee beam ( v, =v,=07).
Frequency ratios
Speed
ratio Mode 1 Mode 2 Mode 3 Mode 4 Mode 5
n
0 0.92342 0.82361 0.72256 0.63414 0.56047
1 0.92322 0.82399 0.72296 0.63450 0.56079
2 0.92267 0.82513 0.72417 0.63560 0.56177
3 0.92179 0.82692 0.72613 0.63742 0.56337
4 0.92062 0.82925 0.72878 0.63988 0.56556
5 0.91922 0.83197 0.73204 0.64297 0.56829
6 0.91762 0.83493 0.73581 0.64659 0.57152
7 0.91586 0.83795 0.73997 0.65069 0.57515
8 0.91400 0.84095 0.74444 0.65519 0.57909
9 0.91206 0.84378 0.74908 0.66001 0.58316
10 0.91006 0.84640 0.75383 0.66506 0.58703
11 0.90805 0.84874 0.75857 0.67029 0.58981
12 0.90605 0.85076 0.76325 0.67560 0.59002

Ay : Timoshenko frequency .
Ar t Enler-Bernoulli frequency .
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CHAPTER FIVE

CONCLUSIONS

The finite clement procedure developed for the free vibration characteristics of
rotating and non-rotating tapered heams basecd on both Euler-Bernoulli and
Vimoshenko theories has been found to give accurate results . The effzcts ol breadth
and depth taper ratios , spin rate , shear deformation and rotary inertia of hath
cantilever and hinged free heam have been investigated . ‘The results obtained give
high accuracy when compared to other numerical results presented by other

investigators .

The explicit mass and stifTness matrices of a lincarly tapcred beam in two plancs
have been developed in order to provide a means for incorporating as well as
investigating the effect of the sccondary contributions of shear deformation and rotary
inertia in vibration analysis of a rotating and non-rotating tapercd beams for hoth
fixed and hinged end conditions . This thesis present for the first time explicit

expressions [or the rotating tapered Timoshenko heam .

The finite element. model presented herein to solve for the natural frequencies of

hoth tapered Luler-Bernoulli and Timoshenko beams has the following capabilities ;

I} - It can be used for any type of lincarly tapered beam in two planes .

2) - Tt is applicable to circular or rectangular , hollow nr solid cross-scctional area .



3) - It can handle all types of boundary conditions .

4) - It is cfTicient , accurate and of fast convergence ,
The conclusions drawn from the present investigation arc :

1) - The values of the frequency parameter and the behavior of the mode shapes
obtained arc in excellent agreement with the exact and numerical results available
in the literature .

2) - The cffects of shear deformation and rotary inertia on modc shapes of the
structure arc small in the first two modes .

3) - The natural frequencics increase as the rotational speed increases , and they are
decreasing as the taper ratio increases .

4) - xistence of a critical taper ratio where the frequencics ol a rotating heam reverse
the direction of change . The centrifugal cffect is more dominant than the
softening effect resulting from the decrease of the cross-sectional arca

5) - Timoshenko theory tends to lower the frequencics of the vibration while the effect
of shear deformation is gencrally higher than vthat of rotary incrtia for non-
rotating beams , but their relative effects may be reversed for the higher mode
frequencics of rotating beams owing to the centrifugal stifTness cfTects .

6) - The explicit clement mass and stiffness matrices climinate the loss of computer
time and round-of errors associated with cxtensive matrix operations which are
necessary in the numerical cvaluation of the cxpressions ,

7) - The tapered beam finite clement developed in this thesis can be casily integrated
into any gencral purpose finite element code in order to perform dynamic
analysis of rotating component such as turbine blades , high spced flexible

mechanisms , robot manipulators and helicopter rotors .
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