# Vibration Frequencies of Rotating Tapered Beam Including Rotary Inertia and Transverse Shear Deformation

by

# Abdelaziz Bazoune

A Thesis Presented to the

FACULTY OF THE COLLEGE OF GRADUATE STUDIES

KING FAHD UNIVERSITY OF PETROLEUM & MINERALS

DHAHRAN, SAUDI ARABIA

In Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

In

**MECHANICAL ENGINEERING** 

June, 1990

#### **INFORMATION TO USERS**

This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6" x 9" black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order.



#### Order Number 1355725

Vibration frequencies of rotating tapered beam including rotary inertia and transverse shear deformation

Bazoune, Abdelaziz, M.S.

King Fahd University of Petroleum and Minerals (Saudi Arabia), 1990

U·M·I 300 N. Zeeb Rd. Ann Arbor, MI 48106

Vibration Frequencies of Rotating Tapered Beam
Including Rotary Inertia and Transverse Shear Deformation

BY

ABDELAZIZ BAZOUNE

A Thesis Presented to the
FACULTY OF THE COLLEGE OF GRADUATE STUDIES
KING FAHD UNIVERSITY OF PETROLEUM & MINERALS
DHAHRAN, SAUDI ARABIA
LIBRARY
KING FAHD UNIVERSITY OF PETROLEUM & MINERALS
DHAHRAN, SAUDI ARABIA
In Partical Fulfilliment of the
Requirements for the Degree of

MASTER OF SCIENCE
In

MECHANICAL ENGINEERING

JUNE 1990

रिक्षक्रिक्षक्रिक्षक्रिक्षक्रिक्षक्रिक्षक्रिक्षक्रिक्षक्रिक्षक्षिक्षक्रिक्षक्षक्षक्षक्षक्षक्षक्षक्षक्षक्षिक्ष

# KING FAHD UNIVERSITY OF PETROLEUM & MINERALS

# DHAHRAN, SAUDI ARABIA

This thesis, written by

#### ABDELAZIZ BAZOUNE

under the direction of his Thesis Advisor, and approved by his Thesis Committee, has been presented to and accepted by the Dean of the College of Graduate Studies, in partial fulfillment of the requirements for the degree of

#### MASTER OF SCIENCE IN MECHANICAL ENGINEERING

| Spec                |                                |
|---------------------|--------------------------------|
| 'A                  | Thesis Committee               |
|                     | thin D. Khuliet                |
| B96<br>C·2          | Chairman (Dr. Y. A. KHULIEF)   |
| <del>-</del>        | Member (Dr. A. K. T. KAR)      |
| 1011126/1011124     | - Rhy an trans                 |
| ·                   | Member (Dr. R. R. GUNTUR)      |
| 3411                | Hember (Dr. R. A. F. MOUSTAFA) |
| Luf                 |                                |
| Department Chairman | <del></del>                    |

To my parents and my wife.

#### **ACKNOWLEDGEMENT**

Acknowledgement is due to King Fahd University of Petroleum and Minerals for the support of this research .

My deep appreciation and thanks are due to my thesis committee chairman and academic advisor Dr. V. A. Khulief. He was generous in time and thought. My thanks are also due to other committee members: Dr. A. K. Kar, Dr. R. R. Guntur and Dr. K. A. F. Moustafa for their coordination.

Sincere thanks are due to department chairman Dr. Habib Abul hamayel for immeasurable cooperation.

Finally I thank my wife for her indispensable patience throughout this research work.

# TABLE OF CONTENTS

| Page               |
|--------------------|
| <i>i</i>           |
| ü                  |
| <i>iii</i>         |
| entiv              |
| ntsv               |
| vii                |
| x                  |
| xiii               |
| nglishxvi          |
| rabicxvii          |
| INTRODUCTION 1     |
|                    |
| survey 2           |
| Non-rotating beams |
| Rotating beams     |
| research           |
| THEORY 8           |
| on                 |

| 2.2    | General assumptions                              |
|--------|--------------------------------------------------|
| 2.3 I  | Forces acting on the beam                        |
| 2.4 \$ | Strain and stress relations                      |
| 2.5 1  | lamilton's principle                             |
| 2.6 5  | Strain, kinetic and potential energy             |
| 2.7 I  | Blastodynamic equations                          |
| СНАРТЕ | R THREE: FINITE ELEMENT FORMULATION22            |
| 3.1    | Centrifugally stiffened tapered beam element     |
| 3.2    | Geometric properties of the cross-sectional area |
| 3.3    | Stiffness matrices                               |
| 3.4    | Inertia properties                               |
| 3.5    | Generalized eigenvalue problem                   |
| CHAPTE | ER FOUR: RESULTS AND DISCUSSION                  |
| 4.1    | Euler-Bernoulli beam                             |
|        | 4.1.1 Cantilever Euler-Bernoulli beam            |
|        | 4.1.2 Hinged free Euler-Bernoulli beam           |
| 4.2    | Fimoshenko beam                                  |
|        | 4.2.1 Cantilever Timoshenko beam                 |
|        | 4.2.2 Hinged free Timoshenko beam                |
| CHAPTI | ER FIVE : CONCLUSIONS                            |
| REFERE | NCES114                                          |

# LIST OF TABLES

| Table |                                                                                                        | Page |
|-------|--------------------------------------------------------------------------------------------------------|------|
| 3.1:  | Elastic stiffness matrix of tapered beam element                                                       | 29   |
| 3.2:  | Shear stiffness matrix of tapered beam element                                                         | 30   |
| 3.3:  | Centrifugal stiffness matrix of tapered beam element                                                   | 33   |
| 3.4:  | Translational mass matrix of tapered beam element                                                      | 35   |
| 3.5:  | Rotary inertia mass matrix of tapered beam element                                                     | 36   |
| 4.1:  | Frequency parameter $\lambda$ of uniform Euler-Bernoulli cantilever beam , ( $v_y = v_z = 0.0$ )       | 49   |
| 4.2:  | Frequency parameter $\lambda$ of a tapered Euler-Bernoulli cantilever beam , ( $\nu_y=\nu_z=0.1$ )     | 50   |
| 4.3:  | Frequency parameter $\lambda$ of a tapered Euler-Bernoulli cantilever beam , ( $\nu_y = \nu_z = 0.3$ ) | 51   |
| 4.4:  | Frequency parameter $\lambda$ of a tapered Euler-Bernoulli cantilever beam , ( $\nu_y = \nu_z = 0.5$ ) | 52   |
| 4.5:  | Frequency parameter $\lambda$ of a tapered Euler-Bernoulli cantilever beam , ( $\nu_y = \nu_r = 0.6$ ) | 53   |
| 4.6:  | Frequency parameter $\lambda$ of a tapered Euler-Bernoulli cantilever beam , ( $v_y = v_z = 0.8$ )     | 54   |
| 4.7:  | Frequency parameter $\lambda$ of uniform Timoshenko cantilever beam , ( $v_y = v_z = 0.0$ )            | 55   |
| 4.8:  | Frequency parameter $\lambda$ of a tapered Timoshenko cantilever beam , ( $v_y = v_z = 0.1$ )          | 56   |
| 4.9:  | Frequency parameter $\lambda$ of a tapered Timoshenko cantilever beam , ( $\nu_y = \nu_z = 0.3$ )      | 57   |
| 4.10: | Frequency parameter \( \lambda \) of a tapered Timoshenko cantilever beam                              |      |

|       | $(v_y = v_z = 0.5) \qquad \dots$                                                                                                                | 58        |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| 4.11: | Frequency parameter $\lambda$ of a tapered Timoshenko cantilever beam , ( $v_y = v_z = 0.6$ )                                                   | 59        |
| 4.12: | Frequency parameter $\lambda$ of a tapered Timoshenko cantilever beam , ( $v_y = v_z = 0.8$ )                                                   | 60        |
| 4.13: | Frequency parameter $\lambda$ of a tapered Timoshenko cantilever beam , ( $v_y = v_z = 0.9$ )                                                   | 61        |
| 4.14: | Frequency parameter $\lambda$ of a tapered Timoshenko cantilever beam , ( $v_y = v_z = 1.0$ )                                                   | 62        |
| 4.15: | Effect of rotation on the frequency ratios ( $\lambda_{\rm r}/\lambda_{\rm g}$ ) of uniform cantilever beam , ( $\nu_{\rm y}=\nu_{\rm r}=0.0$ ) | 71        |
| 4.16: | Effect of rotation on the frequency ratios ( $\lambda_T/\lambda_R$ ) of a tapered cantilever beam , ( $\nu_y=\nu_z=0.2$ )                       | 72        |
| 4.17: | Effect of rotation on the frequency ratios ( $\lambda_T$ / $\lambda_R$ ) of a tapered cantilever beam , ( $\nu_y$ = $\nu_z$ = 0.5 )             | .73       |
| 4.18: | Effect of rotation on the frequency ratios ( $\lambda_T/\lambda_R$ ) of a tapered cantilever beam , ( $\nu_y=\nu_z=0.7$ )                       | 74        |
| 4.19: | Frequency parameter $\lambda$ of uniform Euler-Bernoulli hinged free beam beam , ( $\nu_y = \nu_z = 0.0$ )                                      | 83        |
| 4.20: | Frequency parameter $\lambda$ of a tapered Euler-Bernoulli hinged free beam , ( $v_y = v_z = 0.1$ )                                             | 84        |
| 4.21: | Frequency parameter $\lambda$ of a tapered Euler-Bernoulli hinged free beam , ( $v_y = v_z = 0.3$ )                                             | .85       |
| 4.22: | Frequency parameter $\lambda$ of a tapered Euler-Bernoulli hinged free beam , ( $v_y = v_z = 0.5$ )                                             | 86        |
| 4.23: | Frequency parameter $\lambda$ of a tapered Euler-Bernoulli hinged free beam , ( $v_y = v_z = 0.7$ )                                             | <b>87</b> |
| 4.24: | Frequency parameter $\lambda$ of a tapered Euler-Bernoulli hinged free beam , $(v_{\nu} = v_{\nu} = 0.9)$                                       | 88        |

| 4.25: | Frequency parameter $\lambda$ of uniform Timoshenko hinged free beam, $(v_y = v_z = 0.0)$                                                         |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| 4.26: | Frequency parameter $\lambda$ of a tapered Timoshenko hinged free beam , ( $\nu_y = \nu_z = 0.1$ )                                                |
| 4.27: | Frequency parameter $\lambda$ of a tapered Timoshenko hinged free beam , ( $\nu_y = \nu_z = 0.3$ )                                                |
| 4.28: | Frequency parameter $\lambda$ of a tapered Timoshenko hinged free beam, ( $v_y = v_z = 0.5$ )                                                     |
| 4.29: | Frequency parameter $\lambda$ of a tapered Timoshenko hinged free beam , ( $\nu_y = \nu_z = 0.7$ )                                                |
| 4.30: | Frequency parameter $\lambda$ of a tapered Timoshenko hinged free beam , ( $v_y = v_z = 0.9$ )                                                    |
| 4.31: | Effect of rotation on the frequency ratios ( $\lambda_{\rm T}/\lambda_{\rm E}$ ) of uniform hinged free beam , ( $\nu_{\rm y}=\nu_{\rm y}=0.0$ )  |
| 4.32: | Effect of rotation on the frequency ratios ( $\lambda_T$ / $\lambda_R$ ) of a tapered hinged free beam , ( $\nu_y$ = $\nu_z$ = 0.2 )              |
| 4.33: | Effect of rotation on the frequency ratios ( $\lambda_{\rm T}/\lambda_{\rm R}$ ) of a tapered hinged free beam, ( $\nu_{\rm y}=\nu_{\rm r}=0.5$ ) |
| 4.34: | Effect of rotation on the frequency ratios ( $\lambda_{\rm r}/\lambda_{\rm E}$ ) of a tapered hinged free beam, ( $\nu_{\rm y}=\nu_{\rm r}=0.7$ ) |

# LIST OF FIGURES

| Figure | Page                                                                                                                                         |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------|
| 2.1:   | Coordinate frame of a rotating tapered beam                                                                                                  |
| 2.2:   | Displacement and force components                                                                                                            |
| 2.3:   | Deformation , displacement and rotation of an element by shear followed by bending                                                           |
| 2.4:   | Variation of the shear correction factor as a function of Poisson's ratio16                                                                  |
| 3.1:   | Λ linearly tapered beam element in two planes23                                                                                              |
| 3.2:   | Location of the tapered beam element                                                                                                         |
| 4.1:   | The first six bending frequencies of uniform cantilever beam; $(v_y = v_z = 0.0)$ , a) First, second and third, b) Fourth, fifth and sixth   |
| 4.2:   | The first six bending frequencies of a tapered cantilever beam; $(v_y = v_z = 0.2)$ , a) First, second and third, b) Fourth, fifth and sixth |
| 4.3:   | The first six bending frequencies of a tapered cantilever beam; $(v_y = v_z = 0.5)$ , a) First, second and third, b) Fourth, fifth and sixth |
| 4.4:   | The first six bending frequencies of a tapered cantilever beam; $(v_y = v_z = 0.7)$ , a) First, second and third, b) Fourth, fifth and sixth |
| 4.5:   | The first six bending frequencies of non-rotating cantilever beam; ( $\eta = 0.0$ ), a) First, second and third, b) Fourth, fifth and sixth  |
| 4.6:   | The first six bending frequencies of rotating cantilever beam; ( $\dot{\eta}=2.0$ ), a) First, second and third, b) Fourth, fifth and sixth  |
| 4.7:   | The first six bending frequencies of rotating cantilever beam; ( $\eta = 5.0$ ), a) First, second and third, b) Fourth, fifth and sixth      |
| 4.8:   | The first six bending frequencies of rotating cantilever beam :                                                                              |

|       | ( $\eta = 10.0$ ), a ) First , second and third , b ) Fourth , fifth and sixth                                                                | 70         |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------|------------|
| 4.9:  | Effect of rotation on the frequency ratios of a tapered cantilever beam , a) ( $v_y = v_z = 0.0$ ), b) ( $v_y = v_z = 0.2$ ).                 | 75         |
| 4.10: | Effect of rotation on the frequency ratios of a tapered cantilever beam, a) ( $v_y = v_z = 0.5$ ), b) ( $v_y = v_z = 0.7$ ).                  | 76         |
| 4.11: | The first three flexural mode shapes of uniform cantilever beam; $(v_y = v_z = 0.0)$ , a) $\eta = 0.0$ , b) $\eta = 10.0$                     | 77         |
| 4.12: | The first three flexural mode shapes of uniform cantilever beam; ( $v_y = v_z = 0.0$ ), a) Euler beam, b) Timoshenko beam                     | <b>7</b> 8 |
| 4.13: | The first three flexural mode shapes of a tapered cantilever beam; $(v_y = v_z = 0.3)$ , a) $\eta = 0.0$ , b) $\eta = 10.0$                   | 79         |
| 4.14: | The first three flexural mode shapes of a tapered cantilever beam; ( $v_y = v_z = 0.3$ ), a) Euler beam, b) Timoshenko beam                   | 80         |
| 4.15: | The first three flexural mode shapes of a tapered cantilever beam; $(v_y = v_z = 0.7)$ , a) $\eta = 0.0$ , b) $\eta = 10.0$                   | 81         |
| 4.16: | The first three flexural mode shapes of a tapered cantilever beam; $(v_y = v_z = 0.7)$ , a) Euler beam, b) Timoshenko beam                    | 82         |
| 4.17: | The first six bending frequencies of uniform binged free beam; $(v_y = v_z = 0.0)$ , a) First, second and third, b) Fourth, fifth and sixth   | 95         |
| 4.18: | The first six bending frequencies of a tapered hinged free beam; $(v_y = v_z = 0.1)$ , a) First, second and third, b) Fourth, fifth and sixth | 96         |
| 4.19: | The first six bending frequencies of a tapered hinged free beam; $(v_y = v_z = 0.3)$ , a) First, second and third, b) Fourth, fifth and sixth | 97         |
| 4.20: | The first six bending frequencies of a tapered hinged free beam; $(v_y = v_z = 0.5)$ , a) First, second and third, b) Fourth, fifth and sixth |            |
| 4.21: | The first six bending frequencies of a tapered hinged free beam; $(v_x = v_z = 0.7)$ , a) First, second and third, b) Fourth, fifth and       | •          |

|       | sixth                                                                                                                                        | . 99 |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------|------|
| 4.22: | The first six bending frequencies of non-rotating hinged free beam; ( $\eta = 0.0$ ), a) First, second and third, b) Fourth, fifth and sixth | 100  |
| 4.23: | The first six bending frequencies of rotating hinged free beam; ( $\eta=1.0$ ), a) First, second and third, b) Fourth, fifth and sixth       | 101  |
| 4.24: | The first six bending frequencies of rotating hinged free beam; ( $\eta = 3.0$ ), a) First, second and third, b) Fourth, fifth and sixth     | 102  |
| 4.25: | The first six bending frequencies of rotating hinged free beam; $(\eta = 10.0)$ , a) First, second and third, b) Fourth, fifth and sixth     | 103  |
| 4.26: | Effect of rotation on the frequency ratios of a tapered hinged free beam, a) ( $v_y = v_z = 0.0$ ), b) ( $v_y = v_z = 0.2$ ).                | 108  |
| 4.27: | Effect of rotation on the frequency ratios of a tapered hinged free beam, a) ( $v_y = v_z = 0.5$ ), b) ( $v_y = v_z = 0.7$ ).                | 109  |
| 4.28: | The first three flexural mode shapes of a tapered hinged free beam; ( $v_y = v_z = 0.7$ ), a) $\eta = 0.0$ , b) $\eta = 10.0$                | 110  |
| 4.29: | The first three flexural mode shapes of a tapered binged free beam; $(v_0 = v_2 = 0.7)$ , a) Euler beam, b) Timoshenko beam                  | 111  |

# **NOMENCLATURE**

| Λ             | element cross-sectional area                    |
|---------------|-------------------------------------------------|
| $\mid B \mid$ | strain displacement matrix                      |
| E             | modulus of elasticity                           |
| $F_x$ , $F_z$ | centrifugal forces                              |
| G             | modulus of rigidity                             |
| 1             | second moment of cross-sectional area           |
| i             | refers to the i th element                      |
| J             | rotary inertia                                  |
| [ <i>K</i> ]  | global stiffness matrix                         |
| $[k_e]$       | elastic stiffness matrix                        |
| $[k_s]$       | shear stiffness matrix                          |
| [k]           | centrifugal stiffness matrix                    |
| k'            | shear correction factor                         |
| L             | Lagrangian                                      |
| L             | truncated length of the beam                    |
| $L_{oy}$      | untruncated length of the beam in the x-y plane |
| $L_{or}$      | untruncated length of the beam in the x-z plane |
| $t^i$         | element length                                  |
| [ M ]         | global mass matrix                              |
| [M]           | translational mass matrix                       |
| $[M_r]$       | rotary inertia mass matrix                      |
| [ N ]         | matrix of shape functions                       |
| n             | total number of elements                        |

```
\{q\} vector of nodal coordinates \{\overline{q}\} vector of displacement amplitudes of vibration r position vector r_{g} radius of gyration of the cross-section =\sqrt{(I/A)} t time T kinetic energy U strain energy U axial displacement V potential energy due to centrifugal force
```

(x, y, z) local coordinate axes

(X,Y,Z) global coordinate axes

 $a_i$  constant

w

 $\beta_i$  constant

γ angle of distortion due to shear

transverse displacement

 $\gamma_{xz}$  unit shearing strain

δ variation

 $\varepsilon_{xx}$ ,  $\varepsilon_{yy}$  unit elongation in x and y -directions

η rotational speed parameter =  $Ω L^2 / \sqrt{EI_o / ρA_o}$ 

0 angle of rotation due to bending

κ curvature

 $\Lambda_i$  constant

λ frequency parameter =  $ω \sqrt{ρ Λ_o L^4 / E I_o}$ 

 $\mu_i$  constant

v Poisson's ratio

```
taper ratio in the x-y plane = L/L_{oy}
\mathbf{v}_{y}
           taper ratio in the x-z plane = L/L_{or}
ν,
ξ <sup>i</sup>
           nondimensional length = x^i/l^i
           total potetial energy = U + V
П
           mass density
ρ
           normal stress parallel to x -axis
\sigma_{xx}
\tau_{xz}
           shear stress
           shear deformation parameter
Ф
           setting angle
Ψ
           rate of spin of the beam
Ω
           natural frequency of the beam
(1)
||1^T
           transpose of [ ]
```

#### THESIS ABSTRACT

NAME OF STUDENT

: ABDELAZIZ BAZOUNE

TITLE OF STUDY

: Vibration Frequencies of Rotating Tapered Beam

Including Rotary Inertia and Transverse Shear Deformation .

MAJOR FIELD

: Mechanical Engineering

DATE OF DEGREE

: June, 1990

The out-of-plane free vibration of a rotating tapered beam based on both Euler and Timoshenko theories are presented by means of the finite element technique. The beam which is assumed to be linearly tapered in two planes is discretized into a number of simple elements with four degrees of freedom each. The governing equations for the free vibrations of the rotating tapered beam are derived from Hamilton's principle. Explicit expressions for the finite element mass and stiffness matrices are derived by using a consistent mass formulation. The generalized eigenvalue problem is defined and numerical solutions are generated for a wide range of rotational speed and taper ratios. Results obtained include the first ten frequencies for both fixed and hinged end conditions. Comparisons are made whenever possible with exact solutions and with numerical results available in the literature. The results display high accuracy when compared with other numerical results.

# MASTER OF SCIENCE DEGREE KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS

Dhahran , Saudi Arabia

June 1990

# خلامية الرسالة

اسم الطالب الكامل: عبدالعزيز بازون

عنوان الدراســـة: ترددات الإهتزاز لعتبة دورانية متناقصة القطر ذات تشوه

قصى وعطالة دورانية .

التخصيص : هندسة ميكانيكية

تاريخ الشهـــادة : يونيو ١٩٩٠م ـ

طبقت تقنية العنصر الحدود على عتبة دورانية متناقصة القطر تهتز إهتزازاً حراً خارج المستوى بناءً على نظريتي (Euler) و (Timoshenko) . إن هذه العتبة المفترض أن تكون متناقصة القطر خطياً في سطحين مستويين أمكن تقسيمها إلى عدد من العناصر البسيطة لكل منها أربع درجات حرة . أما المعادلات التي تحكم الإهتزاز الحر في العتبة الدورانية فقد أمكن إشتقاقها من مبدأ (Hamilton) ، كما أشتقت العبارة الصريحة للعنصر المحدود لكل من مصفوفتي الصلبية والكتلة إعتماداً على التشكل الكتلي المتماسك ، وقد تم تعريف المشكل الميز (Eigenvalue Problem) ومنه وجدت الحلول الرقمية لمعدلات واسعة من السرعات الدورانية ونسب التناقص. والنتائج التي تم الحصول عليها تشمل الترددات العشر الأولى لكل من الحالات الثابتة والمعلقة النهاية ، كما تم عمل بعض المقارنات بقدر الإمكان مع الحلول الصحيحة والرقمية الموجودة في البحوث السابقة . وتعكس هذه النتائج تطابقاً كبيراً بالمقارنة مع النتائج الرقمية الآخرى .

درجة الماجستير في العلوم جامعة الملك فهد للبترول والمعادن الظهران - المملكة العربية السعودية يونيو ١٩٩٠م ـ

# CHAPTER ONE

# INTRODUCTION

#### 1.1 GENERAL

Many engineering systems have mechanical components, that can be modeled by rotating structural beams. Examples are turbomachines, turbine blades, aircraft propellers, helicopter rotors, high speed flexible mechanisms, robot manipulators, and spinning space structures.

The dynamic behaviour of beams and shafts has been the subject of intensive study for many years. The finite element method, in conjunction with digital computers, has been proven to be a powerful technique for the design of complex structures.

The lateral vibration of beams was usually approximated by the Bernoulli-Euler differential equation ( Classical Theory ). Corrections due to the effect of rotary inertia ( Rayleigh Theory ) and transverse shear deformation ( Timoshenko Theory ) may be of importance if the effect of the cross-sectional dimensions on frequencies cannot be neglected, or when higher modes and frequencies of vibrations are desired. These effects may also cause appreciable perturbations of all modes when the theory of beams is employed as a basis for study of complicated structures; such as wings of airplanes and missile structures. There has been a considerable interest recently in developing techniques for the solution of equations of rotating tapered beams.

Although analytical solutions may be possible for some special cases, numerical methods have become important due to the difficulties in the solution of tapered beams

Several studies were directed to the evaluation of natural frequencies and mode shapes of a rotating uniform beam undergoing transverse vibrations. Early investigations by Schilhansl [1] and Pruelli [2] have shown that rotation of a beam tended to increase its natural frequencies of flexural motion. Rotating flexible components are known to experience centrifugally induced tensile force that tend to increase the effective torsional and flexural stiffness. The rotary inertia is equivalent to an increase in mass and therefore will cause a decrease in natural frequency. Furthermore, the effect is more pronounced and influencial at the higher frequencies.

Vibrations of rotating beams have been extensively studied by numerous authors using a variety of methods; for example, the Southwell principle, the Rayleigh-Ritz method, the perturbation technique, the Myklestad method, the transfer matrix approach, the method of integral equations, the Galerkin procedure and several forms of the finite element techniques [3].

#### 1.2 LITERATURE SURVEY

Untill the middle 1960s, most of the work was based on continuum methods such as Rayleigh-Ritz and Galerkin methods. More recently finite element methods are being introduced [4].

#### 1.2.1 NON-ROTATING BEAMS

Vibration analysis of non-rotating tapered beams has been addressed by a few investigators. A detailed literature review of this subject is given by Downs [5].

The published material which is of relevance to this work can be classified under the following headings and is thoroughly reviewed in [6]:

- 1 Uniform and tapered Bernoulli-Euler beams.
- 2 Uniform Timoshenko beams.
- 3 Tapered Timoshenko beams.

A considerable number of Timoshenko beam finite elements for use in vibration problems have been described in reference [7]. In a critical review of many of the uniform straight beam elements, it was shown that the elements could be classified as simple; having two degrees of freedom at each of two end nodes, or complex; with additional degrees of freedom, reference [7]. Dugundji [8] obtained simple expressions for vibration modes of uniform Euler beams. Lin [9] developed a finite element method for a uniformly loaded cantilever beam with a general cross-section. Heppler and Hansen [10] used trigonometric basis functions in developing a finite element method for a uniform Timoshenko beam. The properties and performance of these new elements were explored through a series of illustrative problems that treat both straight and curved geometries. Yuan and Miller [11] developed a higher order finite element for short beams.

Gallagher et al. [12] have employed the finite element method to estimate natural frequencies and mode shapes of a non-rotating tapered beam. Sato [13] examined natural frequencies of axially loaded tapered beams. The most recent work reported by Williams et al. [14] evaluated the first five natural frequencies of axially loaded tapered beams based on stepped representation approach. Although the methods presented in [13,14] consider axial loads, they are restricted to non-rotating tapered beams. Carnegic and Thomas [15] studied the influence of pretwist and taper of non-

rotating beams. Goel [ 16 ] presented a study to obtain characteristic equations for linearly tapered beams with elastically restrained ends. Downs [5] determined the natural frequencies of an isotropic cantilever beams with doubly symmetric crosssection, based on both Euler and Timoshenko theories for 36 combinations of linear depth and breadth taper. Taber and Viano | 17 | calculated resonant frequencies and mode shapes by a transfer matrix technique for Timoshenko beams of varying crosssections. With the non-uniform beam represented by a series of uniform segments, results were given for longitudinal, torsional and flexural vibration. To [18], examined two integral parts: namely the examination and development of higher order tapered beam finite elements and the application of the higher order tapered beam elements to the transverse vibration of tapered cantilever beam structures with end mass and rotary inertia of the end mass representing a class of tapered mast antenna structures. Later, To [19] developed an explicit mass and stiffness matrices of a linearly tapered finite element in order to provide a means for incorporating, as well as investigating, the effect of the secondary contributions of shear deformation and rotary inertia in vibration analysis of a class of a mast antenna structures treated as linearly tapered cantilever beam structures. Vesniere de Irassar et al. [ 20 ] used the Ritz method to determine the fundamental frequency of the transverse vibration of tapered beams with one end restrained against rotation and carrying a mass at the free end.

#### 1.2.2 ROTATING BEAMS

A vast amount of published work can be found in the field of beam vibrations dealing with analytical and numerical techniques. In these works, rotating beams with various geometries have been considered, added masses and springs, effect of pre-twist were also included.

Likins, Barbera and Baddeley [21] addressed the problem of mathematical modeling and modal coordinate selection for an elastic appendage attached to a rigid base which is constrained to rotate with a constant angular speed about a body-axis fixed in the inertial space. They concluded that the continuum model is ideal for an axial beam, and not infeasible for the radial beam (both within the usual limitations of beam theory). Hoa [ 22 ] presented a finite element formulation for a uniform rotating beam with tip mass. Rao and Banerjee [ 23 ] developed a polynomial frequency equation to determine the natural frequencies of a cantilever blade with an asymmetric cross-section mounted on a rotating disc. Carnegie [ 24 ] evaluated the increase in potential energy due to rotation and estimated only the fundamental frequency of straight uniform beam. Schilhans! [1] used a successive iteration formula to find the first flexural frequency of a rotating cantilever beam. Khulief and Yi | 25 | developed a finite element formulation that represents vibrational response of a uniform rotating beam with tip mass during lead-lag motion. This formulation accounts for the centrifugal force field and the centripetal acceleration effects. Kammer and Schlack [ 26 | presented a paper in which they studied the effects of a time-dependant angular velocity upon the vibration of a rotating Euler beam. They assumed that angular velocity can be expressed as the sum of a steady-state value and a relatively small periodic perturbation . A perturbation technique called the Krylov-Bogoliubov-Mitropolski (KBM) method was used to derive the general expressions for approximate solutions and instability region boundaries. Yokoyama [ 3 ] developed a finite element procedure for determining the free vibration characteristics of rotating uniform Timoshenko beams. The effects of hub radius, setting angle, shear deformation and rotary inertia on the natural frequencies of the rotating beams have been examined. The numerical results indicate that the natural frequencies increase with the rotational speed and / or the hub radius of the beam, that the effect of setting angle on the

higher mode frequencies is insignificant and that the effects of shear deformation and rotary inertia on the natural frequencies increase appreciably with mode number. He concluded also that the effects of shear deformation are generally larger than the rotary inertia for non-rotating beams, but their relative effects may be reversed for the higher mode frequencies of the rotating beams owing to the centrifugal stiffness effects. Finally he emphasized that; although the numerical examples have been limited to the uniform rotating cantilever beams, the technique described therein can readily be applied to non-uniform rotating beams with discontinuities, as well as with other end conditions.

Wright et al. [27] applied the method of Frobenius to obtain exact solutions for the frequencies and mode shapes of rotating beam in which both flexural rigidity and mass distribution vary linearly. Although the method developed in [27] can be applied to a rotating tapered beam, it is confined, however, to such beams in which flexural rigidity vary linearly. Swaminathan and Rao [ 28 ] computed the first three frequencies of a pretwisted, tapered and rotating blade using the Rayleigh-Ritz method including the effects of the speed of rotation, pretwist angle and width of taper. Murty and Murthy [4] developed a simple finite element scheme for vibration analysis of rotors and numerical results have been given for the case of tapered cantilever rotors They presented two charts which can be used for quick estimation of the fundamental frequency parameter of rotating tapered beams with small taper. Magari et al. [29] developed a rotating blade finite element with coupled bending and torsion. Stori and Aboelnaga [ 30 ] studied the transverse deflections of a straight tapered symmetric beam attached to a rotating hub as a model for the bending vibration of blades in turbomachinery. They obtained a broad class of blade shapes for which the equation of motion can be solved analytically in terms of hypergeometric functions. Based on

this analytic solution, they presented an algorithm for computing the natural bending frequencies and mode shapes as a function of setting angle and rotation rate. Khulief [31] derived explicit expressions for the finite element mass and stiffness matrices using consistent mass formulation for the vibration of rotating tapered beam. The results obtained by Khulief display high accuracy when compared with the exact solutions given by Wright et al. [27].

# 1.3 PROPOSED RESEARCH

The few studies reported on rotating tapered beams have been concerned with obtaining the modal frequencies only for out-of-plane vibration with zero setting angle, and have neglected the effects of shear deformation and rotary inertia.

The purpose of the present study is to develop a finite element procedure for analyzing the vibration characteristics (i.e. the natural frequencies and associated mode shapes) of a rotating tapered beam including shear deformation and rotary inertia effects. This formulation is based on a consistent mass approach that accounts for the centrifugal force field.

The governing differential equations for the free vibrations of a rotating beam undergoing in-plane and out-of-plane deformations are derived using Hamilton's principle. The effect of setting angle, shear deformation and rotary inertia are incorporated into the finite element model. Explicit expressions for the inertia and stiffness properties of a linearly tapered rotating beam are derived. The generalized eigenvalue problem is formulated and solved for a wide range of parameter changes. Numerical results are presented and compared with other solutions in the literature whenever possible.

# CHAPTER TWO

# THEORY

#### 2.1 INTRODUCTION

The classical Bernoulli-Euler theory predicts the frequencies of flexural vibration of the lower modes of slender beams with adequate—te precision. However, because in this theory the effects of transverse shear deformation and rotary inertia are neglected, the errors associated with it become increasingly large as the beam depth inceases and as the wavelength of vibration decreases.

In Timoshenko theory, the rotation of the neutral axis,  $\partial w/\partial x$  is the sum of the shearing angle,  $\gamma$ , and the rotation of the cross-section due to bending, 0, (where w is the transverse displacement and x is the longitudinal axis). (See Fig. 2.3). The problem is thus governed by two variables, w and 0 say, rather than by w alone as in Bernoulli-Euler theory.

In this chapter, the general assumptions are stated. The strain and stress relations are presented. The strain, kinetic and potential energy equations are obtained, and finally, the general governing differential equations for the rotating tapered beam are derived by means of the extended Hamilton's principle.

The system to be analyzed is shown in Fig. 2.1. The beam has a length L and spins at a constant angular speed  $\Omega$  about an axis fixed in the space undergoing vibrational motion in a plane fixed in a local system rotating with the beam.

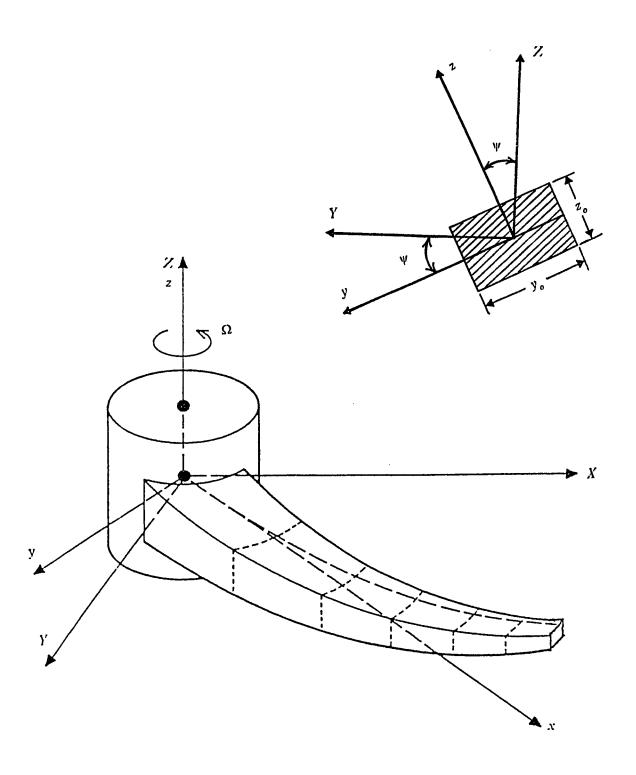


Fig. 2.1 Coordinate frame of a rotating tapered beam .

As shown in Fig. 2.1, the beam rotates about the global Z-axis. (X,Y,Z) is called a system of global coordinate axes while (x,y,z) is a system of body (local) coordinate axes with origin coinciding with the former (i.e; at the center of the rotating disc). In this study, we have followed the same notations adopted by Khulief [31].

The beam is considered to be inextensible, and oriented along the major dimensions; i.e. the x-axis is along the length of the beam, the y-axis is along the width and the z-axis is along the thickness. The mid-plane of the beam is inclined to the plane of rotation at an angle  $\psi$ . For  $\psi = \pi/2$ , the transversal motion of the beam exists in the x-y plane and therefore, is purely lead-lag; for  $\psi = 0$ , the motion is confined to the x-z plane and is purely flapping.

#### 2.2 GENERAL ASSUMPTIONS

- 1) The material of the beam is elastic, homogeneous and isotropic.
- 2) The transverse displacements of the beam are sufficiently small.
- 3) The cross-sections initially perpendicular to the neutral axis of the beam remain plane, but no longer perpendicular to the neutral axis during bending.
- 4) The deflection of the beam is produced by the displacement of points of the centerline normal to its initial straight position.
- 5) The hub radius of the rotating disc is neglected.

# 2.3 FORCES ACTING ON THE BEAM

The radial component of the centrifugal force per unit volume acting on an element of the beam at x is given by

$$F_r = \rho \Lambda(x) \Omega^2 x \tag{2.1}$$

where  $\rho$  is the mass density of the beam.

As can be seen from Fig. 2.2, a displacement of w along the z direction would result in a component  $(-w \sin \psi)$  in the Y direction and a component  $(w \cos \psi)$  in the Z direction.

The force  $F_r$  can be resolved into two components along the Y and X directions:

$$F_{\rm v} = F_{\rm v} \approx \rho \, \Lambda(x) \Omega^2 \, x \tag{2.2}$$

$$F_{\gamma} = \rho A(x)\Omega^{2} x \left\{ -w \sin \psi / x \right\} = -\rho A(x) \Omega^{2} w \sin \psi \qquad (2.3)$$

The force  $F_y$  can be resolved into components along the y and z directions; i.e.,

$$F_{\nu} = F_{\gamma} \cos \psi = -\rho A(x)\Omega^{2} w \sin \psi \cos \psi \qquad (2.4)$$

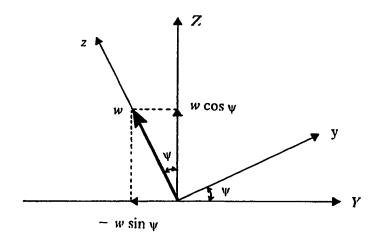
$$F_{\perp} = -F_{\nu} \sin \psi = \rho A(x) \Omega^{2} w \sin^{2} \psi \qquad (2.5)$$

#### 2.4 STRAIN AND STRESS RELATIONS

Fig. 2.3 shows a beam element before and after deformation. The beam is originally straight and lies along the longitudinal axis: the element length is dx, while w is the total lateral displacement of the section, parallel to z- axis. The angle of rotation due to bending is 0, while the angle of distortion due to shear is  $\gamma$ . The total angle can be written as

$$\frac{\partial w}{\partial x} = 0 + \gamma \tag{2.6}$$

It is assumed that displacement components u and w are independent of y coordinate. It is accepted that u is a linear function of z coordinate and w is independent of z coordinate, where u and w are the longitudinal and lateral displacements of the beam, respectively.



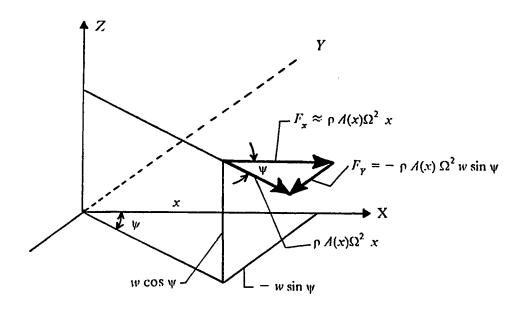


Fig. 2.2 Displacement and force components.

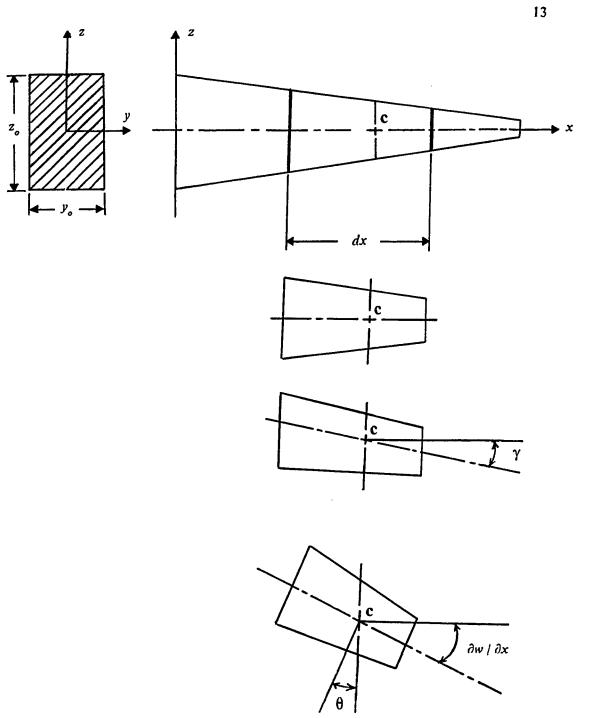


Fig. 2.3 Deformation, displacement and rotation of an element by shear followed by bending.

There is no relative motion in the y-direction at any time of points in the cross-section of the beam ( $\varepsilon_{\nu\nu}=0$ ), and it may be concluded that the displacement component  $\nu$  is zero, where  $\varepsilon_{\nu\nu}$  and  $\nu$  are the unit elongation per unit length of the beam and the displacement of the beam, respectively, in the y-direction. Therefore, displacement components can be written as:

$$u(x,y,z,t) = -z \, 0(x,t)$$
,  $v(x,y,z,t) = 0$ ,  $w(x,y,z,t) = w(x,t)$  (2.7) where the functions are dependent of time.

Using the strain-displacement relations, a unit elongation in the x-direction is obtained as:

$$\varepsilon_{xx} = \frac{\partial u}{\partial x} = -z \frac{\partial 0}{\partial x} \tag{2.8}$$

and a unit shearing strain in the x-z plane is obtained as:

$$\gamma_{xy} = \gamma = \frac{\partial u}{\partial z} + \frac{\partial w}{\partial x} = -0 + \frac{\partial w}{\partial x}$$
 (2.9)

Applying Hooke's law, stress-strain relations can be written as:

$$\sigma_{xx} = E \varepsilon_{xx} \quad , \quad \tau_{xx} = G \gamma_{xx} \tag{2.10}$$

where for an isotropic material

$$G = E / 2(1 + v) \tag{2.11}$$

where v is Poisson's ratio.

Let us write equations (2.8), (2.9) and (2.10) in terms of angle of rotation and angle of distortion as:

$$\sigma_{xx} = -Ez\frac{\partial 0}{\partial x}$$
 ,  $\tau_{xz} = G\gamma$  (2.12)

Using equations (2.12), the moment and shear force expressions for a tapered

beam can be written in terms of displacement and rotational components as follows:

$$M(x) = \int_{-z_0/2}^{z_0/2} \sigma_{xx} z_0 y_0 dz = -EI(x) \frac{\partial 0}{\partial x}$$
 (2.13)

$$Q(x) = \int_{-z_o/2}^{z_o/2} \tau_{xz} y_o dz = k' G \Lambda(x) \gamma = k' G \Lambda(x) \left( \frac{\partial w}{\partial x} - 0 \right)$$
 (2.14)

where  $z_o$  and  $y_o$  are the the thickness and the width of the beam respectively, EI(x) is the flexural rigidity, GA(x) is the shear rigidity and k' is the shear constant which is inserted as a correction factor to account for the fact that  $\tau_x$ , is not in reality uniform over the height of the cross-section, [36]. It is also mentioned in reference [34], that k' depends mainly on the cross-section and is given by:

$$k' = \frac{10(1+v)}{12+11v} \quad \text{for rectangular cross-section}$$
 (2.15)

and

$$k' = \frac{6(1+v)}{7+6v}$$
 for circular cross-section (2.16)

The variations of the shear correction factor as a function of Poisson's ratio are shown in Fig. 2.4

#### 2.5 HAMILTON'S PRINCIPLE

The equations of motion can be derived by using the extended Hamilton's principle [36] which states:

"Of all admissible configurations that the body can take as it goes from configuration 1 at time  $t_1$  to configuration 2 at time  $t_2$ , the path that satisfy Newton's law at each instant during the interval ( and is thus the actual locus of configurations ) is the path that extremizes the time integral of the Lagrangian during the interval".

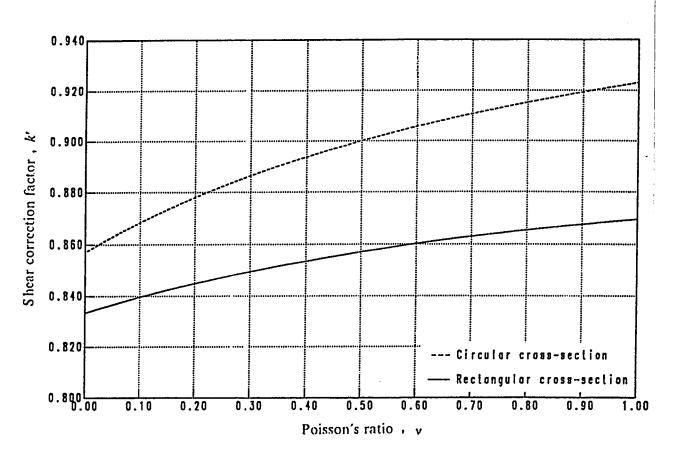


Fig. 2.4 Variation of the shear correction factor as a function of Poisson's ratio

This can be written in mathematical form as:

$$\delta \int_{t_1}^{t_2} (T - \Pi) dt = \delta \int_{t_1}^{t_2} L dt = 0$$
 (2.17)

where

 $\delta = variation$ 

T = kinetic energy

 $\Pi = total\ potential\ energy = U + V$ 

U = strain energy

V = potential energy

L = Lagrangian = T - 11

## 2.6 STRAIN, KINETIC AND POTENTIAL ENERGY

The contribution of the kinetic enrgy of the tapered beam due to translation and rotation is expressed as:

$$T = \left(\frac{1}{2}\right) \int_{0}^{L} \rho A(x) \left(\frac{\partial w}{\partial t}\right)^{2} dx + \left(\frac{1}{2}\right) \int_{0}^{L} J(x) \left(\frac{\partial 0}{\partial t}\right)^{2} dx \tag{2.18}$$

where L is the length of the beam and J(x) is the mass moment of inertial per unit length about the neutral axis of the beam.

But J(x) is related to I(x) by

$$J(x) = \rho I(x) \tag{2.19}$$

where I(x) is the area moment of inertia of the beam.

Now, the kinetic energy can be written in the form:

$$T = \left(\frac{1}{2}\right) \int_{0}^{L} \rho A(x) \left(\frac{\partial w}{\partial t}\right)^{2} dx + \left(\frac{1}{2}\right) \int_{0}^{L} \rho I(x) \left(\frac{\partial 0}{\partial t}\right)^{2} dx \tag{2.20}$$

The total strain energy of the spinning beam is composed of flexural strain energy, shear strain energy and strain energy due to the centrifugal force  $F_x$ . Because  $\Omega$  is

constant, the centrifugal force is also approximately constant, and may be treated as an axial load that creates strain energy.

$$U = (\frac{1}{2}) \int_{0}^{L} F I(x) \left(\frac{\partial 0}{\partial x}\right)^{2} dx + (\frac{1}{2}) \int_{0}^{L} k' G A(x) \left(\frac{\partial w}{\partial x} - 0\right)^{2} dx + (\frac{1}{2}) \int_{0}^{L} F_{x} \left(\frac{\partial w}{\partial x}\right)^{2} dx$$
 (2.21)

where  $F_x$  is the centrifugal force given by equation (2.2)

The potential energy V due to the centrifugal force  $F_z$  per unit volume acting on the beam in the z direction is given by [3]:

$$V = -(\frac{1}{2}) \int_{0}^{L} F_{r} w A(x) dx$$
 (2.22)

where  $F_z$  is given by equation (2.5).

### 2.7 ELASTODYNAMIC EQUATIONS

Substitute equations (2.20), (2.21) and (2.28) into equation (2.17), one can obtain:

$$\delta \int_{t_1}^{t_2} L \, dt = \delta \int_{t_1}^{t_2} \left\{ \left( \frac{1}{2} \right) \int_{0}^{L} \rho \, A(x) \left( \frac{\partial w}{\partial t} \right)^2 \, dx + \left( \frac{1}{2} \right) \int_{0}^{L} \rho \, I(x) \left( \frac{\partial 0}{\partial t} \right)^2 \, dx - \left( \frac{1}{2} \right) \int_{0}^{L} E \, I(x) \left( \frac{\partial 0}{\partial x} \right)^2 \, dx - \left( \frac{1}{2} \right) \int_{0}^{L} k' \, G \, A(x) \left( \frac{\partial w}{\partial x} - 0 \right)^2 \, dx - \left( \frac{1}{2} \right) \int_{0}^{L} F_x \left( \frac{\partial w}{\partial x} \right)^2 \, dx + \left( \frac{1}{2} \right) \int_{0}^{L} F_z \, w \, A(x) \, dx \, dt = 0$$

$$(2.23)$$

Performing the variation in the above equation we obtain:

$$\delta \int_{t_1}^{t_2} L \, dt = \int_{t_1}^{t_2} \left\{ \int_{0}^{L} \rho \, A(x) \left( \frac{\partial w}{\partial t} \right) \delta\left( \frac{\partial w}{\partial t} \right) dx + \int_{0}^{L} \rho \, I(x) \left( \frac{\partial 0}{\partial t} \right) \delta\left( \frac{\partial 0}{\partial t} \right) dx - \int_{0}^{L} E \, I(x) \left( \frac{\partial 0}{\partial x} \right) \delta\left( \frac{\partial 0}{\partial x} \right) dx - \int_{0}^{L} k' \, G A(x) \left( \frac{\partial w}{\partial x} - 0 \right) \delta\left( \frac{\partial w}{\partial x} - 0 \right) dx - \int_{0}^{L} F_{x} \left( \frac{\partial w}{\partial x} \right) \delta\left( \frac{\partial w}{\partial x} \right) dx + \left( \frac{1}{2} \right) \int_{0}^{L} F_{x} \, A(x) \, \delta w \, dx \right\} dt$$

$$(2.24)$$

The order of integrations with respect to x and t is interchangeable and the variation and differentiation operators are commutative, so we can perform the following integrations by parts:

$$\int_{t_{1}}^{t_{2}} \rho A(x) \left(\frac{\partial w}{\partial t}\right) \delta\left(\frac{\partial w}{\partial t}\right) dt = \int_{t_{1}}^{t_{2}} \rho A(x) \left(\frac{\partial w}{\partial t}\right) \frac{\partial}{\partial t} \left(\delta w\right) dt$$

$$= \rho A(x) \left(\frac{\partial w}{\partial t}\right) \delta w \Big|_{t_{1}}^{t_{2}} - \int_{t_{1}}^{t_{2}} \frac{\partial}{\partial t} \left(\rho A(x) \frac{\partial w}{\partial t}\right) \delta w dt$$

$$= -\int_{t_{1}}^{t_{2}} \rho A(x) \left(\frac{\partial^{2} w}{\partial t^{2}}\right) \delta w dt \qquad (2.25)$$

because  $\delta w$  vanishes at  $t = t_1$  and  $t_2$ . In a same way, it is obtained that:

$$\int_{t_1}^{t_2} \rho I(x) \left(\frac{\partial 0}{\partial t}\right) \delta\left(\frac{\partial 0}{\partial t}\right) dt = - \int_{t_1}^{t_2} \rho I(x) \left(\frac{\partial^2 0}{\partial t^2}\right) \delta 0 dt$$
 (2.26)

On the other hand, integration over the spatial variable yields

$$\int_{0}^{L} E I(x) \left(\frac{\partial 0}{\partial x}\right) \delta\left(\frac{\partial 0}{\partial x} dx\right) = \int_{0}^{L} E I(x) \left(\frac{\partial 0}{\partial x}\right) \frac{\partial}{\partial x} (\delta \theta) dx$$

$$= E I(x) \left(\frac{\partial 0}{\partial t}\right) \delta \theta \Big|_{0}^{L} - \int_{0}^{L} \frac{\partial}{\partial x} (E I(x) \frac{\partial 0}{\partial x}) \delta \theta dx \qquad (2.27)$$

and

$$\int_{0}^{L} k' GA(x) \left(\frac{\partial w}{\partial x} - 0\right) \delta\left(\frac{\partial w}{\partial x} - 0\right) dx = \int_{0}^{L} k' GA(x) \left(\frac{\partial w}{\partial x} - 0\right) \frac{\partial}{\partial x} \left(\delta w\right) dx$$

$$- \int_{0}^{L} k' GA(x) \left(\frac{\partial w}{\partial x} - 0\right) \delta 0 dx = \left\{ k' GA(x) \left(\frac{\partial w}{\partial x} - 0\right) \right\} \delta w \Big|_{0}^{L}$$

$$- \int_{0}^{L} \frac{\partial}{\partial x} \left\{ k' GA(x) \left(\frac{\partial w}{\partial x} - 0\right) \delta w dx - \int_{0}^{L} k' GA(x) \left(\frac{\partial w}{\partial x} - 0\right) \delta 0 dx \qquad (2.28)$$

Also,

$$\int_{0}^{L} F_{x}(\frac{\partial w}{\partial x}) \, \delta(\frac{\partial w}{\partial x}) \, dx = \int_{0}^{L} F_{x}(\frac{\partial w}{\partial x}) \frac{\partial}{\partial x} (\delta w) \, dx$$

$$= F_{x}(\frac{\partial w}{\partial x}) \, \delta w \, \Big|_{0}^{L} - \int_{0}^{L} \frac{\partial}{\partial x} (F_{x} \frac{\partial w}{\partial x}) \, \delta w \, dx \qquad (2.29)$$

Using the above equations into equation (2.24) produces

$$\int_{t_1}^{t_2} \left\{ -\int_{0}^{L} \rho A(x) \left( \frac{\partial^2 w}{\partial t^2} \right) \delta w \ dx - \int_{0}^{L} \rho I(x) \left( \frac{\partial^2 0}{\partial t^2} \right) \delta 0 \ dx - E I(x) \left( \frac{\partial 0}{\partial x} \right) \delta 0 \right\}_{0}^{L}$$

$$+ \int_{0}^{L} \frac{\partial}{\partial x} (E I(x) \frac{\partial 0}{\partial x}) \delta 0 \ dx - \left\{ k' G A(x) \left( \frac{\partial w}{\partial x} - 0 \right) \right\} \delta w \right\}_{0}^{L} + \int_{0}^{L} \frac{\partial}{\partial x} \left\{ k' G A(x) \left( \frac{\partial w}{\partial x} - 0 \right) \right\} \delta w \ dx$$

$$+ \int_{0}^{L} k' G A(x) \left( \frac{\partial w}{\partial x} - 0 \right) \delta 0 \ dx - F_{x} \left( \frac{\partial w}{\partial x} \right) \delta w \right\}_{0}^{L}$$

$$+ \int_{0}^{L} \frac{\partial}{\partial x} \left( F_{x} \frac{\partial w}{\partial x} \right) \delta w \ dx + \left( \frac{1}{2} \right) \int_{0}^{L} F_{z} A(x) \delta w \ dx \right\} dt = 0. \tag{2.30}$$

After rearranging, equation (2.30) takes the form:

$$\int_{t_{1}}^{t_{2}} \left\{ \int_{0}^{L} \left( \frac{\partial}{\partial x} \left\{ k' G A(x) \left( \frac{\partial w}{\partial x} - 0 \right) \right\} - \rho A(x) \left( \frac{\partial^{2} w}{\partial t^{2}} \right) \right. \\ + \left. \frac{\partial}{\partial x} \left\{ F_{x} \left( \frac{\partial w}{\partial x} \right) \right\} + \left( \frac{1}{2} \right) F_{z} A(x) \right\} \delta w \, dx$$

$$+ \int_{0}^{L} \left\{ \frac{\partial}{\partial x} \left( E I(x) \frac{\partial 0}{\partial x} \right) + k' G A(x) \left( \frac{\partial w}{\partial x} - 0 \right) \right\} - \rho I(x) \left( \frac{\partial^{2} 0}{\partial t^{2}} \right) \right\} \delta 0 \, dx$$

$$- E I(x) \left( \frac{\partial 0}{\partial x} \right) \delta 0 \Big|_{0}^{L} - \left\{ k' G A(x) \left( \frac{\partial w}{\partial x} - 0 \right) + F_{x} \left( \frac{\partial w}{\partial x} \right) \right\} \delta w \Big|_{0}^{L} \right\} dt = 0 \quad (2.31)$$

The virtual displacement  $\delta \theta$  and  $\delta w$  are arbitrary and independent, so they can be taken equal zero at x=0 and x=L and arbitrary for 0 < x < L; therefore, we must have:

$$\frac{\partial}{\partial x} \{ k' G \Lambda(x) \left( \frac{\partial w}{\partial x} - 0 \right) \} - \rho \Lambda(x) \left( \frac{\partial^2 w}{\partial t^2} \right) + \frac{\partial}{\partial x} (F_x \frac{\partial w}{\partial x}) + \left( \frac{1}{2} \right) F_z \Lambda(x) = 0$$
 (2.32)

$$\frac{\partial}{\partial x}(E\,I(x)\,\frac{\partial 0}{\partial x})\,+\,k'\,GA(x)\,(\frac{\partial w}{\partial x}\,-\,0)\,-\,\rho\,I(x)\,(\frac{\partial^2 0}{\partial t^2})\,=\,0$$

Now if we substitute the expression of  $F_z$  from equation (2.5) into equation (2.32), we obtain:

$$\frac{\partial}{\partial x} \{ k' G \Lambda(x) \left( \frac{\partial w}{\partial x} - 0 \right) \} - \rho \Lambda(x) \left( \frac{\partial^2 w}{\partial t^2} \right) + \frac{\partial}{\partial x} \{ F_x \frac{\partial w}{\partial x} \} + \left( \frac{1}{2} \right) \rho \Lambda(x) \Omega^2 w \sin^2 \psi = 0 \quad (2.34)$$

In addition, if we write

$$E I(x) \left(\frac{\partial 0}{\partial x}\right) \delta 0 \Big|_{0}^{L} = 0 \tag{2.35}$$

$$\{ k' GA(x) \left( \frac{\partial w}{\partial x} - 0 \right) + F_x \left( \frac{\partial w}{\partial x} \right) \} \delta w \Big|_0^L = 0$$
 (2.36)

We take into account the possibility that either  $EI(x)(\frac{\partial 0}{\partial x})$  or  $\delta 0$ , on the one hand, and either  $\{k'GA(x)(\frac{\partial w}{\partial x}-0)+F_x(\frac{\partial w}{\partial x})\}$  or  $\delta w$ , on the other, vanishes at any ends x=0 and x=L.

Equations (2.33) and (2.34) are the differential equations of motion that must be satisfied over the length of the beam and (2.35) and (2.36) represent the boundary conditions. The four equations together constitute the boundary-value problem. Equation (2.35) requires either the bending moment or the beam rotation variation vanish at each end and (2.36) requires that either the shearing and the axial force or the deflection variation be zero at each end. It is the satisfaction of these boundary conditions that renders the solution of the differential equations (2.33) and (2.34) unique.

# **CHAPTER THREE**

# FINITE ELEMENT FORMULATION

The elastic beam configuration can be defined by a properly generated mesh of finite beam elements. In this formulation, beam elements are linearly tapered in two planes. Any combination of taper ratios in the two planes are permitted by the model developed in this study. The beam is divided into elements of equal length  $l^i = L/n$ , as shown in Fig. 3.1. The element consists of two nodes, each node has two degrees of freedom of transverse displacement  $w^i$  and bending rotation  $0^i$ .

# 3.1 CENTRIFUGALLY STIFFENED TAPERED BEAM ELEMENT

It is assumed that the axis of the beam is straight, and deformation is confined to shear and bending in the direction of longitudinal axis. The later assumption eliminates torsion due to bending. This implies that the centroid C of the cross-section and shear center coincide [ 19 ]. See Fig. 2.2.

Assuming that the elastic beam is aligned along the x-axis in the undeformed state, one can describe the local coordinate vector of an arbitrary point  $p^i$  on element i with respect to the element axes, shown in Fig. 3.1 as

$$\{w^{i}\} = [N^{i}_{w}] \{q^{i}\}$$

$$\{0^{i}\} = [N^{i}_{0}] \{q^{i}\}$$
(3.1)

where  $\{q^t\}$  is a vector of nodal coordinates of the beam element.

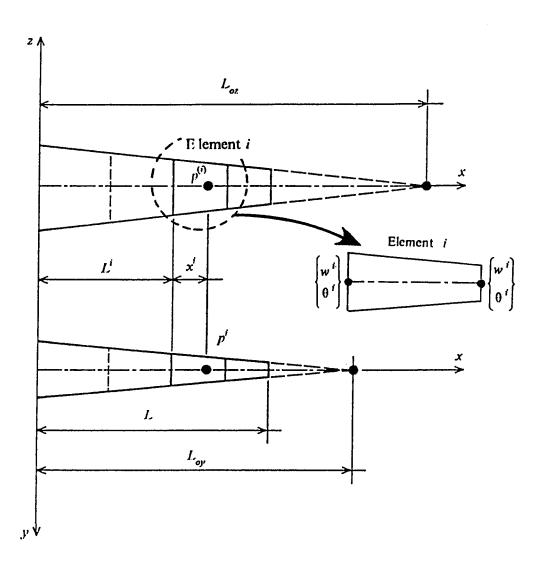


Fig. 3.1  $\Lambda$  beam element linearly tapered in two planes .

where deformations are confined to one plane.

The matrices  $[N_{w}^{i}]_{1x4}$  and  $[N_{0}^{i}]_{1x4}$  are the elemental shape functions ( or interpolation functions ) with nonzero entries given by [3] and [35] as:

$$N_{w_{1}}^{i} = \{1 - 3\xi^{i^{2}} + 2\xi^{i^{3}} + (1 - \xi^{i})\Phi\} / (1 + \Phi)$$

$$N_{w_{2}}^{i} = l^{i} \{\xi^{i} - 2\xi^{i^{2}} + \xi^{i^{3}} + (\xi^{i} - \xi^{i^{2}})\Phi / 2\} / (1 + \Phi)$$

$$N_{w_{3}}^{i} = \{3\xi^{i^{2}} - 2\xi^{i^{3}} + \xi^{i}\Phi\} / (1 + \Phi)$$

$$N_{w_{4}}^{i} = l^{i} \{-\xi^{i^{2}} + \xi^{i^{3}} - (\xi^{i} - \xi^{i^{2}})\Phi / 2\} / (1 + \Phi)$$

$$N_{n_{1}}^{i} = 6 \{-\xi^{i} + \xi^{i^{2}}\} / \{l^{i} (1 + \Phi)\}$$

$$N_{n_{2}}^{i} = \{1 - 4\xi^{i} + 3\xi^{i^{2}} + (1 - \xi^{i})\Phi\} / (1 + \Phi)$$

$$N_{n_{3}}^{i} = 6 \{\xi^{i} - \xi^{i^{2}}\} / \{l^{i} (1 + \Phi)\}$$

$$N_{n_{4}}^{i} = \{-2\xi^{i} + 3\xi^{i^{2}} + \xi^{i}\Phi\} / (1 + \Phi)$$

$$(3.2)$$

where

$$\xi^i = x^i / I^i \tag{3.3}$$

and

$$\Phi = 12 E^{i} I_{x}^{i} / (k^{i} G^{i} A_{x}^{i} I^{i2})$$
 (3.4)

The parameter  $\Phi$  is known as the shear deformation parameter (the ratio between the bending stiffness and the shear stiffness),  $E^i$  is the modulus of rigidity,  $I_x^i$  is the second moment of the cross-sectional area,  $A_x^i$  is the cross-sectional area of the beam element,  $I^i$  is the element length,  $G^i$  is the shear modulus and  $k^i$  is the shear correction factor depending on the shape of the cross-section. The shear correction factor  $k^i$  is given by equations (2.9) and (2.10).

## 3.2 GEOMETRICAL PROPERTIES OF THE CROSS-SECTIONAL AREA

In order to define the entries of the stiffness and mass matrices one needs to introduce the following parameters:

$$L^{i} = \sum_{j=1}^{n} t^{j} , L_{iy} = L_{oy} - L^{i} , L_{iz} = L_{oz} - L^{i}$$

$$\mu_{1} = L_{iy}L_{tz} , \mu_{2} = \frac{1}{2}(L_{iy} + L_{iz})$$
(3.5)

To find the cross-sectional area at any arbitrary location of element i, let:

$$\frac{z_i}{z_o} = \frac{L_{oz} - \{x^i + (i-1)l^i\}}{L_{cr}}$$
 (3.6)

and let

$$(i-1) l^i = L^i (3.7)$$

Substitute in the above expression, we obtain:

$$\frac{z_i}{z_o} = \frac{L_{oz} - x^i - L^i}{L_{oz}}$$
 (3.8)

Similarly,

$$\frac{y_i}{y_o} = \frac{L_{oy} - x^i - L^i}{L_{oy}}$$
 (3.9)

Since

$$A_x^i = y_i \ z_i \tag{3.10}$$

Substitute equations (3.8) and (3.9) into equation (3.10), one can obtain:

$$A_{x}^{i} = y_{o} \frac{L_{oy} - x^{i} - L^{i}}{L_{oy}} z_{o} \frac{L_{oz} - x^{i} - L^{i}}{L_{oz}}$$
(3.11)

After rearranging, equation (3.11) takes the form:

$$A_x^i = \frac{A_o}{L_{oy}L_{oz}} \{ \mu_1 - 2\mu_2 x^i + x^{i^2} \}$$
 (3.12)

where

$$A_o = y_o z_o \tag{3.13}$$

is the cross-sectional area of the root of the beam.

Following the same procedure, one can obtain the expression for the second moment of the cross-sectional area

$$I_x^i = \frac{1}{12} v_i z_i^3 \tag{3.14}$$

Substitute equations (3.8) and (3.9) into equation (3.14), we get

$$I_{x}^{i} = \frac{1}{12} y_{o} \frac{L_{oy} - x^{i} - L^{i}}{L_{oy}} z_{o}^{3} \frac{\{L_{oz} - x^{i} - L^{i}\}^{3}}{L_{oz}}$$
(3.15)

After rearranging, equation (3.15) becomes:

$$I_{x}^{i} = \frac{I_{o}}{L_{ov}L_{oz}^{3}} \{ \mu_{1}L_{iz}^{2} - (L_{iz}^{3} + 3\mu_{1}L_{iz})x^{i} + 6\mu_{2}L_{iz}x^{i^{2}} - 2(L_{iz} + \mu_{2})x^{i^{3}} + x^{i^{4}} \}$$
(3.16)

where

$$I_o = \frac{1}{12} y_o z_o^3 {(3.17)}$$

is the second moment of the cross-sectional area of the root of the beam.

In equation (3.16), it is assumed that the flexural motion takes place in the x-z plane; flapping motion. Similar expression can be obtained for flexural motion in the x-y plane by just interchanging the subscripts y and z. Equation (3.16) can be written in a simpler form as:

$$I_x^i = \frac{I_o}{I_{cov}L_{cov}^3} \{ \alpha_o - \alpha_1 x^i + \alpha_2 x^{i^2} - \alpha_3 x^{i^3} + x^{i^4} \}$$
 (3.18)

where

$$\alpha_o = \mu_1 L_{iz}^2$$
,  $\alpha_1 = L_{iz}^3 + 3 \mu_1 L_{iz}$ ,  $\alpha_2 = 6 \mu_2 L_{iz}$ ,  $\alpha_3 = 2 (L_{iz} + \mu_2)$  (3.19)

### 3.3 STIFFNESS MATRICES

The strain energy expression of the i th spinning tapered beam element of length  $l^i$  is given by:

$$U^{i} = (\frac{1}{2}) \int_{0}^{t'} \{ E^{i} I_{x}^{i} (\frac{\partial 0^{i}}{\partial x^{i}})^{2} + k^{i} G^{i} A_{x}^{i} (\frac{\partial w^{i}}{\partial x^{i}} - 0^{i})^{2} + F_{x}^{i} (\frac{\partial w^{i}}{\partial x^{i}})^{2} \} dx^{i}$$
(3.20)

where  $F_x^i$  is the centrifugal force in the longitudinal direction of the beam elemet. The first term of equation (3.20) represents the flexural strain energy, while the second term represents the shear strain energy and the last one represents the strain energy due to the centrifugal force  $F_x^i$ .

Equation (3.20) can be written in matrix form as:

$$|U^{i}| = \frac{1}{2} \{ q^{i} \}^{T} |K^{i}| \{ q^{i} \}$$
 (3.21)

where [K'] is the composite stiffness matrix given by

$$|K^{i}| = |k_{e}^{i}| + |k_{s}^{i}| + |k_{c}^{i}|$$
 (3.22)

where

$$|k_e^i| = \int_0^t |B_e^i|^T E^i I_x^i |B_e^i| dx^i = clastic stiffness matrix$$
 (3.23)

$$[k_s^i] = \int_0^t |B_s^i|^T k^{ij} G^i A_x^i |B_s^i| dx^i = shear stiffness matrix$$
 (3.24)

$$|k_c^i| = \int_0^t F_x^i |B_w^i|^T |B_w^i| dx^i = centrifugal stiffness matrix$$
 (3.25)

The curvature  $\kappa'$  and the shear strain  $\gamma'$  within the element are expressed as

$$\kappa^{i} = \frac{\partial 0^{i}}{\partial x^{i}} = |B_{e}^{i}| \{q^{i}\}$$
(3.26)

$$\gamma^{i} = \frac{\partial w^{i}}{\partial x^{i}} - 0^{i} = [B^{i}_{s}] \{q^{i}\}$$
 (3.27)

where

$$[B_w^i] = \frac{\partial}{\partial x^i} [N_w^i] \tag{3.28}$$

$$[B'_e] = \frac{\partial}{\partial x^i} [N'_0] \tag{3.29}$$

$$|B_{s}^{i}| = \frac{\partial}{\partial x^{i}} [N_{w}^{i}] - [N_{0}^{i}] = [B_{w}^{i}] - [N_{0}^{i}]$$
(3.30)

As can be seen from equation (3.30), there is a coupling between  $w^i$  and  $0^i$  degrees of freedom.

Carrying out the integration of equation (3.23), the elastic stiffness matrix  $[k_e^i]$  is obtained with nonzero entries as presented in Table 3.1

The explicit expression for the element shear stiffness matrix  $[k_s^i]$  is obtained by carrying out the integration of equation (3.24). The shear stiffness matrix  $[k_s^i]$  is obtained with nonzero entries as presented in Table 3.2

The centrifugal stiffness matrix is established by evaluating the integral of equation (3.25). In order to do this, one can define the centrifugal force associated with a differential element located at point  $p^i$  of the finite element i as:

$$dF_p^i = \rho^i \Lambda_x^i \Omega^2 r_p^i dr_p^i \tag{3.31}$$

where

$$r_p^i \approx L^i + x^i = (i-1)l^i + x^i$$
 (3.32)

when small deformations are considered. The tensile force acting on a section at  $p^i$  due to the centrifugal effect, can be calculated by integrating equation (3.31) over the span between point  $p^i$  and the free end of the beam as shown in Fig. 3.2.

TABLE 3.1 Elastic stiffness matrix of tapered beam element

$$[k_e^i] = \frac{E^i I_o}{L_{ox} L_{ox}^3 (1+\Phi)^2} [k_{ab}^{(e)}] ; a,b = 1,2,...,4$$

The nonzero entries of the lower triangular part of [  $k_{ab}^{(e)}$  ] are given by :

$$k_{11}^{(o)} = -k_{31}^{(o)} = k_{33}^{(o)} = \frac{12}{l^{3}}\alpha_{o} - \frac{6}{l^{2}}\alpha_{1} + \frac{24}{5l^{4}}\alpha_{2} - \frac{21}{5}\alpha_{3} + \frac{132}{35}l^{4}$$

$$k_{21}^{(o)} = -k_{32}^{(o)} = \frac{6}{l^{2}}\alpha_{o} + \frac{1}{l^{4}}(\Phi - 2)\alpha_{1} + \frac{1}{5}(-5\Phi + 7)\alpha_{2} + \frac{3}{10}(3\Phi - 4)l^{4}\alpha_{3}$$

$$+ \frac{2}{35}(-14\Phi + 19)l^{2}$$

$$k_{22}^{(o)} = \frac{1}{l^{4}}(\Phi^{2} + 2\Phi + 4)\alpha_{o} - \frac{1}{2}(\Phi^{2} + 2)\alpha_{1} + \frac{1}{15}(5\Phi^{2} - 5\Phi + 8)l^{4}\alpha_{2}$$

$$- \frac{1}{20}(5\Phi^{2} - 8\Phi + 8)l^{2}\alpha_{3} + \frac{1}{35}(7\Phi^{2} - 14\Phi + 12)l^{2}$$

$$k_{41}^{(o)} = -k_{43}^{(o)} = \frac{6}{l^{2}}\alpha_{o} - \frac{1}{l^{4}}(\Phi + 4)\alpha_{1} + \frac{1}{5}(5\Phi + 17)\alpha_{2} - \frac{3}{10}(3\Phi + 10)l^{4}\alpha_{3}$$

$$+ \frac{2}{35}(14\Phi + 47)l^{2}$$

$$k_{42}^{(o)} = -\frac{1}{l^{4}}(\Phi^{2} + 2\Phi - 2)\alpha_{o} + \frac{1}{2}(\Phi^{2} + 2\Phi - 2)\alpha_{1} - \frac{1}{15}(5\Phi^{2} + 10\Phi - 13)l^{4}\alpha_{2}$$

$$+ \frac{1}{20}(5\Phi^{2} + 10\Phi - 16)l^{2}\alpha_{3} - \frac{1}{35}(7\Phi^{2} + 14\Phi - 26)l^{2}$$

$$k_{44}^{(o)} = \frac{1}{l^{4}}(\Phi^{2} + 2\Phi + 4)\alpha_{o} - \frac{1}{2}(\Phi^{2} + 4\Phi + 6)\alpha_{1} + \frac{1}{15}(5\Phi^{2} + 25\Phi + 38)l^{4}\alpha_{2}$$

$$- \frac{1}{20}(5\Phi^{2} + 28\Phi + 44)l^{2}\alpha_{3} + \frac{1}{35}(7\Phi^{2} + 42\Phi + 68)l^{2}$$

TABLE 3.2 Shear stiffness matrix of tapered beam element

$$[k_s^i] = \frac{A_a k'^i G^i \Phi^2}{L_{oy} L_{ox} (1 + \Phi)^2} [k_{ab}^{(s)}] ; a,b = 1, 2, ...., 4$$

The nonzero entries of the lower triangular part of  $[k_{ab}^{(s)}]$  are given by :

$$k_{11}^{(s)} = -k_{31}^{(s)} = k_{33}^{(s)} = \frac{1}{l^{i}} \mu_{1} - \mu_{2} + \frac{1}{3} l^{i}$$

$$k_{21}^{(s)} = -k_{32}^{(s)} = k_{41}^{(s)} = -k_{43}^{(s)} = \frac{1}{2} \mu_{1} - \frac{1}{2} l^{i} \mu_{2} + \frac{1}{6} l^{i^{2}}$$

$$k_{22}^{(s)} = k_{42}^{(s)} = k_{44}^{(s)} = \frac{1}{4} l^{i} \mu_{1} - \frac{1}{4} l^{i^{2}} \mu_{2} + \frac{1}{12} l^{i^{3}}$$

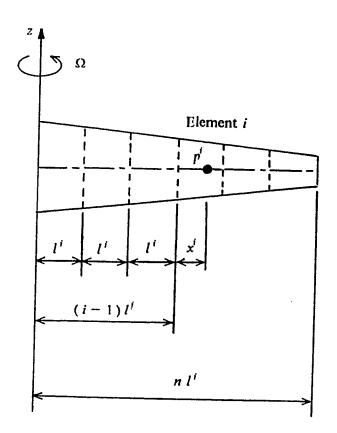


Fig. 3.2 Location of the tapered beam element

The resulting tensile force is then

$$F_{p}^{i} = \rho^{i} \Omega^{2} \left\{ \int_{x}^{t'} (i-1)t' + x^{i} | A_{x}^{i} dx^{i} + \int_{yt'}^{nt'} x^{i} A_{x}^{i} dx^{i} \right\}$$
 (3.33)

where  $A_x^i$  is given by equation (3.12).

Evaluating the integral in equation (3.33), one can obtain the following expression:

$$F_{p}^{i} = \frac{\rho^{i} A_{o} \Omega^{2}}{L_{ov} L_{os}} \left[ \beta_{o} - \beta_{1} x^{i} - \beta_{2} x^{i^{2}} - \beta_{3} x^{i^{3}} - \beta_{4} x^{i^{4}} \right]$$
 (3.34)

where

$$\beta_{o} = \Lambda_{o} - \Lambda_{1} + \Lambda_{2}$$

$$\Lambda_{o} = \frac{1}{2} \mu_{1} I^{i^{2}} (n^{2} - i^{2} + 2i - 1)$$

$$\Lambda_{1} = \frac{2}{3} \mu_{2} I^{i^{3}} (n^{3} - i^{3} + \frac{3}{2}i - \frac{1}{2})$$

$$\Lambda_{2} = \frac{1}{4} I^{i^{4}} (n^{4} - i^{4} + \frac{4}{3}i - \frac{1}{3})$$

$$\beta_{1} = \mu_{1} L^{i}$$

$$\beta_{2} = \frac{1}{2} (\mu_{1} - 2 \mu_{2} L^{i})$$

$$\beta_{3} = \frac{1}{3} (L^{i} - 2 \mu_{2})$$

$$\beta_{4} = \frac{1}{4}$$
(3.35)

The axial stresses resulting from the tensile force given by equation (3.34) are incorporated into the integration of equation (3.25), resulting in the centrifugal stiffness matrix of the rotating beam element given in Table 3.3.

TABLE 3.3 Centrifugal stiffness matrix of tapered beam element

$$|k_c^i| = \frac{A_o \rho^i \Omega^2}{L_{op} L_{op} (1 + \Phi)^2} |k_{ob}^{(c)}| ; a,b = 1, 2,...,4$$

The nonzero entries of the lower triangular part of  $[k_{ab}^{(c)}]$  are given by:

$$k_{11}^{(e)} = -k_{33}^{(e)} = k_{33}^{(e)} = \frac{1}{5l^{4}} (5\Phi^{2} + 10\Phi + 6)\beta_{o} - \frac{1}{10} (5\Phi^{2} + 10\Phi + 6)\beta_{1}$$

$$- \frac{1}{105} (35\Phi^{2} + 63\Phi + 36)l^{4}\beta_{2} - \frac{1}{140} (35\Phi^{2} + 56\Phi + 30)l^{4}\beta_{3} - \frac{1}{35} (7\Phi^{2} + 10\Phi + 5)l^{4}\beta_{4}$$

$$k_{21}^{(e)} = -k_{32}^{(e)} = \frac{1}{10}\beta_{o} - \frac{1}{120} (10\Phi^{2} + 16\Phi + 12)l^{4}\beta_{1} - \frac{1}{420} (35\Phi^{2} + 49\Phi + 30)l^{4}\beta_{2}$$

$$- \frac{1}{280} (21\Phi^{2} + 26\Phi + 14)l^{4}\beta_{3} - \frac{1}{420} (28\Phi^{2} + 31\Phi + 15)l^{4}\beta_{4}$$

$$k_{22}^{(e)} = \frac{1}{60} (5\Phi^{2} + 10\Phi + 8)l^{4}\beta_{o} - \frac{1}{120} (5\Phi^{2} + 6\Phi + 4)l^{4}\beta_{1} - \frac{1}{210} (7\Phi^{2} + 7\Phi + 4)l^{4}\beta_{2}$$

$$- \frac{1}{1680} (49\Phi^{2} + 44\Phi + 22)l^{4}\beta_{3} - \frac{1}{420} (11\Phi^{2} + 9\Phi + 4)l^{4}\beta_{4}$$

$$k_{41}^{(e)} = -k_{43}^{(e)} = \frac{1}{10}\beta_{o} + \frac{1}{60} (5\Phi^{2} + 8\Phi)l^{4}\beta_{1} + \frac{1}{420} (35\Phi^{2} + 63\Phi + 12)l^{4}\beta_{2}$$

$$+ \frac{1}{280} (21\Phi^{2} + 40\Phi + 10)l^{4}\beta_{3} + \frac{1}{420} (28\Phi^{2} + 55\Phi + 15)l^{4}\beta_{4}$$

$$k_{42}^{(e)} = -\frac{1}{60} (5\Phi^{2} + 10\Phi + 2)l^{4}\beta_{o} + \frac{1}{120} (5\Phi^{2} + 10\Phi + 2)l^{2}\beta_{1} + \frac{1}{210} (7\Phi^{2} + 14\Phi + 3)l^{4}\beta_{2}$$

$$+ \frac{1}{1680} (49\Phi^{2} + 98\Phi + 22)l^{4}\beta_{3} + \frac{1}{420} (11\Phi^{2} + 22\Phi + 5)l^{5}\beta_{4}$$

$$k_{44}^{(e)} = \frac{1}{60} (5\Phi^{2} + 10\Phi + 8)l^{4}\beta_{o} - \frac{1}{120} (5\Phi^{2} + 14\Phi + 12)l^{4}\beta_{1} - \frac{1}{210} (7\Phi^{2} + 21\Phi + 18)l^{4}\beta_{2}$$

$$- \frac{1}{1680} (49\Phi^{2} + 152\Phi + 130)l^{4}\beta_{3} - \frac{1}{420} (11\Phi^{2} + 35\Phi + 30)l^{5}\beta_{4}$$

### 3.4 INERTIA PROPERTIES

The contribution of the kinetic energy expression of the non-spinning i th tapered beam element of length l' due to translational and rotational deformation is given by:

$$T^{i} = \left(\frac{1}{2}\right) \int_{0}^{t'} \rho^{i} A_{x}^{i} \left(\frac{\partial w^{i}}{\partial t^{i}}\right)^{2} dx^{i} + \left(\frac{1}{2}\right) \int_{0}^{t'} \rho^{i} I_{x}^{i} \left(\frac{\partial 0^{i}}{\partial t^{i}}\right)^{2} dx^{i}$$
 (3.36)

The first term in equation (3.36) represents the translational kinetic energy, while the second one is the rotational kinetic energy.

Equation (3.36) can be written in matrix form as follows:

$$|T^{i}| = \frac{1}{2} \{ \dot{q}^{i} \}^{T} |M^{i}| \{ \dot{q}^{i} \}$$
 (3.37)

where  $|M^i|$  is the composite mass matrix given by

$$|M^{i}| = |M_{i}^{i}| + |M_{i}^{i}| \tag{3.38}$$

where  $|M^i|$  is known as the consistent mass matrix because it is formulated from the same shape functions  $|N^i_w|$  and  $|N^i_0|$  that are used to formulate the stiffness matrix. where

$$|M_t^i| = \int_0^t |N_w^i|^T \rho^i A_x^i |N_w^i| dx^i = translational mass matrix$$
 (3.39)

$$|M_r^i| = \int_0^{t^i} |N_0^i|^T \rho^i I_x^i |N_0^i| dx^i = rotary inertia mass matrix$$
 (3.40)

The explicit expressions for the element translational mass matrix  $|M_t^i|$  and the element rotary inertia mass matrix  $|M_r^i|$  are obtained by carrying out the integration of equations (3.39) and (3.40) respectively. The translational and rotary inertia mass matrices  $|M_t^i|$  and  $|M_r^i|$  are obtained with nonzero entries as presented in Tables 3.4 and 3.5 respectively.

TABLE 3.4 Translational mass matrix of tapered beam element

$$[M'_i] = \frac{A_o \rho^i}{L_{oy} L_{oz} (1 + \Phi)^2} [M_{ab}^{(i)}] ; a,b = 1, 2, ...., 4$$

The nonzero entries of the lower triangular part of  $M_{ab}^{(1)}$  | are given by :

$$M_{11}^{(i)} = \frac{1}{210} (70\Phi^2 + 147\Phi + 78) \mu_1 l' - \frac{1}{210} (35\Phi^2 + 70\Phi + 36) \mu_2 l'^2 + \frac{1}{630} (21\Phi^2 + 39\Phi + 19) l'^3$$

$$M_{21}^{(i)} = \frac{1}{840} (35\Phi^2 + 77\Phi + 44) \mu_1 l'^2 - \frac{1}{420} (14\Phi^2 + 27\Phi + 14) \mu_2 l'^3 + \frac{1}{2520} (21\Phi^2 + 36\Phi + 17) l'^4$$

$$M_{22}^{(i)} = \frac{1}{840} (7\Phi^2 + 14\Phi + 8) \mu_1 l'^3 - \frac{1}{840} (7\Phi^2 + 12\Phi + 6) \mu_2 l'^4 + \frac{1}{2520} (6\Phi^2 + 9\Phi + 4) l'^5$$

$$M_{31}^{(i)} = \frac{1}{210} (35\Phi^2 + 63\Phi + 27) \mu_1 l'^4 - \frac{1}{210} (35\Phi^2 + 63\Phi + 27) \mu_2 l'^2 + \frac{1}{1260} (63\Phi^2 + 111\Phi + 46) l'^3$$

$$M_{32}^{(i)} = \frac{1}{840} (35\Phi^2 + 63\Phi + 26) \mu_1 l'^2 - \frac{1}{420} (21\Phi^2 + 36\Phi + 14) \mu_2 l'^3 + \frac{1}{2520} (42\Phi^2 + 69\Phi + 25) l'^4$$

$$M_{33}^{(i)} = \frac{1}{210} (70\Phi^2 + 147\Phi + 78) \mu_1 l'^4 - \frac{1}{210} (105\Phi^2 + 224\Phi + 120) \mu_2 l'^2 + \frac{1}{630} (126\Phi^2 + 270\Phi + 145) l'^3$$

$$M_{41}^{(i)} = -\frac{1}{840} (35\Phi^2 + 63\Phi + 26) \mu_1 l'^2 + \frac{1}{420} (14\Phi^2 + 27\Phi + 12) \mu_2 l'^3 - \frac{1}{2520} (21\Phi^2 + 42\Phi + 19) l'^4$$

$$M_{42}^{(i)} = -\frac{1}{840} (35\Phi^2 + 63\Phi + 26) \mu_1 l'^3 + \frac{1}{840} (7\Phi^2 + 14\Phi + 6) \mu_2 l'^4 - \frac{1}{2520} (6\Phi^2 + 12\Phi + 5) l'^5$$

$$M_{43}^{(i)} = -\frac{1}{840} (35\Phi^2 + 77\Phi + 44) \mu_1 l'^3 + \frac{1}{420} (21\Phi^2 + 5\Phi + 30) \mu_2 l'^3 - \frac{1}{2520} (42\Phi^2 + 105\Phi + 65) l'^4$$

$$M_{43}^{(i)} = -\frac{1}{840} (35\Phi^2 + 77\Phi + 44) \mu_1 l'^2 + \frac{1}{420} (21\Phi^2 + 5\Phi + 30) \mu_2 l'^3 - \frac{1}{2520} (42\Phi^2 + 105\Phi + 65) l'^4$$

$$M_{44}^{(i)} = \frac{1}{840} (7\Phi^2 + 14\Phi + 8) \mu_1 l'^3 - \frac{1}{840} (7\Phi^2 + 16\Phi + 10) \mu_2 l'^4 + \frac{1}{2520} (6\Phi^2 + 15\Phi + 10) l'^5$$

TABLE 3.5 Rotary inertia mass matrix of tapered beam element

$$|M_{r}^{i}| = \frac{\rho^{i} A_{o} l^{i}}{L_{oy} L_{oz}^{3} (1 + \Phi)^{2}} \left\{ \frac{r_{g}}{l^{i}} \right\}^{2} |M_{ob}^{(r)}| ; a,b = 1, 2, ...., 4$$

The nonzero entries of the lower triangular part of  $[M_{ab}^{(r)}]$  are given by:

$$M_{11}^{(r)} = -M_{31}^{(r)} = M_{33}^{(r)} = \frac{6}{5}\alpha_{\sigma} - \frac{3}{5}l^{4}\alpha_{1} + \frac{12}{35}l^{2}\alpha_{2} - \frac{3}{14}l^{3}\alpha_{3} + \frac{1}{7}l^{4}$$

$$M_{2l}^{(r)} = -M_{32}^{(r)} = -\frac{1}{10}(5\Phi - 1)l^{4}\alpha_{\sigma} + \frac{1}{10}(2\Phi - 1)l^{4}\alpha_{1} - \frac{1}{70}(7\Phi - 5)l^{3}\alpha_{2}$$

$$+ \frac{1}{140}(8\Phi - 7)l^{4}\alpha_{3} - \frac{1}{28}(\Phi - 1)l^{5}$$

$$M_{22}^{(r)} = \frac{1}{30}(10\Phi^{2} + 5\Phi + 4)l^{4}\alpha_{\sigma} - \frac{1}{60}(5\Phi^{2} - 2\Phi + 2)l^{3}\alpha_{1} + \frac{1}{210}(7\Phi^{2} - 7\Phi + 4)l^{4}\alpha_{2}$$

$$- \frac{1}{840}(14\Phi^{2} - 20\Phi + 11)l^{5}\alpha_{3} + \frac{1}{420}(4\Phi^{2} - 7\Phi + 4)l^{5}$$

$$M_{4l}^{(r)} = -M_{43}^{(r)} = -\frac{1}{10}(5\Phi - 1)l^{4}\alpha_{\sigma} + \frac{3}{10}\Phi l^{4}\alpha_{1} - \frac{1}{35}(7\Phi + 1)l^{5}\alpha_{2}$$

$$+ \frac{1}{28}(4\Phi + 1)l^{4}\alpha_{3} - \frac{1}{28}(3\Phi + 1)l^{5}$$

$$M_{42}^{(r)} = \frac{1}{30}(5\Phi^{2} - 5\Phi - 1)l^{2}\alpha_{\sigma} - \frac{1}{60}(5\Phi^{2} - 5\Phi - 1)l^{3}\alpha_{1} + \frac{1}{140}(7\Phi^{2} - 7\Phi - 2)l^{4}\alpha_{2}$$

$$- \frac{1}{840}(28\Phi^{2} - 28\Phi - 11)l^{5}\alpha_{3} + \frac{1}{84}(2\Phi^{2} - 2\Phi - 1)l^{5}$$

$$M_{44}^{(r)} = \frac{1}{30}(10\Phi^{2} + 5\Phi + 4)l^{2}\alpha_{\sigma} - \frac{1}{20}(5\Phi^{2} + 4\Phi + 2)l^{5}\alpha_{1} + \frac{1}{35}(7\Phi^{2} + 7\Phi + 3)l^{4}\alpha_{2}$$

$$- \frac{1}{168}(28\Phi^{2} + 32\Phi + 13)l^{5}\alpha_{3} + \frac{1}{28}(4\Phi^{2} + 5\Phi + 2)l^{5}$$

## 3.5 GENERALIZED EIGENVALUE PROBLEM

The potential energy  $V^i$  per unit volume of the beam element is given by [3]:

$$V^{i} = -\left(\frac{1}{2}\right) \int_{0}^{t'} F_{z} w A_{x}^{i} dx^{i}$$
 (3.41)

Or, in matrix form:

$$V^{i} = -\frac{1}{2} \{q^{i}\}^{T} \Omega^{2} \sin^{2} \Psi [M_{i}] \{q^{i}\}$$
 (3.42)

The sum of the individual element energies over the entire beam using equations (3.21), (3.37) and (3.42) gives the Lagrangian function, i.e;

$$L = \sum_{j=1}^{n} (T^{i} - U^{i} - V^{i})$$
 (3.43)

Substitute equations (3.21), (3.37) and (3.42) into Lagrange's equation,

$$\frac{\partial}{\partial t} \left( \frac{\partial L}{\partial q^i} \right) - \frac{\partial L}{\partial q^i} = 0 \tag{3.44}$$

we obtain the following governing differential equation of the assembled structure for the free vibrations of the rotating tapered beam:

$$([K] - \Omega^2 \sin^2 \Psi[M_t]) \{q\} + [M] \{\bar{q}\} = \{0\}$$
 (3.45)

where  $\{q\}$  is a vector of all nodal coordinates of the beam and [K] and [M] are the global stiffness and mass matrices of the whole beam obtained by the standard finite element assembly procedure. The term  $\Omega^2 \sin^2 \Psi [M_t] \{q\}$  accounts for the centripetal acceleration contribution that causes a softening effect on the lead-lag frequencies. For the assumed configuration, however, the gyroscopic terms have no contribution to the eigenvalue calculations, [31].

On assuming the solution of equation (3.44) in the form

$$\{q\} = \{\overline{q}\} e^{i\omega t} \tag{3.46}$$

we obtain the following generalized eigenvalue problem:

$$(|K| - \Omega^2 \sin^2 \Psi |M_t| - \omega^2 |M|) {\overline{q}} = {0}$$
 (3.47)

where  $\{\overline{q}\}$  is a vector of displacement amplitudes of vibration and m is the frequency of harmonic vibrations. The solution of equation (3.47) gives the natural frequencies and the corresponding mode shapes.

## CHAPTER FOUR

## **RESULTS AND DISCUSSIONS**

A linearly tapered rotating beam based on both Euler-Bernoulli and Timoshenko theories with its spin axis aligned along the inertial Z-axis is considered. The out-of-plane transverse vibration can be represented by equation (3.45) when the plane in which the beam is bending makes an angle  $\Psi=0$ , with the direction of rotation. Therefore, the free vibration of the flapping motion can be expressed as

$$[M | \{ \bar{q} \} + [K | \{ q \} = 0 ] \tag{4.1}$$

where [M] and [K] are the assembled mass and stiffness matrices, respectively, of the whole beam. The vector  $\{q\}$  represents all nodal coordinates of the beam.

The eigenvalue problem associated with equation (4.1) is given by:

$$(\lceil K \rceil - \lambda \lceil M \rceil) \{ \overline{q} \} = 0 \tag{4.2}$$

where  $\{\overline{q}\}$  is a vector of displacement amplitudes of vibrations and  $\lambda$  is the frequency parameter given by :

$$\lambda = \omega \sqrt{\rho A_o L^4 / E I_o} \tag{4.3}$$

Solutions of equation (4.2) are obtained by means of a finite element program that evaluates the spinning effect at the element level developed by Khulief [25, 31] and modified by the author for the Timoshenko case. In this program the element matrices developed in this thesis and presented in Tables 3.1 to 3.5, are generated. The finite

element assembly procedure is then invoked to assemble the mass and stiffness matrices of equation (4.2). The generalized eigenvalue problem is then solved by means of EISPACK routines [ 37 ].

In this analysis, both fixed and hinged end conditions are considered for a wide range of rotational speed parameter and taper ratios. The explicit expressions for the rotational speed parameter and taper ratios are given by:

$$\eta = \Omega L^2 / \sqrt{E I_o / \rho A_o} \tag{4.4}$$

and

$$v_{y} = L/L_{oy}, \quad in x-y \ plane. \tag{4.5}$$

$$v_z = L/L_{or}, \quad in x-z \, plane \, . \tag{4.6}$$

A variety of results ranging up to the tenth frequency are tabulated for general use in Tables 4.1 - 4.31. These results cover a range of situations including uniform, tapered, rotating and non-rotating beams for both fixed and hinged end conditions. The results are presented in both tabular and graphical forms. For Euler-Bernoulli beams the results were obtained with twelve finite beam elements, while for Timoshenko case, they were obtained with twenty five finite beam elements. In both cases, a consistent mass formulation has been employed.

Comparisons are made, whenever possible, with exact solutions and numerical results available in the literature. The case of hinged-free Timoshenko beam has not been solved by the investigators in this field and no results for such work could be cited in the literature.

The first six bending frequencies of transverse vibrations for rotating and non-rotating, Euler-Bernoulli and Timoshenko beams are examined and plotted in Figs. 4.1

to 4.8 for the clamped-free end conditions and in Figs. 4.17 to 4.25 for the hinged-free end conditions at a wide range of rotational speed parameter and taper ratios. The effect of rotation on the frequency ratios  $(\lambda_T/\lambda_E)$  for both cantilever and hinged-free beams for several taper ratios is shown respectively in Tables 4.15 to 4.18 and in Tables 4.31 to 4.34. This effect is also shown graphically in Figs. 4.9 to 4.10 and in Figs. 4.26 to 4.27, respectively for the end conditions mentioned above. The corresponding mode shapes are also shown in Figs. 4.11 - 4.16 for cantilever beam and in Figs. 4.28 - 4.29 for the the hinged-free beam. For the presented results, values of the taper ratio in the range  $0.0 \le v \le 1.0$  are considered, where,  $v_y = v_z = v$ , for all the analysis unless otherwise stated. A more detail of these results will follow throughout the discussion.

The case of uniform beam corresponds to the value of  $\nu=0.0$ , while  $\nu=1.0$  define the case of a thetrahedron or wedge. Values of speed ratio  $\eta$  are taken in the range  $0.0 \le \eta \le 12.0$  as shown in tabular and graphical forms.

## 4.1 EULER-BERNOULLI BEAM

As can be seen, the presented results either in tabular or graphical forms indicate that Euler-Bernoulli frequencies are higher than Timoshenko frequencies. Neglecting the effect of shear strain on the beam deflection leads to the the assumption of infinite shear modulus, ( $G = \infty$ ). This assumption increases the rigidity of the beam theoretically, therefore the classical beam frequencies are higher than Timoshenko frequencies. Since the effects of shear and rotary inertia are a function of the wave length of the vibrations, they are more marked in the higher modes, therefore the effect increases as the mode order increases. The properties of Euler-Bernoulli beam were non-dimensionalized by setting  $\lambda = \omega \sqrt{\rho A_o L^4 / EI_o}$ , where E is the modulus of

elasticity, I is the second moment of the cross-sectional area,  $\rho$  is the mass density, A is the cross-sectional area and L is the beam length.

### 4.1.1 CANTILEVER EULER-BERNOULLI BEAM

Tables 4.1 through 4.6 present the first ten natural frequencies for out-of-plane vibrations of a rotating cantilever beam for different values of rotational speed parameter and taper ratios. The present results show an excellent agreement with the results obtained by Downs, [5], who used a new discretization technique for the evaluation of the natural frequencies of the non-rotating tapered cantilever beam with unequal breadth and taper.

As an example , the percentage errors between the present work and the the exact solution , [27], in the first three frequencies were respectively 0.00, 0.00, 0.00, 0.01 for the uniform non-rotating cantilever beam , and were 0.00, 0.00, 0.00 and 0.00, 0.00, 0.00 for the same beam rotating at  $\eta = 1.0$  and  $\eta = 10.0$ , respectively. For the case of non-rotating tapered cantilever beam , where  $\nu = 0.3$ , and  $\nu = 0.6$ , the percentage errors in the first three frequencies , respectively , were 0.00, 0.00, 0.01 and 0.00, 0.00 and 0.00 when compared to Downs [5].

Tables 4.1 through 4.7 show that for a fixed taper ratio , the first ten frequencies increase with increasing speed ratio . This can be seen in Figs. 4.1 - 4.4 for the first six frequencies . It is also shown that as the taper ratio increases , the first frequency increases slightly for  $0.0 \le \eta \le 3.0$  as shown in Figs. 4.5 and 4.6 . It decreases for  $0.0 \le v \le 0.5$  and increases for  $0.5 \le v \le 0.9$  at the speed ratio of  $\eta = 5.0$  as shown in Fig. 4.7 . And finally , it is decreasing when  $0.0 \le v \le 0.6$  and is increasing when  $0.6 \le v \le 0.9$  at  $\eta = 10.0$  as shown in Fig. 4.8 . Figure 4.5 shows that for a non-rotating beam , The second frequency is decreasing for taper ratios ranging from 0.0 to

0.8 and increasing for  $0.8 \le v \le 0.9$ . The same trend can be seen in Figs. 4.6 - 4.8 when  $\eta$  is equal to 2.0, 5.0 and 10.0 reaching minimum frequencies at taper ratios 0.75, 0.70 and 0.65, respectively. The third frequency decreases for  $\eta = 0.0$  and  $\eta = 2.0$ , and follows the same trend as the second one when  $\eta$  becomes larger. Figures 4.5 - 4.7 show that the fourth, fifth and sixth frequencies decrease with increasing taper ratio and increasing speed ratio in the range  $0.0 \le \eta \le 5.0$ , while Fig. 4.8 shows that the fifth and sixth frequencies are still decreasing when the fourth one changes his behavior by decreasing in  $0.0 \le v \le 0.8$  and increasing for  $0.8 \le v \le 0.9$ .

### 4.1.2 HINGED FREE EULER-BERNOULLI BEAM

Tables 4.19 - 4.24 show the first ten frequencies of Euler-Bernoulli hinged free beam for a wide range of taper and speed ratios. The results are obtained using twelve finite element beam ( same as for the cantilever beam ). Such beams are known to constitute a semidefinite stiffness matrix ( i.e; they include rigid body mode and a value of zero is to be found for the first frequency for a non-rotating beam ). The rigid body modes are not shown neither in the tables nor in the figures for this case because they are known to take the value of the speed ratio  $\eta$ .

As a comparison between the present model and the exact solution, given by Wright et al. [27], the percentage errors in the first three frequencies, were 0.00, 0.01 and 0.00 for the non-rotating uniform hinged-free beam. For the rotating uniform hinged-free beam, where  $\eta=5.0$ , the percentage errors in the first three frequencies, respectively, were 0.00, 0.01 and 0.03, and when  $\eta=10.0$  the errors were 0.00%, 0.00% and 0.02% for the first three frequencies, respectively.

As for the cantilever beam, Tables 4.19 - 4.24 show that for a fixed taper ratio, the first ten frequencies increase with increasing the speed ratio. This can also be

shown in Figs. 4.17 through 4.21 for the first six modes.

The variation of the frequencies versus taper ratios at constant speed ratios are shown in Figs. 4.22 - 4.25. The same trend can be seen as described before for the case of cantilever beam.

#### 4.2 TIMOSHENKO BEAM

In addition to the constant parameter  $\sqrt{\rho A_o L^4/E I_o}$ , in Timoshenko beam theory, there are two further parameters expressing the slenderness ratio and cross-sectional properties of the beam. The first, related to the slenderness ratio, can be expressed as  $r_g/L$  where  $r_g=\sqrt{I_o/A_o}$  is the radius of gyration of the cross-section, and L is the length of the whole beam. The second independent variable is the product G k'. Since G/E may be taken as a material constant (which varies little between materials), k' may be regarded as the second variable. The values of k' are governed by purely geometric considerations and are given by equations (2.15) and (2.16).

Since , most of the investigations on this problem [ 3 , 5 ] lack sufficient information to adequately reproduce the same results at least for the non-rotating tapered Timoshenko beam ( because results for rotating tapered Timoshenko are not available in the literature) , a computer program was developed to scan over the best dimensions of the beam in order to reproduce the results given by Downs [ 5 ] who suggested values of Poisson's ratio = 0.3 , ratio of radius of gyration at cantilever root to the beam length = 0.08 and a shear correction factor of 0.85 which is a case of thick beam . These informations are not sufficient if one needs to reproduce the same results because the dimensions of the cross-sectional area of the beam are not given . Since  $r_{\rm g}/L=0.08$  gives  $z_{\rm o}=\sqrt{12}$  ( 0.08 L ) , where  $z_{\rm o}$  is the thickness at the root of

the beam, this means that  $z_o$  is a function of L. In order to reproduce the results presented by Downs [5], the following beam dimensions are used:  $L=1\,m$ ,  $z_o=0.277128\,m$ , and  $y_o=z_o/3=0.092376\,m$ , where  $z_o$  and  $y_o$  are the thickness and the width at the root of the beam respectively.

If the shear deformation parameter  $\Phi$  and the rotary inertia mass matrix  $[M_r^t]$  are excluded, the present model reduces to the classical Bernoulli-Euler tapered beam model used by Khulief [31]. It is interesting to observe that if the untruncated lengths  $L_{oy}$  and  $L_{oz}$  tend to infinity, the taper ratios become zero, resulting in the case of a uniform beam presented by Yokoyama [3].

#### 4.2.1 CANTILEVER TIMOSHENKO BEAM

Tables 4.7 - 4.14 show the frequency ratios of a cantilever Timoshenko beam at a wide range of rotational speed parameter and taper ratios. The same observation can be drawn concerning the increase of frequencies for increasing speed ratio at a fixed taper ratio as can be seen in Figs. 4.1 - 4.4. This trend is valid for both Euler-Bernoulli and Timoshenko cases.

The results presented for the case of non-rotating cantilever Timoshenko beam were compared to Downs [5]. For the case of uniform beam, the errors in the first three frequencies were 0.18 %, 0.02 % and 0.06 % respectively. For a tapered beam of 0.6 taper ratio the percentage errors in the first three frequencies, respectively, were 0.13, 0.12 and 0.05. For a tapered beam of 1.0 taper ratio, the percentage errors in the first eight frequencies, respectively, were 0.05, 0.53, 1.21, 1.94, 2.59, 3.05, 2.82 and 0.71. This implies that the third through the seventh frequencies for the case of 1.0 taper ratio, experience a relatively larger error which may be caused by the

discretization of the beam and the sharp end of the cantilever. Downs |5|, who used twelve unequal subdivisions in his discretization for the this case (v=1.0) instead of eight subdivisions for the other taper ratios . concluded that subdivision of the tapered beam for dynamic discretization requires considerable care , particularly for taper ratios close to one in order to minimize the errors inherent in the discretization process . He mentioned also that a similar problem was encountered by Housner and Keightley, when applying the Myklestad-Prohl technique followed by Stodola iteration to both wedge and cone . Their subdivision of the cantilever into hundred equal length segments proved insufficient to produce results of acceptable accuracy , even for the second mode and consequently the outer ten percent of the beam was further subdivided into thirty equal segments .

As mentioned earlier, there is no available results in the literature for the rotating tapered Timoshenko beams.

Figures 4.5 - 4.6 show that the first three frequencies follow the same trend described for the Euler-Bernoulli cantilever beam for the different values of taper ratios at the specified speed ratios. The fourth and fifth frequencies are both decreasing for speed ratios such that  $0.0 \le \eta \le 2.0$ . For  $\eta = 5.0$ , these two frequencies are decreasing in  $0.0 \le v \le 0.8$  and increasing in  $0.8 \le v \le 0.9$ , while for  $\eta = 10.0$ , we can see that the fourth frequency is decreasing in  $0.0 \le v \le 0.7$  and increasing in  $0.7 \le v \le 0.9$ , but the fifth one is increasing for  $0.0 \le v \le 0.1$  and  $0.75 \le v \le 0.9$ , and decreasing in  $0.1 \le v \le 0.75$ . To end up with the variation of the different frequencies in function of taper ratios, let us describe the behaviour of the sixth and last frequency. For nonrotating beam, the sixth frequency increases in  $0.0 \le v \le 0.4$  and decreases in  $0.4 \le v \le 0.9$ . For speed ratio greater than zero, say  $\eta = 2.0$ , this frequency increases in  $0.0 \le v \le 0.3$  and decreases in  $0.0 \le v \le 0.3$  and decreases in  $0.0 \le v \le 0.3$  and for  $\eta = 5.0$ , it increases in

 $0.0 \le v \le 0.35$  and  $0.8 \le v \le 0.9$ , and decreases in  $0.35 \le v \le 0.8$ . Finally, for  $\eta = 10.0$ , the sixth frequency increases in  $0.0 \le v \le 0.4$  and  $0.7 \le v \le 0.9$ , and decreases in  $0.4 \le v \le 0.7$ .

The effect of rotation on the frequency ratios ( $\lambda_T/\lambda_E$ ) of the cantilever beam is shown in Tables 4.15 - 4.18 and is represented graphically in Figs. 4.9 and 4.10, from which we can conclude that these ratios increase for the first, third and fifth frequencies by increasing the speed and taper ratios while in the first frequency this ratio is increasing for  $0.0 \le v \le 0.5$ , and is decreasing for  $0.5 \le v \le 0.7$ , as shown in Figs. 4.9 - 4.10. From these figures it is confirmed that Timoshenko frequencies are lower than Euler-Bernoulli frequencies, which means that  $(\lambda_T/\lambda_E) \le 1$ . for any value of  $\eta$  and v.

In Figs. 4.11 - 4.16, the first three mode shapes for Euler-Bernoulli, Timoshenko, rotating and non-rotating beam at different taper and speed ratios are shown. It is to be noted here that the amplitude of Timoshenko mode shapes are greater than that of Euler-Bernoulli resulting in the effect of the rotary inertia and shear deformation incorporated for the Timoshenko beam. As a second remark, it is clear that as the taper and speed ratio increases, the relative amplitudes of the total deflection decreases for both Euler and Timoshenko beams and, the amplitudes of modes 2 and 3 for rotating beam are higher than that of non-rotating one.

#### 4.2.1 HINGED-FREE TIMOSHENKO BEAM

Up to the knowledge of the author, and as mentioned earlier, there is no available results in the literature for this case. Figures 4.17 - 4.21 show that the first six frequencies increase when the speed ratio increases. This agrees with what we

mentioned before and is valid for all types of beams studied in this research. In Figs. 4.22 - 4.25, the description done before for the behavior of the different frequencies as a function of the taper ratio at constant speed ratio is almost the same except for the fifth frequency which is increasing in  $0.0 \le v \le 0.4$  and decreasing in  $0.4 \le v \le 0.9$  for non rotating beam and is increasing in  $0.0 \le v \le 0.2$  and  $0.7 \le v \le 0.9$  and decreasing in  $0.2 \le v \le 0.7$  at  $\eta = 10.0$ .

Figures 4.26 - 4.27 show the effect of rotation on the frequency ratios ( $\lambda_T/\lambda_E$ ) of the hinged-free Timoshenko beam which is also shown in Tables 4.31- 4.34. For taper ratios of 0.0 and 0.2, these ratios of the first, second and third frequencies follow the same trend described for the cantilever beam, while for the fourth frequency, these are increasing in  $0.0 \le \eta \le 6.0$  and decreasing in  $6.0 \le \eta \le 12.0$  for uniform hinged-free beam and these are increasing in  $0.0 \le \eta \le 10.0$  and decreasing in  $10.0 \le \eta \le 12.0$  for a tapered hinged-free beam of 0.2 taper ratio. In the same way, we can describe the behavior of these frequency ratios of the fifth frequency as well as the other frequency ratios for the different values of the taper ratios as shown in Figs. 4-26 - 4.27. It is also confirmed here that Timoshenko frequencies are lower than Euler-Bernoulli frequencies as expected. The mode shapes of the hinged-free beam are shown in Figs. 4.28 and 4.29 for v = 0.7, and all that can be said here is similar to the precedent case concerning the amplitudes of the vibration.

As a concluding remark, the results reveal an interesting observation, that is concerning the existence of a critical taper ratio where the frequencies of a rotating beam reverse the direction of change. The centrifugal effect is more dominant than the softening effect resulting from the decrease of the cross-sectional area.

TABLE 4.1 Frequency parameter i, of uniform Euler-Bernoulli cantilever beam , (  $v_y = v_z = 0.0$  ) .

| Speed      |                  |                |           |           | Freq     | Frequency |         |         |         |         |
|------------|------------------|----------------|-----------|-----------|----------|-----------|---------|---------|---------|---------|
| ratio<br>T | $\lambda_{ m i}$ | λ <sub>2</sub> | λ5        | 7.4       | 7,5      | 7,        | ٧-      | ,,      | ,       | 2,7     |
| <u> </u>   | 3.51602          | 22.0348        | 61.7049   | 120.959   | 200.110  | 299.369   | 419.135 | 560.027 | 722.815 | 908.338 |
| >          | 3.51602          | 22.0345        | 61.6972   | 120.902   | 199.860  | 298.566   | 416.991 | 555.165 | 1       | 1       |
| ~          | 3.68165          | 22.1814        | 61.8494   | 121.108   | 200.262  | 299.522   | 419.291 | 560.183 | 723.008 | 908.494 |
| ۲          | 3.6817**         | 22.1810**      | 61.8418** | 121.051"  | 200.012  | ı         | 1       | 1       | 1       | 1       |
| n          | 4.79728          | 23.3206        | 62.9925   | 122.292   | 201.472  | 300.750   | 420.529 | 561.428 | 724.255 | 909.741 |
| 0          | 4.7973**         | 23.3203        | 62.9850   | 122.236** | 201.223  | 1         | 1       | ı       | 1       | 1       |
| V          | 6.44955          | 25.4464        | 65.2124   | 124.662   | 203.868  | 303.188   | 422.994 | 563.909 | 726.743 | 912.228 |
| ٠          | 6.4495           | 25.4461        | 65.2050   | 124.566   | 203.622  | I         | ı       | ı       | 1       | ı       |
| ١          | 8.29967          | 28.3345        | 68.3931   | 128.026   | 207.403  | 306.805   | 426.662 | 567.608 | 730.457 | 915.945 |
| `          | 8.2996           | 28.3341**      | 68.3931   | 127.972   | 207.161" | 1         | 1       | 1       | ı       | 1       |
| 22         | 11.2024          | 33.6410        | 74.6566   | 134.936   | 214.697  | 314.334   | 434.342 | 575.380 | 738.281 | 923.788 |
| 2          | 11.2023"         | 33.6404        | 74.6493** | 134.884   | 214.461" | 1         | 1       | 1       | 1       | 1       |

. Reference [5] ... Reference [27]

TABLE 4.2 Frequency parameter i. of a tapered Euler-Bernoulli cantilever beam , (  $v_{
m y}=v_{
m z}=0.1$  ) .

| Sneed |         |         |             |         |         |           |                |         |         |         |
|-------|---------|---------|-------------|---------|---------|-----------|----------------|---------|---------|---------|
| ratio |         |         |             |         | rred    | rrequency |                |         |         |         |
| ۴     | λ,      | ؠٞ      | $\lambda_3$ | ÿ       | ئې      | 7,6       | λ <sub>7</sub> | ۲۰ ک    | λ,      | , ,     |
| 0     | 3.67370 | 21.5506 | 59.1958     | 115.451 | 190.593 | 284.819   | 398.506        | 532.230 | 686.738 | 862.683 |
| I     | 3.82016 | 21.6842 | 59.3264     | 115.585 | 190.529 | 284.957   | 398.645        | 532.370 | 686.878 | 862.822 |
| 'n    | 4.82876 | 22.7093 | 60.3601     | 116.653 | 191.819 | 286.061   | 399.758        | 533.487 | 687.997 | 863.939 |
| 5     | 6.36500 | 24.6347 | 62.3713     | 118.757 | 193.977 | 288.255   | 401.974        | 535.716 | 690.230 | 866.167 |
| 7     | 8.11516 | 27.2665 | 65.2613     | 121.835 | 197.166 | 291.511   | 405.272        | 539.039 | 693.564 | 207 698 |
| 10    | 10.8905 | 32.1372 | 70.9765     | 128.101 | 203.754 | 298.298   | 412.184        | 546.026 | 700.590 | 876.527 |

TABLE 4.3 Frequency parameter i. of a tapered Euler-Bernoulli cantilever beam , (  $v_y = v_z = 0.3$  ) .

| Speed  |         |         |         |         | Frei    | Frequency |         |         |         |          |
|--------|---------|---------|---------|---------|---------|-----------|---------|---------|---------|----------|
| יום ני | ٦,      | λ2      | λ3      | 7.4     | 7.5     | 7,6       | , A-    | 2.5     | 25      | 7.20     |
| 9      | 4.06693 | 20.5558 | 54.0218 | 104.023 | 170.788 | 254.498   | 355.481 | 474.224 | 611.321 | 767.129  |
| 5      | 4.06693 | 20.5555 | 54.0152 | 103.975 | 170.577 | 253.820   | 353.706 | 470.237 |         |          |
| I      | 4.17159 | 20.6543 | 54.1212 | 104.125 | 170.891 | 254.603   | 355.587 | 028 777 | 307 119 | 186 236  |
| 33     | 4.92744 | 21.4257 | 54.9095 | 104.937 | 171.717 | 255.437   | 356.426 | 475 173 | 736 613 | 467.707  |
| 5      | 6.15973 | 22.8898 | 56.4508 | 106.541 | 173,356 | 257.097   | 358 000 | 176 851 | 707:20  | 7,00.07  |
| 7      | 7.63240 | 24.9228 | 58.6817 | 108.897 | 175.783 | 259.566   | 360.593 | 479.358 | 046.510 | 777 234  |
| 01     | 10.0454 | 28.7608 | 63.1433 | 113.726 | 180.819 | 264.727   | 365.829 | 484.637 | 727.769 | 777 508  |
|        |         |         |         |         | 770.00  |           | 17/1107 | _       | 70°C0C  | 1202.027 |

. Reference [5]

TABLE 4.4 Frequency parameter i. of a tapered Euler-Bernoulli cantilever beam , (  $v_y = v_z = 0.5$  ) .

| Speed |         |         |         |         | Freq                                  | Frequency |         |          |         |          |
|-------|---------|---------|---------|---------|---------------------------------------|-----------|---------|----------|---------|----------|
| railo | •       |         | <br>    |         |                                       | •         |         |          |         |          |
| ٤-    | λ;      | 1,2     | λ3      | 7.7     | , , , , , , , , , , , , , , , , , , , | 7.4       | ۲,      | , , ,    |         | ç.       |
| 0     | 4.62515 | 10 5/80 | 40 5053 | 01 0573 |                                       | >         |         | £        | 6.      | 01,      |
|       |         | 0046.61 | 40.2033 | 91.8373 | 149.580                               | 221.929   | 309.183 | 411.727  | 529.986 | 664.557  |
| I     | 4.68691 | 19.6120 | 48.6520 | 91.9256 | 149.649                               | 221.998   | 300 253 | 411 706  | 530 055 | 20770    |
|       |         |         |         |         |                                       |           | 00000   | 411.70   | 220.022 | 004.073  |
|       | 5.15406 | 20.1167 | 49.1813 | 92.4699 | 150.200                               | 222.553   | 309,808 | 173 257  | 230 606 | 4 6 4 77 |
| ,     |         |         |         |         |                                       |           | 2020    | T1.2.001 | 220.000 | /07.000  |
| c     | 5.97855 | 21.0888 | 50.2224 | 93.5483 | 151.296                               | 223.657   | 310.016 | 473.450  | 531 706 | 130 377  |
| t     |         |         |         |         |                                       |           | 25.55.5 | 473.437  | 221./00 | 167.000  |
| /     | 7.03383 | 22.4654 | 51.7425 | 95.1408 | 152.923                               | 255.302   | 317 570 | 115 111  | 533 353 | 500 577  |
|       |         |         |         |         |                                       |           | 0/2:21  | 713.114  | 200.000 | 7/2./00  |
| 10    | 8.86166 | 25.1326 | 54.8248 | 98.4317 | 156.319                               | 228.754   | 376.052 | 209 818  | 020 763 | 200 127  |
|       |         |         |         |         |                                       |           | 455     | /20.074  |         |          |

TABLE 4.5 Frequency parameter  $\lambda$  of a tapcred Euler-Bernoulli cantilever beam , (  $v_y = v_t = 0.6$  ) .

| Speed   |                  |         |         |         | Freq    | Frequency |                |          |         |         |
|---------|------------------|---------|---------|---------|---------|-----------|----------------|----------|---------|---------|
| E L     | , ' <sub>1</sub> | ۲۰,     | λ3      | 74      | , i, 5  | 7.6       | λ <sub>7</sub> | 3.7      | γę      | λ10     |
| <u></u> | 5.00904          | 19.0653 | 45.7448 | 85.3870 | 138.216 | 204.409   | 284.220        | 377.998  | 486.241 | 610.737 |
| >       | 5.00903          | 19.0649 | 45.7384 | 85.3438 | 138.035 | 203.845   | 282.789*       | 374.879* | 1       | 1       |
| I       | 5.05433          | 19.1191 | 45.8001 | 85.4427 | 138.272 | 204.464   | 284.276        | 378.053  | 486.296 | 610.790 |
| 8       | 5.40261          | 19.5437 | 46.2392 | 85.8867 | 138.717 | 204.909   | 284.720        | 378.495  | 486.732 | 611.211 |
| ۍ       | 6.03755          | 20.3641 | 47.1044 | 86.7675 | 139.602 | 205.796   | 285.607        | 379.379  | 487.603 | 612.503 |
| ۲.      | 6.87760          | 21.5312 | 48.3714 | 88.0709 | 140.919 | 207.118   | 286.930        | 380.700  | 488.906 | 613.312 |
| 10      | 8.37841          | 23.8059 | 50.9518 | 90.7734 | 143.673 | 209.897   | 289.722        | 383.490  | 491.663 | 615.979 |

Reference [5]

TABLE 4.6 Frequency parameter i, of a tapered Euler-Bernoulli cantilever beam , (  $v_y = v_z = 0.8$  ) .

| Speed |         |         |         |         | Free     | Frequency |         |         |         |         |
|-------|---------|---------|---------|---------|----------|-----------|---------|---------|---------|---------|
| F     | ٦,      | بر.     | بر 3    | î.d     | 2,5      | ابرا      | ٧-      | 34      | λş      | λ16     |
| ·     | 6.19640 | 18.3860 | 39.8404 | 71.2834 | 112.997  | 165.198   | 228.223 | 302.841 | 496.616 | 612.073 |
| 5     | 6.19639 | 18.3855 | 39.8336 | 71.2418 | 112.828* | 164.668   | 226.796 | 299.231 |         | 1       |
| I     | 6.27433 | 18.5423 | 39.9696 | 71.3893 | 113.094  | 165.295   | 228.325 | 302.947 | 496.704 | 612.180 |
| 8     | 6.81794 | 19.7255 | 40.9928 | 72.2315 | 113.863  | 166.065   | 229.139 | 303.797 | 497.407 | 613.039 |
| 5     | 7.64147 | 21.7856 | 42.9789 | 73.8894 | 115.382  | 167.591   | 230.753 | 305.488 | 498.810 | 614.748 |
|       | 8.56115 | 24.3123 | 45.7999 | 76.3117 | 117.613  | 169.842   | 233.140 | 308.000 | 500.907 | 617.288 |
| 10    | 10.0199 | 28.3545 | 51.1781 | 81.2166 | 122.180  | 174.488   | 238.083 | 313.238 | 505.334 | 622.596 |

Reference [5]

TABLE 4.7 Frequency parameter i, of uniform Timoshenko cantilever beam, (  $v_y = v_z = 0.0$  ).

| Snood |         |         |         |         | r       |           |         |         |         |         |
|-------|---------|---------|---------|---------|---------|-----------|---------|---------|---------|---------|
| ratio |         |         |         |         | Fre     | Frequency |         |         |         |         |
| ۴     | λ,      | ۲۰,     | ٦,3     | 7,      | 1,5     | 7,6       | λ.      | λŝ      | ĵ.      | λ,10    |
| 0     | 3.31813 | 16.2603 | 36.6842 | 58.3679 | 80.5852 | 94.8401   | 107.661 | 115.757 | 135.202 | 141.743 |
| >     | 3.32405 | 16.2890 | 36.7078 | 58.2788 | 80.2127 | 94.4520   | 106.836 | 114.732 | 1       | -       |
| I     | 3.48267 | 16.4271 | 36.8912 | 58.6247 | 80.8735 | 94.9659   | 107.885 | 115.965 | 135.500 | 141.983 |
| ۍ.    | 4.57699 | 17.7013 | 38.4913 | 60.6116 | 83.0827 | 95.8714   | 109.615 | 117.618 | 137.659 | 144.018 |
| 5     | 6.17093 | 19.9919 | 41.4367 | 64.2661 | 87.0129 | 97.3354   | 112.685 | 120.915 | 140.957 | 148.604 |
| ۲۰.   | 7.93995 | 22.9707 | 45.3605 | 69.0927 | 91.7523 | 99.2384   | 116.469 | 125.647 | 144.835 | 155.496 |
| 10    | 10.7127 | 28.1829 | 52.3501 | 77.3610 | 97.6814 | 103.772   | 123.389 | 133.206 | 153.428 | 165.895 |

Reference [5]

TABLE 4.8 Frequency parameter i. of a tapered Timoshenko cantilever beam , (  $v_y = v_z = 0.1$  ) .

| Speed      |         |         |         |         | Freq    | Frequency |         |         |         |         |
|------------|---------|---------|---------|---------|---------|-----------|---------|---------|---------|---------|
| ratio<br>n | ۸.      | λ2      | بع      | ĥ.      | λş      | ړ.        | 2.5     | 3.7     | ۶۶ ا    | , A10   |
| 0          | 3.46988 | 16.2452 | 36.2132 | 57.8703 | 80.4629 | 98.0284   | 108.788 | 117.963 | 135.659 | 143.683 |
| I          | 3.61395 | 16.3919 | 36.3952 | 58.0974 | 80.7274 | 98.1703   | 108.966 | 118.134 | 135.929 | 143.872 |
| æ          | 4.59707 | 17.5186 | 37.8085 | 59.8643 | 82.7797 | 99.1586   | 110.431 | 119.443 | 138.086 | 145.394 |
| 5          | 6.07535 | 19.5660 | 40.4371 | 63.1593 | 86.5686 | 100.555   | 113.414 | 121.853 | 141.636 | 148.566 |
| 1          | 7.74650 | 22.2623 | 43.9871 | 67.6083 | 91.5512 | 101.898   | 117.455 | 125.313 | 145.762 | 153.815 |
| 10         | 10.3918 | 27.0474 | 50.4315 | 75.5794 | 99.5234 | 104.154   | 123.811 | 132.286 | 152.692 | 164.006 |

TABLE 4.9 Frequency parameter  $\lambda$  of a tapcred Timoshenko cantilever beam , (  $v_{
m p}=v_{
m z}=0.3$  ) .

| Speed       |         |         |         |         | Freq    | Frequency |         |         |         |         |
|-------------|---------|---------|---------|---------|---------|-----------|---------|---------|---------|---------|
| on F        | , i,    | ,2      | ۲,3     | 77      | 7.5     | 1,4       | y       | λ,      | ,,      | ,       |
|             | 3.84693 | 16.1490 | 35.0759 | 56.3837 | 79.1207 | 101.422   | 114.444 | 123.106 | 139.024 | 147.859 |
| <b>&gt;</b> | 3.85346 | 16.1766 | 35.1026 | 56.3081 | 78.7486 | 100.592   | 113.912 | 121.735 | ı       | ı       |
| I           | 3.94602 | 16.2510 | 35.2041 | 56.5447 | 79.3130 | 101.620   | 114.476 | 123.295 | 139.139 | 148.044 |
| 3           | 4.66047 | 17.0429 | 36.2080 | 57.8079 | 80.8224 | 103.143   | 114.763 | 124.725 | 140.074 | 140 466 |
| 5           | 5.82180 | 18.5162 | 38.1116 | 60.2135 | 83.6975 | 105.830   | 115.514 | 791.721 | 142 053 | 157 086 |
| 7           | 7.20637 | 20.5115 | 40.7499 | 63.5644 | 87.6975 | 108.810   | 117.295 | 129.918 | 145,305 | 155,006 |
| 10          | 9.47336 | 24.1675 | 45.7102 | 1068.69 | 95.1934 | 111.566   | 123.333 | 133.503 | 152.443 | 160.311 |

. Reference [5]

TABLE 4.10 Frequency parameter i. of a tapered Timoshenko cantilever beam, (  $v_y = v_z = 0.5$  ).

| Speed |         |         |         |         | Freq    | Frequency |         |         |         |         |
|-------|---------|---------|---------|---------|---------|-----------|---------|---------|---------|---------|
| raito | λ;      | λ.      | 7.3     | 7.7     | 7,5     | γ,        | , y     | 3.7     | 3,7     | 2,10    |
| 0     | 4.37932 | 15.9802 | 33.6222 | 54.1575 | 76.4846 | 99.6495   | 121.892 | 125.618 | 148.239 | 152.557 |
| I     | 4.43224 | 16.0371 | 33.6966 | 54.2523 | 76.5987 | 99.7807   | 121.970 | 125.697 | 148.404 | 152.573 |
| 3     | 4.83368 | 16.4836 | 34.2837 | 55.0003 | 77.4997 | 100.816   | 122.493 | 126.416 | 149.708 | 152.699 |
| 5     | 5.54543 | 17.3359 | 35.4159 | 56.4462 | 79.2429 | 102.811   | 123.134 | 128.171 | 152.204 | 152.948 |
| ٤     | 6.45962 | 18.5282 | 37.0220 | 58.5042 | 81.7262 | 105.630   | 123.649 | 131.058 | 153.309 | 155.708 |
| 01    | 8.04652 | 20.8008 | 40.1394 | 62.5162 | 86.5688 | 110.983   | 124.404 | 136.875 | 154.221 | 162.160 |

TABLE 4.11 Frequency parameter i. of a tapered Timoshenko cantilever beam, (  $v_y = v_z = 0.6$  ) .

| Speed     |         |         |          |         | Free    | Frequency |         |         |         |         |
|-----------|---------|---------|----------|---------|---------|-----------|---------|---------|---------|---------|
| rano<br>F | , 'V'   | 1,2     | 7.5      | 1,2     | λ5      | 3.5       | γ-      | î,      | , îş    | , i.o   |
| <u> </u>  | 4.74359 | 15.8912 | 32.7523  | 52.6984 | 74.6089 | 97.6555   | 121.041 | 129.374 | 146.751 | 161.354 |
| >         | 4.74979 | 15.9107 | 32.7692* | 52.6316 | 74.2587 | 96.8403   | 119.904 | 128.763 | 1       | 1       |
| 7         | 4.77924 | 15.9351 | 32.8084  | 52.7691 | 74.6932 | 97.7529   | 121.141 | 129.392 | 146.876 | 161.371 |
| æ         | 5.05595 | 16.2813 | 33.2523  | 53.3270 | 75.3607 | 98.5232   | 121.923 | 129.545 | 147.859 | 161.494 |
| J.        | 5.56341 | 16.9494 | 34.1150  | 54.4123 | 76.6599 | 100.021   | 123.370 | 129.917 | 149.765 | 717.191 |
| 7         | 6.23916 | 17.8981 | 35.3522  | 55.9718 | 78.5218 | 102.169   | 125.184 | 130.717 | 152.476 | 162.028 |
| 10        | 7.45277 | 19.7428 | 37.7931  | 59.0577 | 82.2248 | 106.390   | 127.400 | 133.675 | 157.550 | 162.863 |

. Reference [5]

TABLE 4.12 Frequency parameter i. of a tapered Timoshenko cantilever beam , (  $v_y = v_z = 0.8$  ) .

| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Speed    |         |                  |                  |         | Fre     | Frequency |         |                  |         |         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---------|------------------|------------------|---------|---------|-----------|---------|------------------|---------|---------|
| 5.85906         15.9240         30.7504         48.8498         69.2348         91.2239         114.289         135.835         141.624           5.86287*         15.9230*         30.7258*         48.7398*         68.9018*         90.4981*         113.738*         134.722*         -           5.93170*         16.1037         30.9244         49.0133         69.3955         91.3874         114.458         135.924         141.726           6.44975         17.3890         32.2646         50.2976         70.6633         92.6775         115.785         136.541         142.615           7.16499         19.3775         34.6780         52.7425         73.1064         95.1681         118.341         137.378         144.698           7.93730         21.5511         37.7318         56.1099         76.5595         98.7040         121.942         138.121         148.143           9.16699         24.7950         42.7470         62.2441         83.1747         105.557         128.709         139.257         155.418 | onn.     | ۲۰,     | , k <sub>2</sub> | , h <sub>3</sub> | λς      | λ5      | î.e       | ·       | , <sup>2</sup> 2 | \$7     | رين     |
| 5.86287       15.9230       30.7258       48.7398       68.9018       90.4981       113.738       134.722       —         5.93170       16.1037       30.9244       49.0133       69.3955       91.3874       114.458       135.924       141.726         6.44975       17.3890       32.2646       50.2976       70.6633       92.6775       115.785       136.541       142.615         7.16499       19.3775       34.6780       52.7425       73.1064       95.1681       118.341       137.378       144.698         7.93730       21.5511       37.7318       56.1099       76.5595       98.7040       121.942       138.121       148.143         9.16699       24.7950       42.7470       62.2441       83.1747       105.557       128.709       139.257       155.418                                                                                                                                                                                                                                                                      | <u> </u> | 5.85906 | 15.9240          | 30.7504          | 48.8498 | 69.2348 | 91.2239   | 114.289 | 135.835          | 141.624 | 163.831 |
| 5.93170         16.1037         30.9244         49.0133         69.3955         91.3874         114.458         135.924         141.726           6.44975         17.3890         32.2646         50.2976         70.6633         92.6775         115.785         136.541         142.615           7.16499         19.3775         34.6780         52.7425         73.1064         95.1681         118.341         137.378         144.698           7.93730         21.5511         37.7318         56.1099         76.5595         98.7040         121.942         138.121         148.143           9.16699         24.7950         42.7470         62.2441         83.1747         105.557         128.709         139.257         155.418                                                                                                                                                                                                                                                                                                        | ,        | 5.86287 | 15.9230          | 30.7258          | 48.7398 | 68.9018 | 90.4981   | 113.738 | 134.722          | 1       | 1       |
| 6.44975         17.3890         32.2646         50.2976         70.6633         92.6775         115.785         136.541         142.615           7.16499         19.3775         34.6780         52.7425         73.1064         95.1681         118.341         137.378         144.698           7.93730         21.5511         37.7318         56.1099         76.5595         98.7040         121.942         138.121         148.143           9.16699         24.7950         42.7470         62.2441         83.1747         105.557         128.709         139.257         155.418                                                                                                                                                                                                                                                                                                                                                                                                                                                          | I        | 5.93170 | 16.1037          | 30.9244          | 49.0133 | 69.3955 | 91.3874   | 114.458 | 135.924          | 141.726 | 164.018 |
| 7.16499         19.3775         34.6780         52.7425         73.1064         95.1681         118.341         137.378         144.698           7.93730         21.5511         37.7318         56.1099         76.5595         98.7040         121.942         138.121         148.143           9.16699         24.7950         42.7470         62.2441         83.1747         105.557         128.709         139.257         155.418                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | æ        | 6.44975 | 17.3890          | 32.2646          | 50.2976 | 70.6633 | 92.6775   | 115.785 | 136.541          | 142.615 | 165.493 |
| 7.93730         21.5511         37.7318         56.1099         76.5595         98.7040         121.942         138.121         148.143           9.16699         24.7950         42.7470         62.2441         83.1747         105.557         128.709         139.257         155.418                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5        | 7.16499 | 19.3775          | 34.6780          | 52.7425 | 73.1064 | 95.1681   | 118.341 | 137.378          | 144.698 | 168.319 |
| 9.16699 24.7950 42.7470 62.2441 83.1747 105.557 128.709 139.257 155.418                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7        | 7.93730 | 21.5511          | 37.7318          | 56.1099 | 76.5595 | 98.7040   | 121.942 | 138.121          | 148.143 | 172.210 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10       | 9.16699 | 24.7950          | 42.7470          | 62.2441 | 83.1747 | 105.557   | 128.709 | 139.257          | 155.418 | 178.149 |

\* Reference [5]

TABLE 4.13 Frequency parameter i. of a tapered Timoshenko cantilever beam , (  $v_{\rm p}=v_{\rm c}=0.9$  ) .

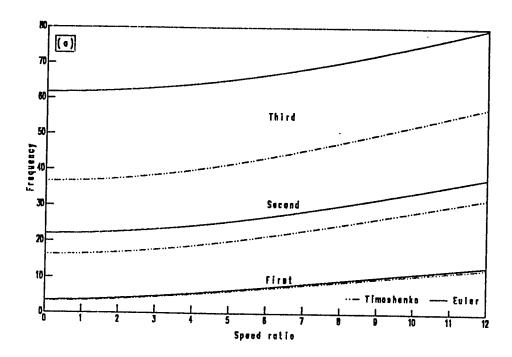
| Speed |         |         |         |         | Fre     | Frequency           |         |         |         |         |
|-------|---------|---------|---------|---------|---------|---------------------|---------|---------|---------|---------|
| F     | γ,      | 7.      | 1,3     | 7.7     | 7.5     | پ <sup>و</sup><br>پ | ·γ      | 2.8     | λ,      | 2,10    |
| 0     | 6.78804 | 16.4756 | 29.9571 | 46.5242 | 65.4589 | 86.1994             | 108.284 | 131.083 | 143.503 | 156.703 |
| s     | 6.78850 | 16.4421 | 29.8463 | 46.2748 | 64.9340 | 85.2855             | 107.568 | 132.014 | 1       |         |
| I     | 7.01255 | 17.1963 | 30.7930 | 47.3019 | 66.1652 | 86.8559             | 108.911 | 131.666 | 143.589 | 157.295 |
| 8     | 7.96327 | 20.6385 | 35.8012 | 52.7332 | 71.3869 | 91.7571             | 113.574 | 135.851 | 144.332 | 161.765 |
| 5.    | 8.88925 | 23.8895 | 41.3316 | 60.1502 | 79.7048 | 100.045             | 121.463 | 141.140 | 147.318 | 169.470 |
| 7     | 9.79003 | 26.7398 | 46.1722 | 67.0898 | 88.4907 | 109.751             | 130.846 | 143.367 | 155.202 | 178.174 |
| 10    | 11.1714 | 30.6728 | 52.6834 | 76.3667 | 100.573 | 124.129             | 141.951 | 148.915 | 169.839 | 188.844 |

. Reference [ 5 ]

TABLE 4.14 Frequency parameter i, of a tapered Timoshenko cantilever beam , (  $v_y = v_z = 1.0$  ) .

| Speed |          |         |         |         | Free    | Frequency |         |         |         |         |
|-------|----------|---------|---------|---------|---------|-----------|---------|---------|---------|---------|
| E F   | , ,      | λ2      | , y     | j.,     | λ.5     | ĥ         | ٧-      | 3,7     | 6.7     | , i.e   |
| 0     | 8.13783  | 18.6734 | 32.0262 | 47.6662 | 65.1654 | 84.1119   | 104.074 | 124.604 | 144.076 | 150.150 |
| >     | 8.13372* | 18.5758 | 31.6431 | 46.7586 | 63.5173 | 81.6222   | 101.216 | 123.450 | 1       | 1       |
| I     | 8.58208  | 20.7325 | 36.0074 | 53.5160 | 72.6896 | 93.0410   | 113.926 | 134.115 | 147.441 | 154.816 |
| 80    | 9.83865  | 25.5527 | 44.4461 | 65.5841 | 88.3050 | 112.153   | 136.321 | 148.402 | 162.565 | 179.205 |
| 5     | 10.9766  | 29.4397 | 50.9603 | 74.7839 | 100.097 | 126.336   | 146.941 | 155.704 | 180.752 | 190.291 |
| t~    | 12.0577  | 32.8498 | 56.5741 | 82.6829 | 110.171 | 137.982   | 149.006 | 169.218 | 191.593 | 197.384 |
| 10    | 13.6711  | 37.5533 | 64.2035 | 93.3589 | 123.602 | 147.058   | 157.466 | 187.830 | 198.258 | 200.342 |

· Reference [5]



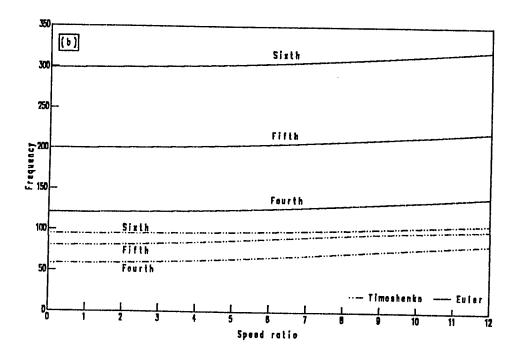
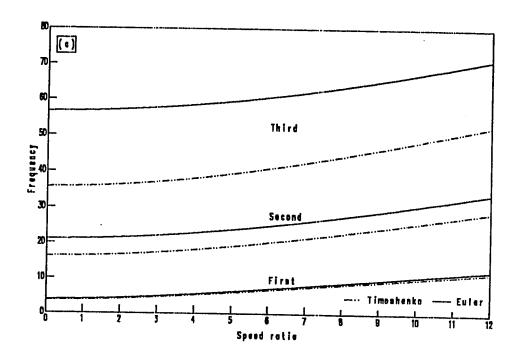


Fig. 4.1 The first six bending frequencies of uniform cantilever beam; ( $v_y = v_z = 0.0$ ); a) First, second and third, b) Fourth, fifth and sixth.



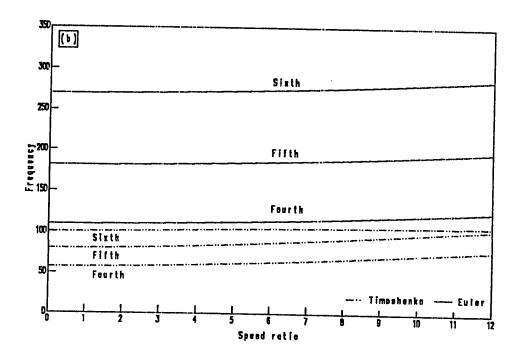
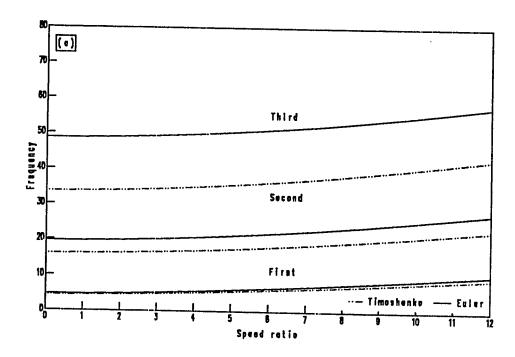


Fig. 4.2 The first six bending frequencies of a tapered cantilever beam; (  $\nu_y = \nu_r = 0.2$ ); a) First, second and third, b) Fourth, fifth and sixth.



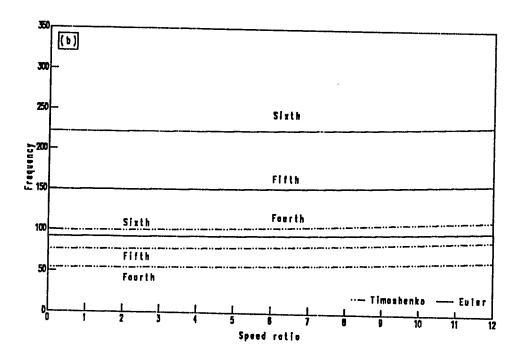
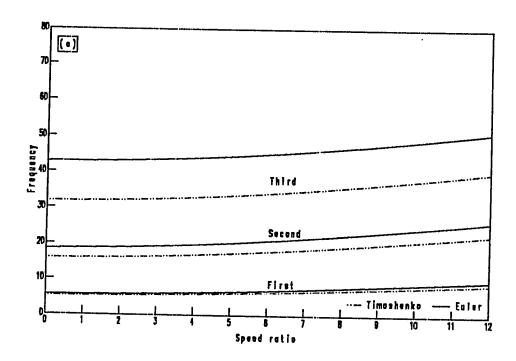


Fig. 4.3 The first six bending frequencies of a tapered cantilever beam; ( $v_y = v_z = 0.5$ ); a) First, second and third, b) Fourth, fifth and sixth.



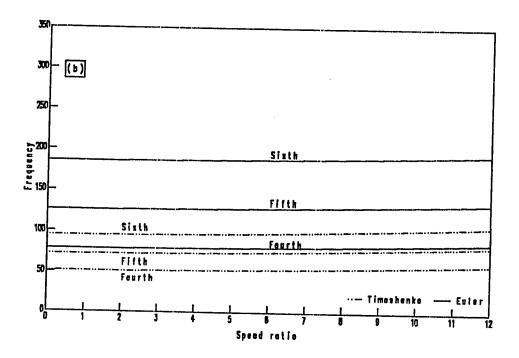
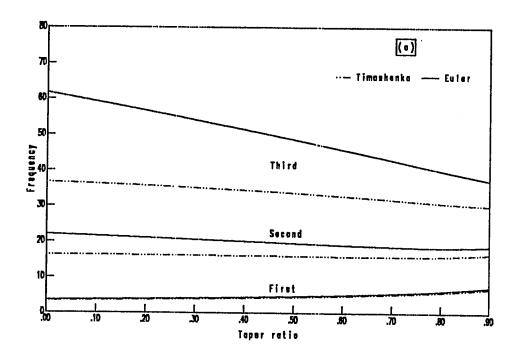


Fig. 4.4 The first six bending frequencies of a tapered cantilever beam; (  $v_y = v_z = 0.7$ ); a) First, second and third, b) Fourth, fifth and sixth.



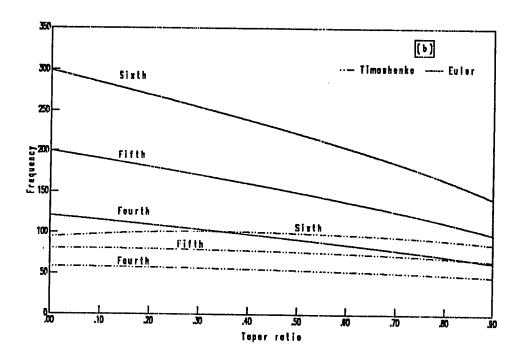
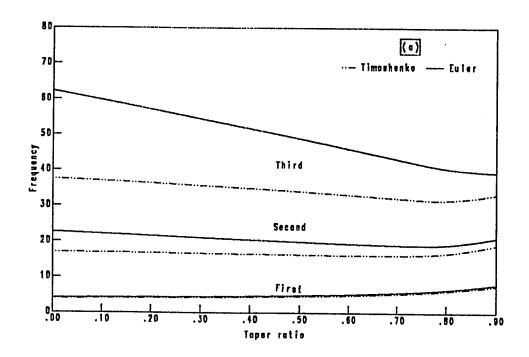


Fig. 4.5 The first six bending frequencies of non-rotating cantilever beam ; (  $\eta=0.0$  ) ; a ) First , second and third , b ) Fourth , fifth and sixth .



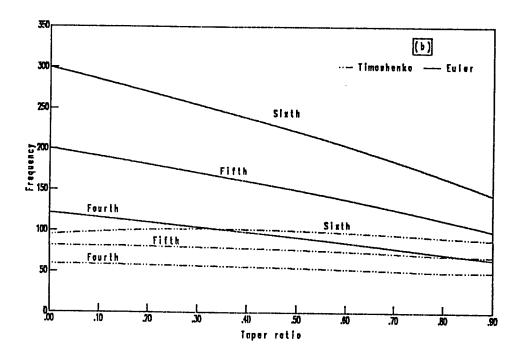
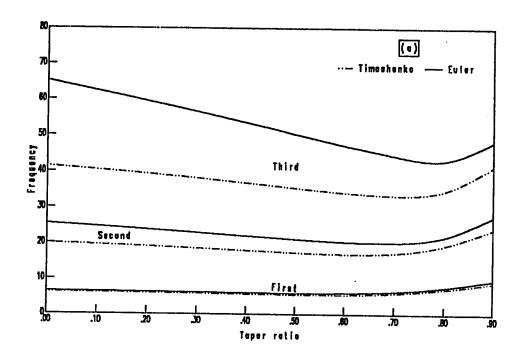


Fig. 4.6 The first six bending frequencies of rotating cantilever beam ; (  $\eta=2.0$  ); a ) First , second and third , b ) Fourth , fifth and sixth .



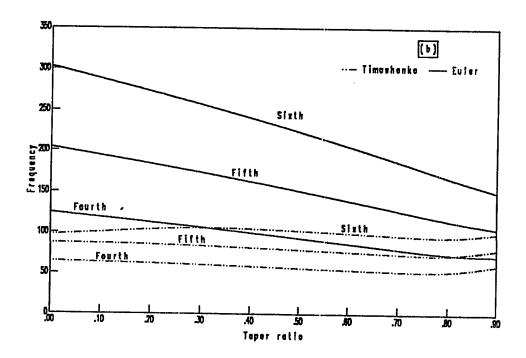
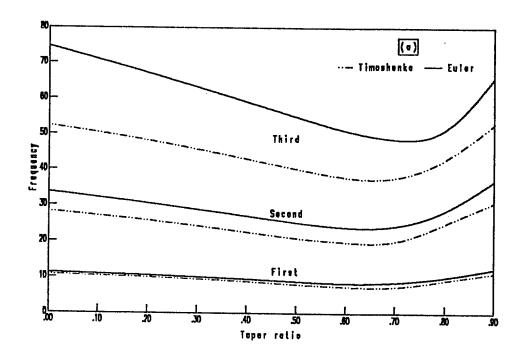


Fig. 4.7 The first six bending frequencies of rotating cantilever beam ; ( $\eta=5.0$ ); a) First , second and third , b) Fourth , fifth and sixth .



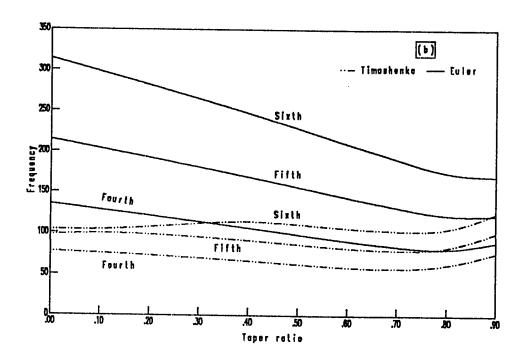


Fig. 4.8 The first six bending frequencies of rotating cantilever beam; ( $\eta=10.0$ ); a) First, second and third, b) Fourth, fifth and sixth.

TABLE 4.15 Effect of rotation on the frequency ratios (  $\lambda_T/\lambda_E$  ) of uniform cantilever beam (  $v_y=v_z=0.0$  ) .

|                     |         | a e production company and the second | Frequency rat | ios     | ***     |
|---------------------|---------|---------------------------------------|---------------|---------|---------|
| Speed<br>ratio<br>η | Mode 1  | Mode 2                                | Mode 3        | Mode 4  | Mode 5  |
| 0                   | 0.94372 | 0.73794                               | 0.59451       | 0.48254 | 0.40270 |
| 1                   | 0.94595 | 0.74058                               | 0.59647       | 0.48407 | 0.40384 |
| 2                   | 0.95043 | 0.74803                               | 0.60215       | 0.48854 | 0.40715 |
| .3                  | 0.95408 | 0.75904                               | 0.61104       | 0.49563 | 0.41237 |
| 4                   | 0.95606 | 0.77206                               | 0.62241       | 0.50487 | 0.41911 |
| 5                   | 0.95680 | 0.78565                               | 0.63541       | 0.51568 | 0.42681 |
| 6                   | 0.95686 | 0.79874                               | 0.64925       | 0.52748 | 0.43482 |
| 7                   | 0.95668 | 0.81069                               | 0.66323       | 0.53967 | 0.44238 |
| 8                   | 0.95643 | 0.82121                               | 0.67680       | 0.55171 | 0.44864 |
| 9                   | 0.95628 | 0.83021                               | 0.68955       | 0.56307 | 0.45287 |
| 10                  | 0.95628 | 0.83775                               | 0.70121       | 0.57332 | 0.45497 |
| 11                  | 0.95640 | 0.84397                               | 0.71161       | 0.58199 | 0.45552 |
| 12                  | 0.95664 | 0.84902                               | 0.72067       | 0.58869 | 0.45534 |

TABLE 4.16 Effect of rotation on the frequency ratios (  $\lambda_T/\lambda_E$  ) of a tapered cantilever beam (  $v_y=v_z=0.2$  ) .

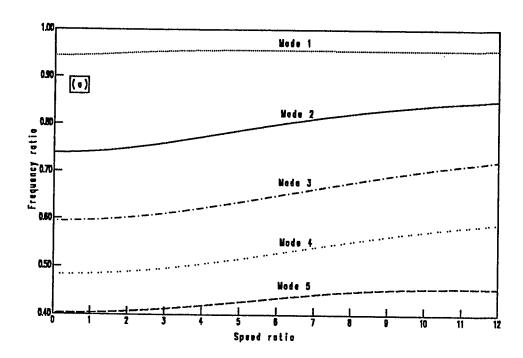
|                     |         |         | Frequency rate | ios     |         |
|---------------------|---------|---------|----------------|---------|---------|
| Speed<br>ratio<br>η | Mode 1  | Mode 2  | Mode 3         | Mode 4  | Mode 5  |
| 0                   | 0.94525 | 0.76971 | 0.62996        | 0.52098 | 0.44216 |
| 1                   | 0.94600 | 0.77141 | 0.63143        | 0.52219 | 0.44314 |
| 2                   | 0.94768 | 0.77625 | 0.63569        | 0.52576 | 0.44603 |
| .3                  | 0.94927 | 0.78355 | 0.64245        | 0.53148 | 0.45071 |
| 4                   | 0.95331 | 0.79242 | 0.65124        | 0.53908 | 0.45695 |
| .5                  | 0.95078 | 0.80199 | 0.66152        | 0.54818 | 0.46451 |
| 6                   | 0.95087 | 0.81155 | 0.67273        | 0.55843 | 0.47306 |
| 7                   | 0.95076 | 0.82061 | 0.68437        | 0.56939 | 0.48231 |
| 8                   | 0.95058 | 0.82886 | 0.69603        | 0.58076 | 0.49193 |
| 9                   | 0.95042 | 0.83619 | 0.70736        | 0.59217 | 0.50161 |
| 10                  | 0.95031 | 0.84261 | 0.71813        | 0.60337 | 0.51105 |
| 11                  | 0.95028 | 0.84812 | 0.72815        | 0.61411 | 0.51993 |
| 12                  | 0.95033 | 0.85283 | 0.73734        | 0.62418 | 0.52791 |

TABLE 4.17 Effect of rotation on the frequency ratios (  $\lambda_T/\lambda_E$  ) of a tapered cantilever beam (  $\nu_\nu = \nu_\tau = 0.5$  ) .

|                     |         |         | Frequency rat | ios      |         |
|---------------------|---------|---------|---------------|----------|---------|
| Speed<br>ratio<br>η | Mode 1  | Mode 2  | Mode 3        | Mode 4   | Mode 5  |
| 0                   | 0.94685 | 0.81740 | 0.69202       | 0.58958  | 0.51133 |
| 1                   | 0.94566 | 0.81772 | 0.69260       | 0.59017  | 0.51185 |
| 2                   | 0.94242 | 0.81838 | 0.69432       | 0.59193  | 0.51342 |
| .3                  | 0.93784 | 0.81939 | 0.69708       | 0.59479  | 0.51597 |
| 4                   | 0.93269 | 0.82066 | 0.70076       | 0.59865  | 0.51945 |
| 5                   | 0.92755 | 0.82204 | 0.70518       | 0.603.39 | 0.52376 |
| 6                   | 0.92273 | 0.82343 | 0.71015       | 0.60886  | 0.52879 |
| 7                   | 0.91836 | 0.82474 | 0.71550       | 0.61492  | 0.53443 |
| 8                   | 0.91447 | 0.82590 | 0.72105       | 0.62141  | 0.54055 |
| 9                   | 0.91104 | 0.82687 | 0.72663       | 0.62818  | 0.54704 |
| 10                  | 0.90800 | 0.82764 | 0.73214       | 0.63512  | 0.55379 |
| 11                  | 0.90536 | 0.82821 | 0.73745       | 0.64209  | 0.56070 |
| 12                  | 0.90303 | 0.82859 | 0.74251       | 0.64901  | 0.56766 |

TABLE 4.18 Effect of rotation on the frequency ratios (  $\lambda_T/\lambda_E$  ) of a tapered cantilever beam (  $v_y=v_z=0.7$  ) .

|                     |         |         | Frequency rat | ios     |         |
|---------------------|---------|---------|---------------|---------|---------|
| Speed<br>ratio<br>η | Mode 1  | Mode 2  | Mode 3        | Mode 4  | Mode 5  |
| 0                   | 0.94673 | 0.84970 | 0.74227       | 0.64848 | 0.57281 |
| 1                   | 0.94578 | 0.84993 | 0.74272       | 0.64892 | 0.57319 |
| 2                   | 0.94307 | 0.85060 | 0.74404       | 0.65022 | 0.57433 |
| .3                  | 0.93903 | 0.85159 | 0.74617       | 0.65234 | 0.57619 |
| 4                   | 0.93412 | 0.85280 | 0.74904       | 0.65523 | 0.57875 |
| .5                  | 0.92882 | 0.85406 | 0.75253       | 0.65883 | 0.58196 |
| 6                   | 0.92348 | 0.85528 | 0.75649       | 0.66305 | 0.58576 |
| 7                   | 0.91836 | 0.85635 | 0.76081       | 0.66780 | 0.59008 |
| 8                   | 0.91401 | 0.85724 | 0.76535       | 0.67298 | 0.59487 |
| 9                   | 0.90888 | 0.85792 | 0.76997       | 0.67850 | 0.60004 |
| 10                  | 0.90468 | 0.85842 | 0.77458       | 0.68426 | 0.60553 |
| 11                  | 0.90079 | 0.85875 | 0.77908       | 0.69017 | 0.61127 |
| 12                  | 0.89721 | 0.85896 | 0.78341       | 0.69615 | 0.61719 |



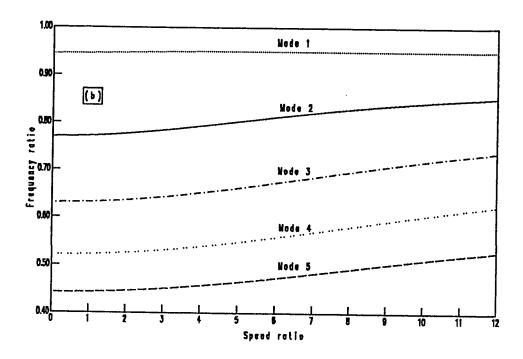
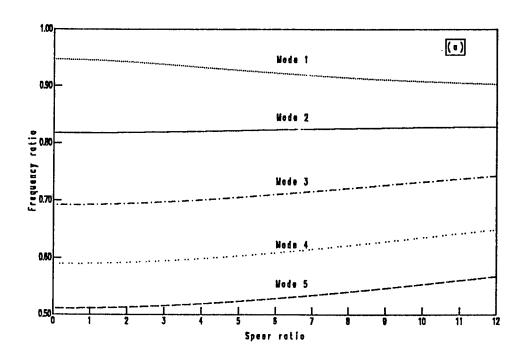


Fig. 4.9 Effect of rotation on the frequency ratios of a cantilever beam ; a) Uniform beam ( $\nu_y = \nu_z = 0.0$ ); b) Tapered beam ( $\nu_y = \nu_z = 0.2$ ).



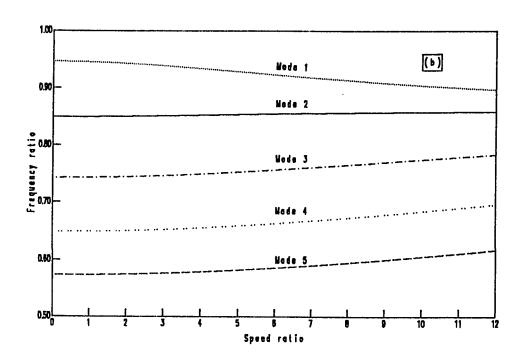
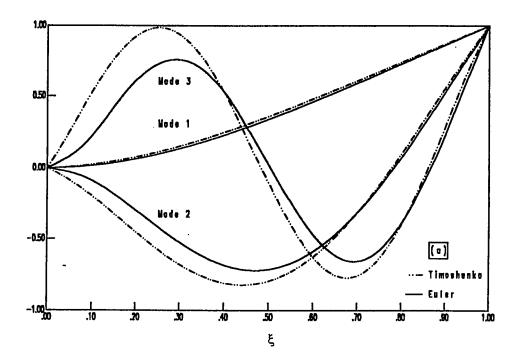


Fig. 4.10 Effect of rotation on the frequency ratios of a tapered cantilever beam ; a) ( $v_y = v_z = 0.5$ ); b) ( $v_y = v_z = 0.7$ ).



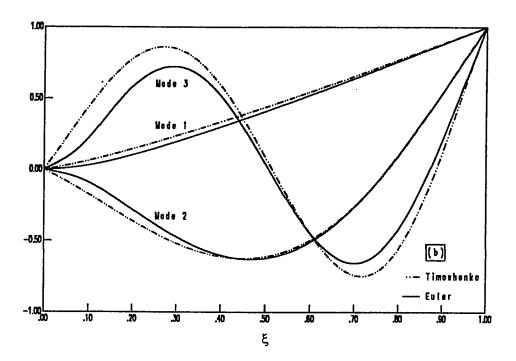
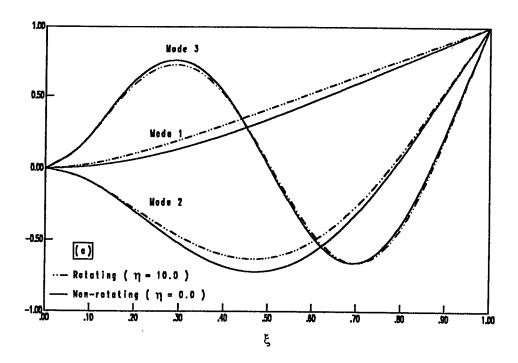


Fig 4.11 The first three flexural mode shapes of uniform cantilever beam ; (  $v_y = v_r = 0.0$  ); a )  $\eta = 0$ ., b )  $\eta = 10.0$ .



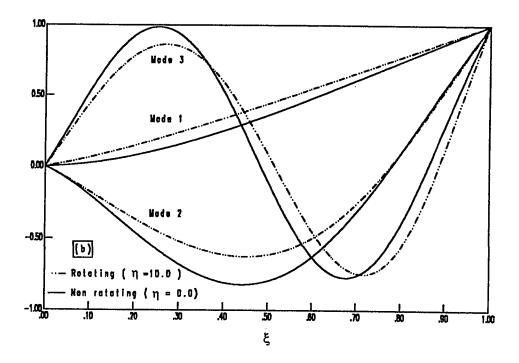
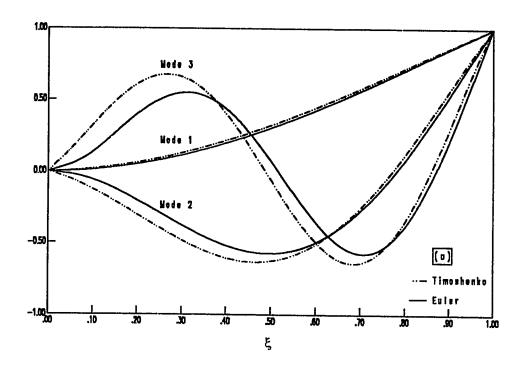


Fig. 4.12 The first three flexural mode shapes of uniform cantilever beam ; ( $v_y = v_z = 0.0$ ); a) Euler beam, b) Timoshenko beam.



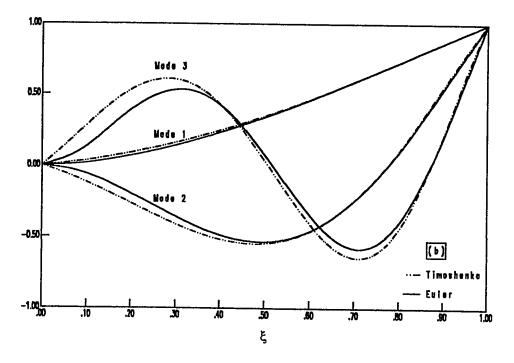
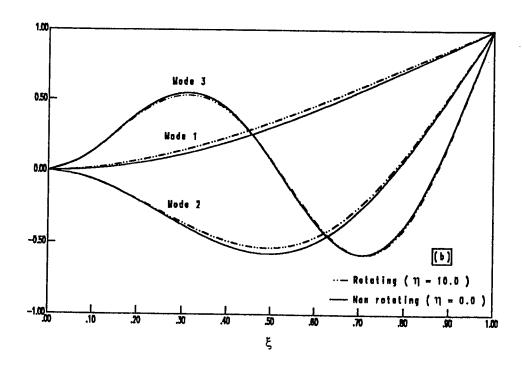


Fig 4.13 The first three flexural mode shapes of a tapered cantilever beam ; (  $v_y = v_z = 0.3$  ); a )  $\eta = 0$ ., b )  $\eta = 10.0$ .



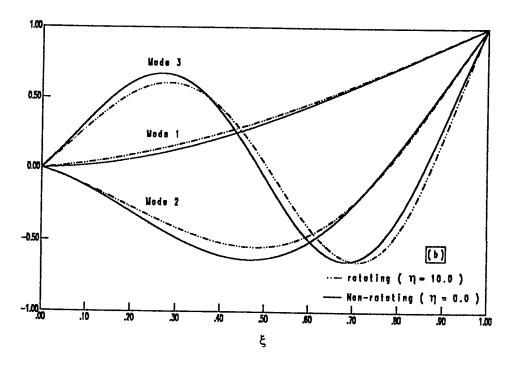
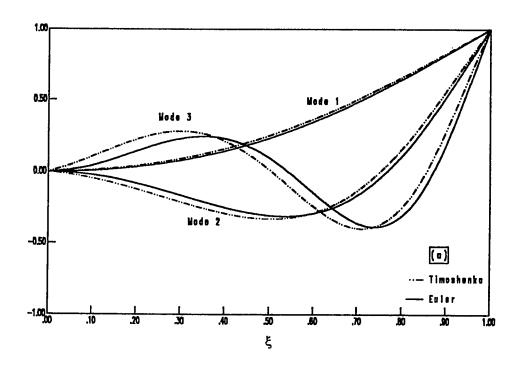


Fig. 4.14 The first three flexural mode shapes of a tapered cantilever beam . (  $v_y=v_z=0.3$  ); a ) Euler beam , b ) Timoshenko beam .



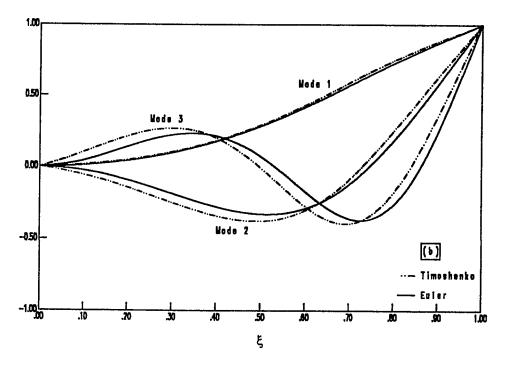
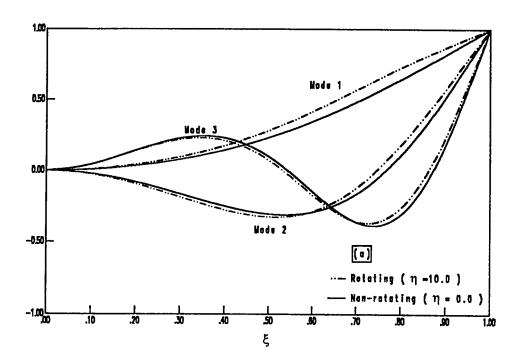


Fig 4.15 The first three flexural mode shapes of a tapered cantilever beam . (  $\nu_y=\nu_z=0.7$  ) ; a )  $\eta=0$  , b )  $\eta=10.0$  .



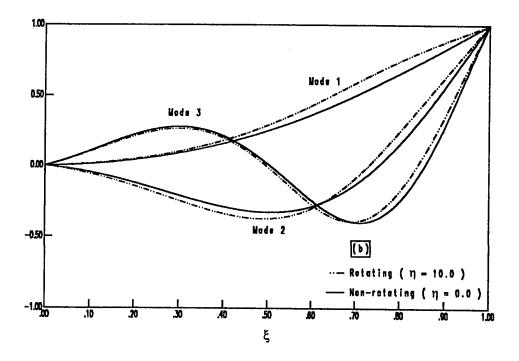


Fig. 4.16 The first three flexural mode shapes of a tapered cantilever beam ( $v_y = v_z = 0.7$ ); a) Euler beam, b) Timoshenko beam.

TABLE 4.19 Frequency parameter i. of uniform Eulcr-Bernoulli hinged-free beam , (  $v_y = v_z = 0.0$  ) . ( Rigid body mode not included )

| Speed |           |                                       |         |           | Freq    | Frequency        |         |                 |         | ;                            |
|-------|-----------|---------------------------------------|---------|-----------|---------|------------------|---------|-----------------|---------|------------------------------|
| -     | 7,        | , , , , , , , , , , , , , , , , , , , | 7.3     | 7.7       | , ž     | , , <sub>6</sub> | بُرُ    | ,. <sub>8</sub> | γè      | <sup>91</sup> ′ <sub>2</sub> |
| 9     | 15.4183   | 49.9689                               | 104.284 | 178.448   | 272.649 | 387.237          | 522.780 | 680.077         | 860.071 | 1063.22                      |
|       | 15.4182** | 49.9649**                             | 104.248 | 178.270   | l       |                  | ı       | ı               | 1       | 1                            |
| _     | 15.6244   | 50.1477                               | 104.457 | 178.618   | 272.817 | 387.405          | 522.946 | 680.242         | 860.235 | 1063.38                      |
|       | 15.6242   | 50.1437                               | 104.420 | 178.440   | ı       | 1                | ı       | 1               | 1       | ,                            |
|       | 17.1808   | 51.5537                               | 105.825 | 179.971   | 274.161 | 388.742          | 524.276 | 681.563         | 861.544 | 1064.67                      |
| _     | 17.1807   | 51.5498                               | 105.789 | 179.794   | 1       | ı                | 1       | 1               | 1       | 1                            |
| v     | 19.9198   | 54.2457                               | 108.504 | 182.643   | 276.827 | 391.400          | 526.924 | 684.196         | 864.155 | 1067.25                      |
|       | 19.9197** | 54.2419**                             | 108.469 | 182.469** | l       | 1                | 1       | 1               | ı       | 1                            |
| t     | 23.4134   | 58.0258                               | 112.389 | 186.572   | 280.774 | 395.351          | 530.869 | 688.125         | 868.056 | 1071.10                      |
|       | 23.4133   | 58.0223                               | 112.356 | 186.401   | ı       | 1                | 1       | ı               | 1       | 1                            |
| 2     | 29.4440   | 65.2587                               | 120.178 | 194.625   | 288.906 | 403.604          | 539.145 | 696.393         | 876.281 | 1079.23                      |
|       | 29.4439** | 65.2554                               | 120.146 | 194.462** | 288.406 | 1                | 1       | ı               | 1       |                              |

\*\* Reference [ 27 ]

TABLE 4.20 Frequency parameter  $\lambda$  of a tapered Euler-Bernoulli hinged-free beam , (  $v_y = v_z = 0.1$  ) . ( Rigid body mode not included )

| Speed      |         |         |             |         | Freq    | Frequency |         |         |         |         |
|------------|---------|---------|-------------|---------|---------|-----------|---------|---------|---------|---------|
| ratio<br>n | ٦,      | 1,2     | $\lambda_3$ | برع     | 7.5     | y-7.      | ży      | 3-7     | 5-7     | 7,10    |
| 0          | 14.9624 | 47.7577 | 99.3259     | 169.734 | 259.161 | 367.935   | 496.584 | 645.841 | 816.521 | 1008.72 |
| I          | 15.1488 | 47.9194 | 99.4814     | 169.887 | 259.312 | 368.085   | 496.733 | 645.989 | 816.668 | 1008.86 |
| بع         | 16.5624 | 49.1927 | 100.716     | 171.104 | 260.520 | 369.286   | 497.927 | 647.174 | 817.841 | 1010.02 |
| 5          | 19.0679 | 51.6368 | 103.135     | 173.511 | 262.917 | 371.674   | 500.304 | 649.537 | 820.183 | 1012.32 |
| 7          | 22.2836 | 55.0814 | 106.651     | 177.054 | 266.469 | 375.225   | 503.847 | 653.063 | 823.681 | 1015.77 |
| 10         | 27.8701 | 61.7055 | 113.722     | 184.331 | 273.847 | 382.651   | 511.286 | 660.489 | 831.062 | 1023.06 |

TABLE 4.21 Frequency parameter i. of a tapered Euler-Bernoulli hinged-free beam , (  $v_y = v_z = 0.3$  ) . ( Rigid body mode not included )

| Speed      |         |         |         |         | Freq    | Frequency |         |         |          |         |
|------------|---------|---------|---------|---------|---------|-----------|---------|---------|----------|---------|
| rario<br>T | ĥį      | ئي      | îr3     | بر.     | 1.5     | 7,6       | 7.      | \$27    | ,<br>6-7 | , ic    |
| 0          | 14.0489 | 43.2560 | 89.1046 | 151.670 | 231.122 | 327.747   | 441.994 | 574.448 | 725.618  | 895.158 |
| I          | 14.1907 | 43.3802 | 89.2233 | 151.787 | 231.236 | 327.861   | 442.107 | 574.560 | 725.729  | 895.267 |
| ۳          | 15.2769 | 44.3603 | 90.1671 | 152.713 | 232.152 | 328.769   | 443.007 | 575.452 | 726.610  | 896.137 |
| 5          | 17.2389 | 46.2540 | 92.0233 | 154.548 | 233.972 | 330.576   | 444.802 | 577.232 | 728.370  | 897.873 |
| 7          | 19.8076 | 48.9478 | 94.7337 | 157.256 | 236.673 | 333.267   | 447.480 | 579.892 | 731.000  | 900.472 |
| 10         | 24.3486 | 54.1956 | 100.229 | 162.848 | 242.304 | 338.908   | 453.113 | 585.499 | 736.555  | 905.969 |

TABLE 4.22 Frequency parameter i. of uniform Euler-Bernoulli hinged-free beam , (  $v_y = v_z = 0.5$  ) . ( Rigid body mode not included )

| Speed         |         |         |         |         | Freq    | Frequency |         |         |                  |         |
|---------------|---------|---------|---------|---------|---------|-----------|---------|---------|------------------|---------|
| وال <b>لا</b> | ۲,      | ۲,      | , î.3   | ĵ.2     | λS      | 9.7       | الم     | 3.4     | , <sub>6</sub> , | گان     |
| 0             | 13.1895 | 38.6370 | 78.3437 | 132.451 | 201.127 | 284.625   | 383.304 | 497.592 | 627.955          | 777.221 |
| Į             | 13.2836 | 38.7220 | 78.4247 | 132.529 | 201.204 | 284.701   | 383.379 | 497.665 | 628.027          | 777.293 |
| 8             | 14.0146 | 39.3949 | 79.0687 | 133.156 | 201.820 | 285.307   | 383.978 | 498.255 | 628.605          | 777.867 |
| 5.            | 15.3735 | 40.7056 | 80.3403 | 134.401 | 203.044 | 286.516   | 385.172 | 499.433 | 629.758          | 779.104 |
| t-<           | 17.2087 | 42.5915 | 82.2081 | 136.245 | 204.866 | 288.319   | 386.956 | 501.194 | 631.483          | 780.731 |
| 10            | 20.5493 | 46.3270 | 86.0317 | 140.075 | 208.681 | 292.110   | 390.718 | 504.913 | 635.130          | 784.366 |

TABLE 4.23 Frequency parameter  $\lambda$  of a tapered Euler-Bernoulli hinged-free beam , (  $v_y = v_z = 0.7$  ) . ( Rigid body mode not included )

|         |         |         |         | Freq    | Frequency |         | •       |         |         |
|---------|---------|---------|---------|---------|-----------|---------|---------|---------|---------|
|         | ؠڹ      | ئى      | 124     | 7.5     | , î.e     | 2,7     | λs      | 7.0     | λης.    |
| 12.5939 | 33.9351 | 66.7850 | 111.390 | 167.936 | 236.651   | 317.878 | 412.374 | 522.817 | 656.588 |
| }       | 34.0111 | 66.8521 | 111.453 | 167.996 | 236.710   | 317.937 | 412.431 | 522.871 | 656.638 |
| 13.3260 | 34.6128 | 67.3836 | 111.950 | 168.476 | 237.182   | 318.407 | 412.892 | 523.298 | 657.040 |
| 14.5337 | 35.7842 | 68.4426 | 112.939 | 169.430 | 238.122   | 319.344 | 413.813 | 524.151 | 657.843 |
|         | 37.4678 | 69.9974 | 114.406 | 170.851 | 239.525   | 320.744 | 415.189 | 525.429 | 659.045 |
| 19.1503 | 40.7949 | 73.1917 | 117.463 | 173.832 | 242.478   | 323.697 | 418.101 | 528.134 | 661.593 |

TABLE 4.24 Frequency parameter i. of a tapcred Euler-Bernoulli hinged-free beam , (  $v_y = v_z = 0.9$  ) . ( Rigid body mode not included )

| Speed |         |         |                |         | Freq    | Frequency |         |         |         |         |
|-------|---------|---------|----------------|---------|---------|-----------|---------|---------|---------|---------|
| ר     | ۲,      | ؠؠ      | , <sub>3</sub> | 1.4     | ب.      | yç        | 7.7     | .2      | 7,0     | ٦٠,     |
| 0     | 13.2460 | 29.8827 | 54.2733        | 86.9888 | 128.399 | 179.071   | 240.048 | 312.361 | 392.438 | 475.229 |
| I     | 13.7882 | 30.4832 | 54.6892        | 87.3108 | 128.731 | 179.457   | 240.455 | 312.737 | 392.820 | 475.577 |
| 'n    | 16.8464 | 34.8107 | 57.8989        | 89.8024 | 131.338 | 182.487   | 243.676 | 315.725 | 395.834 | 478.360 |
| ũ     | 20.2645 | 41.3236 | 63.7047        | 94.3726 | 136.268 | 188.258   | 249.939 | 321.623 | 401.680 | 483.920 |
| 7     | 23.4484 | 47.9730 | 71.0377        | 100.362 | 143.025 | 196.247   | 258.846 | 330.266 | 410.026 | 492.202 |
| 10    | 27.9976 | 57.0492 | 82.8004        | 110.643 | 155.341 | 211.035   | 275.811 | 347.744 | 426.354 | 509.290 |

TABLE 4.25 Frequency parameter ). of uniform Timoshenko hinged-free beam , (  $v_y = v_z = 0.0$  ) . ( Rigid body mode not included )

| Speed       |         |         |                |         | Free    | Frequency |         |         |         |         |
|-------------|---------|---------|----------------|---------|---------|-----------|---------|---------|---------|---------|
| rano<br>1-1 | λ,1     | ین      | λ <sub>3</sub> | 7.7     | 2,5     | 3.7       | 7.      | 3.7     | ۷,      | مرنم    |
| 0           | 13.1068 | 33.9697 | 57.0638        | 79.7005 | 91.7336 | 100.135   | 111.941 | 124.842 | 138.254 | 153.680 |
| I           | 13.3225 | 34.1957 | 57.3239        | 79.9850 | 1777.19 | 100.340   | 112.163 | 125.045 | 138.595 | 153.901 |
| 8           | 14.9253 | 35.9333 | 59.3827        | 82.1460 | 92.1093 | 101.870   | 113.923 | 126.609 | 141.293 | 155.505 |
| ç           | 17.6589 | 39.0948 | 63.1587        | 85.8286 | 92.8337 | 104.439   | 117.251 | 129.585 | 146.265 | 158.371 |
| ۲.          | 21.0383 | 43.2470 | 68.1547        | 89.4225 | 94.6935 | 107.603   | 121.433 | 134.191 | 151.941 | 163.295 |
| 10          | 26.6942 | 50.5225 | 76.7964        | 91.6442 | 100.519 | 113.670   | 127.592 | 144.346 | 158.553 | 176.428 |

TABLE 4.26 Frequency parameter  $\hat{r}$  of a tapered Timoshenko hinged-frec beam , (  $v_y = v_z = 0.1$  ) . ( Rigid body mode not included )

| Speed      |         |         |         |         | Freq    | Frequency |         |         |         |            |
|------------|---------|---------|---------|---------|---------|-----------|---------|---------|---------|------------|
| ratio<br>n | ۲,      | ئي ا    | بۇ ئ    | 7.4     | 1.5     | برو       | ٠,٧     | 34      | 67      | ý.<br>7-10 |
| 0          | 12.9024 | 33.3396 | 56.3835 | 79.6057 | 94.1266 | 101.363   | 113.589 | 126.284 | 139.032 | 154.755    |
| I          | 13.0947 | 33.5393 | 56.6180 | 79.8172 | 94.1469 | 101.592   | 113.740 | 126.492 | 139.289 | 154.994    |
| 3          | 14.5328 | 35.0828 | 58.4409 | 81.9256 | 94.2898 | 103.315   | 114.953 | 128.062 | 141.354 | 156.738    |
| Ş          | 17.0151 | 37.9211 | 61.8361 | 85.6704 | 94.5541 | 106.165   | 117.448 | 130.815 | 145.443 | 159.578    |
| 7          | 20.1188 | 41.7000 | 66.4173 | 90.2779 | 95.2013 | 109.238   | 121.253 | 134.452 | 151.004 | 163.340    |
| 10         | 23.5672 | 46.0946 | 71.7851 | 93.2882 | 98.0190 | 112.168   | 125.784 | 139.188 | 156.536 | 169.030    |

TABLE 4.27 Frequency parameter i. of a tapcred Timoshenko hinged-free beam , (  $v_y = v_z = 0.3$  ) . ( Rigid body mode not included )

| 1 |         |         |         | Freq    | Frequency |         |         |         |         |
|---|---------|---------|---------|---------|-----------|---------|---------|---------|---------|
|   | , , ,   | 7.3     | پځ      | 1,5     | 7,7       | 7.5     | ۲,      | ,5      | 7.7     |
| ] | 31.8644 | 54.5181 | 78.1426 | 98.4941 | 101.787   | 121.459 | 128.141 | 144.084 | 156.045 |
|   | 32.0073 | 54.6843 | 78.3375 | 98.4964 | 102.006   | 121.563 | 128.297 | 144.203 | 156.239 |
|   | 33.1213 | 55.9872 | 79.8671 | 98.5132 | 103.720   | 122.271 | 129.610 | 145.336 | 157.779 |
|   | 35.2124 | 58.4631 | 82.7784 | 98.5442 | 106.950   | 123.253 | 132.385 | 147.315 | 160.754 |
|   | 38.0707 | 9106.19 | 86.8203 | 98.5975 | 111.309   | 124.294 | 136.332 | 150.032 | 164.731 |
|   | 43.3472 | 68.3675 | 94.2578 | 98.8619 | 118.394   | 126.771 | 142.646 | 155.963 | 171.096 |

TABLE 4.28 Frequency parameter i. of a tapered Timoshenko hinged-free beam , (  $v_y = v_z = 0.5$  ) . ( Rigid body mode not included )

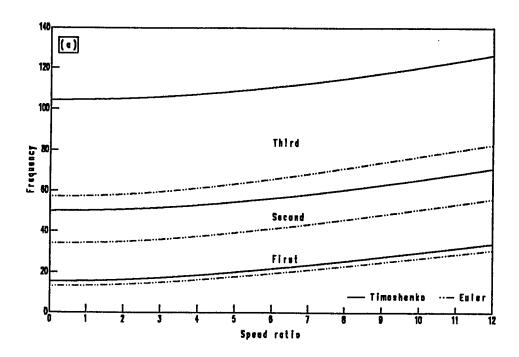
| Speed |             |         |         |         | Freq    | Frequency |         |         |         |         |
|-------|-------------|---------|---------|---------|---------|-----------|---------|---------|---------|---------|
| ٦     | $\lambda_1$ | بر      | î,s     | ",      | 1,5     | ,-¢       | ž       | 3.7     | 3,      | رتي     |
| 0     | 11.9430     | 30.0683 | 51.8880 | 75.2421 | 99.2025 | 102.012   | 123.718 | 137.640 | 148.239 | 164.835 |
| I     | 12.0250     | 30.1536 | 51.9862 | 75.3574 | 99.3303 | 102.020   | 123.872 | 137.646 | 148.405 | 164.877 |
| 3     | 12.6597     | 30.8245 | 52.7605 | 76.2674 | 100.305 | 102.120   | 125.086 | 137.693 | 149.712 | 165.192 |
| 5     | 13.8317     | 32.1081 | 54.2546 | 78.0272 | 101.549 | 102.958   | 127.431 | 137.779 | 152.219 | 165.733 |
| 7     | 15.3984     | 33.9078 | 56.3750 | 80.5319 | 101.836 | 105.639   | 130.751 | 137.908 | 155.692 | 166.473 |
| 10    | 18.2098     | 37.3396 | 60.4889 | 85.4070 | 101.975 | 111.301   | 136.743 | 138.607 | 161.592 | 168.546 |

TABLE 4.29 Frequency parameter i. of a tapered Timoshenko hinged-free beam , (  $v_y = v_z = 0.7$  ) . ( Rigid body mode not included )

| Speed     |         |         |         |         | Freq    | Frequency |         |         |         |         |
|-----------|---------|---------|---------|---------|---------|-----------|---------|---------|---------|---------|
| rano<br>F | ک،      | ٦٠٪     | λ3      | 7.4     | 1.5     | ٧٠,       | 7,      | 3-7     | رۇم     | 2,10    |
| 0         | 11.6294 | 27.9492 | 48.2562 | 70.6368 | 94.1234 | 104.851   | 118.595 | 143.405 | 151.661 | 168.831 |
| I         | 11.7041 | 28.0250 | 48.3319 | 70.7175 | 94.2119 | 104.854   | 118.695 | 143.517 | 151.668 | 168.965 |
| 3         | 12.2838 | 28.6220 | 48.9313 | 71.3588 | 94.9140 | 104.877   | 119.491 | 144.408 | 151.684 | 169.952 |
| S         | 13.3597 | 29.7714 | 50.1028 | 72.6162 | 96.2867 | 104.927   | 121.055 | 146.151 | 151.728 | 171.906 |
| 7         | 14.8080 | 31.3965 | 51.7964 | 74.4436 | 98.2659 | 105.020   | 123.332 | 148.663 | 151.822 | 174.746 |
| 10        | 17.4280 | 34.5288 | 55.1742 | 78.1203 | 102.044 | 105.428   | 127.930 | 151.684 | 154.067 | 180.447 |

TABLE 4.30 Frequency parameter  $\lambda$  of a tapered Timoshenko hinged-free beam , (  $v_y = v_z = 0.9$  ) . ( Rigid body mode not included )

| Speed     |         |         |         |         | Freq    | Frequency |         |         |                  |         |
|-----------|---------|---------|---------|---------|---------|-----------|---------|---------|------------------|---------|
| rano<br>n | ,<br>,  | ,       | îs      | 1.4     | 7.5     | ý.,       | , y.    | 37      | , <sup>5</sup> 7 | , in    |
| 0         | 12.4176 | 26.1615 | 43.5329 | 63.4283 | 84.9849 | 106.337   | 109.001 | 131.634 | 156.122          | 165.021 |
| I         | 13.0666 | 27.0793 | 44.3854 | 64.1795 | 85.6652 | 106.585   | 109.406 | 132.262 | 156.751          | 165.025 |
| ٤         | 16.0395 | 32.2951 | 50.1985 | 69.6895 | 90.7253 | 107.273   | 113.585 | 136.940 | 161.431          | 165.066 |
| 5         | 18.9260 | 37.8594 | 57.8673 | 78.3151 | 99.1680 | 107.615   | 121.568 | 144.870 | 165.028          | 169.527 |
| ~         | 21.6019 | 42.7605 | 64.9495 | 87.2790 | 106.833 | 110.072   | 131.370 | 154.440 | 165.109          | 179.263 |
| 10        | 25.4863 | 49.4114 | 74.3839 | 99.4150 | 107.786 | 124.338   | 147.091 | 165.153 | 169.883          | 195.092 |



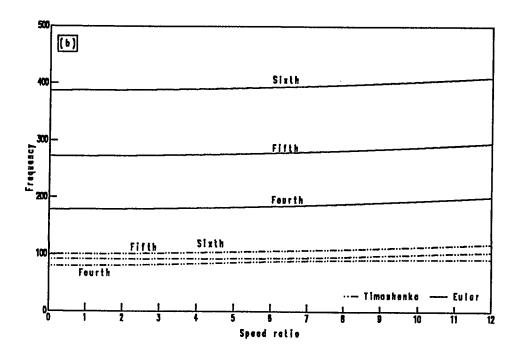
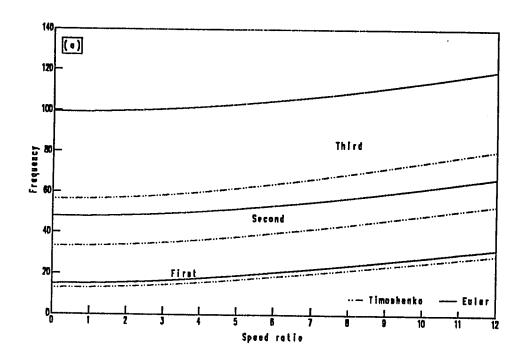


Fig. 4.17 The first six bending frequencies of uniform hinged-free beam ; ( $\nu_y = \nu_z = 0.0$ ); a) First, second and third, b) Fourth, fifth and sixth.



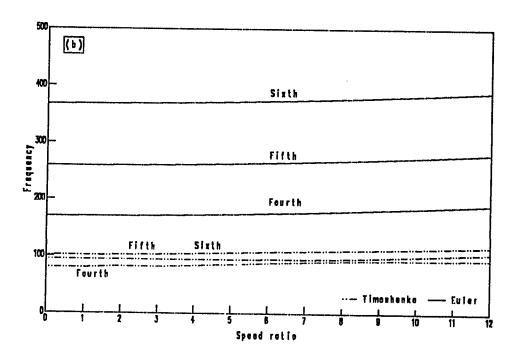
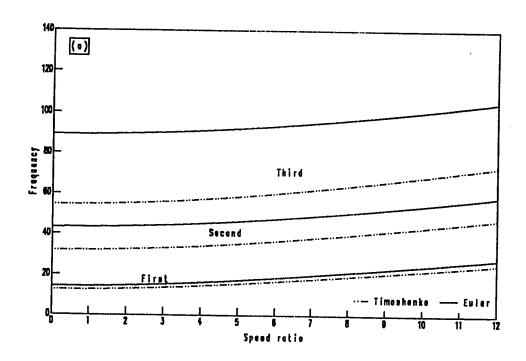


Fig. 4.18 The first six bending frequencies of a tapered hinged-free beam ; ( $\nu_y = \nu_z = 0.1$ ); a) First, second and third, b) Fourth, fifth and sixth.



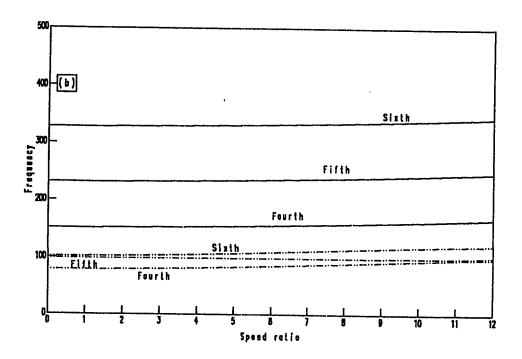
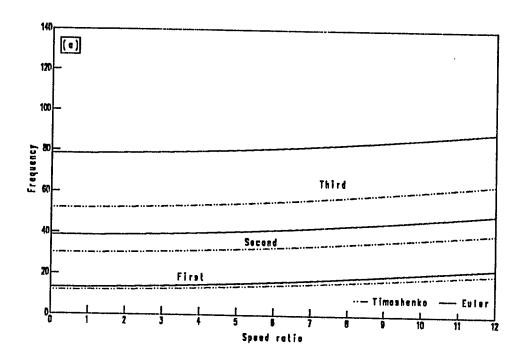


Fig. 4.19 The first six bending frequencies of a tapered hinged-free beam; ( $v_y = v_z = 0.3$ ); a) First, second and third, b) Fourth, fifth and sixth.



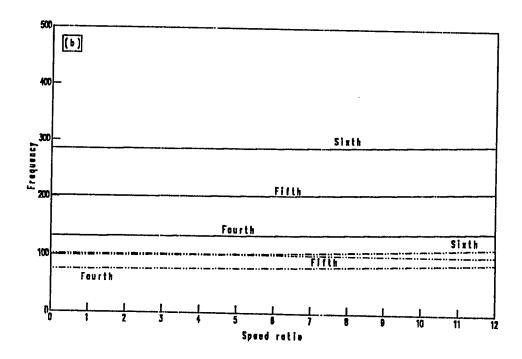
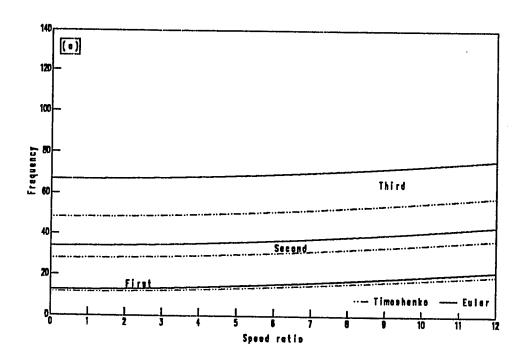


Fig. 4.20 The first six bending frequencies of a tapered hinged-free beam ; ( $v_y = v_z = 0.5$ ); a) First , second and third , b) Fourth , fifth and sixth .



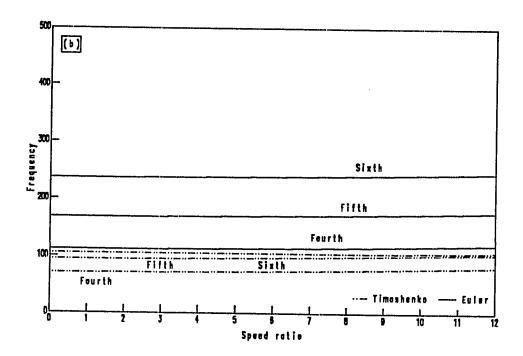
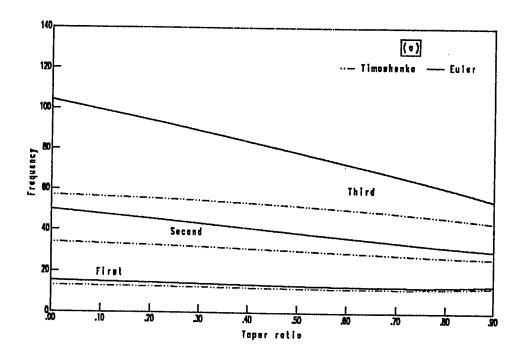


Fig. 4.21 The first six bending frequencies of a tapered hinged-free beam; ( $v_y = v_z = 0.7$ ); a) First, second and third, b) Fourth, fifth and sixth.



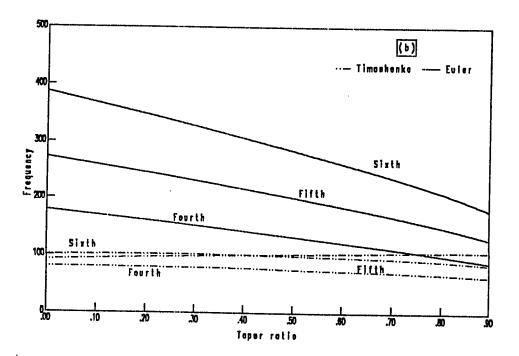
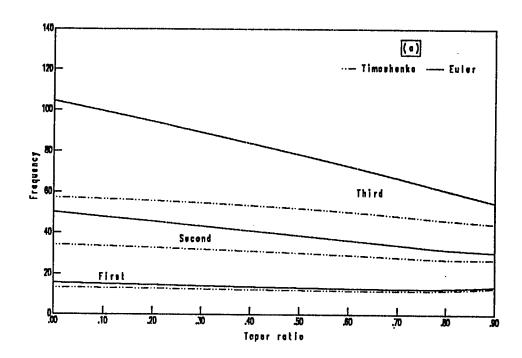


Fig. 4.22 The first six bending frequencies of non-rotating hinged free beam (  $\eta=0.0$  ); a ) First , second and third , b ) Fourth , fifth and sixth .



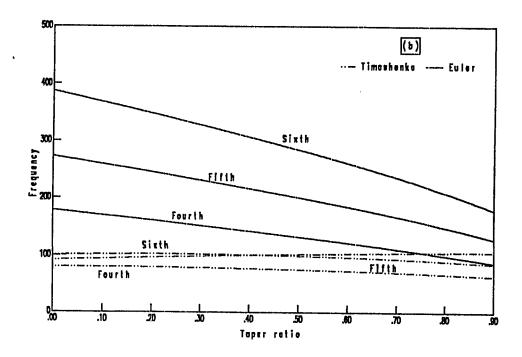
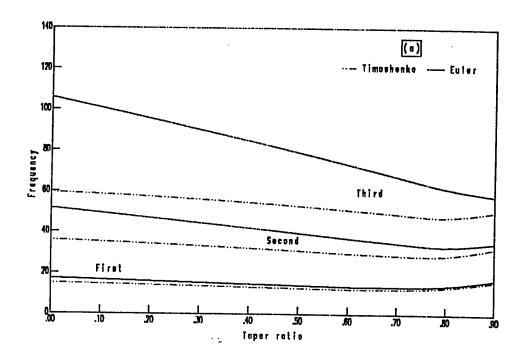


Fig. 4.23 The first six bending frequencies of rotating hinged free beam ( $\eta=1.0$ ); a) First , second and third , b) Fourth , lifth and sixth .



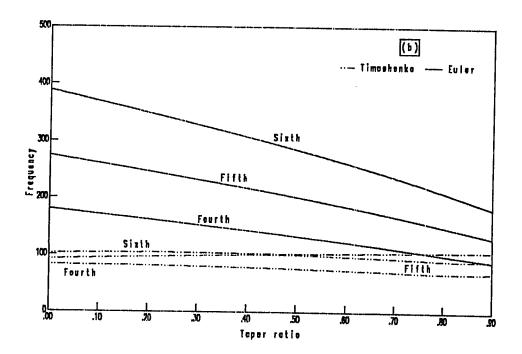
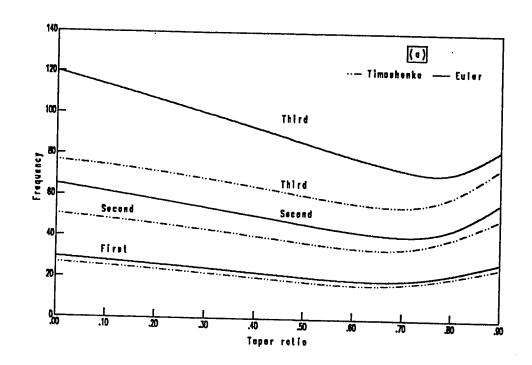


Fig. 4.24 The first six bending frequencies of rotating hinged free beam ( $\eta=3.0$ ); a) First , second and third , b) Fourth , fifth and sixth .



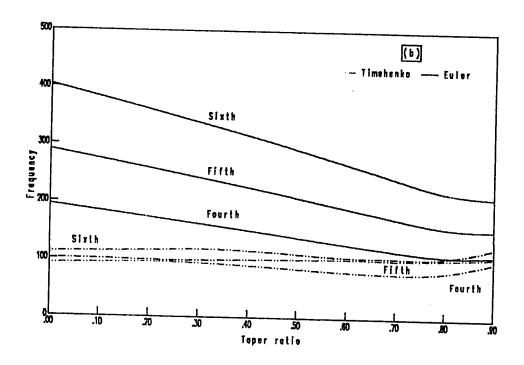


Fig. 4.25 The first six bending frequencies of rotating hinged free beam ( $\eta=10.0$ ); a) First, second and third, b) Fourth, fifth and sixth.

TABLE 4.31 Effect of rotation on the frequency ratios (  $\lambda_T/\lambda_E$  ) of uniform hinged-free beam (  $v_y=v_z=0.0$  ) .

|                     |         |         | Frequency rat | ios     |         |
|---------------------|---------|---------|---------------|---------|---------|
| Speed<br>ratio<br>η | Mode 1  | Mode 2  | Mode 3        | Mode 4  | Mode 5  |
| 0                   | 0.85008 | 0.67944 | 0.54719       | 0.44663 | 0.33645 |
| 1                   | 0.85267 | 0.68189 | 0.54883       | 0.44779 | 0.33641 |
| 2                   | 0.85957 | 0.68787 | 0.55361       | 0.45118 | 0.33625 |
| 3                   | 0.86872 | 0.69701 | 0.56114       | 0.45644 | 0.33596 |
| 4                   | 0.87812 | 0.70829 | 0.57085       | 0.46298 | 0.33561 |
| 5                   | 0.88649 | 0.72069 | 0.58208       | 0.46992 | 0.33534 |
| 6                   | 0.89333 | 0.73327 | 0.59415       | 0.47596 | 0.33564 |
| 7                   | 0.89856 | 0.74531 | 0.60642       | 0.47929 | 0.33726 |
| 8                   | 0.90236 | 0.75631 | 0.61830       | 0.47892 | 0.34046 |
| 9                   | 0.90496 | 0.76598 | 0.62932       | 0.47568 | 0.34433 |
| 10                  | 0.90661 | 0.77418 | 0.63902       | 0.47087 | 0.34786 |
| 11                  | 0.90747 | 0.78089 | 0.64699       | 0.46527 | 0.35056 |
| 12                  | 0.90771 | 0.78613 | 0.65278       | 0.45940 | 0.35237 |

TABLE 4.32 Effect of rotation on the frequency ratios  $(\lambda_T/\lambda_E)$  of a tapered hinged-free beam  $(\nu_y = \nu_r = 0.2)$ .

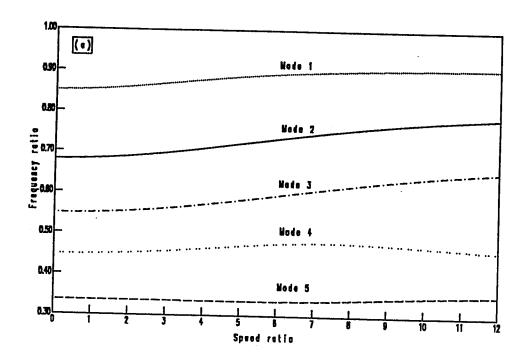
|                     |          |         | Frequency rat | 'ios    |         |
|---------------------|----------|---------|---------------|---------|---------|
| Speed<br>ratio<br>η | Mode 1   | Mode 2  | Mode 3        | Mode 4  | Mode 5  |
| 0                   | 0.87401  | 0.71703 | 0.58912       | 0.49162 | 0.39309 |
| 1                   | 0.87553  | 0.71854 | 0.59039       | 0.49266 | 0.39291 |
| 2                   | 0.87964  | 0.72291 | 0.59413       | 0.49572 | 0.39236 |
| .3                  | 0.88524  | 0.72969 | 0.60008       | 0.50064 | 0.39143 |
| 4                   | 0.89117  | 0.73826 | 0.60791       | 0.50717 | 0.39012 |
| 5                   | 0.89663  | 0.74789 | 0.61717       | 0.51498 | 0.38845 |
| 6                   | 0.90119  | 0.75796 | 0.62743       | 0.52371 | 0.38647 |
| 7                   | 0.90475  | 0.76789 | 0.63824       | 0.53291 | 0.38425 |
| 8                   | 0.90739  | 0.77732 | 0.64922       | 0.54192 | 0.38202 |
| 9                   | 0.90924  | 0.78596 | 0.66003       | 0.54916 | 0.38064 |
| 10                  | 0.91046  | 0.79368 | 0.67040       | 0.55026 | 0.38288 |
| 11                  | 0.9117.3 | 0.80042 | 0.68013       | 0.54499 | 0.38874 |
| 12                  | 0.91149  | 0.80616 | 0.68906       | 0.53757 | 0.39518 |

TABLE 4.33 Effect of rotation on the frequency ratios ( $\lambda_T/\lambda_E$ ) of a tapered hinged-free beam ( $\nu_y = \nu_z = 0.5$ ).

|                     |         |         | Frequency rat | tios    |         |
|---------------------|---------|---------|---------------|---------|---------|
| Specd<br>ratio<br>η | Mode 1  | Mode 2  | Mode 3        | Mode 4  | Mode 5  |
| 0                   | 0.90549 | 0.77823 | 0.66231       | 0.56807 | 0.49323 |
| 1                   | 0.90525 | 0.77872 | 0.66288       | 0.56861 | 0.49368 |
| 2                   | 0.90452 | 0.78017 | 0.66456       | 0.57018 | 0.49498 |
| 3                   | 0.90332 | 0.78245 | 0.66727       | 0.57277 | 0.49700 |
| 4                   | 0.90171 | 0.78539 | 0.67091       | 0.57626 | 0.49924 |
| .5                  | 0.89971 | 0.78879 | 0.67531       | 0.58055 | 0.49807 |
| 6                   | 0.89694 | 0.79243 | 0.68032       | 0.58554 | 0.49662 |
| 7                   | 0.89480 | 0.79612 | 0.68576       | 0.59108 | 0.49708 |
| 8                   | 0.89202 | 0.79968 | 0.69147       | 0.59705 | 0.49462 |
| 9                   | 0.88911 | 0.80301 | 0.69729       | 0.60329 | 0.49178 |
| 10                  | 0.88615 | 0.80600 | 0.70310       | 0.60972 | 0.48866 |
| 11                  | 0.88317 | 0.80861 | 0.70877       | 0.61620 | 0.48528 |
| 12                  | 0.88024 | 0.81082 | 0.71423       | 0.62261 | 0.48167 |

TABLE 4.34 Effect of rotation on the frequency ratios  $(\lambda_T/\lambda_E)$  of a tapered hinged-free beam  $(\nu_y = \nu_z = 0.7)$ .

|                     |         |         | Frequency rat | 'ios    |         |
|---------------------|---------|---------|---------------|---------|---------|
| Specd<br>ratio<br>η | Mode 1  | Mode 2  | Mode 3        | Mode 4  | Mode 5  |
| 0                   | 0.92342 | 0.82361 | 0.72256       | 0.63414 | 0.56047 |
| 1                   | 0.92322 | 0.82399 | 0.72296       | 0.63450 | 0.56079 |
| 2                   | 0.92267 | 0.82513 | 0.72417       | 0.63560 | 0.56177 |
| 3                   | 0.92179 | 0.82692 | 0.72613       | 0.63742 | 0.56337 |
| 4                   | 0.92062 | 0.82925 | 0.72878       | 0.63988 | 0.56556 |
| 5                   | 0.91922 | 0.83197 | 0.73204       | 0.64297 | 0.56829 |
| 6                   | 0.91762 | 0.83493 | 0.73581       | 0.64659 | 0.57152 |
| 7                   | 0.91586 | 0.83795 | 0.73997       | 0.65069 | 0.57515 |
| 8                   | 0.91400 | 0.84095 | 0.74444       | 0.65519 | 0.57909 |
| 9                   | 0.91206 | 0.84378 | 0.74908       | 0.66001 | 0.58316 |
| 10                  | 0.91006 | 0.84640 | 0.75383       | 0.66506 | 0.58703 |
| 11                  | 0.90805 | 0.84874 | 0.75857       | 0.67029 | 0.58981 |
| 12                  | 0.90605 | 0.85076 | 0.76325       | 0.67560 | 0.59002 |



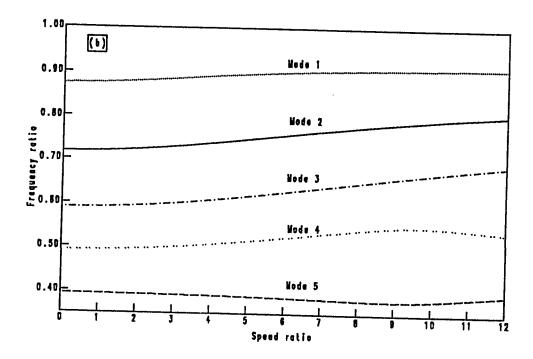
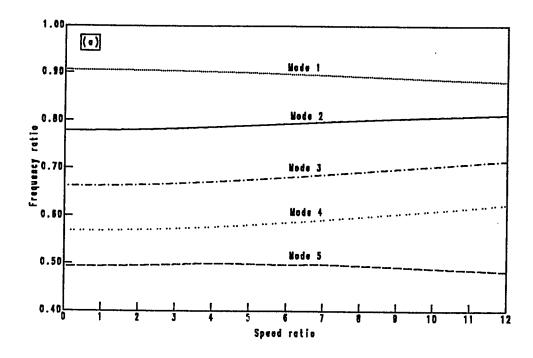


Fig. 4.26 Effect of rotation on the frequency ratios of hinged-free beam; a) Uniform beam ( $v_y = v_z = 0.0$ ); b) Tapered beam ( $v_y = v_z = 0.2$ ).



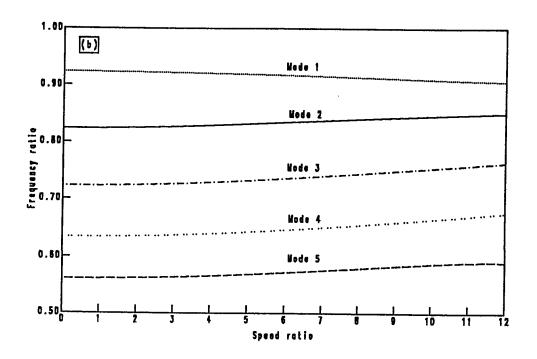
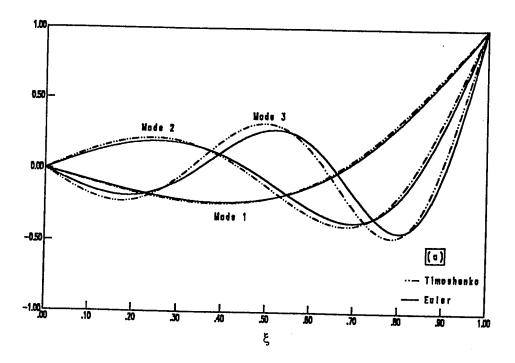


Fig. 4.27 Effect of rotation on the frequency ratios of a tapered hinged-free beam ; a) ( $\nu_y = \nu_z = 0.5$ ); b) ( $\nu_y = \nu_z = 0.7$ ).



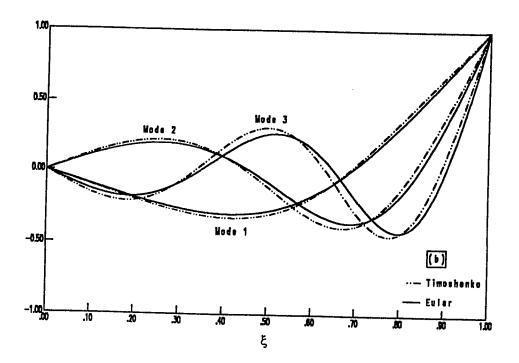
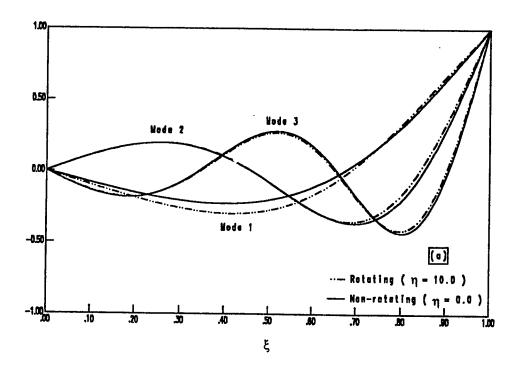


Fig 4.28 The first three flexural mode shapes of a tapered hinged free beam ;  $(v_y = v_z = 0.7)$ ; a)  $\eta = 0$ , b)  $\eta = 10.0$ .



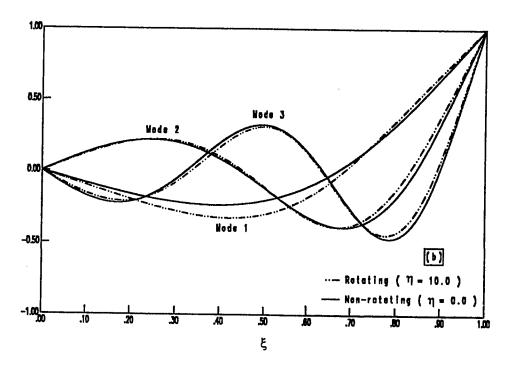


Fig. 4.29 The first three flexural mode shapes of a tapered hinged free beam; ( $v_y = v_z = 0.7$ ); a) Euler beam, b) Timoshenko beam.

## CHAPTER FIVE

## **CONCLUSIONS**

The finite element procedure developed for the free vibration characteristics of rotating and non-rotating tapered beams based on both Euler-Bernoulli and Timoshenko theories has been found to give accurate results. The effects of breadth and depth taper ratios, spin rate, shear deformation and rotary inertia of both cantilever and hinged free beam have been investigated. The results obtained give high accuracy when compared to other numerical results presented by other investigators.

The explicit mass and stiffness matrices of a linearly tapered beam in two planes have been developed in order to provide a means for incorporating as well as investigating the effect of the secondary contributions of shear deformation and rotary inertia in vibration analysis of a rotating and non-rotating tapered beams for both fixed and hinged end conditions. This thesis present for the first time explicit expressions for the rotating tapered Timoshenko beam.

The finite element model presented herein to solve for the natural frequencies of both tapered Euler-Bernoulli and Timoshenko beams has the following capabilities:

- 1) It can be used for any type of linearly tapered beam in two planes .
- 2) It is applicable to circular or rectangular, hollow or solid cross-sectional area.

- 3) It can handle all types of boundary conditions .
- 4) It is efficient, accurate and of fast convergence.

The conclusions drawn from the present investigation are:

- 1) The values of the frequency parameter and the behavior of the mode shapes obtained are in excellent agreement with the exact and numerical results available in the literature.
- 2) The effects of shear deformation and rotary inertia on mode shapes of the structure are small in the first two modes.
- 3) The natural frequencies increase as the rotational speed increases, and they are decreasing as the taper ratio increases.
- 4) Existence of a critical taper ratio where the frequencies of a rotating beam reverse the direction of change. The centrifugal effect is more dominant than the softening effect resulting from the decrease of the cross-sectional area.
- 5) Timoshenko theory tends to lower the frequencies of the vibration while the effect of shear deformation is generally higher than that of rotary inertia for non-rotating beams, but their relative effects may be reversed for the higher mode frequencies of rotating beams owing to the centrifugal stiffness effects.
- 6) The explicit element mass and stiffness matrices eliminate the loss of computer time and round-of errors associated with extensive matrix operations which are necessary in the numerical evaluation of the expressions.
- 7) The tapered beam finite element developed in this thesis can be easily integrated into any general purpose finite element code in order to perform dynamic analysis of rotating component such as turbine blades, high speed flexible mechanisms, robot manipulators and helicopter rotors.

## REFERENCES

- [1] M. Shilhansi, 1958, J. Applied Mechanics, 25, 28-30. Bending Frequency of a Rotating Cantilever Beam.
- [2] D. Pruelli, 1972, J. Applied Mechanics, 39, 602-604. Natural Bending Frequency Comparable to Rotational Frequency in Rotating Cantilever Beam.
- [3] T. Yokoyama, 1988, Int. J. Mech. Sci., 30 (10), 743-755. Free Vibration Characteristics of Rotating Timoshenko Beams.
- [4] A. V. Krishna Murty and S. Sridhara Murthy, 1977, Mechanism and Machine Theory, 12, 311-322. Finite Element Analysis of Rotors.
- [5] B. Downs, 1977, J. Applied Mechanics, 46, 737-742. Transverse Vibrations of Cantilever Beam Having Unequal Breadth and Depth Tapers.
- [6] A. S. Sarigul (Aydin) and G. Aksu, 1986, Mechanism and Machine Theory, 21
   (1), 1-12. A Finite Difference Method for the Free Vibration Analysis of Stepped Timoshenko Beams and Shafts.
- [7] A. W. Lees and D. L. Thomas, 1982, J. Sound and Vibration, 80 (3), 355-366.

  Unified Timoshenko Beam Finite Element.
- [8] J. Dugundji, 1988, AIAA Journal, 26 (8), 1013-1014. Simple Expressions for Higher Vibration Modes of Uniform Euler Beams.
- [9] S. C. Lin, 1987, AIAA Journal, 25 (5), 765-767. Finite Element Method for a Uniformly Loaded Cantilever Beam with General Cross Section.
- [10] G. R. Heppler and J. S. Hansen, 1988, AIAA Journal, 26 (11), 1378-1386.
  Timoshenko Beam Finite Elements Using Trigonometric Basis Functions.
- [11] F. G. Yuan and R. E. Miller, 1988, AIAA Journal, 26 (11), 1415-1417. Higher-Order Finite Element for Short Reams.
- [12] R. Gallagher and C. Lee, 1970, J. Numerical Methods in Engineering, 2,

- 265-275 . Matrix Dynamic and Stability Analysis with Non-uniform Elements .
- [13] K. Sato, 1980, Int. J. Mechanical Sciences, 22, 109-115. Transverse Vibrations of Lineraly Tapered Beams with Ends Restrained Elastically Against Rotation Subjected to Axial Force.
- [14] F. Williams and J. Banerjee, 1985, J. Sound and Vibration, 99 (1), 121-138.

  Flexural Vibrations of Axially Loaded Beams With Linear or Parabolic Taper.
- [15] W. Carnegie and J. Thomas, 1972, J. Engng. Ind., 94 (1). The Coupled Bending-Bending Vibrations of Pretwisted Tapered Cantilever Beam.
- [16] R. P. Goel, 1976, J. Sound and Vibration, 47 (1), 1-7. Transverse Vibration of Tapered Beams.
- [17] L. A. Taber and D. C. Viano, 1982, J. Sound and Vibration, 83 (2), 219-228.

  Comparison of Analytical and Experimental Results for Free Vibration of Non-uniform

  Composite Beams.
- [18] C. W. S. To, 1979, J. Sound and Vibration, 63 (1), 33-50. Higher Order Tapered Beam Finite Elements For Vibration Analysis.
- [19] C. W. S. To, 1981, J. Sound and Vibration, 78 (4), 475-484. A Linearly Tapered Beam Finite Element Incorporating Shear Deformation and Rotary Inertia for Vibration Analysis.
- [20] P. V. de Irassar ,G.M. Ficcadenti and P. A. A. Laura, 1983 , AIAA Journal , 21
   (2) , 312-314 . Vibrations of Nonuniform Beams with one End Elastically Restrained against Rotation
- [21] P. Likins, F. Barbera, and V. Baddeley, 1973, AIAA Journal, 11(9), 1251-1258.

  Mathematical Modeling of Spinning Elastic Bodies for Modal Analysis.
- [22] S. V. IIoa, 1979, J. Sound and Vibration, 67 (3), 369-381. Vibration of Rotating

  Beam with Tip Mass.
- [23] J. S. Rao and S. Banerjee, 1977, Mechanism and Machine Theory, 12, 271-280

- Coupled Bending-Torsional Vibrations of Rotating Cantilever Blades Method of Polynomial Frequency Equation.
- [24] W. Carnegie, 1959, J. Mech. Engng. Sci, 1 (3). Vibrations of Rotating Cantilever Blading: Theoretical Approaches to the Frequency Problem Based on Energy Methods.
- [25] Y. A. Khulief and Laejoon Yi, 1988, Computers & Structures, 29 (6), 1075-1085. Lead-Lag Vibrational Frequencies of a Rotating Beam with End Mass.
- [26] D. C. Kammer and Λ. L. Schlack, Jr, 1987, J. Applied Mechanics, 54, 305-310.

  Effects of Nonconstant Spin Rate on the Vibration of a Rotating Beam.
- [27] A. D. Wright, C. E. Smith, R. W. Thresher and J. L. C. Wang, 1982, J. Applied Mechanics, 49, 197-202. Vibration Modes of Centrifugally Stiffened Beams
- [28] M. Swaminathan and J. S. Rao, 1977, Mechanism and Machine theory, 12, 331-337. Vibrations of Rotating, Pretwisted and Tapered Blades.
- [29] P. J. Magari, L. A. Shultz and V. R. Murthy, 1988, Computers & Structures, 29 (5), 763-776. Dynamics of Helicopter Rotor Blades.
- [30] D. Stori and Y. Aboelnaga, 1987, J. Applied Mechanics, 54, 311-314. Bending Vibrations of a Class of Rotating Beams with Hypergeometric Solutions.
- [31] Y. A. Khulief, 1989, J. Sound and Vibration, 134 (1), 87-97. Vibration

  Frequencies of a Rotating Tapered Beam with End Mass.
- [32] F. S. Tse, I. E. Morse and R. T. Hinkle, 1978, Mechanical Vibrations: Theory and Applications. Second Edition Allyn and Bacon, Inc.
- [33] Leonard Meirovitch, 1967, Analytical Methods in Vibrations. Mac Millan Company. New York.
- [34] R. D. Blevins, 1979, Formulas For the Natural Frequency and Mode Shape. Litton Educational Publishing, Inc.
- [35] J. S. Przemieniecki, 1968, Theory of Matrix structural Analysis. Mc. Graw Hill Book Company.

- [36] C. L. Dym and I. H. Shames, 1973, Solid Mechanics A Variational Approach. Mc. Graw Hill Company.
- [37] R. D. Cook, D. S. Malkus and M. E. Plesha, 1989, Concepts and Application of Finite Element Analysis, 3rd edition, John Wiley & Sons.
- [38] B. Smith, J. Boyle, J. Dongarra, B.Garbow, Y. Ikebe, V. Klema and C. Moler, 1976, Matrix Eigensystem Routines-Eispack Guide, Lecture Notes in Computer Science. Berlin: Springer-Verlag.
- [39] D. H. Hodges and M. J. Rutkowski, 1981, AIAA Journal, 19 (11), 1459-1466.

  Free-Vibration Analysis of Rotating Beams by a Variable-order FiniteElement Method.