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Chapter 1

Introduction

1.1 General

The field of Digital Signal Processing is concerned with processing of signals which
can be represented as sequence of numbers. This representation of signals in digital
form permits the processing with digital hardware and it permits SIgna.l processing
operations to be specified as algorithms or procedures. These digital methods are
powerful, flexible and can be designed to be adaptive. Signals in digital form can
be stored indefinitely without error. Digital techniques have become more and more
cheaper with the advancement in the Integrated Circuit technology.

Digital filters are computational algorithms that transform a given input sequence
of numbers into output sequence of numbers according to prespecified rules, hence

vielding some desired modification to the characteristics of input sequences. These
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digital filters can be used for the processing of both analog or digital signals. In
most applications digital filters are used for processing the continuous-time signals.
Such digital processing of continuous-time signals is commonplace in communication
systems, radar and sonar systems. speech and video coding and enhancement. and

biomedical engineering.

Multidimensional digital signal processing is concerned with the processing of
signals which can be represented as multidimensional arrays, such as sampled im-
ages or sampled time waveforms which are received simultaneously from several sen-
sors. Two dimensional digital signal processing, a special case of multidimensional
digital signal processing has wide applications in the field of image processing. Two-
dimensional signal processing techniques are needed in such areas as video coding,
medical imaging, enhancement and analysis of area photographs and analysis of
satellite weather photos.

Conceptually there is much similarity between the processing of a one-dimensional
signal and multidimensional signals. For example many operations such as sampling,
filtering and transform computation, that we might perform on multidimensional
signals are conceptually the same as those performed on one dimensional filters.
However there exist some differences due to the facts that:(1) as dimensionality
increases more amount of data is involved:(2) the mathematics used for multidi-

mensional filters is much more restrictive than for one dimensional case. The reason



for this is that a multivariable polynomial cannot be factorized into lower order
multivariable polynomials as can be done in the 1-D case. As we move on from 1-D
to 2-D dimensions the amount of data involved increases. The Computer Industry.
by making computers smaller and cheaper, has helped to solve the data volume
problem and allowed sophisticated signal processing algorithms to be implemented
in real time at a substantially reduced cost.

Digital filters can be classified into recursive and non-recursive filters. These recur-
sive and non-recursive filters are also known as IIR. and FIR filters respectively. In
the case of FIR filters the output sample value depends upon the past and present
input samples only. On the other hand the output sample value of an IIR filter not
only depends on the past and present input samples but also on the previous output
samples. While the FIR filters are always stable, the IIR filters are not. One of the
major drawbacks of the FIR filter is that in general it requires more computations
than an IIR filter to perform a similar filtering operation.

Two dimensional recursive and nonrecursive filters possess some characteristics sim-
ilar to their one-dimensional counterparts. For example design methods for 2-D
FIR digital filters are simpler than 2-D IIR digital filters as is the case with one
dimensional FIR and IIR digital filters. We know that in general to meet the same
specifications an FIR filter requires, in general, significantly more arithmetic opera-
tions per output sample than an IIR filter and for a 2-D FIR filter this requirement

is further increased. Hence in general 2-D IIR filters possess the advantage that



they require less number of arithmetic operations than 2-D FIR filters.

1-D and 2-D IIR digital filters can be designed in spatial (time) domain, where an
error criterion in the spatial domain is minimized. They can also be designed in
the frequency domain by using an error criterion in the frequency domain. After
selecting an error criterion or performance measure, it is minimized by analytical

methods or by iterative techniques using some standard minimization techniques.

1.2 IRLS Technique

In this thesis a new method of designing IIR digital filters in L, norm sense using
a technique called iteratively reweighted least-squares (IRLS) is formulated. This
IRLS technique was developed by Burrus et al. [1] for the design of optimal L,-
approximation FIR digital filters. The IRLS technique is an iterative technique in
which a weighted least-squares problem is solved in every iteration. In this technique,
by selecting the weights in each iteration based on the error in previous iteration,
a solution to the L,-approximation problem is found by solving a weighted least-
squares problem, which is quite simple to implement and can be written in short

computer code. This is one of the major advantages of the IRLS technique.

In this thesis, the IRLS technique is developed for the 1-D and 2-D IIR digital



filter design in the L, norm sense. Chapter 2 presents a literature review of the 1-D
and 2-D Frequency-domain IIR digital filter design techniques. In Chapter 3, the
design of 1-D IIR digital filter using the IRLS technique is presented. In order to
improve the convergence of the IRLS algorithm, it is proposed that a convergence
control parameter be selected in a different manner from that used for FIR filters,
and suitable for the IIR filter design problem. Several design examples demonstrat-
ing the achieved improvement in the convergence, are presented. Comparison of
several lowpass and bandpass IIR filter designs using the IRLS technique and the
Davidon Fletcher Powell (DFP) unconstrained optimization technique are also pre-
sented. The relative computational complexity is also discussed next. Comparison
of filter designs using the proposed technique with that of some recent IIR digital
filter design techniques are also presented.

In Chapter 4, the 1-D IIR digital filter design using the IRLS technique is extended
for the design of 2-D ITR IIR digital filter design. The formulation of the problem for
the 2-D case is presented first. Design of 2-D IIR digital filters in the cascade form is
presented next. Later several design examples, which demonstrate the effectiveness
of the proposed method are presented. In these design examples comparison of the
proposed 2-D IIR filter design technique with filters designed using the Davidon
Fletcher Powell (DFP) unconstrained optimization technique is presented. The rel-
ative computational complexity of the two methods is also presented next. Finally

a comparison with some other design techniques is also presented.



Chapter 5 presents the summary and conclusions drawn during the course of this

thesis and concludes with a section on recommendation for the future work.



Chapter 2

Literature review of frequency

domain design techniques for 1-D

and 2-D IIR filters

2.1 Introduction

An infinite impulse response (IIR) digital filter has an impulse response that is in-
finite in extent. As a result, an IIR filter differs in some major respects from an
FIR filter. The input and output signals of an IIR filter obey a constant-coefficient
difference equation from which the value of an output sample can be computed using
the input sample and previously computed output samples. Because the values of

output samples are fed back the IIR filter can be unstable. On the other hand. an

=~



IIR filter typically requires a significantly smaller number of coefficients to meet a
particular magnitude specification than does an FIR filter meeting the same speci-
fications.

An IIR filter can be designed in either time domain or frequency domain. In the
time domain the filters are designed by using an error criterion in the time domain.
In the frequency domain design approach, filters are designed by using an error
criterion in the frequency domain. Frequency-domain design methods are popular
because of several reasons. Firstly, the filter frequency response function is easily
written in closed form as a function of the filter numerator and denominator co-
efficients. Secondly, often one may be interested in only approximating a certain
magnitude response without specifying a particular phase response. Such a partial
specification is easier to impose in the frequency domain than in the spatial or time
domain. Moreover by a suitable choice of some positive weighting function the rela-
tive importance of different frequency components can be taken into accpunt, which
is again not possible in the spatial domain.

In the following sections a review of the 1-D and 2-D frequency domain design

techniques is presented.
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2.2 Frequency domain design techniques: 1-D

ITR digital filters

The transfer function H(z) of the 1-D recursive digital filter has the following form:

— E:{:o baz™"
H(Z) - 1+E,l:,=1 aﬂz_n (2.1)

A 1-D IIR digital filter can be designed by designing an appropriate analog filter
and then transforming it into a discrete-time filter. This approach is reasonable
when we can take the advantage of continuous time designs that have closed-form
formulas such as the Butterworth, Chebyshev, or Elliptic filters. Analytical formulas
do not exist for matching an arbitrary frequency response specification in general
and the above methods cannot be applied. Hence in such general cases, direct filter
design procedures to solve sets of linear or nonlinear equations are needed. First the
type of realization of the rational transfer function H(z) of the 1-D IIR digital filter
is assumed and the orders of numerator and denominator are fixed. The type of
realization could be either direct form, cascade form or parallel form. In the direct
form the filter transfer function H(z) is realized as given in (2.1). In the cascade
form the filter transfer function is realized as a product of lower order filter sections,
usually of second order. In the case of parallel form the filter transfer function is

realized as a sum of lower order filter sections. After choosing the type of realization
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a desired ideal frequency response and approximation error criterion are chosen. By
a suitable optimization technique, the filter numerator and denominator coefficients,
are varied in a systematic way to minimize the approximation error according to the
assumed error criterion. In this section several 1-D IIR frequency-domain design

techniques will be reviewed.

2.2.1 Minimum mean-squared error design

Steiglitz [5] proposed a method for designing recursive digital filters by using the op-
timization algorithm of Fletcher and Powell [38] to minimize a square-error criterion

in the frequency domain. The IIR digital filter’s Z-transform of the form
5 (1 + a2zl + bz~2)

H(Z) = A
( ) Icl;[I(l +ckz‘1+d,,z‘2)

(2.2)

was considered, i.e the filter is realized as a cascade of second order sections. Let
wi,t = 1,2,...M, where M is the total number of frequency samples, be the discrete
set of frequencies at which the error between the actual and desired responses is
evaluated. The squared error in frequency ( as a function of filter parameters) can
be expressed as

Q@) = i[lff (€] — |Ha(e™)I]? (2.3)

=1
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where Hy(e/“) is the desired frequency response value (at the discrete frequency

points) and 4 is the vector of unknown coefficients given by

g = (al1 bl’ C1. dla ceeey Bk bk) Ck, dk, A)

To minimize the squared error, (2.3) implies finding the optimum value of g say §~,
such that

Q) <Q8) for 8 # 8"

Steiglitz used Fletcher-Powell nonlinear optimization algorithm to minimize the
squared error (2.3). One recent technique based on the squared error criterion was
proposed by Shaw [6]. This technique will be used for the comparison purposes in

chapter 3, where further details of this technique are provided.

2.2.2 Minimum L, error design

Dezcky (7] considered minimization of the L, error criterion using the Fletcher-
Powell algorithm [38] in order to meet the given recursive filter specifications. In
Dezcky’s method, the system function of the 1-D IIR filter is represented in terms

of its poles and zeros.

ol (1 -2z (1 ~2Zp27Y)
H(Z) = k
@) = bl 05

(2.4)
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The method permits the minimization of approximation error for both the frequency-
response magnitude and the group delay. The approximation error is the sum of
errors at a discrete set of frequencies. The L, error function defined in terms of the

filter parameter vector § and desired frequency response Hy is given by

M
L(8) = 3 W(w)[H(E)| - |Hi(e™)P (2.3)

t=1

When p = 2 and W(w;) = 1, for all i, the L, approximation is identical to the
squared error criterion. The L, approximation error is a nonlinear function of the
independent variables (filter parameters) and finding the minimum of such a func-
tion involves the solution of as many nonlinear equations as the number of filter
parameters. Dezcky [7] used the iterative algorithm of Fletcher and Powell [38] for
finding a local minimum of the approximation error. Bandler and Bardakjian [9] and
(10] also designed recursive digital filters based on the minimum L, error criterion.
In the limit as p — oo the L, approximation tends to be the L, appi'oximation,
which is also known as the minimax or Chebyshev approximation. Charalambous
[15] applied non-linear minimax optimization techniques to the problem of designing
recursive digital filters in the minimax sense, to meet arbitrary magnitude specifi-
cations. The unconstrained optimization algorithm due to Fletcher [16] was used
in conjunction with the minimax algorithm. Some other IR filter design methods

based on the minimax approach are given in (17] and [18].



13
2.2.3 Linear Programming design

Another 1-D frequency domain design technique is based on the application of the
Linear Programming methods to approximate a prescribed magnitude-squared error
characteristic. Rabiner et al [11] used Linear Programming technique to obtain
an equiripple approximation to an IIR filter with a prescribed magnitude-squared

characteristic. The magnitude squared function of the filter H(z) given by,

mobiz™t
can be expressed as
H@HGY) = S M ERbT) _ Foaa

(Ci0a:z~)(Tim00i7) ~— Th_,diz—*

where ¢; = c_; and d; = d_; The magnitude-squared function of the filter is therefore
a ratio of trigonometric polynomials i.e.

N (w) _ C + 2,";1 20{603((«!,’)

jwy|12
BN = ey = @+ or 2dcos(er)

(2.8)

Both N (w) and D(w) are linear in the coefficients ¢; and d;. Hence a Linear Pro-
gramming technique can be used to determine ¢;’s and d;’s such that the peak

approximation error is minimized.
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If Fw) is the desired magnitude-squared characteristic, then the approximation

problem consists of finding the filter coefficients, such that
- e(w) < ..—w- - F(w) < G(CJ) (2.9)

where €(w) is a tolerance function on the error function. Since F(w) and €(w) are
generally known function of the frequency, (2.9) can be expressed as a set of linear

inequalities in the ¢;’s and d;’s by writing it in the form
Nw) - D(w)[F(w) + ew)] < 0

~N(w) + DW)FWw) + €w)] < 0

Since the magnitude squared function must always be positive the additional linear
inequalities are

-Nw) < 0
-D(w) < 0

The above inequalities completely define the approximation problem. The filter
coefficients are obtained as the output of a Linear Programming routine. Other

papers using the Linear Programming techniques for IIR filter design are [12], [14]
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2.3 Frequency domain design techniques: 2-D

IIR filters

A 2-D IIR filter with real and stable impulse response h(n;,n,) has the z-transform

H(21, 23), of the following rational function form:

_ ke, b1, ko) 2 25

H(z,2) =
(21, 2) L Tk dger, alky, k2) 2 25 %

(2.10)

where R, is the region of support (non-zero area of the 2-D sequence) of a(k;, ks)
and Ry is the region of support of b(ky, k»).

A 2-D IIR filter with an impulse response k(n;, ny) is termed QP(quarter-plane)
if h(n1,n2) has support only in the region {n; > 0,n, > 0} or its rotations {n; >
0,n2 < 0} etc. It is called a NSHP(nonsymmetric half-plane) filter if h(ni,ny) is
non-zero in the region {n; > 0,7, > 0} U {n; < 0,n, > 0} or their rotations
{n1 2 0,np > 0} U {n; > 0,n5 < 0} etc. The transfer function H(wy,ws) of the 2-D
recursive digital filter has the following form:

N N ~funng o—junn
2111:0 21[2:0 bﬂ;nge T lgmlwrm2

N, N; — —
1 + 2n11=1 Zn:=1 an;nze J“’l’lle Jwang

H(elr ) = (2.11)

In the frequency domain 2-D IIR filter design the coefficient arrays a(ny,ny) and

b(ny, n2) are to be determined such that the resulting frequency response H{w;,ws)



16

is as close as pessible to some specified desired frequency response D(w;,ws). The
objective error function is expressed as a difference between the resulting (actual)
frequency response and the desired frequency response. The mean-squared error is

the same in both domains (Parseval’s theorem), that is

S Xl n) ~ dono)lP = oz [ [Henw) - Dlon,wn)Pdender

np nz

(2.12)
Apart from the mean squared error criteria other error criteria are also possible.
The Loo or Minimax error in the frequency domain is given by

Ew = maz|H(wi,ws) — D(w,uws)| (2.13)

and the Lp error norm is given by

B = I [Hww) - DopwlPdndalr  (21)

For large p values, say 20 or more, Lp norm becomes a good approximation to the

Loo norm.



2.3.1 Design based on transformation:

Some simple frequency-domain transformations can map both 1-D and 2-D IIR fil-
ters into other 2-D IIR filters. These transformations can be useful for designing
lowpass, highpass, and bandpass filters as well as multiple passband filters. ‘The ob-
jective of the frequency transformation is to map a stable, rational system function
into another stable, rational system function, while preserving some of the char-
acteristics of the prototype filter, such as the location and number of passbands.
Designing 1-D IIR digital filters by frequency transformations of 1-D analog proto-
type filters or 1-D digital filters is quite simple. In 2-D, however, design by frequency
transformation of 1-D or 2-D analog prototype filters to 1-D or 2-D digital prototype
filters is not straightforward.

Pendergrass et al.[19], Chakrabarti and Mitra [20], Shenoi and Mishra [21] and,
Mastorakis and Nikos [22] designed two-dimensional digital filters based on spec-
tral transformations. Some other designs based on transformation are considered in

23, 24].

2.3.2 General minimization procedures

The Standard descent algorithms can be applied to the frequency-domain error min-

imization problem. Usually the error is summed over a finite number of samples in
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the frequency domain rather than being integrated over the square —7 < wy,wp < 7.
For mean-squared error case. the problem becomes one of minimizing the approxi-

mation error functional

. Awik, 2
J. = ; W(wik,wak) [‘ng—::’% - D(wlkawﬂ:)] (2.15)

where W(wik,woe) is a weighting function, (wig,wei) are the frequency samples
selected for minimization. General optimization algorithms, such as Fletcher-Powell
[38] and Levenberg-Marquardt [39], or linearization techniques can be applied to
find the filter coefficients a(n,, ns),b(n;,ns) that minimizes J,.

Maria and Fahmy [40] had studied the design of 2-D IIR digital filters in the L,

norm sense by using the Fletcher-Powell algorithm as the optimization technique.

Al wn)

They assumed a cascade form realization for the transfer function H(w,we) = - Tomery

The cascade formulation has several important advantages for practical applications.
Firstly the frequency response of a 2-D IR filter will be less sensitive to coefficient
perturbations in a cascade structure than in direct form structure. Secondly, a
stability check can be incorporated into the design procedure since checking the sta-
bility of lower-order subfilters in the cascade is relatively easy. Other design methods
using the cascade implementation are considered in {31, 32, 33, 34, 35].

Aly and Fahmy [36] exploited a general class of symmetry [37] (that could possibly

exist in 2-D frequency responses) to simplify the design and implementation com-
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plexities by reducing the number of approximation parameters.
Antoniou and Lu [25] , and Deng and Kawamata [25] designed 2-D digital filters
by decomposing the desired 2-D frequency specifications into a set of 1-D ones and

then applying the 1-D filter design techniques.

2.3.3 Zero-phase IIR frequency domain design methods

Often in applications such as image processing, one may wish to filter a signal with
a filter whose impulse response is symmetric. Such filters will have a real-valued ,
or zero-phase, frequency response.

The frequency response of a zero-phase 2-D IIR filter can be expressed as:

2ony Lona a'(nl,n2)003(w1n1 + wony)

Hloner) = g S b (my, mo)eos(arme + wms)

(2.16)

where a'(n;, n) and b (m,, my) are related to actual 2-D filter coefficients a(ny, ns)

and b(m,, my) given in (2.11), by [27]

a(0,0) = a(0,0)

a(n,ny) = 2a(ng,ng) for (ny,my) # (0,0)
b(0,0) = 50,0)

b'(my,m) = 2b(my,my) for (mi,ma) # (0,0)
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Using (2.16) a mean-squared error functional can be formulated and minimized
by the techniques described earlier to obtain zero-phase filter coefficients a'(ny, no),
b'(n1,nz) and hence a(n;, ny),b(n,, ng). Alternatively an Loo error functional of the

following form:

l (2.17)

Awy, wy)

= maxr D(wl,w2) - m

(2.18)

may be minimized. Dudgeon [27] used an iterative technique called differential
correction (28, 29, 30] which can minimize E by solving a Linear Programming

problem at each iteration. Here A, B, and D are real valued functions.

2.3.4 Separable denominator design

The frequency response of a 2-D separable denominator filter is given by

A(w1 ’ wg)

Hlwnen) = g0 3B

(2.19)

Separable filters have a number of advantages, both in design and implementation,
since they are an outer product of two 1-D filters. Because of their simplicity they
offer a limited range of possible impulse and frequency responses. In [41, 42] a
nonseparable numerator polynomial with a separable denominator polynomial was

considered.
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A separable numerator and denominator 2-D filter is an outer product of two
1-D filters. The class of filter specifications it can realize is more restrictive than
that which can be realized by a non-separable filter. The separable denominator
designs retain much of this flexibility of non-separable designs and yet offer the

implementation advantage of separable IR filters.

2.3.5 Stability of 2-D IIR digital filters:

A system is stable if its output is well behaved for all reasonable inputs. The most
extensively studied stability criterion is the bounded-input bounded-output (BIBO)
stability criterion. A system is stable in BIBO sense if every bounded input sequence
produces bounded output sequence.

The earliest stability theorem, which is due to Shanks [43],[44] is based on examining
the zero set of the denominator polynomial of 2-D IIR filter transfer function. Huang
[45] proved theorems that is equivalent to Shanks theorem and simplified its stability
conditions. The Huang’s stability theorem is stated as follows:

Theorem: Let H(2,2,) = B—(z:—m—) be a first quadrant recursive filter. This filter is
stable if and only if B(z;, 2;) satisfies the following two conditions:

1. B(z1,22) #0, for|z| 2 1, ] =1

2. B(a, 22) #0,|23] > 1. for any a such that |a| > 1.

Decarlo et al [46] and Strintzis [47] independently showed that Huang’s test could

also be simplified. The condition that |a| > 1 is simplified to la] = 1. Note that the
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second condition of Huang's theorem is a 1-D stability condition, the first condition
is 2-D but z; is confined to the unit circle. Since it is much easier to check the 1-D
stability condition, it must be done first. Since a filter can occasionally be found to
be unstable, checking the necessary 1-D stability conditions may save computations
needed for checking the 2-D conditions.

In order to test the stability of the 2-D IIR filters, numerical algorithms (tests) are
required to check the conditions of the stability theorems. Most stability conditions
are based on the Huang’s theorem. Maria and Fahmy [48] tested the first condition

of the Huang’s theorem by considering
M
B(z1,2) =Y an(21)25
n=0

where

M -
an(21) = 3 b(i,n)z
i=0

(and M is the order of filter) and then employing the Marden-Jury table. This
table performs basically the same function for determining a complex polynomial’s
root distribution with respect to the unit circle as the Routh array does for the
left-half plane. Anderson and Jury [49] tested the same condition by considering
B(z;,2;) as a one-dimensional polynomial with polynomial coefficients a,(z1) and
then employing the Schur-Cohn test. Bose [30] extended the Schussler’s [51] stability

theorem for one-dimensional polynomials with real coefficients, to implement a new



stability test for two-dimensional filters.
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Chapter 3

Design of 1-D IIR digital filter by

IRLS Technique

3.1 Introduction

In this thesis the Iteratively Reweighted Least-Squares Technique (IRLS_) developed
in [1] for design of FIR digital filter, is applied for the design of ITR digital filter design
problem in the L, norm sense. In IRLS technique the L, approximation problem
is solved by solving a weighted least-squares problem in every single iteration, in
which the weights are based on the previous iteration error. Hence it is necessary
to formulate a weighted least-squares based IIR filter design problem. Lim et al. 2]
had addressed this problem of designing IIR digital filters in weighted least-squares

sense. In this technique the filter coefficients are obtained simply by solving a set of

24
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normal equatjons. This method has been applied to solve the weighted least squares
problem occurring in every single iteration of the IRLS technique. The design of
IR digital filter in the L, norm sense is a nonlinear problem with respect to the
filter coefficients. Nonlinear optimization techniques such as the Fletcher-Powell
technique had been applied in the past [7] for the minimization of the L, error
function. Such techniques are computationally intensive. Since the coefficients of
the ITR digital filters are obtained by solving simple linear equations, in the IRLS
technique there is no need for any nonlinear solution techniques.

The following section covers the IRLS design of IIR digital filters.

3.2 IRLS design of 1-D IIR digital filter

In this section, the Iteratively Reweighted Least Squares design method developed

in [1] for FIR filter design is extended for designing IIR digital filter. Let el fqz(:) be

the z-transfer function of an IIR filter. i.e

P(z) _ EN bz
1+Q(2) 1+ a2

H(z) = (3.1)

Let D(w),which, in general, is complex, be the desired frequency response of the [IR
filter and let H(e’*) be the actual frequency response. It is required to find filter

coefficients b,, n=0,1,..,N and a,. n=1,2,..,N, where N is the order of the filter, such
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that the L, error norm
E, = Y |H(*) - D(wk)l"]%, p is an even integer. (3.2)
k=1

is minimized. Here wj is the kth frequency sample, where k = 1,2,..,r. These
frequency samples cover the frequency bands of interest (that is, passbands and
stopbands). There are no analytical methods which can be used to solve this ap-
proximation problem. Therefore an iterative method such as the IRLS method,
which by appropriately choosing the weights allows us to find solution to the L,-
approximation problem as the limit to a sucessive approximation of a weighted
least-squares problem.

By setting the weights to be
w = |H(e*) — D(wi)"? (3:3)

the problem of minimizing the L, norm is converted to that of solving a weighted

least-squares problem as follows:
B} = Y wlH(E™) - Dl (3.4
=1

By choosing the weights as given by (3.3) and minimizing 3.4, we would minimize

the L, error norm given by 3.2. This cannot be done in one step because we need
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to find the weights. Hence an iterative algorithm in which the weights are updated
from the error in previous iteration, is used to solve the L,-approximation problem.
By solving the above weighted least-squares problem in each iteration of the IRLS
algorithm we obtain the required filter coefficient parameters {bn,a,} for the 1-D
IR digital filter. The weighted least-squares design of ITR digital filter, which is
to be carried out in every iteration of the IRLS algorithm is described in the next
section.

The L, error function given by 3.2 is a nonlinear function of the filter coefficients.
Hence, the solution obtained cannot be guarenteed to be a global optimum. It

corresponds to a local optimum which could be global one.

3.3 Solution of the weighted least-squares prob-

lem for 1-D IIR filters

The solution of weighted least-squares problem was carried out in a similar manner
as discussed in [2], for the design of IIR digital filters in the weighted least-squares

sense.

Let the difference between D(w) and H(e™*) = %QE(S%-) be {(e™) , i.e

P(e)

W)= g -

D(w) (3.5)
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Multiplying (3.5) by [1 + Q(e/)] we get

P(e) — Q(¢™)D(w) = D(w) +[1 + Q(e™)]¢(e™) (3.6)

Let

V(e) =1+ Q(e™)i¢(¢™)

Equation (3.6) can be written as

P(e’) - Q(¢*)D(w) = D(w) + V(&™) (3.7)

By puttingw = wi, k = 1,2, ..,7in (3.7), we obtain the following system of equations,

P(e™*) — Q(e*)D(wy) = D(we) + V(e™*),k =1,2, .7 (3.8)

Defining
E = [V(e1),V(e"), ., V(e™*), .., V()T (3.9)



1, e~jw s ejz;.q 3 ooy e-j:wa ’ —e-jwth —ej%‘Dh sevy -e.ij Dl

1, e~iwz , 612""2 ey e’jN“”, -e.j“"Dz, —ejz"‘Dz, coey -e_jN”’Dz

1’ e‘JWr’ ejzﬁir’ veey e"JNWr, _e‘]UrDr’ _e,]%rDr, . _e-jNU'Dr

11 e-jwkv ej2w§, >eey e.jNuia -e.jkaky -ejzkak, sy —e-ijka

where Dj = D(wg).

a = [b01 bh 621 sovy va a1, a2, ..., GN]T

H = [Dh D,, .., Dy, ..., Df]T

The following vector equations can be formed:

E=Ua-H

The weighted error can be expressed in the matrix notation as :

k=r
e = ¥ wV(e)? = WETWE
k=1

29

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)
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where W is a diagonal weighting matrix with elements w; and E is given by (3.13).
Next expressing E in terms of the real and imaginary patts of the matrix U and ,
we can rewrite (3.14) as

e = [W(Ua— H)|"[W(Ta - H)| (3.15)

[T (UrTWT + jUTWT) — (HTWT + jHiTWT)]

[(WUr - jWUi)a — (WHr — jWH;)| (3.16)

where the matrices Ur and Ui represent the real and imaginary parts of the matrix
U, and Hr and Hi represent the real and imaginary parts of the matrix H , respec-
tively. Simplifying e, differentiating with respect to the vector a and equating it to

zero, we obtain

g& = 2UTWTWUra — 2Ur”"WTW Hr - 2UTWTWUia — 2UTWTWHi = 0
(3.17)
which gives us,

[UrTWTWUr + Ui'WTWUila = Ur'WTWHr + UTWITWHi (3.18)

Thus minimizing SF=7 w?|V(e™*)[2 leads to the solution

a = [Re(UT)RRe(U) + Im(UT)RIm(U)|™!
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[ Re(UT)RRe(H) + Im(UT)RIm(H)] (3.19)

where R=W7TW is a diagonal weighting matrix whose nth diagonal element is w2,
and Re(.), Im(.) means the real and imaginary part of (.) respectively.

The coefficient vector a is obtained as the solution to a weighted least-squares prob-
lem. This weighted least-squares solution has to be carried out in each iteration of

the IRLS algorithm as will be shown next.



3.4 IRLS Algorithm

Given: Filter Order N, Matrix U, Vector H, index p,
Accel. Parameter u and Nlter.

Set pg=2, Wg=I and compute ag using Eqn 3.19

Pm=minimum{upp,_1.p]

Compute the freq. resp. vector Hrp,._1,
Set Wm=diagonal([Hryp,.1-HIP"2)

Compute g, by usigng Wy, in Eqn 3.19

Yes

e |

l an, is the final coeff. set. '

32
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Algorithm description

1. Initially the error vector is a null vector since there is no error due to the previous
itaration. Hence W) is set equal to the identity matrix for the first iteration.

2. Rather than starting the iterations of the IRLS algorithm with the desired value
of p, the p value in the first iteration is set to be py = 2 and increased every
iteration by a factor of u, ¢ > 1, as p,, = upm—;, until the value of Pm reaches the
desired p value. By selecting a u value greater than one the algorithm starts with
an L, design and accelerates towards an L, design. One should be careful not to
use too high a value for y, otherwise convergence problems would occur. In the
examples used in this work, values of 1.1 and 1.2 were used.

3. The temporary filter coefficient set a,, obtained by solving (3.19), and the past
filter coefficient set a,; are used to compute the new filter coefficient set a,, by the
relation am = Aay + (1 — A)apn—;. For the design of 1-D FIR digital filter Burrus
and Barreto [1] used A = -1~ in the IRLS algorithm and good convergence was

Pm—1

obtained.
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3.5 Results for 1-D IIR digital filter using
A = — in the IRLS algorithm

In this section several lowpass filters with different passband and stopband frequen-
cies were designed using A = —L+ in the IRLS algorithm. This is to demonstrate

that this choice of A results in poor convergence for the IIR filter design problem.

Example 1. In this example we design an eighth or.der lowpass filter to approx-
imate in the L, sense, the ideal specifications given by
passband edge frequency w, = 0.48 «
stopband edge frequency w, = 0.51 =.
The parameters of IRLS algorithm chosen were p=10, z = 1.2, NTter=30.
Fig. 3.1 shows the frequency response of the designed filter and Fig. 3.2 illustrates

the convergence of the L, error.
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Fi.glfre 3.1: Frequency response for the filter in Example 1, corresponding to a
minimum L, error value of 0.2052, which occurs at iteration number five of Fig. 3.2
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Figure 3.2: Lp Approximation error for the filter in Example 1.
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Example 2. In this example we design a tenth order lowpass filter to approxi-
mate in the L, sense, the ideal specifications given by
passband edge frequency w, = 0.280 =
stopband edge frequency w, = 0.301 =.
The parameters of IRLS algorithm chosen were p=10 , g = 1.2, NIter=55.
Fig. 3.3 shows frequency response of the designed filter and Fig. 3.4 illustrates the

convergence of the L, error. By looking at the plot of L, error function it was

12 T 1 T T T
~-= Desired
—— Aclual
1 -
0.8 b
2
5
Q.
]
g 0.6f 4
3
04}
0.2}
'
!
o L. 2. l L — e L 2
0 0.1 02 0.3 04 0.5 0.6 0.7 08 09 1

(7.4

Figure 3.3: Frequency response for the filter in Example 2, corresponding to a
minimum L, error value of 0.1775, which occurs at iteration number seven of Fig.

3.4.

observed that although the error was minimized in subsequent iterations it was not

monotonically decreasing. Fig. 3.2 and Fig 3.4 show a big jump in the L, error at
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Lp Approximation error
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Figure 3.4: Lp Approximation error for the filter in Example 2.

the 13th and 12th respectively. The reason for this behavior is that the choice of
A= ;.1.—1, which was used for FIR filter design, is not appropriate for the design
of IIR filters. Since this choice of A results in a very poor convergence for the IIR
filter design problem in the L, norm sense, in order to improve the convergence an

appropriate choice of A must be considered.
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3.6 Determination of the optimal Convergence

Parameter )\ analytically

It has been shown above that the value of the parameter A has to be determined
in manner which will be appropriate for the IIR filter design problem. For a given
previous and temporary filter coefficient set, an optimal A value would be the one
that will give the minimum L, error. Hence in order to determine the optimal value
of A analytically, the L, error criterion has to be differentiated with respect to A

and made equal to zero. The pth powered L, error norm is given by
B} = YAHE) - Dwp (3.20)
=1

where H(e™*) expressed in terms of the IIR filter coefficients {bayn = 0,1, .., N,

@n,n=1,..,N}, is given by

H(eion) = St Bie? +bpe®n 4 . 4 by~ Niun

1 + ale-jwk + 026-2jwk +.. + aNe—Njwk (3’21)

Let us denote the (m — 1)th filter coefficient as

a,T,;_l = [bOv bla b27 ooy sz Qa, ay, ..., GN] (3.22)
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and the difference between mth temporary filter coefficient set a, and (m — 1)th

coefficient given by 3.22, as

(g.m - am—l)T = [db()1 dbla db?r ooy de? dalr da?: ey da;V] (3'23)

where

db; = am(i) — am-1(3)

- Now the expression for E?, for the case N=2, in terms of A is given by

B = Z':[(bo + Adbo) + (by + Adby)e™ % + (By + Adbg)e~r D(w)? (3.24)
k=1

1 + (a1 + Aday)e—7k + (ap + Aday)e—2iwe

Differentiating (3.24) with respect to A and equating the resulting expression to zero

yields the the following expression:

b e
&P T ¥ (a1 + darhe7or + (a3 + dagh)e—2n

_(dare™3 + dage™2ik)(by + dboA + (b1 + dbyA)e™3% 4 (by + dbyA)e~2er)?2
(1 + (a1 + dayA)e7w + (ap + dag))e—2iwr)2

bo + dboX + (b1 + dby )\ )e=7% + (by + dbyA)e2s

- -1 _ 2
( 1 + (a1 + da1A)e=iwr 4 (a3 + dag\)e—2iwe D(ws)) 0 (3.23)

It can be seen that this is a highly nonlinear expression with respect to A and it

is very difficult to obtain an analytical solution for the optimal value of A. This
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means that we have to resort to numerical solution techniques to solve for A using
(3.25). Such techniques are iterative in nature and computationally expensive to
be incorporated in every single iteration of the IRLS algorithm. Since this optimal
search for A would affect the computational complexity of the IRLS algorithm we
‘resort to an alternative approach of A selection.

The performance of the original IRLS algorithm is enhanced when the value of the
parameter A is chosen as follows. The value of A is varied from 0 to 1 in steps of 0.1
and the A value which results in the minimum L, error is selected as the current value
of A. Let Ay denote the A value which gives the minimum L, error value as described
above. Using this method of selecting A the previous two designs were carried out
and resulted in rapid convergence of the L, error function, as demonstrated in the

next section.
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3.7 Results for 1-D IIR digital filter using \ = \,,

in the IRLS algorithm

It has been shown that the choiceof A = ;ﬁ resulted in poor convergence and hence
a more appropriate choice of A for the ITR filter design problem must be considered.
In this section the previous two examples of filter design are solved using A = Ay as
defined earlier. Fig. 3.5 and Fig. 3.6 show the frequency response of the designed
filters. Equation (3.26) and (3.27) give the transfer functions of the two filter designs

of Examples 1 and 2, respectively in the cascade form of second-order sections.

0535 (L 2:29382"" + 1.68602"2)(1 + 0.9310z " + 1.53002~%)

H(z) = (1 - 0.12082-1+0.190522)(1 — 0.0399z" + 0.75577-2)
(1+40.2892z! +1.13412-2)(1 + 0.0809z"! + 1.0037272) (3.26)
(1 —0.0429z-1 +0.94072-2)(1 + 0.0757z~1 + 0.2753272) ’
1-2.06172"1+3. ~2)(1 - 0.0 149 ~2
H(Z) = 0.0042( 2.06172"" + 3.842822)(1 — 0.0587z! + 2.58882~2)

(1~ 1.0220z-T+0.46522-%)(1 — 1128021 + 0.82772-2)

(1 —1.045621 + 1.01612~2)(1 — 0.2500z! + 0. 4567272)
( 1 —1.05802"1 + 0.6275z-2)(1 — 0.9145z! + 0.2070z-2)

(1 —1.1769z"! + 1.0060z~2)
(1 —1.2175z-1 + 0.97872~2)

(3.27)
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Fig. 3.7 shows a comparison of the Lp error by using A = Gy as given in [1]

for FIR filters and A = Ay, for example 1. For the case of A = Ay, the L, error
and peak deviations were 0.0466 and 0.0334 respectively. Whereas for the case of

A= GTI—T)’ the L, error and peak deviations were 0.2052 and 0.1505 respectively.
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Figure 3.7: Comparison of Lp error by using A = ﬁ and A = Ay in the IRLS
algorithm, for Example 1.
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Fig. 3.8 shows a comparison of the Lp error for the two cases, for example 2.
For the case of A = Ay, the L, error and peak deviations were 0.0272 and 0.0236
respectively. Whereas for the case of A = ﬁ? the L, error and peak deviations

were 0.1775 and 0.0738 respectively.
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Figure 3.8: Comparison of Lp error by using A = —L7 and A = Ay in the IRLS
algorithm, for Example 2.
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From the results obtained it is seen that the choice of A = Ay in the IRLS

algorithm results in rapid convergence of the L, error function and the resulting

filters have smaller peak deviations.
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Example 3. In this example an eighth order lowpass filter is designed to ap-
proximate both magnitude and phase specifications, with passband edge frequency
wp = 0.40 7, stopband edge frequency w, = 0.46 = and group delay= 10 samples.
‘The parameters of IRLS algorithm chosen were p=16 , u = 1.1, NIter=50. Fig. 3.9
shows the frequency response of the designed filter and Fig. 3.10 shows the resulting
passband group delay.

The transfer function of the designed filter in the cascade form of second order

sections is given by (3.28).

H(Z) = 00036 L= 2698427 +3.0634:7%)(1 + 0.91812~" +1.648622)
T (1= 0.504921 + 0.99422-2)(1 — 0.75352-1 + 0.70082-7)

o (1-0.2453271 + 1.0800272)(1 — 4.86922" + 5.70782"2)
(1 - 1.1801271 +0.59832-2)(1 — 1.4632z~" + 0.56682-2)

(3.28)

The resulting L, error was 0.1563.
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3.8 Performance comparison of IRLS technique

with Davidon Fletcher Powell (DFP) uncon-

strained optimization technique.

In this section a comparison between the designs by IRLS technique and the DFP

unconstrained optimization technique is presented.

Lowpass filter design: Using the IRLS and DFP techniques five lowpass filters
of order five, with following specifications: same passband edge =0.37 radians
stopband edge varying from 0.31x radians to 0.39x radians in steps of 0.027 radians
p=4. The DFP optimization technique was implemented using the fminu routine
available in the MATLAB’s Optimization toolbox. Fig. 3.11-3.15 shows the compar-
ison of log-magnitude response for the two techniques. Table 3.1 shows a comparison
of the L, error, and the number of Flops (the floating point operations) needed to
achieve the value of L, error, for the designed filters using the two techniques. These

Flops are computed by using the 'Flops’ function available in MATLAB.
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Figure 3.11: Comparison of log-magnitude response for the IRLS and DFP tech-
niques, w, = 0.317 radians .

wp w, ~ IRLS DFP_
(radians) | (radians) [ L, error | Flops | L, error | Flops
030 = 031 = 0.1101 | 995,130 | 0.9058 | 2,675,848
030« 033« 0.0797 1 994,769 | 0.9680 | 1,889,665
030 = 035« 0.0377 | 994,840 | 1.3349 | 2,456,706
0.30 037 = 0.0293 | 995,066 | 0.4329 | 2,690,601
030 « 039« 0.0183 | 997,716 | 0.3644 | 2,492,747

Table 3.1: Comparison of L, error for IRLS and DFP techniques for p=4, N=5.

It can be observed from the obtained results that the IRLS technique performs
much better in terms of the L, Approximation error as well as in terms of stopband

attenuation, as compared to the DFP optimization techique. It is also seen that the
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niques, w, = 0.337 radians .



o——— T — T T T T 2 T T
N
S ——IRLS

20} et it

40 + J
2
°
£
3

c '60 - N
5]
g
e
@

3 -80 .
g

-100 F J

-120 :

-140 L L L L ) L A 1 L
0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 09 1
(% 4

Figure 3.13: Comparison of log-magnitude response for the IRLS and DFP tech-
niques, w, = 0.357 radians .



20 1 3 1Y L3 13 L RS Ll ¥ L3
— IALS
0 ] -~--DFP | 1
\
N

20 F N - 4

§ 40t SeeT 1
£
2

S 60} -
2
e

g 80 1
=
g

E.o0f -

-120 - -

-140 - 1

’160 2 L. L . ] -l . L L 2
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
(0% .4

Figure 3.14: Comparison of log-magnitude response for the IRLS and DFP tech-
niques, w, = 0.377 radians.



20 e b L ¥ T L3 L3 Ly

—IRLS

-60 |

Amplitude response in db

8

-120

.1 40 L 2 L L . ' & L L '
0 0.1 0.2 03 04 0.5 0.6 0.7 0.8 0.9 1

(017} 4

Figure 3.15: Comparison of log—r;lagnitude response for the IRLS and DFP tech-
niques, w, = 0.397 radians .



a6
IRLS technique needs much smaller number of computations as compared to the
DFP optimization technique. The details of the computational complexity for the
two techniques is discussed in the section 3.8.1.
Table 3.2 and 3.3 give the transfer function of the five filters designed using the IRLS
and DFP techniques in the cascade form of second order sections. The coefficients

indicated in the tables are those of (3.29), namely

o (L+aez™t + bez?)
H(Z) = A
(2) g (1+cezl +dp22)

(3.29)
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Bandpass filter design: A sixteenth order band-pass filter with two passbands
and three stopbands was designed using the IRLS and DFP optimization techniques.
The passband and stopband frequencies are, w,, = 0.17, Wp, = 0.217, wp, = 0.377,
ws, = 0.427, w,, = 0.387, wp, = 0.637, w,, = 0.797, ws, = 0.837. Fig.3.16 shows the
desired and actual Magnitude responses for the design using IRLS technique. The
resulting L, error for p=8 was 0.0893 and peak magnitude deviation was 0.1210.
Fig.3.17 shows the desired and actual Magnitude responses for the design using
DFP optimization technique. The resulting L, error for p=8 was 0.2171 and the

peak magnitude deviation was 0.2215.
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Figure 3.16: Bandpass filter design: Comparison of desired and actual magnitude
response for the IRLS technique.
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Table 3.4 and 3.5 give the transfer function of the bandpass filter designed using
the IRLS and DFP techniques in the cascade form of second order sections. The

coefficients indicated in the tables are those of (3.30)), namely

K -1 -2
H(Z) =AH(1+akz + bp2~%)

et (1 + cez7t +diz2) (3.30)



A (773

bi

Ck

di

0.1294 | 1.7782

1.0131

1.4219

0.7703

1.7717

0.8196

1.4234

0.7915

-1.7795

1.0144

0.6777

0.8700

-1.7560

0.8046

0.6760

0.7693

0.5490

1.0152

-1.4222

0.7712

-0.5026

0.9964

-1.4226

0.7924

0.0874

0.7844

-0.6628

0.8776

0O 3| | Wl | ot 0] =] -

-0.1311

0.5981

-0.6901

0.7622
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Table 3.4: Filter coefficients for the cascade form transfer function, for the bandpass
filter designed using the IRLS technique.

A Qg

be

Ck

di

0.2544 | -1.8708

0.9098

1.4876

0.9034

-1.6883

0.9084

1.8180

0.8730

-0.4378

0.9481

-1.7588

0.8304

0.4420

1.0161

-1.4549

0.8460

-0.1017

0.7616

0.7336

0.8257

1.4699

0.7140

-0.6729

0.8512

1.7983

0.9159

-0.1174

0.6713

QO [ N U o] O] DI +=] H~

0.9718

-0.0289

0.3087

0.1983

‘Table 3.5: Filter coefficients for the cascade form transfer function, for the bandpass
filter designed using the DFP technique.
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3.8.1 Comparison of the Computations required by the

two Algorithms

IRLS Algorithm.
The number of Computations needed for a single iteration of the IRLS algorithm
are as follows:

To find the filter coefficient set a the following equation has to be solved.

a = [Re(UT)RRe(U) + Im(UT)RIm(U)|!

[ Re(UT)RRe(H) + I m(UT)RIm(H)| (3.31)

(1.) Let N be the filter order. If we assume the number of frequency samples to be
5 x N and since there are 2V +1 filter coefficients to be determined, the dimensions
of the matrix U will be 5N x (2N +1)=5N x 2N. The dimensions for the matrices
R and H will be 5N x 5N and 5N x 1 respectively. The computations needed for
obtaining each of the matrix products in (3.31) are shown in tabular form in Ta-
ble 3.6. The computations required for finding the inverse of the resulting 2Nx2N
matrix in (3.31) is negligible compared to the those needed for above matrix oper-
ations. Hence for solving (3.19) to obtain the filter coefficient set a, we need about
40N? + 40N? multiplications, where N is the filter order.

(2.) For computing the frequency response vector H, we need about about 5N x N



Matrix operation Matrix dimensions No. of
. Multiplications
Re(UT) x R (2N x 5N) x (5N x 5N) | (2N x 5N)=10N% |
R being diagonal

Re(UT)R x Re(U)

(2Nx5N)x(5N x 2N)

2N x5N x2N=20N3

Im(UT) x R (2Nx5N)x (5N x5N) (2Nx5N)=10N% |
R being diagonal
Im(UT)R x Im(U) (2Nx5N) x (5N x2N) 2N x5N x2N=20N3
Re(UT)R x Re(H) (2Nx5N)x(5Nx1) (2Nx5N)=10N2
Im(UT)R x Im(H) |  (2Nx5N)x(5Nx1) (2Nx5N)=10N2
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Total= 40N3 + 40 N2

Table 3.6: Computations needed for obtaining each of the matrix products.

multiplications for the numerator and another 5N x N multiplications for the de-
nominator. Hence a total of 102 multiplications are needed.

(3.) For the selection of best A we need to evaluate the frequency response vector H
at ten different A values. Hence we need about 10 x 10N2 = 100N? muliplications.
So we need about 40N3 + 150N2 multiplications per single iteration of the IRLS
algorithm.

DFP unconstrained optimization technique.

The number of Computations needed for a single iteration of the DFP unconstrained
optimization technique are as follows:

(1.) For the calculations of the gradients the objective function needs to be eval-
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uated as many times as the number of variables. The number of multiplications
needed for one function evaluation is about 10N2. Since there are 2V variables
20 V3 multiplications are needed to compute the gradients per iteration.

(2.) For the computation (updating) of the inverse hessian matrix (required for the
Line search) 8 N3 + 20N2 multiplications are needed.

Thus about 28N3 + 20N2 multiplications, per single iteration are needed for the
DFP unconstrained optimization technique.

From the above discussion it is clear that the Computational complexity, per single
iteration, of both algorithms is almost same. Hence the algorithm which takes more
number of iterations to achieve a certain minimum error level would be less efficient
in terms of computations. From Table 3.1 showing the comparison of L, Approx-
imation error and the number of computations needed, for the two algorithms, it
can be observed that the DFP technique, despite taking more number of compu-
tations does not perform well in terms of the L, error. The IRLS technique gives
smaller L, approximation error and requires less number of computations. Despite
the similar computational complexity per single iteration of the two techniques the
IRLS algorithm is more efficient computationally as it requires smaller number of

total computations and hence less design time.
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3.9 Comparison with some recent IIR digital fil-

ter design techniques.

3.9.1 LCK Technique [10]

Lu, Cui, and Kirlin in {10} proposed a technique which we denote here by LCK tech-
nique. In this technique, they derived closed form formulas for the evaluation of the
gradient vector and the Hessian matrix of an IIR transfer function. These formulas
were then used in a modified Newton optimization algorithm for the optimal design
of IIR digital filters in L, norm sense. The design example considered was as follows:
passband edge frequency=0.45 7 radians and stopband edge frequency=0.55 7 ra-

dians. The method was applied to minimize the following objective function.

E(-’l‘) = E IH(w.) - Hd(w,—)l" (332)

"The filter order considered was eight and p=4. Table 3.7 gives a comparison of
the results for the above design example using the technique of [10] and the IRLS

technique.



| | Ref. [10] _IRLS tech. |
E(z) 1.375 x 10~ | 4.395 x 109 |
Max. passband dev. 0.0305 0.0085
Max. stopband dev. 0.0215 0.0106
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Table 3.7: Comparison of deviations for IRLS technique and the technique of [10]

for p=4 and filter order = 8.



3.9.2 Shaw’s Technique [6]

Shaw in [6] proposed a frequency-domain approach for optimal estimation of the
[IR filter coeflicients to match a given frequency specification in the least-squares
sense. The method decouples the numerator and denominator estimation problem
into two subproblems. One for the estimation of the numerator coefficients and
the other for the estimation of the denominator coefficients. After decoupling, the
denominator is estimated by an iterative minimization algorithm. The numerator
is found only once by using the least-squares technique, based on the estimated de-
nominator. Since this technique performs iterative minimization with respect to the
denominator coefficients only and does not consider the numerator coefficients, the
numerator computed from the estimated denominator may not be optimal. Two de-
sign examples considered in the paper are compared with the IRLS design method.
Lowpass filter design

A lowpass filter design was considered in [6] where the desired magnitude specifica-
tions were given in the dB scale and are shown by solid line in Fig. 3.18. By using
a sixth order filter Shaw [6] obtained a minimum stopband attenuation of about 33
dB. By using a same filter order for the IRLS technique the maximum stopband
attenuation of about 30 dB was achieved. The the resulting response is shown in
dot-dashed line, in the Fig. 3.18. Hence the performance of the IRLS technique is

close to that of [6].
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Figure 3.18: Comparison of desired (solid line) and actual (dot-dashed) frequency
response for lowpass filter design using the IRLS technique.

Notch filter design

A notch filter design was considered in [6] using a tenth order filter. The desired
magnitude specification are shown by solid line in Fig. 3.19. The desired ;,ttenuation
at the notch frequency was 20 dB. In [6] the value of attenuation achieved at the
notch frequency was about 18 dB. The resulting response using the IRLS technique
is shown in dot-dashed line, in Fig. 3.19. The attenuation at the notch frequency ob-
tained was 19.3 dB. Hence for this design example also the IRLS technique performs

favorably.
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Figure 3.19: Comparison of desired (solid line) and actual (dot-dashed) frequency
response for notch filter design using the IRLS technique.



3.10 Conclusions

One of the major contributions of this Thesis is the formulation of the ITR digital
filter design problem in the L, norm sense. By transforming the problem of mini-
mization of the L, norm of the filter error function to that of solving an equivalent
weighted least-squares problem, the IIR filter coefficients are obtained without the
need of using any nonlinear optimization techniques.

The choice of the convergence parameter X as used by Burrus and Barreto [1] in
the IRLS algorithm for the FIR problem was found to be inappropriate for the IIR
filter design problem. An optimal value of the parameter A would be the one which
will give the minimum L, error in the subsequent iterations. An attempt to find
such an optimal value resulted in a highly nonlinear expression with respect to A, the
solution of which was very difficult. Although numerical solution techniques to solve
such an equation exist, incorporating them into every iteration of the IRLS algorithm
would be computationally too expensive. Hence a simple method of selection of A
(denoted by Ayf) is proposed. As a result of this method of selection of \ rapid
convergence of the L, error was obtained. Several design examples, demonstrating
the effectiveness of the proposed IRLS technique, are presented. A comparison of
several lowpass and bandpass IIR filters designed using the modified IRLS technique
and the Davidon Fletcher Powell (DFP) unconstrained optimization technique is also

presented. It is seen that the IRLS technique compares favorably in terms of the
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L, error as well as the Computational complexity. The results of comparison with
some recent IIR filter design techniques, demonstrate the usefulness of the proposed

design approach.



Chapter 4

Design of 2-D IIR digital filter

4.1 Introduction

In this chapter the design of 2-D IIR digital filters using the IRLS technique is
presented. The IIR filter design technique developed for the 1-D case in the previous
chapter is extended for the design of 2-D IIR digital filters. The first two sections
present the formulation of the 2-D IIR filter design problem. The next section
presents the design of 2-D IIR digital filters in the cascade form. In the following
sections various design examples and comparisons with the other 2-D IIR filter

design techniques are presented.
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4.2 IRLS design of 2-D IIR digital filter

Let H(z1, z3) be the system function of a 2-D recursive digital filter described as

N N; -ny ,—
P(Z],, 22) - EL:szZn:ﬂ b'll'lzzl an? "2

H(z,2) = =
(21,22) 14+Q(z1,22) 1 +2::’:=1 Z,ﬁ’d Gnyny 2y 25 "2

(4.1)

Let D(u, v) be the desired frequency response of the 2-D IIR filter and let A (e, &)
be the actual frequency response. The filter coefficients by, and Gpyn,, np =
0,1,..,NM,n2 = 0,1,.., N3, are to be found such that the following p** power er-

Ior norm

F = %%lH(ei"“aej"") ~  D(ug,,vi,)IP (4.2)

is minimized. By setting the weights to be
Wik, = [H(e™,6™2) —  D(ug,,v5,)| (4.3)
the p** power error norm can be defined as weighted least-squares as follows

Eg = kZ%wk‘ble(ej‘UE1,ejV§z) — D(ukl)vbz)lz (4.4)
1

By solving the above set of equations as a weighted least-squares problem we obtain

the required filter coefficient parameters {bn,n,,@n,n, } for the 2-D IR digital filter.
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4.3 Solution of the weighted least-squares prob-

lem

The design equations for 2-D IIR digital filter in weighted least-squares sense are
quite similar to those of 1-D case except for an increase in the dimensionality.

Let the difference between D(u,v) and H(e’*,e%) be ((ef*, el?) | i.e

P(e®, el?)

¥ Qe o) ~ D(w0) = (", ") (43)

multiplying (4.5) by [1 + Q(e’®, /)] we get

P(e, &) — Q(e, &™) D(u, v) = D(u,v) + V(&*, i) (4.6)

where

V(e™, &) = [1 + Q(e™, &)[¢(e™, &) . (4

By putting u = ugy, k1 = 1,2,..,m, and v = vy, kp = 1,2, .., 7 in 4.6 the following
system of equations can be formed.

Defining

E =[V(e*, &™), V(e™, ™), .., V(e™, eivr2),

V(e &%), V(i &), . V(e eivn)



............... V(e "), .., V(el*n, e"m)|T

[

ﬁ(ult vl)

a(ulv v?)

ﬁ("-‘1 ? vf‘z)

ﬁ(uz, ‘01)

ﬁ(uz, ‘U,.z)

U(Up, , Upy1)

i(uy,, V) ]

(4.8)

(4.9)



where

ﬁ(uﬁ 'Uj) = [17 C-ij, e—szir e . ’ e-Jszi1
. e"i("-’+Nzc,—)

...............................

, e~ iy , e‘j(Nl'li‘f'Nzﬂi),

D(u;,v;)e 7%, D(us, v;)e™2% .., D(u;, v;)e iM%
D(u;, v;)e™™, D(u;,v;)e 7+, | D(u;, v;)e~30i+Nav;)

) rereesnenns , D(u;, v,-)e""“"", D(u;, vj)e—i(Nu.'-l-sz,-)]

Let

a= [6001 bOl: bO2v .oy bONu 6107 bu: .y blNz g veevy bN; Nay

T
ao1, g2, A3, -+ aoN,, 010, G11, -+, Q1IN g --evy aNqu]

H= [D(ul, ‘Ul), D(ul, 112), ......... , D(ul, v,,),
D(U2, vl)v D(u2,v2)1 ------- ) D(“?a vrz),
...... » D(try, 1), D(uyy, v2), ..oy D(try, v, )T

(4.10)

(4.11)

(4.12)



The following vector equations can be formed:

E=Ua-H (4.13)

Minimizing Si=* Z;:’{ w(u;, v;)?|V(ei*, ei%)[2 leads to the solution

a = [Re(UT)RRe(U) + Im(UT)RIm(U)}

[ Re(UT)RRe(H) + Im(UT)RIm(H)] (4.14)

The derivation for (4.14) is similar to that for the 1-D case

where R is a diagonal weighting matrix with the weights w(u;, v;)2, Re(.) means
the real part of (.) and Im(.) means the imaginary part of ®)
The coefficient vector a given by (4.11), is obtained as the solution to a weighted
least-squares problem. This weighted least-square solution has to be carried out in
every single iteration of the IRLS algorithm as discussed in chapter 3. The stability

of the resulting filter is tested using the Maria and Fahmy stability test [48].



4.4 Cascade design of 2-D IIR filters

In order to approximate a given 2-D IIR digital filter specification a cascade form
design of 2nd or first order filter sections is best suited because of several reasons.
First the frequency response of cascade form is less sensitive to coefficient quanti-
zation. Secondly, lower order 2-D difference equations are easier to implement than
the higher order direct forms. Also stability check of lower order filters sections is
easier than that of the overall filter. In order to perform the design of 2-D IIR filters
in cascade form using the IRLS technique the following procedure is adopted. At
each iteration, the coefficients of all but one of the filter sections are held constant
while the coefficients of the remaining filter section are found such that the over-
all error is reduced. In the next iteration the coefficients of another filter section

are varied. In this algorithm one cycle consists of N iteration for N cascaded sections.



Cascade design of 2-D IIR digital filters

Given: Desired freq. spec. H 4
: No. of cascades=2

Using initial filter coefficients
8¢ & a3 compute Hy & Hy

Yes

Compute a4 based on [H d—H1 Hy] by
WLS technique.

l Compute Hy from a4 '

Compute a5 based on [H d'"‘ Ho] by
WLS tecnique.

Y

Compute Hp from ap

|

Yes

l a1 & a,are the final filter coefficient sets '

Figure 4.1: Flowchart describing the cascade design of 2-D IIR ﬁlters using a cascade
of two second order sections.
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The flow diagram given in Fig.4.1 describes the optimization of cascaded filter
sections in stages. Suppose we wish to approximate a given 2-D frequency speci-
fication Hy by two second order filter sections. Let H; and H, be the frequency
responses of the two filter sections for the initial iteration. In the next iteration the
filter coefficients for the first filter section H; are found by the IRLS technique by
setting the weights based on the error which is a function of (H; ~ H,.H,). From
the filter coefficient set of the first section we find the frequency response of H; to
be used for error calculation in the subsequent iteration. In the next iteration the
filter coefficients for the second filter section are found by the IRLS technique by
setting the weights based on the error which is a function of (H; — H;.H,). From
the filter coefficient set of the second section we find the frequency response of H,
to be used for error calculation in the next cycle. The above procedure is continued
in order to reduce the overall error.

As a result of this method of optimization in stages the IRLS technique requires
significantly less number of computations as compared to any other nonlinear opti-
mization technique, (such as the DFP unconstrained optimization technique), which
considers optimizing the coefficients of all the cascade sections simultaneously. The

details of which are given later.
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4.5 Results for 2-D IIR digital filter

Example 1. In this example a two-dimensional circularly symmetric lowpass filter

with following specifications is considered.

=1 [W? + »2]Y2 <0.08
H(u,v)| =05 0.08<[u? + v?/2 <012 (4.15)
=0 [® + 22 >0.12

A cascade of three second order sections and p=10 was used to approximate the
specifications. The frequency response of the resulting filter is shown in Fig. 4.3.
The frequency specification is shown in Fig. 4.2. An L, error of 0.3762 was ob-
tained after 5,730,013 flops (floating point operations). The peak magnitude error

was 0.2093.

Davidon Fletcher Powell (DFP) unconstrained optimization techniqlie was used
to approximate the same filter specifications, using the same initial filter. The
resulting response of the designed filter is shown in the Fig. 4.4 and the L, error

after 18,994,665 flops was 0.4048. The peak magnitude error for this case was 0.2382.
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The resulting 2-D IIR filter using the IRLS technique was

Hz L zh =

0.001227 —0.000081 0.000870 1

[t z* 5% | —0.000081 0021075 - 0003137 | | 25t
| 0.000870 —0.003137 0.001111 || z;

1.000000 - 1.388637 0511270 || 1

1 s 7% | -13ss637 1953046 —o0.730068 | | 25!
| 0511270 —0.730068 0.277841 | | 2

[ 0.001229 —~0.000085 0.000872 || 1

[t 2" 5%] | —0.000085 o0.021083 —o0.003140 || 23
| 0.000872 -0.003140 0.001113 || 2

1000000 —1.388638 051271 || 1

[1 gt o 2] —1.388638 1.953048 —0.730069 | | =
0.511271 —0.730069 0277842 | | z;°

[ 0.001198 — 0000028 000082 || 1

[t =" %] | 0.000028 0.020976 —o.003084 | | 25
| 0000842 —0.003084 0.001083 || z?

1.000000 —1.388792 0.511324 1

[t a7 =] | —Lassree 1953572 — 0730249 | | 25
0.511324 —0.730249 0.277868 P

e




The resulting 2-D IIR filter using the DFP technique was

-

~0.000210 0.001002 -0000934 | | 1

[L st 2| oocow02 0018151 0001912 z!
—0.000934 —0.001912 0.000010 | | =2

Bzl = = 1
1.0000 - 1.356032 0.480520 1

[L = 27| | —1356032 1825470 —o.648516 | | 23

| 0480520 -0.648516 0235639 | | =7 |

[ 0000131 0001214 —o00oro2 || 1 ]

[t = =% | oooi214 0018213 0001710 | | 25

| —0.000702 —0.001710 0.000011 | | %?

X = o =
1.000000 — 1355811 0.480715 1

[ 5] | —rasss1r 1825613 —o0.648120 | | 25t

| 0480715 —0.648120 0.235700 | | 2%

[ 0000110000151 0000401 || 1 ]

[t 2 =] | ooo1s11 0018321 0001540 || 25
| —0.000401 —0.001540 0.000203 | | ;2

X - -
1.000000 - 1.355942 0.480561 1

[1 Sy 2] —1.355942 1.825431 -—0.648503 | | z;!
0.480561 ~0.648503 0.235650 | | z5?
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Example 2. In this example we will consider a high-pass filter with the following

specification:

H(u,v) = [u? + o*'/?

1
u= 0, T3 1.0

1
v= 0, 13 1.0

The filter was approximated by a second order section. First the IRLS design technique
was used to approximate the desired filter specifications. Fig. 4.5 shows the desired
amplitude specification. The amplitude response of the resulting filter is shown in the
Fig. 4.6 , the resulting L, error in 9 iterations was 0.2090 for p = 12 and up=1.11. The

resulting filter was

i .
04979 00204 00372 || 1
[ 5 2% | 00206 —03399 000e3 | | 25

00372 0.0043 0.0481 || z°
H(zhzgh = - -

1.0000 0.5671 0.0575 1

[ s =% | ose71 01686 - o0.0066 | | 25

0.0575 ~0.0066 0.0184 | { 272

Davidon Fletcher Powell (DFP) unconstrained optimization technique was used to approx-

imate the same filter specifications for the purpose of comparison, using the same initial
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filter. The resulting response of the designed filter is shown in the Fig. 4.7 and the L,

error after ten iterations was 0.2187. The resulting filter was

0.4617 —0.0363 0.0086 ( 1

[ =" 2% | 00363 -o04090 - 00081 2!

0.0086 -00081 00735 || z? |

r - -

1.0000 0.6297 0.1032 1

H(zi', 23" = :

[t 5 27 | 06297 01814 - 0.008 z!

0.1032 -0.0084 00141 | | 72



Magnitude

Figure 4.5: Amplitude specification of the 2-D high-pass filter for Example 2.
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Figure 4.6: Frequency response of the 2-D high-pass filter using IRLS technique for
Example 2.
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Figure 4.7: Frequency response of the 2-D high-pass filter using DFP Optimization
technique for Example 2.
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4.5.1 Comparison of the Computations required for IRLS
and DFP techniques.

IRLS Algorithm.

The number of Computations needed for a single iteration of the IRLS algorithm are as
follows:

(1.) Let N be the order of the 2-D IIR filter. If we assume the number of frequency
samples to be (5N)2 and since there are 2(N +1)?2 filter coefficients to be determined, the
dimensions of the matrix U will be 25N2x2(N +1)2225N2x2N2, Proceeding in a similar
manner as for the 1-D case the required number of computations can be calculated. For
solving equation 4.14 to obtain the filter coefficient set a, we need about 200N¢ + 150N%
multiplications.

(2.) For computing the frequency response vector H, we need about about 50N* multi-
plications.

(3.) For the selection of best A we need to evaluate the frequency response vector H at
ten different A values. Hence we need about 500N* multiplications.

So we need about 200N® + 700N* multiplications per single iteration of the IRLS algo-

rithm.
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DFP unconstrained optimization technique.
The number of Computations needed for a single iteration of the DFP unconstrained op-
timization technique are as follows:
(1.) For the calculations of the gradients the objective function needs to be evaluated as
many times as the number of variables. The number of multiplications needed for one
function evaluation is about 50N'*. Since there are 2N variables 100N® multiplications
are needed to compute the gradients per iteration.
(2.) For the computation (updating) of the inverse hessian matrix (required for the Line
search) 8N® + 20N* multiplications are needed.
Thus about 108N® + 20N* multiplications, per single iteration are needed for the DFP
unconstrained optimization technique for the design of 2-D IIR digital filter.

It can be seen that the order of complexity is same for both the techniques.

Computational complexity for cascade design.

Let there be K cascade sections each of order N. By optimizing each of the K Nth order
sections in stages using the IRLS technique would require about K(200N® + 700N4),
whereas the DFP optimization technique by optimizing the coefficients of all the cascade
sections simultaneously requires about 108(KN)% + 20(KN )4. Clearly as the number of
cascades K, increases, the computational complexity of the DFP optimization technique

would increase at a greater rate than for the IRLS technique.
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4.6 Comparison with some other 2-D IIR digital

filter design techniques.

Deng [57] proposed a new technique of designing 2-D digital filters based on iterative
singular value decomposition of a 2-D magnitude specification matrix. By using this
decomposition approach the 2-D magnitude specification was decomposed into a pair of
1-D ones and thus 1-D design techniques are used. A circularly symmetric lowpass 2-D

magnitude specification given by

10, Re[0.0,0.1]

08, Re(0.1,0.2]

0.44, R €(0.2,0.3]

Hy(wn,w2) ={ = 014, Re(03,0.4] (4.16)

003, Re(0.4,0.5]

0.02, R e (0.5,0.6)

= 0.001, R e (0.6,1.0]

where R = ‘/-(m The results of comparison of the design using the technique
of [57] and the IRLS technique are shown in table 4.1. It can be concluded that the design
results are comparable to the previous techniques.

Figure 4.8 shows the response of the sixth order filter designed using the IRLS tech-

nique in cascade form.



Design | Filter | en(%) | Maximum | Minimum

Methods | Order Passband | Stopband

Atten.(dB) | Atten.(dB)
IRLS 2,2 | 31.07 2.3875 19.89
[57] 2,2 | 42385 6.62 33.46
[35] 2,2 | 34.21 0.91 22.35
IRLS 44 | 23.29 1.6216 37.72
[57] 44 | 15.58 2.20 58.26
[35] 44 | 24.36 -0.28 37.56
IRLS 6,6 | 21.20 1.18 54.01
[57] 6,6 14.6 1.91 51.88

Table 4.1: Comparison of the design results
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Figure 4.8: Example 3:Frequency response of the 2-D low-pass filter using the IRLS
technique.



4.7 Conclusions

In this chapter a formulation for the 2-D IIR filter design, in the L, norm sense, based on
the IRLS technique is presented. The IRLS technique developed for the design of 1-D IIR
digital filters is extended to the design of 2-D IIR filters. For the design of 2-D IIR digital
filter a cascade form is considered. The reason for choosing the cascade form is its less
sensitivity to coefficient quantization and ease of implementation of lower order subfilter
sections. This cascade form design method optimizes the coefficients of each second order
filter section individually to reduce the overall error. This method of optimization of
filter sections in stages is computationally more efficient than any nonlinear optimization
technique such as the DFP unconstrained optimization technique, which optimizes the
coefficients of all the cascade sections simultaneously. The computational complexity of the
DFP technique increases at a greater rate than the cascade design using IRLS technique,
as the number of cascade sections increases. A comparison of the filter designs using
the cascade form IRLS technique and the DFP optimization technique is also presented.
The results show that the IRLS technique compares favorably with the DFP 6ptimiza.tion
design of 2-D IIR filters. From the results obtained it is also seen that IRLS technique
by optimizing each second order section individually, requires much less computations as
compared to the DFP unconstrained optimization technique. Finally a comparison with

some other well established techniques is also presented.



Chapter 5

Summary and Conclusions

This chapter summarizes the work described in this thesis and presents conclusions drawn

during the course of this thesis work.

5.1 Summary and Conclusions

"The major contribution of this thesis work is the application of the Iteratively Reweighted
Least-Squares technique for the IIR digital filter design problem for both 1-D and 2-D
cases in the L, norm sense. Since the IIR filter design problem is a nonlinear prob-
lem with respect to the filter coefficients, nonlinear optimization techniques such as the
Fletcher-Powell technique has been applied in the past for the minimization of the fre-
quency domain error function. The proposed IRLS IR filter design technique solves the
Lp approximation problem by solving a weighted least-squares problem (which is linear in

the filter coefficients) and can be written in short computer code.
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Based on the study of several 1-D IIR digital filter designs it was observed that the L,

error was not monotonically decreasing, the reason for this being the inappropriate choice

of Aas A= pml_l - This choice of A was used by Burrus et al. [1] for the design of optimal
Lp approximation FIR digital filters. An optimal value of the parameter A would be the
one which will give the minimum L, error in the subsequent iterations. An attempt to
find such an optimal value resulted in a highly nonlinear expression with respect to A,
the solution of which was very difficult. Although numerical solution techniques to solve
such an equation exist, incorporating them into every iteration of the IRLS algorithm
would be computationally too expensive. Hence in order to improve the convergence and
successfully design the IIR digital filters a simple method for the selection of the conver-
gence parameter is proposed. In this method the value of )\ is varied from 0 to 1 in steps
of 0.1 and the A value which resuits in the minimum L, error is selected as the current
value of A. As a result of this method of selection of ), rapid convergence of the L, error
was obtained. Several design examples, demonstrating the effectiveness of the proposed
method of choosing A in the IRLS technique, are presented.

A comparison of several lowpass and bandpass IIR filters designed using the IRLS tech-
nique and the Davidon Fletcher Powell (DFP) unconstrained optimization technique is
also presented. It is seen that the IRLS technique compares favorably with the DFP tech-
nique, in terms of the L, error and the Computational complexity. The IRLS algorithm,
requiring about 40N3 + 150N2 multiplications per iteration, and the DFP technique
requiring about 28N? + 202 multiplications for the same, are of same computational

complexity order. It has been observed from the results obtained that although the IRLS
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technique requiring slightly more number of computations as compared to the DFP tech-
nique, per iteration, shows a faster convergence in less number of iterations. A comparison
with some recent filter design techniques is also presented and results show the usefulness
of the proposed technique. It is seen that the L, error for the modified IRLS technique is
lower than that of the DFP technique.

The IRLS technique used for the design of 1-D IIR digital filters is extended to design
of 2-D IR filters in the L, norm sense. In order to design a 2-D IIR digital filter for
the given specification a cascade of second order filter sections is considered. The rea-
son for choosing the cascade form of second order sections being its less sensitivity to
coefficient quantization, than the direct form, easier implementation of second order sec-
tions and easier stability check for the second order sections. This cascade form design
method optimizes the coefficients of a single second order filter section in every iteration
by keeping the coefficients of the other filter sections fixed such that the overall error is
reduced. In the next sub-iteration the coefficients of another second order filter section are
optimized to reduce the overall error. Here one primary iteration or one cycle consists of
N sub-iterations, where N is the number of cascaded sections. This method of optimiza-
tion of filter sections in stages, will be computationally more efficient than any nonlinear
optimization technique(such as the DFP unconstrained optimization technique ), which
optimizes the coefficients of all the cascade sections simultaneously. The computational
complexity of the DFP technique increases at a greater rate than the cascade design using
IRLS technique, as the number of cascade secctions increase. A comparison of the filter

designs using the cascade form IRLS technique and the DFP optimization technique is
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also presented. The results show that the IRLS technique compares reasonably with the
DFP optimization design of 2-D IIR filters. It is also seen from the results obtained that
IRLS technique by optimizing each second order section individually, requires much less
computations as compared to the DFP unconstrained optimization technique. Finally a

comparison with some other well established techniques is also presented.

5.2 Recommendations for future work

The IRLS technique used here for the design of IIR digital filters in Ly norm sense, is a
frequency domain design technique in which the frequency domain error is minimized in
the L, norm sense. The same IRLS technique can also be considered as a technique for
designing the IIR digital filters in the time domain, by minimizing a time domain error
criterion in the L, norm sense. In other words the problem needs to be formulated in the

time domain. This could be a possible area for the future work.
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