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Chapter 1

INTRODUCTION

In many circumstances, the main objective of statistical studies is to make predictions.
In some instances, experience may be used to make predictions while in others it is
not. Hovever, either way may result in false expectation, but which one is more
reliable? Or in other words, which one has a smaller chance of error?

Forecast methods are classified as qualitative and quantitative (see[1]). Qualitative
forecast methods which may or may not incorporate the past data, are intuitive. They
mainly depend on the forecaster himself since he does not explicitly specify how
previous data is used. Others may not be able to reproduce the same expectation.

On the other hand, quantitative forecast methods are based on statistical or math-
ematical models. Forecasts are made once a model is chosen. So, such methods do
not depend on the forecaster but rather on the specified model. Hence, the forecasts
in these methods are reproducible.

The problem remains, in quantitative forecasting, on how to choose a model that
fits weli to a particular data under consideration. Of course, different methods have

1
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been suggested to enable researchers to choose the right model. This is known as
problem modeling. To choose a model, things like simplicity of the model, accuracy
and other factors have to be taken into account, (see[1]).

After a model is chosen, one must follow an appropriate procedure and a sound
statistical approach to make a forecast. One approach may be easier to use in a
particular problem than the other available approaches. In our work, however, we
follow a particular statistical approach on a given model under consideration.

We start with the mmltiple regression model whose error term follows a first order
auto correlation (FOAC). Then we use the Bayesian approach to find the prediction
distribution. By “first order auto correlation,” we mean the following. In some
regression problems, it is found that the error terms follow a certain pattern. That
is, the errors in different periods are correlated. Such type of correlation is known
as auto-correlation. Many economic problems follow this scheme. Examples include
what is known as time series problems in which the data usually occur in time ordered
sequences. The simplest auto correlation model is the first order auto-correlation in
which each of the errors in a specific period is correlated to the one preceding it as

shown in the following equation

U = Plr-1+6€ (1.1)

where
u; is the error at time t

Uz_; is the error at time (t-1)



p is known as the coefficient of auto-correlation

€. is independent random error.

Why should we have autocorrelated errors in a specific model and what are the
main causes of their presence? Clear answers to these questions have been given, in an
excellent research paper by Cochrane and Orcutt [6]. In their work, they discussed
several things regarding this topic and they emphasized the argument that most
of the current formulations deal with economic variables that are highly positively
autocorrelated, as well as the errors involved. They also discussed the sources of such

criteria of the error terms.

One source of auto-correlation is the incorrectness of the choice of forming the
relationship between the economic variables. Errors of this type will be positively
autocorrelated since the economic variables are positively autocorrelated. A second
source of systematic errors that may arise, is the omission of variables, both eco-
nomic and non economic, from the analysis. Important variables may be omitted
because their importance is not realized. Omission of non important variables may
not have a strong influence on errors individually. However, as a whole, they may

have substantial effects on errors since such variables are highly autocorrelated.

In this work, the prediction dist:7bution of a set of unobserved responses condi-
tional on a set of the observed responses is developed using the Bayesian approach.
We work out this prediction distribution for the normal linear multiple regression

model with first order auto-correlation and compare that with results available in the



literature.

In chapter two, we introduce the Bayesian approach for prediction. Then in
chapter three, we state the general linear multiple regression model with normal
errors. In chapter four, we present the problem under consideration which is the
problem of prediction of the normal linear multiple regression model with first order
auto-correlation. In chapter five, we give the analysis of the problem following the
Bayesian approach and compare our result with that obtained by Khan [12] where
he followed the structural relation approach. We also mention the superpopulation
approach, and we finally end our discussion, in the last chapter, with a summary and

a conclusion.



Chapter 2

PRELIMINARIES

To make an inference about a specific parameter, there are different statistical ap-
proaches. The classical approach, for example, is dominated by methods such as
estimation and hypothesis testing. In this work, we pursue Bayesian approach. A

brief discussion on this method is included below.

2.1 Nature of Bayesian Inference

The Bayesian approach, depends mainly on Bayes’ theorem. Inferences made using
this approach (see[4]) provide a statistical way of explicitly including the sample infor-

mation and the prior information regarding the distribution of the model parameters.

Bayes Theorem : (see[4]&]15])
Let p(Y,8) be the joint probability density fumction (pdf) for a set of random
observation Y and a parameter vector 8, also considered random. If p(Y') # 0, then

5



p(0 | Y) is written as

p(0 | Y) c p()p(Y | 6) (2.1)

« prior pdf x likelihood function

where “ o ” denotes proportionality, p( | Y) is the posterior pdf for the parameter
vector 6 given the sample information Y, p(f) is the prior pdf for the parameter
vector @, and p(Y | 8) which is viewed as a function of 8, is the likelihood function
based on the sample information.

In the posterior distribution, our previous information is adopted through p(@), the
prior pdf of @, while the sample information is incorporated through the likelihood
function. In this regard, p(Y | @) provides the entire evidence of the experiment
(see[4]). So, we may look at p(Y | 8) as representing the information about 8 coming
from the data. Or we may look at it as the function through which the data Y
modifies previous knowledge of 8. In the Bayesian approach, the posterior pdf is
used to make inferences about the parameters under consideration.

There are various ways of choosing p(@). The problem becomes serious when p(6)
is totally unknown. However, since, in many cases, there is lack of information about
0, the parameter under consideration, prior densities are provided that reflect prior
of ignorance. These are called noninformative, vague or diffuse prior. Jefirey, (see[4]
& [15]), proposed some priors and they are well known in the literature. However, if
some knowledge about the parameter is present, it should be adopted through a prior

density as an informative prior.
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In many occasions, we are interested in making inferences about the yet unob-
served set of responses Y, conditional on the observed part Y,. In the Bayesian
approach, the probability distribution function for Y, is known as the predictive pdf.
We should note that the word ~ prediction ~ is used in some texts (see[7]) to indicate
the values of the responses obtained from the fitted model in order to differentiate
them from the experimental responses. However, this word, prediction, is used here,
in the sense of the distribution of Y., conditional on the observed responses Y,. So,
if for instance, p(Y,,0 | Y,) is the joint pdf for Y, and a parameter vector 9, given

the sample information Y,, then, this pdf could be written as

p(Yr,0|Y,) =p(Y:|6,Ys)p(0 | Ys) (2.2)
where p(Y: | 0,Y,), known as the likelihood function, is the conditional pdf for Y,
given 0 and Y,, whereas p(@ | Y,) is the posterior pdf for 8 given Y,. Hence, the
predictive pdf is found by integrating (2.2) with respect to @. That is,

p(Ye | Yq) = [, p(Ye, 0| Y,)d0 (2.3)

where Ry is the domain space of the parameter @ where the pdf is non zero.



Chapter 3

THE LINEAR MULTIPLE
REGRESSION MODEL WITH

NORMAL ERRORS

The generalization of the univariate bell shaped normal distribution to several dimen-
sions, is one of the most important developments in the multivariate analysis (see[10}).
The well known central limit theorem (see appendix [C]), justifies its importance since
it shows that the sampling distribution of the mean vector of a multivariate random
vector is approximately normal, regardless of the form of the parent population, if
the sample size is large enough. However, the importance is not just because of that
but rather, some populations, by nature, follow the multivariate normal distribution.
Real data (see[10]) are seldom exactly multivariate normal. Nevertheless, it is often
useful to appraximate the true population distribution by the normal density.

8
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Let X, X3,..., Xi be a set of independent variables that are related to a response
variable Y, also called the dependent variable. The linear regression model states that
the mean of Y depends in a linear fashion on the independent variables. However,
because of measurement error and the effects of not explicitly considering all possible
independent variables in the model, as explained before, a random error term, u, is
added to the model. This error term is then looked at as a random variable, and so is

the response, whose behavior is characterized by a set of distributional assumptions.

The linear regression model with a single response has the following form

Y = Bo+ B Xi+ ..+ B Xe+u. (3.1)

Note that Y is linear in both the 3’s and u and hence the term linear is introduced.

The independent variables may or may not enter the model as first order terms.

With n independent observations on Y and the given values of X’s, the complete

model is written as

Y, =X,8+u, (3.2)

where,
Y, = (v1, %, ---,¥n) is the vector of observations,

B = (81,82, ---,Bs) is a (1 x k) vector of regression coefficient,
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I Z1k

X,=|: ..t is an n X k matrix, with rank k, of observations on k
In1 Ink )

independent variables,

u, = (41, Uy, ..., uy) is a (1 X n) vector of disturbance or error terms.

By adopting the common assumption of independent normal errors, we have
E(u,) = 0, and Cov(u,) = E(usul) = 02I,, where B and o2 are unknown para-

meters and I, is the n X n identity matrix.

If the regression equation is assumed to have a nonzero intercept, the elements
of the first column of X, the design matrix, must all equal one. That is the first
column of X, is 7, where 7 = (1,1,...,1). The remaining elements of X, may be
stochastic or nonstochastic. However, if they are stochastic, it is assumed that they
are distributed independently of us with parameters that do not involve 8 nor o.

When we assume that u;, i = 1,2, ..., n, are normally and independently distrib-
uted, each with mean zero and variance 02, the model is called normal linear multiple

regression model With this assumption (see[15]), the joint distribution of Y, given

Xe, B, and 0, is
p(Ys I x‘rﬁ, 0‘) < ‘,Ln’ exp[—;};(Y,—X,B)’(Y,—X.ﬂ)]. (3'3)

The above model (3.2) is the simplest of all multiple regression models and may
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The above model (3.2) is the simplest of all multiple regression models and may
not represent many real life situations. It can be made more complicated if the error
term u, follows the first order auto correlation scheme introduced in (1.1). The model

then becomes

Y, =X,8+u, (3.4a)

U; = pu_g+€ (3.4b)
or alternatively,

Ys = pY_ a1 +(Xs—pX _51)B+6s- (3.4c)

With the above specification, the above model is known as normal linear multiple
regression model with first order auto-correlation (FOAC).

Note that

Y, = (1, %2, ---,¥n) and Y’ ,; = (Yo, Y1, ---, Yn—1) are (1 Xn) vectors of ot .ervations,

p is a scalar,

B’ = (B1, B2, ---, Bi) is a (1 x k) vectar of regression coefficient,

€, = (€, €3, ...,6,) is a (1 X n) vector of random errors that are independent and
normally distributed each with mean zero and constant variance o2,

u = (ug,us, -..,U,) and w_,; = (o, Uy, ..., Un—1) are (1 X n) vectors of autocorre-

lated errors,
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Tyx -+ Tk Zo1 e ZTok

X.=|: S &EX g=|: ., & are n X k matrices,

Zn1 *°° Tnk Tn-1)1 °°° T(n-1)k

with rank k, of observations on k independent variables.

Remarks:

e Since Yy appears in Y’ ,,, we have to impose some assumptions on it. We may
assume for simplicity, that yg is fixed and known. This could happen as in the
case where the observations stand for the price of some goods; yp is then the

price at time fyp when such price was fixed by some means.

o As stated before, the model (3.2) can be made more complicated if we add the
assumption that the error term u, follows the first order auto correlation scheme
introduced in (1.1). Considering the model in (3.4a & 3.4b) where the error term
u, follows the first order auto correlation scheme, it was proven (see[13]) that

the variance covariance matrix of u, is given by

.pn.—l
p 1 p - p?

Cav(u.)=1%:591 where 2; = | : isann XxXn

pn—l pn-2 pn-s eee 1
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matrix with | p |< 1. However,ifweletu.:ﬁw,,where5=\/—l‘—’_—-;, the model

becomes

Y, = X.8+6w,. (3.5)

In this representation, the variance covariance matrix of wy is given by £2; only
and § is called a scale parameter. The auto-correlation coefficient between the
(¢, 7)*® components of w, is then given by cov(w;, w;) = pFJl fori,j =1,2,...,n.
Note that cov(Y,) = 622, is the unknown variance-covariance matrix of the
response vector Y,. The model in (3.5) was used by Khan [12] and it is the one
we follow to write down his result in finding the predictive pdf, but after taking

the transpose of the whole equation in (3.5). Khan used the model as

Y, = BX, +6w,. (3.6)

e Since it is assumed that the errors, and hence the responses follow a joint
multivariate normal distribution, the probability density function of w, is given

by,

p(W, | p) = (2m)~/D | 2 |0/ exp[(—1/2)w '], 3.7
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o If p is restricted to the values of | p [< 1, the situation is called nonexplosive.
However, our model in (3.4a & 3.4b), as used by Zellner [15], is broad enough
to be valid even for the explosive case i.e. when | p |> 1. So, we go through the

assumption that —oo < p < 0.

e Ii in (3.4b) p = 0, (3.42 & 3.4b) would then reduce to the simple regression

model described in (3.2).

e In (3.4c), when p = 1, the intercept term disappears. So, we assume that there
is no intercept in the regression. Otherwise, the value that p = 1 must be

precluded from the prior assumptions.

e For our analysis in this work, we follow the original model presented in (3.4a
& 3.4b) since we will be using some of the results obtained by Zellner ([14] &
[15]). Zellner, in his work, followed the model given by (3.4a & 3.4b) to find

the posterior distribution of some parameters, namely 3 and p.



Chapter 4

PROBLEM UNDER

CONSIDERATION

Consider an unobserved but realized error vector u, in " from the multiple regression
model presented in (3.4a, 3.4b & 3.4c) where the assumption on the parameters
involved in the three equations above are as stated in chapter three.

'We assume this process stays the same for future responses. In other words, future

responses follow the same model with same parameters as follows
Y:=X.8+u, (4.1a)
Ur = pu_r+6 (4.1b)
or alternatively,

15
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Y= PY 1+ (xr —pX_ )ﬂ +é (4- lc)

where Y = (Yn+1, Yn+2, s Yntq) a0d Y 3 = (Yn, Ynt1, -, Yntq-1) aTe (1 X g) vectors

of the unobserved responses,
€ = (ént1,Eni2, s Ensq) i3 & (1 X g) vector of random error,

"4 = (uﬂ+17 Unt2; -2y un+q) and lll—rl = (uﬂ) Unt1,--ey un'l'Q"’l) are (1 X q) vectors of

future autocorrelated errors among themselves and those of ul,
p and B are as described before, and

the future design matrices of order k x q are

Tn+1)1 " T(n+l)k Tn1 cec Tnk
Xe=|: ..t ,and X_y =
Zin+q)l "' T(n+q)k T(n+q-1)1 " ZT(n+q-1)k

Remark:

Khan’s [12] model of the problem of future responses is as follows. Starting with
the model in (3.6) for the observed responses, it is assumed to continue on the same

model for a set of g future responses as follows

Y,= ﬂxr'i'awr (4‘2)

where X, is the future design matrix of order k X g; w, is the future error vector
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associated with the future response vector Y.; and B and § > 0 are as defined
above. The components of w, are assumed to have auto-correlation of first order
among themselves as well as with those of the realized but unobserved error vector
W,. Thus, the covariance matrix of the combined error vector w* = (ws, W), an
(n + g) x 1 row vector, is an (n + ¢) X (n + g) matrix, §2;, whose diagonal elements
are unity and the (i, j)* off-diagonal elements are p#~7l for i, = 1,2,...,n +q. The

covariance matrix could be partitioned as follows

Qll 912
Q, = (4.3)

Q2 Q2
where €2;; is the n X n covariance matrix for the realized error; 222 is the g X ¢
covariance matrix for the nonrealized error; £2;, = €%, is the n X g variance covariance
matrrx for the realized and nonrealized error. Khan [12] found the predictive pdf for
the above model as will be shown later, following the structural relation method.
Our problem is to find the predictive pdf for Y, (unobserved responses), condi-

tional on the observed responses Y, by using Bayesian approach.

4.1 OBJECTIVE
Our objectives in this study are the following.

o Apply the Bayesian approach to find the predictive pdf for the multiple regres-
sion model with first order auto correlation which is described in (3.4a & 3.4b).

That is to find the predictive pdf for the unobserved responses Y, conditional
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on the observed responses Y,.

e Compare our result with that obtained by Khan [12] where he made some

assumption on p, the auto correlation coefficient.

In our study, we follow the Bayesian approach to get the posterior distribution of
all the parameters. Then, we find the predictive pdf of the vector of the unobserved

sample Y., conditional on Y,.



Chapter 5

ANALYSIS AND RESULT

In this chapter, we develop the solution of the problem under consideration. The
result developed by Khan [12], in which he followed the structural relation approach,
is presented first in this chapter Then, we present our own analysis of the problem
in which we follow the Bayesian approach. Finally, we explain the superpopulation

approach, which is another suggested approach to solve the problem.

5.1 Structural Relation Approach

The objective of the structural relation approach is to develop the structural distrib-
ution which is analogous to the posterior distribution in the Bayesian approach with
flat prior. To find this distribution for our problem, Khan [12] found the predictive
pdf for the set of unobserved responses conditional on the set of observed responses.
Starting with model (3.6) for the observed responses and with model (4.2) for the
unobserved responses, he first obtained the maximum likelihood estimate of p from

19



the likelihood function which is given by

Lip|a) = K*x | @ |2 X0, |# [a(w.) R "a(w,)] 5 (5.1)

where K* is a multiplicative constant that does not depend on p.

However, before finding (5.1), he first defined the following statistics

b(w,) = w, X (X, X}) ™
8*(Wy) = [Ws—b(W,)X,][Ws — b(W,) X, [ (5-2)

a(w,) = s71(wa)[Ws — b(w,)X,].

where, b(w,) is the regression of w, on X, s?(w,) is the residual sum of squares,
and a(wy,) is the normalized residual vector. Moreover, by finding the sample auto-
correlation coefficient r which is given by

n-1

r="Y a;(w,)aza(ws), (5.3)

J=1
where a;j(w,) is the j** element of a(w,), the marginal likelihood function of p

becomes

Lip | a(w,)) =| 2, || XQ'X; |7 x

{1+p*[1—a1(Wa) —an(Wa)] - 20} " (5.4)
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Therefore, for a particular choice of X,, the value of p that maximizes L(p | a(w,))
is the maximum likelihood estimate of p, and is denoted by p. The unknown auto
correlation coefficient p, is then replaced by its maximum likelihood estimator p. This
estimator is used for the estimation of the covariance matrix 2, given in (4.3). The

estimated €2, is then denoted by ¥ and its inverse is then partitioned as

211 212
=l= (5.5)

221 222

where,
¥ is an n X n matrix corresponding to the covariance of the elements of wj,
¥2 js a ¢ X q matrix corresponding to the covariance of the elements of wy, and
12 = (32') is an n X ¢ matrix correﬂpond;ng to the covariance among the
elements of w, and w,.
Then, the prediction distribution of Y, for given Y,, was obtained to be multi-
variate Student-t whose degrees of freedom depend on the size of the observed sample

and the dimensionality of the regression parameter vector. The result is given by

p(Yl' l Y') = Q(ﬁa n,q, p)X

{a="a'+572(Y,)[Y.—b(ws) X M[Y—b(wa) X, ['} =5  (5.6)



p(Yr I Ys) = Q(i’, n,q, p)X

{aZ"a'+572(Y,)[Ye—b(w,) X IM[Y:—b(wo) X[}~ % (5.7)

where

MiAr(2e )it ¥
x1r(%)

® (p,n,q,p) = s7(Ya)x (5.8)
v=n-—k
M =32 - HGH
H=X,Z2+ X, 22
G = X, Z1X! + X, 222X/ + 2X B12X!
a=a(w,)
b(Y,) = B+6b(w,) or (5.9)
b(Y,) = Y.X,(X.X;)™
s(Y,) = bs(ws) or

$*(Ys) = [Ys — b(Ys)X,][Ys — b(Y.) X,/

5.2 Bayesian Approach

In the Bayesian approach, we start with the model in (3.4a & 3.4b) for the observed
responses and with those in (4.1a & 4.1b) for the unobserved responses to develop
the predictive pdf. However, we stated in the introduction that in order to apply
the Bayesian approach, we have to have some prior distributions of the parameters

involved. For the predictive problem the prior of the parameters could be developed
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developed to be informative. In other words, we start with a joint non-informative
prior for such parameters and then derive the posterior distribution for them with a
suitable likelihood function. This posterior distribution is then used as an informative
prior for the parameters to obtain the joint predictive distribution for a set of the
unobserved responses conditional on the observed ones.

In our problem, the parameters involved are p,o and 3 and we need some prior

distributions for them. We assume a joint non-informative prior distribution given

by

p(p,B,0) o L. (5.10)

A suitable likelihood function (see[14] & [15]) is given by

L(p,B,0 | Ys) o ik exp{~535[Ys — pY a1 — (Xs — pX_a1)B]'x

le —pY_a1— (X. -pX_a1)B8l}, (5.11)

where Y,, Y_,, X_ 4 and X, are as defined before in chapter three. By applying

Bayes theorem, the posterior distribution for 3, o, p, conditional on Yy, is given by

p(p1 ﬂao l Y., XC) x #G"P{“E}T[Ys _pY—sl - (xo - px—sl)ﬁ]’x

[Ye — pY_ a1 — (Xs — pX_a1)Al}- (5.12)

Then, we use this posterior distribution as an informative prior for the parameters to



find the predictive distribution.
Since we assume that the process would continue under the same conditions and
hence follows the same model, a suitable Likelihood function for the unobserved re-

sponses is given by

L(Yr I P, ﬁ) g, Yr: xs, xr) & ;13 exP{_E}f[Yr - pYr - (Xr - PXr)ﬁ],x

[Yr—pY— (X - rX:)Bl},  (5.13)

where Y;, Y_r1, X_; and X, are as defined before in chapter three. Hence, by Bayes

theorem, the joint posterior distribution for Y, , p, B, o is given by

(Ye,p,8,0 I Y., X, X)) @ L(Yr I p,B,0,Y4, X, X, )p(p, B, 0 l Y,)- (5.14)

We want to find p(Y; | Ys). We do so, by integrating (5.14) with respect to o, 8 and

p- The joint posterior distribution in (5.14) can be written as

p(Yrr P O',ﬂ I ") & ﬁexp{—;;-;[(wl - Hlﬂ)’(wl - Hlﬂ)+

(w2 —HoB) (w2 —H,0)]} (5.15)

where
w; =Y, — pY—sla H; =X,— Px—ll

wWy=Y,—pY_p, Hp =X, - pX .



We integrate (5.15) with respect to o, see result (B.1) in appendix B, to get

p(Ye, 0,8 ...) x [(w1—Hi8) (w1 —H18)+(w2 —HoBY (wo— Ho8) % (5.16)

Now, in (5.16), (w; — Hy8) (w; — H,8) and (w; — Hy8) (w; — Hyf3) could be written

s
(w1 —H1B) (w1 — Hif) = wiw, + B H;H18— 26 Hywy (5.17a)
and similarly,
(wa—H ) (wa— HafS) = wiw+ 8 HyHoB— 28 Hyw,. (5.17b)

Adding the left hand side of (5.17a & 5.17b), the right hand side could be written as

Wi W1+ WowWy +B'E18—-28'L, (5.17¢)

where E; = H{H, + H,H; and L; = Hyw; + Hyw,. By substituting (5.17c) into

(5.16) we obtain

P2(Ye, 0,81 ..) x [Wywi+Wywa+ B E1B—26'L,]"F". (5.18)
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Let b; = E;'L; and put it in (5.18) which then becomes

o(Ye,p,8 | ..) o [wywy +w’2w2—b'1E1b1+(ﬂ—b1)'E1(ﬁ—b1)]-%g (5.19)

Now we use properties of the multivariate Student t-distribution, see appendix C, to

integrate (5.19) with respect to the k elements of 8 to yield

P(Ye,p| . ) o By |7 [Wywi+wWywp—bE;by -5 (5.20)

where v=n—k.

It is shown in appendix (B) that E; is invertible and symmetric. We show here

that

1E1b; = LiE; 'Ly (5.21a)

This is because b; = E!L; which implies that

by = Ly(EY) = L (By)~ = LLE;™. (5.21b)

We put (5.21a) in (5.20) to obtain
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p(Ye,p | ) x| By |7 [Wiwi+whw,— LB "Ly ~5° (521)

Recall that L; = Hyw; + How,. If we let f; = Hw, then L; = f; + H,w» and so

(5-21) becomes

P(Ye,p | ) | By |3 [wiws+Wywo— (i + Howo) BT (f + Hyw,)|F (5.22)

P(Ye,p | ) | Eq |7 [s14+WyEawy—2whf] 2" (5.23)

where 31 = wiw; — f{E7f;, Eo = I,—HE7'H) and f, = H,E;'f;.

Now consider w; again.
[ i} I . - - - -
Yn+1 Un Ynt1 Yn
wWy=Y,—pY_, = ?ﬂﬂ —p :fl"“ _ | Y2 — Pnir | , 0
i Yntq 1 i Yntg—1 ] i Yntq — PYntq—1 ] i 0 |

This w, could be written as AY, — f; where
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-1 0 0 0 0-
—p1 0 .0 0 Yo
0 —p 1 0 - 0 0
A= is a ¢ X ¢ matrix, and f3 = p
0
0 0 v «oe —p 1

which is of dimension ¢ x 1. Note that A is invertible as will be shown later in

appendix (B). By putting the new expression of w, into (5.23), we to get

P(Ye,p|.) | By |7 [s14(AY, —E)YE(AY, —f5) — 2(AY,.—f)H]- T  (5.24)

or

P(Ye,p| ) | By |7 [s2+ YIEGY, —2YIL,y "3 (5.25)

where,

82 = 81 + B Euf; + 2£3f,,

E; = A'B;A, and

Ly = A’Eof; + A'f;,.
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Now we complete the square on Y, by letting bz = E;'L; so that (5.25) becomes

P(Ye,p | -)ox | Er |7 [~ byEgby+ (Ve —by) Eg(Ye —by)] -5 (5.26)

Let s3 = s, — b,E3zb,, we have

p(Ye,p| ) | By |7 [s3+(Ye—bo)Es(Ye—by)] % (527)

Assume that we have adopted the maximum likelihood estimator of p, p, which
was suggested by Khan {12]. Assume also that we bave substituted this estimate
in the functions starting from (5.10) till (5.27). Then, the predictive pdf for Y,

conditional on Y] is obtained in the following from

p(Y: | Yo)oc | By |7 [B3+(Ye—bo)Ba(Ye—by) % (5.28a)

or

P(Ye | Yo)X[83+ (Ve —bo) Ba( Y, —bo)] %" (5.28b)

where | E, |-Tlis absorbed in the factor of proportionality since it is no more variable.
In this regard, (5.28b) could be written as

p(Yr I Ys) = Q[';:!'l"(Yr-if.h)’i):i(er"E‘z)]_%hl (5‘29)
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where
33 is obtained from s3 by replacing p with p,
b, is obtained from b, by replacing p with p,
E, is obtained from E; by replacing p with 5,
E, is obtained from E, by replacing p with p, and

® is the normalizing constant given by

P COLIL NG )
=g

The above pdf is the density function of well known multivariate t-distribution.
It is of the same form obtained by Khan [12] when using the structural relation
approach. This ensures that the Bayesian approach with non-informative prior, does
indeed produce the same results. However, we notice the simplicity in this approach
when compared with others.

We should notice that the joint predictive distribution of p and Y, (5.27) is too
complicated as a function of p and an explicit analytical result for the predictive pdf
is not apparent. This could be a result of the many operations on matrices that are
involved in the procedure of developing the predictive distribution. As an alternative
to the analytical result, we apply numerical integration methods to find the prediction

distribution. However, to apply numerical methods, we must have data.
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5.2.1 Simulation Method

We state here the method of simulation we followed to generate the data we used

to find the predictive distribution numerically. We start with the following model to

generate the data
Y = Bo+ 6, X1+ 8, X0+ 63 X3+u, (5.30)
U = pUg—1 + €

where u;_; is u; of the previous period.

Procedure:

First:
We generated €’s (independent error terms with mean zero and variance of one)

using MiniTab, statistical package.

Second:
We used the values of X3, X», X; and Y; from an example in Bowerman & O’-
Connell [5].

Note that,
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X; = Price
X2 = Average Industry price
X3 = Advertising Expenditure

Y: = Demand.

Third:

To get a good and realistic estimate of §’s, we run the data obtained in the 2nd
step in a regression process by using MiniTab again. We obtained estimated values
of B’s as follows

By = 7.589, B; = —2.358, B, = 1.612, B; = 0.501

So we obtained the following estimated model

Y: = 7.589—2.358 X; +1.612X, +0.501 X35 +random error component (5.31)

for the true response.. This error term is the difference between the fitted line of the
response and that of the true response. However, up to this step, no autocorrelation

1s introduced.

Fourth:

In order to make the model obtained in step(3) follow a FOAC, we introduce the

following



Y; = 7.589 — 2.358X, +1.612X, +0.501.X; + 2, (5.32)

Ut = pu—1 +€
where u;_; is u; of the previous period.
Fifth:
We regenerate the responses Y; using the model introduced in step(4) with different

assumed value of p. We generated the responses Y; with p = 0.5, p =1.25, p = —1.25

aﬁd p = —0.5. Now, this new model follows a FOAC.

The following data is generated for the FOAC model.



X1

X2

X3

Eps.

Ut for
0.50

Y for
0.50

Ut for
1.25

Y for
1.25

3.85

3.80

5.50

-1.53

5.86

-1.53

5.86

3.75

4.00

6.75

0.31

-0.46

8.12

-1.60

6.97

3.70

4.30

7.25

0.77

0.54

9.97

-1.23

8.20

3.70

3.70

5.50

-0.26

0.01

7.60

-1.80

5.78

3.60

3.85

7.00

1.26

1.27

10.08

-0.99

7.82

3.60

3.80

6.56

-0.36

0.27

8.79

-1.60

6.91

3.60

3.75

6.75

-0.46

-0.32

8.20

-2.46

6.07

3.80

3.85

5.25

-0.96

-1.12

6.34

-4.03

3.43

3.80

3.65

5.25

0.06

-0.50

6.64

-4.98

2.16
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3.85

4.00

6.00

0.35

0.10

8.06

-5.88

2.09

3.80

4.10

6.50

-1.42

-1.37

6.89

-8.77

-0.51

3.90

4.00

6.25

1.36

0.67

8.65

-9.60

-1.63

3.70

4.10

7.00

0.47

0.81

9.79

-11.83

-2.85

3.75

4.20

6.90

0.15

0.55

9.53

-14.26

-5.29

3.75

4.10

6.80

0.54

0.82

9.58

-17.29

-8.53

3.80

4.10

6.80

0.00

0.41

9.05

-21.61

-12.97

3.70

4.20

7.10

1.40

1.60

10.80

-25.62

-16.42

3.80

4.30

7.00

1.13

1.93

11.00

-30.89

-21.82

3.70

4.10

6.80

0.34

1.31

10.19

-38.27

-29.39

3.80

3.7

6.50

-1.89

-0.94

6.99

-49.43

-41.50

3.80

3.75

6.25

1.64

1.17

8.98

-60.15

-52.34

3.75

3.65

6.00

-1.06

-0.47

7.16

-76.24

-68.61

3.70

3.90

6.50

0.57

0.33

8.74

-94.73

-86.33

3.55

3.65

7.00

-0.32

-0.15

8.46

-118.74

-110.13

3.60

4.10

6.80

-1.90

-1.98

7.14

-150.32

-141.21

3.65

4.25

6.80

0.24

-0.75

8.49

-187.66

-178.42

3.70

3.65

6.50

-1.05

-1.42

6.58

-235.63

-227.62

3.75

3.75

5.75

0.18

-0.53

7.14

-294 36| -286.68

3.80

3.85

5.80

-0.77

-1.04

6.70

-368.71

-360.97

3.70

4.25

6.80

0.72

0.2C

9.32

-460.17

-451.05

Table(1) simulated data for p = 0.5 & 1.25
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X1

X2

X3

Eps.

Ut for|
-0.50

Y for
-0.50

Ut for
-1.25

Y for
-1.25

3.85

3.80

5.50

-1.53

5.86

-1.583

5.86

3.75

4.00

6.75

0.31

1.08

9.65

2.22

10.80

3.70

4.30

7.25

0.77

0.23

9.66

-2.01

7.42

3.70

3.70

5.50

-0.26

-0.38

1.21

2.25

9.83

3.60

3.85

7.00

1.26

1.45

10.26

-1.55

7.26

3.60

3.80

6.56

-0.36

-1.08

7.43

1.58

10.09

3.60

3.75

6.75

-0.46

0.08

8.61

-2.44

6.09

3.80

3.85

5.25

-0.96

-1.00

6.46

2.09

9.55
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3.80

3.65

5.25

0.06

0.56

7.70

-2.55

4.60

3.85

4.00

6.00

0.35

0.07

8.03

3.3

11.50

3.90

4.10

6.50

-1.42

-1.45

6.80

-5.84

2.42

3.90

4.00

6.25

1.36

2.09

10.06

8.66

16.63

3.70

4.10

7.00

0.47

-0.57

8.41

-10.35

-1.37

3.75

4.20

6.90

0.15

0.44

9.41

13.09

22.06

3.75

4.10

6.80

0.54

0.32

9.08

-15.82

-7.06

3.80

4.10

6.80

0.00

-0.16

8.48

19.77

28.42

3.70

4.20

7.10

1.40

1.48

10.67

-23.32

-14.12

3.80

4.30

7.00

1.13

0.39

9.46

30.27

39.34

3.70

4.10

6.80

0.34

0.15

9.03

-37.50

-28.62

3.80

3.75

6.50

-1.59

-1.66

6.27

45.29

53.22 |

3.80

3.7

6.25

1.64

2.47

10.28

-54.97

-47.17

3.75

3.65

6.00

-1.06

-2.30

5.34

67.65

75.29 |

3.70

3.90

6.50

0.57

1.72

10.13

-84.00

-75.59

3.55

3.65

7.00

-0.32

-1.18

7.43

104.68

113.29

3.60

4.10

6.80

-1.90

-1.31

7.81

-132.75

3.65

4.25

6.80

0.24

0.90

10.14

166.17

-123.63
175.41

3.70

3.65

6.50

-1.05

-1.50

6.51

-208.77

-200.76

3.75

3.75

5.75

0.18

0.93

8.60

261.14

268.811

3.80

3.85

5.80

-0.77

-1.23

6.51

-327.19]-319.45

3.70

4.25

6.80

0.72

1.34

10.46

409.71

418.83

Table(2) simulated data for p = —0.5 & —1.25
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For illustration purpose, we have performed numerical integration for equations
(5.27) to find the normalizing constant using the first 16 data of the above table. After
running the MatLab program, testl, (see appendix D), we found the normalizing
constant for this joint distribution to be equal to 4.7204e+007. Regarding equation
(5.28), we used the MatLab program, test2, to find the normalizing constat as well as
to plot the prediction distribution. The following table gives the normalizing constant

corresponding to different assumed estimated values of p.

Estimated value of p }Nommalizing constant
0.5 2.3197E+04
-0.5 6.0448E+04
1.25 1.1602E+04
-1.25 - 7.8221E+04

Table(3) Normalizing constants for equ.(5.28) with diffirent values of p

The followings are plots of equ.(5.28), the prediction distribution, corresponding

to different values of p.
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Figure(1) plot of the predictive pdf for equ.(5.28) with p = 0.5
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Figure(2) plot of the predictive pdf for equ.(5.28) with p = —0.5
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Figure(3) plot of the predictive pdf for equ.(5.28) with p = 1.25
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Figure(4) plot of the predictive pdf for equ.(5.28) with p = —1.25
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From the graphs of the prediction distribution given in figures one to four, it is
to note that a particular choice of p would effectively affect both the center and the
spread of the prediction distribution. For | p |> 1, the explosive case, the graphs are
much more sharper than the situation of the nonexplosive case where | p [< 1. The
other thing to be noted is that the predicted mean values, shown in the graphs, are

very close to the real (simulated) values given in table(1).

5.3 Superpopulation Approach

Another suggested approach is the superpopulation approach. Superpopulation mod-
els consider the values of the population elements as random variables having joint
distributions which may be specified completely or partially. In this approach, a
model is to be introduced regardless of the procedure of how the sample is collected.
Bolfarine & Zacks [3] discussed the problem of prediction, using this approach. The
superpopulation model assumes that the value of the variable of interest, associated
with the 5** unit of the population, Y;, j = 1,2, ...., N, is comprised of a deterministic

element 7; and a random element e;; that is,

Yj=n;+e;, ji=12,...,N (5.33a)

The random vector e = (ey, ..., ey) is assumed to have zero mean and a positive

definite covariance matrix, V. For the linear regression model, the deterministic
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elements 77; may be modeled as linear functions of the auxiliary variables; that is,

. n
nj = 2 Bkzjk ’ j = 11 27 eeey N. (5'33b)
k=1

Let X, denote the N x n matrix, and let 7 = (n,7,,.-,7y). Then, the linear

regression model can be expressed as
Y, =X,8+e (5.39)

in which the random vector e is as described above. The superpopulation linear
regression model (5.33) is represented by the parameter ¥ = (3,V) , and is called
the ¥-model.

Concentrating our view to the multivariate normal model, consider (see[3]) the
superpopulation regression model ¥ = (3, V) with normal distribution for the errors.

In this regard, the joint distribution of ¥ given Y, is the N-variate normal,
Y, | ¥,X ~N(XB;V) (539
It is assumed here that V is known and 8 is unknown. The Bayes model assumes
that 3 is a normal random vector, with mean vector b and covariance matrix B; that

is,

B ~ N(b; B) (5.35)



The model defined by equations (5.34) & (5.35) is designated in the sequel as the
¥g model. The next theorem specifies the Bayes predictive distribution of Y, given

Y,, for the case where the covariance matrix V is known.

Theorem 1: (see[3))
Under the Bayesian model Wy , the Bayes predictive distribution of Y, given Yy,
is multivariate normal, with mean vector
Bgy[Ye | Yo = XeBg+ VeV (Ye—X.85) (5-36)

and covariance matrix,

Varg, [Y. | Y, =V, -V V1V +

(X =V VX)X VX, +B7) (X - Ve VIX)]  (537)

where

and



Bs = (X,V;'X, + B1){(X,V;Y, + B7'b).

This general theorem could be specialized to the case where V = 02W, where
W is known and W, = 0, but 02 is unknown i.e. to specialize it to the case of the

uncorrelated responses. The following theorem gives the detailed discussion of this

aspect.
Theorem 2: (see[3])
Consider the normal model ¥g with V = 02W, where W is known and W, = 0,

but 02 is unknown. We also consider noninformative prior distribution on (3;0?),

according to which,

¢(B;0%) o L (5.38)

The posterior distribution of Y, given Y, is such that

Egp[Y: | Y, = Xrﬁs (5.39)

and

Varg, [Y: | Yi] = ;562 W +X(X W' X,) X, (5.40)



where &3 = (YB - XBBs)rW;l(YB - X,ﬁ,)/u and
B, = (X, V'X,) X, V1Y, with

v=n-—op.

Our problem which was presented in chapter three could be solved using this
approach. We could start with theorem 2, but with W = 2, where 2, is the
variance covariance matrix of both the observed and unobserved error terms. We
also assume either informative or non informative prior distribution for p. Then the
predictive distribution is derived. We conjecture that it would be of a multivariate
t-distribution as obtained by Khan [12] and as shown here in our work using the
Bayesian approach. This shows that how this problem could be tackled from different
ways and that all methods lead to the same result, which suggests the equivalence of
all of these different approaches. However, one of them appears to be easier than the

other.



Chapter 6

SUMMARY AND CONCLUSION

In this work, we studied the problem of prediction distribution using the Bayesian
approach. In particular, we applied it to the problem of prediction for the multiple
regression model with FOAC. We compared our result with that obtained by Khan
[12] where he followed the structural relation approach. Using the Bayesian approach
we got the same result.

The difficulty in the Bayesian approach arises when performing the integration
part on the parameter p. However, this problem has been tackled by means of nu-
merical integration in which we used the MatLab software that can deal with the
extensive matrix operations involved. To perform the numerical integration we gen-
erated data that fit our problem and then we used some of the simulated data to test
our result in finding the predictive pdf. We were successful in that.

It is worth mentioning here that the problem of prediction has been discussed by
Haq and Khan [8] for the linear regression model with dependent but uncorrelated
multivariate Student-t error distribution. They used the structural relations of the
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model and they found that the prediction distribution is multivariate Student-t dis-
tribution with degrees of freedom that does not depend on the degrees of freedom of
the error distribution. The form of the prediction distribution is the same as that
obtained for the case of auto-correlated normal error term (see[12]).

However, the problem of prediction for the model discussed in this work could
have been tackled with different approaches other than the structural relation or
Bayesian. The superpopulation approach has been suggested here. This approach

can be explored in the future.



APPENDIX (A)

Some Important Results on Matrices

For the detailed discussion of these results, (see[2],[9] & [10]).

Definition (Al):

A matrix B is said to be symmetric if it equals to its transpose i.e. B = B'.

Definition (A2):

Let A and B be two matrices, then (AB)'=B'A’.

Definition (A3):
A matrix B is said to be invertible if there exists another matrix C such that

BC = CB = I where 1 is the identity matrix.

Result(Al):

If A, B are symmetric matrices, then C = A + B is also symmetric.



Result(A2):
If A and B are invertible matrices, then if C = A + B is invertible, then

Cl=A"14+B-.

Result(A3):
If A and B are invertible matrices, then if C = AB, then it is invertible and

Cl'=B!A-L

Result(A4):

If A is invertible and symmetric, then (A™1) = (A’)"1.

Theorem (A1): (see[9])
Let B be a non-singular matrix and U, C and V may be rectangular. Then

i) (B+ UCV) is invertible and its inverse is given by

(B+UCV) 1 =B"! —B‘IU(I-{-CVB"IU)‘1(.TVB‘1 (Al.1)
and

ii ) (B—UD™V) is also invertible and its inverse is given by

(B-UD"'V)-! = B-1+B-1U(D-VB~'U)-'VB~! (AL2)

Note that (A1.2) is obtained from (Al.1) by letting C = —D"1.
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APPENDIX (B)

Proofs of Some of the Used Results

In the derivation of the predictive distribution starting from equation (5.10) to
(5.27), we have assumed implicitly that the matrices E;, E, , A and E; are invertible.
We give here proofs of some of the used results.

Note: H; is an n X k matrix; H; is a ¢ X k matrix; E; is a k X k matrix; E, is.a.

q X ¢ matrix; E; is a ¢ X ¢ matrix; A is a ¢ X ¢ matrix

First: to prove that E; is invertible

E; = HH, + H,H, is invertible and symmetric but why?!. Obviously E, is
symmetric and to prove that it is invertible, we use theorem (Al). Now, H{H; is
invertible. This is proven by Zellner [14]. We apply (Al.1) of theorem one above.
To do so, we just let B = H{H;, U=1I;, C=H,H; and V = I;. Hence, E; is

invertible.ll
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Second: to prove that E; is invertible
Recall that E; = I, — H,E['H}. As we bave done for E;, we do here for E,.
We apply theorem (A1) again using (A1.2). To do so, we just let B=1,, U=H,,

D = E,; and V = H),. Hence, E; is invertible.ll

Third: to prove that E; is invertible

Recall that E; = A’E;A, where A is a ¢ X ¢ matrix given by

1 0 O 0 0

—-p 1 0 6 O

0 —p 1 0 0
A=

0 0 R 1

A is similar to I,. This is obvious and it is easily found by doing some row
operation. So, A is invertible. Then by results A3 & A4 given in appendix A, we

have Ej3 is invertible and symmetric.ll
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Fourth: to prove the result used to integrate equation (5.15)

with respect to o

We used the following result, (see [15]).

Jo° o=+ exp(—a/20%)do = 20~D/2T(n/2) /a™? (B.1)

proof:

Let £ = a/20%. Then the integral becomes

(2(n—2) /2 / an/z) f:" x(n—2)/2e—zdz _ 2(n—2)/ 21"(n /2) /an/2

where I" denotes the gamma function shown in (C.3).H

We used this result in (5.15), where

a = [(w1 — HhB) (w1 — HiB) + (w2 — Hy8)' (w2 — H,0)]

and the factor 2("~2)/2I'(n/2) is absorbed in the factor of proportionality..



APPENDIX (C)

Some Important Distributions and
Theorems(see[11]&[15])

1. The Univariate Normal Distribution

Let X be a random variable. Then, X is said to have a normal distribution with

mean § and variance o if the density function of X has the following form
p(X | 6,0) = = expl— (X — )7, —o0 < X <00 (C1)
2. The Univariate Student-t Distribution

A random variable X is said to have a univariate student-t distribution if its pdf

is as follows



p(X | 6,h,v) = p{SOL ()21 + 2(X -0 C+V/2 | —co< X <00 (C2)

with, —~c0 <0 < 0 ,0 < h < o0, v > 0 and I" denotes the gamma function
which is given by '

[(n) = [Z_u"le~"du, 0<n<oo. (C.3)

For v > 1, X has mean 0 and for v > 2, it has variance ¥-15 .

3. The Multivariate Normal Distribution

Let X = (X;, X, ..., X,) be a vector. We say that the joint distribution of the
elements of X is multivariate normal with mean vector # and a covariance matrix ¥,

if it is written as
p(X | 6,%) = E7 exp[— (X —8)' 51 (X—0)] (C4)

where —o00 < X; < oo; X is an n X n positive definite symmetric (PDS) matrix;

¢ = (61, 02, ..., 0,) with —c0 <f; <00 fori=1,2,...,n.



4. The Multivariate Student-t Distribution

We say that the elements of a random vector X = (X}, X, ..., X,,) are distributed

jointly as Multivariate Student-t if and only if they have the following pdf

1/2,,2/2
p(X |0, V,v,n) = MELLITAnA L, 4 (X_ gy (X—G)]-(+)2 (C:5)

where v > 0; V is an 1 x n PDS matrix; —oo0 < X; < 00; § = (64, 05, ..., 6,) with
—0<b;<0,i=1,2,..,n.
This distribution has mean at X = # and it bas a variance of [v/(v — 2)]V~for

v>2

5. The Central Limit Theorem

One of the most important theorems in statistics and probability is the central
limit theorem. Its importance (see[11]) appears in showing that the distribution of
the sample mean Y of a random sample of size n from any population with mean u
and variance 02, is approximated by the normal distribution with mean, E(Y) = u
and standard error, SE(Y) = 7"; With any sample size, if the population is normal,
then the distribution of Y is exactly normal. However, it is appraximated by a normal

distribution for sufficiently large n.



Theorem (C1) [Central Limit Theorem]: (see[11])
Let p(.) (discrete or continuous) be the probability function of a random variable

Y with mean p and finite variance 02. Let Y, be the sample mean of a random

sample of size n, Y3, Y5, ..., Y, from p(.). Then the distribution of the random variable

(or statistic)
o= o = = ©9)

approaches the standard normal distribution as n — 0.

Proof: (see[11])
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APPENDIX (D)

MatLab Program

We are providing here two MatLab programs to find the normalizing constant.
Test(1) will find the normalizing constant for the joint distribution of p(rou) & Y,
given in (5.27). Test(2) will provide us with both the normalizing constant as well
as a plot for the predictive pdf given in (5.28). The advantage of our programs is
that they are easily extended to multiple integration since we are using the basic
definitions of integration rather than trapezoidal or Simpson’s rules. We just need to

provide the data as well as the number of divisions we want for intervals.



Test(1)

% Test 1

% Note that this program finds the normalizing constant
% of the predictive pdf given in equ (5.27).
% Enter the basic parameters

roumin=-2;

roumax=2;

Yrmin=2;

Yrmax=16;

numberOfDevisions=170;
numberObservations=15;
numberUnobservations=1;
numberOfRegression=4;

ys=[5.86

8.12

9.97

7.59

10.07

8.76



8.21
6.35
6.65
8.07
6.88
8.64
9.78
9.52
9.57);
Ye=[8.12
9.97
7.59
10.07
8.76
8.21
6.35
6.65
8.07
6.88
8.64
9.78
9.52

9.57
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9.05);

xs={1 3.85 3.80 5.50
13.75 4.00 6.75
13.70 4.30 7.25
13.70 3.70 5.50
1 3.60 3.85 7.00
1 3.60 3.80 6.50
13.60 3.75 6.75
1 3.80 3.85 5.25
1 3.80 3.65 5.25
1 3.85 4.00 6.00
1 3.90 410 6.50
1 3.90 4.00 6.25
1 3.70 4.10 7.00
13.75 4.20 6.90
1375 4.10 6.80];
Xs=[1 3.75 4.00 6.75
13.70 4.30 7.25
1 3.70 3.70 5.50
1 3.60 3.85 7.00
1 3.60 3.80 6.50
1 3.60 3.75 6.75

1 3.80 3.85 5.25



1 3.80 3.65 5.25

1 3.85 4.00 6.00

1 3.90 4.10 6.50

1 3.90 4.00 6.25

1 3.70 4.10-7.00

13.75 4.20 6.90

13.75 4.10 6.80

1 3.80 4.10 6.80j;

xr={1 3.80 4.10 6.80];
Xr=(1 3.70 4.20 7.10];
yr=[Ys(15)};

% Data entry finished
N=numberQObservations;
g=numberUnobservations;
kk=numberOfRegression;
power=(N-kk+q);
umin=roumin;
UMAaX=TOUMAX;
ymin=Yrmin;
ymax=Yrmax;
ndiv=numberOfDevisions;
inty=(ymax-ymin)/ndiv;

intu=(umax-umin)/ndiv;
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y=ymin;

u=umin;

Yr=[y};

C=(1};

A=[1];

B=u*{Ys(15)};

Q= |;

ppr={ |;

for kyl=1mdiv;

for kul=1mdiv;
wl=Ys-utys;
w2=Yr-u*yr;
H1=Xs-u*xs;
H2=Xr-u*xT;
E1=H1"*H1+H2*H2;
11=H1*w1+H2*w2;
bl=inv(E1)*11;
fl=H1"*wl;
sl=w1"*w1-f1"5nv(E1)*f1;
E2=C-H2%inv(E1)*H2’;
2=H2*inv(E1)*f1;
s2=s1+{3*E2*3+2*3"*£2;

E3=A"*E2*A;
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12=A*E2*{3+A*2;
b2=inv(E3)*12;
83=s2-b2’*E3*b2;
w3=Yr-b2;

sd=w3 *E3*w3;
mml=det(E1);
mm2=mm1~(-1/2);
mm3=s3-+s4;
mm4=mm3~(-power/2);
f=mm2*mmd4;
pr(kyl,kul)=f;
u=u-+intu;

end

u=umin;

y=y-+inty;

Yr=[y};

Q=[Qy};

end

for n=1:ndiv;
domu(1,n)=abs(intu);
domy(n,1)=abs(inty);
end

domu;



domy;
domain=domy*domnu;
for k1=1:mndiv;

for k2=1:ndiv;
ppr(kl,k2)=pr(k1,k2);
end

end
integ=domain.*ppr;
norm=sum(sum(integ))
NormConst=(1/norm)

END OF TEST 1



Test(2)

% Test 2

% Note that this program plots the predictive pdf where we use an esimated
% value of rou.

% Enter the basic parameters

Yrmin=2;

Yrmax=16;

Estimated ValueOfRou=0.5;

numberOfDevisions=110;

numberQObservations=15;

numberUnobservations=1;

numberOfRegression=4;

ys=[5.86

8.12
9.97
7.59
10.07
8.76

8.21
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6.35
6.65
8.07
6.88
8.64
9.78
9.52

9.57};

Ys=[8.12
9.97
7.59

10.07

8.76
8.21
6.35
6.65
8.07
6.88
8.64
9.78

9.52

9.57
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9.05];

xs=[1 3.85 3.80 5.50
1 3.75 4.00 6.75
13.70 4.30 7.25
1 3.70 3.70 5.50
1 3.60 3.85 7.00
1 3.60 3.80 6.50
1 3.60 3.75 6.75
1 3.80 3.85 5.25
1 3.80 3.65 5.25
1 3.85 4.00 6.00
1 3.90 4.10 6.50

1 3.90 4.00 6.25
1 3.70 4.10 7.00
1 3.75 4.20 6.90

1 3.75 4.10 6.80};

Xs=[1 3.75 4.00 6.75
13.70 430 7.25
1 3.70 3.70 5.50
1 3.60 3.85 7.00

1 3.60 3.80 6.50



13.60 3.75 6.75
1 3.80 3.85 5.25
13.80 3.65 5.25
1 3.85 4.00 6.00
13.90 4.10 6.50
1 3.90 4.00 6.25
13.70 4.10 7.00
13.75 4.20 6.90
13.75 4.10 6.80

1 3.80 4.10 6.80];

xr = [1 3.80 4.10 6.80];

Xr =[1 3.70 4.20 7.10};

yr=[Ys(15)};

% Data entry finished

N=numberObservations;

g=numberUnobservations;

kk=mumberOfRegression;

power=(N-kk+q);



ymin=Yrmin;
ymax=Yrmax;
ndiv=numberOfDevisions;
inty=(ymacx-ymin)/ndiv;
intu=(umax-umin) /ndiv;
y=ymin;
u=EstimatedValueOfRou;
Yr=[y];

C=[1};

A=[1};

£3=u*[Ys(15)];

Q=[1];

pr=[;

for kyl=1mdiv;
wl=Ys-u*ys;
w2=Yr-u*yr;
H1l=Xs-u*xs;
H2=Xr-u*xT;
E1=H1'*H1+H2*H2;
N=H1*wl+H2*w2;
bl=inv(E1)*1;
fl=H1*wl;

sl=w1*wl-f1"*inv(E1)*f1;
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E2=C-H2%nv(E1)*H2';
P2=H2*inv(E1)*fi;

s2=s1+f3*E2*{3+4+-2*f3"*2;

E3=A"*E2*A;
12=A"*E2*34+A7*f2;
b2=inv(E3)*12;
s3=s2-b2'*E3*b2;
w3=Yr-b2;
s4=w3*E3*w3;
s5=s3+s4;
f=s5~(-power/2);
pr=(pr f];
y=y-+tinty;

Yr=[y];

Q=[Q yl;

end

for n=1:ndiv;
domy(1,n)=abs(inty);
end

domy;

pr2=inty*pr;
norm=sum(pr2);

result=(1/norm)*pr2;
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NormConst=(1/norm)
plot(Q, restult)

END OF TEST 2

T1
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