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The primary objective of this dissertation is the development of a modeling tool. using
the finite element method, for static and dynamic analysis of general refined laminated
shell structures undergoing finite rotations and large motion with strains assumcd to
remain small.

A kinematic model based on the material representation is presented leading to a third
order shear deformation theory with large rotation capabilities and quadratic transverse
shear stress distribution across the thickness. A singularity-free parametrization of the
rotation field is adopted with it the exponential mapping for configuration update. A
Total Lagrangian formulation is used with the second Piola-Kirchhoff stresses, Green-
Lagrange strains and constitutive equations defined with respect to laminate general
curvilinear coordinates. The developed shell element is composed of an arbitrary number
of layers where the fiber directions are allowed to vary in any way from layer to laver.

The finite element discretization is carried out using a four-node isoparametric laminated
shell element with seven degrees of freedom per node. The transverse shear locking
problem is avoided by applying the Assumed Natural Strain concept to the constant part
of the transverse shear strain. A consistent linearization of the weak form of equilibrium
equations (static case) or equations of motion (dynamic case) is undertaken to achieve a
quadratic rate of convergence.

The dynamic part consists of designing and implementing an energy-momentum
conserving time stepping algorithm. This algorithm is based on a general methodology
for the design of exact energy-momentum schemes, which was recently proposed in the
literature and applied successfully to nonlinear shells based on the first order shear
deformation theory. Here it is extended, for the first time, to the third order shear
deformation theory.

The developed finite rotation shell element is then implemented in two indspendent
computer programs, one for static and the other for dynamic analysis. Then it is tested on
some challenging linear and nonlinear problems, recently reported in the literature, and
the results show its excellent performance and robustness. A couple of examples show
the discrepancy in prediction between third and first order shear deformation theories and
this raises the need for such refined theories.
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CHAPTER 1

INTRODUCTION

1.1 General

The advent of composite materials with their appealing characteristics of high
strength-to-weight and high stiffness-to-weight ratios and the evolution of their
technology have increased their use in many industries such as aircraft, spacecraft.
automotive, shipbuilding and building construction. They are also finding applications in .
a number of areas in the medical sector in addition to consumer products such as skis,
golf clubs, tennis rackets etc. Among composite materials, fiber reinforced composites
are used extensively. In order to achieve the desirable structural properties offersd by
these materials, they have to be of laminated construction.

Laminated fibrous composites are made of two or more bonded layers. Each layver
(lamina) is composed of unidirectional fibers, which are the principal reinforcing or load-
carrying agent, embedded in a matrix material. This matrix, which can be organic.
ceramic, or metallic, holds the fibers together in a structural unit and protects them from

external damage. It also serves 1o transfer and distribute the applied loads to the fibers.
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and in many cases it contributes some needed propery such as ductility. toughness and
electrical insulation. Polymers are unquestionably the most widely used matrix materials.
The enormous possibilities presented by laminated compositc structures in the
combination of layer materials, fiber orientation within each layer and the ply stacking
sequence may enhance considerably the design process of such structures. They
represent in many respects a good example of the principle of ‘material design’. In such
situations, the concept of tailoring materials at a fundamental level, to meet specific
design requirements, is fully incorporated in the overall product development process.
While these materials offer many advantages over conventional isotropic ones. they also
present challenging technical problems in modeling their structural behavior.

The analysis and design of structures made of laminated composites become complex
because of three reasons. Firstly, the basic lamina involves additional elastic constants.
five against two for isotropic materials. Secondly. the laminated construction induces
various types of coupling in their structural behavior such as bending-extension. twisting-
extension, and bending-twisting. Thirdly, the great difference in elastic properiies

etween fibers and matrix material leads to a high ratio of in-plane Young's modulus to
transverse shear modulus and this makes transverse shear deformation important in such
structures even in the case of small thickness. The increased use of laminated structures
in modern technologies has stimulated interest in the development of theories and
computational models for predicting as fairly as possible their response o different
loading conditions. One of the most important structural configurations made of

composite materials is the shell type structure.



Laminated composite shells used in weight-sensitive applications are very flexible
and can experience large elastic deformations and rotations. Accordingly. the
consideration of geometric nonlinearities is of great relevance for the analysis and design
of this type of structures. Simplified nonlinear models even of moderaie rotation typc
may introduce significant errors in the analysis and are, moreover, not necessarily much
more timesaving than finite rotation models. Thus finite rotation models may be
considered as the only reliable models permitting an accurate prediction of the structure
response in the whole nonlinear range. The sensitivity of laminated composites to
transverse shear deformation makes the classical Kirchhoff-Love theory inadequate in
predicting their responses.

Modeling approaches, which take into consideration transverse shear deformation,
have been the topic of serious research in the last three decades. The two dimensional
theories based on the method of hvpotheses [1]. where a cenain displacement. strain or
stress field is postulated in the thickness direction, are preferred in practice. Among these
theories, the ones based on the assumed displacement field across the shell thickness are
the most popular. The general classification adopted in Reference 2 distinguishes three
classes of theories of laminated composites: the equivalent singie layer (ESL) theories,
the layerwise theories and the continuum based three-dimensional theories. The ESL
(global) theories, which are the most economical of all laminate theories, have been
found to be adequate in predicting global response characteristics of laminates, like
maximum deflection, maximum stresses, fundamental frequencies and critical loads [3].

Many global shear deformation theories have been proposed over the years. The
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implementation of these theories, using the displacement-based finite element approach.
suffers from a defect known as the transverse shear locking phenomenon. This defect
appears when thin shells are analyzed. A current successful remedy to this problem uses
mixed interpolation of tensorial transverses shear strain components proposed by Dvorkin
and Bathe[4,5]. The application of the developed laminated shell elements (0 simulate
large dynamic motion necessitates some criterion to assess the stability of the time
integration scheme. Algorithms that conserve constants of motion are important for two
fundamental reasons. Firstly, constants of motion, such as energy and momenta. are
often primary physical quantities of direct engineering interest. Secondly. in an
algorithmic context, conservation properties lead to rigorous notions of nonlinear
stability. A general methodology proposed recently by Simo and Tarnow [6] enables the
design of time integration algorithms that conserve exactly energy and momenta.

After assessment of the previous research work published in the literature. as will be
seen in chapter twe, concerning geometrically nonlinear laminated shells. we notice that
the static and dynamic analyses of such structures where simultaneous consideration of

higher order shear deformation models and finite rotations are scarce.

1.2 Objectives

The primary objective of this study is the development of an element for static and
dynamic analyses of general laminated composite shells undergoing finite (unlimited in
size) spatial rotations and large overall motion. Strains are assumed to be small, i.e., the
material stays in the elastic region. A cubic displacement filed over the thickness of the

shell is proposed. The Total Lagrangian formulation with the second Piola-Kirchhoff
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stresses and Green strains is adopted. A numerical procedure is dcveloped. and a

computer program is written. This software, which represents advancement in the state-

of-the-art analysis of laminated shells, may be utilized by researchers and designers for a

diverse spectrum of problems. To achieve this objective, the finite element method is

used for space discretization followed by time integration of the resulting nonlinear

ordinary differential equations of motion. More specifically, the following objectives are

within the scope of the present dissertation:

*

To develop a laminated finite shell element based on a proposed cubic displacement
model;

To allow for modeling of laminates with arbitrary variation of fiber directions from
layer to layer;

To use the economical thickness pre-integration concept to reduce the computational
effort:

To use singularity-free parametrization for the rotation field;

To update the rotation field in an exact manner using the exponential mapping;

To alleviate the shear locking problem by using mixed interpolation of tensorial
transverse shear strain components;

To utilize the general methodology alluded to previously, to design an exact energy-
momentum conserving algorithm for the nonlinear dynamic response of shell
structures using the developed model;

To implement the above features in a modular and efficient software package;

To assess the performance of the developed model by running numerical simulations



concemning some challenging test problems reported recently in the literature.

1.3 Dissertation Overview

This chapter describes the problem and the objectives of this study.

Chapter 2 presents an extensive review of the previous work involving various issues
related to geometrically nonlinear analysis of laminated shells such as formulation
methods, different approaches for constructing multilayered shell theories, large rotation
parametrization, shells elements and dynamic effects.

Chapter 3 reviews some mathematical preliminaries related to differential shell
geometry, then it derives the shell theory based on the proposed kinematic model and
using general convective curvilinear coordinates. Constitutive equations relating the
stress and strain measures for both isotropic and orthotropic materials, are shown in
chapter 3.

In chapter 4, the virtual work principle is used to derive the weak form of the
equations of equilibrium. The finite element discretization of these equations is
implemented via a four-noded isoparametric shell element. The linearization of the fully
discrete equilibrium equations, which is performed in the last part of this chapter. leads to
the formation of the tangent stiffness matrices.

Chapter 5 presents the basic Newton Raphson method and its adaptive variant, the
arc-length method, with their respective algorithmic counterparts for the advancement of
the global solution procedure at the structure level.  Afterwards, it presents the
implementation details for the different tasks presented in chapters 4 and 3. The nesting

of all such tasks with the global solution algorithm leads to the design of the computer



program STLSHEL?7 which is also described.

In chapter 6, which concerns the dynamic formulation, the weak form of thc
equations of motion are derived using Hamiltonian formulation. Time and spatial finite
element discretizations are then introduced leading to a time integration algorithm which
conserves exactly momenta and energy. This is followed by a consistent linearization of
the fully discrete equations of motion. The last section of this chapter highlights the
implementation notes which lead to the design of the computer program for the nonlinear
dynamic analysis of laminated shells

The numerical evaluation of the developed static and dynamic shell models is carried
out in chapter 7. A set of severe test problems, available in the literature, is considered
ranging from linear static to nonlinear dynamic problems. The predictions of the
numerical simulations are compared to those of the literature and discussed.

Chapter 8 starts by a summary of the achievements attained during this study.
followed by some conclusions based on the performance of the developed model in the

numerical simulations and finishing by suggesting some directions for future research.



CHAPTER 2

LITERATURE REVIEW

The approach towards the development of reliable laminated general shell elements
capable of performing well in the whole geometrically nonlinear range requires a careful
consideration of many aspects. In this regard, the issues which are believed to be of
utmost importance from a theoretical and computational standpoint will be discussed in

the following sections.

2.1 Formulation Methods

When considering the geometric nonlinear behavior of a structure, a consistent
continuum mechanics-based approach should be employed to define its motion. In solid
mechanics analysis, we follow all particles of the body in their motion, from the original
to the finial configuration of the body, which means that a Lagrangian (material)
formulation of the problem is adopted. This approach stands in contrast to an Eulerian
formulation which is usually used in the analysis of fluid mechanics problems, in which
attention is focused on the motion of the material through a stationary control volume.

-In the finite element approach applied to solids, the total Lagrangian (TL), updated

8
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Lagrangian (UL) and co-rotational (CR) formulations are the most widely used oncs [7-
9]. These formulations are identical from a continuum mechanics point of view. the only
difference resides in the choice of a reference configuration. In the TL formulation. also
referred to as Lagrangian formulation. all static and kinematic variables are referred 1o
the initial configuration that the body occupies at time t=0. The UL formulation is based
on the same procedures that are used in the TL formulation, except that all static and
kinematic variables are referred to the configuration at time t. In the CR formulation.
which is less popular than the two previous formulations, a local cartesian coordinate
system is attached to each finite element, and it is continuously translated and rotated
with the element as the deformations proceed. The intent of this formulation is to
eliminate the rigid body motion from the total displacement filed. As a resuit, the linear
finite element theory can still be used in element corotational coordinate system. This
puts restrictions on the size of the element and the load step in each increment for the
linear theory to be applicable. This formulation has both, total (CR-TL) and updated
(CR-UL) forms.

In the analysis of structures, the stress and strain measures need to be objective and
work-conjugate. Work-conjugate stresses and strains are pairs of stress and strain
measures that fully account for the internal elastic energy. For example, the engineering
strains and stresses, the infinitesimal strains and the Cauchy stresses, the Green-Lagrange
strains and the second Piola-Kirchhoff stresses are work-conjugate pairs of strain and
stress measures. Objective strains and stresses are invariant under finite rigid body

motions and no stresses or strains arise from finite pure rigid body rotations. For
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example, the Green-Lagrange strain. and the second Piola-Kirchhoff stresses are
objective measures. On the other hand, the engineering stresses, the enginecring strains.
the Cauchy stresses, and the infinitesimal strains are non-objective measures. Allernative
stress and conjugate strain measures can be found in reference [10].

Most of the recent research work conceming shell type structures undergoing finite
rotations is based on the Total Lagrangian formulation with Green-Lagrange strains and
the second Piola-Kirchhoff stresses as work-conjugates [11-33]. Nevertheless, we cite
some representative research work done using the Updated Lagrangian formulation
[7.29.34-36]. The co-rotational formulation has also attracted some researchers who
succeeded in applying it for large rotation analysis [9,37-45). The rigid body invariance
of the second Piola-Kirchhoff stresses and their work conjugate Green-Lagrange strains
make them an ideal choice for this study where the rigid body motion contributes largely

to the overall deformation of the structure.

2.2 Approaches for Constructing Multilayered Shell Theories

Composite materials, presently used in laminated structures, exhibit high sensitivity
to transverse shear deformation even in the case of thin shells. This sensitivity is due to
the great difference in elastic properties between fibers and matrix materials. which leads

to a low ratio of transverse shear to inplane Young’s moduli %’i=%’l=im—l—\
: E. 100 200 )

where L denotes the fiber directions, whereas T and Z are two directions orthogonal to L
[46]. This in turn leads to higher transverse shear deformability in comparison to

isotropic cases.
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Many of the classical theories. which were developed initially for thin isotropic
shells, are based of the Love-Kirchhoff theory; it assumes that straight lines normal 1o the
undeformed middle surface remain straight and normal 1o the deformed middle surface
without undergoing thickness stretching [47]. This assumption implies that the transverse
shear strain is ignored. The application of such theories to layered anisotropic composite
shells could lead to an error up to 30% or more in deflections, stresses and frequencies
[48].

The need for more accurate computational models for multilayered laminated shells
has led to the development of a variety of two dimensional shear deformation theories {1-
3, 49-53]. From a theoretical point of view, one of the central issues of various theories
is how to account for the effects of the transverse shear deformation which plays a
remarkable role in affecting the mechanical behavior of laminated shells. As seen in
chapter one. the two dimensional theories are the equivalent single laver (ESL) and the
layerwise theories. Their classification is based on the nature of the approximations

made in reducing the three dimensional problem into a two dimensional one.

2.2.1 Equivalent Single Layer Theories

In the ESL theories, the displacement field is expanded as a linear combination of the
thickness coordinate and undetermined functions of position in the reference surface (i.e.
a separation of variables approach). The three components of the displacement vector are

given by [54]

N,
u,(E.0) =ulE M +Lul EM+L 2wt Em+-= Y @) u/ Em) 2.1)
j=0
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-—

where u;(£,n.{)(@{=1.2.3) denotes a displacement component in the shell. (£.n) are
surface coordinates. { is the thickness coordinate and u,»j &.m ¢=1.2.... N;) are

functions of £ andn coordinates.

In these theories, the displacement field is assumed (o be continuously and smoothly
distributed across the entire thickness, and the laminated shell is actually replaced by an
equivalent single layer anisotropic shell. The order of the governing equations is
independent of the number of layers. Since the constitutive properties of each layer are
different, the stresses are discontinuous at the layer interfaces. The simplest of these
shear deformation theories is the first order shear deformation theory (FOSDT), which
was proposed by Reissner [55] for the linear analysis of isotropic plates and then
extended to laminated plates and shells. This theory has been used extensively in
modeling the response of laminated thin plates/shells; the components of the

displacement vector are given by

u,(x,y,2) =u2 (x,y)+ Zu.l, (x, y)

2.2)
Uy (x,y,z) =uj(x,y)
for the case of plates, and
u, (5,77~C) = u;) (5977)(1 + Ri]'*';l”x (5."1)
1
u, (§.n.8)=u; (é,n)[l+%)+ Cw.(&.m (2.3)

3 (E.n.8) =u3 E.m)
for the case of shells defined by means of two orthogonal curvilinear middle surface

coordinates & andn and a third coordinate £ normal to the surface[56). R, and R, are
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two radii of curvature along £andn, respectively. This theory, which yields a constant
transverse shear strain, has been used extensively in modeling plates and shells within the
finite element method (FEM). Noor and Mathers [57] performed linear static, stability
and vibration analysis of laminated plates and shells based on FOSDT. Ahmad et al.[5§]
introduced a degenerated isoparametric finite shell element whose kinematic assumption
is analogous to the FOSDT. The composite formulation of this type of element (see for
example [36]) requires a numerical integration through the thickness which is
uneconomical when the number of layers is high, which is the case for laminaied
structures. An explicit integration through the thickness can be performed. as reported by
some authors [26.35,59,60], and thus the model is reduced to a more economical resultant
form. Palmerio et al.[54,61] used this theory with moderate rotations to study the
nonlinear bending, buckling and postbuckling of anisotropic rectangular plates, circular
cvlindrical and spherical shells. A lot of recent research work has been devoted to the
development of shell elements based on the FOSDT where finite rotations (unlimited in
size) can be modeled. Representative works can be found in References
[1,14,22,23,25,32,33,62-67] for the case of isotropic shells and in references
[12,15,17,19,20,31,68] for the case of laminated composite shells. The kinematic model

used in most of these works describes the deformed shell continuum by
x@.n.)=eEm+Ld¢.m . dE.m-dE.n=1 2.4)

where x(£,n,{) is the position vector of a generic point in the shell medium, @(&,n)

maps the middle surface of the shell, and d(&.n) is a unit vector (inextensible shell

director) initially normal to the shell middle surface but, after deformation, this
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orthogonality condition is lost because of transverse shear deformation. Pandya and Kant
[69], among others, have conducted comparative studies which have shown that classical
plate/shell models, even of Mindlin-Reissner type, are unable to predict the deformation
behavior with sufficient accuracy if the side length-thickness ratio or layer stiffness
discontinuities exceed some limits. To improve the prediction capability of ESL theories.
researchers developed higher order shear deformation theories (HOSDT).

The most popular theory among HOSDT are the third order shear deformation
theories (TOSDT). In recent years, several third order theories have been developed by
different authors [70-79]. The displacement field present by Lo et al.[74] and Reddy{52].
for the case of plates, is

ugG.n.0)=ugG.mM+LuyGM+L 2 uz G.m+E  up€.m)
us (E.0.0)=u )+ LusE.m+ £ uiG.m)

2.5

Reddy [52] reviewed third order theories which satisfy vanishing of transverse stressss on
the bounding planes (case of plates) and showed that most third order theories are not
new but duplicates of other theories. He also showed that all technical theories up to and
including third order can be derived from generalized displacement field [51,80]. The
transverse displacement in Equation (2.5) is expanded only to the second order in z for
consistency of transverse shear strains [S1]). Some of the above mentioned TOSDT
accounted for the Von Karman nonlinear strains. Pandya and Kant {69] performed
comparative studies for linear flexure of sandwich plates using the finite element method.
They showed that TOSDT models, for which the zero transverse shear stress condition is

not enforced, perform better than those similar to Reddy’s model [78] where the zero
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transverse shear stress condition is enforced at the bounding surfaces. Reddy’s model
[78] and similar ones lead to a formulation with five parameters, as in the first order shear
deformation theory. A significant feature of these TOSDT is that the assumcd
displacement field leads to a parabolic distribution of the transverse shear stresscs.
thereby, removing the need for using a shear correction factor as used in the FOSDT.
These kinematic models have then received a widespread use in modeling multilayered
plates for different purposes, i.e., bending, stability and dynamic analysis [2.81-85].
Reddy and Liu [48] extended this theory to shell geometries in an analytical study to get
deflections and natural frequencies for cross-ply laminated shells. The resulis were
believed to be better than the FOSDT. The displacement field used in this theory, which

is based on orthogonal curvilinear coordinates as was the case for Equations (2.3), is

given by
r - e, x { . Y X 2 = -3 -
uE.n.f)=u (§~n)(1+k—]*é¢1(§~n)+§ v, E.m+£°6,(E.m)
1
v(é,n,g)=v°(é,n)(1+Ri]+§¢z(é.n)+C=wz(;’,n>+c362(§,n) (2.6)
2

w&.n.5)=w"(&.n)
where 1°,v° and w°® are the displacement along the (§,n,{) coordinates of a point on
the middle surface and @, and ¢, are the rotations at { =0of normals to the middle
surface with respect to the n and & axes, respectively. The functions v, and 6, (i=1.2)
are determined by enforcing the zero transverse strain condition on the bounding

surfaces. After enforcing these conditions, Equations (2.6) reduce to



u(é.n,§>=u°( i)+¢¢,+§ SN AP }

R, i a,d&'

- - 0 g i a“'o -
"(gvn’9)=v ( R_2]+§¢’ +§ 3h2 —-¢2 -azaéz] (--7)

w(€.n.J)=w’
where a, and a, are the surface metrics and h is the total shell thickness. Now the
theory has reduced to five parameters instead of seven as described in the first case.
These parameters are u°,v’,w°’,@ and@,. Their dependence on £and 71 is not
explicitly shown in Equations (2.7) for simplification. Soldatos has applied this theory to
examine the stability and vibration of laminated circular [86] and non-circular [87]
cylindrical shells. Dennis and Palazotto [24] used an initial kinematic model where the
displacements along the midsurface coordinates were expanded to the fourth power in [
coordinate and the transverse displacement was independent of {. Afiter introducing
some simplifying assumptions. their model was reduced to Reddy and Liu's model a-s
presented in Equations (2.7). Their displacement-based finite element formulation was
specialized to cylindrical shell geometry, and large rotations and displacements were
incorporated using a simplified approach. The same model was used by Kumar and
Singh [88] for the dynamic analysis of laminated shells using Bezier functions as
admissible displacement fields to represent the shell’s middle surface displacement and
rotation components. Here also, it is valid for moderate rotations only. The true finite
rotation model using a TOSDT was developed by Basar et al.[19] where the position

vector of an arbitrary point in the deformed shell medium is given by

x¢.n.0) =& M+La, E€.mM+L2uE.m+L> y&.m (2.8)
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After introducing the fiber inextensibility condition (transverse normal strain neglected)
and assuming furthermore that the transverse shear deformation is distributed
symmetrically with respect to the shell middle surface, they obtained a reduced equation

with two kinematic constraints.
xEnl)=eG.m+fa;Em+L’ y&.m) 1 ay-a;=1; a;-y=0 2.9)
The first constraint was satisfied exactly using a certain decomposition for a-. but the

second one was enforced in the finite element procedure at the element level.

2.2.2 Discrete Layer Theories

In the theories of this kind [1,2.49,50], piecewise, layer by layer displacement
assumption through the thickness is introduced.  Although the discrete layer
approximation theories are very accurate in general, they are quite cumbersome in
solving practical problems because the order of their governing equations depends on the
number of layers (NL) of the laminated shell, which is very high in real laminaied
composite shells. The theoretical model developed on this basis contains 2*NL+3
parameters making them the most expensive ones. In addition, since in these theories the
transverse shear stresses are constant within each layer, the shear stresses are also
discontinuous at the layer interfaces. In view of these reasons, Di Sciuva [89] has
proposed a simplified discrete layer theory with only five unknowns for describing the
deformation of shells. His model was based on firstly assuming the in-plane
displacements to be piecewise linearly distributed through the thickness, and then

imposing the continuity of transverse shear stresses at layer interfaces. A similar
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laminated shell theory. incorporating the geometrical nonlinearities in the spirit of the
Von Kamman's small strain and moderately small rotation approximation. has bcen
proposed by Librescu and Shmidt [90]. In these theories the transverse shear stresses are
uniform across the entire thickness of the shell. therefore the zero shear stresses on the
bounding surfaces are not fulfilled. The displacement assumption proposed by Di Sciuva
[89] was modified later, to develop third order shear deformation plate [91] and shell [92]
theories with continuous interlaminar stresses. Some finite rotation models using
layerwise theory can be found in references [16,19,93-95]. Braun et al.[16] used a so-
called multi-director theory, which was described in References [96-99]. to develop a
layerwise shell model with extensible director, i.e., allowing for transverse shear and
normal strains within each layer. This model was applied to laminated plates under
uniform and sinusoidal loads. A similar model was used by Basar and Ding [94] where a
constant stretch of the layer director is allowed and this model is based on a
multiplicative decomposition proposed originally by Simo et al.[100], but in References
[19,93], the layer shell director was based on the inextensible director assumption.
Because of the expensiveness and accuracy of these models, they should be used to
model localized three-dimensional effects where the predictions of ESL theories are
inadequate. A number of simultaneous multiple model methods have been reporied in
the literature [101] where different subregions of the laminate are described with different
types of mathematical models. A review of such models can be found in Reference

(101].
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2.3 Large Rotation Formulations

2.3.1 General

The theoretical background for the parametrization of finite rotations has reached a
very advanced level which is documented in many textbooks [102-104] and in many
papers [11, 105-114]. From the algebraic point of view, finite rotations may be regarded
as linear transformations with invariance properties. They can be described by a set of
parameters, the choice of which is very wide. Euler was the first to recognize the
importance of spherical motion defined as the pure rotation motion occurring in a body
fixed at one point. He also observed that a spherical motion could always be described
by a unique rotation about an axis of a given orientation in space. The geometrical point
of view, which is found in most textbooks on classical dynamics [102], consists of
describing an arbitrary rotation in terms of elementary rotations about fixed axes. Euler
himself introduced a set of angles, known as Euler angles, which is well suited for the
study of spinning bodies such as tops and gyroscopes. Another set of angles, known as
Bryant or nautical angles, has been adopted by the community of flight mechanics [115].
These quantities are called roll, pitch and yaw. Although these angles have
straightforward physical meaning, they may lead to singularities in specific situations and
their trigonometric nature make them computationally inefficient in describing arbitrary
large rotations which may be encountered in very complex systems [111]. The
development of the algebraic approach is based on the fundamental observation that

rotation preserves the length of the position vector of any point undergoing the rotation.
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This induces the well-known orthonormality condition of the rotation operator and allows
its presentation in terms of its invariants [104]. These invariants were described by many
sets of parameters, the most important among them are the Euler parameters and the
Rodrigues parameters. Euler parameters were successfully used in the simulation of rigid
multibody dynamics [116] and later on extended to flexible multibody systems by several
authors [117].

The interest of the continuum mechanics community for the kinematic description of
rotational motion is more recent. Among the contribution of continuum mechanics
experts, we can cite the remarkable synthesis works of Argyris [106] and Atluri and
Cazzani [112]. However, it was only with the recent development by Simo and co-
workers of the so-called geometrically exact structural theories for beams [118,119] and
shells [64-66] that the urgent need to address the pertinent computational issues, has
arisen.

Many nonlinear shell theories, capable of capturing finite rotations, have been
developed recently. These theories are characterized by being geometrically exact and by
including a rotation tensor. They are either based on the Green-Lagrange strain tensor or
the streich tensor as a strain measure. In the first case, which is more popular, the
rotation tensor is part of a geometric description of the displacement field. It describes
the rotation of the shell director (normal vector to the shell middle surface in the
undeformed state). In this type of formulation, the rotation about the normal (drilling
degree of freedom) is excluded at the onset thus resulting in a two-parameter rotation

tensor instead of three. Examples of Research works representing this category can be
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found in References [12.14,15,17,18-20, 22,23,25,31-33,64,66,121]. In the second case.
when stretch type of strain tensors are used, the rotation tensor enters the formulation
based on its definition, i.e., by means of polar decomposition of the deformation gradient
[8. 120]. This rotation tensor can be three-parametric with a natural inclusion of the
drilling degree of freedom. A representative work of this category can be found in

Reference [67].

2.3.2 Rotation Parametrization

Many possibilities exist for an explicit representation of the rotation tensor R. This
has been described for example by Spring [108] in his review paper. Recently, Betsch et
al. [11] reviewed the computational treatment of finite rotations based on various
rotational parametrizations, used in the computational mechanics field, and classified
them with respect to their update structure as either additive or multiplicative. The main
parametrizations, used frequently in the literature, will be briefly presented and then

focus is placed on the one adopted in this study.

2.3.2.1 Direction Cosines

Even though the direction cosines are rarely used in describing the three dimensional
rotations, this method is discussed for the completeness of the presentation. Considering
two coordinate systems x,x.x; and x/x;x; with, respectively, (e,,e..e;) and (7,.1,.;)
as unit base vectors in these coordinate systems. x,x,x, is obtained by rotating x, x,x,

about its origin. In this case, the rotation tensor can be expressed as



R=t.®e, (2.10)

where ‘®’ represents the tensor product.

The components of R, i.e., R;are obtained in the initial coordinate system x x.x, as

follows
Rij=ei (2, ®et)'e,'=(¢,- -1, )(e, ‘C,-)=¢,- L 2.1

Equation (2.11) shows that column j of R represents the direction cosines of the base

vector £, The orthogonality of the rotation tensor is shown in the following equation
RR =(t, ®e,)e,; ®1,)=6,(t, ®t,)=t, ®t, =1 (2.12)

This implies that the inverse of R is equal to its transpose. The nine direction cosines in
R are not independent and Equation (2.12) contains nine constraints where three of them »
are repeated twice, thus six independent constraints exist between the direction cosines.
This will reduce the number of independent parameters, to characterize the rotation
tensor, to three. It is evident from above that carrying out nine parameters with six

constraints to explicitly express the rotation tensor is not practical.

2.3.2.2 Rotation about some Axis
The well-known Euler’s theorem states that the general displacement of a rigid body

with one point fixed can be always described as a unique rotation about an axis of a given

orientation in space. Let us consider a finite rotation with an angle 6 =}6| about an axis
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. . 6
given by a unit vector n = -6- where

6=0n (2.13)

is called the rotation vector. The corresponding rotation tensor R(@ m) defines the
conical transformation R(6 n)a of a vector a which moves on a cone around the rotation

axism. Simple geometric considerations lead to the so-called Rodrigues formula [102.

104-106],
R@n)=cos6I+(1—-cos@)n®@n+sinfn (2.14)

where 7 denotes the skew symmetric matrix associated with the axial vector n and

satisfies the following condition
AV=RXV for any ve R> (2.15)

and ‘x’ stands for cross product.
The components of n and #, expressed with respect to fixed three dimensional

orthonormal base vectors e, ,i=1,2,3, are
n=ne, : R=n.e ®e; (2.16a,b)
The matrix representation of these quantities is given by

n, 0 -n, n,
{n}=1{n, [#]=| n, 0 -n (2.17a,b)
n, -n, n 0
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The Rodrigues formula (2.14) can be identified with the exponential of the skew

symmetric tensor 6 that has the explicit expression [103.106]

- sin@ s 1(sin&2Y s,
Exp@|=1I + 6+— 6’ 2.18)
b (%) <
We can go from Equation (2.14) to Equation (2.18) by using the standard relations
6°=6®6-0°1 2sin’*@/2=1-cos@ (2.19a.b)

Equations (2.14) or (2.18) can be used to construct elementary rotations about fixed

coordinate axes such as 8, =6, e, .0, =0, ¢, and0@, =0, e,. Accordingly, we obtain

1 0 0
R@6,e,)=|0 cosf, -sinf, (2.20)
0 sinf, cos6,

cosf, O sin6,
R@B,e,)=| 0 1 0 (2.21)
-sinf, 0 cosé,

cosf, -—sinf, O
R(6, e;)=|sin6, cosb,

o

(2.22)

2.3.2.3 Euler Angles

One of the most common and widely used parameters in rigid body rotations are the
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three independent Euler angles. This parametrization relies on the use of successive
elementary rotations about three axes that are not orthogonal in general (follower axes).
Euler angles, however, are not unique; the most widely used sel is given by Goldstein
[102] where the Euler angles are defined with respect to the follower axes (3.1.3) with the
respective rotation angles of ¢,6,y. Argyris [106] pointed out that a sequence of
rotations about follower axes is equivalent to the same sequence of rotations about fixed
axes except that the order of application of the rotations is inverted. Thus, the above

sequence is equivalent 1o a rotation y about e, axis, followed by a rotation 6 about ¢,
axis and concluded by a rotation ¢ about e, axis. The resulting rotation matrix is given

by
R=R(¢e,)R(Be,)R(ye;) (2.23)

After substituting the elementary rotations by their expressions. based on Equations-

(2.20)- (2.22), the final expression of R is

cos¢ siny —sin gcos@siny —cos@siny —sindcosfcosy  sin osin 6
R ={singcosy +cospcos@siny - sing@siny + cosdcosfcosy —cos osinf | (2.24)
sinfsiny sin8cosy cosé

Euler angles are a special version of formulations based on elementary rotations. Lee and
Kanok-Nukulchai [12] used three elementary rotations leading to a rotation matrix
similar to that derived by Surana and Sorem [122]. This formulation includes drilling

rotations which will cause singularity in case the elements meeting at the same node are
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Figure 2.1. Spherical coordinates : Three different possibilities defining
the director with respect to the orthonormal basis



coplanar.

The spherical coordinates, consisting of two independent angles used to describe the
position vector d of a point on the unit sphere, have been used in finite rotation shell
formulations [121.25.19.17.15] to define the direction of the shell director in case drilling
degrees of freedom are excluded. Figure (2.1) shows different possibilities 10 define
these angles. The formulations in References [121,25,15] used the definition shown in
Figure (2.1a) and those in References [19,17] adopted that of Figure (2.1c).
Unfortunately all these formulations are not free of singularities and, as mentioned above,

due to their trigonometric nature they are not computationally efficient.

2.3.2.4 Euler Parameters (Quaternions)

An alternative parametrization of the rotation about an axis # with angle 6. which
offers a very attractive scheme for the multiplication of two sequential rotations. is basgd
on the so-called Euler, or sometimes referred to as Euler-Rodrigues, parameters deﬁned-
by

g, =cosf/2 q =[sin6/2ln (2.252.b)
Since the norm of a is equal to unity, the four Euler parameters (g,.q) have to satisfy

the constraint condition

9
(18]
h
i)

95 +9-q=1 2.
In this case, the rotation matrix leads to the alternative parametrization

R(4,.9)=Q2q; - DI+ 29 ® g+ 29,§ (2.27)



28
in terms of Euler parameters (g,.q). This rotation tensor does not requirc any

trigonometric functions. Euler parameters are especially well suited for the composition
of two successive rotations. Given two sequential finite rotations with corresponding

Euler parameters (g,,,.4,) and (qq.,.4.). there is a single compound rolation with

parameters
9oy =9om9oy — 4 "4 (2.28)
9: =901\9> * 9o9: —9: ¥Xq: 2.29)

so that the rotation tensor R (g,.,.95) is identical to

R(q43,.93)=R(qo3)-92)R(q0,-9,) (2.30)

The multiplication rule defined by Equations (2.28) and (2.29) is often accredited 0
Rodrigues [123). This will lead to the identification of Euler parameters with
quaternions. This parametrization has been used by Simo et al.[124] for the update of the
rotation matrix which is composed of two finite rotation. The use of quaternions in the
parametrization of a rotation requires less storage i.e. four parameters compared to the
nine coefficients used in a rotation matrix including drilling degrees of freedom or six in

the one excluding. by design, the drilling degrees of freedom.

2.3.2.5 Rotational Vector

Formulations based on the rotational vector @ are very close to Euler parameters,
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except that they use only three parameters, which are the components of the vector 6 . or
some scaling of the unit vector s, which is parallel to 8 . Other altematives used by
some researchers are presented here with the resulting rotation matrix corresponding 10

each scaled rotation vector [22.107].

sir99—+l-cose a =

6=6n . R@)=1 + 058 66 (2.31a.b)
8 PE

w =[tan8/2]n : R(W) =T +—2—[ip + W] (2.32a.b)
l1+w-w

y=sinfn c RW) =1 4P +— 3% (2.33a.b)

2cos? —
2

where 6 ,% and ¥ are skew symmetric matrices satisfying Equations (2.17). Equations
(2.31) are the Rodrigues equations which can be obtained from Equation (2.18) with the
help of the trigonometric identity (2.19b). The rotation matrix obtained using the'
parametrization of Equation (2.32) does not require any trigonometric functions, as was
the case for the rotation tensor based on Euler parameters. The relation of w to Euler

parameters is given by

w=-2 (2.34)

The compound rotation that results from two sequential rotations, which are now given,
respectively, by w; and w,, can be directly calculated based on Equations (2.28) and

(2.29) to yield
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W,+W, —w, Xw,
l-w, -w, (2.35)

Wy =

Note however that the scaled rotation vector w introduces a singularity at 8 = +rx + 2kr
since tan@/2—eo. The third term of Equation (2.32b) also becomes unstable. Equation

(2.31) is the only one without singularities in the range of 0 <6 < 27 because

] sm6=1 -lim 1~cosf =_;_ (2.362.b)

60 @ 90 63

Simo et al.[66] used the Rodrigues formula with a material parametrization which
reduces the components of the rotation vector to two, i.e., excluding the drilling rotations.
Sansour et al.[67] and Parisch[23] used the three components of the rotation vector which
is normal in the formulation of Sansour et al., but induces singularities in the formulation
of Parisch in case of coplanar elements. However Hughes and Liu [62] as well as Stanley
[35] used different approximations of the Rodrigues formula. The formulation adopted in

this study follows closely that of Simo et al. [66]

2.4 Shell Elements

Over the years many shell elements have been developed. Yang et al. [125] reviewed
extensively the advances of the formulations for thin shell finite elements previous to
1990 and discussed the effects of geometric and material nonlinearities. Most of the
developed elements can be put into three distinct classes according to the basic

mathematical principles used.



Facet Elements:

In this kind of formulation, the shell surfaces are approximated by an assembly of flat
elements. The behavior of the shell is modeled by superposition of stretching behavior
(two dimensional membrane element) and bending behavior (plate bending element). At
the element level, thé in-plane stretching and bending stiffnesses are completely
uncoupled. The coupling is accounted for at the structure level, i.e. while assembling the
global stiffness matrix; such coupling is a major contributor towards load carrying
mechanism in shells and other curved elements. Some notable flat displacement-based
elements can be found in references [126-130]. Knowles et al.[131] observed that. in
general, adequate performance of such elements can be obtained when the sought
response is either membrane dominated or bending dominated. However, when there is
strong coupling between them, the performance is extremely poor. Horigmoe and Bergan
{42] and Madenci and Barut [45], who used the corotational formulation to remove the .

small rotation limitation, applied these elements to geometrically nonlinear probiems.

Curved Shell Elements based on Classical Shell Theory

Curved shell elements have been developed to overcome the difficulties encountered
by facet elements due to their flatness and the discontinuity in geometry caused while
modeling curved surfaces. For elements based on classical shallow (thin) shell theories,
their range of application is limited by the underlying shell theories employed. The
probiem encountered with early curved shell elements, based on classical shell theory, is

their inadequacy in modeling rigid body modes [125]. Hansen and Heppler [132]
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presented a method to enable the shell-coordinate (curvilinear) finite elements to exactly
reproduce all of the six Cartesian rigid body modes. This was done by forcing the rigid
body capability as an essential requirement for the derivation of the basis functions. The
recent use of tensor mathematics in the formulation of quadrilateral shell elements [133-
136,5,25] has removed the limitation of such elements to regular shapes, i.e., confined to
orthogonal curvilinear coordinates where any two neighboring sides of an element must
be orthogonal. The problem, which arises in this case, is the uniqueness requirement that
these curvilinear coordinate systems and base vectors must be unique at each common
nodal point [136].

Kirchhoff shell theory has been widely used in the formulation of curved thin shell
elements due to its well-established nature. Irons and Drapeer [137] showed that the
requirement of inter-element normal slope continuity, which is a requirement of
Kirchhoff theory for the formulation of conforming shell elements, was incompatible .
with the requirement that the element must be able to represent states of constant stress.
Such limitations have led to the development of ‘degenerated’ shell elements, which are
degenerated from the three dimensional isoparametric formulation with additional

kinematic assumptions.

Degenerated Shell Element

The degenerated shell element, first introduced by Ahmad et al.[58], is based on the
3-D continuum equations but with an isoparametric interpolation that in effect imposes
the same kinematic constraints/restrictions as those of the FOSDT. The continuum based

finite element development avoids the intermediate step of deriving 2-D plate or shell
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equations and then using them to develop finite element models. The dissertation of
Stanley [35] and the books of Bathe[8] and Hughes{138] offer comprehensive overviews
of the degenerated solid approach and related methodologies involving some type of
reduction to resultant form. Although the hypotheses underlying the degenerated solid
approach and the classical shell theory, with a Reissner-Mindlin kinematic, are
essentially the same, the reduction to resultant form is typically carried out numerically in
the former and analytically in the latter. The recently developed finite rotation shell
elements by Simo and co-workers [64-66] are very efficient and brought the two
approaches closer to each other. They started their formulation from the strain definition
of the classical shell theory, but a discretization similar to the degeneration concept was
introduced in the finite element, i.e., the vectorial quantities were decomposed along
fixed Cartesian axes rather than along local bases. Most of recent finite rotation models
follow this approach [14,15,17,19,20,22,23]. We mention here also Stander et al.[25]
who used curvilinear convective coordinates rather than cartesian coordinates within the
degenerated approach.

The displacement-based finite element formulations suffer from the so-called shear
locking, a phenomena which is closely connected with the underlying assumptions
typical for the shell theories of the Mindlin-Reissner type when they become thin. Many
procedures have been suggested to improve the behavior of these elements in thin shell
situations. Some of these procedures alleviate the ‘locking’ problem by special treatment
of the transverse shear strain components, while using full integration to preserve the

correct rank of the element stiffness matrix. Among these proposed procedures, the one
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based on mixed interpolation of tensorial transverse shear strain componcents, initially
developed by Bathe and Dvorkin [4,5], is especially attractive.

The four node quadrilateral shell element has been a matter of performance
investigation by many authors especially for shells undergoing finite rotations
[15,17,19,23,25]. Extensive testing was done in Reference [25] to prove the robustness
of this element. It is believed to have a weakness of poor coarse mesh geometric
modeling. Its strengths lie with its inherent economy and its insensitivity to distortion.
The former characteristic stems from the element’s low nodal connectivity. In
geometrically nonlinear analysis, distortion of higher order elements may reduce the

quality of the analysis significantly, whereas four node elements are less sensitive[25].

2.5 Dynamic Effects

When dynamic effects are included, a temporal discretization method is needed. The
Newmark family of implicit single step time integration schemes [139] are favorad in
structural dynamics. These algorithms are unconditionally stable for linear problems, but
only conditionally stable for nonlinear problems. This has been demonstrated recently by
Simo and co-workers [6,140-142] for the midpoint and the trapezoidal rules through
numerical simulations considering rigid bodies, shells and rods. In their simulations.
these two methods exhibit severe energy growth which suggest the loss of the
‘'unconditional stability'.

An attractive criterion for the stability of time integration algorithms is the
conservation of energy. Hughes et al.[143] presented a modification of the trapezoidal

rule to achieve conservation of energy which was enforced via Lagrange multiplier.
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Their algorithm failed to conserve momentum. Simo et al.[124] modified the momentum
conserving schemes to preserve energy for the case of nonlinear shells. Their designed
algorithms achieved limited success in actual calculations. Afterwards, Simo and
Tarnow [140] proposed a general methodology for the design of exact energy-momentum
conserving algorithms within the context of nonlinear elastodynamics This methodology
has been extended by the same authors, in Reference [6], to the nonlinear dynamics of
shells and by Simo et al.[141] to the nonlinear dynamics of three dimensional rods.
Galvanetto and Crisfield [144] presented an energy-conserving procedure for nonlinear
dynamic analysis of planar beam structures based on the co-rotational technigque which
was proposed by Rankin and Brogan[41] for the static case. Kuhl and Ram [33]
presented the so-called constraint-energy momentum algorithm, which combines the
positive features of algorithmic damping of higher frequencies with the enforcement of
conservation of energy and momenta via Lagrange multipliers. Recently. Brank et
al.[32] applied the energy-momentum algorithm developed by Simo and Tamow [6] to

first order shear deformation shell models with large rotations.

2.6 Current State of the Art

The noticeable work in laminated shells with reference to geometrically nonlinear
behavior including finite (unlimited in size) rotations is limited compared to its
counterpart in isotropic shells. The nature of fiber reinforced composites with their low
transverse shear to inplane moduli and their fast transition from secondary to primary
structural element in modemrn industries require the use of HOSDT to accurately predict

the response of structures made of such materials. Among HOSDT, the TOSDT is the
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most popular one. This refined theory has been extensively used in lincar analysis
laminated beams, plates and shells but rarely used in the analysis of laminated shells
undergoing finite rotations. It is needed to assess the range of predictability of the
FOSDT when applied to thin-to-thick laminated shells in highly nonlinear cases. The
analytical solutions in such cases, even for isotropic shells, don’t exist. The importance
of composite materials in aerospace, outerspace and automotive structures motivates the
consideration of dynamic analysis. The conservation of energy, linear and angular
momenta, besides their physical foundations, represent attractive criteria for the stability
of time integration algorithms. If one of these quantities blows up, it suggests that the
time integration scheme becomes unstable. The exact energy-momentum conserving
algorithm has only been applied to the nonlinear dynamic analysis of shell type structures
undergoing finite rotations and using the FOSDT. Thus its extension to the TOSDT
represents at the same time a need and advancement in state-of-the-art analysis of .

laminated composite shells.



CHAPTER 3

SHELL THEORY

3.1 General

This chapter aims at presenting the essential elements of a shell theory that will be
used in subsequent chapters, within the framework of the finite element method (FEM).
for numerical analysis of isotropic or laminated shell type structures subjected to static
and dynamic loads. It starts by reviewing some important mathematical preliminarie.s '
pertaining to curvilinear coordinates and differential geometry of a surface. which are
essential for the treatment of the shell theory. The construction of the present shell theory
is approached from the three-dimensional theory by viewing the shell as a three-
dimensional continuum body, then appropriate assumptions are introduced as a
consequence of the thinness of the shell. The exposition of the shell theory itself starts by
proposing a kinematic model, based on TOSDT, to trace the material particles during the
deformation process which allows the shell body to undergo large motion and finite
rotations. Then, using this kinematic model, Green-Lagrange strains are derived based
on two configurations of the shell, which are the initial and current states. The

37
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relationship of these strains to their work-conjugate second Piola-Kirchhoff stresses are
then established through constitutive relations that are limited to small strains. These
constitutive equations are derived directly with respect 1o curvilinear coordinales in case
the layer is isotropic. Otherwise, when the layer is orthotropic, they are derived with
respect material principal axes and then transformed to curvilinear laminate coordinates.
These constitutive equations, which were initially three dimensional, are reduced to plane

stress by imposing zero transverse normal stress condition.

3.2 Curvilinear Coordinates

The position vector of a generic point P (Figure 3.1) is given by the vector

x=x.. G.D

where x; are rectangular coordinates and i, are unit vectors directed as shown in Figure

3.1. In this work the Latin index (subscript or superscript) represents any of the numbers
1,2 or 3. In two dimensional problems, a Greek index is used to represent either of the
numbers 1 or 2 only. Any term in which the same index is repeated, unless otherwise
indicated, stands for the sum of all such terms obtained by giving this index its complete
range of values.

Let 6’ denote arbitrary curvilinear coordinates. We assume the existence of equations

which express the variables x; in terms of 8° and vice versa, that is

x, =x,(0',62.6%) . 6’ =6'(x,x,,x,) (3.2a,b)



Figure 3.1 Position vector of a point P with
cartesian and curvilinear coordinates
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By means of Equations (3.2a). and (3.2b) the position vector x can be expressed in

alternative forms:
x, = x,(x,%,,x,) =x,6",6%,8%) 3.3)

A differential change d@° is accompanied by a change dx tangent to the 8° curve. It

follows that the vector

G, =—=—%i. (3.4)

is tangent to the 6 curve. The tangent vector G, is sometimes called a covariant base or

shortly a base vector. We define another triad of vectors G' such that

G -G’/ =6/ 3.5)

1 i

where G’ is often called a contravariant or reciprocal base vector and §/is the -

Kronecker delta defind by the equation

5i,-=5"'=5;’=5'?={0 (f*j)} 3.6)
1 @=J

From Equation (3.5), it can be seen that the contravariant base vectors (G' .G*.G?) are
respectively perpendicular to the planes G,G,, G,G,, G,G,. The triad G; can be

expressed as a linear combination of the triad G’ and vice versa i.e.

G'=G'G, ., G,=G,G’ (3.7a.b)
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where

G'=G'-G’ . G, =G, -G; (3.8a.b)
and

G"G,. =0 3.9)

L] J
Equation (3.9) can be solved to express the coefficients G’ in terms of G;.

The differential length ds of the differential vector dx is given by
ds* =dx-dx=G,.,.d6"d6" (3.10)

The coefficients G; play an important role in differential geometry; they are the

components of the metric tensor.
We introduce also the expression for volume and surface elements in general

curvilinear coordinates. An elemental volume bounded by the coordinate surfaces
through the points (8!,6%,8°) and (6' +d68'.6° +d6°,6° +d6%)is shown in Figure

3.2. In the limit the volume element approaches

dV =dr, - (dr, x dr,)
=G, - (G, xG,)d0'd6*de*> (3.11)
=G d6'd6d8*

Where

G =|G,| (3.12)
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represents the determinant of the metric tensor G;. The area element dQ, on the 6°-

surface (surface obtained by keeping 8° constant and varying 6'and 6°) is given by

d2, =|dr, xdr,|=|G, xG,|d8'd6* =JGG* d6'd6* (3.13)

In general, the area element dQ; on the ' -surface is given by

dQ. =JGG' d8'de* (i not summed, i=j=k) (3.14)
3.3 Shell Kinematics

3.3.1 Introduction

By a shell we understand a piece of solid matter bounded by two nearby curved
surfaces. The distance between them defines the shell thickness &, which is supposed to
be small compared to the other dimensions of the shell. The surface which halves the |
shell thickness everywhere is called the middle surface (midsurface) and it serves the
same purpose as the midplane of a plate or the axis of a beam. In principle. the theory of
shells can be derived as the theory of plates is derived. However, the shell theory is
necessarily complicated by the initial curvature.

Figure 3.3 shows a shell element in its reference and deformed configurations.

(€.n.&) represent general curvilinear (convected) coordinates attached to the shell body.

Note here that, for convenience, (£,7,{) coordinates will be used instead of (6',6°,68°%)

coordinates used in the previous section. We may imagine that this coordinate system
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moves and deforms continuously with the body as it passes from the original staic "B” 10
the deformed one ‘b’. The values of these coordinates, defining a generic point P in ‘B".
remain constant as P moves from its position in ‘B’ 10 its new position, denoted by p .
in 'b" (material representation). Fibers are lines of particies (material lines) in { direction
extending from the bottom surface of the shell to its top surface. Thus, these fibers are
represented by £ lines in the reference configuration and £ curves in the current
(deformed) configuration. Initially, they are normal to the midsurface £ = 0 but. after
deformation, they become curved and their tangents at { = 0 are no longer orthogonal to
the middle surface because of shear deformation. The set of all these fibers fully
describes the shell body (medium).

Now that a coordinate system is set up for locating any material point in the shell
medium, we need to describe geometrically the deformation process. This can be done
by first assuming a kinematic model, which will be based on TOSDT with ﬁnit-e '
rotations, and then using the position vector of any point, defined with respsct to a fixed
cartesian coordinate system (X,Y,Z), as a means to describe the geometry of the shell.
Two states of the shell are of interest, as shown in Figure 3.3, the initial (reference) state
and the current state, which represents the shape of the shell body after it has gone some
deformation.

In each state of the shell body, two position vectors are used; i.e., (X.0,) in the
initial configuration and (x,@) which represent, respectively, the position vectors of
points (P,P,) and (p,p,). Thus, to each point on the shell medium, there is a

corresponding point on the reference surface, and they both belong to the same fiber.
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Notinge here that points and vectorial quantities denoted by upper case letters refer 1o the
undeformed configuration and those with lower case letters refer 10 the deformed
configuration.

The position vector x of point p can expressed by
X=@+(x-@)=@+p,p (3.15)

where x(5,n.{), @(&,n) and m(é,n,g ) are the vectorial quantities shown in

-

Equation (3.15) with their dependence on the curvilinear coordinates. Since @(£.n)is

independent of £, the vector ;5 is the only quantity, which needs to be expanded in
power series of { coordinate. The analytical expression of the proposed kinematic
model is based on the following. In the first step, the vector;o—p' is rotated back along
with the fiber containing the points p, and p until the tangent to this fiber, at the\
-midsurface level ({ = 0), becomes parallel to the Z axis. In the second siep, a power
series expansion, up to the third degree with respect to { coordinate, is used to
approximate the components of the rotated vector ﬁ in the cartesian coordinate

system (X,Y,Z).

3.3.2 Undeformed Geometry

In the undeformed geometry, the fibers are straight and normal to the midsurface. In

this case the tangents to the fibers are parallel to the fibers themselves and the expression

for approximating the rotated P,P vector is given by
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RI (X-¢,)=(E, (3.16)

where

X(¢.n.{) and @,(§.n) have been defined previously. @, (£.1) totally defines the

middle (reference) surface of the shell body

to ]

h
s;sz

is the thickness coordinate as mentioned before with h being the thickness

of the shell

E,; = l_O.O,l_fr is a unit vector of a fixed reference basis {E, },/ =123

R, is the rotation matrix mapping E, into a unit vector tangent to { coordinate at the
midsurface level (£ =0)

Equation (3.16) can be expanded to yield
X=¢, +{RE, =@, +{d” (3.17y -

where
dlm =R,E, (3.18)
represents the unit vector tangent to { coordinate at { = 0. But since { coordinates are

straight lines in the reference configuration, then d,°’ is a unit vector along { axis and it

is normal to the base vectors G,, G,, A, and A,

Equation (3.18) implies the two following properties

dl(o) 'dl(O) =1 . d‘(") 'dl(:x) =0 (3.19)
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where d/°) represents a differentiation of d/° with respectto & (a=1) and 1 (@x=2).
Figure 3.3 shows the covariant base vectors (G,.G.,.G,) at point P and covariant
vase vectors (A,,A,,A;) at point P,(reference surface level); they are expressed as
follow: ‘

~ At the middle surface ({ = 0)

base vectors: A, =@, (3.20a)

A, = XJL,:o =d = A xA, l|A, xA, (3.20b)
metric tensor Ay <A, -Ag A, =0 Ay =1 A=detfa,| (32D
— Atadistance { from the middle surface
base vectors: G, =X_, =@, , +{d)) 3.22a)
G, =d® (3.22b)

metric tensor G =G, -Gy G, =0  Gy=1 G=delG,| (3.23)

G was defined in section (3.2) as the determinant of the metric tensor G;, but since Gs is
normal to G, and G, and the norm of G, is unity, then the determinant of G; is equal
to the determinant of G4, as shown in Equation (3.23). The same reasoning applies to A

which represents the determinant of the metric tensor A;.
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3.3.3 Deformed State

After deformation, the points P, and P will move t0 new locations p, and p

—

(Figure 3.3) having as position vectors @ and x, respectively. The rotated vector p,p.

in the current configuration is approximated by
R (x-@)=( E,+{’D,+{’D, (3.24)

where x(£,n,L) and @(&.n) are defined above. D, and D, are two vectors lying in

the (E,.E,) plane,ie.,

D, = D!E,+DZE, (3.25)

D, = D)E, +D2E, (3.26)

R is the rotation matrix mapping E; into a unit vector tangent to { coordinate at the -

midsurface level (C = 0) in the deformed configuration.

The expansion of Equation (3.24) yields
x=@+ld +{d,+{°d, (3.27)
where
. =RE;, , d.=RD, , d,=RD;, (3.28a.b.c)
From Equations (3.28a,b,c), we deduce the following

d-d =1 d-d,=0 d,-d,=0 (3.29)
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The covariant base vectors (g,.g-..g,).shown at point p (see Figure 3.3). and covariant

base vectors (a,.a,.a,), shown at point p, are as follow:

-- At the middle surface

base vector: a, =@,

a. =x; =d,

= - =0

— Atadistance { from the middle surface
base vectors: ga =x.a =¢.a +g dl.a +§ 2d:.¢x +§ 3d:i.tz

835X, =d,+2§dz+3§2d3

3.3.4. Present Rotation Parametrization

(3.30a)

(3.30b)

—~
(V8]
)
—
o

3.31b)

The parametrization adopted in this study follows closely that of Simo et al.[66]. It is

based on the Rodrigues formula and a rotational vector both given by Equations

(2,31a,b). It was mentioned in chapter two that, among the parametrizations based on the

rotational vector, it is the only one free from singularities in the range 0<6<27r. A

material representation of the rotational vector will reduce the number of parameters from

three to two, i.e. excluding the drilling rotation (rotation about the normal to the shell

middle surface). The Rodrigues formula will be rewritten here for clarity.
6=6n

R(9)=I+sgﬂé+l-ecgseéé

(3.32a)

(3.32b)
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The quantities involved in Equations (3.32a) and (3.32b) have already been defined in
chapter 2. R,, described in section (3.3.1), represents the initial value of R. It can be
constructed based on the normals to the midsurface of the shell body in its reference
configuration. R however will be uniquely constructed incrementally during the solution
procedure and Equation (3.32b) will be used for the parametrization of the incremental

rotation as will be seen in the next chapter.

3.3.5. Strain Measures
Considering the points P and p, discussed above, with their respective position

vectors X and x. Let

.33)

('S

dX =G,d6’ dx =g.dé’ (

be two deferential vectors in the reference and current configurations, respectively. The

deformation gradient tensor F can be written as

dc=F-dX =dX -FT (3.34)

dX=F - dx=dx-F7 (3.35)
F and F are given by
F=g, ®G’ F'=G,®g' (3.36)

Our attention now is focused on the definition of a strain tensor appropriate for the Total

Lagrangian Formulation, i.e. Green-Lagrange strain tensor E which is given by



E=E,G' ®G'==(F'F-G)=>(, ~G,)G' &G’ (3.37)
where

G=G,G ®G’ (3.38)
represents the metric tensor in the undeformed configuration and

.39)

t5)
(V3]

8;=8°8; (

represents the components of the metric tensor g in the deformed configuration. The

components E; of the Green-Lagrange strain are given by (see Equation 3.37)
E = 1 G 3.40
i ‘5(8 i ~0j) (3.40)

Before introducing the kinematic model, the strains in Equation (3.40) will be split into
in-plane strains Eqg, transverse shear strains Eqs and out of plane normal strains 533.'

Starting first by the out of plane normal strains.
1
Ey, = ‘2‘ (833 -Gss) (3.41)

The kinematic model is now introduced through the covariant base vectors g, and G, as

defined in Equations (3.31a,b) and (3.22a,b), respectively. Using Equations (3.23) and

(3.39)for G and g, respectively, and neglecting terms with {-power higher than two,

we get

E,=4(0d,d, (3.42)
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Introducing the fiber inexiensibility condition (i.e. Esz = 0), which is a common

assumption for many shell theories, leads to
D, =0 (3.43)
This condition reduces the kinematic model to
x=@+{d +{%d, (3.44)

Equation (3.44) represents the final form of our kinematic model. To the knowledge of
the author, the only research work where the kinematic model is based on TOSDT and
includes finite rotations (unlimited size) is that of Basar et al.[19]. But it is worthy to
mention the differences between the two models. Their model started with the expansion

to the third degree in { i.e.
xr=@+la,+C*u+’y (3.45) -

this expansion is not something new as has been seen in chapter two. a, used in Equation
(3.45) is given in Equation (3.30b) and it is equal to d,used in this study. Afterwards.
they constrained the out of plane strain to zero, which is the usual assumption used in
classical shell theory (fiber inextensibility) and it has also adopted here. Thern, they
supposed the transverse shear strain to be distributed symmetrically. In the present study,
the second assumption used by Basar et al. is a result of the satisfaction of the first one
i.e. fiber inextensibility. After enforcing the two constraints, the vector u vanished and

the model was left with two kinematic constraints to be satisfied, which are
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a,-a,=1 a,-y=0 (3.46a.b)

The first constraint was satisfied by using two Euler angles. as indicated in chapter two.

to denote the components of a,. However, the second constraint was not satisfied
identically because the authors used the following decomposition for the veclor y , along

with the difference vector w between a;and A,
y=y,A w=a;-A,=wA =w'A, (3.47a.b)

where A and A ; are the contravariant and covariant base vectors, respectively. A; is

obtained from Equations (3.20) and A’can be obtained from A ; using Equation (3.5).

The decomposition used in Equations (3.47) is typical of classical shell theory. The use

of Equations (3.47a,b) in (3.46b) will result in the following

1 e (3.48)

Wy
I1+w

W)

V== Ya

Basar et al. said that this equation will be used in the finite element procedure for the

elimination of y, at the element level. After going through Basar et al. kinematic model,

the following remarks can be drawn:

- The approaches used to construct the kinematic models are different, material in the
present study and spatial in their study.

- The easiness in satisfying the fiber inextensibility constraint in the present model in
contrast to their model where the constraint of Equation (3.48) is to be implemented

at the element level
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- The rotation parametrization used here is based on the rotation vector which is free
from singularity however their parametrization is based on Euler angles. thus it
suffers from singularity and may lead to ill-conditioning in certain situations
This ends the comparison between the two models.
By using Equation (3.44) for the kinematic model, the expressions for the in-plane

and transverse shear strains will be presented. starting with the inplane strains

1 3 ()
Ep =5 8ap ~Gug)= 3, {"Eat (3.49)
n=0
where
(o) 1 _
Ea =5 0.0, - 0..0.) (3.502)
(1) 1 (o) (o)
Eat == 0o dip+0,d1, - 0. 43 ~9.5°42) (3.50b)
(2) 1 o o
Eap = @.d,-d2-d3) (3.50c)
o) 1
Eag = 3 (‘Pn‘ds.a + ¢,p'ds,¢) (3.504)

then the transverse shear strain

1 (k) .
Ey = E (g¢3 —Ga3)= zgk Eas (3.51)

k=02

where
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Eas = % @.-d) (3.52a)
Eas= % @.d;) (3.52b)

The terms with {-power higher than three are neglected in Eqpg and those higher than two

are neglected in Eq3, and this in connection with the degree of approximation in x 3

degree) and x ; (second degree).

3.3.6. Stress Measures

In order to introduce expressions for the stress tensor, it is necessary to relate surface
elements consisting of the same particles in the undeformed and deformed configurations.

Let
dX =G,d6* dX =G,d6" (3.53)

and

thn

dx =g, do* dx=g,d6'’ (3.54)

be the corresponding differentials of the position vectors in the undeformed and deformed
states, respectively. The notations dX and dX point out that dX = dX . The surface

elements NdA and nda, with N and » corresponding unit normals, spanned by the

above differential vectors are determined by

NdA=dX xdX =G, xG,d6*d6' =/Ge,, G~d6*de’ ‘ (3.55)



nda=dxxdx =g, xg, d0'd6' =g e, g™ d6*d6’ (3.56)

where

eu, represents the permutation symbol defined by the following rules

+1 if k,1,m are an even permutatonof 1,2,3
€um =41 ifk1lm are an odd permutatonof 1,2,3 (3.57)
0 if any two indices are the number

Muliiplying the deformation gradient tensor by nda from the left we get
nda-F =\[gey, g™ (g, ®G')d6*do" = [ge,, .G"d6*d6’ (3.58)
Comparing Equations (3.55) and (3.58), we get the following

NdA =\/§nda-F (3.59)
8

Let the internal force acting on the differential area nda be df . The ‘true’ or Cauchy

stress, as it is often called, is defined by the fundamental relation

df =dan-O (3.60)
The component representation of the Cauchy stress tensor & is
6=0"g.,®¢g, (3.61)

Some alternative tensors of ‘stress measures’ will be introduced through their

fundamental relations to the differential force vector df acting on an oriented area nda

defined previously.
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df =dan-O =dAN -t=dAN -S -F' = /Edan-d’ (3.62)
g

The physical interpretation of the various above ‘stress’ lensors can be given {rom the

relations
dAN -t =df (3.63)
dAN -S=df -FT=F~ -df =df (3.64)
G .
df =dan -G = |—dan -G (3.65)
8

The newly introduced terms will be defined and explained each at a time. The tensor £ is
often referred to as the first Piola-Kirchhoff or the Piola-Lagrange stress tensor. It is
derived by moving df , acting on nda , in parallel transport to the pre-image NdA inthe
undeformed configuration. In order to relate ¢ to O , Equations (3.59) and (3.60) are used

to yield
G
/—dan-F-t=dan-O‘ (3.66)
g

Equation (3.66) implies the following relation between the Cauchy and first Piola-

Kirchhoff stress tensors

; =\/EF-1 . (3.67)
G

O is symmetric, but £ is in general unsymmetric. The component representation of £ is
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t=t'G;®g;= ,%a‘fa,.@g,. (3.68)

The tensor S is often referred 10 as the second Piola-Kirchhoff stress tensor. It is derived
by first creating a force vector df given by

df =F~ - df (3.69)

and then moving df in parallel transport, on to the oriented area NdA in the reference

configuration. Using Equations (3.59), (3.60) and (3.64), we get

—(-;-F-S=O'-F’T (3.70)

g

Premultiplying both terms of Equation (3.70) by F ™' yields the expression for the second

Piola-Kirchhoff stress tensor

S=\/g.r‘-o-F“’:S"fG,.®Gj=‘/;§-:o‘fG,.®G,. (3.71)
It can be seen from Equation (3.71) that S is symmetric

The tensor & shown in Equation (3.65) is often referred to as the Kirchhoff stress. It
is simply a scalar J-Eg;- multiple of o .

The second Piola-Kirchhoff stress tensor S is the work conjugate of the Green-
Lagrange strain tensor E whose components were described in the previous section.

Together, they represent the stress and strain measures used in the Total Lagrangian
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formulation. Since the second Piola Kirchhoff stresses have little physical meaning. the

above transformations will be used to find Cauchy stresses whenever they are needed.

3.3.7 Constitutive Relations

3.3.7.1 General

In order 1o complete the formulation, we need to relate the Green-Lagrange strains to
the second Piola Kirchhoff stresses through constitutive equations. This research will be
limited to elastic materials. A simple and widely used elastic material description for the
large deformation analysis is obtained by generalizing the linear elastic relations used for

infinitesimal strains to the Total Lagrangian formulation.
Si=C™E, (3.72)

where S? and E; are the components of the second Piola Kirchhoff stress and Green-

Lagrange strain tensors, respectively, and C* are the components of the constant
elasticity tensor. In large displacement and large rotation but small strain anaiysis,
Equation (3.72) provides a natural material description, because the second Piola-
Kirchhoff stress and Green Lagrange strain tensors are invariant under rigid body motion.
Thus, only the actual straining of the material will yield an increase in the componsnts of
the stress tensor. This invariance observation implies that any material description,
which has been developed for infinitesimal displacement analysis using engineering
strain and stress measures, can be directly employed in large displacement and large

rotation but small strain analysis. This can be achieved simply by substituting the second



61

Piola-Kirchhoff stress and Green Lagrange strains for the engineering stress and strain

measures. We can cite the elasto-plastic and creep material models as examples.

3.3.7.2 Isotropic Material
Considering an isotropic material in three-dimensional conditions related 1o cartesian

coordinates, we have
ikl _
C'™ =A6;6,+1(b,6;,+6,6,) (3.73)
where A and U are Lame’s constants given by

Ev E

A= H=C=3av) G749

in terms of engineering constants E, v and G. The latter constants represent respectively
Young's modulus, Poisson’s ratio and the shear modulus.

6ij represents the Kronecker delta.

Equation (3.73) can be generalized to curvilinear coordinates by replacing the Kronecker

deltas with the proper components of the metric tensor [145]

CHM =GV GH +uGk G +Gi G*) (3.75)

where GV are given by Equations (3.8a).
Considering the condition of zero through the thickness stress (S*°=0), which is

commonly used for shell theories, we get



SP=CP*E, =C*™E;+C* E,, =0 ,mn #33 (3.76)

From Equation (3.76), we solve for E,; to get

C33M

E.; =-W mn .mn#33 3.77

Substituting Equation (3.77) in the stress-strain relations of Equation (3.72), we obtain

) ) ) ~ ij33 ~33mn .
SV =C™ Ey,=C™ E.-*‘CujaEss:(Cw—Ccsgs )Eﬂﬁ:CwEm
ij %33 ,mn#33 (3.78)

where

. B ii33 ~33mm

C"""'=C"'"'—C—C3%—— %33 . mn=33 (3.79)
Equation (3.79) can be split into

. . i Ca333 C33p’u

C %04 = C bt ——C-EB—— (3.80)

_ a33l 33p3

C a3p3 - Ca!ps - C C (3.81)

C3333
Since the constitutive equations are defined with respect to the reference
configuration (undeformed state), we have G* =G, =d,® which represents a unit vector

normal to the shell midsurface. Thus, it is orthogonal to G*. Based on these conditions,

Equations (3.80) and (3.81), with the help of Equations (3.74) and (3.8a), yield



_ 22 . . .
CW=I':;‘2’—‘16"" G* + u(G* G* +G= G*) (3.82)
C:a3p3 Ca3p3 =#G” (3.83)

Equations (3.82) and (3.83) can be given in terms of engineering constants £ and v as

follows
C o =_EV_,G°¢’ G~ +—E—(G“" G* +G* G"") (3.84)
1-v? 2(1+v)
coescass o __E o (3.85)
21 +v)

3.3.7.3. Orthotropic Lamina

A composite material is heterogeneous at the constituent material level (fibers and
matrix). with properties possibly changing from point to point. A lamina is the basic
building block in a laminated fiber reinforced composite. Thus, knowledge of the
mechanical behavior of a lamina is essential to the understanding of laminated fiber
reinforced structures. The ‘macromechanical’ stress-strain relationships of a lamina can
be expressed in terms of average stresses and strains and effective propertiess of an
equivalent homogeneous material. The analysis of effective composite properties in
terms of constituent material properties is called ‘micromechanics’.

A unidirectional composite lamina has three mutually orthogonal planes of material
property symmetry (i.e. the 12, 23 and 13 planes) and is called orthotropic material. The

123 axes are referred to as the principal material coordinates since they are associated
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with the reinforcement directions. Figure 3.4 shows a flat and curved orthotropic laminac
with principal and non principal axes. We notice here that the angle 8 between the 1 and
x axes is constant for the whole flat lamina, but no such angle exist in the case of a
curved lamina. For the latter case. the tangent plane at each point of the lamina contains
the covariant base vectors G, and G,, which are tangent to the curvilinear coordinates &
andn, respectively, and the local principal axes 1 and 2. The angles between G, and G.
and the axes 1 and 2 may change from point to point and this adds to the complexity of
curved fiber-reinforced laminates. Since the total Lagrangian formulation is based on the
reference configuration, the third principal axis 3 is parallel to the third curvilinear
coordinate .

Our goal is to formulate a constitutive law to relate the second Piola-Kirchhoff
stresses to the Green-Lagrange strains for the curved lamina. The stress-strain relations
for a so-called specially orthotropic material (i.e. orthotropic material where consxituti\;e '

equations are associated with material principal axes) is of the form
§™ =H™"E, (3.86)

or in matrix form

(5?11‘ ’Hml guz  gus 0 0 0 If E‘:-“ )

5= H®2 H=* 0 0 0 || E,

ISl HZ2 0 0 0 Y E, (387
N H=" 0 0 2E,,

$3 SYM H™ 0 |{2E,

LS‘lzJ i Hmz_ LZEuJ

The matrix H containing the coefficients H ™ is called the stiffness matrix. It has 12
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nonzero elastic coefficients, which depend on nine independent constants.
In most composites, the fiber packing arrangement is statistically random in nature so
that the properties are nearly the same in the direction perpendicular to the fibers (i.c. the
properties along direction 2 are the same as those along direction 3). and the maiterial is

named transversally isotropic. For such a material, we would expect the following
Hm ___H3333. H1121=H1133, H313I =H1112_ H?SZ." =l'(H2:2:‘H:23.‘) («’ 88)

We note now that there are still 12 nonzero elastic constants, but that only five are
independent.
The Green-Lagrange strains can be expressed in terms of the second Piola-Kirchhoff

stresses by
E, =D, S (3.89)

The matrix D composed of the coefficients D, is the compliance matrix.

When a material is characterized experimentally, the so-called ‘engineering constants’

such as Young’s modulus, shear modulus and Poisson’s ratio are usually measured

instead of the coefficients H™* or D, . Considering a three-dimensional state of stress

associated with the material principal axes 123, the compliance matrix D is given by
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1 . Ya _Va 0 0 0
E, E, E,
_ ‘,12 l - V3Z 0 0 O
Y Vs 1 0 0 0
p=l & E E | (3.90)
0 0 0O — o0 0
Gy
0 0 0 0 L 0
G3l
0 0 0 0 0 L
L Gix
where
E; is Yong’s modulus along direction i
v, = -E— is Poisson’s ratio; it represents the ratio of the strain in the j direction to

the strain in the perpendicular i direction when the applied stress is in the i direction.
G, is the shear modulus associated with plane ij .

Y

The symmetry of the compliance matrix implies that
Yi Vi i, j=123 (3.91)
E, E,

Thus, there are 3 reciprocal relations that must be satisfied for an orthotropic material.
Moreover, only v,,,V,, and v,, need be further considered since v,,, v,, andv,, can be
expressed in terms of the first mentioned Poisson’s ratios and the Young moduli
associated. The elastic behavior of an orthotropic material can be described by the

following nine independent constants:
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3Young moduli E, .E, .E,
3 Poisson’s ratio’s v, .,V ,;.V
3 Shear moduli G,,,G,,, G-,

If the material is transversally isotropic, which is the case in fiber reinforced shells, the

subscripts 2 and 3 can be interchanged and we have
G =G, E,=E;, V=V, Vuy=Vy (3.92)

In addition, the familiar relationship among the isotropic engineering constants
[47,146,147] is now valid for the engineering constants associated with the 23 plane. so
that

E,

Gy =—3—
2 2+vy,)

(3.93)

The five independent constants can now be E, ,E,,v,,,Vv,, and G,,.

Considering now the condition of zero through the thickness normal stress (S =0).

which is commonly assumed in shell theories, the strain-stress relations will reduce to

~ -

L Vi 0 0 0
E, E,

f » N 4 h
E, Ei o o o] (5"
E, 2 s=

{2E, t= GL 0 0 | {s2} (3.94)
2, 12
25 stM L o
~2E"-3 J Glg LS . J
1
| G

by inverting Equation (3.94), we get the stress-strain relations given by



~

S =H"™E,

where H™ are the reduced stiffness coefficients. Equation (3.95) can be represented in

matrix form as

§u jgiit
§2 Fan
1 512 P = 0
St 0
\SBJ L 0
where
FFun E,
I-v,,v,,
T2 - E,
I=v,,v,

K

(3.96)

(3.97)

Equations (3.96) represent the final form of the stress-strain relations with respsci 10 the

local principal axes 123 at each point of a lamina.

Composite structures are more likely to be in the form of laminates consisting of

multiple laminae, or plies, oriented in the desired directions and bonded together in a

structural unit. It is assumed that the individual laminae are perfectly bonded together so

as to behave as a unitary, nonhomogeneous, anisotropic shell. Interfacial slip is not

allowed and the interfacial bonds are not allowed to deform in shear, which supports the

continuity of the displacement field across laminae interfaces. As we go from layer 1o

layer along the thickness direction, the directions of the principal material axes will vary,

but we need to refer all the constitutive equations to the same local coordinate system.
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This system will be the laminate curvilinear coordinate system (£.n.{) with its
respective covariant base vectors (G,.G,.G, ) as shown in Fig. 3.4. At each point of a

layer L (L=1,N) , where N is the total number of layers composing the laminate, the

principal material axes (123); have corresponding unit bases (é,.€..e;) Iz The

transformation of Equation (3.95) to laminate coordinates (§,n,{ ) gives
4 =Cf“ Eu (3.98)

where
SY represent the contravariant components of the second Piola-Kirchhoff stress tensor

E,; represent the covariant components of the Green-Lagrange strain tensor

Theses covariant and contravariant components can be shown using the dyadic notation

for representing the Piola-Kirchhoff stress and Green-Lagrange tensors.

E=F é.®é. =E.G' ®G’ (3.100)

The same representation can be done for the stiffness tensors H . and C, giving

H, =H*: ®¢, 8¢, ®;, (3.101)

C.=C* G, ®G, ®G, ®G, (3.102)

The subscript L in the above equations refer to layer L. It should be mentioned here that
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for cantesian coordinates. which is the case for 123 axes. therc is no diffcrence between

covariant and contravariant components of a tensor. Actually. the two tensors H , and
(', are identical except that they are represented in two different coordinate systems.

Thus, we can equate Equations (3.101) and (3.102)

H =H¥é ®é, ®¢,0¢,=C,=C* G, ®G, ®G, ®G, (3.103)

The transformation equations between the components H;™" and C* can be found by
simply expressing the unit base vectors (é;,i=12,3) in terms of the covariant base

vectors (G, .k =1,2,3) . This expression is given by
€, =(.-G"HG, (3.104)

where G*, k= 1,2,3 are the reciprocal bases given by the standard relation G' G, =6, .

Thus. the first part of Equation (3.103) can be written as
H™ (¢,-G)@E,-G')(@E, -G*)¢é -G)G, ®CG, ®G, ®G, (3.105)
By comparing Equations (3.10S) and (3.102), we find the sought expression
c¥=(G'¢,)G' ¢, )G e, )G ¢ )HM™ (3.106)
Using Equation (3.106), we provide the coefficients C* in detailed forms

1111 __ 4 Trilll 2 2 {rli22 Irlizi2 4 Fra222
C."=CyH "~ +2C; Cu( L +2H, )"‘ 2 Hy

12 _ ;2 2 T 2 2 2 ~2 \EFun =112 2 ~2 Fun
C,” =C,CyH, +(C11C22+C12C21 L +4C,CpC,CoH ™"+ C;C5,H,
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C,

~323

2212
Ci

1212
C;

1313
(?L

1323
(:L

2323
(:L

—anan

= CLCy H™ +(CLCuC +C\CLC )(H ™ +2H ™) + CL.C.H™

2 = CHH!M + 2CCL(HI= +2H ) + €3,

— s

H[~

—

= C,C, H" +(C,,C,,CL +C,C3C, )(H}'™® +2H ) + C.CL B

= CiCLH" +2C,,C G C H ™ + (GILCL +2C,,C, € Gy + G, G ) H 72

+ C, CLHP?

2 EFL3I3 2 TF 2333
=C,H; " + C,H;

_ 771313 =7 2323
=C,CyH ™ +C,Cpr H,

Cy =G*

(3.107)

, C, =G*é, (3.108)

The stiffness tensor €, , whose components are given in Equation (3.106), is symmetric.

Thus, only the elements of the upper triangular part of this matrix are given in Equations

(3-107). The rest of the coefficients can be deduced from symmetry considerations.



CHAPTER 4

STATIC FORMULATION

4.1 Introduction

In the previous chapter, a shell theory was presented based on a proposed kinematic
model, which uses explicitly the rotation tensor and allows for TOSDT and finite
rotations. Based on this model, Green-Lagrange strains were derived and reduced
constitutive relations relating them to their work-conjugate second Piola-Kirchhoff
stresses were defined with respect to laminate curvilinear coordinates. The purpose of
this chapter is to cast this theory in the finite element framework so that it can be used to
analyze laminated shell type structures subjected to static loads. It starts by applying the
principal of virtual work to derive the weak form of the equations of motion, which are
the equilibrium equations of motion in the static case. These equations are reduced 10
their two-dimensional form after performing the integration through the thickness
analytically. The quantities involved in the virtual work expression such as the strain
variations and variation of kinematic variables are evaluated. The finite element method

is introduced by first approximating the middle surface area by a set of four noded

73
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quadrilateral elements. then introducing interpolation functions at the elecment level to
approximate kinematic variables. The constant part of the transverse shear strain is
approximated using the Assumed Natural Strain (ANS) concept [4,5]. The configuration
update. which is important in the incremental/iterative solution procedure. is addressed
where a geometrically exact configuration update procedure based on the exponential
mapping is developed. The discretization of the equations of equilibrium yields a system
of highly nonlinear algebraic equations whose solution iteratively by the Newton-
Raphson method requires a linearization. A consistent linearization of these equations

yields the elemental tangent material and geometric stiffness matrices.

4.2 Principle of Virtual Work

The numerical treatment within the finite element framework is based on the principle
of virtual work. This principle, which must be restricted to purely mechanical
phenomena. states that the virtual work of a system of equilibrium forces vanishes o.n.
compatible virtual displacements. It was shown by Zienkiewicz. and Taylor [148] that the
virtual work statement is precisely the weak form of the equilibrium equations and is
valid for linear and nonlinear stress-strain relations. The Finite Element Method (FEM)
based on this principle may be considered as a Galerkin formulation of the weighted
residual process applied to the equilibrium equations. The principle of virtual work can
be expressed as

ow=0bw, — dw; =0 4.1)
where dw; is the virtual work of the internal forces and dwg the virtual work of the

external forces.



4.2.1 Virtual Work of Internal Forces
Since we are concerned with the Total Lagrangian formulation, the conjugate tcnsors
giving the internal virtual work are the second Piola-Kirchhoff stresses S and the virtual

Green-Lagrange strains 8 E;. The virtual work of the internal forces can be expressed as

dw, = [SYSE,;dv* (4.2)
The integration in Equation (4.2) is carried out over the undeformed shell body. 4dv° is
the volume element given by

v’ =JG d&dndl 4.3)

G is given by Equation (3.23). Making use of the determinant A of the metric tensor of

the reference surface Q° given in Equation (3.21), dv° becomes

v’ =\[§ JA dEdndf=pdQ°d¢ (4.4)
where
G . .
u=\/; . d° =JAdsdn (4.5)

With the help of Equations (3.49) and (3.51), the term SY3E_can be written in the

following form

) 3 (») (k)
SU8E; = S™®BE 5 + 25 8E, = S®Y ["8Ea +25™ Y ['8Eas (4.6)
n=0

k=02
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Substituting Equations (4.6) and (4.4) into Equation (4.2), we get

5w, = [ [i‘;’"ﬂa‘z}’aﬁ +22‘5“5“13.,3)d9° (4.7)

a° n=0 k=0.2

(n) (k)
where the stress resultants m ® and Q ° are given by

-
) k12

m® = [pS®Ld, . n=0123 (4.8)
-h/2

() K12

0° = [usUg*dg . k=02 (4.9)

-hi2

We will elaborate more on the stress resultants by using the constitutive Equation (3.98)

with Equations (3.49) and (3.51)

(m) hr2 NL AL 3 W
m® = [pC*E Ll =3 ]uc;f““(ZC* Epa)cwc
k12 L=l k-1 =0
3 ien (1)
=) C*Es , n=0123 (4.10)
=0
where
s i NL k N
C# =3 quZ“"*;"”d;' , k=0,12,...6 4.11)
L=1 A,

hi-; and h; are the limits of integration for layer L.

(k) hi2

0° =2 [uCE L't =3 | uc:’"( ¢ En ]c"dc

-A72 L= &, j=02
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ok )
=y C “3"’(25,3) , k=02 (4.12)
j=0.2
whece
m NL AL
C o3 = z J‘ Wornadd? o , m=024 4.13)
L=] hL_l

k m
The coefficients C*** and C*** can be computed explicitly or numerically and this

will be based on the assumptions made.
Case 1: The metric G of the laminate will be approximated by that of the reference

surface Q° (i.e. A).

Gg =Ayg . H=1 (4.14)

'The coefficients C,; =(G*-€, ) are constant within each layer, thus Equations (4.11) and -
ap 8

(4.13) become

k NL h‘:’l _hki»l

C™ =% ¢ttt | (=0l12..6 (4.15)

m NL hkﬂ _hh-l

C o’ = Z C:sps L L m=02.4 4.16)
= k+1

Case 2: The metric will be taken as constant within each layer and equated to the metric

of the middle surface of that layer.

= _h +h,

g ={—% ; Z, i . L=12..NL (4.17)

£, is the coordinate of the middle surface of layer L.
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Eaton _ V- agoi 1L —hi%
C = z uLCL T , k=12,..6 4.18)
L=1
£l L+l
“Zu P Al m=024 (4.19)

Case 3: In this case a direct numerical integration will be performed using Equations

(4.11) and (4.13) with at least one Gauss point per layer.

4.2.2 Virtual Work of External Forces
The virtual work of the external loads consists of the virtual work of the traction

forces, including concentrated forces, on the top and bottom shell surfaces at ( =

ko
==7]
plus the virtual work of the traction forces on the edge surface plus the virtual work of the

body forces. In equation form, we get

.k
'E

oW, = [(s8>-c}6o+ssa, +¢5a,)[ dmB-(5+L5d, +2°54d.)

dEdn+ j
o}

'\
|_)‘~,~

N,a‘—\"'""

+ m{(nda-a’)- (bp+6d, +°5d,) (4.20)
3 hh]

deformed state (Figure 4.1 shows the area element at the top of the shell

surface)



dc

Figure 4.1 Shell bounding surface in the deformed state and bounding
curve of the reference surface in the reference state
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nda is an area element on the bounding surface ;5 [_ LR ] as shown in Figure 4.1
272

So+L5d, +*6d, represents the displacement variation at the corresponding point
B represents body forces per unit mass
dm represents the mass of a volume element dv’ (in the reference configuration) or dv

(in the current configuration); it is given by
dm=p°dv® =pdv 4.21)

where

p®and p are mass per unit volume in the initial and current configurations. respectively.
Since we are dealing, in this study, with concentrated external forces whose virtual

work expression is simple, The expression of the virtual work of external forces will not

be detailed any further.

4.2.3 Variation of Strain Measures
The expression of the virtual work of internal forces, shown in Equation 4.7),
depends on the variation of the strain measures. Taking the variation of Equations (3.50)

and (3.52), which represent the expressions of the inplane and transverse Green-Lagrange

strains, we get

(o)

1 , :
O Eq = -2-(5¢p,,-¢p', + ¢p,-6¢p',) (4.222)

a 1
SEews =~ (60, dis +0,8d, +50,d1s + 9, 8d,,) (4.22b)



(2)

5 Eas = % (6d,.d,, +d,,-5d,,) 4.22¢)
(31 1

6Eqsp = 3 (qu, dig +@,-0dy g + opy-d,, +@, -é’d,a) (4.22d)
(o) 1

SEas = > o, d +o9.-6d) (4.23a)
(2) 3

§Ew =3 o, d, +o9,-6d;) (4.23b)

It can be seen from Equations (4.22a,b,c,d) and (4.23a,b) that the strain measure
variations are based on the variation of the kinematic quantities @, d; and ds which will

be considered next.

4.2.4 Variation of Kinematic Variables

The displacement of a point on the middle surface is given by

uGmM=@En -e,En) (4.24)
Then
Sp=5u (4.25)

For the variation of the vector d, we use Equation (3.28a)

8d, =6RE,=RR"SRE,=R6y E,=R(Sy xE,) (4.26)
where
Sy=R"6 R 4.27)

Oy represents a skew-symmetric matrix with dy as its axial vector.



For d,, we use Equation (3.28¢) to get
5d, =6RD,+R5D, = RR'6RD.+R5D, = R[6y xD, +5D,) (4.28)

Our goal now is to find a relation between 8y and @ which represents our primary

variable in the explicit representation of R. Using Equations (3.22b) and (4.27), and after

some manipulations we get

" sm@&ﬂ) . 1—os  (B]); —c blsin(e)) .e)é
Bl i [60 @e—e ® 50— i (56-¢) (4.29)

where

is a unit vector along the rotation axis 0

Iﬂll

é is a skew-symmetric matrix with e as its axial vector
56 is a skew-symmetric matrix with 86 as its axial vector

From Equation (4.29) we deduce the relation between the axial vectors 6y and o6

sm(]PlI) l—cosﬁu) Pl]-—smqpﬂ)e _
i [ I A 8']‘” =08 @30

The same expression is reported by Ibrahimbegovic [113].
In our case, the explicit representation is used for the incremental rotation and not for the
total one, i.e. the above relation is needed at the limit when 6 — 0. In this case Equation

(4.30) reduces to the simple form

Sy =056 (4.31)
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Substituting Equation (4.31) into Equation (4.26) we get

5d, = R(36 xE,) = R8D, (4.32)

where

6D, =66 xE, (4.33)
In the case of shells where there is no rotation about the normal (drilling rotation), 56 will
lie in the plane formed by E, and E, (material representation) and admits the following

decomposition

56 = 66'E, + 66°E, (4.34)
From Equation (4.33) we see that &D, is also normal to E3; thus

aD, =8DE, + 6DE, (4.35)
Based on Equations (4.33) and (4.34) we find that

66 = E, x 6D, (4.36)
The variation of d; becomes

éd, =—-(d,®d,)R6D,+RéD, (4.37)

R is a matrix containing the first two columns of the rotation matrix R.

4.2.5. Matrix Formulation of The Internal Virtual Work
The matrix formulation of the virtual work of the internal forces is useful to get the
equations in a compact way, especially in the implementation within the finite element

method. Thus, we rewrite Equation (4.7) of the internal virtual work using matrix
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(4.38)

4.39)

(4.40)

“4.41)

(4.42)

From the variations of the strain measures and the kinematic variables presenied in the

previous sections, we deduce the strain-displacement operators, which are given by

(o)
{5 £

|

d
(¢J)Ta—5r O, O,
(o)
B»]{&b}= «p;)’% O Oua
r d_ r 0_
-(¢,z) ag‘”"’) FTE O Oy

ou
éD,
éD,

(4.43-a)
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x2
ou
0,. | {6 D,
Y — J ] o °P:
8;1 32 2
(4.43¢)
-@,) ag‘(d ®d;)R,,.
-(@, )’ a  ®dHR,,,
-[(«PJ)’;, +(@ )T%}(d ®d.)R,..
°
r9 g 1
agl > ou
’fim 8D, (4.43d)
5 5D,
(¢,2)T agl]
O, ou
6D, (4.44a)
O | |6D,
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Q) @ '551' -(9, ) d, ®d, )E3x2 (¢J)ri312 Su
(o7} =[5 wor=a| % D,

~(@.)d, ®d)R... @)K, ||sD,

(4.44b)

R, , is a three by two matrix representing the first two columns of matrix R.

4.3 Finite Element Discretization

The equations of motion, for shell type structures as a continuum, were presented in
the previous section in their weak form (i.e. virtual work principle). A numerical
procedure such as FEM appears to be the most viable tool to deal with such highly
nonlinear differential equations. The most important formulation within the finite
element method, which is widely used for the solution of practical problems, is the
displacement based finite element method. Practically all major general; purpose
analysis softwares have been developed using this formulation; e.g. see Bathe [8],
because of its simplicity, generality and numerical properties. This formulation is adopted
in this study based on a four-noded element whose features were discussed in chapter

two.

4.3.1. Midsurface Interpolation

The finite element discretization is presented based on the isoparametric formulation
using a four-noded quadrilateral shell element. The midsurface of the shell element is

given by
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'EmM=) NEne; (4.45)

I=1

where

@; is the position vector of node / at iteration k.
N'(&,n) are standard bilinear shape functions given by
- 1 .
N'@m=20+8)a+mm,) (4.46)

with (£, .n,) taking the values (-1,-1), (1,-1), (1,1) and (-1,1) at, respectively, points 1, 2,
3 and 4 in Figure 4.2

Following the isoparametric concept, we get

Ap* Em =) N'E.n) Ap; =Y N'E.n) Auj (4.47)

1= I=]

Au; is the incremental displacement vector of node 7 at iteration k.

4.3.2. Interpolation of Director Fields d, and ds

In the reference configuration, the director field d*’ is interpolated by

d © - 4
B ge$ vemag o
P‘m" e
d (), are the nodal directors in the reference configuration. They can be input by the user

or computed internally by the program. If computed internally, the nodal normals are

computed at the element level using the cross product. Then at each node, at the structure



88

syutod urens pawnsse Jo uoneso| 7y Andu)




89
level, the average of the nodal normals of the adjoining elements is taken [23]. The ficld

director d{* is zero as shown in Equation (3.17). Equation (4.48) is used to compute the
directorsd” at Gauss points. 4,7, which represents the derivative of the directord”’

with respect to § (a=1) and 1) (a=2) is obtained by differentiating Equation (4.48) with

respect to £ and n. After differentiation, we get

o _ &'1(;) _ Gl(o) _il(;))il(o) (I d(p) ®d (o) d(o)

la = ~(D) ~(0) 3 ( )
1 1

In the current configuration, we adopt the so-called continuum consistent interpolation

(4.49)

as presented in Reference [66). Here the isoparametric concept is applied to the spatial

incremental directors Ad; and Ads.

2 N'Em adf,, = Z N'¢&.n) Ad;,, (4.50) -

I=1

Ad,,, and Ady,, are the nodal incremental directors.
At iteration k, @,", df, and df, are known quantities. The solution of the
linearized problem will yield the nodal discrete values (Au, ,AD{,, AD:f(,,). AD{,

and AD,‘( 1, are nodal material incremental vectors having two components each along the
bases E| and E,, i.e. they are orthogonal to E3 basis. Next we compute the spatial nodal

director increments Ad;,, and Ady,, as follow

Adf, =R} AD}, 4.51)



Ady,, = -Qlk(n ®dsku))§lk AD},, + R} AD;,,
® denotes the standard tensor product

R} represents the first two columns of the rotation matrix R;

90

(4.52)

The nodal director increments Adj,, and Ads,,.computed using Equations (4.51)

and (4.52), along with Au! serve to update the configuration of the shell element which

will be outlined in the next section.

4.3.3. Configuration Update

The update of the surface configuration is straightforward; it is

kel _ ok k
@, =@, +Au;

The nodal directors d;, and dsq, are updated using the spatial representation

k+l _ pk+l _ k pk - k gk
d;, =R, E; —ARIRIES =AR,d,,,

The incremental rotation matrix AR; is given by
AR} = exp |46} |
AB! represents the spatial incremental rotation vector given by
A6; =R; (E, XAD:)= dy;, < My,

The incremental rotation matrix AR; is parametrized by

sin Ja6;] 5, 1-cos J4i]

AR: = cos IAO:' I+ IAO: 1 HAG:I

AB* ® AGF

(4.53)

(4.54)

(4.55)

(4.56)

4.57)



91

A" is a skew symmetric matrix related to A8 by
A6' A6F =0 and A6FV = A6 xV | VYVeH (4.58)
From Equation (4.56), we deduce the following
jaor| = jaai, | (4.59)

Substituting AR; by its expression in Equation (4.54) and making use of Equation (4.59),

we get
diy, = cos [adf, Ny, + adl, (4.60)
11|
d, ,, is updated by
dsk(;l) = R:HD;?) = AR; Q;:;*‘R: AD:(I)) (4~61.)

Finally, we update the nodal rotation matrices R; by
R;" = AR; R; (4.62)

The updated surface configuration @**' and nodal directors dy;}, and d54, will be used
to find field expressions for @**', df*' and d;*' and their derivatives @%*'. d);' and
d;. (o = 1,2) with respect to the curvilinear coordinates & and n. The derivation is
based on the interpolation Equations (4.45) and (4.50) and the details are shown next

In the updated configuration, @**' is obtained directly from Equation (4.45); d}* is

given by



¥ = exp [a6* |d! = cos |ad!|at + sinjadf|E* (4.63)

where

is a unit vector in the direction of Ad .

Ek = Mlk
k
aai]
In Equation (4.63), d* are known at Gauss points and Ad; are obtained from Equation
(4.49)

Since d** is normal to d{*', we form an orthonormal basis {tl"".tf*‘} in the plane

normal to d**' and represent d;* using these bases

i =df xe* (4.64)
5 =g x ¢} = sin lAdl' Idl" - cos lAd,*“?' (4.65)
4 = R¥DE = exp |46* |R* (D! +AD*) = exp |46* | @t + R* aD?) (4.66)

Applying Equation (4.52) for a field point, and puting R* AD; on one side of the

equation, we get
R* ADY = Ad? + (@} ®d})ad! = ad} + (ad -d} ! (.67)

Using Equations (4.56) and (4.64), we find that

k
tlkﬂ = Aok (4.68)
AB

In Equation (4.66), exp lAé*J is represented by the following parametrization
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exp lAO J I + sin HM*HIM (1 —-cos uAd I]) Tt (4.69)

Equation (4.69) is obtained from Equations (3.32b) and (4.68)
Substituting Equations (4.69) and (4.67) into Equation (4.66) and after projecting d+*' on

k+l

kel and t,

the bases ¢, we find

d;*l - (@; +M3&).tlk¢l)tlk#l (@3 +Ml -k) kel (4.70)

The updated expressions for the derivatives of @**', d;*' and d¥*' will be based on

Equations (4.45), (4.63) and (4.70).

k+l Z Na (p:” 4.71)
I=1
d! = cos ﬂAd,' Idf, - (M,', -&t )tg" + sin Ad,““?: 4.72)
where
2 N.adl, (4.73)

-k Adk (Mk hd )

Nz ZE

a5z = (a5, +ads, ) ) o + (@5 +aat) o2 )t + (@d +aat)-of ) el

4.74)

(a5, +adl,) e ) - (@) +aat)-et)er - (@5 +adt) -2 ) et 4.75)
where

-3 N, @76)

I=1
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15 =df xe* +df xel (4-77)

la
kel _ gk+l k4l kel k+]
., =d, o xt;T +d; T Xt (4.78)

This ends up the updating procedure of the director fields and their derivatives.

4.3.4. Transverse Shear Interpolation

The performance of displacement finite elements deteriorates as the thickness of the
plate/shell element gets smaller. This is attributed to the fact that the assumed
displacement interpolation functions impose excessive amounts of shearing strain in the
development of simple bending deformations. This phenomenon of excessive stiffness is
called shear locking and is explained in [62,121]. Early remedies to this problem were
reduced or selective integration [149-153] where the shear term (selective) or all terms
(reduced) were integrated using low order numerical quadrature. This, sometimes, lead to
matrices that are rank deficient and possess spurious (or zero energy) modes called'
hourglass modes. Stabilization matrices were used to remove the spurious modes [154].
Some investigators used discrete Kirchhoff constraints which enforce the Kirchhoff
assumption at discrete Gaussian points. Among the recent remedies, the approach
proposed by Dvorkin and Bathe [4,5], which is referred to as the Assumed Natural Strain
(ANS) method, seems to be presently the best formulation for Reissner-Mindlin based
plate and shell elements [17]. It has been used almost exclusively in recent finite rotation
shell models [12-15,17,19,20,23,25,32,66,95]. In this procedure, a mixed interpolation of
the various strain tensor components is used: the bending and membrane strain

components are calculated as usual from the displacement interpolations, while the
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transverse shear strain components are interpolated differenty. In this study. the constant

(o) (o)
part of the transverse shear strain (ie. Ei: and E =) will be interpolated using the

assumed strain method of Dvorkin and Bathe[4,5]. However, the quadratic par of the

(2) (4]

transverse shear strain (i.e. E1s and E 1) will be treated in the same way as the bending
and membrane strains, i.e. calculated as usual from the displacement interpolations.

Figure 4.2 shows the four-noded shell element with the midside points A,B,C an D. The

(o) (o)
interpolations of the shear strains Ei3 and E s are given by

(o) 1 (o) 1 (o)

E:s =§(1-n)£g +§(l+")53 (4.79)
(o) (o) (o)

1523=%(1—§)15;‘3 +—;-(1+§)E§; (4.80)

(o) (o) (o) (o)
where Ef,, EJ, E% and E are the strain components at points B, D, A and C,

directly evaluated from the displacement interpolations using Equations (3.52a). The
natural coordinates (5,7n) of these points are (see Fig. 4.2): A(-1,0), B(0,-1), C(1.0) and

D(0,1). Taking the variation of Equations (4.79) and (4.80) we get

(o) 1 (o) B 1 (o) D

OE;; = > 1-n6E; + ) A+n)éE ; (4.81)
(o) 1 (o) a 1 (o) c

SExn = 3 A-)EEL + 5 (+§)SES, (4.82)

(o)

(o) (o) (o)
wheredE [,, OE . SE?%, and S8E S will be evaluated using Equations (4.23), using

30
appropriate coordinates & and n for each point as defined above.

The matrix formulation of the internal virtual work presented in section (4.1.5) used the
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variables in their continuum form, i.e. prior, to their discretization using the finiic
element method. The matrix formulation in its discretized form will be presented in the

next section.

4.3.5. Matrix Formulation of the Discretized Internal Virtual Work

After applying the finite element discretization, described in previous sections, to the
kinematic variables and the constant part of the transverse shear strain, we get the

@ M
discrete form of the strain displacement operators [B p] (i=0,1,2,3) and [é :} G =0.2).

(o) 3 N'Qrsu
52 (ot 5. Nlelou,
(o) (o) . - 4 ! 1
{55}= 5(5132 =4 @,-6@, =9 ZN.z‘P.zaul ’
20 Enz P, '5¢.x +Q, '5¢2 ‘l‘l
> (N!gi+N.el)su,
\ I=1 J

- [8] o}, (483)
1

I=1

- Nlo? 0, O,
where [B ,] =| Niol 0o Oy
" |Ni@L+Nipl 0, Oy

(4.84)

In the same way, we obtain the other strain-displacement matrices

" Nid} NioiR, Ope
[B,] =| Nyd, NLo' R, Ome (4.85)
' |NidL+N3d], (N.{¢Z+N.12¢JT)RI 0
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) O Nid[ R, Oy
[3,] =0, NY4LR, 0, (4.86)
I

0 (Widl+NLdL)R, 0,

. N.: dST.l “NJI ‘PI Quu®d3«u)§1 N.{ ‘PT I?,
B,| =| N,d,, -N.o@; @l{l}®d3(l))Rl N.9.R,
! NJ'dsrz*'Nider "(NJI 'P; +N3¢I)(dun®dau))kl (NJ"P;'*'N.’z'PJr)Rt

(4.87)

(o)
For the transverse shear strain variations {5 7}. the use of the assumed strain method

yields

L Ez3 I=]

[s (;"} = {;i:?:"} -3 [(73):]’ {00}, (4.88)

(o) (o)
where OE ;;and OE ,,are given respectively by Equations (4.81) and (4.82). After going )
(0)

through the computations, the following expressions for the matrices [B,:l (I=1.2.3,4)
I

are obtained.

. 1 BT _ 3 ,TH
[{B).] < L{=(l=n)d ) (1=n)e,) R 0, (4.892)
1 4 ‘(l-g)(dl ) (I-G)(¢,2) R1 Opa

(o) 1 (l__.n)(dll )T (1-7")(¢: )Tiz OM
B.| =7 = 4.89b
[ ]2 4 [‘(“5)(45 F 1+ (@5 )R, 0, (4.85b)



98

- D \T 1 D Ti .
[(B',] 1 (1+n)(dc) (+n)(¢,,c )r_a O (4.89¢)
s 4|(1+&xd; ) (1+EN@5) R, 0y
. _ DT DT
o AL (1=8)dt) (1-Ex@F) R, Oy
(2)
(2 26 E:: d, 84’1 +Q, -od = [
é 7} 1 =3{ E 5¢ (4.90)
{ {28(2)23} d 6¢_ +¢.2 ws ; { }I
, 141 _ I T 73 1 TH
where [(B).] -3 N_I,d_; N' ¢.; l(l)®d3(l))51 N’ ‘P,; 51] 4.91)
1 N;d; -N ¢.2(dl(l)®d3(l))kl N @, R,

4.4 Linearization and Tangent Operators

After the discretization of Equation (4.7), we find a system of highly nonlinear
equations. Solving this problem by Newton-Raphson method requires a linearization of
the virtual work. We assume here that the external loads are conservative. The
linearization of the internal virtual work can be obtained by the directional derivative of
3W in the direction of {A¢}=|Au AD, AD, |
First, we rewrite the discretized internal virtual work expression using matrix notation

=& 1[4 265 e} “s2

o
Qy

where the domain £2°has been divided into sub-domains £2; (N=1,NEL) representing
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the area of the finite element N. NEL represents the total number of finite elements in the
domain. The other quantities in Equation (4.92) have already been defined previously.
Now, taking the derivative of W, in the direction of {A¢}=|Au AD, AD, [, we get

D[swW,]- (a¢) =Nf j (23‘, D{S(:}T-{Aq)}{(t;z)}*- Yy D{S(;)}T.{Aq,} {“Q’}]dg

N=l _o a=0 k=02
Qy

NEL 3 N ) ®
+ Z;, n£ (g {5 s} D{m}-{Aq)} + ,;g.’z {8 y}D {Q} -{M}] dQ° (4.93)
where the first two terms, which result from the variation of the geometry while holding
the material part constant, will yield the geometric tangent stiffness matrix. The last two
terms which are obtained from the linearization of the constitutive equations while
keeping the geometry constant will produce the material tangent stiffness matrix. We
notice from the first part of Equation (4.93) that the second variation of strain the
measures , thus the second variation of the kinematic variables are necessary, in order to

carry out the linearization of that term and this will be considered next.

4.4.1 Second Variation of Kinematic Variables
The second variations of d; and d; are obtained by applying the operator A to

Equations (4.26) and (4.28), respectively. Thus Add, and Add; are given by
Add, = AR(OY < E,) + R(ASYyxE,) = R[Ayx(ByxE,) + ASyxE,] (4.94)

Add, = AR(dyx D, +3D;) + R(ASyxD, +dyxAD;)
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= R[Ayx (Swx D,) + Ayx8D, + Sy xAD; + AdyxD,] (4.95)

Our goal now is to find the relation between Ady and A@ and 86. We mention here that

A6 = 0 because 0 is the primary variable in the explicit representation of the rotation
matrix R.

Taking the variation of Equation (4.30) we obtain

ABY = AT (8)56 = (M cos (b)) - sin qp“)](AG -€)56

bl
+ (22 cos (]) - o] sin (PII)) (AB-€)(ex50) - [-——I —cosQQPll)} AOx50
\ el | lel’
. (3 sin (o)) - 26| - J6f cos @"ﬂ)](Ao,e)(so_,)e
\ ol
+ (P" -“;;F (P")] ((59 -A@)e + (SO-C)AG) (4.96) -

As [8]] — 0, Equation (4.96) reduces to a very simple expression

ABy = é 56 x A8 4.97)

A similar finding is reported in reference [22]. Using this result and that of Equation

(4.31) we obtain

ASd, = R[—JIZ—((AO-E_,)SO +(36-E,)A0) - (AO-SO)E,] (4.98)

A&,:RB((AG-D,)SO +(56-D,)A0)+ABX3D, +86xAD, —(AO 80)03] (4.99)
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It can be noticed that these two equations show symmetry with respect to the
differential operators & and A; thus this leads to the symmetry of the geometric stiffncss

matrix, which depends on the second variations of d,and d,. Equations (4.98) and (4.99)

are general, i.e. they are valid in the presence of drilling rotations. Since in this study 86
and A6 are normal to Ej, the first two terms of Equation (4.98) will vanish. Making use
of Equation (4.36) into Equations (4.99) and after some manipulations we get

ASd, =—-(8d, - Ad,)d, (4.100)
1
Add; = "2'[(&11 -d_,)M, + (Ml 'dj)ml]- (ws 'Ml)dl - (MJ 'Ml)dl (4.101)

The interpolation of the second variations of d, and d, are based on Equations (4.50)

where the operator A is substituted by A8. This yields
L4 4 -
A8d, =) N'(E.n)add] Add; =) N'(E.n)Add] (4.102)
I1=1 I=i

The interpolation of the derivatives of Add, and Add, with respect to § and 1 are given

by
ABd,, =3 NI 83d] Add;, = ’)iN.L (E.m) ASd (4.103)
1= =1
where
Add g,y = - (&’l(n 'Ml(n)dm) (4.104)

1
Add ;) = - 3 [(&im) 'dsu))Ml(n + (Ml(l) Ay )ﬁd“,)]
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- (&’sm -Ad )dlm - (Adsm ‘adm))dm) 4.109
are obtained from Equations (4.100) and (4.101)applied at node I This ends the

treatment of A8d,, A%, and their derivatives with respect to £ and n which will be used

for the construction of the geometric stiffness matrix.

4.4.2 Material stiffness Operator

The material stiffness operator is given, as indicated above, by the first two terms of

Equation (4.93)
NEL 3 T (e enNT ()
D, [ow, a8} = Y. | [2 {as} D{m}-w} + 3 {87} D{Q}- {Am}dw
N=] % n=0 k=02
(4.106)
where
D{(r;z)}-{Aﬂ = i [”E,]{A(g} = 53_', [’E’i,][g,,]{mp} (4.107) -
(k) k+j (J) k+j ()
D{Q}-{Aﬂ = [c] {A y}= Y [c,][a,]{u} (4.108)
j=0.2 j=0.2

(i) ()
The strain displacement operators ':B ,] and [é ,] are detailed in section (4.2.5).

Using Equations (4.107) and (4.108), Equation (4.106) becomes

D, [sw,]- {a¢}= Nf {ae), [kM]" {a¢}y (4.109)

N=l

where
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ey - 1 (E3[E][E]8] 2 2] [E][E] o

represents the material tangent stiffness matrix of element N. Using Gauss-Quadrature
method to numerically integrate Equation (4.110) over the domain £ and using the

discretized strain displacement operators, Equation (4.109) becomes

D, [sw,]- {as}= ”ZE',L ii{M}Zm [xkM]; {A}v, @4.111)

N=! I=! J=]

where [KM ]}, is a 7x7 submatrix of the total 28x28 element matrix [KM ]* given by

w5 (E[E]E]E] - 2 g [B][E]E] Jw

4.112) |
where NG-pts represents the total number of sampling Gauss points taken over the
domain £, , W, is an appropriate weight and A is the determinant of the metric tensor

A_gevaluated at the sampling Gauss point G

4.4.3 Geometric Stiffness Operator
The two terms contributing to the geometric tangent stiffness operator are given by
NEL 3 onT () anT
D;[ow,]-{aey=3Y [ D{s e} -m}{m} + Y { } {Aw{Q} dQ’
N=l o =0 k=0.2

(4.113)
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Here for convenience, we rewrite Equation (4.113) using the indicial notation for strains

and stress resultants.

D,[dw, ]} (A¢}-2 J'(Z m"“ASE.a +2Y Q AS“E).,,)

N=l - n=0 =02

where

(o) (o) (o)

m™®ASEas =m™ 8¢, -AQy

€3 (0]

[€)]
m®® ASEws =m™ 8¢, Adw-x-m o,,-Apy m P M, P

2) 2) (2) )
m®® A8 Ews = m B8, ,-Ad,y + m™ AN, d,,

(3 ) ) (J)

) 2)

20%°A8Ea = 3Q G, -Ad, +8d,-Ap, + ASd,-@_)

(o)

The terms Ad E 3 will be computed using the assumed strain method i.e.

(o)

1 (a), 1 (O)D

(o) 1

ASExn =—(1-8) ASE‘ + 1

2(1+§) A&E‘

N

(o) (o)

4.114)

(4.115-a)

(4.115-b)

(4.115-¢c)

(4.115-d)”

(4.115-¢)

(4.116)

ASEL, ASE], ASE 4 and ASE will be computed by applying the operator A to



Equations (4.22) and (4.23) to obtain

(o)
ASEas = é (Bo,-Ad, +8d,-A@ _ +ASd,-@_) 4.117)

and then, the appropriate values of coordinates (§,n)corresponding o each point are
used. In a similar way, Equation (4.114) can be put in the following form

D, [5W,]- {ag}= > {as}, [KGY {ag), @.118)

N=]

where [KG]' is the geometric tangent stiffness matrix.  Introducing numerical

integration and discrete strain displacement operator as done for the material tangent

stiffness matrix, Equation (4.118) becomes

NEL

Do [ew,]- {8}= 3 33 86T, [KGL (b @9

N=l I=] J=]

-~

Further details concerning the construction of submatrices [KG]'[; are found in

Appendix L



CHAPTERSS

STATIC SOLUTION PROCEDURE

5.1. Introduction

As mentioned in the previous chapter, the Newton Raphson method will be used for
the solution of the system of equations obtained through the discretization of the weak
form of the equilibrium equations. This method will be introduced, first in its general
form, then its algorithmic counterpart will be considered. Due to the presence o}” '
buckling problems in shells and the inability of the standard Newton Raphson method to
deal with such situations, an adaptive strategy, the cylindrical arc-length method which is
capable of tracing very complex equilibrium paths, is presented along with its algorithmic
implementation. The last and important part of this chapter concerns the description of
the implementation process based on the formulation derived in the two previous
chapters. The essential tasks involved in the solution procedure are defined and
explained along with the subroutines designed to perform them, then the flowchart of the
designed computer program for the static analysis, with different levels of nesting
between the subroutines, is presented including the cylindrical arc-length method.

106
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5.2. Basic Newton-Raphson Method

The basic goal in a general nonlinear analysis is to find the state of equilibrium of a
body corresponding to some applied loads or prescribed displacements. The first step in
achieving this goal numerically is the introduction of the finite element discretization,
which replaces the actual body by a system of finite elements. The equilibrium
conditions corresponding to this system can be expressed as

F~—-F™ =0 (5.1)

where F.*° represents the vector of nodal external forces corresponding to configuration

4

at time t and F, contains the equivalent nodal forces corresponding to the element

stresses in this configuration.

Equation (5.1) must be satisfied at each time t. In static case, t is only a convenient
variable, which denotes different levels of load applications and correspondingly
different configurations. The basic approach in solving Equation (5.1) is to start from the
initial configuration and then proceed incrementally. Assuming that the solution is

known for time ¢, then the equilibrium conditions are required for ¢ + Az i.e.[8]

gP)=F= (&) -F>= $)=0 (5.2)

where Ar is a suitably chosen increment and é represents the, yet unknown

configuration of the body at time ¢+ Ar. Equation (5.2) will be solved iteratively.

Assuming that the configuration at iteration (i —1),®.2’, has been evaluated, then a

truncated Taylor series expansion (linearization) of g(® ) at ®{ /4’ gives
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gD)=g@.))+ [%] AP (5.3)
L%

where AP’’’ represents the ilerative configuraiion change. Assuming that there is

equilibrdum at & , which means that Equation (5.2) is satisfied. we get

og @& _ G-
= AP =—p(®D 4

Since this study is limited to external forces that are configuration independent, Equation

(5.4) becomes
) : e
[7.,—] A®Y =F7, -F, @) (5.5)
o«

We recognize here that

oF ™ i-1) .
of =[K 6) .

represents the total tangent stiffness matrix based on the configuration obtained at
iteration (i-1) of time step ¢ + At . Equation (5.5) can be writien as

KW A0® =F2, ~F 2, @) =F5" 5.7)

where F 5" represents the residual (out of balance) force vector at iteration (i-1).

Equations (5.6) and (5.7) constitute the Newton-Raphson solution of Equation (5.2). The

initial conditions for starting this iterative scheme are as follow,

[K]?wa = [Kl ’ Fti:;m =F(m 5 ¢I(2)‘ =¢t (5-8)
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Iterations are repeated within this time step until appropriate convergence criterion is

met. At each iteration, the iterative configuration changes A®“’ are used to update the

structure configuration. This can be represented symbolically by

¢(i)

+&s

=@ + A (5.9)
Furthermore the external loading is often expressed in the proportional manner as

Fla =Aa F;~ (5.10)

where F,is a base load vector and A,,,, is the current load factor. The total load is then
applied in steps by specifying 4__ ., 4., . a load factor increment AA and advancing the
solution (4, , =4, + A2 ) upon achieving convergence at each time step.

The basic Newton-Raphson algorithm is not adequate for situations where the
equilibrium path contains limit (load or displacement) and bifurcation points, which are
characteristics of shell buckling analysis. For such situations, various adaptive straiegies
have emerged [167]. Such strategies enable the analyst to proceed beyond critical points
without worrying about the associated near singularity or negative definite stiffness
matrices that have troubled earlier methods such as load controlled or displacement
controlled methods. The arc length methods, which is one of the adaptive strategies, is

discussed next.

5.3. Arc-Length Method
The arc-length method was originally introduced, with respect to structural analysis,

by Riks [155,156] and Wempner [157] independently. It was modified later by Crisfield
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[158,159] and others [160-166). The arc-length (‘cylindrical arc-length”) method adopted
in this study is based on Crisfield implementation [167]. Figure 5.1 shows four possible
load/deflection curves involving limit points with both *snap through” (5.1(a)) and ‘snap
back' (5.1(b)). These situations show the need for arc-length methods and similar
techniques. Figures 5.1(a), 5.1(c) and 5.1(d) may be obtained by displacement controlled
procedure. There are, however, occasions where this is difficult or impossible to apply
[167]. The true response in Figures 5.1(a) and 5.1(b) involves dynamic effects. Under
load control, the dynamic response in Figure 5.1(a) would follow the dashed line
followed by possibly some oscillations around point C. In contrast, the solid static curve
from A to C would maintain equilibrium but be unstable under load control but stable
under displacement control. Under displacement control, the dynamic response in Figure
5.1(b) would follow the dashed line.
The starting point for arc-length method is to rewrite the equilibrium equation in the .

following form
gP.A)=AF= —-F™®) (5.11)

where a proportional loading is assumed. The main essence of the arc-length method is
that the load parameter A becomes a variable, and will be computed via the quadratic

constraint scalar equation
a=AD - AP+AV Yy F™ -F™ -Al*=0 (5.12)

where

Al is an approximation of the incremental arc-length.
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Figure 5.1 Various load/deflection curves : (a) snap through ; (b) snap back ;
(c) ‘brittle’ collapse; (d) ‘ductile’ collapse
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v is a scaling parameter, it is required because the load contribution depends on

the adopted scaling between the load and displacement terms.
The vector AP and the scalar AA are incremental (not iterative) quantities and
relate  back to the last converged equilibrium state (see Figure 5.2).
Equation (5.12) imposes a constraint on the arc-length (along a curve in mult-
dimensional load/deflection space) that may be traversed within a given load step.
Hence, rather than specifying the load factor increment AA , the analyst specifies the arc

length parameter Al, and the algorithm increments (or decrements) the load accordingly.

Linearizing g at g,, we get

£. = &. +[%]5¢ +[%]52.= g.-[K] 60 +8. F= =0 (5.13)

where the subscripts ‘n’ and ‘o’ stand, respectively, for new and old. &® is the iterative
correction in the current configuration, which can be obtained from Equation (5.13) as

follows
50 =[K]'g, +OA[KL F™ =6® +6A 6 (5.14)

where 8@ is the iterative change in the configuration produced by the standard load-

controlled Newton-Raphson method (at a fixed load level 4,). 8@ is the change in the
configuration produced by the fixed load vector Fy” . &Ais still unknown in Equation

(5.14) and can be obtained from Equation (5.12) by substituting AP, for A® where

AD, = AD, +5® = AD, + 56D + 5\ 5 (5.15)



113

Q
& A
(5]
§ a
S 2
B
T/m 8
o ¢ . Iy
[ = a
. :
g
3 AN N —
{UU. lllllllllllllllllllllllllllllll h lllllllllllllllllllllllllllllll II-
) ¥
S S I U e 1)
Rt |5
I | A
i b, K
i <
b L S eee L
i
[ (=]
re .mMr — H
<
je— »|€ »

warl' v
nal Y PROT

__.n_p<
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and using y =0. This last condition was arrived at by Crisfield [158] and Ramm
[160,161] independently; they concluded that for practical problems involving a realistic
number of variables, ‘the loading terms’ (i.e. those involving ) had little effect

Equation (5.12) becomes

AD, -AD,_ - Al’ =a, 5A* +a, 6 +a, =0 (5.16)
where

a, = 66 - 56 (5.17a)

a, =260 -(AD, +6P) (5.17b)

a,=(AD, +5P)- (AD, + 6@ ) - Al* (5.17¢)

which can be solved for 84 so that, from Equation (5.15), the complete change AP, fis .

defined. Equation (5.16) yields two solutions (84, and éA, ), thus two new configuration

increments
AD,, = AD, + 5D + 5, 6D (5.18a)
AD,_, = AD, + 6P + 64, 6D (5.18b)

The new incremental configuration (A®P,, orA®,.), whose direction lies the closest to
the old incremental direction, i.e., that of A®, will be retained. This should prevent the

solution from ‘doubling back’ on its track [167]. This can be implemented by finding the

solution with minimum angle A®, and A®,, thus the maximum cosine of the angle,



which is given by

AP, AP, a, +a; A

cos@ = nE E (5.19)
where
a,=A®, -5 +AD, - AD, (5.20a)
and
as=AD, -5b (5.20b)

Considering the ‘predictor’ solution, ie., the solution obtained before starting the
iterations, it is given by

a0l =K' FL” -F )= K]0 FL" -F ™) = a07 K] F™ = 0 66,7,
(5.21)

Substituting Equation (5.21) in the constraint Equation (5.16) yields

O = 4 Al : Al

T =5IN
/ P (0) f (0) { A 0) # (0)
6¢NA: ) 5¢1¢A: 545,,‘, N 5¢1+A:

Equation (5.22) shows two possible choices because of the sign. This sign is taken as

~~

.Lll
19
19
h -

(+1) when [K ,] (at the beginning of the increment is positive definite), i.e., when all
terms in D, the diagonal matrix of LDLT factorization of [K, ], are positive. When one
of these terms becomes negative, this means that we have overcome a limit point then the
sign of 'sign’ is set to (-1). After obtaining the predictor solution (A® ), and AL”), the

updated configuration is obtained by

D =D, +ADS, 3 AD =4, +4A27 (5.23)
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Then, the iterative procedure is applied as follows:

560, =[x ) Fem (5.24)
585, = k7 [} AL e — Fiiv) (5.25)
a, = 56:(2« ) 561(34: (5-26a)
a, =280%, (AP +60) (5.26b)
a, =(A® ) +5P0,) (AP, +68.(,)- A’ (5.26¢)
a, =40, 6B, + AP -ADSY (5.26d)
a; =407, 565, (5.26¢)

From the above expressions for a; (i =1105), solve for 8A“’ using Equations (5.16) and

(5.19). Once 6A“is obtained, the incremental configuration change at iteration i is given -
by

ADL, =ADS,) + 6B, + 627 s, (5.27)

=05 + 5B, + 510 6L, (528
The configuration update shown in Equation (5.28) is valid for translational degrees of
freedom only. For the update of directors d, and d,, the expressions outlined in section
4.3.3. are used. Next, the internal forces are computed, based on the updated
configurations. Then Equation (5.11) is check whether it is satisfied within a certain

prescribed tolerance or not. If yes, we go to the next load step; otherwise, we go back to

Equation (5.24) and keep iterating until the convergence criteria are satisfied.
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5.4. Implementation

A computer program called STLSHEL? (STatic analysis of Laminated SHELIs
having 7 degrees of freedom per node) is developed to implement the previously
discussed shell model within the finite element method. This computer program is used to
simulate the static response of general isotropic or laminated shell type structures with
smooth surface subjected to external loads. The necessary steps concerning the global
solution procedure of a nonlinear finite element problem including the arc-length method
were discussed in the previous sections. Those concerning the laminated shell model,
developed in this study, were outlined in the previous chapter. In this section. the
implementation steps of the proposed shell model are enumerated. This flowchart-like
account will be presented in three sections. The first one concerns the initial
computations to be performed at the initial configuration, and the second one is aimed at
the updates and stiffness calculations to be performed at the current configuration. The.
last part is devoted to the nesting of all the discussed steps in a global procedure. The
entire program is written explicitly for this study; no parts of other programs are utilized

unless otherwise stated.

5.4.1. Reference Configuration

5.4.1.1 Construction of Nodal Normals
After introducing the necessary data concerning the geometry, loading and boundary

conditions of the problem, the first thing to be done in the reference configuration is the

computation of the nodal normals dy,, where I is the node number. In this case, the
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program leaves the option of supplying none, some or all nodal normals and leaving the
rest of them to be computed internally within a subroutine called NORMALS. This is
done by looping over all elements and within each element, the four nodal normals are
defined. It is worthy to mention here that the four-node quadrilateral elements don"t have
to be flat. Thus, the same element may have different nodal normals. Elements meeting
at the same node are not required to be coplanar and this will result in different nodal
normals for the same node. The remedy to this is to compute average normals (pseudo-
normals) at each node as stated in Reference [23].
3.4.1.2 Identification of Nodal Reference Directions (Axes)

In the case of laminated fiber reinforced materials, the layers are designated by a
laminate orientation code, which has evolved, through the years, in the composites
literature [147,168]. This code is intended to adequately describe many possible
cotabinations of ply orientations and stacking sequences in laminates. The identification .
of a laminate can be achieved through the use of the following orientation code:

1. Each layer is designated by a number indicating the value in degrees between
its fiber direction and the direction of the reference axis

2. Successive layers are separated by a */,” if their angles are different

3. Successive layers with the same orientation are denoted by a numerical index.

4. The layers are successively designated going from one face to the other.
Brackets (or parentheses) indicate the beginning and end of the code. The
designation depends on the system of axes chosen

The convention for positive and negative angles depends on the system of axes
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chosen. The angle is measured from the reference axis to the fiber direction (less than or
equal to 90 degrees). Assuming that x is the reference axis, Figure 5.3 shows positive
and negative angles designating the fiber directions.

A laminate is symmetric if its geometric midplane is the plane of symmetry. It can be
described, in this case, by listing only the ply angles of half of the laminate and using the
subscript “s” outside the brackets. If a laminate has an even number of layers. its
designation starts from a face and finishes at the plane of symmetry. If the symmetric
laminate has an odd number of layers, its designation is similar to the previous one except
that the center ply angle is denoted by an overbar. The sets of ply angles which are
repeated in the laminate are identified by enclosing the set of angles in parentheses
followed by an index indicating the number of times the set is successively repeated.
Figure 5.4 shows examples of laminates and the corresponding laminate orientation code.

The reference axis discussed above is fixed in the case of laminated plates; however,
it is not the case for laminated general shells. In this study, it is assumed that the stacking
sequence remains the same, but with respect to a local reference axis tangent to the shell
midsurface and whose spatial direction may change from point to point. The program
user is asked to input the information concerning the different reference directions, and
then identify the nodes with these directions so that each node is linked to a reference
direction. This task in carried out in a subroutine called DIRSEQ
5.4.1.3 Construction of the Initial Nodal Rotation Matrices

It was mentioned in Chapter three that R,, which represents the initial value of the

rotation matrix R, can be constructed based on the normals to the midsurface of the
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Figure 5.3 Sign convention for the stacking
sequence in a laminate
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shell body in the reference configuration. The three columns of the rotation matrix

R, represent, respectively, the components of the vectors (¢, .13,,.d},,) which
form a basis at node I. Thus, R,,, maps the fixed reference basis (E, .E, .E;) into the

nodal basis (£y,, .25, .dys,)- ILis expressed symbolically as follows
Ry, [E, .E, E,]=[ty,, .13, dy] (5.29)

The expression of the initial nodal rotation matrix R ,,, is given by [64]

0 0 1 ] [}
Ry = (Ey -dyy)) 15 +[E, xdy;)] +— +—(E; xd,;)) @ (Ey xdy,,) (5.30)
1+ E, -d,,,

———
where [E; xdy,,] represents the skew symmetric matrix associated with the axial vector

(E;xd},;). It can be noticed from Equation (5.30) that when d, =-E.. the -

denominator of the third term becomes zero, thus inducing a singularity. In this case

R, is given by (see Figure 5.5(a))

1 0 0
R,,=|0 -1 0 (5.31)
0 0 -1

Equation (5.31) is based on the rotation of E, about E, with an angle equal to %.

Nodes located on the boundary of the shell structure may have some restraining along

some of their degrees of freedom (translation or rotation). In the presence of skew

boundary conditions, a new reference frame (E,,E,,E,) is defined for each of these



0
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Figure 5.5 (a) Nodal bases in case dy,, =-E,
(b) Local frames for skewed boundary conditions
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nodes (see Figure 5.5(b)). Thus, the boundary conditions concerning these nodes are
specified in these new reference frames.
5.4.1.4 Construction of Cartesian Reference Frames at Integration Points for

Composite Materials
In case of composite materials, it is necessary to erect local cartesian frames at Gauss
points (sampling points used during the numerical integration) where one of the axes
tangent to the shell surface should be in the direction of the reference axis. This
reference axis is furnished for nodal points; thus, we need to use interpolation functions
to find the reference directions at Gauss points. Suppose that the unit vector in the

reference direction, at a Gauss point, is denoted by e, , ., ; it is given by

4
le(éa NG ) €1y

€ ) =T (5.32)

ZNl(éc'na)elnf(n

{I=t

where e, ., represents the reference direction at node L

The normal at Gauss point G is d,\,; it is given by Equation (4.48) with & and 7 taking,
respectively, the values &; and 1. The base for the reference cartesian frame at Gauss
point G is (€, ) +€2 mrc) *d1i6y)» Where e, ., is the second tangent to the shell

surface and normal oe,, ., : il is given by

_digy X g6y _ Pae) XP26)) %81y 6) (5.33)

€2rr6) = =
0
ldl(c) xelrd(G)I |(¢’.1(c) X@.1) )x‘mr(c)l
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Once the reference basis (e, +€2.5))is established, the angles of the stacking
sequence will be used to find the principal bases (e, .e, ) corresponding to each layer.

5.4.1.5 Computation of Metric Tensor Coefficients at Integration Points

In the implementation of the shell model, case 1 of section 4.2.1 was considered

where the metric G of the laminate is approximated by that of the reference surface 2°,

i.e., A. Thus,

G,=A, ; GFP=4A* ; u=1 (5.34a.b.c)

The coefficients A®are needed in isotropic constitutive equations, whereas the

reciprocal bases A? are used in computing the coefficients Cqg of Equation (3.108)

which are needed in transforming the constitutive equations from local principal

directions to laminate coordinates in the case of composite material. From A,., which

are computed using Equations (3.21), A#® can be obtained using

AP =AP= 4, (5.35)
where
AP A =8" (5.36)

Equation (5.36) shows that A#%is the inverse of A_, . Using matrix notation, we get

gal_ 1 _ A A -1__1_ Ay -A,
[A ]-[Aazl- —[Au Azz] _A[—Au A, ] (5.37)

where



A=A A, -A}. (5.38)

Equation (5.37) implies the following expressions

ar=fe o qeoano B = A (5.39)
A A A
Applying Equation (5.35) and (5.39), we obtain
Al = A"A + ARA, =%(An A A, A,) (5.40)
A’ =AYA +AP4A, =-j‘-(-A12 A +A,A) (5.41)

The above three tasks (construction of nodal rotation matrices, construction of cartesian
reference frames and computation of A* and A®) are performed within a subroutine
calied REFCONFG.
5.4.1.6 Construction of Stiffness Coefficient Matrices

In the case of isotropic material, there is no need to construct a local cartesian frame
at each Gauss point because the constitutive equations are directly given with respect to
laminate coordinates and the quantities needed are the coefficients Af“, given by
Equation (5.39), and used in Equations (3.80) and (3.81). For composite laminates,

Equations (3.103) are used to compute the layer stiffness coefficients C* foliowed by

Equations (4.15) and (4.16) to evaluate the laminate stiffness coefficient matrices

C" p (i=01....,6) and és (j=0,2,4). At each Gauss point, a subroutine called
CONSTMAT is called by REFCONFG to loop over all layers and generate the laminate
stiffness coefficient matrices and then store them internally so that they can be retrieved

by other subroutines to compute the tangent stiffness matrix and internal forces.



5.4.2 Current Configuration

we are concerned here about the tasks performed repeatedly based on the current

configuration. They comprise:

- the update of the structure configuration

- the computation of Green strains and the internal stress resultants at Gauss points

- the update of the discrete strain displacement operators

- the computation of the element internal force vectors and their contribution to the
structure (global) internal force vector

- the computation of the element material and geometric tangent stiffness matrices and
the assembly into the structure tangent stiffness matrix.

The update of the structure configuration was detailed in section 4.3.3. I starts by

updating the nodal quantities @, ,d., .45, and R;,,. This task is carried out in a

subroutine called UPDATE. The subroutine RSPSHEL?, which is also concerned with-
the structure update besides other computations, starts by localizing nodal quantities 1o

the element level. Afterwards, it updates the director d, at assumed strain points A,B.C,
and D followed by the update of d, and d, at the Gauss points along with the derivatives

q’.a "dl.lx and dS.a'

(n) k)
The computation of Green strains (Eas ,(n=0123), Ea (k =0,2)), internal stress

(n) (k)
resultants (m ® , Q0 ®) and the update of the discrete strain displacement operators

([(I?p], ,[“B)s], , I=14) at each Gauss point are treated in a subroutine called

RSPSHEL7. The contribution of the internal stress resultants at each Gauss point to the



element internal force vector is as follows:

Considering the discretized internal virtual work expression (4.92)

ow, =S [i {5 ‘E’}r{‘;’} + Y {5 “y’}r {‘é’}) dQ° (5.42)

N=t a; n=0 k=02

(m) (k)
and substituting the discretized strain displacement operators [Br] and [Bs] given,

respectively, by their expressions in Equations (4.83)-(4.91), Equation (5.42) becomes

o =51 (£33 BT 5} 2 3635 ) o

Introducing Gauss quadrature (numerical integration), Equation (5.43) becomes

o -5 8] (S5 e 5[5 o)

N=1l G=l I=] a=0 k=02

NELNG-pts 4 r -
= 2 Z{w}z ({FP }G(l) +{Fs }am) (5.44)
N=l G=! I=l
| 5 T Y (o
where  {F, o0, =3 [Bp] {m} Ag W, (5.45)
n=0 1

m T (o

and {Flot, =3 [Bs] {Q} A W, (5.46)
k=02 1

are the contributions of, respectively, inplane (membrane and bending) and transverse

stress resultants at Gauss point G to the internal force vector along the degrees of

freedom of node I of element N. These vectors are added appropriately to the global

internal force vector. RSPSHEL7 makes a call to a subroutine called BMAT to compute

(m) (k)
the matrices (Br], and [B5s],.
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The computation of the material and geometric tangent stiffness matrices is done in
subroutine STFSHEL7. This subroutine loops over the elements of the structure and
within each element it starts, as in RSPSHEL?7, by localizing some global arrays to
element level. Then, it starts constructing the element tangent and geometric stiffness
matrices. The element material tangent stiffness matrix is based on Equation (4.112)

which gives the expression for 7x7 submatrices composing the 28x28 element matrix.

nep ke+j
The element stiffness coefficient matrices [C r} and [C s] are retrieved from the

internal files where they are stored. In contrast to the element material tangent stiffness
matrix, which is somehow straightforward and simple, the construction of the element
geometric tangent stiffness matrix is very tedious and lengthy. Its constituent
submatrices are given in detail in appendix L The subroutine MATSTF1] is called by
STFSHEL?7 to compute the element material tangent stiffness submatrices [KM],, and
the subroutines GESTFBIJ and GESTFSLJ are called by STFSHEL7 1o evaluate the
contribution to the element geometric stiffness submatrices from respectively inplane and

transverse stress resultants.

5.4.3. Description of the Program STLSHEL?

The main features of the finite element computer program STLSHEL? are outlined
in the previous sections. The global structure of this program including the
implementation of the arc-length method is discussed in this section. Figure 5.6 shows

the primary
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subroutines called from the main program STLSHEL?7 with some secondary ones called
within these primary subroutines. Most of the subroutines have already been mentioned
while describing the different tasks. Thus, there is no need o0 describe them again here.
These subroutines are DIRSEC. NORMALS, REFCONFG. CONSTMAT.
STFSHEL7, BMAT, MATSTFL), GESTFBL), GESTFSLJ, UPDATE and
RSPSHEL7. Some primary subroutines such as INPUT, PROFIL and SOLVER.
which are very "standard”, are adopted from Reference [169] with the inclusion of
DIRSEC and NORMALS in INPUT. Among the secondary "standard" subroutines
which are also adopted from Reference [169] are EQLOAD, ADDSTF and ADDLOAD.
These subroutines along with the other ones shown in Figure 5.6, but not discussed
previously, are briefly described below:

INPUT: It reads the different commands from the input data file and directs the pointer
to the appropriate secondary subroutines to read the data concemning the
geometry, boundary conditions and loading conditions of the problem. The
secondary subroutines DIRSEC and NORMALS are added inside INPUT 1o,
respectively, construct arrays containing the nodal reference directions, in
case of composites, and the nodal normals.

PROFIL: It computes the profile of the global structural stiffness matrix

INPTCONT: This subroutine reads the incremental/iterative control parameters. Among
these parameters is IAUTO which, when it is equal to unity, allows for
automatic increment sizes to be computed based on the desired number of

iterations to be performed in each step before convergence is satisfied. Such
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automatic increments must be used with the arc length method. When it is set
to zero, equal increments are adopted. The other controlling paramcicr is
MAXITR, which sets the maximum number of iterations within each
increment. If the convergence is not satisfied after MAXITR number of
iterations, the program will restore the previously converged configuration,

decrease the load step and then resume iterating.

LOADV: It assembles the global fixed load vector Fg;™ as discussed in the section

concerning the arc-length method.

SOLVER: It solves the system of equations (structural equilibrium equations by
Gaussian elimination and takes into account the stiffness matrix being
symmetric and banded (Crout reduction method).

SCALSTEP: It finds the current incremental load factor in the predictor phase whose
sign (increment or decrement) depends on the number of negative pivots -
along the diagonal D of the factorized structure stiffness matrix.

RESIDF: It computes the residual force vector and checks the convergence criterion.

ARCLNGTH: It computes the correction to be applied to the load factor in the iteration
due to the application of the arc-length method.

NEXINC: This subroutine is called when IAUTO is equal 1o unity in order to compute
the parameters for the next increment.

EQLOAD: It computes the equivalent element nodal force, in case of prescribed
displacement, and assemble them into the global force vector.

ADDSTF: It assembles the element stiffness matrices into the global (structure) stiffness



matrix
ADDLOAD: It assembles the element intemal force vector into the structure internal
force vector
Other secondary subroutines concerning reading nodal data, element data. material
data, boundary conditions, loading data and computation of shape functions are not
mentioned here. They are adopted from Reference [169] after undergoing some
necessary modifications to suit the type and number of degrees of freedom of the shell
element developed in this study.
The flowchart shown in Figure 5.7 elucidates the general structure of the program

STLSHEL? and shows the different tasks carried out inside this program.
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CHAPTER 6

DYNAMIC FORMUALTION

6.1 Introduction

In the previous two chapters, a finite element formulation and a solution procedure
were developed for the static analysis of laminated shell type structures subjected to
conservative forces and undergoing large deformation accompanied by finite rotations.
This formulation is based on the shell theory exposed in chapter three. This chapter ié '
concermned with a dynamical formulation using the same shell theory. The end goal is to
design an energy-momentum conserving time stepping algorithm which can be used for
the dynamic analysis of laminated shells undergoing large rigid body motion, large
deformations, within small strains limits, and large rotations. This algorithm is based on
a general methodology for the design of exact energy-momentum conserving algorithms
proposed recently by Simo and Tarnow [6]. It is second order accurate, unconditionally
stable and preserves exactly, by design, the fundamental constants of the shell motion
such as the total linear momentum, the total angular momentum, and the total energy.

The main motivation behind the design of this class of algorithm, as mentioned in

137
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Reference [6], is the widespread belief that conserved quantities such as momentum and
energy capture key qualitative features of the long term dynamics and should therefore be
preserved. Since only FOSDT, as reported in the literature survey, was considercd in the
design of previous energy-momentum conserving algorithms applied to shell structures.
this study will contribute to this class of algorithms by extending them to TOSDT.

This chapter starts by defining and deriving the shell total linear and angular
momenta followed by the kinetic and potential energies. Afterwards the weak form of
the equations of motion is established in its continuum form. Then the conservation laws
of the shell motion, which are the conservation of total energy. in case the system is
Hamiltonian, and the conservation of linear and angular momenta, in case the external
forces are self-equilibrated, are stated and their analytical expression derived. The time
discretization is introduced with the intent to achieve exact energy-momentum
conservation; it is followed by the spatial finite element discretization to yield a fully
discretized initial boundary value problem. A particular attention is devoted here. as it
was in the static case, for the consistent linearization of the resulting discretized initial
boundary value problem in order to achieve quadratic rate of convergence typical for the
Newton-Rapl;son solution. The resulting tangent mass matrix is derived in the same way

as the tangent stiffness matrix, i.e. no lumping of masses is adopted in this study.

6.2. Continuum Form of the Equation of Motion

Before formulating the equations governing the dynamic response of the shell model,

we need to determine the following quantities.
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6.2.1 Total Linear and Angular Momenta

The total linear momentum of the shell structure is defined by

L=jdm-t 6.1)

where
dm represents the mass of a volume element dv°as described in section 4.1.2.

x represents the velocity of a material point p(£.7n.{), which is obtained by
differentiating the position vector x with respect to time.
x=¢+{d +{d, (6.2)

Using Equations (4.3) and (4.21), dm becomes
dm=p° G d& dn d¢ ) (6.3)

By substituting dm back in Equation (6.1) and using Equation (4.5), L becomes
hi/2

L=é[{-‘/-l—;- | p’JEidC} dQ° 6.4)

~h/2

where A and G represent, respectively, the determinants of the metric tensors A,z and
G g which are defined by Equations (3.21) and (3.23).
From Equation (6.4), we define the midsurface linear momentum P as

h/2

1
P=— [ p°VGid =A_¢ (6.5)
JA -i[z 4

where
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k2
1

A,=— [ p°JG (6.6)
) JZ-LP g

is the surface mass density in the reference configuration.. Finally, the total linear

momentum becomes

L= j PdQ° 6.7)
a

The total angular momentum of the shell body, which is also a vectorial quantity,

with respect to the origin, is

J = jxxxdm (6.8)
A

where ‘x’ represents the cross product. Substituting the position vector x and dm by

their expressions, yields
J=[lp+ld,+L’d,)x xp°JG dE dndl 6.9
oo
Using Equation (6.8) and substituting x by its expression, we define the directors

momenta T, and T, as

h/2

1 . . . . .
%, =— [ p°NG{@+{d,+{%d,)=1d, +1d, (6.10)
N
1 . ) i . .
w,o=— [ p°NG{@+Ld +0%d,)=1d,+1d, 6.11)
N
where

h/2

1
I, =— [ p°JGU'd , k=246 (6.12)
=7z,
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is the surface k“ rotational inertia in the reference configuration.
With the use of Equations (6.5). (6.10) and (6.11), the expansion of Equation (6.9) yiclds

the following expression for the total angular momentum.

J = [(@xP +d,xm, +d,xx,)d° (6.13)
a.

Equations (6.5), (6.10) and (6.11) transform the velocities ¢ . d, and d, 1o momenta P,
7, and 7,. The collection of all possible configurations of the shell forms the
configuration space @ = (@.d,.d;). This configuration space and the momenta

n = (P,7,,®,) form the phase space Z = (@,7) of the shell body.

6.2.2 Kinetic and Potential Energies

The total kinetic energy of the shell structure is defined as

K=—[dmii==[(Po+m d +m, d.)dQ° (6.14)
ve n°

1
2

o) —

Equations (6.5), (6.10) and (6.11) can be solved to express the velocities ¢, dI and d ; in

terms of momenta P, &, and 7,.

Q= P/Ap, (6.15a)

d, ={m, - 1.7,)! Det (6.15b)

d, = (-I.x, +1,7,)/ Det (6.15a)



where Der = 1,1, ~12. (6.16)

Substituting @, d'1 and d . by their respective expressions in Equation (6.14) yiclds

1 1 I, I 21, )
K@)==[|-—PP+—m, -7 + 20, -, - =27, -7, |d2 6.17)
2414, Det Det Det

The total potential energy of the shell structure is defined as
V@)=V, @) +V_(®P) (6.18)

where V__ (@) is the potential energy of the external forces which are assumed to be

conservative.

V.. (@) is the total stored elastic energy of the structure. It is given by

V@) =2 [ SIE av* 6.19)
ve -
where
. oV (@) .
§i = " m =C®E 6.20
. ,, (6.20)

Note here that the variation of V,, (@), i.e., 8V, (®)is equivalent to the virtual work of

the external forces dw, used in chapter four.

The introduction of the assumed displacement field in the expressions of Green-
Lagrange strains E; and the pre-integration along the thickness through orthotropic
layers leads to a two dimensional expression for V_ (@) analogous of that of Equation

(4.7) for the virtual work.



(m) k) (&)

Vo (P) =%j (i m Ecp +2 Y 0° Eas]dﬂ" (6.21)

a° \ a=0 £=0.2

(m) (k)
The stress resultants m®and Q  have already been detailed in chapter four.

6.2.3 Formulation of the Weak Form of the Equations of Motion

The Hamiltonian (total energy) of the shell body is defined as
H(Z)=K(@®) +V(@®) (6.22)

The equations governing the motion of the shell body can be expressed using either a
Lagrangian or Hamiltonian formulation. In the Lagrangian formulation a system with N

degrees of freedom posses N equations of motion of the form
1(11-.]_3&: 6.23)

where L is the Lagrangian given by
L=K-V (6.24)

g; (i=1..N) represent N generalized coordinates. Here the state of the sysiem is
described by N-dimensional configuration space whose coordinates are the N generalized
coordinates g;. The differential equations are of second order with respect to time.

The Hamiltonian formulation is based on a fundamentally different picture. The

motion is described in terms of first order differential equations. Thus the number of

differential equations will be 2N and the motion is described in 2N-dimensional phase



144
space. g, are considered as independent of ¢,. The 2N variables used arc the N

generalized coordinates g, and N generalized momenta p; given by

_aL

= 6.25
34, (6.29)

P,

The quantities (g;, p;) are known as the canonical variables [102].
The transformation of the equations of motion from Lagrangian formulation to
Hamiltonian formulation is carried out through Legendre transformation and the resulting

equations of motion are [102]

P +§£=0 , q; -éizo (6.26a.b)

9g;

where H is the Hamiltonian and it represents the total energy in this situation as given by
Equation (6.22)

To relate this review to this study, ® = (¢.d,.d;) represents the generalized
coordinates and £ = (P,%,,,) represents the generalized momenta. Equations (6.26)

can be written in the weak form as[170]

. oH (2) . oH (2) -
- 0P dQ° + —=-6b =0 , d-57dQ° — —=-n=0 6.27a.b
(;[r + 30 ‘;‘; T o 4 (6.27a.b)

The weak form is obtained by multiplying the "strong" equations of motions by a test
function and then carrying the integration over the whole reference area of the shell body
so that the equations of motion are satisfied in an average way.

Equation (6.27a) yields the weak form of the momentum equations
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G,. (. ®.60)=G,,, (#.50) + G, (@.60) -G, (5¢) =0 (6.28)

where

Gooe @, 50) = [ (P-Sp + 7t,-8d, + 7,-&d,)dQ"* (6.29)

°

.. 3, (= (n) k) k
G..,@.60) = [ STSE; dv° = | [Z m® 5 Eap + 2 Y Q“'.S(E).,s]dm (6.30)
ve

a° \ =0 k=02

P.7t, and 7, are time derivatives of momenta.

The resulting Equations (6.29) and (6.30) are obtained by using Equations (6.17) and

(6.21) 1o express the Hamiltonian in terms of & = (¢ .d,.d;)and @ = (P, ®,.7,), and

then carrying out the differentiation present in Equations (6.27a) and (6.27b).
The contribution of the external loads to the weak form of the momentum equations is

contained in G, (6®) = -V, (6®). The strong form of Equation (6.27b) produces

Equations (6.15a.,b.c).

The initial boundary value problem (IB VP) of nonlinear shells can be stated as:

Find the configuration and momenta Z(f) = (®(),z(t)) for time r[0.7] such that
G,.(Z(t),6®0) =0 for all test functions 6@ = (6¢,&d,,&d,). This IBVP is subjected

to the initial conditions

@.d,.d,),_, =@*.d".d") and (P’“!'”3)|.go =P,z 2)

6.3 Conservation Laws of the Shell Motion

The objective of this section is to go through the conservation laws in their continuum
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form, i.e.. before the introduction of any discretization scheme either temporal or spatial.

6.3.1 Conservation of the Total Energy

dH (2)

The conservation law of the total energy = 0 may be obtained by using. as

test functions the velocity field in Equations (6.28) and (6.29), ie., 6® = (¢.d,.d,).

Based on these test functions, Equation (6.29) becomes
Gt #.®) = [ (P-¢ + #,-d, + #,-d;)dQ2° (6.31)
a.
and the integrand of Equation (6.30) becomes
SUSE:‘:‘ =sij&.,"x.j =Siiij'x.j = SUE&;‘ (6.32)

which leads to the following expression of Equation (6.30)

3)
>)

93]

G,.®.®) = [STE; av° (6.

a0
By differentiating Equations (6.17), representing K, and (6.19), representing V., with
respect to time, we find respectively G, (ft,®) and G__ (®,®).

When the two conditions G, (d®) =0 and %“— = 0 are satisfied, it can be observed

that

dH (2) _ dK (m) + dv
dt d: dt

=G, (®.d)=0 (6.34)

which means that the total energy is conserved.
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6.3.2 Conservation of the Total Linear and Angular Momenta

It is assumed that the external loads applied to the shell structure are of a traction type
and are equilibrated in the sense that balance of moments and balance of forces hold. We
suppose that the shell motion is not restricted by any prescribed displacement/rotation on

any part of the shell boundary. In this case, the total linear and angular momenta of the
shell are conserved. i.e., % =0, = 0.

The above two conservation laws are associated with the invariance of the
Hamiltonian under spatial translations and rotations [6]. This can be checked by

choosing (v,0,0) and (vx@, vxd,,vxd,), where ve R is arbitrary and independent of

the surface coordinates, as test functions for the weak form given by Equation (6.28).

Based on the adopted test functions and the assumption concerning external loads,
G, . (6®) is equal to zero.

Using 6@ = (v,0,0) we get
=0 (6.35)
For 6@ = (vx@, vxd,,vxd,), the integrand of Equation (6.30) becomes

SYSE; =S¥ (vxx,)-x; =v-(§¥x,xx ) (6.36)
Exploiting the symmetry condition of the tensor S ?in Equation (6.36) yields

S'x,;xx; =0 (6.37)

which leads to
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G, (@ (vx@, vxd,.vxd,))=0 (6.38)
G,., 7. (rx@. vxd, .vxd.)) is given by
G,...(vxep, vxd, . vxd;) = _[ (f’-vx¢ + %, -vxd, + %, -vxd:‘) dQ° (6.39)

a°

After some manipulations, Equation (6.39) yields

G, (. (vxe, vxd,,vxd,))= v-%t’- =0 (6.40)

Equations (6.38) and (6.40) imply

Gy (Z.(vx@, vxd, vxd,)) = v-% =0 (6.41)

Since ve R’ is arbitrary, it follows from Equations (6.35) and (6.41) that % =0 and

C
6.4 Time Discretization: Energy-Momentum Conserving Algorithm

The general methodology for the design of an exact energy-momentum conserving
algorithm presented in Reference [3] is closely followed in this section. First, an
algorithm with momentum conservation is selected. In the second step, an algorithmic
approximation of the constitutive equations is constructed in such a way that the total

energy is conserved for Hamiltonian systems.
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6.4.1 Approximation of Configuration and Momenta
Let [r,.r,,,] be a subinterval of the time interval of interest [0.7]). The initial

coaditions (configuration and momenta) at ¢, are given. In order to construct a time

discretization of the weak form, Equation (6.28), which is evaluated at time

1 . . .
Lo = -2-(t. +1,,, ), some quantities need to be approximated at t,.;2. The configuration

®...» and the momenta ., are taken as the average of their initial and final

counterparts.
1 1
(¢n+112 'dl(nﬂIZ) ’d3(n¢l 12) ) = 5(¢n+l 'dl(u-l) ’d3(n¢l) ) + 5(¢n 'dl(n) ’dl(n) ) (6.423)
1 1
(PnﬂIZ ”cl(ﬁlll) ’xS(nolIZ) ) = E(Pn#l ’zl(lwl) ’n3(n+l) ) + -Z.(Pn 'zl(n) ":S(n) ) (6'42b)

The differential Equations (6.5), (6.10) and (6.11) are approximated at ¢,.;~ by

Poin =4, @, —@,) A (6.43a)
Tynerizy = (Iz @\pery —4ny) + 1, @y, -d,(”))/At (6.43b)
’:3(u+l/2) = (14 (dl(nﬂ) _dl(n)) + Is (d3(,.,.1) ‘d3(,.)))/A' (643C)

where At =1, ,, -1, .

Using Equations (6.42) and (6.43a,b,c) we get

P, =2A.(®,.-@.)/A~P, (6.44a)

Tiney = 2(’ 2 (du-m) —dl(n)) +1, (ds(.»l) —da(n) ))/ Ar - LT (6.44b)

K1y = 2(1 4 (dl(nl) -dl(u)) +1 6 a 3(n+l) ‘ds(.) ))/ Aar — Zyn) (6.44¢)
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Equations (6.44a,b,c) can be solved to find the configuration difference

¢n4-1 -¢n = At (Pn¢l +Pll )/(ZAP ) (6.453)
d,~dy, = A’(Is (®y ety + 7)) — 1 (50 +75,, ))/(2De’) (6.45b)
dypy—ds,, = A‘(‘ I, (®y(pery +7y,)) + 15 (50 +“3(n)))/(2De‘) (6.45¢)

The quantities P,,,,,, %,.,.,2 and %, ,,,,,, are approximated by

Pn-o-lll = (Pnol -Pu)IAl’ (6-463.)
Binerry = yiery =Fya))/ AL (6.46b)
Bynairay = Bsa -,/ Az (6.46¢)

6.4.2 Time Discretization of the Weak Form

Once the vectorial quantities describing the shell configuration and momenta have
been discretized, the substitution of their expressions in the weak form of the equations of
motion will temporally discretize these equations. The inertia part (6.29) of the weak

form (6.28) is discretized using Equations (6.46a,b,c).

1 .
Ginm (".+1v“-'5¢)='4_t' J ((P--H “P. )'8¢ + (”1(.44) ~Ria) )'541 +(”3(.+1) —®3., )'5d3 )d-Q
a.

(6.47)

Introducing a midpoint evaluation of G, (®,6®) as

G (@.60) = I s(i{»uz) OE; iy dV° (6.48)
v.
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The strain variations OFE.

i(me

12y atconfiguration @, ., are given by

6F

j(n+112)

+ x(n#lll).: -5x.;) (6.49)

tn+l/2).y

1
=—5 .
2(xe

6.4.3 Momenta Conservation of the Algorithm

The algorithmic approximation considered so far enables us to exactly conserve the
total linear and angular momenta in case the applied loads are self-equilibrated.
Conservation of linear momentum follows from the discretized form of Equation (6.28)

by choosing a test function 6@ = (v,0,0) with veR> as arbitrary. With this choice.

OE; sy =0, thus G, (P,60) = 0. Then
1
G (21,20 8®0) = — v-(L,, ~L,) =0 (6.50)

Equation (6.50) implies that L_,, = L_ since wis arbitrary. The conservation of the total

angular momentum is proven by choosing an infinitesimal rotation 6® = (vxe@,,,;-,

VXd, 112 VXsay) as a test function. With this choice, 6E,,,;,., = Oand
G, (®,6) = 0 are directly obtained.
The discretized weak form, Equation (6.28), becomes
1
Gdyn Z,.Z,, ,5¢)=-A-I-V- J (¢-+l/2 x(P,, = P)+ dl(-ﬂlz) x('tlunl) —)‘C,m)
n.
+ A1) X R sipy T3 ))) dR2° =0 (6.51)

After straight manipulations, we get



1
G z,.z,,.09) = "Z v I ((¢.¢1 @ IXP iy + @iy =) )X 1)
a‘

v 1
+ (d300) =30y ) X 30a1r) ) dQ° + x v-(J(2.4)-J@2,))=0 (6.52)

By using Equations (6.43a,b,c), the first part of Equation (6.52) vanishes, leaving the last

term which states that J(z,,,) = J(z,) since vis arbitrary.

6.4.4 Exact Moment-Energy Conserving Scheme

It has been shown in the previous sub-section how this algorithm conserves the total
linear and angular momenta in case the external forces are self equilibrated, as stated by
the physical laws. The target now is to seck the conservation of the total energy. In the

absence of external loads, the conservation of the total energy (H (z)) of the Hamiltonian

system is achieved only when S?2,,,,, is given by

i 1 i -
9 uim == C* [ Eyirety + Enin) : (6.53)

N

The algorithmic representation of the constitutive equations shown in Equation (6.53)

states that the Green strains E, ., are defined as the average of the strains of
configurations &, and ®,,; and not as the strains of configuration ¢ ,,,,.,. The proof

concerning the conservation of energy. in case the constitutive equation is given by

Equation (6.53), is obtained by choosing as test function é® = (@,,, = @,. d,,.1;, — di(n)-
d3 .1y —dy,,)in the algorithmic weak form. After using Equations (6.45a,b.c) in the

weak form, Equation (6.28), the following expression is obtained



-H,_ =0

(»)

Gip (Ze-Z,.8®) = H .

which implies the conservation of the total energy.
in the following form

Gw (¢ .ﬂ'w) - Isnﬂlz Uinel/l2) av°

G )
I 2 me,, SEua(.,u*) +2 Z Q,,l,, 8 Ean-1s3y | dQ°

Q° =0 k=

where

(k) « 1 (k). (k)‘
Qm-llz:—(Q.q"’Q, k=0.2

(6.54)

G, (@, .D_ .0P) can be rewriticn

(6.55)

(6.56a)

(6.56b)

Equations (6.56a,b) show that the algorithmic representation of the constitutive equations

adopted leads to the stress resultants of configuration @ ,,,,,

their counterpart configurations ®, and ®n.;.

Finally, the time discretized weak form becomes

Gd,,. (Zn'znid‘w):-Alt— I((Pnl
o°

(i) (k) k)

+ J (Z :'r;"”-, O Eagneirny + 2 2 07%../2 08 Easmeir )dfr

=0 k=02

6.5 Spatial Finite Element Discretization

. defined as the average of

—P,)- 6@+ (®,p.yy~Ty)) - Od, + (%5, —7y ) )-0d, ) df2°

(6.57)

The finite element discretization is based, as in the static part, on an isoparametric

four-noded quadrilateral laminated shell element.



6.5.1 Interpolation of the Kinematic and Momenta Fields

The interpolation of the directors d, and d,, adopted in this section. is different from
that of the static part. Here, the unit norm of d, and the orthogonality condition between
d, and d,, which represent the kinemaltic constraints stated in Equation (3.29), have been

relaxed away from nodal points. The interpolation adopted in the static part does not
preserve, as reported by Simo et al.[124], the conserving properties of the continuum and
time discretized equations of motion. This interpolation, in contrast to the one adopted in
the static part, results in much simpler expressions.

The spatial discretization of the phase space is defined by

eE.mM=Y N'Eme, . PEmM=) N EnP, (6.58a)
I=1 I=1

d@E&m=) N'&mnd,, . =mEmn=3 N'Emx,,, (6.58b)
I=1 1=1

d;Gm=3 N'€Emdy, . %EMm =23 N'€Emmy, (6.58¢)
I1=1 I=]

where N’(&,n) are standard bilinear shape functions defined in chapter four.

@)
The interpolation of the quantities involved in the strain variations & Eag-1/2) (i =

)
0,1,2,3) and 6 Easm+rny (k= 0,2) can be obtained from Equations (6.58) as follows

Sp=6u=)Y N'6u, , S@,=) N,&, (6.59a)
I=1

I=]

4 4
5d1 = z N’ adlu) ’ 8dl,a = Z NL 841(1) (6.59b)

I=l 1=l



éd, = Z N’ éd,,, . 6d,, = Z Nfa éd,,, (6.59¢)

I=1 I=]
which are similar (o0 the interpolations used in the static part. Thus, the difference
between the two interpolations resides in the way to interpolate the filed directors d,. d.

and their respective derivatives with respectto £ and 1.

©
The constant part of the transverse shear strain field, i.e., E,; will be interpolaied

following the static part, i.e.,using the assumed strain concept of Dvorkin and Bathe {4,5)

6.5.2 Admissible Test Functions
The test function &d, needs to satisfy the condition 8d, -d,,.,,,, = 0, which is an

algorithmic approximation of the linearized constraint of d;!| = 1.

where

e - d)r

diiz = v Byrsay = (du.) +du"u)/2 (6.60)
PI(NIIZ)I

d,... -, isa unit vector obtained from E, =[0,0,1]" by the rotation matrix R,_,,. ; thus

iz = Ru2 E; (6.61)
The explicit construction of R,,,,, is obtained by equating Equations (6.60) and (6.61)
which leads to

R, = (R,+R,)/{d,., +d\,., (6.62)
where R, and R,,, are the rotation matrices mapping Ej3 into respectively d,,, and

d\..,- Finally the test function 8d, is given by
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& =8,,,,,=6R,,,,E,=R,,,.0yxE;)=R,,,.8D, (6.63)
where
6D, =D/ E, + 8D} E, (6.64)
is normal to the unit vector E3, i.e. lying in the plane (E,,E,).
The test function 3d; is obtained from the variation of

E3(l¢l/2) = Rnlll D3(l+l/2) v DJ(-+IIZ) = (DS(-) +D3(-ﬂ))/ 2 (6'65)

5d3 = 5R"ll2 D3(.HIZ) + R.+XIZ 5D3 = —(6Dl 'DS(-HIZ))Rl#lIZ EJ + Rn0112 503

= —Gl(-ﬂlZ) ®D,,../2 )ml + R, ws (6.66)

6.5.3 Strain Variations

® )
The strain variations (8 Eag+1/2), i=0,1,2,3) and (8 Eaxw+1/2), k=0,2) given in the
time discretized weak form (6.57) need to be discretized. Following the method used in

the static part but bearing in mind that we are at configuration @, ,,,. Based on

Equations (4.22) and (4.23), we get

(@) 1
6 Eagmeiry) = 7,‘(5¢a'¢.3(.+1/2) + ‘Pa(-q-uz)'aq’.ﬂ) (6.672)

) 1
6 Eagmeirn) = Py (S‘Pa 4y pwii2) t Pawersz) 'Mx.ﬂ +0Q5-d paiz) T Ppmi '5dm)

(6.67b)

@ 1
O Eaganiiny = "2‘ (&m -d 1LBmer2y T dw(uuz) '5"1.5) (6.67¢)
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3 1

6 Eagamarzy = 5 (54’41 'ds.p(nuz) + @a@ar) '&‘3.5 + S‘P.p 'daa(uxlz) + ‘P.ﬂ(nlm '5‘134:)

(6.67d)
(o) 1
8 Easanrn = 3 (5¢a M airan ¥ Pagwerry” 5‘1) (6.68a)
(¢4} 3
6 Easmerrn) = Y (&a 'ds(.»uz) + @ oaair) '8‘13) (6.68)

From the strain variations given above and the admissible test functions and after

applying the FEM discretization, the following strain-displacement operators

[%’,] (i = 0,1,2.3) and [‘é’,] ( = 0.2). ( stands for node number) are
I(n+1/2)

I(n+l1/72)

@
obtained. The operators [B ,] (i=0,1,2) and [‘3’,] are similar to those of
I(nel/2) I(r+172) -

the static part except that the quantities involved are evaluated at configuration @, ;. .
The position vector@ and the directors d, and d, are based on Equations (6.42a). The
rotation matrix R, is based on Equation (6.62). The interpolations are applied to @,

d,, d; and their derivatives but the rotations are evaluated at the nodal points only.

3) 2
[B p] and [(g),] are different from their static counterparts, thus they will be
I(n+112) I{nel?2)

given below
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1T N T (&' )
@) N.l d3.l(l¢l/2) N.l ‘P.u-.uz; i) ®D:!(l) (®el72)
- 1 T il T g
[B’] =| Nadszeurm N:®raarm l(')®D3(’) (#e1/2)
I{mell)

I T 1 T (! ;T AN . 4 )
(N.l d3.2+ N.: d3.l)(-0112) (A .1 ¢.2+ N .2 ¢.1 mell2) l(l)®D.‘(l: (mell2)

r_.T =
N,l ¢,l(n¢l/2) Rl(l#l/!)

1T =
N @iy Ry (6.69)

! T 1 T D
(NJ ¢.2 +N.2 ¢_l )(.*1/2) Rl(.ﬂlZ)

x|

I(m+172)

I 4T _NImT G’ ) 17
l:%) ] =3 N, djpnrn N’ @012 by ® Dy (m+1/2) N @iuurm
’ = 147 1.7 g ) T
1(m+1/2) N,dyun; - N P 2ae112) Gy ®D 3U) Jime1r2) N’ @20

~

I(m+1/2)

(6.70)

%)
It should be mentioned here that the strain variations (A4 Eagw+, 1=0,1,2,3) and

(k)

(A E a3+, k=0,2) will be needed during the linearization procedure. Their evaluation is
exactly similar to the static case except that all the quantities involved are based on the -

configuration @, ,, .

This ends the discretization of the strain variations at configuration @, ,,-

6.6 Linearization

After full discretization (time and spatial) of the weak form of the equations of
motion of the shell model given by Equation (6.57), a system of highly nonlinear
equations is obtained. Solving this problem by Newton-Raphson method requires a

linearization of the discrete form which may be obtained using the directional derivative

of the test functions Su, 84, and 8ds in the direction of {A®),,, =|au Ad, Ad, [ . It
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should be mentioned here that the linearization is done at configuration®,

corresponding to time ¢ The linearization of G,,, can be split into three parts

nel -

plG,, z,.®,,.50)}Ha®),, =D, G, (Z,.0,.,.56)) a0},

+ Dy, |G, (Z..®,,.60)H{a®),,, + D,|G,. (Z,.9,.,.60)| {a®),,,  (6.71)

which represent, respectively, the inertia part, the material part and the geometric part of
the tangent stiffness operator. The evaluation of the terms involved in Equation (6.71)

requires the directional derivative of the test functions du, &d, and &ds in the direction of

(AD},., =|4u A, Ad, [ which will be considered next.

6.6.1 Second Variation of the Kinematic Variables

The directional derivative of test functions 8u. &4, and 843 in the direction of -
{Ad}, ., can be written as Adu, Add; and Add;. Contrary to A8z which can be shown to
be zero, Add; and Add; are different from zero. Their expressions are obtained from the

variation of Equations (6.63) and (6.66) which, after some manipulations, yield

1
NRMD

A5d, = (6D,-4D))d,,.,, + R... 4D,-d,..» )R, 5D, ) (6.72)

where

NRMD =d,,, +d,..,, (6.73)

is the norm of the resultant vector of d,,, and d,,;,, and
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1 1
A‘Sds = ‘5(501 'Ds(nuz))k..uz AD: - E(ADl 'Ds(nuz) )R-+x/2 501

"""‘"‘(5D D3(,,1,,))R AD +—_— (R",AD dx(uuz))(SD Ds(nxm)dl(-ﬂm

NRMD NRMD

1 - 1 1 =
- E (6D, -AD, )du"uz) - NRM—D(SD’ 'Abl)dx(nl) - WMB(R"I AD, ’dl(uuz) )R.+l/2 503
' (6.74)
6.6.2 Inertia Part of the Tangent Stiffness Operator

The inertia contribution to the tangent stiffness matrix is given by

D, [Gm]'{4¢}m = Z At I ( w1 "OP + ARty ) -od, + @ ety "”1(n))'45dx

Nal

+ AR, ., 0d, + By, —%,,,) Add, ) dQ2’ (6.75)

AP, , Arm,,,, and Ax, . are obtained by taking the variation of Equations (6.44a.b.c)

n+l o

AP, =—At a9, (6.76a)

27 217
ARy ety = 'Zle(u»l) + T‘MS@H) (6.76b)

2 21 -
—I_‘Munl) + A: Ma(nl) (6.76¢)

ARy pery = A

6.6.3 Material Part of the Tangent Stiffness Operator
The material part of the tangent stiffness operator is obtained from the linearization of
the constitutive equations while keeping the geometry of the shell structure as constant.

By using matrix notation for G, the material contribution to the tangent operator is



161

given by

NEL 3 i T '0)
D, [Gm]‘{A‘b}n,x = 2 I [2 {85} D{m} {Ad},,
nell2

N=l DaN =0 nel/2
(&) r k) -
+ Y {8 y} D{Q} -{Ad)}",Jan" (6.77)
&=0.2 aell2
where
6) 3 i+ #2)
D{m} {ad},,, = 1 Y [C,.]{A e} (6.78a)
nel/2 2 Jj=0 el
and

k+j (0)

D{(é)} {Ad}, ., =1 > [C,]{A y} (6.78b)
nel/2 2 nel

j=02

6.6.4 Geometric Part of the Tangent Stiffness Operator
The geometric part of the tangent operator is obtained from the variation of geometry
while holding the material part constant. Here, for convenience, Gy, is wrillen using '

indicial rotation

i=0 £=0,2

NEL 3. (i) (k) (k)
D;[G,,)-{A®},,, =, j Y m®,, ABEageirn +2 Y, Q51/2 A8 Easinusz; |dQ°

N=l} o
oy

(6.79)

Since the second variation of the kinematic variables is shown in section 6.6.1, the

(i) (k)
computation of Ad Eaga+1/2) and Ad E a3m+1/2) is straightforward.

The construction of the element tangent matrices, i.e., mass and stiffness (material and
geometric) follows the same procedure used in the static part except that here a careful

attention is paid to the operators & and A. The former one operates at configuration
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e/ and the latter one at configuration @ ,,. This has resulted in different strain-

(n+172)
displacement operators, as shown in section 6.5.3 concerning strain variations.
Therefore, in contrast to the static part, the element and global stiffness matrices resulting

from the dynamic formulation will be unsymmetrical.

6.7 Implementation Notes
The implementation of the dynamic formulation is based on the standard Newion-
Raphson method. The problem can be stated as follows. Given the configuration

(9,.d,.,-d5,,) and momenta (p,.%,,,.%s,,) at time 7_, find the configuration at time
t,.. suchthat G, (Z,.94,.,.6¢) =0 for any test fdunctions 5¢ related to the intermediate
configuration®,,,,,,,. The use of Newton Raphson method requires a linearization of
Gyn(Z,.9,,,.00)=0 which was carried out in the previous section. The element

tangent matrices obtained from the linearization process are much more involved than
their counterparts of the static formulation.
The dynamic predictors are used to start the Newton Raphson method. Their purpose

is to estimate the configuration and momenta at time ¢, during the first iteration. Many

alternative schemes exist for these predictors and the difference between them resides in
how fast each of them will reach the converged solution[]. In this study a constant
velocity (zero acceleration) predictor was attempted but the problem of enforcing the

0)

constraint ldu_,,l, =1 and finding R'? led to the adoption of a predictor based on a

constant defdormation between r,, andt,,, at iteration 0. This lead to the following



eqautions
¢((g-ll) = ¢n
dl((o.)n) =d1(n (6.80)
d;?:d) =d3(l)

and based on these conditions and Equations (6.44a,b.c), the expressions of momenta are

given by
o
I,(n+l) - —P-
0 _
Tiwst) = i) (6.81)
©
ey = 3

Another important thing to be mentioned here is the update procedure of the
configuration which is carried out at each iteration. Since the interpolation adopied in the
dynamic part is different and simpler than that of the static part, the configuration update

me be also simpler than that of the static formulation. The field Equations from (6.63)
10 (6.75). used to update the directors d, and d- and their derivatives at Gauss points . ar-e
not needed in the dynamic formulation. The simpler Equations (6.58), used to interpolate
d, and d,, will be used to update these directors at Gauss points based on the updated
nodal directors which are computed as in the static case.

Once the nodal directors are updated at a specified iteration, Equations (6.44a.b.c) are

used to update the nodal momenta.



CHAPTER 7

NUMERICAL SIMULATIONS

7.1 Introduction

This chapter concerns the assessment of the performance of the proposed finite
rotation laminated shell element using a TOSDT. The response predicting capability of
this model in static and dynamic situations is investigated through test problems available
in the recent literature. The results obtained from these simulations are comparad witiu '
those available from other researchers.

The first three static problems deal with linear cases. The results of the linear
analysis are obtained from this formulation by performing the linearization at the
reference configuration and taking the predicted solution without going into further
iterations. The remaining static test problems are nonlinear and involve finite rotations
and large changes in the geometric shape of the structures treated.

The dynamic test problems, considered in this study, involve large rotations, snap-
through and large rigid body motion. The first four dynamic test problems, which have
been reported recently in the literature, deal with thin shells, while last example deals
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with thick shells. The last example is designed to show the difference in prediction
between the first and third order shear deformation theories in case of a sandwich

cylindrical panel with a soft core.

7.2 Static Simulations

7.2.1 Linear Problems

7.2.1.1 Pinched Isotropic Cylinder with End Diaphragms.

This example considers a short isotropic cylinder subjected to two pinching vertical
forces at the middle section and two rigid diaphragms at the end. It should be mentioned
that for isotropic cases, no significant difference exists between FOSDT and TOSDT
models. The purpose of including such examples is the assessment of the viability of the
present model.

The data describing the problem are: The length of the cylinder is L = 600, the radius
R =300, and the thickness ¢ = 3. The Young’'s modulus is E = 3x10° and the Poisson’s
ratiois v =0.3.

By exploiting the symmetry, present in this case, the cylinder is modeled using one
octant. Figure 7.1 shows an 8X8 mesh of this octant of a cylinder along with the
appropriate boundary conditions of geometry and loading. To test the convergence to the
exact solution of this model, a mesh refinement is adopted starting with a 4X4 mesh and
ending by a 32x32 mesh.

The numerical results found, concemning the displacement at the location of the

punching force, are presented in Table 7.1 and normalized against the analytical solution
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Figure 7.1 Pinched cylinder with end diaphragms
Geometry and loading condition
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Table 7.1 Displacement results of the pinched cylinder with diaphragms

Mesh Displacement x 10 % of analytical solution
size Present [23] Present 23] [65]
4x4 0.6756 0.6774 37.0 37.1 375
8x8 1.3569 1.3566 74.3 74.3 75.6

16x16 1.6958 1.6957 92.9 929 92.7

32x32 1.8062 1.8098 99.0 99.2

of 1.82488x10™° [65]). The results reported in References [23,65] are also given for
comparison. The results of Simo et al.[65] are those of the displacement-based
formulation and not the mixed one. For a better visualization of the convergence versus
refinement, the results of Table 7.1 are plotted in Figure 7.2. It was stated in Reference
[65] that this problem is a severe test of the inextensional bending and complex
membrane states of stress. Furthermore, most four-noded shell elements do not converge
efficiently in this problem, except the discrete Kirchhoff formulations. The results shown .
in Table 7.1 or Figure 7.2 indicate clearly that this element has passed satisfactorily this
test and its performance is similar to that of Simo et al [65] and Parisch [23]

The maximum stresses occur at the load location except for the inplane shear stresses.
As mentioned before, there is no significant difference between FOSDT and TOSDT
models. Table 7.2 shows the maximum stresses with mesh refinement. The directions 1
and 2 stand, respectively, for axial and circumferential. For the normal stresses, both the
maximum tensile (+) and maximum compressive (-) stresses are shown. By comparing
Tables 7.1 and 7.2, it can be noticed that the rate of convergence of stresses is slower than

that of deflections.
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Figure 7.2 Pinched cylinder: Normalized displacement in load direction
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Table 7.2 Pinched cylinder with end diaphragms: Maximum stresses
with mesh refinement

Maximum Mesh size
Stresses ax4 8x8 16x16 32x32
oie) | 0.07493E-1 | 0.1251E-1 | 0377SE-1 | 0.8203E-1
Gu() | -0.1156E-1 | -0.3504E-1 | -0.7417E-1 | -1.204E-1
Owa(+) | O-09127E-1 | 0.2069E-1 | 04912E-1 | 0.9234E-1
52() | O.1126E-1 | -0.4047E-1 | -0.8610E-1 | -1.356E-1
T 0.03918E-1 | 0.08838E-1 | O0.1846E-1 | O0.2152E-1
i3 0.02000E-2 | 0.1192E-2 | 0.3968E-2 | 0.9040E-2
Ton 0.05010E-2 | 0.1501E-2 | 0.4226E-2 | 0.9020E-2

7.2.1.2 Pinched Isotropic Hemisphere.

169

The second application concemns a pinched hemispherical isotropic shell with two

inward and two outward forces 90° apart. This hemisphere is closed, i.e., there is no hole

at its pole. The shell is fixed at the pole and loaded at the free edge. Figure 7.3 shows -

one quadrant of the hemispherical shell with the geometry of the mesh adopted in this

example. It shows also the boundary conditions and the loads to be applied with their

directions and intensities. The mesh adopted is highly skewed for coarse mesh situations.

The geometric and material properties are given by the shell radius R = 10, thickness 7 =

0.04, Young’s modulus £ = 6.825x10’ and Poisson’s ratio v = 0.3.

The analytical solution yields a displacement of 0.0924 [65] in the direction of the

applied forces. Here also a mesh refinement is adopted to assess the convergence of the

present element. Three meshes are considered, four, eight and sixteen elements per each

of the three sides of the shell. The rest of the elements inside the domain are designed as
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shown in Figure 7.3. The displacement results of this simulation are shown in Table 7.3.
In this example, as can be seen from Figure 7.4 which shows convergence versus
refinement, the present element clearly exhibits a better performance than those of

Parisch [23] and Simo et al.[65]. especially in the case of coarse meshes.

Table 7.3 Pinched hemisphere: Displacement along the applied load

Elements per | Displacement % of analytical solution
side Present Present [6 5] [23]
4 0.065367 70.7 46.8 31.1
8 0.089208 96.6 93.3 87.9
16 0.091809 99.4 08.8 98.5

The maximum stresses versus mesh refinement are reported in Table 7.4. The same
remark, as before, can be made about the convergence of stresses in the case of the
pinched isotropic hemisphere. The directions 1 and 2 correspond to the curvilinear
coordinates defined at the element level, i.e., direction 1 is along sides 1-2 and 4-3 and.
direction 2 is along sides 1-4 and 2-3 ( see Figure 4.2). Because of the mesh adopted in
this problem, these directions are not orthogonal.

Table 7.4 Pinched hemisphere : Maximum stresses
with mesh refinement
Maximum Elements per side
Stresses 2 3 16
O11(+) 0.2176E4 0.3532E4 0.5447E4
G11(-) -0.1725E4 | -0.3540E4 | -0.5455E4
G2a(+) 0.1939E4 0.3008E4 0.4012E4
G2(-) -0.2175E4 | -0.3028E4 | -0.4047E4
€12 0.1757E4 0.2237E4 0.2338E4
T3 0.1717E2 0.5050E2 0.7709E2
T3 0.08425E2 | 0.3464E2 0.6340E2
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7.2.1.3 Sandwich Plate under Sinusoidal Transverse Loads.

This example consists of a square sandwich plate simply supporied along all four
edges. It is composed of three layers placed symmetrically with respect to the middle
surface. Figure 7.5 shows the form of the plate with the dimensions of its face sheets and
core and the sinusoidal loading on top of it. This problem was analyzed by Pandya and
Kant [69] and Basar et al.[19] for different values of the plate width-to-thickness ratios.
The results reported by those authors concem the deflection at the center of the plate and
stresses at different locations. These locations will be defined through the coordinate
system (x,y,z) shown also in Figure 7.5. The deflection and stresses, reported by these

authors, were presented in a nondimensional form using the following multipliers:

_100R’E, m, h? h

; = — 7.1
m, Pa’ m; (7.1)

where P is the intensity of the sinusoidal load whose equation is shown in Figure 7.5. h '
represents the total thickness of the plate and a is its side length. E. is Young's
modulus in the direction 2 which is defined here by the y axis. Thus, the x axis defines
the direction 1. The geometric and material properties of the sandwich plate are as
follows.

a=1.0 h;=h3=0.1h h,=0.8h P=1
Core material

Ei=Ep= 0.4x10° G12=0.16x10° G135=G=0.6x10° vi2= 0.25
Face sheet material

E,;=25x10°% E;=10° G12=G13=0.5x10°  G2=0.2x10° v1>=0.28
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where h;, h. and hs are visualized in Figure 7.5. The rest of the coefficients have already
been explained in chapter three.

The symmetry is exploited in this case too, by considering only one quarner of the
plate with the appropriate boundary conditions. The results of the analysis are obtained

using a 16x16 mesh. The plate is analyzed for the following values of the width to

thickness ratios; = 100. 25. 10 and 4. These ratios cover the whole range of plates

>|n

from thin to thick. The quantities compared in this study are the maximum transverse
deflection and maximum normal and shear stresses. It is noteworthy to mention here that
in the linear case there is no difference between the different stress and strain measures.
The results obtained from the simulation of this problem are reported in Tabies 7.5. 7.6
and 7.7 with those available in the literature, which are obtained either from the exact or
other finite element formulations. -
Pandya and Kant [69] considered. in their analysis, two HOSDT models: the first one |
uses five parameters and satisfies the free transverse shear stress conditions on top and
bottom free surfaces and the second one uses seven parameters but does not satisfy the
above mentioned condition. The second one had a superior agreement with the exact
solution compared to the first one. Thus, only the second model is reported here and it is
referred to by HOSDT2. The results of the FOSDT are also reported by Pandya and Kant
[69]. The results of the TOSDT of Basar et al.[19], referred to as RT7, along with those
of their layerwise theory (LWT) are also reported here. The exact solution to this
problem was derived by Pagano [171], and since then it has been used by many

researchers as a reference to assess their numerical models.
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Tables 7.5, 7.6 and 7.7 show the predictions of the different quantities by the different
theories. The normal stresses ©,, and & ,.are evaluated at the center of the plate at the
top (or bottom due to symmetry) where their maximum value occurs. The membrane

shear stress &, is evaluated at the corner (x=0, y=0) with z=0 (middle of the core
material). The transverse shear stresses 0,, and &, are evaluated at the middle of their

respective sides. It can be seen from the results reported in these tables that all theories
shown agree well with each other in the case of thin plates (a/h = 100) especially
concerning the deflection and the in-plane stresses. For moderately thick plates (a/h =
10) to thick plates (a/h = 4), the results of the FOSDT are in gross error and shouid not be
used for response prediction in this range. However, HOSDT of the present formulation
and that of Reference [69] still yield good to satisfactory results compared to the exact

solution. The results of Reference [69] are slightly better than those of the present study.

Table 7.5 Simply supported square sandwich plate: Maximum stresses
and deflection for (a/h=100)

M2*0, m2*cx m2*1;, m3%T;, m3%Ty, ml*W0

Model (aR2,a/2, (a2,a/2, (0.0.n/2) 0.a2,0) | (a2,00,) (a/2,a2.0)

h72) h/2)

Present 1.0958 0.0548 -0.0436 0.3741 | 0.03419 0.8903
RT7 (19] 1.0931 0.0547 -0.0435 0.8903
LWT [19] 1.0931 0.0547 -0.0435 0.8917
FOSDT [69] 1.104 0.0546 -0.0435 0.1152 | 0.01767 0.883
HOSDT?2 [69] 1.109 0.0554 -0.0440 0.3627 | 0.03322 0.891
EXACT [171] 1.098 0.0550 -0.0437 0.324 0.0297 0.892
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Table 7.6 Simply supported square sandwich plate: Maximum stresses
and deflection for (a/h=10)

m2*c, M2*cn, m2*T;; m3*T;, m3*Ty, ml*W0
Model (a2,a2, (al2.a/2, (0.0.h/2) (0.22,0) (a2,0,0,) (a2.a/2,0)
h/2) h/2)
Present 1.147 0.1040 | -0.0687 | 0.3489 | 0.05780 2.083

FOSDT (69] 1.062 0.08057 | -0.05532 | 0.1112 | 0.02384 1.557
HOSDT?2 [69] 1.166 0.1052 -0.0692 | 0.3400 | 0.05642 2.087
EXACT [171] 1.153 0.1104 -0.0707 0.3000 | 0.05270 2.200

Table 7.7 Simply supported square sandwich plate: Maximum stresses
and deflection for (a/h=4)

M2*6,, m2*Ga, m2*7T;; m3*T;; m3*1,, ml*W0
(a2,a/2, (al2,a2, (0,0.h/2) (0.22,0) (a2,0.0,) (ar2,a/2.0)
Model b2) b/2)

Present 1.4994 0.2386 | -0.1406 | 02822 | 0.1166 7.147

| FOSDT [69] 0.9056 0.1578 | -0.0912 | 0.0995 0.0436 4.755
HOSDT2 (691 | 1.5230 0.2414 | -0.1419 | 0.2750 0.1137 7.160
EXACT[171]| 1.556 0.2595 | -0.1437 | 0.2390 0.1072 7.596

7.2.1.4 Laminated Rectangular Plate under sinusoidal Transverse Loads
A laminated rectangular plate with boundary conditions and loading similar to those

of the previous example is considered. The plate has five layers constructed in the

sequence (0°790°/0°/90°/0°) The following lamina properties are used [172]:

Ei=25E; , E3=E: , G12=G;3=0.5E2 , G2=02E; , vp=vi3=v23=0.25

The plate is simply supported in such a manner that the edges are fixed against tangential
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displacements but free to translate in the normal direction. The sides of the plate arc a
and b with a/b=3. Its thickness h is varied in order to have side-to-thickness ratios (a/h)
of 5 and 10. In addition to the multipliers m,;, m; and m3 used for the sandwich plate,

another multiplier my4 is added in this example. Itis given by

2
m, =100 E; (7.2)

pa’
The quantities compared in this example are the maximum transverse deflection, the
inplane displacements at midsides and the maximum normal and shear stresses. Various
numbers (N) of layers have been considered in the analysis. Two different meshes are
first considered for the case a/h=10 and N=S5 layers; they are 8x8 and 16x24 for one
fourth of the plate where symmetry conditions are exploited. The results obtained using
these two meshes are shown in Table 7.8. The quantities reported are made

dimensionless as follows:
w=mw(al/2,b/2,0) JwM=mwu(0,b/2,z) wv=mwv(al/20,z)
G,=moO_(a/2,b/2,z) , &,=m0o,(a/2,b/2,2) , &, =mo0,(00,2)
6., =moc_(0,b/2,2) . o, =mo .(a/2,00) (7.3a,b,c)

It can be noticed from Table 7.8 that there is no significant variation in the results
between the two meshes. For the sake of comparison, the second mesh, i.e., 16x24 is
used in the remaining simulations using a/h=5,10 and N=2,3,4,5 and 10. The results
concerning inplane displacements, inplane and transverse stresses with those of

Reference [171] are reported in Tables 7.9-7.11 and the normalized center deflections,



with respect 1o the elastic solution, are shown in Figures 7.6.and 7.7.

Table 7.8 Laminated palte with a/h=10 and N=5 layers: Nondimensional

results with mesh refinement
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lxidﬁl w u v g, |&,%10| & *10| 7. |&.%10
- - + % -
FOSDT | 0.8633 | 0.945 | 0.4345 | 0.7369 | -0.7209 | 0.1164 | 04105 | 0.0758
8x8
TSODT | 0.9207 | 1.004 | 0.4660 | 0.7840 | -0.7555 | 0.1245 0.6366 | 0.1154
8x8
FOSDT | 0.8638 | 0.945 | 0.4335 | 0.7429 | -0.7257 { 0.1173 04123 | 0.0762
16x24
TOSDT | 09213 | 1.005 | 04650 | 0.7904 | -0.7606 | 0.1254 | 0.6416 | 0.1162
16x24

+ values are calculated at z=h/2

- values are calculated at z=-h/2

* values are calculated at the lower face of the second layer (from the bottom)

Table 7.9 Laminated plate: Nondimensional inplane displacements « and v

u v
a’h Model
N=3 N=4 N= N= N=4 N=5

FOSDT 0.780 - | -2.065 + | 09360+ | 0.708 - | 1.164 - | 0.7359 -
TOSDT 1.189 - | -2.541 + | -1.164 + | 09136 - | 1.311 - | 0.8644 -
5 HOSDT[172] 1.130 - | -2.524 + | -1.195 + | 09202 - | 1310 - | 0.8554 -
ELAST.[172] 1222 - | -3.663 + | -1.252 + | 1.003 - | 1.624 - | 0.9942 -
FOSDT 0.7900 - | -2.088 + | 0.9450 - | 03815 - | 0.8413 - | 0.4335 -
TOSDT 09038 - | -2215 + | 1.005 - | 04417 - | 0.8845 - | 0.4650 -
10 HOSDT[172] { 0.8779 - | -2206 + | 1.011 - | 04401 - | 0.8843 - | 0.4638 -
ELAST.[172] | 0.9197 - | -2.536 + | 1.029 - | 04746 - | 0.9879 - | 0.5069 -

values are calculated at z=h/2

- values are calculated at z=-h/2




Table 7.10 Laminated plate under sinusoidal loading: Nondimensional

inplane stresses 5.5, and §_
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ah Mode an a” *10 g, *10
N=3 N=4 N=§ N= N=4 N=§ N= N=4 N=S§
+ - + . + * - - -
FOSDT 0.6159 | -1.015 | 0.7359 | -0.6390 | 2.094 | -1.216 | 0.1519 | 0.2496 | 0.1657
TOSDT 0.9376 | -1.280 | 0.9153 | -0.7905 | 2.377 | -1.318 | 0.20S5 | 0.2905 | 0.1963
5 | HOSDTI172] | 0.8924 | -1.275 | 0.9430 | -0.7843 | 2.378 | -1.320 | 0.1969 | 0.2903 | 0.1969
ELAST.[172] | 09835 | -1.325 | 1.000 | -0.9023 | 2.809 | -1.528 | 0.2214 | 0.3429 | 0.2214
FOSDT 0.6202 | -1.026 { 0.7429 | -0.3537 | 1.498 | -0.7257 | 0.1010 | 0.2001 | 0.1173
TOSDT 0.7103 | -1.097 | 0.7904 | -0.4002 | 1.579 { -0.7606 | 0.1164 | 0.2115 | 0.1254
10 | HOSDT[172] | 0.6924 | -1.094 | 0.7969 | -0.3981 | 1.581 | -0.7621 | 0.1151 | 0.2115 | 0.1258
ELAST.[172] | 0.7260 | -1.116 | 0.8120 | -0.4349 | 1.740 | -0.8297 | 1.227 | 0.2292 | 0.1335
+ Values are calculated at z=h/2
- Values are calculated at z=-h/2
* values are calculated on the lower face (from the bottom)
Table 7.11 Lamuuated plate under sinusoidal loading: Nondimensional
transverse shear stresses O. and g,
a/h Model G, 3,: =10
N=3 N=4 N=5§ N=3 N=4 N=5
. -
FOSDT 0.3924 04379 0.4102 0.0765 0.4826 0.1134
TOSDT 0.7221 0.6640 0.6254 0.1036 0.7821 0.1801
5 HOSDT{172] 0.4022 0.5321 0.3833 0.1210 0.2949 0.3429
ELAST.[172) 0.3755 0.4837 0.4094 0.1324 0.3450 0.3892
FOSDT 0.1576 04417 04128 0.1282 0.3693 0.0762
TOSDT 0.3058 0.6850 0.6416 0.1582 0.5824 0.1162
10 HOSDT[172] 0.4299 0.5480 0.4027 0.1447 0.4407 0.2213
ELAST.[172] 0.4201 0.5333 0.4093 0.1524 0.4801 0.2375

* values are calculated at the lower face of the third layer (from the bottom)
~ values are calculated at the upper face of the second layer (from the bottom)




Normalized center deflection

Normalized center deflection

1.00

0.95

0.90

0.85

0.80

0.75

0.70

1.00

0.95

0.90

0.85

0.80

—o— fospT |
—A— T0SDT
—— HOSDT[172]'

Number of layers

Fgiure 7.6 laminated plate under sinusoidal loading (a/h=5)
Nondimensional center deflection

—&— FOSDT
—A— TOSDT
—>&— HOSDT[172]

1 ] i 1 : i
4 6 8 10
Number of layers

Figure 7.7 laminated plate under sinusoidal loading (a/h=10)
Nondimensional center deflection

181



182

The model HOSDT of Reference [172] represents the analytical solution using a third
order shear deformation theory and enforcing the zero transverse shear stress condition
at the bounding surfaces but does not use a shear correction factor. It can be seen from
the results shown that the predictions of the present TOSDT model are in excellent
agreement with those of the analytical solution using HOSDT except for the transverse
shear stresses where the prediction of the present model are poor. This is mainly due to
the non-enforcement of the zero transverse shear stress condition at the bounding
surface. As expected, the predictions of the TOSDT model are better than those of the
FOSDT model but the gap between the predictions of the two models decreases as the
ratio a/h increases from 5 to 10, i.e., as the plate gets thinner. In terms of the number of
layers, the worst prediction of the FOSDT model is for N=3 but it improves as N

increases.

7.2.1.5 Laminated Cylindrical Panel under Sinusoidal Transverse Loads

This example is similar to the previous one except that now the side a is a circular arc
with a radius R. The ratio a/b is maintained at 3. The cases studied are for R/a=1 and 4
and a/h=5,10 and 50. The mesh adopted here is 16x16 for one fourth of the cviinder.
The loading is normal to the surface of the cylinder. The center deflections are
normalized, as in the previous example, with respect to the elastic solution. The results
are shown in Figures 7.8-7.11 for the nondimensional central deflections and in Tables
7.12 and 7.13 for the inplane and transverse stresses respectively. The model indicated
by SHAL in the results refers to the analytical solution based on shallow shell theory
using the third order shear deformation theory without shear correction factor. It can be

noticed from the results that there is a good agreement between the present TOSDT
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Table 7.12 Laminated cylindrical panel under sinusoidal loading

Nondimensional inplane stresses &_. &, and g,

5 F_*10 g *10
R/a | a/h Model d“‘ a"’ 6"" I
=3 N=4 N=5§ N=| N=4 N=S§ =3 N=4 N=§
- - - | J + L J - - -
FOSDT -0.6750 | -1.060 | -0.7987 1.275 2.830 1.727 | 0.2089 | 0.3996 | 0.2450
TOSDT -0.7731 | -1.132 | -0.8499 | 1450 | 2957 | 1.820 | 0.2397 | 0.4183 | 0.2611

1 10 | HOSDTI172] | -0.7876 | -1.176 | -0.9000 | 1.498 | 3.049 | 1.895 | 0.2581 | 0.4478 | 0.2839-
ELAST.[172] | -0.8534 | -1.222 | 09436 | 1.602 | 3314 | 2.044 | 0.2725 | 0.4883 | 03030

FOSDT -0.6251 | -1.024 | -0.7444 | 0.8297 | 2305 | 1.410 | 0.1737 } 0.2834 | 0.1907
TOSDT -0.9549 | -1.289 | -0.9302 | 1.030 | 2.601 | 1.535 | 02338 | 03272 | 0.2250
5 SHAL.[172] | -09125 | -1.301 | 09641 | 1.028 | 2.640 | 1.547 | 0.2356 | 03342 | 0.2293
ELAST.[172] | -1.022 | -1.388 | -1.040 1.116 { 3.117 | 1.763 | 0.2588 | 0.4006 | 0.2626

FOSDT -0.6253 | -1.029 | -0.7475 | 0.5370 | 1.754 | 0.9172 | 0.1225 | 0.2424 | 0.1432
TOSDT -0.7165 | -1.100 | -0.7957 | 0.6108 | 1.845 | 0.9643 | 0.1413 | C.2558 | 0.1530
4 10 | SHAL.[172] | -0.6985 | -1.100 | -0.8037 | 0.6037 | 1.846 | 0.9623 | 0.1405 } 0.2573 | 0.1543
ELAST.[172] | -0.7463 | -1.137 | -0.8340 | 0.6468 | 2.045 | 1.047 | 0.1510 | 0.2822 | 0.1660

+ values are calculated at z=h/2
- Values are calculated at z=-h/2
*  Values are calculated on the upper face of the second layer (from the top)

Table 7.13 Laminated cylindrical panel under sinusoidal loading
Nondimensional transverse shear stresses &_and &

o] g._*10
R/a | am Model = 2=
N=3 N=4 N=5§ N=3 N=4 N=5

L 3 -

FOSDT 0.1693 | 0.4528 | 0.4400 | 0.4193 0.5044 0.0852
TOSDT 0.3265 | 0.6908 | 0.6814 | 0.1739 0.7534 0.1307
10 | HOSDT[172] | 04821 | 0.5781 | 0.4491 | 0.1746 0.5028 0.2679
1 ELAST.[172] | 04697 | 0.5597 | 0.4544 | 0.1848 0.5567 0.290<

FOSDT 0.1578 | 04391 | 04122 | 0.1927 0.5028 | 0.1144
TOSDT 02902 | 0.6611 | 0.6283 | 0.2608 0.8046 | 0.1817
5 SHAL.[172] | 04118 | 0.5443 | 0.3922 | 0.2479 0.5995 0.3511
4 ELAST.[172] | 0.3867 | 04924 | 04260 | 0.2729 0.7049 0.4016
FOSDT 0.1583 | 04418 | 04144 | 0.1289 0.3930 0.077
TOSDT 0.3070 | 0.6829 | 0.6440 | 0.1591 0.6108 } 0.1170
10 | SHAL.[172] | 0.4344 | 0.5525 | 0.4068 | 0.1462 04400 | 0.2235
ELAST.172] | 04271 | 05379 | 0.4160 | 0.1555 04869 | 0.2425

* values are calculated at the lower face of the second layer (from the top)
~ values are calculated at the upper face of the third layer (from the top)
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model and HOSDT or SHAL models of Reference [172] with respect to the center
deflection and inplane stresses. The only significant difference is shown for the case of a
deep moderately thick panel (R/a=1, a/h=10). The transverse shear stresses predicted by
the TOSDT model are poor. The worst prediction of the FOSDT model is also for N=3
as was the case for the laminated plate. For the case of a deep very thin panel (R/a=1,
a/h=50), the center deflection predicted by all the models is very close to the elasticity

solution.

7.2.1.6 Laminated Spherical Panel under Sinusoidal Transverse Loads

The last example in the linear analysis concerns a doubly curved simply supported
laminated spherical shell (Ry =R, =R) with its curved sides a and b equal (a=b). The
boundary conditions are defined as before, i.e., the edges are fixed against tangential
displacements but free to translate in the direction normal to the edge and tangent to the ‘
shell surface. A mesh of 16x16 is used for one fourth of the spherical panel. The
sinusoidal loading is normal to the shell surface. The results conceming the normalized
center deflection for different values of R/a, a/h and N are shown in Figures 7.12 and
7.13. A good agreement between the TOSDT model and the analytical solutions HOSDT
or SHAL except for a slight difference for the case of a thick moderately shallow shell
(R/a=5, a/h=5). The largest difference in prediction between the TOSDT and FOSDT
models is shown for the case (R/a=5, a/h=5, N=3) which reaches about 17% of the

elasticity solution.
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7.2.2 Nonlinear Problems

7.2.2.1 Pinching of a Clamped Isotropic Cylinder

The structure consists of a short isotropic cylindrical shell, fully clamped at one end and
free at the other end where it is subjected to two pinching forces acting in opposite
directions. Figure 7.14 shows one quarter of a cylinder where symmetry has been
exploited again in this problem. The geometric and material properties describing the
cylinder are its length L = 3.048, thickness ¢ = 0.03, radius R = 1.016, Young’s modulus
E =2.0685x10’ and Poisson’s ratio v = 0.3.

This problem was investigated by Stander et al.[25] and Parisch {23]. The quarter of
the cylinder is modeled using a regular mesh of 16x16 elements along with the
appropriate boundary conditions.

The loading applied to the quarter of the cylinder is increased up to F = 800 in twenty
equal increments. The response sought here is the deflection at the pinching force poir;t '
along the direction of the force and maximum second Piola-Kirchhoff stresses and Green
strains. The displacement variation along the applied load obtained from this simulation
is plotied in Figure 7.15. To have an idea about the large deformation meant in this
study, the ratio of maximum displacement found, which is around 1.6, to the radius
R=1.016 gives a value of about 1.58. From the physical point of view, the deflection
cannot exceed R. Since the structure studied is just one fourth of the cylinder, the

deflection of 1.58R can be attained. Besides the results of this study, those of Stander et
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Figure 7.14 Pinching of a clamped cylinder: Geometry and loading
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al [25] and Parisch [23] are reported. A good agreement can be observed between the
present element and that Reference [25]). Parisch’s element[23] is slightly stiffer between
load levels of 300 and 500.

Gauss points where the maximum second Piola-Kirchhoff stresses are obtained for
most of the increments are considered. The stresses and strains obtained at these points
are plotted versus the load factor and sometimes versus the displacement along the
applied load. 1 and 2 represent the axial and circumferential directions respectively.
The stresses sought are the maximum positive (P), the maximum negative (N) normal
stresses, and the absolute maximum inplane and transverse shear stresses. Their
corresponding Green strains are also recorded and plotted. The results are shown in
Figures 7.16-7.20. It can be seen from Figure 7.20 that up to a vertical displacement of
0.75, which represents around 75% of the radius, all the strains are less than 1%. Thus,
this region represents well the large deformation but small strain assumption. Beyond
this, the strains increase sharply with the displacement which may violate the constitutive

equations assumed in this study.
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Second Piola-Kirchhoff stresses (512,513,523)
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Green strains (E11, E22)
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Green strain (2E12, 2E13, 2E23)
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Green strains (E11, E22, 2E12)
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7.2.2.2 Pinching of a Hemispherical Shell with a Hole.

A hemispherical shell, with an 18° hole at the top. is subjected to the action of two
inward and two outward forces 90° apart. Figure 7.21 shows the geometry and loading of
one quadrant of this hemisphere which represents the only part 10 be modeled using
symmetry conditions.

The sphere radius is R = 10, its thickness ¢ = 0.04, the material properties are E =
6.825x107 and v = 0.3.

This problem was investigated by Simo et al.[66]). It is reanalyzed here for the
following mesh configurations: 8x8, 16x16 and 32x32 elements for one quarter of the
hemisphere. The numerical results showing the pinching loads versus deflection for
theses mesh configurations are plotted in Figure 7.22 along with those of Reference [66].
It can be noticed that the inward and outward deflections are not the same in the case of
large deformations in contrast to the linear case. The maximum deflection obtained i-s '
around 60% the radius value. The present element shows good convergence properties
with mesh refinement and the results of the 32x32 mesh agree very well with those of the
16x16 mesh of Reference.[66]. It is believed that the results reported in Reference [66]
are those of the mixed formulation which is known to be superior to the displacement
based FEM.

The variations of the maximum stresses and their corresponding strains with the load
factor and the variations of these strains with the X displacement of point A are plotied in
Figures 7.23-7.25. According to the mesh adopted in this example, the direction 1 refers

to the meridian and 2 to the parallel circle. The maximum normal stresses in the
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Green strains
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meridional direction are on the meridional line containing point A with an angle of
approximately 10 degrees between the radial line through this point and the X axis. The
maximum stresses in the circumferential direction are at point B where the load is applied
in the positive Y direction. Figure 7.25 shows that the maximum strain (Ez2) obtained
when the displacement of point A reaches its maximum, i.e., about 60% of the radius is

just 1%.

7.2.2.3 Composite Shallow Cylindrical Shell with a Central Point Load.

This problem was investigated by Laschet and Jeusette [173] and Brank et al.[15].
The shallow shell is simply supported along its straight edges and free along the curved
edges. It is subjected to a concentrated vertical downward force at its center. The
problem data are:

L =508 mm R =2540 mm 6 = 0.2 rad (curved edge)

Figure 7.26 shows the geometry and loading conditions and the geometry of the mesh
used Two thicknesses were considered, 14 = 12.6 mm and 73 = 6.3 mm. The panel is
built up by a lay-up of 12 plies with ply thickness 7, = t4/12 = 1.05 mm in Case A and z, =
t/12 = 0.525 mm in Case B. To investigate the effects of lay-up on the performance, two
stacking sequences are chosen for each case. They are
@ [905705/90%]

@ii) [0%/905/0%]

Here 0° means that the fiber orientation is in the circumferential direction.
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Figure 7.26 Composite shallow cylindrical shell with a central point load



The material properties of the carbon-epoxy layers are:

E;=33kN/mm> , E;=E;=11kN/mm’

Gi2=0.66 KN/mm® , Gj3=Gz=0.66kN/mm* , v2=025
The two thicknesses considered lead to a thin panel. Thus. there is no significant
difference between the predictions of the FOSDT and TOSDT models in this situation;
therefore the objective of this example is to assess the respoﬁse prediction of the present
shell model.

Due to the symmetry of the problem, only one quarter of the panel is modeled with
appropriate boundary conditions imposed. A 16x16 mesh is used in the present analysis
for all cases. The authors of Reference [15] used 32x32 elements, but no information is
available about the mesh used in Reference [173]). The numerical results concerning the
deflection at the central point load location are drawn in Figures 7.27 and 7.28 with those
of References [15,173]. Both figures show a very good agreement between the results of .
the present element and those of References [15,173]. The thicker panel of Case A
exhibits standard limit points, whereas the thin panel of Case B shows a complex path of
equilibrium configurations with snap-through and snapback limit points. The arc-length
method was used all along to follow the path of equilibrium configurations. As expected,
the second lay-up shows a significantly stiffer response to the prescribed loading
conditions. This is due to the fact that in the second lay-up (ii) the four top and four
bottom layers have their fibers in the circumferential direction which has end supports
whereas in the first lay-up they are in longitudinal direction which has free ends. The

weaker lay-up of the thinner panel exhibits a very complex path of equilibrium with
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several limit points before it reaches its stiffer equilibrium branch. The stiff region on the
right side of Figures 7.27 and 7.28 occurs after the snap-through where the pancl
deformation is mainly dominated by tensile action.

The variation of the maximum stresses and their corresponding strains with the load
are plotted for case A with lay-up (i) and they are shown in Figures 7.29 and 7.30
respectively. The direction 1 stands for circumferential and 2 for axial. The variations of
the Green strains corresponding to the maximum stresses with the vertical displacement
at the load location are plotted for all four cases in Figures 7.31-7.34. In case A, Green
strains vary approximately from -1.7% for both lay-ups to 1% for lay-up (ii) and 1.5% for
lay-up(i). For case B, it is from -1% for both lay-ups to 0.6% for lay-up (ii) and 1.3 % for
lay-up (i). The maximum stresses are acting in the circumferential direction. The
maximum stresses in both directions are located at the center of the panel where the load

is applied. The maximum values are -45 Mpa and 60 Mpa.

7.2.2.4 Composite Hyperboloidal Shell under two Pairs of Opposite Loads.
This problem was designed by Basar et al[19] to test the performance of shell
elements in the case of very large rotations. The same example was later considered by

Wagner and Gruttmann.[17]. The problem data are:

E, = 40x10° E; = 1x10° vi2 =0.25
G2 = 0.6x10° Gis = 0.6x10° Ga3 = 0.6x10°
h -0.04 R =175 R. =150

H=20.0 P=5
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The radius of the hyperboloidal shell is described by the following equation:

20

J3

R(x, =% C*+(x,)? with C= (7.4)

Due to symmetry conditions, only one eighth of the hyperboloidal shell needs to be
modeled as shown in Figure 7.3S. The laminate is made of three equal layers. The shell
is analyzed for two stacking sequences, [0°, 90°, 0°] and [90°. 0°. 90°]. Here also 0°
means that the fiber orientation is in the circumferential direction.

The numerical results concerning the variations of the displacements of points A, B,
C and D are shown in Figures 7.36-7.39. Very large displacements and rotations are
observed in this example especially for the stacking sequence [90°,0°,90°] which is the
weaker of the two sequences considered. The laminate scheme {0°,90°,0°] was analyzed
using a 16x16 mesh but in the second one a 28x28 mesh was used as in Reference [19].
From these figures, a very good match between the results of the present study and Lhos-e |
of Basar et al.[19] can be observed.

To have an idea about the change of the geometric shape involved in this problem. the
initial dimensions of the hyperboloidal shell, which are shown in Figure 7.35, are as
follows. R1=7.5 (radius at the middle of the shell), R2=15 (radius at the top) and H=20
(height of half of the hyperboloidal shell). The maximum displacements obtained for
points A, B, C and D, range from around 2.75 to 4.2, for the stacking sequence

[0°,90°,0°], and from around 2 to 8, for the stacking sequence [90°,0°,90°].
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The variation of the maximum stresses and their corresponding strains with the
displacement in Y direction of point A (UA) are shown in Figures 7.40-7.43 for both
stacking sequences. The directions 1 and 2 are defined for this example as
circumferential and axial respectively. For the stacking sequence [0°.90°.0°]. i.e.. the
stronger one, the maximum positive and negative strains reached the value of 1.3% at
UA=4. It can be noticed from Figure 7.42 which represents this stacking sequence the
presence of high inplane shear strain. Figure 7.43 shows the strain variations
corresponding to the weaker sequence where the maximum positive and negative strains
reached a value of approximately 0.7% at UA=4. After that there is a sharp increase in
the inplane shear maximum shear strain reaching a value of 5.5% at UA=8. It can be
noticed also that the circumferential normal strains, which stayed the largest in the first
stacking sequence, become smaller than the axial strains in the second sequence after
UA=5.5. The strains and stresses obtained in this example are high. but there in no .
mention about stresses or yielding in the published literature containing this example.
Thus, it is believed that the purpose of such examples is to show how the capability of the

finite rotation shell elements in modeling structures with large change in geometry.
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7.2.2.5 Cylindrical Bending of an Asymmetric Cross-Plied Laminate

under Uniformly Distributed Transverse Load

This example concerns an antisymmetric cross-plied (90°/0°)plate strip under
uniformly distributed transverse load. The geometry, finite element mesh and the
boundary conditions for the pinned and hinged cases are shown in Figure 7.44. The
material properties and geometry are:

E1=2.0x107 Ib/in2 E2=1.4x106 1b/in2 G12=G23=G13=0.7x107 Ib/in2

v12=0.3 g=0.005 1b/in2 a=9 in b=1.Sin h=0.04 in

This example was treated by Reddy [2] where nonlinearities were not considered exactly,
then it was reanalyzed by Basar et al.[19] using a finite rotation shell model. A mesh of
32x1 elements applied to one fourth of the plate strip is considered as in Reference [19].
The cases considered are positive and negative loading for the pinned case and positive -
loading for the hinged case. In the latter case there is no significant difference between
the positive and negative loading because the plate is essentially in pure bending. The
results shown in Figures 7.45 and 7.46 show an excellent agreement between the present
results and those of the two other references for the pinned case and between these results
and those of Basar et al.[19] for the hinged case. The discrepancies between the results in
the hinged case show the importance of considering finite rotation models for a reliable
treatment of highly nonlinear problems. It should be mentioned here that there were no
significant dilfcrences between the prediction of the FOSDT and TOSDT models due to

the thinness of the plate strip.
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7.2.2.6 Bending of a Nine Layer Cross-Ply [0°/90°/0°/...] Simply Supported
Spherical Shell Subjected to a Uniformly Distributed Load

“This problem is concered with a spherical cross-ply panel under extemal uniform
pressure load. The following geometrical data are used in the analysis:
R=1000 in a=b=100 in h=1in
Individual layers are assumed to be of equal thiékness (hi=h/9). This example was
analyzed by Reddy and Chandrashekhara [174] using 2x2 nine noded shell elements for
one quarter of the panel. Figure 7.47 shows the spherical panel with a mesh of 4x4 four
noded shell elements used for the same quarter of the panel. The following boundary
conditions are used:
v=w=¢, =0 arn=>b/2 u=w=¢,=0 até=al2 7.5)
where u,v and w denote the displacements along the curvilinear coordinates £ and 7

and the normal to the shell surface, respectively. @, and ¢, denote the rotations of the

transverse normals about 17 and & axes, respectively. The following material properties

are used:

Material 1:

E;=25x10° psi E2=10° psi G12=G13=0.5x10° psi
G23=0.2x10° psi v12=0.25

Material 2:

E;=40x10° psi E»=10° psi G12=G13=0.6x10° psi

G23=0.5x10° psi v12=0.25



Figure 7.47 Bending of a nine layer cross-ply simply supported spherical
shell under uniform loading : Geometry and loading
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The nondimensional loading pressure is given by

gR’

- (1.6
E.h’ )

p=

The results of this simulations which represent the center deflection are shown in Figure
7.48 with those of Reference [174]. From Figure 7.48, it can be seen the FOSDT and
TOSDT models predicted the same results for both materials because of the ratio a/h
which is 100 in this case (thin panel). A good agreement is shown between the present
results and those of Reddy and Chandrashekhara, but in their case they did not go beyond

the load limit point.

7.3 Dynamic Simulations
The numerical examples found in the open literature, concerning the energy-
conserving algorithms, are all based on isotropic shell models which are formulated using

Reissner-Mindlin theory.i.e., FOSDT.

7.3.1 Dynamics of a Short Cylinder under Impulsive Loading

This example was studied by Simo and Tamow [6] where they compared the
performance of the exact energy-momentum conserving scheme with the midpoint and
trapezoidal rules. It was reanalyzed by Brank et al.[32] within the context of energy-
momentum conserving scheme. The cylindrical shell is shown in Figure 7.49. The
material properties of this shell and the loading description are as follows.

R =15 Height= 3.0 Thickness = 0.02

Young’s modulus =2.E8 Poisson’s ratio = 0.5 Density =1.0
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Figure 7.49 Short cylinder : Geometry description
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The angle a. as shown in Figure 7.49. defines the location of nodal points where the
loads are applied. At each position a, there are four nodal points with different z

coordinates, as shown in the mesh. The same concentrated force is applied at each of

these four nodal points. The force intensity is the same for all nodal points: i.e.. for all

values of a; it is given by the following expression

10 fort<0.5
p(t)=<10-10¢ for0.5<r<1. a.mn
0 fort210

At each value of a, the applied concentrated force at each of the four nodes is given by its

three components along x, y and z coordinates as shown in Table 7.14

Table 7.14 Short cylinder under impulsive loading: Nodal 1oads
Anglea 0 n2 T 3r2

Nodal loads [0,-1,-11" p(v) (1.1,11° p(v) (1.1,11° p(v) [0,-1,-11" p(v)

Starting from rest, the cylinder is subjected to an impulsive loading, represented by
the nodal loads shown above, during one second, after which it is left in free motion
where the total energy, the total linear momentum and the total angular momentum are
exactly conserved. The cylinder is spatially discretized using a mesh of 3x32 elements.
Its motion is studied during 25 seconds using a time step Az = 0.02 s, equal to that of
Reference [32], thus leading to 1250 time steps. The time histories of the total linear
momentum, total angular momentum and the various energies, i.e., kinetic, internal and
total are shown, respectively, in Figures 7.50, 7.51 and 7.52. An excellent agreement can

be observed between the results reported here and those of References [6,32] concerning
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the linear momentum, the angular momentum component J(z) and the total energy. The
values of J(y) are matching those of Reference [32], but slightly higher than those
obtained by Simo and Tarnow {6]). A very slight difference exists also between J(x)
found in all these three studies. It can be seen clearly from these figures how these
quantities are exactly conserved during the free three-dimensional rigid body motion and
large deformation of the short cylinder. The deformed shape of the cylinder during
motion is not shown in this study, but the reader can consult the cited references where a
sequence of deformed finite element meshes are depicted and shown from different

perspectives.

7.3.2 Free Large Motion of a Cylindrical Panel

The second example treated here was considered by Sansour et al[175] who
presented a time integration scheme different from that of Simo and Tamow[6]. Their
scheme conserves momenta and total energy. The cylindrical panel with its geometry,
mesh shape with 6x6 elements, as in Reference [173], and loading forces and their

directions are shown in Figure 7.53. The geometric and material properties defining the

panel are
R=150 L=15 h=1 6=0.1 radians
E=31027.5 v=0.3 Density =1E-8

where h represents the thickness of the panel.
The two concentrated forces applied at the comer of the shell have the same intensity

P(t) and act respectively in the x and z directions. The time variation of the amplitude
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Figure 7.53 Free cylindrical panel: Geometry and loading
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P(z) of these two forces is given by

200000: for t £0.005
p(t) =142000(1 - 100¢) for 0.005<1<0.01 (7.8)
0 fort20.01

After 0.01 s of impulsive loading, as described by Equation (7.8), the cylindrical
panel is left in complex free motion. The simulation of this problem is performed for a
total time of one second, using a time step At=1E-5. Thus, resulting in 1ES time steps to
simulate one second of motion! The plots of Figures 7.54, 7.55 and 7.56 show the time
history, respectively, of the total linear momentum, the total angular momentum and the
different types of energies. From these figures, we see that the results of this study are
matching exactly those of Reference [175]. Although the panel is highly deforming
while undergoing large rigid body motion, its internal energy is negligible compared to
its kinetic energy and this is due to the high flexibility of the panel itself. The angular

momentum components J(x) and J(z) along with the linear momentum L(y) are nil.

7.3.3 Dynamic Snap Through of a Pseudo-Spherical Cap under

Impulsive Ring Loading
This example was designed by Brank et al.[32] in such a way that the dynamic snap-
through occurs. The parameters describing the geometry of this pseudo-spherical cap are
R =10 Rpowe=3.88 height=4.60 thickness=0.4
The material properties are described by

E=1000 v=0.3 density=0.0001
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This pseudo-spherical cap is, as shown in Figure 7.57, based on half of a sphere with
radius R = 10 containing a hole with radius R, = 3.88, then the z coordinates of all
points of this hemisphere are divided by a factor of 2, thus, it is no longer a sphere. This
last piece of information is not indicated in Reference [32] but obtained from a private
correspondence with the first author of Reference [32]. The same finite element mesh is
adopted here, i.e., 8x32 elements. The top 32 nodes are subjected to equal downward
forces. The bottom 32 nodes are restrained from movement in the z direction, but free to
move in (x,y) plane. Thus, this example is different from the two previous ones because
ol the presence of the restraining boundary conditions.
The intensity P(r) of these forces consists of piecewise linear functions in the interval
[0,2s]. The values at the end points of these segments are given in Table 7.15. After two
seconds of loading, the cap is left in free motion.

‘Table 7.15 Pseudo-spherical cap: Load intensity variation

“Time (s) 0.00 1.00 1.07 1.16 1.20 1.54 2.00
P 0.00 1.60 1.65 1.65 1.60 | 0.05 | 0.00

The total time of study for this problem is 4.5 s divided into 3000 steps with Ar =
0.0015 s for each step. Figure 7.58 shows the time‘ variation of the kinetic, internal and
total energies predicted by the present model along with the total energy variation
obtained by Brank et al.[32]. The same pattern is observed when comparing the total
energy variation obtained here with that of Reference [32] but the values predicted in this
study are slightly on the lower side.

It can be seen from Figure 7.58 that the kinetic energy of the pseudo-spherical cap
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Figure7.57 Pseudo-spherical cap: Geometry
and loading conditions
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stays approximately zero until approximately t=0.8s where there is a sharp in its value.
This reflects the occurrence of the snap through at around this time. Very shorn wave
oscillations of the three energies may be noticed also just after the snap. The oscillation
starts with large amplitudes for all energies. then they decrease. For t>2s. which
represents the end of the impulsive loading, the total energy is exactly conserved,
whereas the internal and kinetic energies continue oscillating but with smaller
amplitudes. The linear and angular momenta of the system are not conserved during the
free motion phase because of the presence of zero-displacement boundary conditions
which induce non-zero reactive forces that are not self equilibrated, as was the

assumption for the conservation of linear momenta.

7.3.4 ‘Snap-Through’ of a Cylindrical Shell under a Concentrated

Vertex Load

This problem was studied by Kuhl and Ramm [33] using the so-called "constraint
energy momentum algorithm’ (CEMA). The geometry and the loading are shown in
Figure 7.59. This cylindrical shell has two simply supported straight (no translation
allowed) edges with a length of five meter each and two free curved edges. The panel
has a thickness of 0.1m and a radius R=5m. The material properties are
E=2x10'! N/m® v=0.25 and Density=10* kg/m’
The vertical central force R (t) applied to this panel is given by

1000z  for 0<t<02s
200 for t202s

R(@)MN)= { 7.9

This force increases linearly from zero to its final value of 200 MN, then it stays constant
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Figure 7.59 Cylindrical shell ‘Snap-through’: Geometry
and loading conditions
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for the rest of the time. The force R(r) described in Reference [33] is for one fourth of
the panel only, therefore the total load R(r) is obtained by multiplying the given values by
4, as is done in Equation (7.9).

By exploiting symmetry conditions, Kuhl and Ramm [33] discretized one fourth of
the panel using 4x4 eight-noded shell elements. Their simulation was carried out for a
total time of 0.3 s by using a time step Ar = 0.001 s. The same parameters are used here,
except for the mesh which is of 8x8 four-noded elements. The time variation of the
vertex displacement (displacement of the center of the panel along the direction of the
applizd load) obtained from this analysis along with those of Reference [33] are shown in
Figure 7.60. Two simulations are conducted for this example. In the first one, the
warping degrees of freedom (AD;) are restrained, leading to a first order shear
deformation (FOSDT) model. In the second one, AD; degrees of freedom are left
unrestrained, therefore, representing the TOSDT model.

From Figure 7.60, it can be seen that the two models considered in this simulation are
predicting almost the same displacement up to ¢ = 0.25 s. After this time, a slight
difference appears and at ¢ = 0.284 s the FOSDT model did not converge. The TOSDT
model did not experience this problem and the solution, in this case, is converging for the
whole interval of time.

The displacement predicted by this study in the pre ‘snap-through’ phase is closely
matching that of CEMA [33] up to approximately r = 0.145 s. The ‘snap-through’
predicted here is at a slightly lower time than that predicted by CEMA. It can also be

noticed that the first peak of the vertex displacement while the structure is experiencing
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snap-through is close to that of CEMA. In the post ‘snap-through® phase. the amplitudes
of oscillation of the vertex displacement found by CEMA are longer than those predicted

here by both models.

7.3.5 Ideal Sandwich Cylindrical Shell under Impulsive Load

Here, a cylindrical shell that has a wall made of a soft-core layer and very thin but
stff outer layers is considered. The material properties adopted for this problem are
similar to those reported in Reference [176] concerning ideal sandwich beams and
frames. This cylindrical shell represents one fourth of a cylinder with one straight edge
clamped, the other three edges are free. A vertical impulsive force P(t) is applied at the
middle of the cylindrical. Due to symmetry conditions, only half of this cylinder with the
applied force P(t)y2 are shown in Figure 7.61. The geometric parameters, which are not
shown in Figure 7.61, are

h,=0.05 h,=1.0

[+

where h, and h,_ are, respectively, the thickness of the face sheet and that of the core

material which constitute the cylinder wall as shown in Figure 7.61.

The material properties representing the face sheet and core, which are isotropic, are
E=4x10° Gg=1.92x10° E.=1x10° G.=480 Density=50

where the subscript ‘f” refers to face sheet and ‘c’ to the core.

The force P(t), which is applied for 0.2 s, is given by

40000 ¢ for 0<1<0.1
P(r) =48000 (1-51) for 0.1<1<0.2 (7.10)
0 fort20.2
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Starting from rest, the cylinder is subjected to an impulsive load P(1) during 0.2 s,
then the load is removed and the structure is left in free motion. Since the bottom straight
edge is fixed, the linear and angular momenta will not be conserved; however, the total
energy will be conserved after ¢t = 0.2 s. Due to symmetry conditions, only half of the
cylindrical shell is discretized, as shown in Figure 7.61, using 8x8 four-node elements.

The purpose of this example is to show the discrepancy between the predictions of
the FOSDT and TOSDT models. The dynamic response is analyzed for 6 seconds with a
ume step Ar = 0.001 s. The results predicted by the two models concerning the time
variation of the displacement of point A (location where the load is applied) and that of
the different energies are plotted in Figures 7.62 through 7.65. These figures show
clearly the difference in prediction between the FOSDT and TOSDT models. It was
shown from the linear static analysis of the sandwich plate, carried out in this study, as .
well as from the results of other researchers [19,69] that the predictions of the TOSDT
models are superior than those based on the FOSDT. Thus, this discrepancy in prediction
can be attributed to the poor performance of FOSDT models in case of thick sandwich

laminates with soft core.
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CHAPTER 8

CONCLUSIONS AND RECOMMENDATIONS

The primary objective of this dissertation is the development of a laminated finite
shell element and its implementation for the nonlinear static and dynamic analysis of
general laminated composite shell structures undergoing finite (unlimited in size)
rotations and large overall motion.

The present chapter summarizes the main features of the developed finite shell
element, then it outlines the conclusions drawn from the numerical simulations using Ll{e '

formulated element, and finally it recommends some directions for future research.

8.1 Summary
The following points are considered during the formulation of the present finite shell

element:

1. A kinematic model leading to TOSDT with finite rotations is proposed using the
material frame approach. This model results in a quadratic variation of the transverse
shear strains across the shell thickness; therefore circumventing the need for a shear

correction factor typical of FOSDT.

258
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The theoretical formulation of the shell element considers the shell body as three-
dimensional continuum and uses convective general curvilinear coordinates to derive
Green-Lagrange strains which are based on the current and reference configurations.
The introduction of shell assumptions. i.e., fiber inextensibility and zero normal stress
leads, respectively, to the reduction of the kinematic model from nine to seven
parameters and condensation of the constitutive equations.
A singularity free parameterization of the rotation field, based on the rotational
vector, is adopted along with the elimination of the drilling rotation from the onset.
The constitutive equations, derived with respect to the laminate general curvilinear
coordinates, allow for the variation of reinforcing fiber directions in an arbitrary way
from layer to layer. Furthermore, the reference axis, used to define the angles of the
stacking sequence, is allowed to vary spatially in an arbitrary way. This is achieved
by providing nodal directions for the reference axis and then using interpolation
functions to find the direction of this axis within the finite element.
The thickness integration for obtaining the different contributions to shell element
stiffness matrix is performed analytically and prior to the numerical in-plane
integration. This leads to considerable saving in computer time during the
incremental/iterative static and dynamic analyses.
A detailed finite element formulation is presented and implemented in a four-noded
isoparametric assumed natural strain laminated shell element. This element has seven
degrees of freedom per node with clear physical meaning.

In the static formulation, the interpolation functions are applied to the spatial
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incremental directors Ad, and Ad,. Thus, the unit norm of d,and the
orthogonality between d,and d, are preserved inside the element. However. in the

dynamic formulation the interpolation is applied to the directors themselves, which is
a condition to preserve the properties of the continuum and time discretized equations
of motion. This leads to simpler expressions from one side and a relaxation of the
unit norm and orthogonality conditions away from the nodal points.

The transverse shear locking problem is avoided by adopting the assumed natural
strain method to the constant part of the transverse shear strain.

A geometrically exact procedure, based on the exponential mapping, is used for the
element configuration update regardless of the magnitude of the incremental
rotations.

A general methodology for the design of energy-momentum conserving time stepping
algorithms, recently reported in the literature, is adopted. The formulated algon'thrri, '
applicable to laminated shells based on TOSDT including finite rotations, is new
since all previous algorithms were restricted to shells based on FOSDT.

The dynamic finite element model is not merely an extension of the static one which
can be obtained just by adding the inertia effects. The main characteristics of the
dynamic model are stated in the following points:

a) The weak form of the equations of motion is evaluated at an intermediate

configuration ®,,,,,at time 1_,,,, =-;—(t,, +1,,,)which represents the middle of

the time interval [r_,t,,,], whereas the weak form in the static formulation is
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evaluated at configuration @, ,; comresponding to time r,_,, (virtual time).
b) The algorithmic variables corresponding to configuration @, ,.are taken as the

average of the corresponding counterparts at, respectively, ¢, and ¢, .
¢) The Green-Lagrange strain tensor entering in the definition of the second Piola-

Kirchhoff stress tensor corresponding to configuration ®,,,,, is taken as the
average of the corresponding strains at 7, and r,,, rather than the strain obtained

from configuration @, ,,.
d) In contrast to the static model which leads to a symmetric tangent stiffness matrix.

the dynamic model, with the strain variations at configurations ®,,,,, and @__,,

leads to unsymmetrical tangent operator. Non-symmetry is present in all three
contributing matrices, i.e., The tangent consistent mass, the tangent material
stiffness and the tangent geometric stiffness matrices.

13 A consistent linearization of the fully discrete form of the equation of motion
(dynamic) and equilibrium equations (static), which is important in the numerical
solution using the Newton-Raphson method, is carefully derived in order to achieve
quadratic rate of convergence typical for the Newton-Raphson solution procedure.

14 The arc-length method is adopted in the global solution procedure of the static
formulation in order to trace very complex equilibrium paths present in the
postbuckling of shell type structures.

15 The above mentioned theoretical fundamentals are successfully implemented through

the design of two separate computer programs for nonlinear static and dynamic
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analyses for laminated shell structures.

16 Several numerical simulations representing test problems, recently reporied in the
literature, are conducted to assess the performance of the developed static and
dynamic finite shell models. Some of these test problems involve severe geometric
nonlinearities, very large rotations and large overall rigid body motion. Conclusions
regarding the performance of the developed models are discussed in the following

section.

8.2 Conclusions
The main conclusions that can be drawn from the numerical simulations conducted in

this study are as follow:

1. The present element shows very good rate of convergence with mesh refinement in
the linear analysis. This convergence rate is comparable to the best four-node shell
elements available in the literature. In some cases, it shows a betier performance
especially for coarse meshes.

2. The parametric studies show the higher predictive capability of TOSDT models over
FOSDT ones for the case of moderately thick to thick plates, cylindrical and spherical
shells. For thick panels, TOSDT models still yield good to satisfactory results
especially for the deflections and the in-plane stresses; however the predictions of
FOSDT models in this range are poorer in the case of laminates and completely
erroneous in the case of sandwich panels.

3. The non-enforcement of zero transverse shear stress condition at the bounding

surfaces makes the TOSDT model unreliable in predicting transverse shear stresses,



especially in the case of laminates with an increasing number of layers.

. In the case of thin plates and curved panels, the predictions of TOSDT and FOSDT
models are excellent especially conceming the deflection. This performance is due to
the fact that the shear deformation is negligible in such situations. On the other hand.
it shows the efficiency of the ANS method in alleviating the shear locking

phenomenon.

. Very severe nonlinear static test problems are passed successfully by this model and

its predictions are matching those present in the literature. Among these tests, it is
noteworthy to mention the large deformations and rotations leading to shape change
exhibited by the composite hyperboloidal shell, especially for the weak stacking
sequence, and the complex postbuckling load deflection path experienced by the
composite shallow cylindrical shell.

Some dynamic problems involve unrestrained structures subjected to impulsive _
loading after which they undergo large rigid body motion accompanied by large
deformations. Again the predictions of the present study are closely matching those
of the literature, and the shell momenta and total energy are exactly conserved after
the end of the impulsive loading.

. Other dynamic test problems are used to simulate ‘snap-through’ for a pseudo-
spherical cap and a shallow cylindrical panel. The pattern of the response is similar
to those of the literature; however, a slight difference appeared in the predicting
values between this model and those reported in the literature.

. The example concemming the ideal sandwich panel, is designed to show the
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discrepancy in the prediction of the TOSDT and FOSDT models. It demonstrates
clearly the poor performance of FOSDT models in case of thick sandwich laminates
with soft core.

All the previously cited numerical tests elucidate the good performance and
robustness of the presented laminated shell model, both in its static and dynamic form
without forgetting the time stepping algorithm, developed in this study, which proved

to be very stable and suitable for long-term dynamics.

8.3 Recommendations

Although this study has achieved the goal of developing a new refined finite rotation

laminated finite shell element, and a time stepping algorithm which conserves exactly

momenta and energy for this element, the following points are recommended for future

research in order to enhance the present model and make it more fruitful.

L.

A simpler interpolation scheme, similar to that used for directors in dynamics. can be
adopted in the static case and a comparison can be carried out to assess the model
while using this simpler interpolation scheme.

A higher order assumed natural strain laminated shell element can be formulated
based on the shell theory presented in this study and a comparison of the efficiency of
the four-noded and higher order elements in terms of response prediction and
computational time can be performed.

At shell intersections where the smoothness assumption of the middle surface, as
assumed in this study, no longer holds, the shell director must be described by three

degrees of freedom instead of two as used in this study. This element can be
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extended to model shell intersections by adding one degree of freedom to the
nodes on the shell intersections and using the full rotation tensor for these nodes

while the nodes which belong to the smooth surfaces are kept unchanged.

. This formulation can be modified to include thermal effects which are of important

practical relevance to laminated composite structures.

. The present model can be extended to include inelastic materials within small strain

assumptions. This can be done by substituting, in the material characterization, the
second Piola-Kirchhoff stresses and Green-Lagrange strains by the small

displacement engineering stress and strain measures.

. The metric tensor is assumed to be constant in the present study and it is equated to

that of the middle surface. Other altemnatives, as mentioned in the dissertation, can be
used to derive different models and parametric studies can be conducted to investigate
the influence of different assumptions on the predicted results especially for thick

shells.

. The kinematic constraint of fiber inextensibility, introduced at the beginning of this

study, can be relaxed, thus leading to a shell element with nine degrees of freedom
per node where the transverse normal strain is included.

Since FOSDT models are cheaper than TOSDT ones in terms of computational time
and storage requirements, a quantitative assessment of the range of applicability of
FOSDT models is needed. This can be achieved by a parametric study, involving
both models, of structures with different geometrical shapes, loading conditions, and

boundary conditions.
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This model can be degenerated to develop a curved laminated beam element
which can be useful in modeling stiffeners. While the development of plane curved
laminated beam element using the TOSDT developed here is straightforward. the
extension of such element to three dimensional situations requires a special treatment
of the torsional modes.
The element presented here can be adopted as a basis for a layerwise theory
especially for sandwich shells where the core material can be modeled using the
present theory and the facings utilizing the FOSDT.
fhe high cost of layerwise theory models limit their use in large scale structures.
Their simultaneous combination with refined ESLT models such as the one
developed here lead to time saving and better modeling of local effects in predefined
subregions where a significant three-dimensional stress field exists. Using this
vlobal-local approach will result in different regions modeled with different.
mathematical models. The incompatibility at the interface between different
subregions can be handled using transition elements. Thus, this theory can be used to
design a transition element that couples the developed element with layerwise

elements.

. This element can be extended to include delamination initiation and propagation and

this by using a more accurate model for predicting transverse shear stresses.
The kinematic description used in the formulation of the present element is very
general and admits large strains. Thus, the choice of an appropriate constitutive for

large strains will lead to the inclusion of this effect.



Appendix I
Geometric Stiffness Matrices

Details concerning submatrices [KG])

Before giving the detailed expressions for [KG]Z , Equations (4.115) need to be rewritten

after the introduction of the discrete strain displacement operators.
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After straight manipulations, the following equations are obtained
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Submatrices [KG]! are further divided into smaller submatrices [KG};; (k=1.3.1=1,3)
where the superscript N has been omitted for simplification. The superscripts k and |

correspond 10 the partitioning of the vectors 8¢ =|8u 6D, &D, |or
Ap={Au AD, AD,Y (i.e., for example k=1 corresponds to &« , and /=3 corresponds to

AD;, etc..) and the subscripts IJ correspond to the node numbers
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The contribution to the geometric tangent stiffness matrix is split in two parts. The first

part [KGI]Z is provided by the inplane, bending and higher order transverse shear terms

and the second part [KG2]Z is obtained from the contribution of the constant transverse

shear terms which are obtained using the assumed natural strain concept. In matrix

notation, we have
[kG]) =[kG1]) +[KkG2], (1-6)
where [KG1]}; and [KG2], are partitioned following equation (I-5). The details of the

smaller submatrices are given below starting by the elements of [KG1]),
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