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Chapter 1

INTRODUCTION

1.1 Formal Concept Analysis

Formal Concept Analysis is a theory of data analysis which identifies conceptual
structures among data sets. It is based upon the mathematization of concept and
conceptual thinking .

Formal Concept Analysis is mainly used for the analysis of data, i.e., for inves-
tigating and processing explicitly given information. Such data will be structured
into units which are formal abstractions of concepts of human thought allowing
meaningful and comprehensible interpretation [4].

Since its inception, formal concept analysis has found several applications. Major

areas of application (8, 13, 4] include:

e Knowledge Extraction



¢ Information Restructuring and Classification
e Data Mining
e Data Visualization

e Decision Making.

1.2 Definitions

Before stating the proposed objectives, it is worthwhile to review definitions of basic

terms used in Formal Concept Analysis. For a detailed description refer to [4]:

1.2.1 Context

A formal context or crisp binary relation is a two-valued relation between a set
of objects and a set of attributes. In case of two-valued context, this relation is a
binary relation and it simply states the truth value of the proposition: Is a particular
object from the domain set related to a particular attribute from the range set?, for
all objects and attributes.

As an example, a formal context R may be used to map the relation “is a divisor
of” for the set of divisors of 30. Both the domain and the range sets are the same in
this case, which is the set of divisors of the 30, i.e., {1, 2, 3, 5, 6, 10, 15, 30}. This

relation is presented in Table 1.1.
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Table 1.1: Formal Context R

1.2.2 Concept

A formal concept or a mazimal rectangle of a context R is an ordered pair of two
sets (A, B) such that whenever A x BC A’ x B C Rthen A= A'"and B= B’
[4].

More simply, in a formal context, if a maximal set of objects A shares a maximal
set of attributes B, then the ordered pair (A, B) is called a formal concept. Here A
is called the ertent and B is called the intent of the concept.

Consider the context R shown in Table 1.1. The set of objects A = {1, 2, 5}
shares a maximal set of attributes B = {10, 30}. Hence the ordered pair (A, B) is
a concept. The significance of this concept is that the numbers 1, 2 and 5 divide
only the numbers 10 and 30 in the set of divisors of 30. In other words, a concept
indicates, for any given object set, the maximal set of attributes related to all the

objects in the object set.



1.2.3 Galois Connection

Let A be any arbitrary set of objects and B be any arbitrary set of attributes from

a given context R. Then, the operators f and h defined by:

f(A) =AR={d|Vg,9€ A= (9,d) € R} (1.1)

h(B) =B9={g|Vd,de€ B= (g,d) € R} (1.2)

define a Galois connection

Galois Connections are used in order to discover a concept corresponding to any
given set of objects. The operator f when applied to a set of objects results in
the set of attributes shared by those objects. The operator h is then applied to
this resulting set of attributes to complete the initial set of objects, i.e., to find any
additional objects that may share the same set of attributes.

As an example, consider the context given in Table 1.1. Consider the set of
objects A = {3, 5}. The set of attributes shared by these objects is obtained by:
= B = f(A) = A® = {15, 30}.

This means that 3 and 5 divide the numbers 15 and 30. To find out any additional
numbers which may divide both 15 and 30, we apply the h operator on B, i.e.,

= B9 = h(AR) = ARQ = {1, 3, 5}.

The ordered pair (B9, AR) = (AR, AR) = ({1, 3, 5}, {15, 30}) is a concept.



B = flA) = A*

= {15, 30}

Figure 1.1: Discovering Concepts using Galois Connections



1.2.4 Galois Lattice

For a given context, Galois connections can be used to generate the set of all pos-
sible concepts. These concepts are naturally ordered by a subconcept-superconcept

relation («). This relation is defined by:

(A[, B[) K (Az,BQ) & A, C A; and B; C B,. (13)

It can be shown that <« is a partial order relation i.e., < is reflexive, antisym-
metrical and transitive. The set of all concepts of a given context can therefore be
organized as an ordered set.

The ordered set of all concepts of a context, also consisting of an upper bound as
well as a lower bound, is known as a Galois lattice of the context. Galois lattices can
be represented as a line diagram in which there is an arrow from (A,, B;) to (A2,
B,) if (A, By) < (Aqg, B,). (A, By) is referred to as the predeccesor and (A,, B,)
is called the successor. The lower-bound of the Galois lattice is the concept with
minimal number of objects and maximal number of attributes. As we follow the
ordering of the lattice (shown by arrow-heads) we find that the object set increases
incrementally, while the attribute set decreases incrementally. This change agrees
with the observation that “The more the number of objects is, the less common they
will be”. The upper-bound of the lattice is the concept with the maximum number
of objects and minimum number of attributes.

Figure 1.2 shows the Galois lattice corresponding to the relation R of Table 1.1.



(1,2,3,6,5, 10,
15,30} x
{30}

{1,2,3,6} x {6, 30}

{1,2,5,10} x {10,
30}

{1,3,5, 15} x {15,
30}

{1,2}x{2,6,10,
30}

{1,3}x{3,6, 15,
30}

{L,5}x {5, 10, 15,
30}

Figure 1.2:

[}

{1} x{1,2,3,5,6,
10, 15, 30}

Galois Lattice Structure for R




Galois Lattice structures provide several advantages over tabular representation

of data. A Galois lattice structure exhibits the following properties [4]:

e Information classification

e Reduced redundancy by organizing objects with similar attributes into con-

cepts
e Inheritance of attributes thereby creating a class hierarchy of data.
e Semantic information from unorganized data

e Graphical representation of data, thus giving a view of the inherent structures

hidden within the data.

e Associative rules extraction, providing knowledge from information.

1.2.5 Inheritance of objects and attributes

We can observe that the graphical ordering of the concepts in a Galois lattice exhibits
inheritance of attributes and objects. This is the case by the very definition of the
order relation (<) defined in the previous section. As we move from the lower
bound to the upper bound, we find the object set increasing and the attribute
set decreasing. So attributes are inherited from the predeccessor to the successor

concept, while objects are inherited from the successor to the predeccessor concept.



Inheritance plays a vital role in interpreting the Galois lattice structure. For
example, in the Galois lattice shown in figure 1.2, we can see that each concept’s
predeccessor concept consists of all the objects in the successor concept plus any
additional objects. So, the concept with the object set {1, 2, 3, 6} has successors
with the object sets {1, 2} and {1, 3}. Thus each concept’s successors consist of the
set of divisors of the additional elements in the predeccessor concept. For example,
{1, 2, 3, 6} inherits from {1, 2} and {1, 3}. The additional element here is 6 and
we find that this whole object set forms the set of divisors of 6.

A further advantage of inheritance is reduced redundancy in representation. For
example, we can eliminate the inherited objects and attributes to give a more read-
able representation.

Figure 1.3 shows the reduced Galois lattice structure for R. In this figure both the
reduced attribute set and the reduced object set for each concept are identical. An
important semantic meaning can be extracted from this figure: The set of divisors
of each element are given by its all successors.

Inheritance also aids in creating a class hierarchy of data as will be shown in the

coming chapters.

1.2.6 Knowledge Extraction

By definition, knowledge extraction deals with extracting knowledge from unorga-

nized data. In knowledge extraction association rules or implications of the form



30

10

Figure 1.3: Reduced Galois Lattice Structure for R

15
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P => C are extracted from a context, where P is the premise and C is the conclusion.
Both sets P and C are subsets of the range or attribute set of the given context.
The implication P = C is valid if the following is true for a given context R:

For every object g € R: if every attribute from the premise P applies to the
object g then every attribute from the conclusion C also applies to g.

As an example, suppose that we are interested in finding the conclusion C cor-
responding to the following premise from the context given in table 1.1: What is
the conclusion we can draw about all numbers divisible by 2 and 3. We find the

following association rule:

{2, 3} = {6}

This means that any number divisible by 2 and 3 within the context R is also
divisible by 6. Although the above association rule is true in general for any set of
numbers, it may not be the case with all association rules. Association rules are
only valid for the context from which they have been extracted.

Knowledge extraction is thus useful for discovering trends or tendencies from
empirical data. For example, association rules may be discovered regarding the

performance of students in a course and their age.
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1.3 Fuzzy Set Theory

Traditional tools for formal modeling, reasoning and computing are crisp and deter-
ministic. In conventional logic, for example, a statement can either be true or false
- nothing in between. In set theory, an element can either belong to a set or not -
there is no notion of partial membership (15, 16].

Fuzzy set theory extends these models by allowing an element to partially be-
long to a set. A fuzzy set consists of a set of members along with their degree of
membership denoted by u. For an element 4 = 0 may indicate no membership, 4 =
0.2 may indicate weak membership, 4 = 0.8 may indicate strong membership and
# = 1.0 may infer complete membership.

Fuzziness introduces into a system the characteristics of fuzziness and uncertainty
which may be used to model data in which attribute membership is related to objects

by degrees of possibility.

1.3.1 Fuzzy Context

A fuzzy contezt or a fuzzy binary relation is a set of objects and a set of attributes
related to each other by fuzzy values indicating that a particular object possesses a
particular attribute partially. Table 1.2 models a data situation in which attributes
cannot be possessed by objects with a true/false value. For such situations, fuzzy

contexts are best suited.



Employee | Age | Education | Salary | Benefits
Instructor A || 0.2 0.4 0.5 0.1
Instructor B || 0.5 0.9 0.7 0.8
Instructor C || 0.3 0.2 04 0.4
Instructor D || 0.7 0.9 1.0 0.8

Table 1.2: Fuzzy Context R

1.4 Proposed Work

1.4.1 Motivation

Formal Concept Analysis is a useful tool for data analysis within crisp data. Our

fundamental objective in undertaking this work is to extend formal concept analysis

13

to fuzzy contexts. The primary motivation behind this objective is to develop the

ability to extract knowledge from fuzzy data. Doing so we shall be able to extend

formal concept analysis to the case of fuzziness where each attribute has a degree of

possibility rather than the conventional true/ false\ possession of attributes.

This work would involve extending the definitions of the terms and notions used

in formal concept analysis for the crisp case. We would have to define the terms fuzzy

concept, fuzzy Galois connection, fuzzy Galois lattice and fuzzy knowledge extraction.

1.4.2 Objectives

Our objectives in undertaking this research are the following:

1. To extend formal concept analysis to the case of fuzzy contexts
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2. To define and develop the notion of a fuzzy concept.

3. To define fuzzy Galois connection, fuzzy Galois lattice and fuzzy knowledge

extraction.
4. To extract theoretical properties of fuzzy Galois lattice.

5. To develop and analyze algorithms for fuzzy Galois lattice development and

fuzzy knowledge extraction.
6. To develop a prototype of fuzzy rule extractions from data.

7. To carry out experimentation on some real data set and to interpret the results.

1.4.3 Organization

This thesis report is organized as follows: Chapter 1 provides a brief introduction
to FCA. Chapter 2 gives a brief overview of attempts to extend well-defined notions
in FCA to fuzzy relations. Chapter 3 provides an extension of Galois Connection
and Galois Lattice to fuzzy relations. Chapter 4 provides an extension of Knowl-
edge Extraction to fuzzy relations. Both Chapters 3 and 4 begin with sections on
background that is pertinent to the proofs and extensions within the framework of
extensions. Chapter 5 provides an experimentation on a real data set. Chapter 6

concludes this work with some proposals for extension of this work.



Chapter 2

RELATED WORK

This chapter provides a survey of some of the attempts to exten formal concept
analysis to fuzzy relations. Then motivation for our work which came from fuzzy

regular relations is discussed briefly.

2.1 Literature Survey

Attempts to extend formal concept analysis to fuzzy contexts have a short but rich

history. Below some of the related works pertinent to this research are outlined:

2.1.1 Fuzzy Difunctional Relations

Difunctional Relations have proved to play an important role in software design and

information restructuring [8]. By definition, a relation R is difunctional if and only

15
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if it satisfies the following condition:
RR'RCR (2.1)

Ounalli et. al [9] extended the notion of difunctional relations to fuzzy relations
and characterized fuzzy difunctional relations for the first time. Relational and
theoretical properties of fuzzy difunctional relations were investigated. It was found
out that fuzzy difunctional relations have properties analogous to those of crisp
difunctional relations. A key result of this work was: A fuzzy relation Ris fuzzy

difunctional if and only if it satisfies the following condition:
RR'R=R (2.2)

The similarity between the defining condition of difunctionality for the crisp and

the fuzzy case can be readily observed.

2.1.2 Fuzzy Difunctional Dependencies

Ounalli et. al [10] proposed an extension of difunctional dependencies in the frame-
work of fuzzy relational database in which every fuzzy relation is a set of weighted
tuples. The concept of fuzzy difunctionality was defined and characterized and it
was shown that i;lference rules applied in the classical case remain valid in the case
of fuzzy relations. A hierarchical decomposition approach for the decomposition of
fuzzy difunctional relations was also proposed which allowed better data clustering

and reduced storage space by its particular inheritance mechanism.
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2.1.3 Silke’s Extension of FCA to Many-Valued Contexts

Silke Pollandt’s book [11] which is based on her doctoral thesis [12] introduces an
extension of formal concept analysis to many-valued contexts. She uses many-valued
contexts in order to model contexts where an object possesses any attribute with
some grade of possiblity. A set-theoretic model for such many-valued contexts is
developed by means of fuzzy sets [12].

Her work goes on further to prove that any multi-valued context with ordered
scales can be naturally made to correspond to a fuzzy valued context. One of the
conclusions of her doctoral thesis is: Fuzzy valued context can be considered as a
generalization of a multi-valued contezt.

Her work utilises this extension of formal concept analysis to many-valued con-
texts by applying it to define attribute simplification from a set of implications of a
fuzzy-valued context. The question of completeness of implications in fuzzy valued

contexts is also addressed.

2.1.4 Wolff’s Proposition

Wolff{14] proposed L-Fuzzy Scaling Theory. He observes that linguistic variables
play the same role in Fuzzy Theory as conceptual scales in formal concept analysis.
Wolff started his proposition[14] by presenting the notion of L-fuzzy sets as a

generalization of fuzzy sets. For each L-fuzzy set f, he introduced the notion of
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cut-context of f by using the a-cut notion. A cut context is mainly applied to a
linguistic variable A in order to derive a scale S). Roughly speaking, the scale S)
constitutes a crisp relation (which is equivalent to \) derived from the fuzzy sets
describing the linguistic values of A. The definition of a formal concept remains
unchanged since it becomes useless to treat directly any fuzzy relation.

Wolff proposed a representation for cut-contexts of L-fuzzy sets as follows: Let
X be aset and (L, <) an ordered set and f € F(X, L). Then f can be reconstructed
from the cut-context K;(L, X, I;) and (L, <) by the formula f(z) = max {a € L
| @ Iy z} i.e., f(z) is the maximum in (L, <) of the extent of the attribute concept

of z in (B(Ky), <).

2.1.5 Belohlavek’s proposition: Fuzzy Galois Connections

Belohlavek [2] proposed an extension of Galois connections between power sets from
the point of view of fuzzy logic. His proposition attempts to establish a one-to-one
correspondence between fuzzy Galois connections and fuzzy binary relations.

His work primarily focuses on three points:

1. Crisp Galois connections are just L-Galois Connections for L = 2, where L is

a complete residuated lattice.

2. Fuzzy Galois Connections are in one-to-one correspondence with fuzzy binary

relations.
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3. L-Galois Connections may be represented by special systems of 2-Galois Con-

nections.

Behlolavek (3] not only proposes fuzzy Galois connections but also characterizes
lattices of fixed points of fuzzy Galois connections. His work is mostly centered

around applications for traditional logic.

2.2 Motivation for fuzzy concept: Fuzzy Regular

Relations
A crisp regular relation [6] is a relation R such that ¥ u, v € domain(R),
u.RNuvR#¢=>u.R=v.R (2.3)

A relation is regular if and only if it is the union of disjoint maximal rectangles.
In case of crisp relations, any crisp difunctional relations is always regular and the
converse is also true, i.e., any crisp regular relation is always difunctional.

In case of fuzzy relations, we found that this may not be the case. Although a
fuzzy regular relation is always difunctional. But the converse may not be true, i.e.,
a fuzzy difunctional relation may not be regular.

This discovery of the inequality of fuzzy difunctional relation and fuzzy regular
relation led to the notion of fuzzy concept or a fuzzy rectangle which we shall outline

in subsequent chapters.
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Example 2.1 Consider the following fuzzy difunctional relation:

D | 2
0y 0.5)0.1

02101103
o3|01]05

Table 2.1: Fuzzy Difunctional Relation S

Obviously S is difunctional (it can be readily verified that §5-18§=S5 ) but not

regular as it cannot be decomposed into a fuzzy union of disjoint mazimal rectangles.

Example 2.2 Consider the following fuzzy regular relation:

DL | P2
o |05]|00

02 (00]0.3
03 00103

Table 2.2: Fuzzy Regular Relation S

Obviously S is regular as it can be decomposed into the following fuzzy mazimal
rectangles: S = {0,} x {p,/0.5} U {03, 03} x {p2/0.3}.

S is also difunctional (it can be readily verified that S S § = §).

The discovery that fuzzy difunctional relations may not be regular led to the
notion of the importance of the smallest basic unit that may be the most important
for structuring fuzzy relations. This led to the idea of a fuzzy concept which is

discussed in the next chapter - it also became the basis of this research.



Chapter 3

FUZZY GALOIS CONNECTION

AND LATTICE

Fuzzy Galois Connection as well as fuzzy Galois lattice are smooth extensions of
their crisp counterparts. Below we outline the theoretical foundations behind crisp
concepts, crisp Galois connections and crisp Galois lattices. This underlying theory

is then smoothly extended to the fuzzy case. [7]

3.1 Crisp Contexts

In this section, we start by presenting some formal properties of crisp contexts.

Along all this section and the following ones, J stands for any set of indices.

21
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3.1.1 Crisp Rectangles

Below we formally state the definitions of crisp rectangle and crisp maximal rectan-

gle. It can be seen that a maximal rectangle is the same as a formal concept.

Definition 3.1 Let R be a binary relation. A rectangle A x B is a cartesian product
of two sets (A, B) such that A x B C R. A is the domain of the rectangle (A, B)

and B is its range.

Definition 3.2 Let (A, B) be a rectangle of a crisp relation R. The rectangle (A, B)

is said to be mazimal if whenever Ax BC A'x B'CR, then A=A and B=B'.

3.1.2 Crisp Galois Connection

Let R be a binary relation. For two sets A and B such that A C domain(R),

B C range(R), we define the operators f(A) = A® and h(B) = B9 as follows:
f(A) =AR={d|vVg,9€ A= (9,d) € R} (3.1)
h(B) =B%={g|Vd,d€ B = (g,d) € R} (3.2)

The operators ® and ? define a Galois connection [4] between the ordered sets

A and B by satisfying the following conditions:
A;CA; AR AT (3.3)
B; C Bj = B'Q 2 BJQ (3.4)

A;C AP and B, c BPR (3.5)
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Proposition 3.1 [{] A pair (f,h) or (X,9) of maps is called a Galois connection

if and only if
ACB?e BC AR (3.6)
Proposition 3.2 [{] For every Galois connection (f,h) or (R,9)

f=fhf and h = hfh (3.7)

3.1.3 Crisp Galois Lattice

The set of maximal rectangles of a binary relation R, using the Galois connection

operators ® and 9 can be organized under a complete lattice [1].

Definition 3.3 Let R be a binary relation and T, the set of mazimal rectangles of R
ordered by the relation <. Hence, (T,, <) is a complete lattice where the supremum
P and the infinimum H of any set of mazimal rectangles of T, are given respectively

as follows:

Pjcys(Aj, Bj) = (UjesAjNiesBj) (3.8)

Hjes(Aj, Bj) = (NjesA;j,UjesB;) (3.9)

3.2 Mathematical Background on Fuzzy Sets

Here we review some definitions and results that will be needed in the sequel. For

details we refer to [9, 16]
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3.2.1 Fuzzy Sets

In this work, a fuzzy set [15] F which includes a member z;, that has degree of
membership u(z;), (4(z;) € (0,1)) will be represented as F={z:/u(z)},1<i<n.
Crisp sets can be defined as special cases of fuzzy sets with the membership

degrees restricted to the set {0,1}.

3.2.2 Basic Set-Theoretic operations on Fuzzy Sets

The fundamental set-theoretic operations on fuzzy sets which are relevant to us are
inclusion, union and intersection.

Fuzzy Inclusion

A fuzzy set A is said to be included in another fuzzy set Bifvce A3z e B |
pi(z) < pg(=).

Fuzzy Intersection

The membership function uz(z) of the intersection C = ANB is defined by pe(z) =
min{uz(c), u5(2)}.

Fuzzy Union

The membership function ug(z) of the union D = AU B is defined by pp(z) =

maz{uz(z), u5(z)}-



25

3.2.3 Cartesian Product

Since a crisp set can be defined as a fuzzy set with membership degrees restricted to
{0, 1}, so, the cartesian product of a crisp set and a fuzzy set R = Ax B is defined

by:
R = {(z,y)/min(ua(z), n5(y)) | Yz € A,y € B} (3.10)

Example 3.1 Consider A = {a/1,b/0} and B = {p/0.1,4/0.9}. So R ={(a,p)/0.1,

(6,p)/0, (8,q)/0.9, (b,q)/0} is the cartesian product R = A x B

3.3 Fuzzy Contexts

In this section, we start by introducing the notions of fuzzy rectangle and fuzzy
maximal rectangle and we prove some formal properties; we also define a pair of
Galois connection operators by proving its conditions. Then we propose to organize

the set of fuzzy rectangles under a complete and distributive lattice.

3.3.1 Fuzzy Rectangles

Below we formally state the definitions of fuzzy rectangle and fuzzy maximal rect-
angle. The close correspondence between the crisp case and the fuzzy case can be

readily seen.

Definition 3.4 Let R be a fuzzy binary relation defined from E to F. A fuzzy
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rectangle of R is an ordered pair of two sets (A, E) such that Ax B C R. i.e.,

Baxi(T,¥) < pr(z,y), wherez € E andy € F.

Definition 8.5 Let R be a fuzzy binary relation defined from E to F. The relation
A x B, such that A C E and B C F is called fuzzy rectangular relation associated

with the rectangle (A, E) of R. A is the domain of this relation and B is its range.

Definition 3.6 A fuzzy mazimal rectangle, or fuzzy concept is defined as the carte-
sian product A x Bc ﬁ, where A is a crisp set and Bisa fuzzy one, such that

whenever Ax BCA'xB'CR, then A=A’ and B=B'.

From the above definitions, it can be seen that a fuzzy maximal rectangle thus
associates a degree of membership with each object-attribute pair within it. In
contrast to a crisp rectangle which only states the presence or absence of an object-
attribute pair, a fuzzy maximal rectangle or a fuzzy concept also gives the “degree

of association” between the object and the attribute.

3.3.2 Fuzzy Galois Connection

Let Rbe a fuzzy binary relation defined from E to F. For two sets A and B such

that A C E and B C F we define the operators f(A) = AR and h(B) = B9 as
follows:
f(4) = AR = (d/a | ¥g,g € A, @ = min pz(g,d)} (3.11)

h(B) = B9 = {g|Vd, d € B,= pg(g,d) > pz(d)} (3.12)
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Proposition 3.3 The operators R and @ Jorm a fuzzy Galois connection on the sets

A and B by satisfying the following conditions:

ACA; =>ARD AR (3.13)
BicB =BI2B} (3.14)
AC AR 44 B c BOR (3.15)

Proof 3.1 Let A,A;, A; € E and B,B,, 5,- e F.
e Then

AR = (d/oa;|Vg,g € Ai, ;i = minpz(g,d)}

A;z = {d/a:i | Vg,g9 € AJ" a; = mln#ﬁ(gad)}
IfA; C Aj = a; 2 a;. Hence A,-ﬁ 2 A;? This proves (3.13).
e For (3.14), if B; C E,- = Vd € B;, ugj(d) > pg,(d). Then

Bf ={g:|Vd, d€ Bi,= pg(g,d) 2 p5,(d)}

B} ={g;|V¥d, d€ B;,= pz(9;,d) > p5,(d)}

If g; € BjQ = pp(gs,d) = pgj(d) > pg,(d) = g5 € B?. Hence B,-Q 2 BJ-Q.

This proves (8.14).
e For (3.15)

AR ={d/a|Vg,g € A, a = minpg(g,d)}

ARQ {g|Vd, de Ai, = px(9,d) 2 minug(g, d)}
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Obviously, ifge A=>g € ARG o 4 c ARQ_ This proves the first part of
(8.15).
o Similarly, let d € B with pg(d). Then
B ={g|Vvd, d € B,= pz(g.d) > n5(d)}
B® ={(d/a|Vg,g € BR, a = minuy(g, d)}
= a2 pg(d) = B c B9R. This proves the other part of (3.15).
Proposition 3.4 A pair (ﬁ’é) of maps is a fuzzy Galois connection if and only if
ACBR& Bc AS.

Proof 3.2 If A C BR then by (3.18) = A% 2 B9R gnd by (3.15) = A9 2 B. This
proves that A C BR= B Cc AS The other direction follows symmetrically.

-

Proposition 3.5 For a fuzzy Galois connection (5,6), AR = ARQR g4 BQ —

BARQ,
Proof 3.3 With B = AR by (3.15)

= AR c ARQR (3.16)
and from A C ARQ by (3.13)

= AR 3 ARQR (3.17)

(8.16) and (3.17) = AR = ARGR_ Tpe other part can be proved similarly.
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3.3.3 Fuzzy Galois Lattice

In the previous subsection we defined the Galois connection operators for the case
of fuzzy relations. Here we show that the set of fuzzy maximal rectangles of a
fuzzy binary relation can be organized under a complete and distributive lattice by

showing that:

e A partial order relation < exists for the set of fuzzy maximal rectangles of a

fuzzy relation T..

e An upperbound (supremum) and a lower bound (infinimum) exists in T. for

any subset of f‘,..

Proposition 3.8 The following relation < defined on Risa partial order relation:

(A1, B) € (A, By) & A, C Ay and B, C By, where (A, B)), (A2, By) € R.

Proof 3.4 According to the definition of a partial order relation, we have to prove
that < is reflezive, antisymmetrical and transitive.
o Reflezivity
VA, CE, B C F we have A, C A, and B c B (by reflezivity of C). Hence,
(A, B) € (A1, By).
e Antisymmetry

(A, B)) € (43, By) and (43, B;) € (A, B))
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& A CAandB;CB and A, C A and B, C B,
= A=A and B, =B,
= (A1, B,) = (g, By).

o Transitivity
(Ay, 51) < (Aa,ﬁz) and (-42,52) < (As,Ea)-
S A CA and§2§§1 and A; C A3 and§3§§g
= A, C A; and§3§§1

& (A1, By) < (A3, By).
Hence <€ i3 a partial order relation.

Proposition 3.7 Let {(A;, E,-)} (with j € J) be a set of fuzzy rectangular relations
of a fuzzy binary relation R. The relation (UjesA;) x (NjesB;) is a rectangular

relation of R. Therefore (UjesA;, n,yﬁ,») is a rectangle of R.
Proof 3.5 We have to prove that ¥(a,b) € (Ujes4;) X (NjesB;) = (a,b) € R
V(a,b) € (Ujes4;) X (NjesB;) = a€UjesAj=>3keJ|a€ A, (318)
¥(a,b) € (Uses4y) X (NsesBj) = i, ,5,(8) = min(ug, (b))
Hence, and particularly for k we have

bn,e, 5, (%) < u5,(b) (3.19)

(3.18) and(3.19) = l‘(U,-eJAj)x(nje,E,)(ar b) < mias,p,)(a,0) < pg(a, b)
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Since (A, E;) is a fuzzy rectangle of R = (Ujes4j) x (n,-gﬁ,-) i3 a fuzzy rect-

angle of R.

Proposition 3.8 Let {(A;, Ej)} (with j € J) be a set of fuzzy rectangular relations
of a fuzzy binary relation R. The relation (Njes4;) x (UjeJEj) is @ rectangular

relation of R. Therefore (NjesAj, Uje]gj) is a fuzzy rectangle of R.
Proof 3.6 Conversely follows from the proof of the previous proposition.

Theorem 3.1 Let R be a fuzzy binary relation defined from E to F and T, the set
of fuzzy rectangles of R ordered by the relation <. (T, <) is a complete lattice with
the supremum P and the infinimum H as follows:
Pies(A;, B)) = (UjesAj,NjesB;) (3.20)
Hjes(Aj, By) = (NjesAjrUsesBy) (3.21)

Proof 3.7 First, let us show that any set of fuzzy rectangles of R has a smallest

superior boundary and a biggest inferior one which are both fuzzy rectangles of R.

e Smallest Superior Boundary
Vj € J, (45, Bj) € (C, D)
& Yj € J, (4; € C) and (D ¢ By)
& UjesA; €C and D C NjeB;

& (UjesA;j, njelﬁj) < (C, 5)
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The rectangle (UjesA;, njejﬁj) is a fuzzy rectangle of T,.
Infact, according to proposition 3.7, Pie;(A;, Ej) = (UjeJAj,njeJEj), i8 the
smallest superior boundary.

e Biggest Inferior Boundary

We have to prove that any set of fuzzy rectangles of T, has a biggest inferior

boundary.
Let (A;, 5,—) be a fuzzy rectangle of T, :
Vj € J, (C,D) € (4;, B;)
& Vj e J, (C C 4A;) and (B; C D)
& C CNjesAj and UjesB; € D
& (C, D) € (NjesAj, Uses Bj)
e The rectangle (njejAj,UjeJEj) 18 a fuzzy rectangle of T..

Infact, according to proposition 3.8, H,-y(A,-,E,-) = (njeJAj,Ujejﬁj), is the

biggest inferior boundary.

3.4 Theoretical Properties

This section explores the theoretical properties of a fuzzy Galois lattice. Here we
state two important properties of a fuzzy Galois lattice: Inheritance and Incremental

BuildUp.
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3.4.1 Inheritance

In the previous sections we saw that the fuzzy maximal rectangles (A;, §.~) of a fuzzy
binary relation R can be ordered by a subconcept-superconcept relation < into a

complete lattice. This relationship < is defined as follows:
(A, B,) € (A2, By) iff A, C Ay and B, C B,

The above relationship consists of redundant elements. For example A, is re-
peated in A3 and Eg is repeated in El. If we define new sets in which only the
non-repeated elements are shown then we would have a more compact way of rep-
resenting the above relationship. Thus for example, we could eliminate repeated
elements from A; by representing the set A3\ A;. Similar is the case with El, ie.,
we could as well represent it by B,\B;. The relationship would be still valid although

the representation would become
(A1, BI\By) € (42\Ay, By)

The above simplification leads us to a property called inheritance. It leads to
a reduced representation of a Galois lattice structure. For all ordered sets, it is
understood that as we move from lower orders to higher ones, the object sets include
all the lower order objects. Similarly as we move from higher orders to lower orders
the attribute sets include all the higher order attributes.

Inheritance leads us to a much simpler representation of a Galois lattice. It also

aids in discovering knowledge from data.
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3.4.2 Incremental Buildup

Here we prove that in any incremental buildup of a fuzzy Galois lattice of a fuzzy
binary relation E,., concepts that have not appeared in R,_, would also not appear
in R,. Not only this but those extents that have not appeared in R,_., they will

not appear with the new object o, appended to them.

Proposition 3.9 Let R,_, be a fuzzy binary relation with n— 1 objects, and let R,
be a fuzzy binary relation with n objects such that R, =R, U {on} x {P1/an1,
p2/0n2, .- , Pm/nm}. If {0} is not an eztent of R,_, then {oj, 0,} is not an

eztent of R,.

Proof 3.8 If {o;} is not an extent of R,._, this means that {0;} % {pr/aj1, ;2/j2,
- » Pm/jm} 18 not a concept in ﬁ,._l. Therefore the smallest concept containing
o; must have at least one more object. Let this concept have an eztent {0;, ox}.

The above condition implies that
{0}%9 = {0}, 01} (3.22)

Obviously, the membership degree for each attribute of o; must be less than that

for oy, i.e., {0j, o} is the smallest extent containing o; if and only if
Qi 2 Qi (3.23)

Let us now suppose that {o0;, oy} is an eztent of R.,. Applying the Galois con-
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nection operator to the set {0;, 0,} we get, usin equation 3.23
{OJ': on}m = {oj, olnon} (3.24)

This means that the smallest eztent containing o; and o, in ﬁ,. also contains o.

This proves proposition 3.9.
Proposition 3.10 If {0;, o,} is an extent of R,, then {o;} is an extent of R._..
Proof 3.9 Conversely follows from the proof of propostion 3.9.

The significance of the above results is that we don’t need to test for all combina-
tions of object sets in order to generate concepts for R,. Instead we could utilise the
extents of Rn_,. Furthermore, we get an upper bound on the maximum number of

concepts for R, which obviously cannot be more than twice the number of concepts

in Rp-,.

3.5 Complexity Analysis

3.5.1 Space Complexity

Let us investigate what could be the worst case space requirement for the fuzzy
Galois lattice of a fuzzy binary relation.
In the subsequent discussion o; stands for any object and p; stands for any

attribute of a fuzzy relation.
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Consider an incremental development of the fuzzy Galois lattice of B,_,. Let
S(n — 1) denote the space requirement (the number of fuzzy maximal rectangles
contained in the fuzzy Galois lattice of n — 1 objects). Let us append another object
o, with the attributes {p,/an1, p2/n2, --- , Pm/Cnm}- to R,_.. Let the resulting

relation be called E,.

3.5.2 Worst Case Analysis

In the worst case, the maximum number of fuzzy maximal rectangles in R, would
be twice that of those in ﬁn_l. To see this, observe that in the worst case all the
fuzzy maximal rectangles in ii,,_l would also be in R,,. Furthermore, the new object
on would be appended to the object set of each concept of R,—, and tested if it is
forms a fuzzy maximal rectangle or not. Suppose further that the newly generated
fuzzy maximal rectangles are all included in the fuzzy Galois lattice and such that
none of the existing rectangles is replaced.

In that case the maximum number of fuzzy maximal rectangles are given by:

Initial number of fuzzy maximal rectangles = S(n — 1)
Maximal number of newly generated fuzzy maximal rectangles = S(n — 1)

The recurrence relation for the number of fuzzy maximal rectangles in the worst

case is:

S(n) =28(n-1) (3.25)
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As S(0) = 1, so the solution to Recurrence 3.25 is S(n) = 2".
This quantity represents the maximum number of fuzzy maximal rectangles that

could be present in a fuzzy Galois lattice.

3.5.3 Average Case Analysis

Suppose that the maximum number of fuzzy maximal rectangles generated in the
fuzzy Galois lattice of n objects is not the same as S(n —1). In other words, if each
time an object is added, a constant fraction a; of the rectangles is being discarded

(because they are no longer maximal), then the recurrence reduces to
S(n)=(2-an-1)S(n-1) (3.26)

With S(0) = 1, the solution to the above recurrence becomes,

n-1
Sn) =[] -a) (3.27)
i=0
Equation 3.27 represents an exponential function for 0 < a < 1. The above
analysis clearly reveals that the number of fuzzy marimal rectangles generated in a

fuzzy Galois lattice is an ezponential function of the number of objects.

3.5.4 Best Case Analysis

In particular if o; = 1, 0 < i < n, then S(n) = 1 which is a constant.
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This only happens when the added object o, has membership degree for each

attribute:

e CASE 1: Either greater than or equal to the maximum membership degree

for each attribute OR

e CASE 2: Either less than or equal to the minimum membership degree for

each attribute.

In both the above cases, the Galois lattice structure can be built incrementally

from the existing structure in constant time.

3.5.5 Lower Bound on Time Complexity

From the above analysis on space complexity is clear that generation of fuzzy Galois
lattice is a mapping from n — 2" distinct elements in the worst case. If we consider
the generation of each fuzzy maximal rectangle as an operation requiring unit time,
the per unit construction time in the worst case cannot be less than 2"/n. So that

we have the lower limit as: O(2"/n).

3.6 An Incremental Algorithm

Our proposed algorithm for generating a fuzzy Galois lattice is incremental in nature.

We propose to build a Galois lattice structure in two steps.
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3.6.1 Generation Step

In the generation step we generate the fuzzy maximal rectangles for Rn by first
generating the fuzzy maximal rectangles for R,. From it, we generate the fuzzy
maximal rectangles for R, and so on until the fuzzy maximal rectangles for R, are
generated.

Each new fuzzy maximal rectangle for R, would:

e Either be already present in Ra_..

e Be a modified form of an existing fuzzy maximal rectangle R,_,. This modifi-
cation occurs due to the addition of a new object o, to R._,. From proposition
3.10 we can conclude that every rectangle with o, in ﬁ,. must have a counter-

part without o, in E._l.

Hence the fuzzy Galois lattice contains only the above-mentioned fuzzy max-

imal rectangles.

The recurrence for this step is the same as that for the average case presented

in the previous section. Therefore,

n-1

Tgmcraﬁm = II(2 - al') (3'28)

i=0
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3.6.2 Ordering Step

Having generated the set of fuzzy maximal rectangles, we now have to order them
into an ordered set according to the subconcept-superconcept relation (<). This
ordering step would take time proportional to the number of elements of the newly
obtained lattice elements.

The problem of ordering of fuzzy maximal rectangles is quite similar to the
problem of sorting of L elements. Each element (fuzzy maximal rectangle) must be
compared with all the other elements present to determine its rank. Therefore the
number of comparisons would be:

Number of Comparisons < L+ L +...+ L = L?

Lelements

This ordering step would require time of the order of O(L?) where L is the

number of fuzzy maximal rectangles of fuzzy Galois lattice of n elements.
This ordering step is carried out only after all the generated fuzzy maximal

rectangles are obtained.

3.6.3 Overall Time Complexity

Figure 3.1 shows the flowchart corresponding to the above algorithm.
The overall time complexity would be:
T(n) = [ (2 - ) + L?

Obviously T'(n) is an exponential function.
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Figure 3.1: Incremental Algorithm for Fuzzy Galois Lattice Generation
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Example 3.2 We’ll use the incremental approach to build a fuzzy Galois lattice

from the following fuzzy relation:

P P P4 || Class
00105 1 07 05| Ci1
0|06 07 1 05| C2
o3/ 1 09 1 01| C8
o] 1 09 09 01} C3

Table 3.1: The fuzzy binary relation W

Note that W has four objects as well as four attributes.

GENERATION STEP:

Suppose that we have the set of fuzzy mazimal rectangles of the contezt corre-
sponding to 03, 03 and o4, which has already been obtained incrementally. Table 3.2

shows the set of fuzzy concepts for the context with three objects 0a, 03, 04.

Fuzzy Concept
0 e {pl/l'orp?/o'91 p3/1'01p4/0'5}
{02} x {p1/0.6,p2/0.7, p3/1.0, p4/0.5}
{03} x {p1/1.0,p2/0.9, p3/1.0,p4/0.1}
{032,03} x {p1/0.6,p2/0.7, p3/1.0,p4/0.1}
{02,04} x {p1/0.6,p2/0.7, p3/0.9,p4/0.1}
{03,04} x {p1/1.0,p2/0.9,p3/0.9,p4/0.1}
{02: 03, 04} X {pl/o'ﬁv P2/07, p3/0'91 P4/0-1}

Table 3.2: The fuzzy concepts in W with three objects

Observe that the object set {04} is not present in the Table 3.2 as it does not

Jorm a fuzzy mazimal rectangle.
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Now we append o, to our object set in order to generate the context w.

Instead of generating (2* = 16) mazimal rectangles, we can only generate 7 new
rectangles and utilise 7 others listed in Table 3.2. The newly generated 7 rectangles
would be generated by appending o0, to the rectangles shoun in Table 3.2 and tested
to see if they form a concept. (The only exception to this rule is the rectangle with
the empty object set). The new set of mazimal rectangles is generated and redundant
rectangles which are no longer mazimal are removed (for ezample, after appending
01 to the rectangle {03, 04}, the newly generated rectangle with the object set {o,,
02, 04} s no longer mazimal as the rectangle with the object set {0y,04,03,04} has
superseded it).

The final list of fuzzy mazimal rectangles is shoun in the Table 3.2. Observe that
there are L = 10 mazimal rectangles, hence we discarded 4 ezisting/newly generated

rectangles (7+7-10 = 4). Hence for this step a = 4/7 = 57%.

Label Fuzzy Concept
FC, 0 x {p,/1.0,p2/1.0,p3/1.0, p4/0.5}
Fgl {Loli} X {pl/o"ss p?/loa p3/0'71 p4/05}
FCj {oa} x {p1/0.6,2/0.7, p3/1.0, p4/0.5}
FCS {03} X {pl/loi p?/ogr p3/101P4/01]+
F04 {Lolr 02} X {pl/o'5:p?/0'7: p3/0'71 p4/0'5}
FCy {02,03} x {p1/0.6,p2/0.7, p3/1.0, p4/0.1}
FCyg {03, 04} x {p1/1.0,2/0.9,p3/0.9, p4/0.1}
FCr | {01,03,04} % {p1/0.5,p5/0.9, p3/0.7,p4/0.1}
_LC'B ‘|L021 0, 04) X {Lpllo'sa P2/0-7g p3/0'91 p4/0'1}+
FCQ {ola 07, 03, 04} X {pl/0°5’ pﬂ/07: p3/0'7a p4/0'1}

Table 3.3: The fuzzy concepts in w



ORDERING STEP:

The ordering step basically consists of determining which pairs of fuzzy concepts
share the subconcept-superconcept relation <. Obviously, in the worst case, it would
take O(L?) steps.

The fuzzy Galois lattice for the context W is shown in figure 3.2.

It can easily be verified that if now a new object o5 with attributes {p, /1.0, pa/1.0,
p3/1.0, p4/0.5+} (having attribute values greater than all ezisting attribute values)
is appended then the fuzzy Galois lattice can be generated in constant time.

Similar is the case if we append og with attribute values less than or equal to
ezisting attribute values.

INHERITANCE:

Figure 3.2 shows the reduced Galois lattice structure for W. We can immediately

observe that a few association rules can be read directly from it.
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Chapter 4

KNOWLEDGE EXTRACTION

Knowledge Extraction deals with extracting implications from initial data. In knowl-
edge extraction assoctation rules or implications of the form P — C are extracted
from a context, where P is the premise and C is the conclusion. Both sets P and C
are subsets of the range or attribute set of the given context. This chapter provides
an extension of knowledge extraction to fuzzy contexts.

In the following section we give an explanation of knowledge extraction in the

crisp case.

4.1 Knowledge Extraction from Crisp Contexts

Below we state the basic terms and definitions of knowledge extraction as applied

to crisp contexts [4]:

47
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4.1.1 Implications

A crisp implication of the form A — B for a crisp context R indicates the statement
that “Every object of R having attributes given by attribute set A will also have
attributes given by attribute set B.” Here A and B are subsets of the range(R) =
M which is the complete attribute set of R. The set A is called the premise and
B is known as the conclusion.

A subset of attributes T C M respects an implication A -+ Bif A T or B
C T. This definition is the same as used in formal logic.

We get a simpler explanation of the above definition if we take the contrapositive:
A subset of attributes T does not respect an implication A -+ Bif ACT and B¢
T. In simpler words it means that any set of attributes respects a given implication
A — B except for the case when the premise is true but the conclusion is false. T
respects a set of implications R if T respects every single implication in ®. An
implication A — B follows (semantically) from a set R of implications between
attributes if each subset of the attribute set M respecting R also respects A — B.

A = B holds in a set {T}, T3, ... } of subsets if each of the subsets T; respects
the implication A - B. A = B holds in a context R if it holds in the system
of object intents. This means that the attribute sets of all the concepts in R must
respect A — B. In this case, we also say that A — B is an implication of the

context R.
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Proposition 4.1 [{] An implication A = B holds in a crisp contezt R if and only

if B C ARQ,

4.1.2 Properties of Implication Sets

A family of implications R is called closed if every implication following from R is
already contained in R. A set of implications R of a context R is called complete
if every implication from R follows from R.

For the present work, we will be concerned with complete implication sets as
they are applied to extract knowledge from crisp contexts.

A set of implications R is called non-redundant if none of the implications
follows from others. Guiges and Duquenne [5] have shown that there is a natu-
ral complete and non-redundant set of implications for every context with a finite

attribute set M.

4.1.3 Pseudo-Intents

Proposition 4.1 provides us with a first yet inefficient method of extracting implica-
tions from a crisp context R. The resulting implication set although complete, has
redundant implications.

The notion of a pseudo-intent [4] helps in finding out a complete non-redundant
set of implications for a given crisp context R. To put iT simply, a pseudo-intent is

any attribute set P such that P # PR, The set of pseudo-intents is also an ordered
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set. Below we provide a recursive definition of a pseudo-intent.

Definition 4.1 P C M is a pseudo-intent of R if and only if P # P and for

every pseudo-intent Q C P, QR9 C P.
Proposition 4.2 The set of implications:

R ={P — P | P is a pseudo-intent of R} (4.1)
is non-redundant and complete.

In practice the implications are not atated in the form P — P®Q but in the form
P — (PR \ P). This form of stating a complete non-redundant set of implications
between attributes is called Duquenne-Guiges-Basis or simply the stem base of

the attribute implications.

4.2 Knowledge Extraction in fuzzy contexts

Below we state an extension of basic terms and definitions of knowledge extraction

as applied to fuzzy countexts.

4.2.1 Fuzzy Implications

A fuzzy implication of the form p,/a; — pa/a; indicates the statement that “Every
object with attribute p, having membership degree a, will also have attribute p; with

membership degree ay.”
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Formally, a fuzzy implication between attributes is a pair of subsets of the at-
tribute set M. It is denoted by A = B. It indicates the statement that “Every
object of R having attributes given by attribute set A will also have attributes given
by attribute set B.” The set A is called the premise and B is known as the con-
clusion.

A fuzzy subset of attributes T C M respects a fuzzy implication A — B if 4
¢ForBCT.

We get a simpler explanation of the above definition if we take the contrapositive:
A subset of attributes T does not respect an implication A + Bif ACTand B ¢
T.In simpler words it means that any set of attributes respects a given implication
Ao B except for the case when the premise is true but the conclusion is false. T
respects a set of implications R if T respects every single implication in R.

T respects a set R of implications if T respects every single implication in R.
A — B holds in a set {fﬁ, T, ... } of subsets if each of the subsets T; respects the
implication A - B. A > B holds in a fuzzy context if it holds in the system
of object intents. In this case we also say that A Bisan implication of the

fuzzy context or equivalently that within the fuzzy context A is a premise of B.

Proposition 4.3 An implication A — B holds in & fuzzy contezt R if and only if

o~ o

B c ARQ

e

Proof 4.1 Here we have to prove that A-Be Bc AR,
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o~

Let’s first prove that A » B = B C ARQ,
IfA - B holds in a fuzzy context, this means that all object intents given by

{fﬁ, Ta, ... } respect the implication A — B. Therfore, 0 < i <,

t

~

‘Zg ,'OTBQ 5 (42)

t

CASE 1: Suppose that A /4 T., then A is not a subset of any object intent, or in
other words, it is not a subset of any attribute set of a concept. This can be possible

in two ways: either AD f}, or A and ﬁ are disjoint. In either of these cases,

= AR=¢ (4.3)

= ARG = M (4.4)

From the above results, we can conclude that B¢ M=A

Hence B - ARG,

CASE 2: Suppose now that the other conditionv specified in equation 4.2 is true,
i.e., B - T.. In this case again we have two sub-cases. The first case is that A ¢ f‘.
which we have already covered in CASE 1. The second sub-case would be when
A C T.. In this case ARQ = T. which is an object intent.

But since B c ﬁ, and ARG = f‘. which implies that

Lo}

=>BcTi=AR (4.5)
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Hence B - ARQ

This proves the first direction.

Now we have to prove that if B c Zﬁé, then A — B holds in a fuzzy contezt.
The proof of this part is trivial. Observe that if Ais any attribute set, then ARQ

must be an object intent. So AR? = T;. Therefore, B C AR@ =T, hence B C T;

which means that T respects A = B. This proves the other direction.

The above proposition provides us with a first yet trivial way of extracting knowl-
edge from a context. We know that A = B holds in a fuzzy context if and only if
B c ARQ,

Hence for any given context we can find out all the possible implications by

finding all subsets of object intents.

4.2.2 Properties of fuzzy implication sets

A fuzzy implication A — B follows (semantically) from a set R of implications
between fuzzy attributes if each subset of M respecting R also respects R. A set
R of implications of a fuzzy context R is called complete if every implication of R
follows from R.

A set R of fuzzy implications is called non-redundant if none of the implications

follows from others.
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4.2.3 Fuzzy Pseudo-intents

In order to determine a complete and non-redundant set of implications for a fuzzy
context R we attempt to extend the notion of pseudo-intents to fuzzy contexts.
Let us define P - M as the fuzzy pseudo-intent of Rif P # PRQ and éﬁ“

o~

C P holds for every fuzzy pseudo-intent 6 - ﬁ, 6 # P.
Proposition 4.4 The set of fuzzy implications:

R=(P pRa | P is a pseudo-intent of R} (4.6)
i8 non-redundant and complete.

Proof 4.2 In order to show that R is complete we have to show that every set T
respecting R is an intent. Let é be a fuzzy pseudo-intent.

T respects all implications of the form Q - 6’.’5 when 6 C T. Let us suppose
that T is not an intent, that is, T # TRG, Therefore, T isa fuzzy pseudo-intent
according to the definition of a fuzzy pseudo-intent. For the sake of simplicity let us

substitute S in place of T for stating the implication. Hence,

S=T 4.7)

As T is a fuzzy pseudo-intent, so
T # TRA (4.8)
= TcTh (4.9)

P

=> TR¢T (4.10)
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We can see that T does not respect the implication S — SRQ pecause the premise
is true and the conclusion is false. To see this, we observe that T Cc SoutT ¢ SR
from equations 4.7 and 4.10.

This result is a contradiction that T does not respect S — SR which is the
same as T — TR4. Hence the underlying assumption must be false, i.e., T isa
Juzzy pseudo-intent. Therefore T is an intent and hence every attribute subset T
respecting R is an intent.

In order to show that R is non-redundant, we consider an arbitrary pseudo-
intent P and show that P respects the set R \ {P - PR, Infact, if @ —» QRI is

an implication in R \ {13 — PR3, with Q C P then QR3 c P must hold since P

is a pseudo-intent.

In the above proposition we have provided an extension to the crisp Duquenne
Guiges Basis to fuzzy contexts. Henceforth, we define Fuzzy Duquenne-Guiges Basis
as the set of implications, written in the form ® \ { P — PR@}. 1t can also be
defined as the fuzzy stem base.

We now propose an algorithm to compute this complete and non-redundant set

of implications.
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4.3 Algorithm for Computing Fuzzy Stem Base

In this section, we propose an algortihm for computing the fuzzy stem base or the
Fuzzy Duquenne-Guiges Basis of a given fuzzy context R. From the defintion of
the pseudo-intent, the algorithm is relatively straightforward. The steps of this

algorithm are:

1. The initial fuzzy pseudo-intent is the empty attribute set Z 57‘5 is basically

the set of attributes shared by all the objects.

2. Here we generate the next fuzzy attribute set in lectic order. By lectic order
we mean that if the initial fuzzy pseudo-intent is {p\/a1, pa/B, Ps/", - }
then in the lectic order, we generate a new fuzzy attribute set by considering
the next attribute value of p,. In this case the next attribute set in lectic
order would be {p1/aa, pa/b1, ps/m, .- }. After we’re done with generating
attribute sets by varying attribute degrees of p,, we would then vary attribute

degrees of p;. So the next attribute set in lectic order would be {p,/a:, p2/fa,

p/n, - }

3. For each attribute set K generated in Step 2, determine if it is a fuzzy pseudo-

intent by applying the following tests.
-K # KR

- For each fuzzy pseudo-intent L determined previously, if L C K, then



57
IMc k.
4. IfKisa pseudo-intent, add it to the list of pseudo-intents.

5. Add the implication K — K9 to the list of implications.

6. Stop when there are no more attribute sets in the lectic order.

4.3.1 Time Complexity

The time complexity of the proposed algorithm chiefly depends upon Step 2.
Suppose that attribute p, has n, distinct values of «, p2 has ny distinct values of
B and so on upto p,, which has n,, distinct values. Then the total number of times

fuzzy attribute sets are generated is given by:
T(n) =niny...n;...0, (4.11)

For the particular case when n; = n = number of objects, we have T'(n) = n™ which

is clearly exponential.
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Example 4.1 For the fuzzy contezt given in Table 3.2, (reproduced here), we find

out the Fuzzy Duquenne-Guiges Basis using the proposed algorithm.

Di P2 D3 Da
05 1 0.7 05

o1

0{06 07 1 0.5
o3/ 1 09 1 0.1
a1 09 09 0.1

Table 4.1: The fuzzy binary relation w

The first fuzzy pseudo-intent is the ﬁ; = 5
Obviously, ™ = {p,/0.5,p2/0.7, p3/0.7, ps/0.1}.

Hence below is our first implication.

— p1/0.5,p2/0.7,3/0.7,p4/0.1 (4.12)

Our first candidate attribute set would be the set of minimal attribute values given
by 57'5. Obviously 555 does not qualify as a pseudo-intent since it is an an intent.
Lectically, the nezt candidate attribute set would be P, = {p,/0.6, p2/0.7, p3/0.7,

p4/0.1}. We see that —-15;1"!6 = {p1/0.6, p2/0.7, p3/0.9, ps/0.1}. Hence P, # T’IRQ.
Also, we note that for the previous pseudo-intent E;, 7’; C E and Eﬁa Cc F{ Hence
T’I 18 a fuzzy pseudo-intent.

While stating the implication, we don’t need to include attributes that are trivially
derivable. Hence we shall ezclude p,/0.7, p3/0.7 and ps/0.1 from the implication as

they are true for any element of this contezt by implication 4.12.
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Therefore, we now state our second implication
p1/0.6 = p3/0.9 (4.13)

The nezt candidate attribute set would be P; = {p1/1.0, p2/0.7, pa/0.7, ps/0.1}.
We find that Em = {m/1.0, p2/0.9, p3/0.9, p4/0.1}. We also verify that P, qual-
ifies as a pseudo-intent.

Hence our nezt implication (devoid of trivially satisfying attributes is)

p1/1.0 - p2/0.9,p3/0.9 (4.14)

The next candidate attribute set is E = {p1/0.5, p2/0.9, p3/0.7, p4/0.1}. This
set does not qualify as a pseudo-intent because ?’;RQ = Py. Hence we discard it.
The nest candidate attribute set is P, = {p1/0.5, p2/1.0, p3/0.7, p4/0.1}. This set

qualifies as a pseudo-intent because Em # 7’; It also verifies the other condition.

Hence our nezxt implication is:

p2/1.0 = ps /0.5 (4.15)

An interesting candidate atiribute set is P; = {p1/1.0, p2/0.9, p3/0.7, p4/0.1}.
Although it satisfies the condition E # —-15;&0’ it fails to satisfy the other condition

as P; C P but —-’;;RQ ¢ Ps. Hence B is not a fuzzy pseudo-intent.
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Therefore, the final complete set of Duquenne-Guiges Basis of W is:

— p1/0.5,p3/0.7,p3/0.7,p4 /0.1 (support = 4) (4.16)

p/0.6 — ps/0.9(support = 3) (4.17)

p/1.0 = p3/0.9,p3/0.9(support = 2) (4.18)

p2/1.0 = py/0.5(support = 1) (4.19)

p3/0.9 — pi/0.6(support = 3) (4.20)
p1/0.6,02/0.9,p5/0.9 — p;/1.0(support = 2) (4.21)
1/0.6,p3/0.9,p,/0.5 — p3/1.0 (4.22)
2/0.9,p4/0.5 — py/1.0(support = 1) (4.23)

4.4 Derived Implications

The method of pseudo-intents stated in the previous section provides us with a way
for computing the minimal set of implications that is complete and non-redundant.
In this section we state some rules that can be used to derive further implications
from this initial set that can present more information. It may however be pointed
out that derived implications do not provide any new information that is not present
within the fuzzy stem base. They only provide with a richer representation of
the same information that is present within the stem base but is not immediately

evident.
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4.4.1 Rules for Derived Implications

Below we state the rules for deriving implications from a set of given implications:

1. IfX , Y are fuzzy attribute sets such that Y € X then X > Y is an implication.

2. For X , 17, Z being attribute sets, if X-oYisan implication, then XuzZ-o

Y is also an implication.

3. For )?, Y, Aand B being attribute sets, if X - Y and A > B are two

implications then XUA-YUBisan implication.

4. If X = Y is an implication and Y5 Zisan implication, then X Zisan

implication. This is called the transitivity property.

5. If X = Y is an implication and ¥ U Z — A is an implication then X U Z-

A is an implication.

The above stated rules are natural extensions of the crisp case. They can simply
be proven by arguments of premise and conclusion.

(1) is always true since the premise contains the conclusion. Whenever the
premise is true, the conclusion already is true.

(2) is always true because if the the union of a premise (X) with another set
(Z) does not nullify the already existing conclusion (Y) which holds whenever the

premise is true.
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(3) is always true, since each premise(X and A) produces its own conclusion Y
and E). Hence the union of the premises at least produces the union of conclusions.

(4) is always true, since the truth of the first premise X implies the truth of the
first conclusion which becomes the second premise Y, which implies the truth of the
second conclusion Z.

(5) is always true since the first premise gives a conclusion which is part of the
premise for the second conclusion. The other part is A. The truth of ¥ is established

by the truth of X and so the truth of both X and A imply the truth of Z.



Chapter 5

EXPERIMENTATION

In this chapter we first discuss briefly the use of an existing crisp context analysis
tool CONIMP for fuzzy Galois lattice generation and fuzzy knowledge extraction.
Then an implementation of the algorithms for fuzzy Galois lattice generation as well
as fuzzy knowledge extraction discussed in Chapter 3 and Chapter 4 is stated in the
form of a prototype. Finally an experimentation on a real-world data set provides

an interpretation of some of the notions of FCA in the light of actual data.

5.1 Mapping

In order to utilise tools for crisp context analysis on fuzzy contexts we need to map
a fuzzy context to a crisp context. The resulting crisp context can then be analyzed

using tools for crisp context analysis. The results of this analysis - concepts, their
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ordering and implications can then be mapped back to fuzzy values.
Mapping a fuzzy context to a crisp one involves extending the number of at-

tributes. The procedure we adopted is as follows:

1. The number of objects remains the same.

2. Each fuzzy attribute is mapped to a set of crisp attributes. This is achieved
by defining a new crisp attribute for each value of o present within the fuzzy
attribute. Thus for example, if attribute p; has three membership grades a;,
o, and a3 such that @ > a; > a3 then the mapped crisp relation will have

three crisp attributes p,/a), p2/a; and p3/as.

3. Each object which possesses an attribute with membership degree o necessarily
possesses that attribute with lower membership degrees also. For the above
stated context, if an object possesses an attribute with membership degree a;
it also possesses that attribute at least with degree a3. So we place a ‘1’ for

such an object at attribute p, /a; and p, /aj.

4. The resulting crisp context can now be analyzed.

In our case we mapped the crisp relation presented in Table 3.2 and mapped it
to the crisp case. Table 5.1 shows the resulting crisp context.
The resulting crisp context was input to CONIMP - a crisp context analysis

tool. We found out that the number of concepts was the same - 10 in all. But
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p/05]0.6 [ 1.0 [p2/0.7[0.9[1.0 [ps/0.7] 0.9 1] ps/0.1 ] 0.5
o 1 oo 1 1 ]1 1 0 [0 1 1
02 1 10 1 00 1 1 |1 1 1
03 1 1|1 1 110 1 11 1 0
04 1 1|1 1 10 1 110 1 0

Table 5.1: Crisp Context corresponding to W

the concepts needed refinement. For example attribute sets like {..., p;/0.1, ps/0.5}
were generated. Such sets can be simplified by simply retaining the highest value
attribute for each p; and removing all others.

Similarly the minimal base set of implications was also generated which were 10
in all. This number is two more than our result. In this case two implications are

redundant. For example, the implication

p3/1.0 = p, /0.6 (5.1)

is redundant since p3/0.9 — p,/0.6 is already included in the minimal set.

To summarise, we need a preprocessor to generate a crisp context from our initial
fuzzy context. We then feed this crisp context to CONIMP. The results then need
refinement using a post-processor.

The immediate drawback of this approach is the need to incorporate a prepro-
cessing as well as a postprocessing step. For the pre-processing case the problem is
the large crisp context generated. For our case, instead of the 16 entries in the fuzzy

context, the corresponding crisp context has 44 entries which is an increase of more
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than two times. In general a the number of entries is the sum of by the number of
possible fuzzy values possessed by each attribute for each object.

Figure 5.1 states the procedure in the form of a block diagram.

5.2 Prototype for Fuzzy Context Analysis

A prototype for fuzzy context analysis was implemented in C language. The pro-
totype implements the algorithms proposed in this work for fuzzy Galois lattice

generation and fuzzy knowledge extraction.

5.2.1 Fuzzy Maximal Rectangles Generation

Fuzzy Maximal rectangles are generated using the algorithm proposed in Section
3.5. We used a linked list of nodes as our data structure with each node having an
object set and an attribute set as two linear arrays. At each iteration, the linked
list grows by as much as twice its previous length; redundant nodes which are no

longer fuzzy maximal rectangles are then truncated to adjust the length of the list.

5.2.2 Ordering: Successor List

After the generation of the linked list, the orderig of the generated fuzzy maximal
rectangles is done using a successor list. Successor lists are used to specify the

ordering of concepts in a Galois lattice structure. They consist of each set with a
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Figure 5.1: Block diagram for fuzzy context analysis using CONIMP
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list of all the parents of that set. In our prototype, a linked list of nodes was used
with each node having a label denoting the fuzzy maximal rectangle as well as a

linear array having a list of rectangles that are its parents.

5.2.3 Knowledge Extraction

Finally, implications are extracted using the algorithm presented in Section 4.3.

Again, a linked list of nodes was used as the chosen data structure.

5.3 Experimentation

We used our prototype to analyze admission statistics of 10 engineering schools
in the United States ranked among the best by US News. This analysis provided
several useful results as well as highlighted many important points.

To begin with, the admission statistics are intended as a guide for potential
applicants to these schools. For our purposes, we adopted some approximations in
order to simlify the analysis. These approximations for each attributes values will
be stated in the next sub-section.

The data under consideration has 10 objects representing 10 universities: MIT,
Stanford, UC Berkeley, Georgia Tech, Carnegie Mellon, Cornell, Purdue, UT Austin
and USC. The attributes consisted of the following: Average Applicant GRE Scores,

Total Acceptance, Acceptance Rate, Total Aid (No of applicants), Percentage of
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Aid given to Assistantships. This data is intended to provide useful information
for potential applicants. In the next section, we provide an explanation of each
attribute.

The data in the context form is stated in Table 5.2:

Name Avg GRE | Total Acc | Acc Rate | Total Aid | % Asst
MIT 2000 1400 30 2200 80
Stanford 2000 1800 45 2000 60
UC Berkeley 2000 1000 25 1600 75
Georgia Tech 1900 1600 25 1900 80
Univ Michigan 2000 1400 35 1300 85
 Carnegie Mellon | 2000 650 20 650 80
Cornell Univ 2000 1200 30 700 70
" Purdue Univ 1950 1500 33 1300 85
UT Austin 1950 1100 36 1600 70
Univ South CA 1850 1700 40 600 90

Table 5.2: University Admission Data: Source (US News)

5.3.1 Fuzzification

Table 5.2 consists of real values which need to be transformed to fuzzy values in
order to apply FCA for fuzzy contexts. In order to transform Table 5.2 to a fuzzy
table, we need to define functions mapping these real data to fuzzy values. This
transformation is based upon functions transforming real data to fuzzy data which
essentially capture the “linguistic interpretation” of the stated values. A linguistic

variable is used to characterize less precise description of an attribute.
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Table 5.3 displays an association between linguistic values and fuzzy values which

will be used throughout in our analysis.

Linguistic Value | Associated Fuzzy Value

Non-existent 0.0

Very Low 0.1-0.2
Low 03

Moderate 0.4-0.6
High 0.7

Very High 0.8-0.9
Perfect 1.0

Table 5.3: Linguistic Values and Associated Fuzzy Values

Below we provide a description of each attribute appearing within Table 5.2 as

well as its associated mapping function.

Average Applicant GRE Scores

This attribute represents the average scores of typical applicants to a particular
school. These values have been rounded to the nearest fiftieth. Table 5.2 has scores
within the range of 1850-2000. Hence for our purpose, we classify scores from “low”
to “perfect” within the range 1750-2100. With each particular value appearing
within Table 5.2 we may associate a fuzzy value according to a linear mapping
function.

Equation 5.2 provides a mapping function for transforming values from actual

values to their fuzzy equivalents. The mapping function is linear within the range



Score Range | Fuzzy Range
Below 1750 0.3
1750 - 1790 0.3 -0.38
1800 - 1890 0.4 - 0.58
1900 - 1990 0.6 - 0.78
2000 - 2090 0.8 - 0.98

2100+ 1.0

Table 5.4: Fuzzy Equivalent of Average Applicant GRE Scores

1750-2100 and constant elsewhere.
4
0.3,
f(.'l!) - ‘ I - 1750
500
1.0,
\

Total Acceptance

+ 0.3,

z < 1750,

z > 2100

1750 > z < 2100,

This attribute represents the total number of admissions for a particular school. For
this attribute a round-up staircase distribution is adopted.
The mapping function for this attribute is the staircase function given by the

following expression:

0.2[
flz) =
1.0

5%0], 0 < z < 2000,
(5.3)

z 2 2000
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Acceptance Rate

Acceptance Rate is the ratio of the total number of acceptances to the total number
of applications. The lower the acceptance rate, the greater will be the chances of an
application being rejected. Therefore, a higher acceptance rate is preferable.

For this attribute also a round-off staircase distribution is adopted. We only

state here the mapping function.
f(z) = o.1[1“”—0 +0.5],0 < z < 100 (5.4)

For next two attributes namely Total Aid and Percentage of Aid for Assis-
tantships the fuzzy equivalent distribution is the same a Total Acceptance and

Acceptance Rate. Therefore, we only provide their mapping functions:

Total Aid

0.2[—1, 0<z < 2000,

f(z) = 0" (5.5)
1.0 z 2 2000

Percentage of Aid for Assistantships

f(z) = 0.111% +0.5), 0< z < 100 (5.6)
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The context obtained after application of mapping functions stated in previous sub-

section result in the following context.

Name Avg GRE | Total Acc | Acc Rate | Total Aid | % Asst
_ ) (p2) (pa) (p4) (ps)
MIT (o1) 0.8 0.6 0.3 1 0.8
Stanford (o) 0.8 0.8 0.5 0.8 0.6
UC Berkeley (o3) 0.8 0.4 0.3 0.8 0.8
| Georgia Tech (04) 0.6 0.8 0.3 0.8 0.8
Univ Michigan (05) 0.8 0.6 04 06 0.9
Carnegie Mellon (og) 0.8 0.4 0.2 0.4 0.8
"Cornell Univ (07) 0.8 0.6 0.3 0.4 0.7
Purdue Univ (og) 0.7 0.6 0.3 0.6 0.9
UT Austin (09) 0.7 0.6 0.4 0.8 0.7
Univ South CA (0,0) 0.5 0.8 0.4 0.4 0.9

Table 5.5: University Admission Data: Fuzzified Context Source (US News)

5.3.3 Maximal Rectangles List

The fuzzified context is fed as input to the developed prototype. The list of fuzzy

maximal rectangles or fuzzy concepts is generated. There are 79 concepts in the

given context labelled from 0 to 78. They are stated in Appendix A.

5.3.4 Successor List

A successor list is also generated for the input context. The successor list con-

tains links to successors of each concept. The generated successor list is stated in



80

Appendix B.

5.3.5 Implications

For the stated example, 21 implications were generated. These are listed in Ap-

pendix A.

5.4 Interpretation of the Results

The list of concepts, successor list as well as implications can be used to extract
knowledge as well as information from the given context which is not apparent
on the surface. Below we state several ways in which the obtained results can be

applied.

5.4.1 Information Retrieval

Fuzzy Maximal Rectangles just like their crisp counterparts can be used for query-
ing as well as for answering the question and later on completing the question. For
example, if we wish to ask the question: Which schools have very high total ac-
ceptance?. Looking for an answer to this query, we first transform the linguistic
term “very high total acceptance” to is fuzzy equivalent which is 0.8-0.9. We then
search for the fuzzy maximal rectangle with the maximum number of objects that

has p3/0.8 — 0.9 in its attribute set. We find that concept labelled 65 fulfils this cri-
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teria. So the object set of this concept is the answer to the query which is: Stanford,
Georgia Tech and USC. But searching for a concept gives us more pertinent infor-
mation. The concept discovered also gives us the Average Applicant GRE Scores,
Acceptance Rate, Total Aid, and Percentage of Aid for Assistantships. The values
for these attributes are p,/0.5, p3/0.3, p4/0.4, ps/0.6. Hence we can state the fol-
lowing information: For schools having high total acceptance, the Average Applicant
GRE Score is at least moderate, the acceptance rate is at least low, the total aid is
at least moderate and the percentage of aid given to assistantships is moderate.

Hence we can now also state the complete question: Which schools have moderate
Average Applicant GRE Scores, High total acceptance, low acceptance rate, moderate
total aid and moderate percentage of aid given to assistantships?.

The above discussion clearly unveils an important point. The attribute sets of
the fuzzy Galois lattice form complete questions and the object sets are the answers

to these questions.

5.4.2 Successor Lists

As pointed out in Section 5.2, Successor Lists are used as a verbal description of the
Galois lattice structure. For the given context, the Galois lattice structure is too
complex to be visually represented. Hence we rely on a verbal description using its

successor list.
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5.4.3 Classification: Using Inheritance

Using the obtained results, we can classify the schools or groups of schools according
to some criteria.

For example in the successor list, we find that the concept labelled 2 has concepts
3,4, 7, 11 and 31 as its children. We can provide an interpretation to this link.

Concept 2 reprents Stanford and all its attributes with their associated member-
ship degrees. All its children represent other objects whose attributes are at least
less than or equal to those of Stanford. The attributes which are higher are not
shown.

For example if we wish to find out which schools are closer in attributes to
Stanford? Figure 5.7 gives us an answer. We have applied inheritance to eliminate
attributes as well as objects that are already present within the parent. For exam-
ple Stanford has attribute set:- Average Applicant GRE Score: Very High, Total
Acceptance: Very High, Acceptance Rate: Moderate, Total Aid: Very High and %
of Aid for Assistantships: Moderate. Each child concept of concept# 2 gives us the
names of schools which have some particular attribute less than or equal to Stan-
ford. So based on {Stanford}, we get all the schools that are closest to it in terms
of attribute differences. For example compared to Stanford, UT Austin (Concept#
32) has Average Applicant GRE high and total acceptance moderate. The rest of

the attributes are either equal or greater.



Concept# 12
{Univ Michigan} x
{0.8, 0.6, 0.4, 0.6, 0.6}

{-, Moderate, -, Moderate, -}

A
Concept# 8 Concept# 32
{Georgia Tech) x {UT Austin} x
{0.6, 0.8, 0.3, 0.8, 0.6} {0.7, 0.6, 0.4, 0.8, 0.6}
{Moderate, -, Low, -, -} {High, Moderate, -, -, -
Concept# 3 Concept# 63
{MIT} x {USC]} x
{0.8, 0.6, 0.3, 0.8, 0.6} {0.5, 0.8, 0.4, 0.4, 0.6}
{-, Moderate, Low, -, -} {Moderate, -, -, Moderate, -}
Concept# 2
{Stanford}
X

{0.8, 0.8, 0.5, 0.8, 0.6}

{Very High, Very High, Moderate, Very High, Moderate]

Figure 5.7: Applying Inheritance to classify Schools
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Similarly Concept# 12 gives us the attribute differences between Stanford and

University of Michigan.

5.4.4 Assocation Rules or Implications

The association rules stated in Appendix A provide us with an association between

various attributes of the context.

The first rule

= p1/0'51p2/0'41 p3/0'21 p4/0‘4a p5/06 (57)

states the information that for the objects share the attribute p; at least with
degree 0.5, p at least with degree 0.4, p; at least with degree 0.2, ps at least with
degree 0.4 and ps at least with degree 0.6. This means that for all the 10 schools
have an Average Applicant GRE Score at least moderate, Total Acceptance is at
least moderate, Acceptance Rate is at least low, Total Aid is at least moderate and
Percentage of Aid given to Assistantships is at least moderate.

Consider the following implication:

p5/0.9 = p2/0.6,p3/0.3 (5.8)

This implication provides the information that for all schools that have a very
high percentage of aid given to assistantships, their total acceptance is moderate

but their acceptance rate is low.
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In some implications, the premise as well as the conclusion have the same at-
tribute with different degrees. This is useful in establishing association when we
are sure about some attribute with a less degree but sure about other attributes
with greater degrees. Then we can be sure about the former attributes with a
greater degree. Such implications are useful in improving upon an initial value of
an attribute.

For example the implication

p2/0.8,p3/0.3,p5/0.7 = p5 /0.8 (5.9)

states the information that in the given context if p, is possessed with degree at
least 0.8, p3 with degree at least 0.3 and ps with degree at least 0.7 then ps is being
possessed with degree 0.8. This can be translated in linguistic terms as: if some
schools have high total acceptance, low acceptance rate and high percentage of aid
given to assistantships, then the percentage of aid given to assistantships must be

very high.

5.4.5 Derived Implications

As stated in Chapter 4, we could use the minimal implication set to derive further

implications. For example, we could combine implications (A-4) and (A-7). These
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implications are:

p3/04 = py/0.6 (5.10)

p4/0.6 = p,/0.6,p3/0.3 (5.11)

By combining them (using union of premises and union of conclusions, we get)

p3/0.4,p4/0.6 = p; /0.6, p2/0.6,p3/0.3 (5.12)

Obviously p3/0.3 is redundant in the conclusion, so we remove it to get,

p3/0.4,4/0.6 = p, /0.6, p2/0.6 (5.13)

This implication gives us an association between the Acceptance Rate & Total
Aid as the premise and Average Applicant GRE & Total Acceptance on the other.
It simply states that if the Acceptance Rate & Total Aid are moderate then the

Average Applicant GRE & Total Acceptance will also be moderate.



Chapter 6

Conclusions and Future Work

In this research an attempt had been made to extend formal concept analysis to

fuzzy contexts. Several useful conclusions can be drawn from the extensions.

6.1 Conclusions

1. Fuzzy Galois lattice is an exponential structure just like its crisp counterpart.

2. We can substitute linguistic variables to interpret the concepts as well as the

implications obtained from a fuzzy context.

3. Functions transforming real data to fuzzy data must take into account the

linguistic interpretation of the data.

4. Mapping a fuzzy context to a crisp one increases the size of the context.
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5. Fuzzy Galois lattice can be used for information retrieval, classification, dis-

covering implications.

6.2 Future Work

There are several avenues for possible research which had not been explored in this

work. These are:

1. A good investigation point is to analyze the effect of changing the nature of
mapping functions and compare the extracted knowledge with that obtained

by the choice of linear functions.

2. The exponential nature of fuzzy Galois lattice motivates the devlopment of
an optimized fuzzy coverage of initial data which can cover the entire con-
text. Several heuristics may be used for obtaining a near-optimal solution for

knowledge extraction.

3. Visual Representation of the fuzzy Galois lattice as it grows can be extremely
cumbersome and inappropriate. Some type of reduction scheme as well as
graphical methods could be applied to develop a quick and informatice visual

representation.



Appendix A

Fuzzy Concepts, Successors and

Implication Lists

This appendix states the complete fuzzy concepts list, the successor list as well as
the implications derived from the context presented in Table 5.5.

A.1 Fuzzy Concepts List

Below we state the complete list of fuzzy concepts derived from Table 5.5.

The format adopted is as follows: Each item within the list has two sets. The
first set is the object set which consists of 1's and 0's. A 1 in a place simply means
the presence of that object. A 0 implies an absence.

Similar is the case with the attribute set. The value appearing within the at-
tribute set imply the degree to which each attribute is possessed by the object set.

For example the set:

{ols 02, 0s, 07} x {pl/o'st P2/0°6a p3/0'3: p4/0'4’ p5/0'6}
will be represented as

Object Set: 1100101000

Attribute Set: 0.8 0.6 0.3 0.4 0.6

The label appearing in the list is just the serial number or an identifier assigned
to each fuzzy concept.
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Label

Object Set

Attribute Set

01 02 03 04 05 Og O7 Og 09 O10

PL P2D3 P4 Ps

0: 0000000000 0.80.80.51.00.9
1: 1000000000 0.806031.00.8
2 0100000000 0.80.80.50.8 0.6
3: 1100000000 0.8 0.6 0.3 0.8 0.6
4: 1010000000 0.8040.30.80.8
5: 1110000000 0.80.40.30.80.6
6: 0001000000 0.6 0.8 0.30.8 0.8
7 1001000000 0.6 0.6 0.30.80.8
8: 0101900000 0.6 0.8 0.3 0.80.6
9: 1011000000 0.6 0.4 0.3 0.8 0.8
10: 0000100000 0.80.60.40.60.9
11: 1000100000 0.80.60.30.60.8
12: 0100100000 0.8 0.6 0.4 0.6 0.6
13: 1100100000 0.8 0.6 0.3 0.6 0.6
14: 1010100000 0.80.40.30.60.8
15: 1110100000 0.80.40.3 0.6 0.6
16: 1010110000 0.80.40.2040.8
17: 1000101000 0.8 060.30.40.7
18: 1100101000 0.80.60.30.40.6
19: 1010101000 0.8040.30.40.7
20: 1110101000 0.80.40.30.40.6
21: 1010111000 0804020407
22: 1110111000 0.80.40.20.40.6
23: 0000100100 0.7 0.6 0.3 0.6 0.9
24: 1000100100 0.70.6 0.3 0.6 0.8
25: 1010100100 0.70.40.3 0.6 0.8
26: 1001100100 0.6 0.6 0.3 0.6 0.8
27 1011100100 0.6 0.4 0.3 0.6 0.8
28: 1010110100 0.7040.20.40.8
29: 1011110100 0.6040.20.40.8
30: 0000000010 0.70.6 0.4 0.8 0.7
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Label Object Set Attribute Set
01 03 03 04 Os Og Oy Og Og O1p D1 P2P3PaPs

31: 1000000010 0.70.6 0.3 0.8 0.7
32: 0100000010 0.70.60.40.80.6
33: 1100000010 0.7060.3080.6
34: 1010000010 0.70.40.30.80.7
39: 1110000010 0.70.40.3 0.8 0.6
36: 1001000010 0.6 0.6 0.3 0.8 0.7
37: 1101000010 0.6 0.6 0.30.80.6
38: 1011000010 0.60.4030.80.7
39: 1111000010 0.60.40.30.80.6
40: 0000100010 0.7 0.6 0.4 0.6 0.7
41: 0100100010 0.70.6 0.4 0.6 0.6
42: 1000100110 0.7 0.6 0.3 0.6 0.7
43: 1100100110 0.7 0.6 0.3 0.6 0.6
44: 1010100110 0.7040.30.6 0.7
45: 1110100110 0704 030.60.6
46: 1001100110 0.6 0.6 0.3 0.6 0.7
47: 1101100110 0.6 0.6 0.3 0.6 0.6
48: 1011100110 0.6 0.4 0.3 0.6 0.7
49: 1111100110 0.6 0.40.30.60.6
50: 1000101110 0.70.6 0.3 0.4 0.7
ol: 1100101110 0.70.60.30.40.6
92: 1010101110 0.70.40.3 0.4 0.7
53: 1110101110 0704030406
54: 1001101110 0.6 0.6 0.3 0.4 0.7
59: 1101101110 0.60.60.30.40.6
56: 1011101110 0.6 0.4 0.3 0.4 0.7
oT: 1111101110 0604030406
o8: 1010111110 0.70402040.7
99: 1110111110 0.7040.20.40.6
60: 1011111110 060402040.7
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Label Object Set Attribute Set
0y 072 03 04 Oy Og O7 Oy Og Oy PLP2D3PaPs

61: 1111111110 0604020406
62: 0000000001 0508040409
63: 0100000001 0508040406
64: 0001000001 0.50.80.30.40.8
65: 0101000001 0.50.80.30.40.6
66: 0000100001 0.50.6 040409
67: 0000100101 0.50.6 0.30.40.9
68: 1001100101 0.5 0.6 0.3 0.4 0.8
69: 1011100101 0.50.40.30.40.8
70: 1011110101 0504020408
71 0000100011 0506040407
72: 0100100011 0.50.6 0.4 0.4 0.6
73: 1001101111 0.5 0.6 0.30.4 0.7
74: 1101101111 0.50.6 0.30.4 0.6
75: 1011101111 0504030407
76: 1111101111 0.50.4 0.30.4 0.6
7 1011111111 0.50.40.2040.7
78: 1111111111 0.50.40.20.40.6

A.2 Successor List

Below we state the successor list of the concepts appearing within Table A-1.

126 10 30 62
3471131
38123263
513 33
591434

15 35

7864

9 26 36

37 65

: 27 38

10: 11 12 23 40 66
11: 131417 24

VENIN YIS

Table A.1: Fuzzy Maximal Rectangles List
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12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27T:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44:
45:
46:
47:
48:
49:
50:
ol:
52:

13 41

15 18 43
15 16 19 25
20 45

21 28

18 19 50
20 51

20 21 52
22 53

22 58

59

24 67

25 26 42
2728 44
27 46 68
29 48 69
29 58

60 70

31 32 40
33 34 36 42
33 41

35 37 43
35 38 44
39 45
37 38 46
39 47

39 48

49
414271
43 72

43 44 46 50
45 47 51
45 48 52
49 53
47 48 54
49 55
49 56
87

51 52 54
53 55

53 56 58
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93:
54:
95:
56:
YR
58:
99:
60:
61:
62:
63:
64:
69:
66:
67:
68:
69:
70:
71
72
73:
74:
75:
76:
17
78:

57 59

55 56 73
5774
57 60 75
61 76
59 60

61

61 77
78

63 64 66
65 72

65 68

74

67 71

68

69 73

70 75

7
7273

74

7475

76

76 77
78

78
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A.3 Implications
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The complete list of minimal base implications extracted from Table 5.2 is as follows:

P2/0.6

21/0.6,p32/0.8,p3/0.3

p3/0.4

P1/0.6,p2/0.6,p3/0.4

pg/o.ﬁ, p3/0.5

p4/0.6

p1/0.7,92/0.8,p3/0.3,p,/0.8
p1/0.8, p2/0.6, p3/0.4, 4 /0.8
71/0.6,p3/0.3,p4/1.0
p2/0.8,p3/0.3,p5/0.7

p1/0.8, p3/0.3, p4/0.6, p5/0.7
p1/0.6,p3/0.3,p5/0.8
p2/0.6,p3/0.4,p5/0.8
p1/0.7,p3/0.3,4/0.8, p5 /0.8
71/0.8,p2/0.6, p3/0.3,p4/0.8, p5 /0.8
Ps/0.9

p2/0.8,p3/0.3, p5 /0.9
p1/0.6,p2/0.6, p3 /0.3, p4 /0.6, p5 /0.9
p1/0.8,p2/0.6, p3/0.3, p4/0.6, ps/0.9
p1/0.7,p2/0.6, p3/0.4, p4 /0.6, ps/0.9

R R 2K 2K 2 00 0 N T N R 2

P1/.5,p2/ 4,p3/.2,p4/ 4,p5/ 6 (A.1)

p3/0.3 (A.2)
p4/0.8 (A.3)
p2/0.6 (A.4)
p1/0.7,p4/0.6 (A.5)
p1/0.8,p2/0.8,p4/0.8 (A.6)
7/0.6,p3/0.3 (A.7)
7/0.8,p3/0.5 (A.8)
p2/0.8,p3/0.5 (A.9)
p1/0.8,p2/0.6, p5/0.8 (A.10)
ps/0.8 (A.11)
p5/0.8 (A.12)
4/0.6 (A.13)
ps/0.9 (A.14)
p1/0.8 (A.15)
p4/1.0 (A.16)
p2/0.6,p3/0.3 (A.17)
p3/0.4 (A.18)
p./0.7 (A.19)
p3/0.4 (A.20)
p1/0.8 (A.21)



Nomenclature

English Symbols

A, B, crisp set of objects or attributes

R, S, .. crisp binary relation or context

A, B, . fuzzy set of objects or attributes

R, S, fuzzy binary relation or context

[, h crisp galois connection operators

M complete crisp attribute set of a crisp relation R

M complete fuzzy attribute set of a fuzzy relation R

T any subset of M

T any subset of M

P; candidate attribute set for premise of an implication
0; a single object

pi/a a single attribute of a fuzzy relation with degree of membership «
f(z) mapping function for a real-to-fuzzy mapping
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Greek Symbols

a membership degree of an element in a fuzzy relation
a constant fraction of rectangles being eliminated (Section 3.5 only)
u(z) membership degree of an element z in a fuzzy set

¢ The empty attribute set

R set of implications of a crisp relation

R set of implications of a fuzzy relation
Abbreviations

FCA Formal Concept Analysis

Subscripts

i, 7 any set of indices

Superscripts

R Q cfisp galois connection operators

’-‘, q fuzzy galois connection operators
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