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THESIS ABSTRACT

Name: Aijaz Ahmad.
Title: Symmetry Solutions of Some Nonlinear PDE’s.
Major Field: Mathematics.

Date of Degree: October 2005.

Finding solutions of nonlinear partial differential equations, either exact or ana-
lytical, is one of the challenging problems in applied mathematics. In particular, the
case of higher-order systems of nonlinear partial differential equations poses the most
difficult challenge. Lie symmetry method provides a powerful tool for the generation
of transformations that can be used to transform the given differential equation to
a simpler equation while preserving the invariance of the original equation. Conse-
quently, it enjoys a widespread application and has attracted the attention of many
researchers.

In this research work a complete classification of a family of nonlinear (1+2)- di-
mensional wave equations, in which the nonlinearity is introduced through a function
representing the wave speed, has been done. All possible symmetries of this wave
equation are derived and a set of reductions to ordinary differential equations under

two-dimensional sub-algebras is given.
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CHAPTER 1

INTRODUCTION

Most of the time the mathematical model of any physical problem includes differential
equations, that is why many techniques have been discovered so far in order to find
the solutions of differential equations. Although there are many wonderful techniques
available but still there exist open problems needed to be solved. While dealing
with higher order ordinary differential equations or a partial differential equation, for
which there is no direct method to solve, we usually look for some transformations
that can transform the differential equation into a class of known type or it reduces
the differential equation either in order or in number of independent variables. The
problem of finding such transformations that not only reduce the order of differential
equation, in case of an ordinary differential equation (ODE), or reduces the number of
independent variables, in case of a partial differential equation (PDE), but the given
differential equation also remains invariant under these transformations is of great
interest.

Majority of cases in which exact solutions of a differential equation can be found,
the underlying property is symmetry of that equation [46]. Apparently unrelated
methods, such as integrating factor, reduction of order, separable, homogeneous or
exact solutions, conservation laws, invariant solutions or invertible linear transfor-
mations are in fact special cases of a general integration procedure based on the

invariance of the differential equation under a continuous group of symmetries [39].



This relation was first discovered by the Norwegian mathematician Sophus Lie in the
19th century. On the basis of his findings Lie developed a noteworthy theory that
gives rise to a creative mechanism for solving differential equations. Lie’s fundamen-
tal discovery was that, in the case of a continuous group, the complicated nonlinear
conditions of invariance of the system under the group transformations could be re-
placed by much simpler equivalent linear conditions reflecting a form of infinitesimal
invariance of the system under the generators of the group. In almost every physically
important system of differential equations, these infinitesimal symmetry conditions,
called defining equations of the symmetry group of the system, can be explicitly solved
in closed form and thus the most general continuous symmetry groups of the system
can be explicitly determined [39]. Lie’s continuous groups, known as Lie groups,
have a wide range of applications in many different pure and applied areas and disci-
plines of mathematics and physics including algebraic topology, differential geometry,
bifurcation theory and numerical analysis.

In the last two decades an enormous amount of research has been done in the
field, both in the application to concrete physical system as well as extension of the
scope and depth of the theory itself [9,14,19,22,26,27,29,31,41,44,53].

Lie symmetry group of transformations depends on continuous parameters, and
it maps solutions of differential equations to other solutions. In classical framework
of Lie, these groups consists of geometric transformations on the space of indepen-
dent and dependent variables for the system and act on solutions by transforming
their graphs. Most common examples of these transformations are: groups of trans-
lations, groups of rotations and groups of scaling symmetries, but still there are huge

range of possibilities. Contrary to discrete symmetries such as reflections, continuous



symmetry groups have great advantage that they all can be found using explicit com-
putational methods. Introduction of continuous groups transforms complex nonlinear
conditions expressing the invariance of a differential equation, under its symmetries,
into linear conditions which expresses the infinitesimal invariance of the equation un-
der the group generators. These infinitesimal generators can be calculated directly by
a straightforward algorithm which is so mechanical that several computer packages
are available to perform the calculations [52]. Because of this reason these generators
are of prime interest in the theory.

By Lie’s fundamental theorems, the infinitesimal generator completely character-
izes the structure of the Lie symmetry group and thus the corresponding Lie algebra
under the commutation operator [11,39,46]. After being determined, a symmetry
group of a differential equation has many applications. New solutions of the system
can be constructed using the defining property of such a group, from known solu-
tions and thus build up classes of equivalent solutions, where equivalence means one
solution can be reached by applying a symmetry to a different solution. Even if a
given differential equation cannot be solved completely through use of its Lie group
of point symmetries, the Lie group can still be used to determine what are known
as invariant solutions, also known as similarity solutions or group invariant solutions.
Invariant solutions are those solutions that are invariant under a particular symmetry
or a subgroup of the Lie group and have proved to be exceptionally important in the
area of symmetry analysis, particularly for PDEs. On occasion, it is often prudent
to search for particular types of solutions to a given PDE, such as travelling waves
or separable solutions, in fact, such approaches are precisely the same as looking

for solutions that are invariant under a particular group of transformations. The



symmetry group thus provides a means of classifying different symmetry classes of
solutions, where two solutions are deemed to be equivalent if one can be transformed
into the other by some group element. Symmetry groups can also be used to effect a
classification of families of differential equations depending on arbitrary parameters
or functions. Often there are good physical or mathematical reasons for preferring
these equations with as high a degree of symmetry as possible. Types of differential
equations that admit a prescribed group of symmetries can also be determined by
infinitesimal methods using the theory of differential invariants.

In case of ODEs invariance under a one-parameter Lie group of transformations
means that the order of the equation can be reduced by one and a single quadrature
recovers the solutions of the original equation from those of the reduced equation, for
first order ODE this is equivalent to determining the solutions explicitly [46]. Any
ODE that has Lie symmetries equivalent to translations and a change of coordinates
can be integrated directly, such coordinates are known as canonical coordinates. For
higher order ODE multi-parameter symmetry groups beget further reductions in order
via quadratures, but it requires group to satisfy an additional solvability requirement,
solutions of the original equation may not recover from the solutions of the reduced
equation by the quadratures only.

The invariance of partial differential equations under Lie groups of transformations
is not quite straightforward like ODEs. Invariance under a one parameter Lie group
of transformations reduces a PDE with two independent variables to an ODE; if the
number of variables in a particular PDE is more than two, say n, then invariance under
an m-parameter Lie group causes reduction in the number of independent variables

in PDE by m. Symmetry groups are helpful in determining explicitly special types of



solutions which are themselves invariant under some subgroup of the full symmetry
group of the system. These group invariant solutions are found by solving a reduced
system of differential equations involving fewer independent variables then the original
system [11,39]. These general group-invariant solutions include the classical similarity
solutions coming from groups of scaling symmetries and travelling wave solutions
reflecting some form of translational invariance in the system, as well as many other
explicit solutions of direct physical or mathematical importance. For many nonlinear
systems, there are only explicit exact solutions available. These solutions play an
important role in both mathematical analysis and physical applications of the systems.

A lot of research is being done in the classification of symmetries [19,23,25,31,32,
34,53], linearizing transformations and invariant solutions [18,20,35-38,41,43,44]. A
reference book containing symmetries of many PDEs was authored by Ibragimov [24].
Lie classical symmetries have many applications to differential equations and their
solutions. There are many extensions to the classical symmetry method that expands
the uses of symmetry analysis as a whole [4-6, 13,42, 45,49, 50]. Transformations
that act as diffeomorphism (differentiable + homeomorphism) on the subset of the jet
space, by a process known as prolongation, are known as generalized symmetries. The
infinitesimal generators of these transformations depend on derivatives of dependent
and independent variables up to a finite order. If this dependence is only up to
first order derivatives, then these symmetries are called contact symmetries. These
symmetries are also referred to as dynamical symmetries, internal symmetries, Lie-
Backlund transformations and higher-order symmetries. There is a class of point
transformations that are not symmetries at all, but can lead to exact solutions of

PDEs; these symmetries are called non-classical symmetries. Notion of non-classical



symmetries is given by Bluman and Cole [11,12]; in the literature these symmetries
are also referred to as conditional symmetries because the solutions obtained by these
are not achievable through classical method. Symmetries generated by infinitesimal
transformations are local symmetries, local due to the reason that the infinitesimals
are well defined at any point if the solution of differential equation is sufficiently
smooth in the neighborhood of this point. A symmetry is non-local if it depends
upon integrals of dependent variables, Bluman and Kumi [11] gives the concept of
potential symmetries build on the definition of non-local symmetries.

The symmetry analysis of (141)-dimensional nonlinear wave equation has been
done by many authors [8,13, 18,21, 32,34, 36,48]. The two-dimensional (142) wave
equation with constant coefficients has been studied with an equivalent vigor [17,51].
However, the group theoretic approach to the equation with non-constant coefficients
and the non-linear case have only been studied in specific cases and, here too, complete
results have either not been attained or not presented so that very few exact solutions
invariant under symmetry are known [7]. Recently Gandarias et.al. [21] has discussed
(141)-dimensional nonlinear wave equation using Lie symmetry method. Complete
group classification is presented and achieved optimal system of a nonlinear wave
equation. Observing that a complete classification gives more elaborative insight of
a differential equation, an in-depth study of a family of nonlinear (14-2)-dimensional
wave equation has been done. Group classification and reduction to an ODE under
two dimensional closed Lie algebras are obtained.

Organization of the thesis is as follows: in the first chapter a brief description of
partial differential equations is given, chapter two is about the basic concepts, defin-

itions and theorems required to find the Lie symmetries. In chapter three a detailed



step by step procedure to find Lie symmetries of a PDE is given with examples. The
last chapter is solely about the work done during the research, a simple case of a class

of nonlinear wave equations is given following with two more general cases.



CHAPTER 2

PARTIAL DIFFERENTIAL EQUATIONS

2.1 Introduction

Partial differential equations (PDEs) are one of the fundamental areas of interest in
applied analysis. The applications arise almost in all areas of science and engineering.
Most of the Physical processes cannot be modeled mathematically by ordinary differ-
ential equations (ODEs) because the parameters defining the system depend on more
than one parameter. For example, the temperature ‘v’ in a bar of length ‘I’ depends
on the location ‘z’ in the bar and the time ‘¢’ from when the initial conditions were
applied.

A PDE is an identity that relates more than one independent variables =, vy, z,.....,
a dependent variable u(z, y, z,.....) (the number of dependent variables can be more
than one) and the partial derivatives of u. Derivatives are usually denoted by sub-
scripts i.e. Ju/0x = u,, and similarly for higher order derivatives. For PDEs the
distinction between dependent and independent variables is always kept unlike to
ODEs where the relation of dependent and independent variables can be interchanged
for instance in order to solve the differential equation. One of the main aims of the
studies in this regard is to find exact solutions of these PDE’s. While a reasonably
comprehensive theory exists for linear PDE’s; the nonlinear PDE’s still needs a lot to
be done as there is no unified theory applicable to a wider class of nonlinear PDE’s.

This aspect will be on focus of attention in this thesis. In particular, we shall be



considering nonlinear wave equations.

Definition 2.1 A second order PDE in two independent variables x (known as spatial
or position coordinate) and t (known as time coordinate) and one dependent variable

u(z,t) is an equation of the form,
H(xatau7u$7utau$xauxt7utt) = 0. (1)

A solution u = u(z,t) of a PDE is a function, which is twice continuously differen-
tiable and that reduces (1) to an identity for (z,t) in D; the domain of definition for
PDE [33].

The condition of being twice continuously differentiability is due to the second or-
der derivatives involved in (1). Graphically the solution is a smooth surface in three
dimensional xyt-space, over the domain D in xt-plane. The domain D of the problem
is a space-time domain. Problems that include time as an independent variable are
called evolution problems. When two spatial coordinates, say x & y, are inde-
pendent we refer to the problem as an equilibrium or steady state problem [33].
Similar to the general solution of an ODE, a PDE of type (1) has infinitely many

solutions as the general solution of a PDE depend on arbitrary functions.

Example 1 Consider a PDE,

Uty = T,

integration with respect to x gives,

1
U = 5151’2 + f(t),
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where [ is an arbitrary function. Again integration by t gives the general solution,

1
u = Zt2x2 + g(t) + h(z),

where h(z) and g(t) = [ f(t)dt are arbitrary functions. Thus the general solution

depends on two arbitrary functions.

2.1.1 Initial and boundary value problems

The general solution of a PDE contains unknown functions similar to unknown con-
stants in case of ODE’s. In order to find the exact solution of a PDE we need initial or
boundary conditions. An initial condition prescribes the unknown function at a fixed
time t = to whereas a boundary conditions gives its value on a curve or a surface. A
condition given along any other curve in the xt-plane is called boundary condition.
PDEs with auxiliary conditions are called boundary value problems. A general solu-
tion of a PDE has arbitrary functions involved in its expression. A boundary value

problem consists of a PDE and corresponding initial or/and boundary conditions.

Definition 2.2 A boundary value problem is said to be well posed if,
1. It has a solution.
2. This solution is uniquely determined.

3. The solution is stable, i.e. a small change in the boundary data induces only a

small change in the solution.

2.1.2 Linear and Nonlinear PDE

A PDE in the form of an operator L is given as,
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L u(z,t) = f(x,t), (x,t) € D (2)

where L is a partial differential operator. The equation (2) is a linear equation if for

any functions u , v and constants « , (, it satisfies the condition,
Lcu+pfv)=aLu+pLw. (3)

If equation (2) does not satisfy the above condition, then it is called a nonlinear PDE.

Example 2 Consider the heat equation u; — ku,, = 0. For this equation the differ-

ential operator 1is,
0 0?

It is easily seen that the above equation is linear because it satisfies the linearity

criterion (3) as shown below,

L(O./ U—f-ﬁ 'U):(Oé U‘f—ﬁv)t_k(a U_’_ﬁv)wx)
:aUt‘i‘ﬁ’Ut_kauxx_kﬁ/UII?
:a(ut—kum)-i-ﬁ (Ut_kvww)v

=a Lu+ [ Lv.

Example 3 The PDE Lu = uu; 4+ 2tzu = 0 s a nonlinear equation because,
L(u+ w) # Lu + Lw.

2.1.3 Homogeneous PDEs

A PDE is called homogeneous if in equation (2) the known function f(z,¢) =0 on

the domain D. Examples of some homogeneous equations are:
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1. gy + uy, = 0 (Laplace’s equation)

2. Uy — Uy, = 0 (Wave equation)

3. uy — Ku,, =0 (Heat equation)

4. Uy — gy + 208u; + au = 0 (Telegraph equation)
5. U + Ugzr + vu, = 0 (Korteweg-de Varies equation)

If the known function f(z,t) in (2) is not identically zero, then it is called a

non-homogeneous equation. Some examples of non-homogeneous PDEs are:

1. Upy +uyy = G. (Poisson’s equation)
2. uuy + 2tru = sin(tx).

2.1.4 Superposition Principle

It is not always possible to write the general solution of a PDE in a closed form,
therefore the method of combining known solutions is very important. For homoge-
neous equations the rule for combining the known solutions is called the superposition

principle.

Theorem 2.1 Letuy, usg, ........ , Uy, be solutions of the homogeneous linear PDE equa-
tion Lu = 0, then due to the linearity,
L( D) =D L)
i=1 i=1
and,

L(ciu;) = ¢; L(w;),
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where ¢; are constants ¥V 1 =1,2,....,n, we have,

L( ; ciui) =0,

thus the linear combination of solutions is also a solution of the PDE; this is called

the superposition principle.

Superposition principle can be extended to infinite sums. If the differential op-
erator can be shifted inside the integral sign then the applicability of superposition
principle can be extended to continuous cases for example let u(x,t, «) be solution of

(2)Vae ACR, and
u(z,t) :/ cla) u(z,t, a)da
A
where ¢(a) is bounded and continuous function V o € A. Then Lu(z,t) = 0 i.e.

u(z,t) is also a solution of (2).

2.1.5 Subtraction Principle

Superposition principle is only applicable to the homogeneous PDE’s. A principle
that relate nonhomogeneous equations to homogeneous equations is known as sub-

traction principle [40].

Theorem 2.2 If u; and wus are solutions of a nonhomogeneous linear equation
Lu = f(x,t), then uy—uy s a solution of the associated homogeneous linear equation

Lu=0.

Once we know the particular solution of a nonhomogeneous PDE and a general
solution of the associated homogeneous PDE, we can find the general solution of the

nonhomogeneous equation.
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2.1.6 Types of PDEs

The general form of a linear second order PDE in two variables is,
Augy + 2Bugy + Cuyy + Duy + Euy + Fu =G, (4)

where A, B, C, D, E, F, G are functions of (z,y).
Depending on the second order coefficients A, B and C, second order linear PDE’s
are classified in three fundamental types known as parabolic, elliptic and hyperbolic

equations [47], as follows,
1. If AC = B2, then PDE is called Parabolic equation.
2. If AC > B?, then PDE is called Elliptic equation.

3. If AC < B?, then PDE is called Hyperbolic equation.

Remark 2.1 Parabolic equations govern diffusion processes, elliptic equations model
processes in equilibrium processes and hyperbolic equations govern wave propagation.
The examples of elliptic equations are Poison and Laplace equations whereas wave

and telegraph equations are hyperbolic and the heat equation is a parabolic equation.

2.2 Wave Equation

Waves are defined as disturbances which are periodic in time and space. The most
common examples are water waves, sound waves, stress waves in solids and electro-
magnetic waves. The convection of mater itself with wave is not necessary, energy
is carried by the disturbance that propagate with wave. Mathematical model of an
undistorted wave travelling with a constant velocity ‘¢’ in two independent coordi-

nates space ‘z’ and time ‘¢’ and one dependent coordinate ‘u’ for disturbance is given
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as a function,
u(z,t) = f(x — ct). (5)
Initially at ¢ = 0 the wave equation is u = f(x), for time ¢ > 0 the wave moves ‘ct’
units to right. The simplest partial differential equation that governs the equation of
type (5) is,
us + cu, = 0. (6)

This equation is called the advection equation with general solution (5). Similarly

periodic or sinusoidal travelling waves are given by,
u = Acos(kx — wt), (7)

here A is the amplitude, k is the wave number and w is the angular frequency
of the wave. Wavelength and time period are respectively given by A\ = 27 /k and

T = 27 /w. Equation (7) can be written as,
u=A cosk(a: — %t),

that represents a travelling wave moving to the right with velocity ¢ = w/k, known
as phase velocity. Undistorted waves are linear waves.

There are many waves that distort or break with time. These are all nonlinear
waves. The examples of such waves are surface waves and stress waves propagating in
solids or gases. Transmission of signals in a material increases with pressure causing
disturbance, since disturbances travel faster when the pressure is higher therefore
the wave steepens as time passes until it propagates as a discontinuous disturbance
or shock wave. The same phenomenon causes the formation of release waves or

rarefaction waves that lower the pressure. Apart from these two trends there is one
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third known as dispersion, in which the propagation speed depends on the wavelength
of the particular wave therefore longer waves can travel faster than waves of shorter

wavelength. Dispersive wave arises from both linear and nonlinear equations.

2.2.1 Linear Waves

A simple (141) second order linear wave equation is given as,

Pu 0%

ik vl (8)

Theorem 2.3 The general solution of the equation (8) is,
u(z,t) = F(x +ct) + Gz — ct),

where F' and G are two arbitrary functions.
Proof Let u(x,t) be a solution of (8), therefore u(x,t) is a twice differentiable
smooth function i.e. u € C2(R2) where R* denotes the zt-plane. Introducing new

variable &, T and v such that,

§=ux+ct, T=x—ct and vzv(f,T):u(é—gT,g;CT>,
we have
aiz; =0 (9)
Integration with respect to & qives,
ov 0

P = g(7), or E(’U—G>:O,

where g € CY(R) and G € C*(R) such that %% = g(7). Further integration of the

above equation with respect to T gives,

v(&, ) =G(T)+ F(&), where F € C*(R).
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By transforming the last equation back into coordinates x, t and wu we obtain the

solution of equation (8) given as,
u(z,t) = Fx +ct) + G(z — ct).

Example 4 (Initial Value Problem) Corresponding to the simplest PDE govern-

mg wave equation

Ut = CPUyy, —00 < 1 < +00, (10)

u(z,0) = ug(x), u(x,0) = uy(x), (11)

where ug and uy are any functions in C*(R) and C*(R) respectively.
Solution
The general solution of the wave equation is given as u(x,t) = F(x+ct)+G(z—ct).

Therefore the initial conditions becomes,
F(x) + G(x) = uo(x), (12)

cF'(x) — cG'(x) = uy(z). (13)

Solving (12) and (13) for F(x) and G(z) we get,

3
=
I

3 {41 [+ ) (14)

G) = {uo(x) - %/0 iy (€)de — /@} | (15)

Thus the solution of the initial value problem 1is,

uwwzéwwmww+mu—m}+i/zUM@@. (16)

20 r—ct

The formula (16) is called d’Alembert formula.
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2.2.2 Nonlinear Waves

Corresponding to the simplest PDE (6), governing wave equation, we have the non-

linear case,

ug + f(u)u, =0, r e R, t >0, (17)

u(,0) =g(x), zeR (18)
where f’(u) > 0. The characteristic equation of this PDE is given by,

dx
= (), (19)

along these characteristic curves wu is constant, because,

du
Also, from (19) it is clear that,

Pz df(u) du
a2 dt

therefore characteristic curves are straight lines.

Now from equation (19), by using the initial condition (18) we obtain

z=f(g(§) t+¢&. (20)

This is the equation of characteristic curves. The solution u(z,t) of the initial value
problem (17) is given by,
u(z,t) = g(£), (21)

where ¢ is given implicitly by (20).
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Example 5 (Damped waves) Consider the equation,

U+ u uy +au=0, a 1is a positive constant, t>0, (22)
u(z,0) = —g . (23)

In characteristic form the problem is equivalent to,

du dz
- B 24
with nitial condition,
x=E, u:—§, at t=0.
2
The general solution is given as,
u=ce ™, T = _a e 4 ey .
a
By applying initial conditions we get,
6 —at 5 —at 2a — 1
YT Tt =5 T T )
which gives,
2ax
§= s—
20 —1+e
thus the solution of (22) is,
—at
(1) = axe

1—2a —eat "’

2.2.2.1 Burgers’ Equation

Burgers’ equation is a fundamental partial differential equation occurring in various

areas of applied mathematics, such as modelling of gas dynamics and traffic flow.
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Definition 2.3 The general form of Burgers’ equation is,
Up + Uy = Uy, (25)

here > 0 is a viscosity coefficient and the term p uy, s called the diffusion term.

When =0, Burgers’ equation becomes the inviscid Burgers’ equation,
ur + uu, = 0. (26)

It is similar in form to the advection equation. This is similar to nonlinear equation

described in example (5).

Example 6 (Burgers’ Equation without Diffusive Term) Substituting f(u) =
u and g(x) =u(x,0) =2 —1x in equation (17), will give inviscid Burgers’ equation
(or Burgers’ equation without diffusive term) with an initial condition. From (20) we

find the equation of characteristic curves given as,

r=fR2-Ot+6=(2-Ht+¢,

solving this equation for & we obtain,

xr — 2t
6"1—t‘

Therefore from equation (21), the solution of viscid Burgers’ equation is,

x—2t_2—x
1—t 1—t°

The expression for the solution indicates the breaking time t = 1.

Example 7 (Burgers’ Equation with Diffusive Term) Consider the Burger Equa-

tion with diffusive term pu,, where @ >0, given as,

Up + Uy = Py, (27)
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we are interested in the travelling wave solution of this equation.

Let u(x,t) = f(z — ct) be the solution of (27), we need to find the expressions
for f and c. Let us denote w = x —ct for simplicity. Substituting f(w) in (27)
we get,

—cf' + [ = nf"=0,

where,
df (w)

f/:—7 and f//:

d* f(w)
dw ’

dw?

Integration with respect to w yields,
1 2 !
—cf g —uf=a

(v being constant of integration)

df 1

—p_Cr

(f = ) = f)
2p
where  fi = c—Vc+2a and fo = c+ VA +2a  are the roots of quadratic

equation f? —2cf — 2a. Assuming that c*+2a >0 and integrating (28) we get,

fr= : (28)

wo df
2u /(f—fl)(f—fz)’

_ 1 1H{f2_f}
fo—fi f—Ht)~

=1 _ (fa—f1)
ln{f—fl} Bl 20 “

Lw
flo) = IS (29)
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where,

ﬁ:—(fQ_fl) > 0.

21
Also f~ fi and f~fo for w>>0 and w << 0 respectively. The value of f

at w=0 1is f(0)= @ . Therefore the solution of (27), using (7), is given as,

fot f1 Pl
U(l‘, t) = f(fL’ - Ct) = 1+ eBlz—ct) )

and the value of ¢ can be calculated from f; and fo wusing the formula,

C_f1+f2
==

From the above two examples it is clear that when the diffusion term p wu,, is
absent in Burgers’ equation, the solution would shock up or break. In the presence of
diffusion term the effect of shock or breaking trend in the solution will reduce. The

shock effect is inversely proportional to the diffusion term involved.
2.2.2.2 Korteweg-de Vries Equation

In Burgers’ equation the nonlinearity comes with diffusion. The nonlinear term u u, ,
that causes the shocking-up effect, is balanced by diffusive term g u,,. In many
physical problems related to wave motion, the resulting equations involve nonlinearity
with dispersion, for example u; + u uy, + Uz = 0. In this equation the shocking
effect caused by wu u, is balanced with dispersive term w,,,. Nonlinearity steepens
wavefronts whereas dispersion spread them out. Equation governing this type of
problem is called Korteweg-de Vries (KdV) equation.

The KdV equation also models long waves in shallow water [16]. It expresses the

balancing of the nonlinear steepening of shallow water waves by the effect of linear



23

dispersion. The general form of the equation is given as,

U + a—ﬁuux + %um = 0. (30)
Y Y

Example 8 (Solitary waves) Solitary-wave solution of the KdV equation is a trav-
elling wave of permanent form. It is a special solution of the governing equation as

it does not change the shape and propagates at constant speed. Consider the KdV

equation,

Uy — Guly + Ugyy = 0, (31)
this is same as (30) with constant terms 0‘7—5 and % replaced by —6 and 1 for
simplification.

Let u(x,t) = f(§) where & =x—ct, ‘¢’ being a constant, be the travelling wave

solution of this equation. Substitution in equation (31) will give,

_Cf/_6ff/+f///:O,

which after integration gives,
—cf =3f*+ f" = a,

where « is constant of integration. Using f' as integrating factor and integrating

second time, yields,
1\ 2 2
(f2> =f3+%+af+ﬁ,

where 3 is the second constant of integration. Applying the boundary conditions

5" —0 as & — +oo describing solitary wave, we obtain,

(f)* = f@2f + o). (32)
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It will have a real solution if 2f > —c. Now by integrating equation (32), we have,

[arvar—=]

by using the substitution f = —% c sech®0, (c>0) we get the solution,

o=

1

f(x—ct):—%csechQ{—Q cé(x—ct—xo)}, (33)

where o is constant of integration. The expression (33) is called the solitary wave

solution.



CHAPTER 3

LIE SYMMETRIES

3.1 Introduction

Lie symmetry method is a powerful technique that relates seemingly different methods
for finding the solution of ODEs like, integrating factor, separable equation, homoge-
neous equation, reduction of order and methods of undetermined coefficients etc. Lie
group depends on continuous parameters and consists of point transformations acting
on the space of independent variables, dependent variables and derivatives of depen-
dent variables. These continuous group of point transformations can be determined
by an explicit computational algorithm.

Common examples of Lie groups include translations, rotations and scalings. By
the application of one-parameter Lie group of point transformations, under which
differential equation remain invariant, order of an ODE reduces by one and in case of
PDE the number of independent variables reduces by one. Lie groups are completely
characterized by infinitesimal generators which can be further prolonged to the space
of independent variables, dependent variables and the derivatives of the dependent
variables up to any finite order. Thus nonlinear conditions of group invariance of a
given system of differential equations reduce to linear homogeneous system determin-
ing the infinitesimal generator of the group.

Similarity solutions can be found for an invariant system of partial differential

25
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equations under a Lie group of point transformations. Solutions thus found are in-
variant under a subgroup of the complete group. A subgroup of order r reduces the

number of independent variables by r in the given PDE.

3.2 Lie Groups

Lie groups are important in mathematical analysis, physics and geometry because
they serve to describe the symmetry of analytical structures. Lie groups arise as
groups of symmetries of some object, or more precisely, as local groups of transfor-

mations acting on some manifolds.

3.2.1 Groups

iy 7

Definition 3.1 A group is a set G together with a binary operation *’ called

group operation, satisfying following properties:

1. Closure
For any two elements « and 3 of group G there exist an element v € G

such that,

ax [ =r.

2. Associativity

For any three elements «, 5 and v in G,
ax (fxy)=(ax*f)*7.

3. Identity Element

There exists a unique element e in G such that,

axe=e*xa=aqa, V aed.
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4. Inverse Element

1

For each element o in G there exists a unique element o~ in G such

that,

o * =« o= e.

Definition 3.2 (Abelian Group) A group G is said to be Abelian if in addition

to above properties it satisfies the property:
axf3=03xa, V a,0 €.

Definition 3.3 (Subgroup) Let H be a subset of G. Then H is said to be a

subgroup of G if it satisfies all the conditions of the group (G,*) under the same

iy ?

binary operation .

Example 9 1. The set Z, of integers is a group under group operation “+’. The
identity element of the group (Z,+) is 0 and the inverse of each element

a€Z 1s —a. It is also an abelian group.

2. Another example of abelian group is the group (R,+), where R is set of real
numbers, with identity element 0 and the inverse of each element « is — a.

Since Z C R therefore the group (Z,+) is a subgroup of (R,+).

3. Similarly (R\{0}, X) s a group having identity element 1 and the inverse

of each element « is 1/a.

3.2.2 Groups of Transformations

Definition 3.4 Let G be a set of transformations and G; € G such that,

Gi:a— ala;e),
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where o« and & both belong to the set & C R™ and the parameter ¢ € A C R
with composition law (e, d) for all €, 6 € A, satisfying the conditions:
1. G; is a one-to-one transformation for each i and for all € € A.
2. (A, 0) is a group.
3. For the identity element e of the group (A, ¢), &=« i.e.

Gi(ase) = a, v i.

4. Let &= G;(as€) then,

Gi(a;0) = Gi(as (e, 0)).

On
I

3.3 Lie Groups of Transformations

Definition 3.5 A transformation group G with composition law v s said to be a

Lie group of transformations of one-parameter if:

1. The parameter € 1is continuous. i.e. the set A is an interval in R.

2. Fach element G; of the group G s an infinitely differentiable function of

aeS CR™
3. The composition function (e, ) is an analytic function.

Equivalently, a group of infinitesimal point transformations of one parameter e is
a transformation group that is invertible and has an identity transformation. Being
an invertible means that repeated application of the transformation leads to the
transformation of the same family. Mathematically, this statement can be recast as:

Let & =xz(x,y,;¢) and 3§ =y(x,y,;€¢) be a transformation group such that
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= 2(%,7;€) = 2(z,y; €) for some € = (¢, ¢).

[S—
K

2. There exist ¢, such that,
iz, y; €0) = , J(z,y:€0) =y,

then it is called an one-parameter group of point transformations.

Example 10 The transformation defined by,

Gz(x7y) - (x7y)a
such that,

T

T COS€E— 1y sine, Y= sine+y cose,

where € is an infinitesimal parameter forms the group of rotations transformations.
Since,

cosd — ¢ sind = xcos(e +0) — ysin(e + 0),

K
Il
N

sind — g cosd = wsin(e + ) — ycos(e + 0).

i
Il
N

Also for e =0 we have

<
I
<

T =ux, and

Therefore, the above transformations constitutes a one-parameter group of Lie point

transformations, where,

(€, 0) = €+ 9.
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Example 11 A Group of translations in the plane is defined as,
T =1x+e¢, and y=1y-+e
In this case,

—F4+d=x+e+9, and J=0+0=y+e+0,

KN

with composition law and identity element given respectively as,

(e, d) =€+ 0, and e = 0.

Therefore the group of translations is a Lie group.

Example 12 The group of scaling transformations is defined as,

T =€, and y=ey
In this case, the invertibility condition gives,
f=ie=zxe e =xet simalarly =g =ye e =y e,

with tdentity element,

60:07

and the composition law,

(e, ) =€+ 0,

Thus the group of scaling transformations is a Lie group of transformation.
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Example 13 Consider the reflection transformations defined as,

T=—ux, and 0

_y‘

Since,

K

=-y=—(-y) =v,

N33

=—I=—(—2)=ux, and

which shows that it is not invertible hence does not form a Lie group of transformation.

3.4 Infinitesimal Transformations

Consider one parameter (e€) Lie group of transformation with identity ¢y =0 and

composition law 1) defined as,
a = Gi(ase). (34)

Taylor expansion of the transformation (34) about ¢y =0 is given as,

a = Gi(a;€) + (e — €) % _ O(é?)
_ da 2
=a+te 7% |0 + O(¢€”), (35)
where %—‘Z -, =¥ a).

In particular for (z,y) € R?* the Taylor expansion of transformation G such

that,
Gi: (z,y) — (2,9),
is given as,
T=x+c¢€ @ + ..
de le=o ’
z}zy—l—e% ezo—i—.... (36)
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Substituting,
0z 0y
E :g('xay>7 and a0 :77(%?/);

in (36) reduces it to,

z

r4e&(x,y)+...,

g=y+ten(z,y) +.... (37)

This is called the Infinitesimal Transformation and the components &(x,y) and
n(x,y) are called infinitesimals of the transformation. Transformation (34) can be

found from the component £(«) by integrating,
lJe! -
W), (38)

with initial condition @& |.—o= G; |e=0= .

Theorem 3.1 (First Fundamental Theorem of Lie [11]) There exists a para-
metrization T(€) such that the Lie group of transformations & = G;(«; €) is equivalent
to the solution of the initial value problem for the system of first order differential

equations,

— =¢(@), (39)

with,

rT=x when T =0. (40)
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3.4.1 Infinitesimal Generator

Consider the transformation,

a = Gz(aa 6)7 (41>
where a = (ay, g, as,...,a,) € R". Then the operator defined by,
=)V =3 e a) L (12)
1 (904]c

is called an infinitesimal generator of the one parameter group of transformation

(41) where &F = 65‘6’“ le=o give the components of the tangent vector x,.

Consider an arbitrary point (z,y) € R? and the transformation given in (37),

the symmetry generator corresponding to this transformation is,

0 0
X = f(xay)% + U(iﬂ,y)a_y,

where &(z,y) = 2 |y and n(z,y) = Z | .

Any transformation (41) can be determined completely with the help of infinites-

imal generator x by integrating,
foJe!
k¢~ k
= — 43

with initial condition &y, |—o= ay.

Theorem 3.2 The one-parameter Lie group of transformations & = Gi(a;e) s
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equivalent to:

a = eXa
2

€
a—l—exomLEXQoH—...

2

€

o0 Ek k
k=0

where the operator x is defined by (42).

Example 14 Consider the group of rotations defined as,

T =2 COSE— 7Y sine, Y=o sine—+y cose.

The components of symmetry generator are,

oz Yy
= -— = — d = — p— .
£z,9) O¢ le=0 Y a 0, y) Beleo — *
Therefore the symmetry generator is given as,
0 0
= —y— — . 45
X="Yg t oy (45)

The inverse problem is to find the corresponding transformation of a symmetry gen-

erator. There are two different ways to do this:
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a)  Lie series corresponding to the generator (45) is,

~ X 6_ k
r=ce x—zklxx

k=0

1 2 3 4 5

0 € € 2 € 3 € 4 € 5
—X$+1!X35+2!X1'+3!X93+4!X9€+5!Xl“+---

el €2 3 A 5
TR TE TR - I

= T cose — Yy sine.

Similarly,

©  k
g]:eexy:Z%Xky::c sine 4y cose.
k=0

b) For explanation of the second method consider the symmetry generator,

X= % o y(?y'

Using formula (43) we have following relations,

o
e

=1, and n(z,y) = o _ Y,

£(@,9) =

integrating these two equations and applying the initial conditions #(0) = x  and
9(0) =y, we obtain,

€

T =ex, and

<
I
)

<

This is the group of scaling transformations.
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3.4.2 Transformations of Generators

The infinitesimal symmetry generator x; = > .., fi(a)% , in variables «;, can be

transformed in to the new variables «) using transformation law. This law gives
the corresponding change in the components &'(a) with the change of independent

variables «;.

Suppose,
o = al(oy), such that | 0al/Ocv; | # 0.
By chain rule for derivatives,
a 0 Oaq
Oa; O Ooy

In the light of above x; becomes,

where,
(o) =€)
Since,
~ i Oy k
X; ok = ;s( )30, = &),
and

Xj Q) = Zﬁil(a) e (), for 1<k<n,

i=1 v
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accordingly the infinitesimal symmetry generator can be written as,

" o )
Xi= >, (G a) 90 > (o) Bl (46)

i=1 i=1
Thus given infinitesimal symmetry generator x; in coordinates c; can be trans-
formed to new coordinates o/ by the application of infinitesimal symmetry generator

to coordinates o).

Example 15 Consider the infinitesimal symmetry generator defined as,

In order to transform it in new variables u and v given by,
u=y/x, v = x2y.

Application of x on u and v yields,

ou N ou 0
U =r — —_— =
Ov N ov 5
V=T — — =2
X G y(?y Y
= 2.

Therefore the infinitesimal generator x in new variables is given as,

0
X = 21}%.



3.4.3 Normal Form

A result [46] in the theory of partial differential equations states that,

for a system of equations,

X7 = Zfz aaz L,

38

i 8a
where ¢=1,2,...,n and k=2,3,...,n, there always exist a nontrivial solution

{7(ai), (i)}

This result ensures that there always exist coordinates in which the infinitesimal

symmetry generator can be maximally simplified. Therefore the symmetry generator

X =1, & ()52 can be reduced to,

Equation (48) is called the normal form of the generator x.

Example 16 Consider the rotational transformations defined as,

T = COSE— Y sine, Y = sine€—+y cose.

Corresponding symmetry generator is given by,

= - g—i—xg
X="Y 52 oy

Transforming the generator x in polar coordinates,

r= (2% 4+ y?)2, and ¢ = arctany/z,

(48)
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we have,
or or
Xr:—y%—l—a:a—y
= 0.
qu:—ygﬂfg—i
=1.

Thus in new coordinates the generator is given as,

0

X:8_¢7

which is the corresponding normal form.

3.5 Invariance

Lie group of transformations can have invariant functions, surfaces, curves and in-
variant points. This is the most powerful observation of Lie group theory because
due to the invariance property, complicated nonlinear conditions can be transformed
into simple linear conditions under the corresponding infinitesimal generator of the
symmetry group. A solution of a system of equations is a point that satisfies the
system. Symmetry group of the system transforms its solutions to other solutions

giving new invariant solutions of the system.

3.5.1 Invariance of a function

Let f be an infinitely differentiable function and let & = G;(a;€) be the Lie group
of transformations of one parameter e.

The function f is said to be an wnwvariant function if and only if,

fl@) = fa). (49)
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Theorem 3.3 A function f is invariant under Lie group of transformation & =
Gi(ase) if,

X fla) =0, (50)
where x s the infinitesimal generator of the symmetry transformation and con-

versely.

Theorem 3.4 Given Lie group of transformation & = G;(«;€) with symmetry gen-

erator x, the identity,
fl@) = fla) +e (51)
holds if,

X fla) =1, (52)
and conversely.
3.5.2 Invariance of a surface

Let f(a) = 0 be a smooth surface and let & = G;(a;€¢) be the Lie group of
symmetry transformation of one parameter e. The surface f(a) =0 is said to be
an invariant surface under the symmetry transformation if and only if f(&) = 0

whenever f(a) = 0.

3.5.3 Invariance of a curve

Consider a curve f(a) = 0 in an n-dimensional space R™ and let one parameter

Lie group of transformations in space R™ be given as,

a; = a; +e&a)+ 0, Vi=12,...,n (53)
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The infinitesimal generator corresponding to this transformation is,

=Y (54

Then the curve f(a) = 0 is said to be an invariant curve if f(&) = 0 whenever

f(a) =0 and conversely.

3.5.4 Invariance of a point

A point a = (g, 9, ...,q,) € R" is called an invariant point for one-parameter Lie

group of transformation & = G;(a;e€) if and only if & = o under this transformation.

3.6 Multi-Parameter Lie Transformations

Lie groups of transformations can depend on more than one parameter e . Let
G(ase) for k=1,2,...,r be an r-parameter Lie group of transformations. Corre-
sponding to each parameter €; there exist an infinitesimal symmetry generator x;
that belongs to an r-dimensional linear vector space with the commutator structure.
This vector space is know as r-dimensional Lie Algebra [11,39]. A one-parameter Lie
group of transformations is a subgroup of the r-parameter Lie group of transforma-

tions.

Definition 3.6 An r-parameter group of transformations & = G(«;€) with com-

position law 1 is said to be r-parameters Lie group of transformations if:

1. The parameters €, are continuous.

2. Each element G,, for parameter €; of the group G is an infinitely differen-

tiable function of a € R™ .
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3. The composition law for parameters (e;,d;) is analytic.

The composition law for parameters, denoted by,

w(% 5]) - (2/}1(61'7 5j)7 1/J2(€i7 61')7 SR 71/}7“(61'7 5J>> s

satisfies the group azioms with € = (€1, €,...,€.) =0 corresponds to identity trans-
formation.
Equivalently, the transformation & = G(o;€,) where k = 1,2,...,r is an r-

parameter Lie group of transformations if:
1. Each parameter ¢ is independent of other parameters.
2. There exist an identity transformation.

3. Transformations are invertible and include their repeated application with pos-

sibly different parameter ¢;.

3.6.1 Infinitesimal Generators

Consider a Lie group of r-parameter transformations given as,
a = Gla; &), (55)

where a = (ag,ag,...,a,) ER" and k=1,2,...,r
The infinitesimal symmetry generator for this group is same as that of one-
parameter group of transformations, but for each parameter ¢; there exist a corre-

sponding symmetry generator Y; , given by,

- 0
_ § k
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The components £F(a) of symmetry generator y; can be derived as,

0y

() : (57)

N 862- €;=0
Rescaling of parameter ¢; rescales the corresponding infinitesimal symmetry gener-

ator x; by a constant factor. Let,

A

€ = €(5), with €;(0) = 0. (58)

Therefore by the definition (57) of the components for infinitesimal symmetry gener-

ator we have,

gz B gz

€;=0

_ 0
N 861 Qéz

6]':0

(961
0€;

=&

€;=0
_ I ¢k
- Cz Sl 3

where C! = % le,—0 1is a constant. Because of linearity, transformed infinitesimal
1

symmetry generator is given as,
Xi = Cf Xi - (59)

If the parameters ¢; are not independent then in order to find a specific trans-

formation, the relation between different parameters is required. That is, we have to
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define all ¢;’s in terms of a single parameter €. In this case,
_ Oay,

= B

e=0

_ Oay, %
 O¢; Oe

e=0

= D¢},
where D' is a constant. Therefore the infinitesimal symmetry generator is,

X = D'xi. (60)
The difference between one-parameter transformations and multi-parameter transfor-

mations is that the multi-parameter transformations contains some constants linearly.

Therefore they constitute all the properties of one-parameter transformations.

Example 17 Consider two-parameter group of transformations in two-dimensional
space defined as,
~ 0 0 o < 0 o 0
T= xe cos¢p—ye sing, and y = x e sing+ye coso.
Then the generators corresponding to the parameters 6 and ¢ are respectively given
as,
Xo = T 5-+Y - and Xe = —Y 5= +T 5
whereas a specific infinitesimal symmetry generator corresponding to the parameter
v such that 0 =2~ and ¢ =3y will be,
X+ =D’ xo+D? xy
0 0
= (20 —3y) =— + 2y + 3x) —,
( Yy, t(2y+32) 3y

)
where DY = % l.—o=2 and D?= a_f: ly=0= 3.



45

3.7 Lie Algebra

Infinitesimal symmetry generator x; corresponding to the parameter ¢; belongs
to an r-dimensional linear vector space known as r-dimensional Lie Algebra with the

commutator structure.

Definition 3.7 (Commutator Operator) Consider an r-parameter Lie group of
transformations given by (55) with infinitesimal symmetry generators x; corre-
sponding to each parameter ¢; defined in (56). Then the commutator operator [, |

for any two symmetry generators x; and x; is defined as [39],

[Xis X5 ] = Xa X4 — X5 Xi - (61)
Since,
- 0 - 0
P ki) —— L e) ——
Xz XJ ;é-z (Oé) 8(1/]@ {lzl é—] (Oé, 61) 3oq }
- 0 0
_ TPV N
= Y o) {glas) |
Lk=1
Then,

i w] = o {d

3
S5

(62)
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where,

n

gl 82 32 (95’“
k k Y e —
ni(a) = 1 (f + & ] dardan O, fj © Oayday, éj 30ék>

1k=

= o ok
(g’“ g a%) . (63)
1

Lk=
Equation (62) implies that the commutator of any two generators is again an infin-
itesimal symmetry generator. From equation (62) and (63) it is obvious that the

commutator operator also known as Lie Bracket is skew symmetric and bilinear i.e.

[xis x5 1= —[x55 xi ] (64)
[CXi+C,Xj7Xk]:C[Xi7Xk]+C/[Xjan]7 (65)
(xisex; +dxel=clxi.xj] + [xis xo)- (66)

where ¢ and ¢ are constants.

Any three infinitesimal symmetry generators x;, x; and xj satisfies the Jacobi’s

identity defined as,

[xis [xgs xel ]+ Ixes [xasxg )] + [xgs [xesxa] ]=0. (67)

Definition 3.8 (Lie Algebra) Let G be an r-parameter Lie group of transforma-
tions with basis {x1,X2,--.,Xr} where X; is an infinitesimal symmetry generator
corresponding to the parameter €; . The Lie group G of transformations, form an

r-dimensional Lie algebra G over the field F = R with respect to commutation

law [11].
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Lie algebra is a vector space ‘G’ together with commutator operator that is Bi-

linear, skew symmetric and satisfies jacobi identity.

Definition 3.9 (Subalgebra) A subset H of Lie algebra G is called a subalgebra of

G if it is closed under the commutation operator i.e. for all x; , x; € H,

[Xxi, x; ] €H.
3.7.1 Solvable Lie Algebras

The order of an nth order ordinary differential equation can be reduced constructively
by two if it admits a Lie algebra of transformations of two parameters. But for an
r-parameter Lie algebra (r > 3) the order of the differential equation can be reduced

constructively by p, if there exist a p-dimensional solvable subalgebra.

Definition 3.10 Let 'H be a subalgebra of the Lie algebra G. If,
g, h]€eMH, V heH and V geg,
then H s called an ideal or normal subalgebra of G.

Definition 3.11 'H? is a p-dimensional solvable Lie algebra if there exists a chain of

subalgebras,

HcH*C---CcHP Y C HP,

such that H=' is an ideal of H! ¥V i=2,3,...,p.
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Definition 3.12 An algebra G is called an abelian Lie algebra if [ x; , x; | =0 for

all xi, x;€0.

Theorem 3.5 Fvery Abelian Lie algebra and every two-dimensional Lie algebra is a

solvable Lie algebra.

3.7.2 Structure Constants

Theorem 3.6 (Second Fundamental Theorem of Lie [11]) The commutator of
any two infinitesimal generators of an r-parameter Lie group of transformations is

again an infinitesimal symmetry generator.

Definition 3.13 Lie bracket [39] of any two basis vectors must again lie in G" i.e.
[xioxi] = > Chxieg, Vi j=12...,r (68)
k=1

The constants ij are called structure constants of the Lie algebra G".

Definition 3.14 (Commutation Relations) For anr-parameter Lie group of trans-
formations with basis {x1,X2,--.,Xr} the relations defined by equation (68) are

called commutation relations.

Theorem 3.7 (Third Fundamental Theorem of Lie [11]) The structure constants,

defined by commutation relations (68), satisfy the relations:

1. ij — —C’fi (skew symmetry).

2. Cf’j cn o+ C’fl cm o+ CF i =0 (Jacobi identity).



49

3.8 Prolongation

In order to apply transformations (34) to an nth order differential equation, the cor-
responding infinitesimal symmetry generator (42) needs to be extended or prolonged

to nth order.

3.8.1 Case I: (One dependent and one independent variable)

Consider a differential equation,

F(z,y,v,y",...,y™) =0, (69)

of order n, with one independent variable x, and one dependent variable y. The

one-parameter (€) Lie group of infinitesimal transformations are given by,

T = Gy(z,yi6) = v+ e E(z,y) + O€)
(70)
§=Gy(z,y;¢) =y +enla,y) + O(e)
Infinitesimal components of symmetry generator x are,
0z 0y
f(xvy) - E 6207 77(95>y) - E e:O.
Then the corresponding infinitesimal symmetry generator is,
0 0
= — — . 71
X = &z.y) 5 + n(z,y) 9 (71)

For an nth order differential equation we need to prolong the infinitesimal symmetry

generator to nth order. Thus (71) becomes,

9,
X" = x+n ==+ ™ (72)

oy’ oy -
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We need to find expressions of the infinitesimal components n® for i = 1,2,...,n.

Extension of equation (70) up to order n is given as,

\

§ =y +en(r,yy)+ O

g// _ y// +e U/,(l',y) + 0(62)

(73)
7" =y + e n™(z,y) + O()
where,
w_ 99"
Oe le=0
The expressions for ¢/, ..., 7™ are also given as,
o dy(z,yie) Y (09/9y) + (9y/0x) ,,
y= di(x,y;e) v (0%/0y) + (0%/0x) gy yse),
,_dy'(z,y.yhe) Y (09'/0y) +y (0y'/oy) + 0y /ox) o
O TS R R ) R A A

g = S

(9,0, ., y™;e).
(74)
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Also,
=9y +en +...

_@_dy—kedn%—...
Cd¥ dvtedé+ ...

_ Yy +e(dn/dx) + ...
1+ e(d§/dx) + ... (75)

dn o de
_ S
—y+€(dx ydm>+“"

di(n—1
G =y e 4. =Y
dz

d (n—1) df
zy(")+e< ndl" —y(”)£>—|—.... (76)

From these equations following expressions for 7/, ..., 1™ can be read off,

,dpde
€T dx

_ O y,(ﬁn 35)_ 1208

oy ox) U oy

© Ox

n—1
o = 7y dE
dx dx
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3.8.2 Case II: (One dependent and p independent variables)

Consider an nth order differential equation with one dependent variable ‘u’ and p

independent variables ‘z;” for i=1,2,...,p given as,
F(x,u,u™) =0, (77)
where © = (21,29,...,2,) and 1™ denotes the set of all derivatives of u of order

less than or equal to n. Let J = (j1,J2,...,jx) be the k tuple of integers (number
of tuples in J are equal to the order of derivative). In index notation the derivative

of order m is denoted by,

o™u
Uy = , 78
J 338]-1(9% e al’jm ( )
where J = (ji,j2,--.,Jm) with 1 <7, <p forall i=1,2,...,m.
Lie group of transformations of one parameter € are given as,
B = Gy (wi,u5€) = 2 + € E (23, u) + O(€)
(79)
U= Gy(ri,u;€) = u+ e ¢(x;,u) + O(e?)
where i =1,2,...,p and =z € {x1,%9,...,2,}. Infinitesimal components of sym-
metry generator y are given as,
ox ou
k k
Tiy ) = —— , & TiU) = — : 80
S v Hwiu) = 5| (80)

Thus the corresponding infinitesimal symmetry generator of transformations (79) is,

L AUV )
X = Y Mo+ ol g, (51

In order to apply the infinitesimal symmetry generator to nth order differential

equation we need to extend it to nth order. The general prolongation formula can
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be given in simple form by using the total derivative operator D, as given in the

definition below:

Definition 3.15 Let f(z,u™) be a continuously differentiable function with p in-
dependent variables © = (x1,xa,...,x,), one dependent variable w and the deriva-

tives of u wup to order n. The general form of ith total derivative of f is,

of of
D;f = i— 82
! 8xi+;u‘] ouy (82)
where J = (j1,..., k), 1<5i<p foral i=1,2,....k and,
0 ok+l
wy = 2 4 . (83)
' 8% &clﬁxh 8:6]-2 Ce &cjk
The sum in (82) is over all J’s of order 0 < #J <n.
3.8.2.1 Derivation of extended infinitesimal symmetry generator
From equation (79) we have,
Uy, = Uy, + €O 4+ ..., (84)
where ¢"F = ag%

e:O.
Also from (79) we have,

dii = du + edg + O(?)

[ Ou 0p  0¢ Ou
- {(%i%—e(axi+au8$i)}d:p1+...

= (8u—|—5Dl¢)dxi+.... (85)

8Ii



Like above,

d7y, = dxy, + edg + O(€?)

—{a$j+€(8xj+6u8$j drj+ ...

oEr 0k ou
_ ) sk o0& | 08" du
B {5j e (8% * ou Qmj)}d%

= (07 + eD;€") da; +

Using (85) and (86) we can construct the following relation,

G - du
T dyy
(2 +eDig) dri +
B ((5;€ + EDjék) dxj +

0 , ) )
= (aZ+eDi¢+...> 5 {(5?) e (o) 2Dj§k+m}

ou , .

= Uy, + €Dd — et D' + .

54

(6)

(87)
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Comparing the coefficients of € in equations (84) and (87), we find the expression for

@"* given as,
O™ = Dy — g, Dy&’

Similarly the expression for ¢/ = ¢*n%2-%x where J = (j1,%2,...,jk) and

1<y, <p forall i=1,2,...,k, can be found using the general formula,

¢” (z,u™) = D, <¢ = §kuk> +) Fug (89)
k=1 k=1

Thus the nth prolongation of symmetry generator (81) is,

0
(n) — J (n)y = 90
X" =x+ % ¢’ (z,u )&LJ, (90)
where the summation is over all multi-indices J = (ji, jo, ..., Jx), With 1 < jp <

p and 1<k <n. Whereas ¢’/ and u; are defined in (89) and (78) respectively.

3.8.3 Case III: (¢ dependent and p independent variables)

Let,

F(z,u,u™) =0,
be an nth order partial differential equation with p-independent variables z =
(z1,%9,...,2,), ¢-dependent variables u = (u',u? ... ,u?) and the derivatives of

dependent variables with respect to independent variables up to the order n. The

infinitesimal symmetry generator be given as,

S )l S 0
X = ;5 (2, w) 5+ Z G, 1) 5 (01)



Then the nth prolongation of the generator (91) will be,

q
n n a
K =x+ Y0 D el u™)
J

a=1 J

where ¢, corresponds to u®.

o6



CHAPTER 4

LIE SYMMETRIES AND PDE’S

A symmetry group for the system of differential equations is a group of transfor-
mations acting on dependent and independent variables in the system such that the
system remain invariant under these transformations and it transforms solutions of
the system to other solutions. Lie group of point transformations lead to invariant
solutions also called similarity solutions obtained from the solution of PDE’s with

fewer independent variables than the given PDE’s.

4.1 Invariance of a PDE

Consider a system of PDEs of order n with p-independent and ¢-dependent variables
represented as,

Fy(z,u,ul™) =0, n=12..k (93)

where * = (21,22, 23,...,2,) denotes independent variables, u = (u',u?, ..., u9)
denotes dependent variables and u(™ represents the set of all derivatives of order
less and equal to n. We denote the derivative of order m is denoted as,

omu®

;
81’j18$j2 Ce &chm

(94)

a
Uy =

where 1 < j; < p forall ¢ =1,2,...,m and the order of m-tuple of integers

J = (j1,J2,---,Jm) indicates the order of the derivative to be taken.

Definition 4.1 (Maximal Rank of Jacobian) The system (93) is of maximal rank

57



if the corresponding k x (p + qp(”)) Jacobian matrix,

. oF, OF,
o) = (5.5
J J

is of rank k whenever F,(x,u,u™) = 0.

Example 18 The Burgers’ equation
F=wu —ug, —u, =0,

1s of maximal rank, since,

_ (OF OF OF 9F OF OF OF OF OF OF OF OF OF

N (%’Fy’ﬁ;%’mx’auy’a—m’ Qg Oy Ogy’ Oy Oy’ Ouy
- (07070a07_2 u:ﬂaoal;_17070707070) )

which 1s of rank one everywhere.

Example 19 The equation
F = (u — tpe)> =0

1s not of maximal rank, since,

_(9F 0P 0F 0F 0F oF oF oF
N 8%’ ot 7 ou ’ 0um’ 811/15’ 8?,(/:51, 5’uzt’ 3utt

= (0,0;0;0,2(us — Uga); —2(us — Ugy),0,0)

=0,

whenever (U — Ugz)? = 0.

)

o8
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Theorem 4.1 (Infinitesimal criterion for the invariance of PDE) Let the sys-
tem,

F(z,u,u™) =0, w=1,2,....k

of k differential equations be of mazximal rank. If G is a group of transformations

and,

™ {Fu(x,u,u(”))} =0, w=12 ...k whenever Fu(x,u,u(")) =0,
(96)
for every infinitesimal symmetry generator x of the group G , then G is a symmetry

group of the system.

4.2 Procedure to calculate symmetries

Lie group of infinitesimal transformations and infinitesimal symmetry generators of
a partial differential equation can be calculated by a systematic computational pro-
cedure in the light of Theorem 4.1 and using the prolongation formula.

The first step of the procedure is to find the hypothetical one-parameter symmetry
generator Y. The coefficients &'(z,u) and ¢u(x,u) of symmetry generator x will
be the functions of = and w. Using prolongation formula symmetry generator y
needs to be prolonged to the order n equivalent to the order of differential equation.
The coefficients ¢; of the prolonged infinitesimal symmetry generator x™ involve
the partial derivatives of the coefficients & and ¢, with respect to both  and wu.

Application of prolonged symmetry generator on the differential equation using
theorem of infinitesimal criterion for the invariance of PDE gives a general equation
that involves z , w and the derivatives of u with respect to x, as well as &'(x,u),

¢o(z,u) and their partial derivatives with respect to x and wu. Since (96) holds
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only on solutions of the system, therefore dependence among the derivatives of u

caused by the system itself required to be removed. By comparing the coefficients of
the partial derivatives of u , a large number of coupled partial differential equations
are obtained. This system of equations will be solved for the coefficients functions
£ and ¢, of the infinitesimal symmetry generator. These equations are called
defining equations of the symmetry group of the given system. The general solution
of this system of defining equations determines the most general expressions for &

and ¢, , thus giving the general infinitesimal symmetry generator y . Following are

some examples illustrating the procedure.

4.3 The Heat Equation

The equation governing the heat conduction in one dimensional rod is given as,
Up = Ugy (97)

Rank of Jacobian

Jacobian of the heat equation F(x,t,u) = u; — uz, = 0 equation is,

L (OF OF OF OF OF OF OF OF
 \ 9z Ot Ou Du, Ouy Oty Oty Ouy

= (0,0;0;0,1;—1,0,0).

Thus the rank of Jacobian is always one for heat equation.

Symmetry Generator

Since there are two independent variables =z and ¢t and one dependent variable wu,
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therefore the infinitesimal symmetry generator will be of the form,

0 0 0
X—f(x,t,u)£+T(:E,t,u)§+¢(x,t,u)% . (98)

Prolongation
For a second order differential equation we need to prolong the infinitesimal symmetry

generator (98) to second order. The prolongation is given as,

0 0 0 0 0
2 — r_ 2 L L ot i ) 99
X X+¢8ux+¢ ut+¢ 8um+¢ (’3uwt+¢ Ot (99)
Symmetry Criterion
Now applying the symmetry criterion (96) we get the following relation,
§— ¢ =0, (100)

Substituting expressions for ¢' and ¢** in (100) and replacing u; by u,, the general

relation for the symmetry criterion becomes,

¢t + (¢u - Tt) Ugpy — gtum - guuazuxm - Tuuix - (bzr

2
Uty + 3Eu Uz Uy + TyUy, + 2Ty U, Uz = 0.

Defining Equations
By comparing the coefficients of monomials we obtain the following ten coupled defin-

ing equations,

UtUgt : Tu — 0

Uyt : T, =0
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U, Tu = Tu

uium : Tuuw = 0

Uy Uy : §u = 2Tpu + 3&u

Uz : Tt — Qu = Toz — Pu + 28
u? : Suw =0

2 : Gus = 260

Uy : § = Cow — 2020

1 : Ot = Gaz

Solving the above equations simultaneously, we obtain the general expression for &,

7 and ¢ given by,

T = Clt2 + Cgt + c3,

€ =citx + 1/2com + eyt + cs,

¢ = (—1/401:152 —1/2c4x — 1/2¢1t + 06) u+ a.
Symmetry Generators

Substituting ¢; =1 and ¢; =0V i#j for i=1,...,6 we obtain seven infinites-

imal symmetry generators including one infinite-dimensional symmetry generator as
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follows;
_ .9 _9 _ 9
Xl_uau7 X2 = aﬂf’ X3 = at7
—t——l:z:uE —lacg—l—t2
M= Py 2% 5 5= 9 Ty T o
t 2+t22_ 332_u+t_u 3
A Y 1 "2 )ou’
0
Xo= @5,

Commutator Table

The commutation relations for all of these generators are given below in Table 1.

Xixil | xa X2 X3 X4 Xs X6
X1 0 0 0 x1  —x3 2x5
X2 0 0 0 2Xx2 2x1 4Axa —2x3
X3 0 0 0 0 0 0
X4 —X1 —2X2 0 0 X5 2X6
X5 X3 —2x1 0 —x 0 0
X6 | —2x5 2x3—4xa 0 —2x¢ O 0

Table 1: Commutation Relations

Transformation Groups
Group of transformations corresponding to each infinitesimal symmetry generator y;
can be calculated using the general formula,

04
- Oe

£'(z,9) (101)



with initial condition &;|.—¢ = .

Consider the infinitesimal symmetry generator y; = u-2

ou
sions:
1.
0% -
o= @ ta=0,
T =c,

applying initial condition Z|.—o = x we obtain,

T =ux.
2.
ot .
a. ~7 t7 u) =0 )
9% T(Z,t,0)
t=c,
applying initial condition #|.—o = t we obtain,
t=1t.
3.
ou .
— = ¢z, t,u) =u
86 ¢( ) ) )

Inu =€+ c,
applying initial condition @|.—o = u we obtain,

o = ue’.

64

we obtain following expres-
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Therefore the transformation group Gy generated by infinitesimal symmetry generator

X1 1S given as,

Similarly for remaining infinitesimal symmetry generators we have following the trans-

formation groups:

Gy : (z,t,0) = (z+et,u),

Gs: (#,t,0) = (z,t+ e u),

Gy (7,6,0) = (z+et,t,ue FHN/2)

Gs : (Z,t,0) = (we/? te,u),

Gs (#,1,0) = (1 fet 1 _t — fet €$2e/4(1—6t)> ’
Ga : (Z,t,1) = (z,t,u+e€alr,t)).

4.4 The KAV Equation

Consider the KdV equation,

U + Ugpy + Uy = 0 (102)
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Rank of Jacobian

For the KdV equation F'(z,t,u) = us + Uy + uu, = 0 Jacobian is always one since,

J_<8_F8_F0_F8_F8F OF OF OF OF OF OF aF>

aﬂ? at (9u 3u$ aUt 3um 8umt 3utt 8ummm 8umt 8umtt (9uttt
= (0,1;uy;u,1;0,0,0;1,0,0,0) .

Symmetry Generator

The infinitesimal symmetry generator for this equation is a vector field on a three
dimensional space, as there are two independent and one dependent variable. There-
fore,

2 + (;S(JE,t,u)3

+ 7(z,t,u) T 5

X = f(m,t,u)g (103)

ox

Prolongation
We need to prolong the symmetry generator (103) to third order. Thus the prolon-

gation of the infinitesimal symmetry generator is as follows,

a rr __ — €T
e +¢t +¢ fbt L
Oy Ol t Oug
8 t a tt a ttt a
* (b aumxw (b 8ummt ¢ 8ua:tt ¢ auttt ( )
Symmetry Criterion
Symmetry criterion (96) for partial differential equations gives the relation,
¢ + ¢ + ug® + uyd = 0. (105)

Substitution of expressions for ¢', »*** and ¢ in (105) and replacement of u; by

— Ugze — UU, yields,

¢t + (_¢u + Tt + Trzx + ¢u - 3§ZC) Ugzx + (Tt - gbu + Trzx + ¢u
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&) Uy + (=& + 3Puau — Evaw + @) Us + (Eu — 4&u + 3Taau)

UaUgrn + (§u 4 3T — &) WS + (=T + 7o) U + (=27 + 2
Tu) Wl Ugge + (—Tu + Tu) U202 + ree + (3bpun — 3azn) U (3
Gz — 3Eaa) Uz + (Punw — 3Euua) Us + (3duu — o) Ugligs—

Eunully — 68Utz — 3Euting + 3TuualUalons + 3TuuaUlly 4 3Tey

UgzaUzz T 3TouUlzUzy — 0Ty UpUpe — 3TealUts — 3Taltzr + Tuwu
3

4 2 2
U Ugrs + TuuuUUy, + STuuumux:vuacxm + 3Tuuuuzux:v - 3Tuuuxut;r

2

- 37—uux:cua:t - 37—uuxutmc + ¢xu + TeUUgyy + TeU Uy = O

Defining Equations
Comparison of coefficients of the monomials as in the case of heat equation (97) gives

the following defining equations: Which can be solved for &, 7 and ¢ to give,
& =1+ e + cst,
T = ¢4 + 3cot,
¢ = c3 — 2cou.

Symmetry Generators

Substituting ¢; = 1 and ¢;j = 0V 7 # j for 7 = 1,...,6 we obtain following

seven infinitesimal symmetry generators, including one infinite-dimensional symmetry

generator,
—g —xg%—?)tﬁ—2u2
M= o X2= % o ot ou
0,0 )
X3 or Ou’ X475t

Commutator Table
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Commutation relations for these generators are given below in Table 2.

[Xia Xj] X1 X2 X3 X4

X1 0 0 0 X1
X2 0 0 X1 3x2
X3 0 —xa 0 —2x
X4 —X1 —3Xx2 2x3 0

Table 2: Commutation Relations

Transformation Groups

Transformation groups corresponding to each infinitesimal symmetry generator y;

can be calculated using the general formula,

- oq
“(z,9) = , 106
£(z.9) = 5 (106)
with initial condition &;|.—¢ = .
Consider the infinitesimal symmetry generator y, = xf% + St% - ZUB% we obtain
following expressions:
1.
oz .
— = {(z,t,u) =7,
= ()

Inz =¢e+c,
applying initial condition Z|.—o = x we obtain,

T = zef.



Int =e+c,

applying initial condition #|._o = t we obtain,

Inu = —2¢ + ¢,

applying initial condition @|.—o = u we obtain,
o = ue .

Therefore the transformation group G generated by infinitesimal symmetry gener-
ator y is given as,

Gy : (#,1,7) = (we, te>, ue ).

Similarly for remaining infinitesimal symmetry generators we have following the
transformation groups:

Gy : (#,t,0) = (z+et,u),
Gs: (7,t,0) = (te+x,t,u+e),
G42

(7,t,0) = (z,t+ ¢ u).



CHAPTER 5

NONLINEAR WAVE EQUATION

A large amount of literature is available on Lie symmetry analysis of (14-1)-dimensional
nonlinear wave equation [1,2,10]. More recently Magda and Lahno considered the
classification problem of wave equation [32,34]. Also study has been made about
invariance properties and invariance groups [30]. Invariance of solutions under infin-
itesimal Lie group of transformations for various (1+1)-dimensional nonlinear wave
equations has been worked out [21,36]. Moreover it is shown that with the use of
conservation laws non-local (potential) symmetries lead to new solutions for a large
class of (1+1) wave equations with variables speeds [11]. This formulation has led to
a variety of interesting applications such as equations with perturbed terms [28] and
conservation laws associated with potential symmetries [3, 15].

Consequently the two-dimensional (1+2) wave equation with constant coefficients
has been studied with an equivalent vigor [17,51,52]. However, the group theoretic
approach to the equation with non-constant coefficients and the non-linear case have
only been studied in specific cases and complete results have either not been obtained
or not presented because of which very few exact solutions invariant under symmetry
are known [7].

Whereas all these studies have focused on providing some exact invariant solu-
tions, none gives a complete classification of these invariant solutions. With a view

that a complete classification of the solutions may add to a further understanding we

70
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undertake this research to conduct a detailed symmetry analysis of a family of non-
linear (1+2)-dimensional wave equation. While providing this complete classification
we have obtained some new interesting solutions of this nonlinear wave equation.
The details and method presented here sets the scene for further interesting stud-
ies regarding the non-linear n-dimensional wave equation which may even include
dissipative terms that arise in practice as in the telegraph equation.
In the next section we present reduction of a wave equation in which the nonlin-

earity is due to the velocity term involved.

5.1 The Equation u; = u(uz, + uy,)

Lie group of point transformations of one parameter ¢ under which the given equation

remains invariant are given as [46]:

T

T + € f(fﬂ, y7t7 u) + 0(62)7
g: Yy + € 77($an>taU) + 0(62)7
t=t + er(z,y,t,u) + O(),

i=u + €z ytu)+ O().

Using above transformations, we now construct the symmetry generator. The
symmetry generator is a vector field that generates the symmetry group under which
the given nonlinear wave equation remain invariant [46]. This generator is given

by [39],

0 0 0 0
X = 5(%%75711)8_% + n(x7y7t7u>a_y + T(Ivyauu)a + qb(x’yutvu)% . (1O7>

Since we are dealing with a second order PDE, the above generator needs to be

prolonged to include second order derivatives [11]. The prolonged generator can be
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found using prolongation formula [39],

0

— 1
5, (108)

X =x+) ¢ (z,u)
J

where the summation is taken over all multi-indices J = (j1, ja).
Having the prolongation of the infinitesimal symmetry generator, the next step is to

satisfy the infinitesimal criterion [46], that requires;

X {uy — u(tgs + uyy)} =0. (109)

Ut —U(UggtUyy ) =0

The above equation can be easily recast in the form,

¢ — (Uzw + Uy )P — u (™ + ¢") = 0. (110)

At this stage we need to evaluate the expressions for ¢ , ¢ and ¢%¥ using the

formula, [39],

¢J (x7u(n)) = DJ <¢ - nguk> + ng Uk » (111)
k=1 k=1

where J = (j1,J2,...,Jk) and 1 < j; <pforalli=1,2,... k. Using (111) it is easy

to show that,
gbx = DJ: (¢ - gux - 77Uy - Tut) + gux:c + nuyx + TUtg

— TpUt — TyUzp Uyt
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¢"" = D2 (¢ — Euy — ity — TUy) + gy + Nllyzz + Tlhiag
= Gue + (2000 — Euo)Uo + (Puw — 260Uz + (Pu — 280 ) Ugu—
Euntly — 3Eulglag — 20xllay — 20y Usylly — Neally — 20z
Uyl — T Uy Us — Ny Uy — 2Tllyy — 2T Uglpy — Taglly—
2T UgpUp — Tuuutui — TulzzsUt -

Similarly, the expressions for ¢¥¥ and ¢ can be calculated. These expressions are

given as;
¢V = Qyy + (2050 — Nyy )ty + (Puw — 277yU)u32/ + (u — 2y Juyy—
nuuug - 377uuyuyy - 2€yumy - 2§uuwyuy - Syyuiﬁ - 2£yu
UyUy — fuuuxuz — ulgUyy — 2Ty Upy — 2T Uy Uy — TyylUy—

2
2Ty Uyl — Tun Wt Uy, — Ty UyyUs -

" = du + (200 — Tee)ur + (G — 2Ttu)u? + (Pu — 271) U —
Tuuu? — BTy UgUgy — 2Ny — 27 UgyUs — MUy — 270, Uy Uy
- nuuuyu? — T Uy Ut — 2€tut$ - 2§uututa: - éttum - 2§tu

UzUs — guuumu? - guuttux .
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Now replacing uy; with w(ug, + uy,) and substituting the above expressions ( ¢* |

¢" ¢¥ ) in (110) gives,

G + (200 — T ) s + (Guw — 27005 + (Pu — 273)u
(U + Uyy) — Tuuly — 3Tt (U + Uyy) — 204y

— 20y Uy Uy — Uy — 21Uy — N Uy — Ty Uy U
(Uge + Uyy) — 26U — 28U — ity — 26U —
Euntiat; — EiaU(Uag + Uyy) = (Uyy + Upe )P — U {Dra
+ (2000 — Eax) e + (Puu — 2600 )U7 + (Gu — 264) s
- guuui — 3EuUgUyy — 2N Uy — 2Ny Uy Uy — MUy —
2 Uy — T Uy U2 — Ty Uy — 2T Uy — 2T Uy Uy
— Tualt — 2Tgu Uz Uy — Tuuutui — TulaaUe} — U{dy,
+ (2050 — Nyy )ty + (Puu — 277uy)U32/ + (u — 21y Uy
— Nty — 31ty tyy — 26Uy — 26, Uay Uy — Eyytln—
28Uz ty — fuuuxuz — EulgUyy — 2Ty Uy — 27Uy Usy

2
— Tyl — 2Tuy Uy U — TuuUslly, — TylyyUs } = 0

To Find the most general expression for the infinitesimal symmetry generator we need
to find the general expressions for the components £, n, 7 and ¢ . For this we treat
above equation as an algebraic equation and compare the coefficients of like terms.
The equations which arise as a consequence of this comparison are called defining

equations [11].
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To start with we compare the coefficients of wu,, to get,

u(¢u - 2Tt) - 3UTuut - unuuy - uéuux - ¢—

(u — 2&)u + 3 uuy + nyuuy + Tuu, =0 . (112)
Differentiating (112) with respect to u; and wu, respectively, we obtain
Ty = 0, and & =0.
In the light of above, equation (112) reduces to,
2u(e — ) = ¢ .
Now comparison of coefficients of wu,, yields,

u(¢u - 27—t) - 3UTuut - unuuy - uéuux - ¢_

(¢u — 2my)u + 3nuuy, + Euu, + Ty =0, (113)
which on differentiation with respect to wu, gives,
My =0
As before, we substitute the above result back in (113), this reduces it to,
2u(ny —m) =¢ .

Also the coefficients of mixed second order derivatives uy,, u,; and wu, respectively

give the following equations,

Ne = _gy ) (114)
§ = uty (115)

N = uty . (116)
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Similarly comparing the coefficients of remaining monomials and simplification gives

the following set of ten coupled equations

Tu=&=n.=0, (117)
¢ =2u(& —m) =2u(n —7) (118)
e = —& (119)
& = uty (120)
= ut, (121)
¢ =ar,y, t)u+ B(z,y,t), (122)
i + (200 — Euw — &4y) =0, (123)
it + W(20yu — Naa — Nyy) = 0, (124)
Tut — 200 — U(Tue + 7)) =0 (125)
Git — U(Pzz + Pyy) =0 . (126)

At this stage we solve the above coupled system (117)-(126) for the components
of infinitesimal symmetry generator. Solving the above equations iteratively and
requiring consistency criterion by substituting the resulting equations back and forth

into each other, the solution of the above system takes the form,

£E=co+ar+ oy, (127)
n=c3—CT+cy, (128)
T= %(201 —cq)t +cs5 (129)
6= (e + 2ea)u+ Bz, 9. t) | (130)

>
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where [(z,y,t) satisfies the equation

ﬁtt - u(ﬁxm + ﬁyy) = 0.

Corresponding to every one parameter there exists an infinitesimal symmetry gener-
ator [39]. Therefore, by substituting ¢; =1 and ¢; =0V i#j for i =0,...,5 we
obtain seven infinitesimal symmetry generators given by;

0 o 0 4. 0

2 0
Xo= 75— X1—$%+ya—y+gta+gua>
) 0
X2_yax ay? X3_ ay?
_ 2,0 ¢, 0 _ 9
M TR e 5 o AT
0
Xﬁ—ﬁa-

Commutation relations (c.f. Definition 3.7.7) for these generators are given in the
form of table 3. The commutator table describes the structure of associated Lie
algebra in a convenient way [39].

Corresponding to each infinitesimal symmetry generator we can find the transfor-
mation groups [39] using the formula

o,

§(@.9) = 5

(131)

with initial condition &;|.—o = ;.



[Xiu Xj] Xo X1 X2 X3 X4 X5

Xo 0 Xo —x3 O 0 0
X1 |[—xo O 0 —xs 0 —3xs
X2 0 0 0  —xo 0 0
X3 0 X3 Xo 0 0 0

X5 0 3x5 O 0 -2 0

Considering the generator y; = = % +y a% + % t % + %uau , we have,

1.
X @pta= 1,
InZ = e+lnc,
applying initial condition Z|.—o = x we obtain,
= x e
2.

0j )
— 7 1 t 77 f— T
e n(z,y,t,u) = 7,

Iny= e+1Ingc,



applying initial condition §|.—q = y we obtain,

y= y e
3.
ot (.5.1.7) 4
— = T7(Z uU) = —
86 7y7 Y 5 )
i= 2eq
nt= —e+c
5 )
applying initial condition f|._q = t we obtain,
~ 4e
t= tes.
4.
ou R 2
E ¢(x7y7 ,'LL) _5 u,
Inu 2 +
nu=-—€e+c
5 )

applying initial condition @|.—o = u we obtain,
2¢
5

U= ue

Therefore the transformation group G; generated by infinitesimal symmetry generator
X1 1S given as,

Similarly the transformation groups for the remaining infinitesimal symmetry gener-
ator are,

Go:
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I T+ ye y— xe
G, t = t
2 (xay7au) (1+€2’1+€277u) )
Gy - (i,g],f,ﬂ) = (x,y+etu),

o~ 2 4
Gy : (Z,7,t,u) = (x,y,te_5€,ue55> ,
G5: (:’i‘?g7£7a) = (x7y7t+€7u>7
Gp : (:i,gj,f,ﬂ) = (z,y,t,u+e B(x,y,t)) .

5.1.1 Reduction under infinitesimal symmetry generators

Infinitesimal symmetry generator reduces the number of independent variables by
one in the partial differential equation [11,39]. In this section we find reduction of
the given wave equation under each infinitesimal symmetry generator. The detailed
calculations for the reduction under y; are given.

Consider the generator,

0 o 40 2 0

The characteristic equation for this generator is

dv  dy 5dt 5du
x Y 4t 2u (133)

We now find the similarity variables for the above generator, (132)

Inx=Iny+1Inr,
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T
r=—.
Y
2.
dx_5dt
x 4t
5
Inzr=- Int+Ins,
4
xr = st4
3.
5dt_5du
4 2

5 Int+Inw=1Inu,

The given wave equation can be transformed into these new similarity variables 7,

s and w as follows,

3 )
= — St st wg + T w
Ut 1 w + 165 Wg + 168 w
3 1
74 t2
Uy = Wss t_2 + 2wy § + wrr_27
Y Y
r r2
uyy:2\/gw,,—+\/¥ww—2.

Thus the wave equation wuy + u(ty, + uy,) reduces to a PDE with two independent

and one dependent variable,
—4w $?+25 wy 5425wy 5T = 16w (32 Wss + 2 Wer T 5 + Wep 72 4+ 2w, 175 + W,y 7“4) .

A complete table of reductions under each generator is given in Table 8, Appendix-A.
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5.1.2 Reduction under two dimensional subalgebra

A two dimensional subalgebra reduces the number of independent variables by two
[39]. In this section we will show the reduction of given nonlinear wave equation to
an ODE under each two dimensional subalgebra.

Consider the algebra [ x1, x2| = 0 the reduction can be started with any
one of the generators, but starting with y; will lead to a cumbersome expression
—4w 2425wy 3425 wes 81 = 16w (8% Wes + 2Wer T 8 + Wyp 72 + 2w, 73 + Wy 1)
Therefore, instead of y; , we will start with o that gives rather simpler expression.
Similarity variables for y, arer = 2> + y? s = t, w = wu and the reduced
differential equation is,

wss = 4w (w, + 7 we) . (134)

To proceed further we need to transform yx; in new variables r, s and w thus,

vi o= 2 2_{_% 24_2 i
X1 = r@'r 5885 5w8w'

The characteristic equation corresponding to the transformed infinitesimal symmetry

generator 1s,

dr 5 ds 5 dw
— = = . 1
2r 4s 2w ( 35)

From this equation we find the following new similarity variables,
1. a =7 s_%,

2. Vs Bla) = w.

Transformation of (134) in new similarity variables o and [ leads to,

_9
Wypp = § 2 ﬁaa;

1 25
Wss = __S_%ﬁ+ _aﬁas_

4 4

25
+ Z 042 ﬁaa S

N

_3
2
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Thus wgs = 4 w (w, + r w,,) reduces to,
1 25 25
_Zﬁ—l—Zaﬁa+za2ﬁaa:4ﬁ(ﬁa+aﬁaa)7

which is an ODE of order two.

Since the generators y; and yx» forms an abelian subalgebra so we can start
the reduction with any one of them, but, this is not always true. If the coefficient
of a commutator forming a closed algebra is nonzero then we have to start with the
generator that comes as a result of the commutation. Consider, for example, the
algebra [ x5, x1] = % X5 , in this case we have to start reduction with x5 that

reduces the given wave equation to,
Wy + wes = 0, (136)

with similarity variables r = z, s = y and w = w . Transformation of y; in
similarity variables is given as,

~ 0 0
Xt =7+ + 84 +

9
or 0s v ow

(G20 )

Characteristic equation corresponding to the infinitesimal symmetry generator y;

is,

Therefore new similarity variables are,

1. a =r/s,

2

2. s3 Bla) = w.

In these variables the differential equation (136) reduces to,

6

ﬁacx - %ﬂ—i_ Eaﬂa+a ﬁaa—oa
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which is again an ODE of order two.
Reductions under the remaining two dimensional subalgebras are given in Table

9, Appendix-A.

5.2 The Equation uy = u"(uy, + uyy)

In this section we find the symmetry reductions and possible solutions using classical

Lie symmetry method for (1+2)-dimensional nonlinear wave equation,
Uy = U" (Ugg, + Uyy)- (137)

This is the general case of the equation solved in previous section. Lie group of point
transformations of one parameter e under which equation (137) remain invariant are

given as [46],

A =a;+e &)+ 0 (), (138)

where «; represents the variables x, y, t, u and &' represents &(x,y,t,u), n(z,y,t,u),
T(z,y,t,u), ¢(z,y,t,u) for i = 1, 2, 3, 4. Also the kth-order derivative (of the
transformed ‘dependent’ variable with respect to the transformed ‘independent’ vari-

ables) [46] is given as,
uy = uy+e¢’(z,y,tu) + 0 (%), (139)

where u; = ——9%% _—— J = J(ji,...,jr) and 1<, <4 forall k.

OxI10x2...02k
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In order to find solution of (137), we begin with symmetry generator corre-
sponding to the variables z, y, t and wu, given by the formula [39],

0 0 0
X = §($7y,t,U)— + n(x7y7t7u>_ + T(I7y7t7u>_
ox dy ot (140)

0
+ QS(xayatau)% :

Infinitesimal symmetry generator (140) is a vector field of tangent vectors and com-
ponents &, n, 7 and ¢, of vector field are arbitrary, real valued smooth functions
defined in some subspace of the space of the independent variables z, y, t and the
dependent variable w.

Since the differential equation (137) is of second order therefore prolonging the

generator up to second order [11] using the general formula (108), which gives,

0 0 0 0 0
XD = X+ ¢+ P P+ P T
Oy Ou, Ouy OUgy Ogy
0 0 0 0 (141)
Tt Yy yt tt
e Oy e Oy, ¢ Oy, to uy

Lie symmetry criterion for PDEs requires that x?(H) = 0 subject to H =0 [11],

which is equivalent to the requirement,

X(Q){utt — U (U + uyy)} =0. (142)

Ut —u™ (Ugz+Uyy ) =0
From (142), we easily obtain the relation,

O — "D (U + gy ) — U™ (7 + V) =0 . (143)

Substitution of the expressions for ¢, ¢™, ¥ in (143) and u" (Uge + wy,) for
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uy yields the following general equation,

b+ (200 — T )ur + (Puu — QTtu)u? + (¢ — 27)u"”
(U + Uyy) — Tutly — 3T (U + Uyy) — 20tz

— 20Uy Us — Merlhy — 2 Uty — T Uy Uy — Nty
(Um + Uyy) — 2§ Uy — 28Uty — Sty — 284, Ug Uy —
Euntiztt; — Etupt (Ugy + yy) — N (Uyy + Upy )P

— U {Guz + (2000 — Eua)tty + (Duu — 2600) 05 + (¢4
— 263 Uz — Euully — 3EuUgliay — Mgy — 2y layls
— My — 20Uy Uy — Ny Uy U — Ty Uy Uy — 2Ty
— 2Ty Uglyy — Tagly — 2Tpulaly — Tuu Ul — TullagUs )
— u™{dyy + (204 — Ny )ty + (Puu — 277uy)ug2; + (Pu—
20y )y, — nuuuz — 3Ny Uylyy — 26 Ugy — 28 Ugy Uy —
Eyylia — 28utigly — Euuliay — Eyligllyy — 27Uy, — 2

2
TullyUpy — TyyUs — 2Ty Uyl — Ty Uty — Tylyyts} =0 .

Comparison of the coefficients of monomials and the coefficients of terms without any

monomial gives following set of nine defining equations,

2(&, — U™ — 2ruu™ — nu "t 4 2u™Eu, = 0 (144)
2(ny — m)u" — 2T, wu” — nu o + 2u"nuy =0, (145)
uny + U+ u"Ey + u"Eu, =0, (146)
&G—u't, =0, (147)

n —u'ty =0, (148)
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200, — Ti + uutts + U (Tyy + 7)) =0, (149)
Mt + 20" uy + N + 10y = 0, (150)

Eut + 20" pug + Euw + &4y = 0, (151)

Gt — U (Puz + Pyy) =0 . (152)

We now solve these equations simultaneously for the components &, n, 7 and ¢
of infinitesimal symmetry generator. Coeflicients of w, and wu, in equation (144)
requires,

which implies that 7 and ¢ are functions of z, y and ¢ only. Substitution of

(153) in equation (144) gives,
26, — ) =nu"'g . (154)

Similarly by comparing coefficients of u, in equation (145) we find that 7, = 0

and by substituting back this value and using (153) we get,
2(ny — 1) =nu"'¢ . (155)
By using equation (153) in (146) and from (147) and (148) we obtain following results,
Ny = =&y, & =u"T, and m=u"T, . (156)

The coefficients of w; and the terms without any monomials in equation (149)

respectively requires,
¢ =a(z,y, t)u+ B(z,y,t) and 2000 — Ty + U (Tyw + Tyy) =0 . (157)
By using (157) in (151) and (150) we obtain,

N — 2uno-/y — Ngz — nyy a‘nd - gtt - 2unaa: - g:m: - gyy = O . (158)
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The remaining terms not involving any derivatives of u are,

gbtt - un(¢xx + ¢yy) =0. (159)

Now solving (153) to (159) iteratively and requiring consistency criterion by substi-

tuting the resulting equations into each other, we obtain following expressions for

§, n, T and ¢,
§=ap— my+ axx ,

n =as+ axr + ay ,

4as 2nay .
T = — a
n+4 n+4 b

2(12 4614
= t
o= (224 e u Blat)

where a)s are arbitrary constants. Now substituting a; = 1 and a; = 0 for j # ¢, we

have following infinitesimal generators,

0
Xo—%> Xl—_y%+$a_y>
L0 0 (A NO (2w
X2 =% 5, y@y n+4) ot n+4) ou’
72 o 2nt 2—1— 4du g
Xg_@y’ X4 = n+4) ot n+4) ou’
0 0
X5_a7 Xﬁ_6%7

where from equation (159),

ﬁtt - un(ﬂxm + ﬂyy) = 07
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which implies that ((z,y,t) is any solution of the nonlinear wave equation (137)

and xp is an infinite dimensional subalgebra. The commutation relations for

these generators are given in Table 4.

[ X x5 1| Xo X1 X2 X3 X4 X5
Xo 0 X3 Xo 0 0 0
X1 —x3 0 0 Xo 0 0
X2 -xo 0 0 —X3 0 (=5)xs
X3 0  —Xxo X3 0 0 0
X4 0 0 0 0 0 (25)xs
X5 0 0 0 (GG (s 0

Table 4: Commutator Algebra for Symmetry Generators

Lie transformation groups for an infinitesimal symmetry generator can be

found using the formula,

1: o~ o~ 8641
5 (Ia y) - 86 )
with initial condition &;|c—o = ;.
Considering the generator,
n 0 N 41 0
= r — R —_— JR—
X2 or 7 dy n+4)/) ot

thus the components of transformation group are,

* (n—|—4

2u

(160)

0

ou’

)



0T -
E_ £(x,y,t,u)

Inz = e+Inc,
applying initial condition Z|.—o = x we obtain,

= x e

0j )

— 7 ~t~ p—
5 n(z,9,t,q) = 7,

Ing = e+1Inc,

applying initial condition g|.—q = y we obtain,

€

y= y €.
ot .
Ep = 7(Z,y,t,u) =
- 4
Int = €+ c,
n+4

applying initial condition #|.—o = t we obtain,

4e

t= tent,
ou =
E_ ¢($7y, ,U)—
. 2
Inu = €+ c,

90
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applying initial condition @|.—o = u we obtain,

U= uentd,

Thus the transformation group G2 generated by infinitesimal symmetry generator xo
is given as,
G (2,5,0,0) = (@ ¢, y e, t enit, uentn).

Similarly the transformation groups for the remaining infinitesimal symmetry gener-

ator are,

GO : (5;7g7£aa) = (x+€7y7t7u)7

Gy (#.§,1,8) = (”C_ye L )

14+€e’ 1+4¢€’ -

G3 : (i’,g,{,ﬂ) = ($7y+67t77~b)7

7 —2ne 4de
G (5,5.59) = (w.yte 7 ueitt),
Gs : (@@E,ﬂ) = (z,y,t+ €u),
Go (#.5.1.8) = (2.y.tu+ e Bz, y.1)).

5.2.1 Reduction under infinitesimal symmetry generators

The number of independent variables in (137) can be reduced by one with each
symmetry generator. Detailed calculations to find the similarity variables r, s and

w and also the reduction of (137) are given for the symmetry generator,

we-(H)a Groa
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Characteristic equation for this generator is,

de  dy —(n+4)dt (n+4)du

0 0 2nt 4u
Relation %“” = _(g:f)dt gives the first similarity variable s = x, similarly %y =
W gives second similarity independent variable r =y and finally the relation

—(n+4)dt _ (n+4)du
2nt - 4u

gives similarity dependent variable u = twev. In these similarity

variables differential equation (137) reduces to,

272 o
ﬁ(ﬁ—i_ 1) =e (ww—i—wss).

Reductions under remaining infinitesimal symmetry generators with their correspond-

ing similarity variables are given in Appendix-B, Table 10.

5.2.2 Reduction under two dimensional subalgebra

Two dimensional subalgebra reduces the PDE (137) to an ODE of second order,
the solution of this ODE gives the solution of PDE (137), by substituting back the
variables. Since [ x3, x5 ] =0, therefore x3 and xs5‘ form a closed subalgebra, we
can begin with any one of them, starting with y3 = 8% we can reduce the equation
(137) to,

Wyr = W W,y (161)

with similarity variables s =x, r =t and w(r,s) = u, also transformation of xs

in these new variables is,

that reduces (161) to (" = 0 and the similarity variables in this case are « = s

and (o) = w.
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Similarly [ xo, X2 ] = xo forms two dimensional closed algebra, we start with g
obtaining,

Wyr = W W,y (162)
as a reduction of (137) where s =y, r =t and w(r,s) = u so that x, is
transformed to Y, = s % + (n‘il) % + (712—}21) % as a Lie symmetry generator in

n
ratt

and /re?® = w and the

new variables. The invariants of Y, are a =
reduction of (162) under these variables to an ODE is,

1 2
_Z+ <g+1> (aB + 0282+ a?8") = a2e" (208 + 232 + a?B") |

Reduction under remaining two dimensional subalgebras is given in Appendix-B,

Table 11.

5.3 A general form of a nonlinear wave equation

In this section we perform the symmetry classification of a more general nonlinear

one-two wave equation,

U — f(w)(Uge + uyy) =0, (163)

where f(u) is an arbitrary function of the variable u, has been given as well as various
commutator tables. New symmetries are obtained for large classes of the equations;
exact solutions invariant under two-dimensional sub-algebras are obtained.

We use the classical Lie symmetry method to obtain exact solutions of the above
equation for all possibilities in f(u). The one parameter Lie point transformations

which leave (163) invariant are given by,

a; = a; +e () + 0 (%), (164)
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where «; represents the variables z, y, t, u and &' represents &(x,y,t,u), n(z,y,t,u),
T(z,y,t,u), ¢(z,y,t,u) for i = 1, 2, 3, 4. Corresponding to transformations (164),
the expressions for the kth-order derivatives (of the transformed ‘dependent’ variable

with respect to the transformed ‘independent’ variables) is given as,
uy =g+ e ¢’ (z,y,t,u) + O (€9, (165)

where u; = ——9%% _—— J = J(ji,...,jr) and 1<, <4 forall k.

AxI19xI2...02k

In order to find solution of (163), we begin by writing symmetry generator corre-

sponding to the variables x, y, t and u,
0 0 0
X = 5(3:7 Y, t7 U)— + 77(1:7 Y, ta U)— + ’7'(1', Y, ta U)—
ox oy ot (166)
+ ¢(z,y,t u)2
7y7 ) au7

where &, 1, 7 and ¢ are the components of the tangent vector. We then proceed

to prolong the above generator up to second order,

0 0 0 0 0
X = X ¢ s O T+
Oy Ou, Uy OUyy Oy,
0 0 0 0 (167)
xt Yy yt tt
* (b 8uwt + ¢ 3uyy + (b 8uyt + ¢ autt .

To write Y explicitly, we evaluate the values for ¢%, ¢¥, ¢t, ¢, ¢™, ¢%, ¥, ¢vt

and ¢ using,

3 3
¢J(Oéi, u) = DJ ((b - Z f%h) + Zfiuh- (168)
=1 =1

where,

99 99
Dip = — E i— . 169
o) + d gz (169)
At this stage we apply the Lie point symmetry criterion x?(H) | g—o= 0 for partial

differential equations to the wave equation,to obtain,

O — fultas + uyy)d — f(u)(¢™ + ¢*) = 0. (170)
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The general solution of (170) determines the expressions of the components of the
infinitesimal symmetry generator ‘“x’. These expressions can be obtained by substi-
tuting the values of ¢, ¢** and ¢*¥ and replacing uy by f(u)(ug, +uy,) in (170),

that gives,

Gut + (201 — T )ur + (Guw — 27005 + (G0 — 272) f (1)
(W + tyy) = Tty — 3Tt f () (e + tyy) — 21700y,
— 20y Uy Up — MUy — 2N U Uy — nuuuyuf — Ny f ()
(Ugz + Uyy) — 2&01 — 280U — Egptly — 26, UpU—

{Pra + 20u — &aa)tia + (Puw — 2600)us + (P — 2&2)

Usg — Euully — 3EuUalas — 20pUay — 2Ny laylly — Noglly

= 20Uy Uy — Uuuuyui — NulUylgy — 2Ty U — 2Ty Uy Uiy

— Taglly — 2Taulgly — Tyt — TulgaUe} — f(u){dy,

+ (200 — My )ty + (Puu — 21uy) il + (u — 20y )ty — (1)
Mty = 3y Uy — 28Uy — 28 Uigytly — Eyytia — 2640
Uy Uy — &muzu; — EulUplyy — 2Tyl — 2Ty Uy Uy — TyyUy

2
— 2Ty Uy Ut — Ty Uglly, — Ty Uyt } = 0.

Y

From the above equation we now compare the coefficients of like terms in derivatives
of ‘v’ and terms without monomials. This comparison of the terms gives rise to the

following system of ‘nine’ coupled PDEs to be solved for classification of symmetries,

2(535 - Tt)f(“) - QTuutf(u) — fu® + Qf(u)guuz =0, (172>
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2(ny — m) f (W) = 2muue f(u) — fud + 2f ()nuuy =0, (173)
flu)ne + flu)ngue + fw)éy + fu)€uuy, =0, (174)

& — fu)ra =0, (175)

m— fu)r, =0, (176)

200 — Tt + Guutie + [ (U)(Taw + Tyy) =0, (177)

Mt + 2 () buy + Now + 1Myy = 0, (178)

Eot + 2 (W) Pus + Euw + &y = 0, (179)

Gt — [ (1) (daz + Pyy) = 0. (180)

At this stage we solve the above system to find the components of the symmetry
generator ‘x’. To do so we begin by first considering equation (172). Differentiating

this equation with respect to ‘u,’ first and then ‘u,’ respectively gives,
Substituting above expressions in (172) reduces it to,

2f(w)(§u —7) = fu & - (182)

Now differentiating (173) with respect to ‘u,” gives 1, = 0. Differentiating (175)
and (176) with respect to ‘u’ and substituting (181) with 7, = 0 in the resultant
expressions gives,

T, =0=m1,. (183)
Substituting this result and (181) in (173)-(176) respectively, we obtain,

2f(u)(ny — 1) = fud , (184)
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&=0=mn. (186)
As above, we first compare the coefficients of ‘u;” from (177) to get,

¢ = a(z,y,t)u+ B(z,y,t) , (187)

and then substitute the resulting expression in (177)-(179) to respectively obtain,

T = 204 (188)
Qf(u)ay + Nez + 1y =0, (189)
2f(u)ay + & + &y =0 (190)

To find a complete solution of the above coupled system we start from (184) by writing

it in the form,

L
6=24 (1~ 7). (191)

and considering the possible cases. This is done in the following section.

5.3.1 Classification of Symmetries

In this section we give a complete classification of the symmetries of the nonlinear
wave equation (163). This requires solving the above coupled system (172)-(190) of
PDEs to include all possibilities of f(u). To obtain this classification we begin our
procedure by first considering (191). From this equation it can be easily noticed that

following two cases arise, namely,

I —=A (some constant), (192)

I — = g(u). (193)
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We consider these possibilities one by one.

Case I

To determine f(u) in this case, we integrate fi = A over ‘u’ to get,
f(u) = Ke,

where ‘K’ is a constant of integration and A = A1 .
Now differentiating (192) with respect to ‘u’ and then inserting the resulting expres-
sion in (187) sets « = 0. Using this value of « in (187) instantly yields ¢ = . In

the light of these results, (191) simplifies to,

¢ = =2A(ny — 7). (194)

Substituting above expressions in (188)-(190) respectively reduces to 7 = 0 =

New + Ny = Eow + &yy- These expressions with (194) give following relations for

é’ 77’ T and ¢7

€ =cop—cry + cox + 2c3zy + ca(2? — 7))
N =cs5+ 1@ + oy + 2c4xy + 03(y2 — I2) ,
(195)

T:CGt+C7

¢ = 2AC2 — 2AC6 + 4AC4JJ + 414633/ .
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At this stage we construct the symmetry generators corresponding to each of the

constants involved. These are a total of eight generators, given by,

0 0 0

= —, = — _+x_,
X0 or X1 y@x By

0 0 0
o= e Y gy T A G
0 0 0
=22y —+ (@ —a*)—+4 Ay —
X3 Y o o )0y + Y Bu (196)
9, 0 0
=2 -y )=—+22y —+4 Az —
= y>8:c+ my8y+ * B
0 0 0 0

= — =t ——-—2A — = — .
X5 8y7 X6 ot E X7 o

The Lie algebra satisfied by the above generators can be constructed by solving the
Lie bracket operation for each one of these generators. It turns out that they all form

a closed Lie algebra which is given in the form of Table 5.

5.3.2 Reduction under infinitesimal symmetry generators

Reduction by each infinitesimal symmetry generator for this case is given in Table

12, Appendix-C.
5.3.3 Reduction under two dimensional subalgebra

As an exact solution invariant under { xs3, x7 } is not given elsewhere, we present
some of the details involved. Since [x3, x7] = 0, form a subalgebra and the
equation (163) with this choice of f(u) is reducible to an ODE, the reduction may
begin with either of y3 or x7. If we begin with x3, the reduced partial differential

equation in two independent variables is obtainable from s = r =1 and

T _
2 +y2 )
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(x> 51| xo x1 X2 X3 Xa X5 Xe X7
Xo 0 X5  Xo —2x1 2x2 0 0 0
X1 x5 0 0 X« —Xx3 Xxo 0 0
X2 —Xxo 0 0 X3 xa —xs 0 0
X3 2x1.  —xa —x3 0 0 —2xo 0 0
X4 —2X2 X3 —Xx4 0 0 —2x1 0 0
X5 0 —xo x5 2x2 2xa 0 0 0
X6 0 0 0 0 0 0 0 —yr
X7 0 0 0 0 0 0 x7 0

Table 5: Algebra of generators for case I

u= 2Aln (zw), where w is a function of s and r. However, obtaining the reduced
PDE is a messy task. Instead, we start with y7. It is easy to note that this symmetry
trivially leads to s = x, r =y and w = u and the reduced PDE is the Laplace
equation,

Wy + Wes = 0, (197)

which has y3 in the new variables as a Lie symmetry, viz.,

0 0 0

X3 = X3(5)£ + Xs(r)a + X3(w)%

(198)
B 0 5 9 0 0
—25ras+(r —s)ar—l—llAraw.
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The invariants of X3 are o = # and f=w—2Alns with [ being function

of «a. In these variables, the Laplace equation (197) reduces to the ODE,
o’ —2a B +2A=0, (199)

which, after substituting back leads to the solution,

2 2\ 3 2 2
2
u:2Alnx+02+c—1 Tty v iam (L +y . (200)
3 Y 3 Yy

We note here that since y7; form a two dimensional subalgebra with any of the other
X.$, the reduction via x7; will lead to y; being a symmetry of the Laplace equation.

Similarly, a solution invariant under the subalgebra { x2, x3 } can be attained but
the reduction has to begin with x3 as [ x2, x3 | = x3. Here, from xs3, transformed

form of (163) for A=1and A= —1 is given as,

Wy = Ke¥ (=2 + s%wg, + 25w,), (201)
Wy = Ke (2 + s%wss + 25w,), (202)
where s = x2;y2, r=t and u=w+2AInx , and K is a constant. Then,
_ 0
= 5— 203
X2 Sas ) ( )

is a symmetry of this reduced equation. The invariants « = r and [(«a) = w leads

to the ODE,

3" = —2Ke, (204)

B =2Ke ", (205)
corresponding to A =1 and A = —1 , respectively. The first case, e.g., leads to,

1
4Ke’ = ¢ sech? {5\/0(04 + k)2} : (206)
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where ¢ and k are constants. Thus, we have a solution,

C

e = sech? {1\/E(t + k)} | (207)

4kx? 2

The second case yields,
4 )
(a+ k) + Z In {2 <0656 + 4k + ceﬁ>} =0, (208)

and the solution to (163) is obtainable from resetting a =t and (o) = uw—2lInuz.

Furthermore, a solution invariant under the subalgebra { x2, x1 } can be obtained
by the reduction with either y; or xo first as [ x2, x1 | = 0. Here, from 1y, we
get (163) to be (for A=1 and A=-1),

Wy = 4K e™ (swy, + wy), (209)

where s = 22 + y?, r =t and w(r,s) = u and K is a constant. Then,

_ 0 0
X =255+ 24—, (210)

is a symmetry of this reduced equation. The invariants « = r and () + Alns = w

leads to the ODE,
B3'=0. (211)

Having given the reduction of the wave equation in three cases ({ x3, x7 },» { X2, X3 }
and { x2, x1 }), we now consider case (IT), while reductions in the remaining cases

through generators forming subalgebra are given in the form of Table 13, Appendix-C.
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Case 11

In this case we give classification of the solutions of the wave equation by considering

the second possibility (193) which is equivalent to,

s

arising from (191). To classify solutions here, we consider equations (181)-(190).
Using the procedure followed in first case, we can solve these equations to find that
the components, £, 7, 7 and ¢ of infinitesimal symmetry generator x given by (166)

take the form,

§=cy+ar—cy,

N =C3+ CT + C1Y

o 4(f,3 — ffuu) Clt — 204f3t
T 512 —4f fuu

+057

¢ _ {Q(ff - ffuu)cl - C4f3

572 = Af ”4}“*5“’*”’”’

where B — f(u) (Bae + By ) =0

The expression for 7 includes the function f(u) and its derivatives of first and
second order. However, from (181) we have a constraint on ‘v’ that 7, = 0. This

condition on 7 requires that,
(£ fuw = 2F Fu 2t 12 ) 01 + 260) = 0. (212)
Writing G(u) = f3 fuu — 2f fuf2, + f 12 fuuu, We can write the above equation as,

G(u)(c1 + 2¢4) = 0. (213)
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Equation (213) gives rise to further two cases which are as follows:
I(a) : G(u) =0 and c1+2c4 #0,
II(b) G(u) #0 and c1+2c=0.

In these two cases we have different sets of expressions for &, 7, 7 and ¢ which
we will consider one by one and find the symmetry generators in each case, with the

corresponding Lie algebra and reduction under each closed algebra.
Symmetry generators for case II(a):

The condition G(u) = 0 requires that f3 fu, — 2f fuf2, + [ fuwu = 0 o fu(f2 fuu —
2f 2.+ f fufuuu) = 0, which implies that either f, = 0 or f2 fuu—2f f2,+ f fufuuwu = 0.
Here f, = 0 corresponds to the case of linear wave equation of the type u; =
Mgy + Uyy). Since we are interested in nonlinear wave equation, we will not con-
sider this case. On the other hand if f2f,, — 2ff2, + ffufuwu = 0, then the most
general infinitesimal symmetry of the wave equation that satisfies this condition has

the following expressions for &, n, 7 and ¢,
§=ctar—acy,
N =C3+ CT + 1Y

. 4(f3 - ffuu)clt - 2C4f3t
a 5f3 =4S fuu

+657

y {2(f3 — [u)er — e f?

57— 4f fum +C4}u—|—ﬁ(x,y,t) :
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Therefore we have following group of seven symmetry generators including one infinite

dimensional case xg ,

9
Xo_ax’
_ O (A= ffu)),0  [2(f2—ffuw)) O
1=y +y8y+{5f3—4ffuu TR Iy v
9 1.0
X2 y@x x@y’
9
X3_ay7

= {sz - 4ffw}@ " { 512 — 4f fun }“% !

0 _5 0
AT =P ou
Corresponding algebra of commutators for these generators is given in Table 6.

5.3.4 Reduction under infinitesimal symmetry generators

Reduction of equation (163) by each infinitesimal symmetry generator is given in

Table 14, Appendix-D.

5.3.5 Reduction under two dimensional subalgebra

There are eight subalgebras in this case, each subalgebra reduces the PDE (163) into
an ODE whose solution, on back substitution gives the solution of (163). We give
the complete table of reductions to an ODE for all the eight subalgebras in Table 15,
Appendix-D. Reduction to an ODE in some cases is given below.

Consider the algebra given by x; and 2. Since [x1, x2] = 0 we can start with
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[xi: x5 1] Xo X1 X2 X3 X4 X5
X0 0 Xo X3 0 0 0
X1 —Xo 0 0 —X3 0 —2MX5
X2 —xs 0 0 Xo 0 0
X3 0 xs —xo O 0 0
X4 0 0 0 0 0 —(4X = 2)x;5
X5 0 2\ O 0 (AN —2)xs 0

Table 6: Algebra of generators for case II(a)
2( 21 fun)

B fan should be a constant

where \ =

either y or s, but the reduction under y; would be a cumbersome task therefore we
begin with y, = —ya% + xa%. The similarity variables for this generator include two
independent variables r = 22 + y* and s = ¢, and one dependent variable w(r, s) = u.
Using these transformations, equation (163) reduces to a PDE with two independent

and one dependent variable given as,
wss = 4f (W) (rwy, + w,) . (214)

In order to get the second reduction to an ODE of second order we need to

transform y; in new variables r, s and w(r, s). Thus we have,

. 0 0 0
=2r— + 2 s— + dw— .
X1 or 0s ow
From th i tonx = 2T T) tant, th 1 i
rom the requirement on A = =55~ being a constant, the general expression

2—4X

for f(u) is given by f(u) = u > . Let A = 2 so that f(u) = u™3. In this case the
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similarity variables for Y7 are a = sr™2 and w = 3(a)r, under these invariants (214)
reduces to 3"(8% — 16a?) — 43 = 0, an ODE of second order. Similarly For A = 4
we have f(u) = u%?, now the similarity variables are o = sr~* and w = B(a)r?
Therefore (214) reduces to 8”(31 — 16a?) — 48 = 0 which is again an ODE of second
order. Other constant values of A # 0 can similarly be considered.

Similarly, a reduction can be obtained using the subalgebra [x1, x3] = x3. Here

we need to start with ys = a%, that reduces equation (163) to a PDE,

Wyy = f(w)wss 5

with two independent variables s = x and r = ¢, and one dependent variable w(r, s) =

u. Substituting the expression f(u) = u"~ for f(u) in this equation, it can be written

as,

Wyp = W X Wy - (215)

Now transforming x; in these new variables for the second reduction we get,

N 0 0 0
X1 =55 +2)\r§ —{—)\w% .

The invariants of X7 are o = &5 and w = /(). In these variables, equation (215)

reduces to a second order ODE given by,

2—4X

—iﬁ + %Oéﬁ’ + a2 = arf {20 (2)\ + 1)af +4X2a*p"}.

Symmetry generators for case II(b):

In this case the components &, 7, 7 and ¢ of symmetry generator (166) can easily be
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found as,

§=1co—20x — 2y ,
N =c3+ cox — 24y
T=—2c4t +c5 ,

¢:ﬁ($7y7t) :

Corresponding to each constant ¢; we have the following six symmetry generators,

where x 3 is an infinite dimensional subalgebra,

R R R
XO_8x7X1_ yax aan2_6y7
0 0 0

_ 9 _ 32
X4= 5 X8 = Py

Commutation relations for these generators are given in Table 7. From this table we

find that there are eight two dimensional subalgebras.

5.3.6 Reduction under infinitesimal symmetry generators

Reduction of equation (163) by each infinitesimal symmetry generator is given in

Table 16, Appendix-E.

5.3.7 Reduction under two dimensional subalgebra

Considering the two dimensional algebra [yg, x2] = 0 as an example, we start with

Xo, which reduces (163) to a PDE involving less independent variables given by,

Wy = f(w)wss 5 (216)
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[Xz', Xj] X0 X1 X2 X3 X4

Xo 0 X2 0 —2x9 O
X1 -x2 0 Xo 41 0
X2 0O —xo 0 —2x2 O

X3 2x0  4x1 2x2 0 2X4

X4 0 0 0 —2X4 0

Table 7: Algebra of generators for case I1(b)

where s = y, r =t and w(r,s) = u are the invariants of yy, as before the transfor-

mation of generator ys in new variables is,

o= o + 02 + 0i
2= s T o T T ow
which has similarity variables given by o = r and ((a) = w. Using these new

variables, (216) reduces to a second order ODE;,

6//20.

Furthermore the reduction under the algebra [xs,x1] = 4x1 can be obtained by
starting with y; = —ya% + xa% for first reduction to a PDE and then by Y3 for
a second reduction to an ODE. Therefore equation (163) reduces to 4af” + 25 =
41(6) <ﬁ”a2 + 5/0z> where o = %, Bla) =wand s =t r=2*+1y% w(rs) =u

are the similarity variables for x; and X3 respectively. Reduction for the remaining

subalgebras in this case are given in Appendix-E, Table 17.



A.l Appendix-A

Reduction table for u; = u(ug, + uy,)

Table &: First order reduction

Reduction & Similarity Variables

Generator
_ 0
Xo = o Wss = WWyr
wherer = y, s = t, w = u
X1 = x%—%—ya% —4 w 82+ 25w, 82+ 25 we st = 16 w (% wys
+§t%+%ua% +2We 78 + Wer T2+ 2w, 13 4wy 7t
5
where r = z/y, s = vt 1, w = ut 2
0 el
X2 = Yz — Ty, We = 4w (W, + 7 w)
_ .2 2 _ _
where r = 2° + y°, s = t, w = u
0 _
X3_8_y Wss = W Wyyp
wherer = x, s = ¢, w = u

110
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Generator Reduction & Similarity Variables
w=-ttgrtud vt = 6
wherer = z, s = y, w = ut?
X5 = %

Wy + Wss =0

where r = z, s

Yy, w = u

Table 9: Reductions under two dimensional subalgebra

Algebra

Reduction

[X07X1] = Xo

25

_%ﬁ+ Tﬁaﬁa + %Oﬂﬁaa = 0 bBaa

[XO:X?»] =0 Baa:()
[X07X4] =0 66:5ﬁo¢a
[XO?XS] = Xo ﬁaa:O

10+ 2abs 4+ 20 =48 Ba + abaa)
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Algebra Reduction
[x3, x1] = X3 —10+ 2 afa+ 20 faa = B Paa
[x1, xa] =0 Boa + B8+ Qap, + a®Paa =6
[xs. x1l = 3 x5 Boo — =B+ Lap, + a?Bu=0
(X2, xa] =0 Bo + foa = 2
(X2, x5] =0 Boa + @ Baa =0
(X3, xa] =0 Boa = 6
[x3,xs] =0 B Baa =0

A.2 Appendix-B

Table 10: Reduction under symmetry generators

Generator Reduction and similarity variables

— — o
X0 = 3z Wy = W Wss
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Generator Reduction and similarity variables

where s =y, r =t and w(r,s) = u

X1 = —ya% + :Ea% Wy = 4™ (ws + SWss)

where s = 2% + y?, r =t and w(r,s) =u

—1+(2+ 1)27“211)3 + (2 4+ Dw, + (% + 1)27"2er
(n4—4:4)% + (nQ—L)% = 7“26"“’{7“2103 + (% + Dw? + 2rswaw,+

r2w7‘7‘ + 2srwg, + 2rw, + (52 + 1)'LUSS + 25wy

n4q
where s = £, r = “— and Vtw"") =y

9 _an
w?”?"_w wSS

where s =z, r =t and w(r,s) = u

X4 = _(i_ﬂ)% + (7;4_&)% 2(241) = e (wys + wyy)
where s = z, r:yandu:t*%e’W( )
X5_% Wss + Wy =0

where s =z, r =y and w(r,s) = u
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Table 11: Reductions under two dimensional algebra

Reductions and Similarity variables

Algebra
[X0,x3] =0 B"=0
where a =7 ,f(a) =wand s=y, r =1, w(r,s) =u
[X07X4] =0 %(% 4 1) — enﬂ(ﬁa + ﬁ”)
where a = s, #@r=n =wand s =y, r =1, w(r,s) =u
[Xo0, x5] = 0 B8"=0
where a = s, (o) =wand s =y, r=t, w(r,s) =u
[X1,Xx2] =0 —% + (% + 2)2(ozﬁ’ +a?p + a?B") = dae™(af + a?B? + a23")
where o = T%:Q, VreP@ =wand s =22+ 9%, r=t, w(r,s) =u
[X1,x4] =0 2R +1) =4 P +a(B?+ ")}

where o = s, A% = w and s = 2% + vh r=t, w(rs)=u
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Algebra Reductions and Similarity variables
[X1,Xx5] =0 B +ap”=0
where a = s +7?, f(a) =wand s=z, r =y, w(r,s) =u
[x2,x4] =0 %(% + 1) = e (5" - % + 20" + 2045/)
where o = 2, %lnr +f(a)=wand s =z, r =y, w(r,s) =In (ut%)
[X3>X4] =0 %(% + 1) — enﬁ(ﬁ// + 5/2)
where o = s, eA@r=% = w and s = x, r=t, w(r,s)=u
[x3,Xx5] =0 A" =0
where a = s, f(a) =wand s=z, r=1t, w(r,s) =u
[X07X2] = Yo _zll + (% + 1)2(055, —|—042ﬁ/2 4 Oé2ﬁ”) — aQG”B(QOzﬁ/ —l—OzQﬁ/Q 4 aQﬁ//)

ri+l

S

,V/ref =wand s =y, r=t, w(r,s) =u

where o« =
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Algebra Reductions and Similarity variables
sl =xs  —3+ (3+1)° (0B + 282 +a2B") = a2 (208 + a?B? + a23")
where o = ”%:1, VreP® =wand s =z, r=1t, w(r,s) =u
[X5aX2] = c1ys 2(n+2) _ (2n+12)aﬁ/ + B/Q + ﬁ” + 0425/2 + Oézﬁ”

(n+4)2 n+4

2
where o = £, s7ntief@ =wand s =, r=y, w(r,s) =u
S

A.3

Appendix-C

Table 12: Reduction under generators for Case I

Generator Reduction and similarity variables
_ 0 _ A
XO_% wrr_Kewwss

where s =y, r =t and w(r,s) = u

X1=-y2 +z2 Wy =4 K e (w, + swys)




117

Generator

Reduction and similarity variables

where s = 2% +y?, r =t and w(r,s) = u

X2 =g + Yz

9
+2A5-

Wy = Ke¥ {=2+ (s + 1) wys + 2sw,}  for A=1
Wer = Ke {2+ (s> + 1) wys + 2sw,} for A= —1

where s = £, r =t and w(r,s) =u —2AInz

X3 = 2zy2 + (y* — 2?)

4Ay8%

Wy = Ke¥ {—2 + s*wy, + 2sw,} for A=1
Wy, = Ke {2 + s*wg, + 25w} for A= -1

where s = zz;ryz, r=tand w(r,s) =u—2Alnzx

Xa = (2?2 —y*) Z + 2zy

dy

Wy = KeV {—2 + s*w,s + 2sw,} for A=1

4Am% Wy, = Ke {2 + s*wg, + 25w} for A= -1
where s = xz;ryQ, r=tand w(r,s) = u—2Alny
X5 = % Wy = keAwwss

where s =z, r =t and w(r,s) = u

_ 40 a

Ke" (wgs +w,) =2 for A=1
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Generator Reduction and similarity variables

Ke™ (wgs + wyp) = =2 for A= -1

where s =z, r =y and w(r,s) = u+ 2A1Int

X7 = % Ke (w, 4+ wss) =0

where s =z, r =y and w(r,s) = u

Table 13: Reductions for case |

Algebra Reduction
[X0;x5] =0 6"=0

[X0,Xx3] =0 B" =0

[x0: x6] = 0 B"Ke? =2 for A=1

B'Ke B =—-2 for A=-1

(X0, x7] =0 g’ =0
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Algebra Reduction
[X17X2] =0 6// =0
[x1,x6] =0 28'Kef =1 for A=1

2'Ke# =—-1 for A= -1

X1, x7] =0 af’"+ 3 =0

(X2, x6) =0 KeﬁOéQ{ﬂ”(OéQ +1)+20a— %} =2 for A=1

Ke—ﬁoﬂ{ﬁ"(a? +1)+28a+ O%} — 2 for A=-1

[X2, x7] =0 B'(e®+1)+28a—24 =0
(X3, x4 =0 B"=0
[x3, x6] = 0 KeP(—24a28" +2af) =2 for A=1

Ke P2+ a%8"+2af)=-2 for A=-1
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Algebra Reduction
[x3:x7] =0 a?f" +2a3 —2A =0
[X4; X6] = 0 Kef (=24 23" +2a3) =2 for A=1

Ke P2+ a?8"+2ap) =2 for A=-1

(X4, X7] =0 a?f" +2a3 —2A =0

(x5, X6] =0 B'"Kel =2 for A=1

B'Ke B =-2 for A=-1

(x5, x7] =0 6"=0

[x0, X2] = X0 A" =2Kef for A=1

B"=—2Ke? for A=-1
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Algebra Reduction

(X2, X3] = X3 B" = —2Kel for A=1

B"=2Ke™ " for A=-1

[X2, X4] = X4 B" = —2KeP for A=1

B"=2Ke " for A=-1

(X2, X5] = X5 B" = —2Kel for A=1

B"=2Ke P for A=-1

A.4 Appendix-D

Table 14: Reduction under generators for Case 1I(a)

Generator Reduction and similarity variables

X0 = 35 Wy = f(w) wgs




Generator

Reduction and similarity variables

where s =y, r =t and w(r,s) = u

X1 =$%+ya%+

0 el

1 2 2-4x 1 2
— W+ Tw, 1w = wx X {we (14 5%) +

ANSTWg + 25W5 + AN 12w, + 20 (2N + 1) rw, }

1
where s = £, r =tz and w(r,s) = ut" >
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X2 = —ya% +ma%

Wy = 4f(w) (U}S + SMSS)

where s = 22 + y?, r =t and w(r,s) = u

Wyy = .f(w)wss

where s =z, r =t and w(r,s) = u

Xa= (4N —2)t2 + 2l

2—4X

A1=Y) _ 2

(2a—1)?

o
where r =z, s =y and w(r,s) = utT2>

X5 = 3

Wrp + Wss = 0

where r =z, y = s and w(r,s) = u




123

Table 15: Reductions for case 1I(a)

Algebra Reduction

(X0, x3] =0 3" =0

(X0, x4] =0 (AQ(/\l_—SL _ ﬂ*“ 3

[X0;x5] =0 3" =0

b xe] =0 15+ Saf + 20" = 42650k (o + a20)
Dol =0 g =450+ a8+ 2R + oo )
[x2,x4] =0 H = 45@(3 + ")

[x2,X5] =0 B +af’ =0

(X35 x4] = 0 AN g2 g

2x—1)

(X3, x5 =0

ﬁ//:()
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Algebra Reduction
Xooxil=xo  —3B+ap +a28" =2)85 ax{(2A+ D)af +2Xa?3"}

2—4X

[X3: x1] = X3 —iﬁ + %aﬂ/ +a2p" = a%ﬂ {20 (2X + Daf + 4/\2a25//}

D xal =20 AA =1 +20f/(1 =) +5%a*+1)+6"(a®*+1) =0

A.5 Appendix-E

Table 16: Reduction under generators for Case II(b)

Generator Reduction and similarity variables
_ 0 _
Xo = ox Wyy = f('lU) Wss

where s =y, r =t and w(r,s) = u

X1 = _y% + xa% wys = 4f(w)(w, + rw,,)

where r = 2% + y?, s =t and w(r,s) = u
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Generator Reduction and similarity variables
_ 0 _
X2 = 8_y Wss = f(w)wrr

where r =z, s =t and w(r,s) = u

X3 =222 — 2ya% 253w, + stwes = f(w) {2r3w, + r2(r? + 1wy, + sws}

0 — Y — Y —
—2t5 where r = £, s = 4 and w(r, s) = u
=9 =0
X4 = 3 Wrp + Wss =

where r =z, s =y and w(r,s) = u

Table 17: Reductions for case II(b)

Algebra Reduction
[X3, x5 = 0 pg"=0
[X0, x4] =0 =0

X1 xa] =0 af’ + 3 =0




Algebra Reduction
(X2, Xa] =0 p"=0
[X3, Xo] = 2Xo0 a?B" +2a3 =0
aoxa] =4 4af” +258 = 4f(8)(a?8" + aff)
[x3: x2] = 2x2 a’B" + 20" = f(B)5"
[X3, Xa] = 2Xa B"(a?+1)+2a8 =0
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