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Finding solutions of nonlinear partial differential equations, either exact or ana-

lytical, is one of the challenging problems in applied mathematics. In particular, the

case of higher-order systems of nonlinear partial differential equations poses the most

difficult challenge. Lie symmetry method provides a powerful tool for the generation

of transformations that can be used to transform the given differential equation to

a simpler equation while preserving the invariance of the original equation. Conse-

quently, it enjoys a widespread application and has attracted the attention of many

researchers.

In this research work a complete classification of a family of nonlinear (1+2)- di-

mensional wave equations, in which the nonlinearity is introduced through a function

representing the wave speed, has been done. All possible symmetries of this wave

equation are derived and a set of reductions to ordinary differential equations under

two-dimensional sub-algebras is given.
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CHAPTER 1

INTRODUCTION

Most of the time the mathematical model of any physical problem includes differential

equations, that is why many techniques have been discovered so far in order to find

the solutions of differential equations. Although there are many wonderful techniques

available but still there exist open problems needed to be solved. While dealing

with higher order ordinary differential equations or a partial differential equation, for

which there is no direct method to solve, we usually look for some transformations

that can transform the differential equation into a class of known type or it reduces

the differential equation either in order or in number of independent variables. The

problem of finding such transformations that not only reduce the order of differential

equation, in case of an ordinary differential equation (ODE), or reduces the number of

independent variables, in case of a partial differential equation (PDE), but the given

differential equation also remains invariant under these transformations is of great

interest.

Majority of cases in which exact solutions of a differential equation can be found,

the underlying property is symmetry of that equation [46]. Apparently unrelated

methods, such as integrating factor, reduction of order, separable, homogeneous or

exact solutions, conservation laws, invariant solutions or invertible linear transfor-

mations are in fact special cases of a general integration procedure based on the

invariance of the differential equation under a continuous group of symmetries [39].
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This relation was first discovered by the Norwegian mathematician Sophus Lie in the

19th century. On the basis of his findings Lie developed a noteworthy theory that

gives rise to a creative mechanism for solving differential equations. Lie’s fundamen-

tal discovery was that, in the case of a continuous group, the complicated nonlinear

conditions of invariance of the system under the group transformations could be re-

placed by much simpler equivalent linear conditions reflecting a form of infinitesimal

invariance of the system under the generators of the group. In almost every physically

important system of differential equations, these infinitesimal symmetry conditions,

called defining equations of the symmetry group of the system, can be explicitly solved

in closed form and thus the most general continuous symmetry groups of the system

can be explicitly determined [39]. Lie’s continuous groups, known as Lie groups,

have a wide range of applications in many different pure and applied areas and disci-

plines of mathematics and physics including algebraic topology, differential geometry,

bifurcation theory and numerical analysis.

In the last two decades an enormous amount of research has been done in the

field, both in the application to concrete physical system as well as extension of the

scope and depth of the theory itself [9, 14,19,22,26,27,29,31,41,44,53].

Lie symmetry group of transformations depends on continuous parameters, and

it maps solutions of differential equations to other solutions. In classical framework

of Lie, these groups consists of geometric transformations on the space of indepen-

dent and dependent variables for the system and act on solutions by transforming

their graphs. Most common examples of these transformations are: groups of trans-

lations, groups of rotations and groups of scaling symmetries, but still there are huge

range of possibilities. Contrary to discrete symmetries such as reflections, continuous
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symmetry groups have great advantage that they all can be found using explicit com-

putational methods. Introduction of continuous groups transforms complex nonlinear

conditions expressing the invariance of a differential equation, under its symmetries,

into linear conditions which expresses the infinitesimal invariance of the equation un-

der the group generators. These infinitesimal generators can be calculated directly by

a straightforward algorithm which is so mechanical that several computer packages

are available to perform the calculations [52]. Because of this reason these generators

are of prime interest in the theory.

By Lie’s fundamental theorems, the infinitesimal generator completely character-

izes the structure of the Lie symmetry group and thus the corresponding Lie algebra

under the commutation operator [11, 39, 46]. After being determined, a symmetry

group of a differential equation has many applications. New solutions of the system

can be constructed using the defining property of such a group, from known solu-

tions and thus build up classes of equivalent solutions, where equivalence means one

solution can be reached by applying a symmetry to a different solution. Even if a

given differential equation cannot be solved completely through use of its Lie group

of point symmetries, the Lie group can still be used to determine what are known

as invariant solutions, also known as similarity solutions or group invariant solutions.

Invariant solutions are those solutions that are invariant under a particular symmetry

or a subgroup of the Lie group and have proved to be exceptionally important in the

area of symmetry analysis, particularly for PDEs. On occasion, it is often prudent

to search for particular types of solutions to a given PDE, such as travelling waves

or separable solutions, in fact, such approaches are precisely the same as looking

for solutions that are invariant under a particular group of transformations. The
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symmetry group thus provides a means of classifying different symmetry classes of

solutions, where two solutions are deemed to be equivalent if one can be transformed

into the other by some group element. Symmetry groups can also be used to effect a

classification of families of differential equations depending on arbitrary parameters

or functions. Often there are good physical or mathematical reasons for preferring

these equations with as high a degree of symmetry as possible. Types of differential

equations that admit a prescribed group of symmetries can also be determined by

infinitesimal methods using the theory of differential invariants.

In case of ODEs invariance under a one-parameter Lie group of transformations

means that the order of the equation can be reduced by one and a single quadrature

recovers the solutions of the original equation from those of the reduced equation, for

first order ODE this is equivalent to determining the solutions explicitly [46]. Any

ODE that has Lie symmetries equivalent to translations and a change of coordinates

can be integrated directly, such coordinates are known as canonical coordinates. For

higher order ODE multi-parameter symmetry groups beget further reductions in order

via quadratures, but it requires group to satisfy an additional solvability requirement,

solutions of the original equation may not recover from the solutions of the reduced

equation by the quadratures only.

The invariance of partial differential equations under Lie groups of transformations

is not quite straightforward like ODEs. Invariance under a one parameter Lie group

of transformations reduces a PDE with two independent variables to an ODE; if the

number of variables in a particular PDE is more than two, say n, then invariance under

an m-parameter Lie group causes reduction in the number of independent variables

in PDE by m. Symmetry groups are helpful in determining explicitly special types of
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solutions which are themselves invariant under some subgroup of the full symmetry

group of the system. These group invariant solutions are found by solving a reduced

system of differential equations involving fewer independent variables then the original

system [11,39]. These general group-invariant solutions include the classical similarity

solutions coming from groups of scaling symmetries and travelling wave solutions

reflecting some form of translational invariance in the system, as well as many other

explicit solutions of direct physical or mathematical importance. For many nonlinear

systems, there are only explicit exact solutions available. These solutions play an

important role in both mathematical analysis and physical applications of the systems.

A lot of research is being done in the classification of symmetries [19,23,25,31,32,

34,53], linearizing transformations and invariant solutions [18,20,35–38,41,43,44]. A

reference book containing symmetries of many PDEs was authored by Ibragimov [24].

Lie classical symmetries have many applications to differential equations and their

solutions. There are many extensions to the classical symmetry method that expands

the uses of symmetry analysis as a whole [4–6, 13, 42, 45, 49, 50]. Transformations

that act as diffeomorphism (differentiable + homeomorphism) on the subset of the jet

space, by a process known as prolongation, are known as generalized symmetries. The

infinitesimal generators of these transformations depend on derivatives of dependent

and independent variables up to a finite order. If this dependence is only up to

first order derivatives, then these symmetries are called contact symmetries. These

symmetries are also referred to as dynamical symmetries, internal symmetries, Lie-

Backlund transformations and higher-order symmetries. There is a class of point

transformations that are not symmetries at all, but can lead to exact solutions of

PDEs; these symmetries are called non-classical symmetries. Notion of non-classical
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symmetries is given by Bluman and Cole [11, 12]; in the literature these symmetries

are also referred to as conditional symmetries because the solutions obtained by these

are not achievable through classical method. Symmetries generated by infinitesimal

transformations are local symmetries, local due to the reason that the infinitesimals

are well defined at any point if the solution of differential equation is sufficiently

smooth in the neighborhood of this point. A symmetry is non-local if it depends

upon integrals of dependent variables, Bluman and Kumi [11] gives the concept of

potential symmetries build on the definition of non-local symmetries.

The symmetry analysis of (1+1)-dimensional nonlinear wave equation has been

done by many authors [8, 13, 18, 21, 32, 34, 36, 48]. The two-dimensional (1+2) wave

equation with constant coefficients has been studied with an equivalent vigor [17,51].

However, the group theoretic approach to the equation with non-constant coefficients

and the non-linear case have only been studied in specific cases and, here too, complete

results have either not been attained or not presented so that very few exact solutions

invariant under symmetry are known [7]. Recently Gandarias et.al. [21] has discussed

(1+1)-dimensional nonlinear wave equation using Lie symmetry method. Complete

group classification is presented and achieved optimal system of a nonlinear wave

equation. Observing that a complete classification gives more elaborative insight of

a differential equation, an in-depth study of a family of nonlinear (1+2)-dimensional

wave equation has been done. Group classification and reduction to an ODE under

two dimensional closed Lie algebras are obtained.

Organization of the thesis is as follows: in the first chapter a brief description of

partial differential equations is given, chapter two is about the basic concepts, defin-

itions and theorems required to find the Lie symmetries. In chapter three a detailed
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step by step procedure to find Lie symmetries of a PDE is given with examples. The

last chapter is solely about the work done during the research, a simple case of a class

of nonlinear wave equations is given following with two more general cases.



CHAPTER 2

PARTIAL DIFFERENTIAL EQUATIONS

2.1 Introduction

Partial differential equations (PDEs) are one of the fundamental areas of interest in

applied analysis. The applications arise almost in all areas of science and engineering.

Most of the Physical processes cannot be modeled mathematically by ordinary differ-

ential equations (ODEs) because the parameters defining the system depend on more

than one parameter. For example, the temperature ‘u’ in a bar of length ‘l’ depends

on the location ‘x’ in the bar and the time ‘t’ from when the initial conditions were

applied.

A PDE is an identity that relates more than one independent variables x, y, z, .....,

a dependent variable u(x, y, z, .....) (the number of dependent variables can be more

than one) and the partial derivatives of u. Derivatives are usually denoted by sub-

scripts i.e. ∂u/∂x = ux, and similarly for higher order derivatives. For PDEs the

distinction between dependent and independent variables is always kept unlike to

ODEs where the relation of dependent and independent variables can be interchanged

for instance in order to solve the differential equation. One of the main aims of the

studies in this regard is to find exact solutions of these PDE’s. While a reasonably

comprehensive theory exists for linear PDE’s, the nonlinear PDE’s still needs a lot to

be done as there is no unified theory applicable to a wider class of nonlinear PDE’s.

This aspect will be on focus of attention in this thesis. In particular, we shall be

8
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considering nonlinear wave equations.

Definition 2.1 A second order PDE in two independent variables x (known as spatial

or position coordinate) and t (known as time coordinate) and one dependent variable

u(x, t) is an equation of the form,

H(x, t, u, ux, ut, uxx, uxt, utt) = 0. (1)

A solution u = u(x, t) of a PDE is a function, which is twice continuously differen-

tiable and that reduces (1) to an identity for (x, t) in D; the domain of definition for

PDE [33].

The condition of being twice continuously differentiability is due to the second or-

der derivatives involved in (1). Graphically the solution is a smooth surface in three

dimensional xyt-space, over the domain D in xt-plane. The domain D of the problem

is a space-time domain. Problems that include time as an independent variable are

called evolution problems. When two spatial coordinates, say x & y, are inde-

pendent we refer to the problem as an equilibrium or steady state problem [33].

Similar to the general solution of an ODE, a PDE of type (1) has infinitely many

solutions as the general solution of a PDE depend on arbitrary functions.

Example 1 Consider a PDE,

utx = tx,

integration with respect to x gives,

ut =
1

2
tx2 + f(t),
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where f is an arbitrary function. Again integration by t gives the general solution,

u =
1

4
t2x2 + g(t) + h(x),

where h(x) and g(t) =
∫
f(t)dt are arbitrary functions. Thus the general solution

depends on two arbitrary functions.

2.1.1 Initial and boundary value problems

The general solution of a PDE contains unknown functions similar to unknown con-

stants in case of ODE’s. In order to find the exact solution of a PDE we need initial or

boundary conditions. An initial condition prescribes the unknown function at a fixed

time t = t0 whereas a boundary conditions gives its value on a curve or a surface. A

condition given along any other curve in the xt-plane is called boundary condition.

PDEs with auxiliary conditions are called boundary value problems. A general solu-

tion of a PDE has arbitrary functions involved in its expression. A boundary value

problem consists of a PDE and corresponding initial or/and boundary conditions.

Definition 2.2 A boundary value problem is said to be well posed if,

1. It has a solution.

2. This solution is uniquely determined.

3. The solution is stable, i.e. a small change in the boundary data induces only a

small change in the solution.

2.1.2 Linear and Nonlinear PDE

A PDE in the form of an operator L is given as,
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L u(x, t) = f(x, t), (x, t) ∈ D (2)

where L is a partial differential operator. The equation (2) is a linear equation if for

any functions u , v and constants α , β , it satisfies the condition,

L (α u+ β v) = α L u+ β L v. (3)

If equation (2) does not satisfy the above condition, then it is called a nonlinear PDE.

Example 2 Consider the heat equation ut − kuxx = 0. For this equation the differ-

ential operator is,

L =
∂

∂t
− k

∂2

∂x2
.

It is easily seen that the above equation is linear because it satisfies the linearity

criterion (3) as shown below,

L (α u+ β v) = (α u+ β v)t − k(α u+ β v)xx ,

= α ut + β vt − k α uxx − k β vxx ,

= α (ut − k uxx) + β (vt − k vxx) ,

= α Lu+ β Lv.

Example 3 The PDE Lu = uut + 2txu = 0 is a nonlinear equation because,

L(u+ w) 6= Lu+ Lw.

2.1.3 Homogeneous PDEs

A PDE is called homogeneous if in equation (2) the known function f(x, t) = 0 on

the domain D. Examples of some homogeneous equations are:
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1. uxx + uyy = 0 (Laplace’s equation)

2. utt − c2uxx = 0 (Wave equation)

3. ut −Kuxx = 0 (Heat equation)

4. utt − c2uxx + 2βut + αu = 0 (Telegraph equation)

5. ut + uxxx + uux = 0 (Korteweg-de Varies equation)

If the known function f(x, t) in (2) is not identically zero, then it is called a

non-homogeneous equation. Some examples of non-homogeneous PDEs are:

1. uxx + uyy = G. (Poisson’s equation)

2. uut + 2txu = sin(tx).

2.1.4 Superposition Principle

It is not always possible to write the general solution of a PDE in a closed form,

therefore the method of combining known solutions is very important. For homoge-

neous equations the rule for combining the known solutions is called the superposition

principle.

Theorem 2.1 Let u1, u2, ........, un be solutions of the homogeneous linear PDE equa-

tion Lu = 0, then due to the linearity,

L
( n∑

i=1

ui

)
=

n∑
i=1

L(ui),

and,

L(ciui) = ciL(ui),
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where ci are constants ∀ i = 1, 2, ...., n, we have,

L
( n∑

i=1

ciui

)
= 0,

thus the linear combination of solutions is also a solution of the PDE; this is called

the superposition principle.

Superposition principle can be extended to infinite sums. If the differential op-

erator can be shifted inside the integral sign then the applicability of superposition

principle can be extended to continuous cases for example let u(x, t, α) be solution of

(2) ∀ α ∈ A ⊂ R, and

u(x, t) =

∫
A
c(α) u(x, t, α)dα

where c(α) is bounded and continuous function ∀ α ∈ A. Then Lu(x, t) = 0 i.e.

u(x, t) is also a solution of (2).

2.1.5 Subtraction Principle

Superposition principle is only applicable to the homogeneous PDE’s. A principle

that relate nonhomogeneous equations to homogeneous equations is known as sub-

traction principle [40].

Theorem 2.2 If u1 and u2 are solutions of a nonhomogeneous linear equation

Lu = f(x, t), then u1−u2 is a solution of the associated homogeneous linear equation

Lu = 0.

Once we know the particular solution of a nonhomogeneous PDE and a general

solution of the associated homogeneous PDE, we can find the general solution of the

nonhomogeneous equation.
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2.1.6 Types of PDEs

The general form of a linear second order PDE in two variables is,

Auxx + 2Buxy + Cuyy +Dux + Euy + Fu = G, (4)

where A, B, C, D, E, F, G are functions of (x, y).

Depending on the second order coefficients A, B and C, second order linear PDE’s

are classified in three fundamental types known as parabolic, elliptic and hyperbolic

equations [47], as follows,

1. If AC = B2, then PDE is called Parabolic equation.

2. If AC > B2, then PDE is called Elliptic equation.

3. If AC < B2, then PDE is called Hyperbolic equation.

Remark 2.1 Parabolic equations govern diffusion processes, elliptic equations model

processes in equilibrium processes and hyperbolic equations govern wave propagation.

The examples of elliptic equations are Poison and Laplace equations whereas wave

and telegraph equations are hyperbolic and the heat equation is a parabolic equation.

2.2 Wave Equation

Waves are defined as disturbances which are periodic in time and space. The most

common examples are water waves, sound waves, stress waves in solids and electro-

magnetic waves. The convection of mater itself with wave is not necessary, energy

is carried by the disturbance that propagate with wave. Mathematical model of an

undistorted wave travelling with a constant velocity ‘c’ in two independent coordi-

nates space ‘x’ and time ‘t’ and one dependent coordinate ‘u’ for disturbance is given
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as a function,

u(x, t) = f(x− ct). (5)

Initially at t = 0 the wave equation is u = f(x), for time t > 0 the wave moves ‘ct’

units to right. The simplest partial differential equation that governs the equation of

type (5) is,

ut + cux = 0. (6)

This equation is called the advection equation with general solution (5). Similarly

periodic or sinusoidal travelling waves are given by,

u = A cos(kx− ωt), (7)

here A is the amplitude, k is the wave number and ω is the angular frequency

of the wave. Wavelength and time period are respectively given by λ = 2π/k and

T = 2π/ω. Equation (7) can be written as,

u = A cosk
(
x− ω

k
t
)
,

that represents a travelling wave moving to the right with velocity c = ω/k, known

as phase velocity. Undistorted waves are linear waves.

There are many waves that distort or break with time. These are all nonlinear

waves. The examples of such waves are surface waves and stress waves propagating in

solids or gases. Transmission of signals in a material increases with pressure causing

disturbance, since disturbances travel faster when the pressure is higher therefore

the wave steepens as time passes until it propagates as a discontinuous disturbance

or shock wave. The same phenomenon causes the formation of release waves or

rarefaction waves that lower the pressure. Apart from these two trends there is one
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third known as dispersion, in which the propagation speed depends on the wavelength

of the particular wave therefore longer waves can travel faster than waves of shorter

wavelength. Dispersive wave arises from both linear and nonlinear equations.

2.2.1 Linear Waves

A simple (1+1) second order linear wave equation is given as,

∂2u

∂t2
= c2

∂2u

∂x2
. (8)

Theorem 2.3 The general solution of the equation (8) is,

u(x, t) = F (x+ ct) +G(x− ct),

where F and G are two arbitrary functions.

Proof Let u(x, t) be a solution of (8), therefore u(x, t) is a twice differentiable

smooth function i.e. u ∈ C2(R2) where R2 denotes the xt-plane. Introducing new

variable ξ, τ and v such that,

ξ = x+ ct, τ = x− ct and v = v(ξ, τ) = u

(
ξ + τ

2
,
ξ − τ

2c

)
,

we have

∂2v

∂ξ∂τ
= 0. (9)

Integration with respect to ξ gives,

∂v

∂τ
= g(τ), or

∂

∂τ
(v −G) = 0,

where g ∈ C1(R) and G ∈ C2(R) such that ∂G
∂τ

= g(τ). Further integration of the

above equation with respect to τ gives,

v(ξ, τ) = G(τ) + F (ξ), where F ∈ C2(R).
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By transforming the last equation back into coordinates x, t and u we obtain the

solution of equation (8) given as,

u(x, t) = F (x+ ct) +G(x− ct).

Example 4 (Initial Value Problem) Corresponding to the simplest PDE govern-

ing wave equation

utt = c2uxx, −∞ < x < +∞, (10)

u(x, 0) = u0(x), ut(x, 0) = u1(x), (11)

where u0 and u1 are any functions in C2(R) and C1(R) respectively.

Solution

The general solution of the wave equation is given as u(x, t) = F (x+ct)+G(x−ct).

Therefore the initial conditions becomes,

F (x) +G(x) = u0(x), (12)

cF ′(x)− cG′(x) = u1(x). (13)

Solving (12) and (13) for F (x) and G(x) we get,

F (x) =
1

2

{
u0(x) +

1

c

∫ x

0

u1(ξ)dξ + k1

}
, (14)

G(x) =
1

2

{
u0(x)−

1

c

∫ x

0

u1(ξ)dξ − k2

}
. (15)

Thus the solution of the initial value problem is,

u(x, t) =
1

2

{
u0(x+ ct) + u0(x− ct)

}
+

1

2c

∫ x+ct

x−ct

u1(ξ)dξ . (16)

The formula (16) is called d’Alembert formula.
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2.2.2 Nonlinear Waves

Corresponding to the simplest PDE (6), governing wave equation, we have the non-

linear case,

ut + f(u)ux = 0, x ∈ R1, t > 0, (17)

u(x, 0) = g(x), x ∈ R1 (18)

where f ′(u) > 0. The characteristic equation of this PDE is given by,

dx

dt
= f(u), (19)

along these characteristic curves u is constant, because,

du

dt
= ux f(u) + ut = 0.

Also, from (19) it is clear that,

d2x

dt2
=
df(u)

dt
= f ′(u)

du

dt
= 0,

therefore characteristic curves are straight lines.

Now from equation (19), by using the initial condition (18) we obtain

x = f(g(ξ)) t+ ξ. (20)

This is the equation of characteristic curves. The solution u(x, t) of the initial value

problem (17) is given by,

u(x, t) = g(ξ), (21)

where ξ is given implicitly by (20).
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Example 5 (Damped waves) Consider the equation,

ut + u ux + a u = 0, a is a positive constant, t > 0, (22)

u(x, 0) = −x
2
. (23)

In characteristic form the problem is equivalent to,

du

dt
= −au, dx

dt
= u, (24)

with initial condition,

x = ξ, u = −ξ
2
, at t = 0.

The general solution is given as,

u = c1e
−at, x = −c1

a
e−at + c2 .

By applying initial conditions we get,

u = − ξ

2
e−at, x =

ξ

2a
e−at + ξ

(
2a− 1

2a

)
,

which gives,

ξ =
2 a x

2a− 1 + e−at
,

thus the solution of (22) is,

u(x, t) =
a x e−at

1− 2a− e−at
.

2.2.2.1 Burgers’ Equation

Burgers’ equation is a fundamental partial differential equation occurring in various

areas of applied mathematics, such as modelling of gas dynamics and traffic flow.
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Definition 2.3 The general form of Burgers’ equation is,

ut + uux = µuxx, (25)

here µ > 0 is a viscosity coefficient and the term µ uxx is called the diffusion term.

When µ = 0, Burgers’ equation becomes the inviscid Burgers’ equation,

ut + uux = 0. (26)

It is similar in form to the advection equation. This is similar to nonlinear equation

described in example (5).

Example 6 (Burgers’ Equation without Diffusive Term) Substituting f(u) =

u and g(x) = u(x, 0) = 2− x in equation (17), will give inviscid Burgers’ equation

(or Burgers’ equation without diffusive term) with an initial condition. From (20) we

find the equation of characteristic curves given as,

x = f(2− ξ)t+ ξ = (2− ξ)t+ ξ,

solving this equation for ξ we obtain,

ξ =
x− 2t

1− t
.

Therefore from equation (21), the solution of viscid Burgers’ equation is,

u(x, t) = g(ξ) = 2− x− 2t

1− t
=

2− x

1− t
.

The expression for the solution indicates the breaking time t = 1.

Example 7 (Burgers’ Equation with Diffusive Term) Consider the Burger Equa-

tion with diffusive term µuxx where µ > 0, given as,

ut + uux = µuxx, (27)
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we are interested in the travelling wave solution of this equation.

Let u(x, t) = f(x − ct) be the solution of (27), we need to find the expressions

for f and c. Let us denote ω = x− ct for simplicity. Substituting f(ω) in (27)

we get,

−cf ′ + ff ′ − µf ′′ = 0,

where,

f ′ =
df(ω)

dω
, and f ′′ =

d2f(ω)

dω2
.

Integration with respect to ω yields,

− cf +
1

2
f 2 − µf ′ = α,

(α being constant of integration)

df

dω
=

1

2µ
f 2 − c

µ
f − α

µ
,

f ′ =
(f − f1)(f − f2)

2µ
, (28)

where f1 = c −
√
c2 + 2α and f2 = c +

√
c2 + 2α are the roots of quadratic

equation f 2 − 2cf − 2α. Assuming that c2 + 2α > 0 and integrating (28) we get,

ω

2µ
=

∫
df

(f − f1)(f − f2)
,

=
1

f2 − f1

ln

{
f2 − f

f − f1

}
,

ln

{
f2 − f

f − f1

}
=

(f2 − f1)

2µ
ω ,

f(ω) =
f2 + f1 e

βω

1 + eβω
, (29)
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where,

β =
(f2 − f1)

2µ
> 0.

Also f ∼ f1 and f ∼ f2 for ω >> 0 and ω << 0 respectively. The value of f

at ω = 0 is f(0) = (f1+f2)
2

. Therefore the solution of (27), using (7), is given as,

u(x, t) = f(x− ct) =
f2 + f1 e

β(x−ct)

1 + eβ(x−ct)
,

and the value of c can be calculated from f1 and f2 using the formula,

c =
f1 + f2

2
.

From the above two examples it is clear that when the diffusion term µ uxx is

absent in Burgers’ equation, the solution would shock up or break. In the presence of

diffusion term the effect of shock or breaking trend in the solution will reduce. The

shock effect is inversely proportional to the diffusion term involved.

2.2.2.2 Korteweg-de Vries Equation

In Burgers’ equation the nonlinearity comes with diffusion. The nonlinear term u ux ,

that causes the shocking-up effect, is balanced by diffusive term µ uxx. In many

physical problems related to wave motion, the resulting equations involve nonlinearity

with dispersion, for example ut + u ux + uxxx = 0. In this equation the shocking

effect caused by u ux is balanced with dispersive term uxxx. Nonlinearity steepens

wavefronts whereas dispersion spread them out. Equation governing this type of

problem is called Korteweg-de Vries (KdV) equation.

The KdV equation also models long waves in shallow water [16]. It expresses the

balancing of the nonlinear steepening of shallow water waves by the effect of linear
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dispersion. The general form of the equation is given as,

ut +
αβ

γ
uux +

β

γ3
uxxx = 0. (30)

Example 8 (Solitary waves) Solitary-wave solution of the KdV equation is a trav-

elling wave of permanent form. It is a special solution of the governing equation as

it does not change the shape and propagates at constant speed. Consider the KdV

equation,

ut − 6uux + uxxx = 0, (31)

this is same as (30) with constant terms αβ
γ

and β
γ3 replaced by − 6 and 1 for

simplification.

Let u(x, t) = f(ξ) where ξ = x− ct, ‘c’ being a constant, be the travelling wave

solution of this equation. Substitution in equation (31) will give,

−cf ′ − 6ff ′ + f ′′′ = 0,

which after integration gives,

−cf − 3f 2 + f ′′ = α,

where α is constant of integration. Using f ′ as integrating factor and integrating

second time, yields,

(f ′)2

2
= f 3 +

cf 2

2
+ αf + β,

where β is the second constant of integration. Applying the boundary conditions

f, f ′, f ′′ → 0 as ξ → ±∞ describing solitary wave, we obtain,

(f ′)2 = f 2(2f + c). (32)
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It will have a real solution if 2f > −c. Now by integrating equation (32), we have,∫
df

f(2f + c)
1
2

= ±
∫
dξ,

by using the substitution f = −1
2
c sech2θ, (c ≥ 0) we get the solution,

f(x− ct) = −1

2
c sech2

{
−1

2
c

1
2 (x− ct− x0)

}
, (33)

where x0 is constant of integration. The expression (33) is called the solitary wave

solution.



CHAPTER 3

LIE SYMMETRIES

3.1 Introduction

Lie symmetry method is a powerful technique that relates seemingly different methods

for finding the solution of ODEs like, integrating factor, separable equation, homoge-

neous equation, reduction of order and methods of undetermined coefficients etc. Lie

group depends on continuous parameters and consists of point transformations acting

on the space of independent variables, dependent variables and derivatives of depen-

dent variables. These continuous group of point transformations can be determined

by an explicit computational algorithm.

Common examples of Lie groups include translations, rotations and scalings. By

the application of one-parameter Lie group of point transformations, under which

differential equation remain invariant, order of an ODE reduces by one and in case of

PDE the number of independent variables reduces by one. Lie groups are completely

characterized by infinitesimal generators which can be further prolonged to the space

of independent variables, dependent variables and the derivatives of the dependent

variables up to any finite order. Thus nonlinear conditions of group invariance of a

given system of differential equations reduce to linear homogeneous system determin-

ing the infinitesimal generator of the group.

Similarity solutions can be found for an invariant system of partial differential

25
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equations under a Lie group of point transformations. Solutions thus found are in-

variant under a subgroup of the complete group. A subgroup of order r reduces the

number of independent variables by r in the given PDE.

3.2 Lie Groups

Lie groups are important in mathematical analysis, physics and geometry because

they serve to describe the symmetry of analytical structures. Lie groups arise as

groups of symmetries of some object, or more precisely, as local groups of transfor-

mations acting on some manifolds.

3.2.1 Groups

Definition 3.1 A group is a set G together with a binary operation ‘∗’ called

group operation, satisfying following properties:

1. Closure

For any two elements α and β of group G there exist an element γ ∈ G

such that,

α ∗ β = γ.

2. Associativity

For any three elements α, β and γ in G,

α ∗ (β ∗ γ) = (α ∗ β) ∗ γ.

3. Identity Element

There exists a unique element e in G such that,

α ∗ e = e ∗ α = α, ∀ α ∈ G.
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4. Inverse Element

For each element α in G there exists a unique element α−1 in G such

that,

α ∗ α−1 = α−1 ∗ α = e.

Definition 3.2 (Abelian Group) A group G is said to be Abelian if in addition

to above properties it satisfies the property:

α ∗ β = β ∗ α, ∀ α, β ∈ G.

Definition 3.3 (Subgroup) Let H be a subset of G. Then H is said to be a

subgroup of G if it satisfies all the conditions of the group (G, ∗) under the same

binary operation ‘∗’.

Example 9 1. The set Z, of integers is a group under group operation ‘+’. The

identity element of the group (Z,+) is 0 and the inverse of each element

α ∈ Z is − α. It is also an abelian group.

2. Another example of abelian group is the group (R,+), where R is set of real

numbers, with identity element 0 and the inverse of each element α is −α.

Since Z ⊂ R therefore the group (Z,+) is a subgroup of (R,+).

3. Similarly (R\{0},×) is a group having identity element 1 and the inverse

of each element α is 1/α.

3.2.2 Groups of Transformations

Definition 3.4 Let G be a set of transformations and Gi ∈ G such that,

Gi : α −→ α̃(α; ε),
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where α and α̃ both belong to the set S ⊂ Rn and the parameter ε ∈ A ⊂ R

with composition law ψ(ε, δ) for all ε, δ ∈ A, satisfying the conditions:

1. Gi is a one-to-one transformation for each i and for all ε ∈ A.

2. (A, ψ) is a group.

3. For the identity element e of the group (A, ψ), α̃ = α i.e.

Gi(α; e) = α, ∀ i.

4. Let α̃ = Gi(α; ε) then,

˜̃α = Gi(α̃; δ) = Gi(α;ψ(ε, δ)).

3.3 Lie Groups of Transformations

Definition 3.5 A transformation group G with composition law ψ is said to be a

Lie group of transformations of one-parameter if:

1. The parameter ε is continuous. i.e. the set A is an interval in R.

2. Each element Gi of the group G is an infinitely differentiable function of

α ∈ S ⊂ Rn.

3. The composition function ψ(ε, δ) is an analytic function.

Equivalently, a group of infinitesimal point transformations of one parameter ε is

a transformation group that is invertible and has an identity transformation. Being

an invertible means that repeated application of the transformation leads to the

transformation of the same family. Mathematically, this statement can be recast as:

Let x̃ = x(x, y, ; ε) and ỹ = y(x, y, ; ε) be a transformation group such that
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1. ˜̃x = ˜̃x(x̃, ỹ; ε̃) = ˜̃x(x, y; ˜̃ε) for some ˜̃ε = ˜̃ε(ε̃, ε).

2. There exist ε0 such that,

x̃(x, y; ε0) = x, ỹ(x, y; ε0) = y,

then it is called an one-parameter group of point transformations.

Example 10 The transformation defined by,

Gi(x, y) −→ (x̃, ỹ),

such that,

x̃ = x cos ε− y sin ε, ỹ = x sin ε+ y cos ε,

where ε is an infinitesimal parameter forms the group of rotations transformations.

Since,

˜̃x = x̃ cos δ − ỹ sin δ = x cos(ε+ δ)− y sin(ε+ δ),

˜̃y = x̃ sin δ − ỹ cos δ = x sin(ε+ δ)− y cos(ε+ δ).

Also for ε = 0 we have

x̃ = x, and ỹ = y.

Therefore, the above transformations constitutes a one-parameter group of Lie point

transformations, where,

ψ(ε, δ) = ε+ δ.
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Example 11 A Group of translations in the plane is defined as,

x̃ = x+ ε, and ỹ = y + ε.

In this case,

˜̃x = x̃+ δ = x+ ε+ δ, and ˜̃y = ỹ + δ = y + ε+ δ,

with composition law and identity element given respectively as,

ψ(ε, δ) = ε+ δ, and ε0 = 0.

Therefore the group of translations is a Lie group.

Example 12 The group of scaling transformations is defined as,

x̃ = eεx, and ỹ = eεy.

In this case, the invertibility condition gives,

˜̃x = x̃ eδ = x eε eδ = x eε+δ, similarly ˜̃y = ỹ eδ = y eε eδ = y eε+δ,

with identity element,

ε0 = 0,

and the composition law,

ψ(ε, δ) = ε+ δ,

Thus the group of scaling transformations is a Lie group of transformation.
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Example 13 Consider the reflection transformations defined as,

x̃ = −x, and ỹ = −y.

Since,

˜̃x = −x̃ = −(−x) = x, and ˜̃y = −ỹ = −(−y) = y,

which shows that it is not invertible hence does not form a Lie group of transformation.

3.4 Infinitesimal Transformations

Consider one parameter (ε) Lie group of transformation with identity ε0 = 0 and

composition law ψ defined as,

α̃ = Gi(α; ε). (34)

Taylor expansion of the transformation (34) about ε0 = 0 is given as,

α̃ = Gi(α; ε0) + (ε− ε0)
∂Gi(α; ε)

∂ε

∣∣∣
ε=ε0

+ O(ε2)

= α+ ε
∂α̃

∂ε

∣∣∣
ε=0

+ O(ε2), (35)

where ∂α̃
∂ε

∣∣∣
ε=0

= ξα(α).

In particular for (x, y) ∈ R2 the Taylor expansion of transformation G1 such

that,

G1 : (x, y) −→ (x̃, ỹ),

is given as,

x̃ = x+ ε
∂x̃

∂ε

∣∣∣
ε=0

+ . . . ,

ỹ = y + ε
∂ỹ

∂ε

∣∣∣
ε=0

+ . . . . (36)
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Substituting,

∂x̃

∂ε

∣∣∣
ε=0

= ξ(x, y), and
∂ỹ

∂ε

∣∣∣
ε=0

= η(x, y),

in (36) reduces it to,

x̃ = x+ ε ξ(x, y) + . . . ,

ỹ = y + ε η(x, y) + . . . . (37)

This is called the Infinitesimal Transformation and the components ξ(x, y) and

η(x, y) are called infinitesimals of the transformation. Transformation (34) can be

found from the component ξ(α) by integrating,

∂α̃

∂ε
= ξ(α̃), (38)

with initial condition α̃ |ε=0= Gi |ε=0= α.

Theorem 3.1 (First Fundamental Theorem of Lie [11]) There exists a para-

metrization τ(ε) such that the Lie group of transformations α̃ = Gi(α; ε) is equivalent

to the solution of the initial value problem for the system of first order differential

equations,

dx̃

dτ
= ξ(x̃), (39)

with,

x̃ = x when τ = 0. (40)
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3.4.1 Infinitesimal Generator

Consider the transformation,

α̃ = Gi(α; ε), (41)

where α = (α1, α2, α3, . . . , αn) ∈ Rn. Then the operator defined by,

χ = ξ(α) · ∇ =
n∑

k=1

ξk(α)
∂

∂αk

, (42)

is called an infinitesimal generator of the one parameter group of transformation

(41) where ξk = ∂α̃k

∂ε
|ε=0 give the components of the tangent vector χα.

Consider an arbitrary point (x, y) ∈ R2 and the transformation given in (37),

the symmetry generator corresponding to this transformation is,

χ = ξ(x, y)
∂

∂x
+ η(x, y)

∂

∂y
,

where ξ(x, y) = ∂x̃
∂ε
|ε=0 and η(x, y) = ∂ỹ

∂ε
|ε=0.

Any transformation (41) can be determined completely with the help of infinites-

imal generator χ by integrating,

ξk(α̃) =
∂α̃k

∂ε
, (43)

with initial condition α̃k |ε=0= αk.

Theorem 3.2 The one-parameter Lie group of transformations α̃ = Gi(α; ε) is
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equivalent to:

α̃ = eεχα

= α+ ε χ α+
ε2

2
χ2 α+ . . .

= [1 + ε χ+
ε2

2
χ2 + . . . ] α

=
∞∑

k=0

εk

k!
χkα, (44)

where the operator χ is defined by (42).

Example 14 Consider the group of rotations defined as,

x̃ = x cos ε− y sin ε, ỹ = x sin ε+ y cos ε.

The components of symmetry generator are,

ξ(x, y) =
∂x̃

∂ε

∣∣∣
ε=0

= −y, and η(x, y) =
∂ỹ

∂ε

∣∣∣
ε=0

= x.

Therefore the symmetry generator is given as,

χ = −y ∂
∂x

+ x
∂

∂y
. (45)

The inverse problem is to find the corresponding transformation of a symmetry gen-

erator. There are two different ways to do this:
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a) Lie series corresponding to the generator (45) is,

x̃ = eεχx =
∞∑

k=0

εk

k!
χkx

= χ0x+
ε1

1!
χ1x+

ε2

2!
χ2x+

ε3

3!
χ3x+

ε4

4!
χ4x+

ε5

5!
χ5x+ . . .

= x− ε1

1!
y − ε2

2!
x+

ε3

3!
y +

ε4

4!
x− ε5

5!
y + . . .

=

(
1− ε2

2!
+
ε4

4!
+ . . .

)
x−

(
ε− ε3

3!
+
ε5

5!
− . . .

)
y

= x cos ε− y sin ε.

Similarly,

ỹ = eεχ y =
∞∑

k=0

εk

k!
χk y = x sin ε+ y cos ε.

b) For explanation of the second method consider the symmetry generator,

χ = x
∂

∂x
+ y

∂

∂y
.

Using formula (43) we have following relations,

ξ(x̃, ỹ) =
∂x̃

∂ε
= x̃, and η(x̃, ỹ) =

∂ỹ

∂ε
= ỹ,

integrating these two equations and applying the initial conditions x̃(0) = x and

ỹ(0) = y, we obtain,

x̃ = eεx, and ỹ = eεy.

This is the group of scaling transformations.
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3.4.2 Transformations of Generators

The infinitesimal symmetry generator χj =
∑n

i=1 ξ
i(α) ∂

∂αi
, in variables αi, can be

transformed in to the new variables α′i using transformation law. This law gives

the corresponding change in the components ξi(α) with the change of independent

variables αi.

Suppose,

α′i = α′i(αi), such that | ∂α′i/∂αi | 6= 0.

By chain rule for derivatives,

∂

∂αi

=
∂

∂α′i

∂α′i
∂αi

.

In the light of above χj becomes,

χj =
n∑

i=1

ξi(α)
∂

∂αi

=
n∑

i=1

ξi(α)
∂

∂α′i

∂α′i
∂αi

=
n∑

i=1

ξi′(α)
∂

∂α′i
,

where,

ξi′(α) = ξi(α)
∂α′i
∂αi

.

Since,

χj αk =
n∑

i=1

ξi(α)
∂αk

∂αi

= ξk(α),

and

χj α
′
k =

n∑
i=1

ξi′(α)
∂α′k
∂α′i

= ξk ′(α), for 1 ≤ k ≤ n,
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accordingly the infinitesimal symmetry generator can be written as,

χj =
n∑

i=1

(χj αi)
∂

∂αi

=
n∑

i=1

(χj α
′
i)

∂

∂α′i
. (46)

Thus given infinitesimal symmetry generator χj in coordinates αi can be trans-

formed to new coordinates α′i by the application of infinitesimal symmetry generator

to coordinates α′i.

Example 15 Consider the infinitesimal symmetry generator defined as,

χ = x
∂

∂x
+ y

∂

∂y
,

In order to transform it in new variables u and v given by,

u = y/x, v = xy.

Application of χ on u and v yields,

χ u = x
∂u

∂x
+ y

∂u

∂y
= 0,

χ v = x
∂v

∂x
+ y

∂v

∂y
= 2xy

= 2v.

Therefore the infinitesimal generator χ in new variables is given as,

χ = 2v
∂

∂v
.
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3.4.3 Normal Form

A result [46] in the theory of partial differential equations states that,

for a system of equations,

χ γ =
n∑

i=1

ξi(α)
∂γ

∂αi

= 1,

χ α′k =
n∑

i=1

ξi(α)
∂α′k
∂αi

= 0, (47)

where i = 1, 2, . . . , n and k = 2, 3, . . . , n, there always exist a nontrivial solution

{γ(αi), α
′
k(αi)}.

This result ensures that there always exist coordinates in which the infinitesimal

symmetry generator can be maximally simplified. Therefore the symmetry generator

χ =
∑n

i=1 ξ
i(α) ∂

∂αi
can be reduced to,

χ =
∂

∂γ
. (48)

Equation (48) is called the normal form of the generator χ.

Example 16 Consider the rotational transformations defined as,

x̃ = x cos ε− y sin ε, ỹ = x sin ε+ y cos ε.

Corresponding symmetry generator is given by,

χ = −y ∂

∂x
+ x

∂

∂y
.

Transforming the generator χ in polar coordinates,

r = (x2 + y2)1/2, and φ = arctan y/x,
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we have,

χ r =− y
∂r

∂x
+ x

∂r

∂y

= 0.

χ φ =− y
∂φ

∂x
+ x

∂φ

∂y

=1.

Thus in new coordinates the generator is given as,

χ =
∂

∂φ
,

which is the corresponding normal form.

3.5 Invariance

Lie group of transformations can have invariant functions, surfaces, curves and in-

variant points. This is the most powerful observation of Lie group theory because

due to the invariance property, complicated nonlinear conditions can be transformed

into simple linear conditions under the corresponding infinitesimal generator of the

symmetry group. A solution of a system of equations is a point that satisfies the

system. Symmetry group of the system transforms its solutions to other solutions

giving new invariant solutions of the system.

3.5.1 Invariance of a function

Let f be an infinitely differentiable function and let α̃ = Gi(α; ε) be the Lie group

of transformations of one parameter ε.

The function f is said to be an invariant function if and only if,

f(α̃) ≡ f(α). (49)
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Theorem 3.3 A function f is invariant under Lie group of transformation α̃ =

Gi(α; ε) if,

χ f(α) ≡ 0, (50)

where χ is the infinitesimal generator of the symmetry transformation and con-

versely.

Theorem 3.4 Given Lie group of transformation α̃ = Gi(α; ε) with symmetry gen-

erator χ, the identity,

f(α̃) ≡ f(α) + ε, (51)

holds if,

χ f(α) ≡ 1, (52)

and conversely.

3.5.2 Invariance of a surface

Let f(α) = 0 be a smooth surface and let α̃ = Gi(α; ε) be the Lie group of

symmetry transformation of one parameter ε. The surface f(α) = 0 is said to be

an invariant surface under the symmetry transformation if and only if f(α̃) = 0

whenever f(α) = 0.

3.5.3 Invariance of a curve

Consider a curve f(α) = 0 in an n-dimensional space Rn and let one parameter

Lie group of transformations in space Rn be given as,

α̃i = αi + ε ξi(α) + O(ε2), ∀ i = 1, 2, . . . , n. (53)
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The infinitesimal generator corresponding to this transformation is,

χ =
n∑

i=1

ξi(α)
∂

∂αi

. (54)

Then the curve f(α) = 0 is said to be an invariant curve if f(α̃) = 0 whenever

f(α) = 0 and conversely.

3.5.4 Invariance of a point

A point α = (α1, α2, . . . , αn) ∈ Rn is called an invariant point for one-parameter Lie

group of transformation α̃ = Gi(α; ε) if and only if α̃ = α under this transformation.

3.6 Multi-Parameter Lie Transformations

Lie groups of transformations can depend on more than one parameter ε . Let

G(α; εk) for k = 1, 2, . . . , r be an r-parameter Lie group of transformations. Corre-

sponding to each parameter εj there exist an infinitesimal symmetry generator χj

that belongs to an r-dimensional linear vector space with the commutator structure.

This vector space is know as r-dimensional Lie Algebra [11,39]. A one-parameter Lie

group of transformations is a subgroup of the r-parameter Lie group of transforma-

tions.

Definition 3.6 An r-parameter group of transformations α̃ = G(α; εk) with com-

position law ψ is said to be r-parameters Lie group of transformations if:

1. The parameters εk are continuous.

2. Each element Gri
for parameter εi of the group G is an infinitely differen-

tiable function of α ∈ Rn .
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3. The composition law for parameters ψ(εi, δj) is analytic.

The composition law for parameters, denoted by,

ψ(εi, δj) = (ψ1(εi, δj), ψ2(εi, δj), . . . , ψr(εi, δj)) ,

satisfies the group axioms with ε = (ε1, ε2, . . . , εr) = 0 corresponds to identity trans-

formation.

Equivalently, the transformation α̃ = G(α; εk) where k = 1, 2, . . . , r is an r-

parameter Lie group of transformations if:

1. Each parameter εk is independent of other parameters.

2. There exist an identity transformation.

3. Transformations are invertible and include their repeated application with pos-

sibly different parameter εj.

3.6.1 Infinitesimal Generators

Consider a Lie group of r-parameter transformations given as,

α̃ = G(α; εk), (55)

where α = (α1, α2, . . . , αn) ∈ Rn and k = 1, 2, . . . , r.

The infinitesimal symmetry generator for this group is same as that of one-

parameter group of transformations, but for each parameter εi there exist a corre-

sponding symmetry generator χi , given by,

χi =
n∑

k=1

ξk
i (α)

∂

∂αk

. (56)
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The components ξk
i (α) of symmetry generator χi can be derived as,

ξk
i (α) =

∂α̃k

∂εi

∣∣∣
εj=0

, (57)

Rescaling of parameter εi rescales the corresponding infinitesimal symmetry gener-

ator χi by a constant factor. Let,

εi = εi(ε̂j), with εi(0) = 0. (58)

Therefore by the definition (57) of the components for infinitesimal symmetry gener-

ator we have,

ξ̂k
i =

∂α̃k

∂ε̂i

∣∣∣
εj=0

=
∂α̃k

∂εl

∂εl
∂ε̂i

∣∣∣
εj=0

= ξk
l

∂εl
∂ε̂i

∣∣∣
εj=0

= C l
i ξ

k
l ,

where C l
i = ∂εl

∂ε̂i
|εj=0 is a constant. Because of linearity, transformed infinitesimal

symmetry generator is given as,

χ̂i = C l
i χl . (59)

If the parameters εi are not independent then in order to find a specific trans-

formation, the relation between different parameters is required. That is, we have to



44

define all εi’s in terms of a single parameter ε. In this case,

ξ =
∂α̃k

∂ε

∣∣∣
ε=0

=
∂α̃k

∂εi

∂εi
∂ε

∣∣∣
ε=0

= Diξk
i ,

where Di is a constant. Therefore the infinitesimal symmetry generator is,

χ = Di χi . (60)

The difference between one-parameter transformations and multi-parameter transfor-

mations is that the multi-parameter transformations contains some constants linearly.

Therefore they constitute all the properties of one-parameter transformations.

Example 17 Consider two-parameter group of transformations in two-dimensional

space defined as,

x̃ = x eθ cosφ− y eθ sinφ, and ỹ = x eθ sinφ+ y eθ cosφ.

Then the generators corresponding to the parameters θ and φ are respectively given

as,

χθ = x
∂

∂x
+ y

∂

∂y
, and χφ = − y

∂

∂x
+ x

∂

∂y
,

whereas a specific infinitesimal symmetry generator corresponding to the parameter

γ such that θ = 2γ and φ = 3γ will be,

χγ = Dθ χθ +Dφ χφ

= (2x− 3y)
∂

∂x
+ (2y + 3x)

∂

∂y
,

where Dθ = ∂θ
∂γ
|γ=0= 2 and Dφ = ∂φ

∂γ
|γ=0= 3.
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3.7 Lie Algebra

Infinitesimal symmetry generator χj corresponding to the parameter εj belongs

to an r-dimensional linear vector space known as r-dimensional Lie Algebra with the

commutator structure.

Definition 3.7 (Commutator Operator) Consider an r-parameter Lie group of

transformations given by (55) with infinitesimal symmetry generators χi corre-

sponding to each parameter εi defined in (56). Then the commutator operator [ , ]

for any two symmetry generators χi and χj is defined as [39],

[ χi , χj ] = χi χj − χj χi . (61)

Since,

χi χj =
n∑

k=1

ξk
i (α)

∂

∂αk

{
n∑

l=1

ξl
j(α; εi)

∂

∂αl

}

=
n∑

l,k=1

ξk
i (α)

∂

∂αk

{
ξl
j(α; εi)

∂

∂αl

}
.

Then,

[ χi , χj ] =
n∑

l,k=1

[
ξk
i (α)

∂

∂αk

{
ξl
j(α)

∂

∂αl

}
− ξl

j(α)
∂

∂αl

{
ξk
i (α)

∂

∂αk

}]

=
n∑

i=1

ηi(α)
∂

∂αi

, (62)
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where,

ηi(α) =
n∑

l,k=1

(
ξk
i

∂ξl
j

∂αk

+ ξk
i ξ

l
j

∂2

∂αk∂αl

− ξl
j ξ

k
i

∂2

∂αl∂αk

− ξl
j

∂ξk
i

∂αk

)

=
n∑

l,k=1

(
ξk
i

∂ξl
j

∂αk

− ξl
j

∂ξk
i

∂αk

)
. (63)

Equation (62) implies that the commutator of any two generators is again an infin-

itesimal symmetry generator. From equation (62) and (63) it is obvious that the

commutator operator also known as Lie Bracket is skew symmetric and bilinear i.e.

[ χi , χj ] = − [ χj , χi ] , (64)

[ c χi + c′ χj , χk ] = c [ χi , χk ] + c′ [ χj , χk ] , (65)

[ χi , c χj + c′ χk ] = c [ χi , χj ] + c′ [ χi , χk ] . (66)

where c and c′ are constants.

Any three infinitesimal symmetry generators χi , χj and χk satisfies the Jacobi’s

identity defined as,

[ χi , [ χj , χk ] ] + [ χk , [ χi , χj ] ] + [ χj , [ χk , χi ] ] = 0. (67)

Definition 3.8 (Lie Algebra) Let G be an r-parameter Lie group of transforma-

tions with basis {χ1, χ2, . . . , χr} where χi is an infinitesimal symmetry generator

corresponding to the parameter εi . The Lie group G of transformations, form an

r-dimensional Lie algebra Gr over the field F = R with respect to commutation

law [11].
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Lie algebra is a vector space ‘G’ together with commutator operator that is Bi-

linear, skew symmetric and satisfies jacobi identity.

Definition 3.9 (Subalgebra) A subset H of Lie algebra G is called a subalgebra of

G if it is closed under the commutation operator i.e. for all χi , χj ∈ H,

[ χi , χj ] ∈ H.

3.7.1 Solvable Lie Algebras

The order of an nth order ordinary differential equation can be reduced constructively

by two if it admits a Lie algebra of transformations of two parameters. But for an

r-parameter Lie algebra (r ≥ 3) the order of the differential equation can be reduced

constructively by p, if there exist a p-dimensional solvable subalgebra.

Definition 3.10 Let H be a subalgebra of the Lie algebra G. If,

[ g , h ] ∈ H, ∀ h ∈ H and ∀ g ∈ G,

then H is called an ideal or normal subalgebra of G.

Definition 3.11 Hp is a p-dimensional solvable Lie algebra if there exists a chain of

subalgebras,

H1 ⊂ H2 ⊂ · · · ⊂ Hp−1 ⊂ Hp,

such that Hi−1 is an ideal of Hi ∀ i = 2, 3, . . . , p.
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Definition 3.12 An algebra G is called an abelian Lie algebra if [ χi , χj ] = 0 for

all χi , χj ∈ G.

Theorem 3.5 Every Abelian Lie algebra and every two-dimensional Lie algebra is a

solvable Lie algebra.

3.7.2 Structure Constants

Theorem 3.6 (Second Fundamental Theorem of Lie [11]) The commutator of

any two infinitesimal generators of an r-parameter Lie group of transformations is

again an infinitesimal symmetry generator.

Definition 3.13 Lie bracket [39] of any two basis vectors must again lie in Gr i.e.

[ χi , χj ] =
r∑

k=1

Ck
ij χk ∈ G, ∀ i, j = 1, 2, . . . , r. (68)

The constants Ck
ij are called structure constants of the Lie algebra Gr.

Definition 3.14 (Commutation Relations) For an r-parameter Lie group of trans-

formations with basis {χ1, χ2, . . . , χr} the relations defined by equation (68) are

called commutation relations.

Theorem 3.7 (Third Fundamental Theorem of Lie [11]) The structure constants,

defined by commutation relations (68), satisfy the relations:

1. Ck
ij = − Ck

ji (skew symmetry).

2. Ck
ij C

m
kl + Ck

jl C
m
ki + Ck

li C
m
kj = 0 (Jacobi identity).
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3.8 Prolongation

In order to apply transformations (34) to an nth order differential equation, the cor-

responding infinitesimal symmetry generator (42) needs to be extended or prolonged

to nth order.

3.8.1 Case I: (One dependent and one independent variable)

Consider a differential equation,

F (x, y, y′, y′′, . . . , y(n)) = 0, (69)

of order n, with one independent variable x, and one dependent variable y. The

one-parameter (ε) Lie group of infinitesimal transformations are given by,

x̃ = Gx(x, y; ε) = x+ ε ξ(x, y) + O(ε2)

ỹ = Gy(x, y; ε) = y + ε η(x, y) + O(ε2)

 (70)

Infinitesimal components of symmetry generator χ are,

ξ(x, y) =
∂x̃

∂ε

∣∣∣
ε=0
, η(x, y) =

∂ỹ

∂ε

∣∣∣
ε=0
.

Then the corresponding infinitesimal symmetry generator is,

χ = ξ(x, y)
∂

∂x
+ η(x, y)

∂

∂y
. (71)

For an nth order differential equation we need to prolong the infinitesimal symmetry

generator to nth order. Thus (71) becomes,

χ(n) = χ+ η′
∂

∂y′
+ . . . · · ·+ η(n) ∂

∂y(n)
. (72)
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We need to find expressions of the infinitesimal components η(i) for i = 1, 2, . . . , n.

Extension of equation (70) up to order n is given as,

ỹ′ = y′ + ε η′(x, y, y′) + O(ε2)

ỹ′′ = y′′ + ε η′′(x, y) + O(ε2)

...

ỹ(n) = y(n) + ε η(n)(x, y) + O(ε2)


(73)

where,

η(n) =
∂ỹ(n)

∂ε

∣∣∣
ε=0

.

The expressions for ỹ′, . . . , ỹ(n) are also given as,

ỹ′ =
dỹ(x, y; ε)

dx̃(x, y; ε)
=

y′ (∂ỹ/∂y) + (∂ỹ/∂x)

y′ (∂x̃/∂y) + (∂x̃/∂x)
= ỹ′(x, y, y′; ε),

ỹ′′ =
dỹ′(x, y, y′; ε)

dx̃(x, y; ε)
=

y′′ (∂ỹ′/∂y′) + y′ (∂ỹ′/∂y) + (∂ỹ′/∂x)

y′ (∂x̃/∂y) + (∂x̃/∂x)
= ỹ′′(x, y, y′, y′′; ε),

...

...

ỹ(n) =
dỹ(n−1)

dx̃
= ỹ(n)(x, y, y′, . . . , y(n); ε).

(74)
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Also,

ỹ′ = y′ + ε η′ + . . .

=
dỹ

dx̃
=
dy + ε dη + . . .

dx+ ε dξ + . . .

=
y′ + ε (dη/dx) + . . .

1 + ε (dξ/dx) + . . .

= y′ + ε

(
dη

dx
− y′

dξ

dx

)
+ . . . ,

...

...

(75)

ỹ(n) = y(n) + ε η(n) + · · · = dỹ(n−1)

dx̃

= y(n) + ε

(
dη(n−1)

dx
− y(n) dξ

dx

)
+ . . . . (76)

From these equations following expressions for η′, . . . , η(n) can be read off,

η′ =
dη

dx
− y′

dξ

dx

=
∂η

∂x
+ y′

(
∂η

∂y
− ∂ξ

∂x

)
− y′

2 ∂ξ

∂y
,

...

η(n) =
dη(n−1)

dx
− y(n) dξ

dx
.
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3.8.2 Case II: (One dependent and p independent variables)

Consider an nth order differential equation with one dependent variable ‘u’ and p

independent variables ‘xi’ for i = 1, 2, . . . , p given as,

F (x, u, u(n)) = 0, (77)

where x = (x1, x2, . . . , xp) and u(n) denotes the set of all derivatives of u of order

less than or equal to n. Let J = (j1, j2, . . . , jk) be the k tuple of integers (number

of tuples in J are equal to the order of derivative). In index notation the derivative

of order m is denoted by,

uJ =
∂mu

∂xj1∂xj2 . . . ∂xjm

, (78)

where J = (j1, j2, . . . , jm) with 1 ≤ ji ≤ p for all i = 1, 2, . . . ,m.

Lie group of transformations of one parameter ε are given as,

x̃k = Gxk
(xi, u; ε) = xk + ε ξk(xi, u) + O(ε2)

ũ = Gu(xi, u; ε) = u+ ε φ(xi, u) + O(ε2)

 (79)

where i = 1, 2, . . . , p and xk ∈ {x1, x2, . . . , xp}. Infinitesimal components of sym-

metry generator χ are given as,

ξk(xi, u) =
∂x̃k

∂ε

∣∣∣
ε=0

, & φ(xi, u) =
∂ũ

∂ε

∣∣∣
ε=0

. (80)

Thus the corresponding infinitesimal symmetry generator of transformations (79) is,

χ =

p∑
k=1

ξk(xi, u)
∂

∂xk

+ φ(xi, u)
∂

∂u
. (81)

In order to apply the infinitesimal symmetry generator to nth order differential

equation we need to extend it to nth order. The general prolongation formula can
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be given in simple form by using the total derivative operator D, as given in the

definition below:

Definition 3.15 Let f(x, u(n)) be a continuously differentiable function with p in-

dependent variables x = (x1, x2, . . . , xp), one dependent variable u and the deriva-

tives of u up to order n. The general form of ith total derivative of f is,

Dif =
∂f

∂xi

+
∑

J

uJ,i
∂f

∂uJ

, (82)

where J = (j1, . . . , jk), 1 ≤ ji ≤ p for all i = 1, 2, . . . , k and,

uJ,i =
∂uJ

∂xi

=
∂k+1u

∂xi∂xj1∂xj2 . . . ∂xjk

. (83)

The sum in (82) is over all J ’s of order 0 ≤ #J ≤ n.

3.8.2.1 Derivation of extended infinitesimal symmetry generator

From equation (79) we have,

ũxk
= uxk

+ εφxk + . . . , (84)

where φxk =
∂uxk

∂ε

∣∣∣
ε=0
.

Also from (79) we have,

dũ = du+ εdφ+ O(ε2)

=

{
∂u

∂xi

+ ε

(
∂φ

∂xi

+
∂φ

∂u

∂u

∂xi

)}
dxi + . . .

=

(
∂u

∂xi

+ εDiφ

)
dxi + . . . . (85)
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Like above,

dx̃k = dxk + εdφ+ O(ε2)

=

{
∂xk

∂xj

+ ε

(
∂ξk

∂xj

+
∂ξk

∂u

∂u

∂xj

)}
dxj + . . .

=

{
δk
j + ε

(
∂ξk

∂xj

+
∂ξk

∂u

∂u

∂xj

)}
dxj + . . .

=
(
δk
j + εDjξ

k
)
dxj + . . . . (86)

Using (85) and (86) we can construct the following relation,

ũxk
=

dũ

dx̃k

=

(
∂u
∂xi

+ εDiφ
)
dxi + . . .(

δk
j + εDjξk

)
dxj + . . .

=

(
∂u
∂xi

+ εDiφ
)

+ . . .(
δk
j + εDjξk

)
+ . . .

δi
j ,

=

(
∂u

∂xi

+ εDiφ+ . . .

)
δi
j

{(
δk
j

)−1 − ε
(
δk
j

)−2
Djξ

k + . . .
}

=

(
∂u

∂xi

+ εDiφ+ . . .

)(
δi
k − εDkξ

i + . . .
)

= uxk
+ εDkφ− εuxi

Dkξ
i + . . .

= uxk
+ ε
(
Dkφ− uxi

Dkξ
i
)

+ . . . (87)
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Comparing the coefficients of ε in equations (84) and (87), we find the expression for

φxk given as,

φxk = Dkφ− uxi
Dkξ

i

= Dk

(
φ− uxi

ξi
)

+ ξiuxixk
. (88)

Similarly the expression for φJ = φxj1
xj2

...xjk , where J = (j1, j2, . . . , jk) and

1 ≤ ji ≤ p for all i = 1, 2, . . . , k , can be found using the general formula,

φJ
(
x, u(n)

)
= DJ

(
φ−

p∑
k=1

ξkuk

)
+

p∑
k=1

ξk uJ,k . (89)

Thus the nth prolongation of symmetry generator (81) is,

χ(n) = χ+
∑

J

φJ
(
x, u(n)

) ∂

∂uJ

, (90)

where the summation is over all multi-indices J = (j1, j2, . . . , jk), with 1 ≤ jk ≤

p and 1 ≤ k ≤ n. Whereas φJ and uJ are defined in (89) and (78) respectively.

3.8.3 Case III: (q dependent and p independent variables)

Let,

F (x, u, u(n)) = 0,

be an nth order partial differential equation with p-independent variables x =

(x1, x2, . . . , xp), q-dependent variables u = (u1, u2, . . . , uq) and the derivatives of

dependent variables with respect to independent variables up to the order n. The

infinitesimal symmetry generator be given as,

χ =

p∑
k=1

ξk(x, u)
∂

∂xk

+

q∑
α=1

φα(x, u)
∂

∂uα
. (91)
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Then the nth prolongation of the generator (91) will be,

χ(n) = χ+

q∑
α=1

∑
J

φJ
α(x, u, u(n))

∂

∂uα
J

, (92)

where φα corresponds to uα.



CHAPTER 4

LIE SYMMETRIES AND PDE’S

A symmetry group for the system of differential equations is a group of transfor-

mations acting on dependent and independent variables in the system such that the

system remain invariant under these transformations and it transforms solutions of

the system to other solutions. Lie group of point transformations lead to invariant

solutions also called similarity solutions obtained from the solution of PDE’s with

fewer independent variables than the given PDE’s.

4.1 Invariance of a PDE

Consider a system of PDEs of order n with p-independent and q-dependent variables

represented as,

Fµ(x, u, u(n)) = 0, µ = 1, 2, . . . , k, (93)

where x = (x1, x2, x3, . . . , xp) denotes independent variables, u = (u1, u2, . . . , uq)

denotes dependent variables and u(n) represents the set of all derivatives of order

less and equal to n. We denote the derivative of order m is denoted as,

uα
J =

∂muα

∂xj1∂xj2 . . . ∂xjm

, (94)

where 1 ≤ ji ≤ p for all i = 1, 2, . . . ,m and the order of m-tuple of integers

J = (j1, j2, . . . , jm) indicates the order of the derivative to be taken.

Definition 4.1 (Maximal Rank of Jacobian) The system (93) is of maximal rank
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if the corresponding k ×
(
p+ qp(n)

)
Jacobian matrix,

J(x, u, u(n)) =

(
∂Fµ

∂xj

,
∂Fµ

∂uα
J

)
, (95)

is of rank k whenever Fµ(x, u, u(n)) = 0.

Example 18 The Burgers’ equation

F = ut − uxx − u2
x = 0,

is of maximal rank, since,

J =

(
∂F

∂x
,
∂F

∂y
,
∂F

∂t
;
∂F

∂u
;
∂F

∂ux

,
∂F

∂uy

,
∂F

∂ut

;
∂F

∂uxx

,
∂F

∂uxy

,
∂F

∂uxt

,
∂F

∂uyy

,
∂F

∂uyt

,
∂F

∂utt

)

= (0, 0, 0; 0;−2 ux, 0, 1;−1, 0, 0, 0, 0, 0) ,

which is of rank one everywhere.

Example 19 The equation

F = (ut − uxx)
2 = 0

is not of maximal rank, since,

J =

(
∂F

∂x
,
∂F

∂t
;
∂F

∂u
;
∂F

∂ux

,
∂F

∂ut

;
∂F

∂uxx

,
∂F

∂uxt

,
∂F

∂utt

)

= (0, 0; 0; 0, 2(ut − uxx);−2(ut − uxx), 0, 0)

= 0 ,

whenever (ut − uxx)
2 = 0.
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Theorem 4.1 (Infinitesimal criterion for the invariance of PDE) Let the sys-

tem,

Fµ(x, u, u(n)) = 0, µ = 1, 2, . . . , k

of k differential equations be of maximal rank. If G is a group of transformations

and,

χ(n)
{
Fµ(x, u, u(n))

}
= 0, µ = 1, 2, . . . , k whenever Fµ(x, u, u(n)) = 0 ,

(96)

for every infinitesimal symmetry generator χ of the group G , then G is a symmetry

group of the system.

4.2 Procedure to calculate symmetries

Lie group of infinitesimal transformations and infinitesimal symmetry generators of

a partial differential equation can be calculated by a systematic computational pro-

cedure in the light of Theorem 4.1 and using the prolongation formula.

The first step of the procedure is to find the hypothetical one-parameter symmetry

generator χ. The coefficients ξi(x, u) and φα(x, u) of symmetry generator χ will

be the functions of x and u. Using prolongation formula symmetry generator χ

needs to be prolonged to the order n equivalent to the order of differential equation.

The coefficients φJ
α of the prolonged infinitesimal symmetry generator χ(n) involve

the partial derivatives of the coefficients ξi and φα with respect to both x and u.

Application of prolonged symmetry generator on the differential equation using

theorem of infinitesimal criterion for the invariance of PDE gives a general equation

that involves x , u and the derivatives of u with respect to x, as well as ξi(x, u),

φα(x, u) and their partial derivatives with respect to x and u. Since (96) holds
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only on solutions of the system, therefore dependence among the derivatives of u

caused by the system itself required to be removed. By comparing the coefficients of

the partial derivatives of u , a large number of coupled partial differential equations

are obtained. This system of equations will be solved for the coefficients functions

ξi and φα of the infinitesimal symmetry generator. These equations are called

defining equations of the symmetry group of the given system. The general solution

of this system of defining equations determines the most general expressions for ξi

and φα , thus giving the general infinitesimal symmetry generator χ . Following are

some examples illustrating the procedure.

4.3 The Heat Equation

The equation governing the heat conduction in one dimensional rod is given as,

ut = uxx (97)

Rank of Jacobian

Jacobian of the heat equation F (x, t, u) = ut − uxx = 0 equation is,

J =

(
∂F

∂x
,
∂F

∂t
;
∂F

∂u
;
∂F

∂ux

,
∂F

∂ut

;
∂F

∂uxx

,
∂F

∂uxt

,
∂F

∂utt

)

= (0, 0; 0; 0, 1;−1, 0, 0) .

Thus the rank of Jacobian is always one for heat equation.

Symmetry Generator

Since there are two independent variables x and t and one dependent variable u,
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therefore the infinitesimal symmetry generator will be of the form,

χ = ξ(x, t, u)
∂

∂x
+ τ(x, t, u)

∂

∂t
+ φ(x, t, u)

∂

∂u
. (98)

Prolongation

For a second order differential equation we need to prolong the infinitesimal symmetry

generator (98) to second order. The prolongation is given as,

χ(2) = χ+ φx ∂

∂ux

+ φt ∂

∂ut

+ φxx ∂

∂uxx

+ φxt ∂

∂uxt

+ φtt ∂

∂utt

. (99)

Symmetry Criterion

Now applying the symmetry criterion (96) we get the following relation,

φt − φxx = 0. (100)

Substituting expressions for φt and φxx in (100) and replacing ut by uxx the general

relation for the symmetry criterion becomes,

φt + (φu − τt)uxx − ξtux − ξuuxuxx − τuu
2
xx − φxx

− (2φxu − ξxx)ux + τxxuxx − (φuu − 2ξux)u
2
x + 2

τxuuxuxx + ξuuu
3
x + τuuu

2
xuxx − (φu − 2ξx)uxx + 2τx

utx + 3ξuuxuxx + τuu
2
xx + 2τuuxuxt = 0.

Defining Equations

By comparing the coefficients of monomials we obtain the following ten coupled defin-

ing equations,

utuxt : τu = 0

uxt : τx = 0



62

u2
xx : τu = τu

u2
xuxx : τuu = 0

uxuxx : ξu = 2τxu + 3ξu

uxx : τt − φu = τxx − φu + 2ξx

u3
x : ξuu = 0

u2
x : φuu = 2ξxu

ux : ξt = ξxx − 2φxu

1 : φt = φxx

Solving the above equations simultaneously, we obtain the general expression for ξ,

τ and φ given by,

τ = c1t
2 + c2t+ c3,

ξ = c1tx+ 1/2c2x+ c4t+ c5,

φ =
(
−1/4c1x

2 − 1/2c4x− 1/2c1t+ c6
)
u+ α.

Symmetry Generators

Substituting ci = 1 and cj = 0 ∀ i 6= j for i = 1, . . . , 6 we obtain seven infinites-

imal symmetry generators including one infinite-dimensional symmetry generator as
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follows;

χ1 = u
∂

∂u
, χ2 =

∂

∂x
, χ3 =

∂

∂t
,

χ4 = t
∂

∂x
− 1

2
x u

∂

∂φ
, χ5 =

1

2
x
∂

∂x
+ t

∂

∂t
,

χ6 = t x
∂

∂x
+ t2

∂

∂t
−
(
x2u

4
+
t u

2

)
∂

∂u
,

χα = α
∂

∂u
.

Commutator Table

The commutation relations for all of these generators are given below in Table 1.

[χi, χj] χ1 χ2 χ3 χ4 χ5 χ6

χ1 0 0 0 χ1 −χ3 2χ5

χ2 0 0 0 2χ2 2χ1 4χ4 − 2χ3

χ3 0 0 0 0 0 0

χ4 −χ1 −2χ2 0 0 χ5 2χ6

χ5 χ3 −2χ1 0 −χ5 0 0

χ6 −2χ5 2χ3 − 4χ4 0 −2χ6 0 0

Table 1: Commutation Relations

Transformation Groups

Group of transformations corresponding to each infinitesimal symmetry generator χi

can be calculated using the general formula,

ξi(x̃, ỹ) =
∂α̃i

∂ε
, (101)
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with initial condition α̃i|ε=0 = αi.

Consider the infinitesimal symmetry generator χ1 = u ∂
∂u

we obtain following expres-

sions:

1.

∂x̃

∂ε
= ξ(x̃, t̃, ũ) = 0 ,

x̃ = c,

applying initial condition x̃|ε=0 = x we obtain,

x̃ = x.

2.

∂t̃

∂ε
= τ(x̃, t̃, ũ) = 0 ,

t̃ = c,

applying initial condition t̃|ε=0 = t we obtain,

t̃ = t.

3.

∂ũ

∂ε
= φ(x̃, t̃, ũ) = ũ ,

ln ũ = ε+ c,

applying initial condition ũ|ε=0 = u we obtain,

ũ = ueε.



65

Therefore the transformation groupG1 generated by infinitesimal symmetry generator

χ1 is given as,

G1 : (x̃, t̃, ũ) = (x, t, ueε).

Similarly for remaining infinitesimal symmetry generators we have following the trans-

formation groups:

G2 : (x̃, t̃, ũ) = (x+ ε, t, u),

G3 : (x̃, t̃, ũ) = (x, t+ ε, u),

G4 : (x̃, t̃, ũ) = (x+ εt, t, ue−(εx+ε2t)/2),

G5 : (x̃, t̃, ũ) = (xeε/2, teε, u),

G6 : (x̃, t̃, ũ) =

(
x

1− εt
,

t

1− εt
,

u

1− εt
ex2ε/4(1−εt)

)
,

Gα : (x̃, t̃, ũ) = (x, t, u+ ε α(x, t)).

4.4 The KdV Equation

Consider the KdV equation,

ut + uxxx + uux = 0 (102)
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Rank of Jacobian

For the KdV equation F (x, t, u) = ut + uxxx + uux = 0 Jacobian is always one since,

J =

(
∂F

∂x
,
∂F

∂t
;
∂F

∂u
;
∂F

∂ux

,
∂F

∂ut

;
∂F

∂uxx

,
∂F

∂uxt

,
∂F

∂utt

;
∂F

∂uxxx

,
∂F

∂uxxt

,
∂F

∂uxtt

,
∂F

∂uttt

)

= (0, 1;ux;u, 1; 0, 0, 0; 1, 0, 0, 0) .

Symmetry Generator

The infinitesimal symmetry generator for this equation is a vector field on a three

dimensional space, as there are two independent and one dependent variable. There-

fore,

χ = ξ(x, t, u)
∂

∂x
+ τ(x, t, u)

∂

∂t
+ φ(x, t, u)

∂

∂u
. (103)

Prolongation

We need to prolong the symmetry generator (103) to third order. Thus the prolon-

gation of the infinitesimal symmetry generator is as follows,

χ(3) = χ+ φx ∂

∂ux

+ φt ∂

∂ut

+ φxx ∂

∂uxx

+ φxt ∂

∂uxt

+ φtt ∂

∂utt

+ φxxx ∂

∂uxxx

+ φxxt ∂

∂uxxt

+ φxtt ∂

∂uxtt

+ φttt ∂

∂uttt

. (104)

Symmetry Criterion

Symmetry criterion (96) for partial differential equations gives the relation,

φt + φxxx + uφx + uxφ = 0. (105)

Substitution of expressions for φt, φxxx and φx in (105) and replacement of ut by

− uxxx − uux yields,

φt + (−φu + τt + τxxx + φu − 3ξx)uxxx + (τt − φu + τxxx + φu
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−ξx)uux + (−ξt + 3φxxu − ξxxx + φ)ux + (ξu − 4ξu + 3τxxu)

uxuxxx + (ξu + 3τxxu − ξu)uu
2
x + (−τu + τu)uxxx + (−2τu + 2

τu)uuxuxxx + (−τu + τu)u
2u2

x + φxxx + (3φxuu − 3ξxxu)u
2
x (3

φxu − 3ξxx)uxx + (φuuu − 3ξuux)u
3
x + (3φuu − 9ξxu)uxuxx−

ξuuuu
4
x − 6ξuuu

2
xuxx − 3ξuu

2
xx + 3τuuxu

2
xuxxx + 3τuuxuu

3
x + 3τxu

uxxxuxx + 3τxuuuxuxx − 6τxuuxutx − 3τxxutx − 3τxutxx + τuuu

u3
xuxxx + τuuuuu

4
x + 3τuuuxuxxuxxx + 3τuuuu

2
xuxx − 3τuuu

2
xutx

− 3τuuxxuxt − 3τuuxutxx + φxu+ τxuuxxx + τxu
2ux = 0.

Defining Equations

Comparison of coefficients of the monomials as in the case of heat equation (97) gives

the following defining equations: Which can be solved for ξ, τ and φ to give,

ξ = c1 + c2x+ c3t,

τ = c4 + 3c2t,

φ = c3 − 2c2u.

Symmetry Generators

Substituting ci = 1 and cj = 0 ∀ i 6= j for i = 1, . . . , 6 we obtain following

seven infinitesimal symmetry generators, including one infinite-dimensional symmetry

generator,

χ1 =
∂

∂x
, χ2 = x

∂

∂x
+ 3 t

∂

∂t
− 2 u

∂

∂u
,

χ3 = t
∂

∂x
+

∂

∂u
, χ4 =

∂

∂t
.

Commutator Table
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Commutation relations for these generators are given below in Table 2.

[χi, χj] χ1 χ2 χ3 χ4

χ1 0 0 0 χ1

χ2 0 0 χ1 3χ2

χ3 0 −χ1 0 −2χ3

χ4 −χ1 −3χ2 2χ3 0

Table 2: Commutation Relations

Transformation Groups

Transformation groups corresponding to each infinitesimal symmetry generator χi

can be calculated using the general formula,

ξi(x̃, ỹ) =
∂α̃i

∂ε
, (106)

with initial condition α̃i|ε=0 = αi.

Consider the infinitesimal symmetry generator χ2 = x ∂
∂x

+ 3t ∂
∂t
− 2u ∂

∂u
we obtain

following expressions:

1.

∂x̃

∂ε
= ξ(x̃, t̃, ũ) = x̃,

ln x̃ = ε+ c,

applying initial condition x̃|ε=0 = x we obtain,

x̃ = xeε.
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2.

∂t̃

∂ε
= τ(x̃, t̃, ũ) = 3t̃,

ln t̃ = ε+ c,

applying initial condition t̃|ε=0 = t we obtain,

t̃ = te3ε.

3.

∂ũ

∂ε
= φ(x̃, t̃, ũ) = −2ũ,

ln ũ = −2ε+ c,

applying initial condition ũ|ε=0 = u we obtain,

ũ = ue−2ε.

Therefore the transformation group G1 generated by infinitesimal symmetry gener-

ator χ1 is given as,

G2 : (x̃, t̃, ũ) = (xeε, te3ε, ue−2ε).

Similarly for remaining infinitesimal symmetry generators we have following the

transformation groups:

G1 : (x̃, t̃, ũ) = (x+ ε, t, u),

G3 : (x̃, t̃, ũ) = (tε+ x, t, u+ ε),

G4 : (x̃, t̃, ũ) = (x, t+ ε, u).



CHAPTER 5

NONLINEAR WAVE EQUATION

A large amount of literature is available on Lie symmetry analysis of (1+1)-dimensional

nonlinear wave equation [1, 2, 10]. More recently Magda and Lahno considered the

classification problem of wave equation [32, 34]. Also study has been made about

invariance properties and invariance groups [30]. Invariance of solutions under infin-

itesimal Lie group of transformations for various (1+1)-dimensional nonlinear wave

equations has been worked out [21, 36]. Moreover it is shown that with the use of

conservation laws non-local (potential) symmetries lead to new solutions for a large

class of (1+1) wave equations with variables speeds [11]. This formulation has led to

a variety of interesting applications such as equations with perturbed terms [28] and

conservation laws associated with potential symmetries [3, 15].

Consequently the two-dimensional (1+2) wave equation with constant coefficients

has been studied with an equivalent vigor [17, 51, 52]. However, the group theoretic

approach to the equation with non-constant coefficients and the non-linear case have

only been studied in specific cases and complete results have either not been obtained

or not presented because of which very few exact solutions invariant under symmetry

are known [7].

Whereas all these studies have focused on providing some exact invariant solu-

tions, none gives a complete classification of these invariant solutions. With a view

that a complete classification of the solutions may add to a further understanding we

70
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undertake this research to conduct a detailed symmetry analysis of a family of non-

linear (1+2)-dimensional wave equation. While providing this complete classification

we have obtained some new interesting solutions of this nonlinear wave equation.

The details and method presented here sets the scene for further interesting stud-

ies regarding the non-linear n-dimensional wave equation which may even include

dissipative terms that arise in practice as in the telegraph equation.

In the next section we present reduction of a wave equation in which the nonlin-

earity is due to the velocity term involved.

5.1 The Equation utt = u(uxx + uyy)

Lie group of point transformations of one parameter ε under which the given equation

remains invariant are given as [46]:

x̃ = x + ε ξ(x, y, t, u) + O(ε2),

ỹ = y + ε η(x, y, t, u) + O(ε2),

t̃ = t + ε τ(x, y, t, u) + O(ε2),

ũ = u + ε φ(x, y, t, u) + O(ε2).

Using above transformations, we now construct the symmetry generator. The

symmetry generator is a vector field that generates the symmetry group under which

the given nonlinear wave equation remain invariant [46]. This generator is given

by [39],

χ = ξ(x, y, t, u)
∂

∂x
+ η(x, y, t, u)

∂

∂y
+ τ(x, y, t, u)

∂

∂t
+ φ(x, y, t, u)

∂

∂u
. (107)

Since we are dealing with a second order PDE, the above generator needs to be

prolonged to include second order derivatives [11]. The prolonged generator can be



72

found using prolongation formula [39],

χ(2) = χ+
∑

J

φJ (x, u)
∂

∂uJ

, (108)

where the summation is taken over all multi-indices J = (j1, j2).

Having the prolongation of the infinitesimal symmetry generator, the next step is to

satisfy the infinitesimal criterion [46], that requires;

χ(2) {utt − u(uxx + uyy)}
∣∣∣
utt−u(uxx+uyy)=0

= 0 . (109)

The above equation can be easily recast in the form,

φtt − (uxx + uyy)φ− u (φxx + φyy) = 0 . (110)

At this stage we need to evaluate the expressions for φtt , φxx and φyy using the

formula, [39],

φJ
(
x, u(n)

)
= DJ

(
φ−

p∑
k=1

ξkuk

)
+

p∑
k=1

ξk uJ,k , (111)

where J = (j1, j2, . . . , jk) and 1 ≤ ji ≤ p for all i = 1, 2, . . . , k. Using (111) it is easy

to show that,

φx = Dx (φ− ξux − ηuy − τut) + ξuxx + ηuyx + τutx ,

=φx + φuux − ξxux − ξuu
2
x − ηxuy − ηuuxuy

− τxut − τuuxut .
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φxx = D2
x (φ− ξux − ηuy − τut) + ξuxxx + ηuyxx + τutxx ,

= φxx + (2φxu − ξxx)ux + (φuu − 2ξxu)u
2
x + (φu − 2ξx)uxx−

ξuuu
3
x − 3ξuuxuxx − 2ηxuxy − 2ηuuxyux − ηxxuy − 2ηxu

uyux − ηuuuyu
2
x − ηuuyuxx − 2τxutx − 2τuuxutx − τxxut−

2τxuuxut − τuuutu
2
x − τuuxxut .

Similarly, the expressions for φyy and φtt can be calculated. These expressions are

given as;

φyy = φyy + (2φyu − ηyy)uy + (φuu − 2ηyu)u
2
y + (φu − 2ηy)uyy−

ηuuu
3
y − 3ηuuyuyy − 2ξyuxy − 2ξuuxyuy − ξyyux − 2ξyu

uyux − ξuuuxu
2
y − ξuuxuyy − 2τyuty − 2τuuyuty − τyyut−

2τyuuyut − τuuutu
2
y − τuuyyut .

φtt = φtt + (2φtu − τtt)ut + (φuu − 2τtu)u
2
t + (φu − 2τt)utt−

τuuu
3
t − 3τuututt − 2ηtuty − 2ηuutyut − ηttuy − 2ηtuuyut

− ηuuuyu
2
t − ηuuyutt − 2ξtutx − 2ξuututx − ξttux − 2ξtu

uxut − ξuuuxu
2
t − ξuuttux .
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Now replacing utt with u(uxx + uyy) and substituting the above expressions ( φtt ,

φxx , φyy ) in (110) gives,

φtt + (2φtu − τtt)ut + (φuu − 2τtu)u
2
t + (φu − 2τt)u

(uxx + uyy)− τuuu
3
t − 3τuutu(uxx + uyy)− 2ηtuty

− 2ηuutyut − ηttuy − 2ηtuutuy − ηuuuyu
2
t − ηuuyu

(uxx + uyy)− 2ξtutx − 2ξuututx − ξttux − 2ξtuuxut−

ξuuuxu
2
t − ξuuxu(uxx + uyy)− (uyy + uxx)φ− u {φxx

+ (2φxu − ξxx)ux + (φuu − 2ξxu)u
2
x + (φu − 2ξx)uxx

− ξuuu
3
x − 3ξuuxuxx − 2ηxuxy − 2ηuuxyux − ηxxuy−

2ηxuuyux − ηuuuyu
2
x − ηuuyuxx − 2τxutx − 2τuuxutx

− τxxut − 2τxuuxut − τuuutu
2
x − τuuxxut} − u{φyy

+ (2φyu − ηyy)uy + (φuu − 2ηuy)u
2
y + (φu − 2ηy)uyy

− ηuuu
3
y − 3ηuuyuyy − 2ξyuxy − 2ξuuxyuy − ξyyux−

2ξyuuxuy − ξuuuxu
2
y − ξuuxuyy − 2τyuty − 2τuuyuty

− τyyut − 2τuyuyut − τuuutu
2
y − τuuyyut} = 0 .

To Find the most general expression for the infinitesimal symmetry generator we need

to find the general expressions for the components ξ , η , τ and φ . For this we treat

above equation as an algebraic equation and compare the coefficients of like terms.

The equations which arise as a consequence of this comparison are called defining

equations [11].
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To start with we compare the coefficients of uxx to get,

u(φu − 2τt)− 3uτuut − uηuuy − uξuux − φ−

(φu − 2ξx)u+ 3ξuuux + ηuuuy + τuuut = 0 . (112)

Differentiating (112) with respect to ut and ux respectively, we obtain

τu = 0, and ξu = 0 .

In the light of above, equation (112) reduces to,

2u(ξx − τt) = φ .

Now comparison of coefficients of uyy yields,

u(φu − 2τt)− 3uτuut − uηuuy − uξuux − φ−

(φu − 2ηy)u+ 3ηuuuy + ξuuux + τuuut = 0 , (113)

which on differentiation with respect to uy gives,

ηu = 0 .

As before, we substitute the above result back in (113), this reduces it to,

2u(ηy − τt) = φ .

Also the coefficients of mixed second order derivatives uxy, uxt and uty respectively

give the following equations,

ηx = −ξy , (114)

ξt = uτx , (115)

ηt = uτy . (116)
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Similarly comparing the coefficients of remaining monomials and simplification gives

the following set of ten coupled equations

τu = ξu = ηu = 0 , (117)

φ = 2u(ξx − τt) = 2u(ηy − τt) , (118)

ηx = −ξy , (119)

ξt = uτx , (120)

ηt = uτy , (121)

φ = α(x, y, t)u+ β(x, y, t) , (122)

ξtt + u(2φxu − ξxx − ξyy) = 0 , (123)

ηtt + u(2φyu − ηxx − ηyy) = 0 , (124)

τtt − 2φtu − u(τxx + τyy) = 0 , (125)

φtt − u(φxx + φyy) = 0 . (126)

At this stage we solve the above coupled system (117)-(126) for the components

of infinitesimal symmetry generator. Solving the above equations iteratively and

requiring consistency criterion by substituting the resulting equations back and forth

into each other, the solution of the above system takes the form,

ξ = c0 + c1x+ c2y , (127)

η = c3 − c2x+ c1y , (128)

τ =
2

5
(2c1 − c4)t+ c5 , (129)

φ =
2

5
(c1 + 2c4)u+ β(x, y, t) , (130)
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where β(x, y, t) satisfies the equation

βtt − u(βxx + βyy) = 0.

Corresponding to every one parameter there exists an infinitesimal symmetry gener-

ator [39]. Therefore, by substituting ci = 1 and cj = 0 ∀ i 6= j for i = 0, . . . , 5 we

obtain seven infinitesimal symmetry generators given by;

χ0 =
∂

∂x
, χ1 = x

∂

∂x
+ y

∂

∂y
+

4

5
t
∂

∂t
+

2

5
u
∂

∂u
,

χ2 = y
∂

∂x
− x

∂

∂y
, χ3 =

∂

∂y
,

χ4 = − 2

5
t
∂

∂t
+

4

5
u
∂

∂u
, χ5 =

∂

∂t
,

χβ = β
∂

∂u
.

Commutation relations (c.f. Definition 3.7.7) for these generators are given in the

form of table 3. The commutator table describes the structure of associated Lie

algebra in a convenient way [39].

Corresponding to each infinitesimal symmetry generator we can find the transfor-

mation groups [39] using the formula

ξi(x̃, ỹ) =
∂α̃i

∂ε
, (131)

with initial condition α̃i|ε=0 = αi.
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[χi, χj] χ0 χ1 χ2 χ3 χ4 χ5

χ0 0 χ0 −χ3 0 0 0

χ1 −χ0 0 0 −χ3 0 −4
5
χ5

χ2 0 0 0 −χ0 0 0

χ3 0 χ3 χ0 0 0 0

χ4 0 0 0 0 0 2
5
χ5

χ5 0 4
5
χ5 0 0 −2

5
χ5 0

Table 3: Algebra of commutators

Considering the generator χ1 = x ∂
∂x

+ y ∂
∂y

+ 4
5
t ∂

∂t
+ 2

5
u ∂

∂u
, we have,

1.

∂x̃

∂ε
= ξ(x̃, ỹ, t̃, ũ) = x̃,

ln x̃ = ε+ ln c,

applying initial condition x̃|ε=0 = x we obtain,

x̃ = x eε.

2.

∂ỹ

∂ε
= η(x̃, ỹ, t̃, ũ) = ỹ,

ln ỹ = ε+ ln c,
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applying initial condition ỹ|ε=0 = y we obtain,

ỹ = y eε.

3.

∂t̃

∂ε
= τ(x̃, ỹ, t̃, ũ) =

4

5
t̃,

ln t̃ =
4

5
ε+ c,

applying initial condition t̃|ε=0 = t we obtain,

t̃ = t e
4ε
5 .

4.

∂ũ

∂ε
= φ(x̃, ỹ, t̃, ũ) =

2

5
ũ,

ln ũ =
2

5
ε+ c,

applying initial condition ũ|ε=0 = u we obtain,

ũ = u e
2ε
5 .

Therefore the transformation groupG1 generated by infinitesimal symmetry generator

χ1 is given as,

G1 : (x̃, ỹ, t̃, ũ) = ( x eε, y eε, t e
4ε
5 , u e

2ε
5 ) .

Similarly the transformation groups for the remaining infinitesimal symmetry gener-

ator are,

G0 : (x̃, ỹ, t̃, ũ) = (x+ ε, y, t, u) ,
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G2 : (x̃, ỹ, t̃, ũ) =

(
x+ yε

1 + ε2
,
y − xε

1 + ε2
, t, u

)
,

G3 : (x̃, ỹ, t̃, ũ) = (x, y + ε, t, u) ,

G4 : (x̃, ỹ, t̃, ũ) =
(
x, y, te−

2
5
ε, ue

4
5
ε
)
,

G5 : (x̃, ỹ, t̃, ũ) = (x, y, t+ ε, u) ,

Gβ : (x̃, ỹ, t̃, ũ) = (x, y, t, u+ ε β(x, y, t)) .

5.1.1 Reduction under infinitesimal symmetry generators

Infinitesimal symmetry generator reduces the number of independent variables by

one in the partial differential equation [11, 39]. In this section we find reduction of

the given wave equation under each infinitesimal symmetry generator. The detailed

calculations for the reduction under χ1 are given.

Consider the generator,

χ1 = x
∂

∂x
+ y

∂

∂y
+

4

5
t
∂

∂t
+

2

5
u
∂

∂u
. (132)

The characteristic equation for this generator is

dx

x
=
dy

y
=

5 dt

4t
=

5 du

2u
. (133)

We now find the similarity variables for the above generator, (132)

1.

dx

x
=
dy

y
,

lnx = ln y + ln r ,
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r =
x

y
.

2.

dx

x
=

5 dt

4t
,

lnx =
5

4
ln t+ ln s ,

x = s t
5
4 .

3.

5 dt

4t
=

5 du

2u
,

1

2
ln t+ lnw = lnu ,

u = w
√
t .

The given wave equation can be transformed into these new similarity variables r,

s and w as follows,

utt = − 1

4
t−

3
2 w +

25

16
s t−

3
2 ws +

25

16
s2 t−

3
2 wss ,

uxx = wss t
−2 + 2 wrs

t−
3
4

y
+ wrr

t
1
2

y2
,

uyy = 2
√
t wr

r

y2
+
√
t wrr

r2

y2
.

Thus the wave equation utt + u(uxx + uyy) reduces to a PDE with two independent

and one dependent variable,

−4 w s2+25 ws s
3+25 wss s

4 = 16 w (s2 wss + 2 wsr r s + wrr r
2 + 2 wr r

3 + wrr r
4) .

A complete table of reductions under each generator is given in Table 8, Appendix-A.
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5.1.2 Reduction under two dimensional subalgebra

A two dimensional subalgebra reduces the number of independent variables by two

[39]. In this section we will show the reduction of given nonlinear wave equation to

an ODE under each two dimensional subalgebra.

Consider the algebra [ χ1 , χ2 ] = 0 the reduction can be started with any

one of the generators, but starting with χ1 will lead to a cumbersome expression

−4 w s2+25 ws s
3+25 wss s

4 = 16 w (s2 wss + 2 wsr r s + wrr r
2 + 2 wr r

3 + wrr r
4) .

Therefore, instead of χ1 , we will start with χ2 that gives rather simpler expression.

Similarity variables for χ2 are r = x2 + y2, s = t, w = u and the reduced

differential equation is,

wss = 4 w ( wr + r wrr) . (134)

To proceed further we need to transform χ1 in new variables r, s and w thus,

χ̃1 = 2 r
∂

∂r
+

4

5
s
∂

∂s
+

2

5
w

∂

∂w
.

The characteristic equation corresponding to the transformed infinitesimal symmetry

generator is,

dr

2 r
=

5 ds

4s
=

5 dw

2 w
. (135)

From this equation we find the following new similarity variables,

1. α = r s−
5
2 ,

2.
√
s β(α) = w.

Transformation of (134) in new similarity variables α and β leads to,

wrr = s−
9
2 βαα ,

wss = − 1

4
s−

3
2 β +

25

4
α βα s

− 3
2 +

25

4
α2 βαα s

− 3
2 .
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Thus wss = 4 w (wr + r wrr) reduces to,

−1

4
β +

25

4
α βα +

25

4
α2 βαα = 4 β (βα + α βαα) ,

which is an ODE of order two.

Since the generators χ1 and χ2 forms an abelian subalgebra so we can start

the reduction with any one of them, but, this is not always true. If the coefficient

of a commutator forming a closed algebra is nonzero then we have to start with the

generator that comes as a result of the commutation. Consider, for example, the

algebra [ χ5 , χ1 ] = 4
5
χ5 , in this case we have to start reduction with χ5 that

reduces the given wave equation to,

wrr + wss = 0 , (136)

with similarity variables r = x, s = y and w = u . Transformation of χ1 in

similarity variables is given as,

χ̃1 = r
∂

∂r
+ s

∂

∂s
+

2

5
w

∂

∂w
.

Characteristic equation corresponding to the infinitesimal symmetry generator χ̃1

is,

dr

r
=

ds

s
=

5 dw

w
.

Therefore new similarity variables are,

1. α = r/s ,

2. s
2
5 β(α) = w .

In these variables the differential equation (136) reduces to,

βαα − 6

25
β +

10

5
α βα + α2 βαα = 0 ,
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which is again an ODE of order two.

Reductions under the remaining two dimensional subalgebras are given in Table

9, Appendix-A.

5.2 The Equation utt = un(uxx + uyy)

In this section we find the symmetry reductions and possible solutions using classical

Lie symmetry method for (1+2)-dimensional nonlinear wave equation,

utt = un(uxx + uyy). (137)

This is the general case of the equation solved in previous section. Lie group of point

transformations of one parameter ε under which equation (137) remain invariant are

given as [46],

α̃i = αi + ε ξi(α) + O (ε2) , (138)

where αi represents the variables x, y, t, u and ξi represents ξ(x, y, t, u), η(x, y, t, u),

τ(x, y, t, u), φ(x, y, t, u) for i = 1, 2, 3, 4. Also the kth-order derivative (of the

transformed ‘dependent’ variable with respect to the transformed ‘independent’ vari-

ables) [46] is given as,

ũJ = uJ + ε φJ(x, y, t, u) + O (ε2), (139)

where uJ = ∂u
∂xj1∂xj2 ...∂xjk

, J = J(j1, . . . , jk) and 1 ≤ jk ≤ 4 for all k .
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In order to find solution of (137), we begin with symmetry generator corre-

sponding to the variables x, y, t and u, given by the formula [39],

χ = ξ(x, y, t, u)
∂

∂x
+ η(x, y, t, u)

∂

∂y
+ τ(x, y, t, u)

∂

∂t

+ φ(x, y, t, u)
∂

∂u
.

(140)

Infinitesimal symmetry generator (140) is a vector field of tangent vectors and com-

ponents ξ, η, τ and φ, of vector field are arbitrary, real valued smooth functions

defined in some subspace of the space of the independent variables x, y, t and the

dependent variable u.

Since the differential equation (137) is of second order therefore prolonging the

generator up to second order [11] using the general formula (108), which gives,

χ(2) = χ+ φx ∂

∂ux

+ φy ∂

∂uy

+ φt ∂

∂ut

+ φxx ∂

∂uxx

+ φxy ∂

∂uxy

+ φxt ∂

∂uxt

+ φyy ∂

∂uyy

+ φyt ∂

∂uyt

+ φtt ∂

∂utt

.

(141)

Lie symmetry criterion for PDEs requires that χ2(H) = 0 subject to H = 0 [11],

which is equivalent to the requirement,

χ(2)
{
utt − un(uxx + uyy)

}∣∣∣∣
utt−un(uxx+uyy)=0

= 0 . (142)

From (142), we easily obtain the relation,

φtt − nu(n−1)(uxx + uyy)φ− un(φxx + φyy) = 0 . (143)

Substitution of the expressions for φtt, φxx, φyy in (143) and un (uxx + uyy) for
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utt yields the following general equation,

φtt + (2φtu − τtt)ut + (φuu − 2τtu)u
2
t + (φu − 2τt)u

n

(uxx + uyy)− τuuu
3
t − 3τuutu

n(uxx + uyy)− 2ηtuty

− 2ηuutyut − ηttuy − 2ηtuutuy − ηuuuyu
2
t − ηuuyu

n

(uxx + uyy)− 2ξtutx − 2ξuututx − ξttux − 2ξtuuxut−

ξuuuxu
2
t − ξuuxu

n(uxx + uyy)− nun−1(uyy + uxx)φ

− un{φxx + (2φxu − ξxx)ux + (φuu − 2ξxu)u
2
x + (φu

− 2ξx)uxx − ξuuu
3
x − 3ξuuxuxx − 2ηxuxy − 2ηuuxyux

− ηxxuy − 2ηxuuyux − ηuuuyu
2
x − ηuuyuxx − 2τxutx

− 2τuuxutx − τxxut − 2τxuuxut − τuuutu
2
x − τuuxxut}

− un{φyy + (2φyu − ηyy)uy + (φuu − 2ηuy)u
2
y + (φu−

2ηy)uyy − ηuuu
3
y − 3ηuuyuyy − 2ξyuxy − 2ξuuxyuy−

ξyyux − 2ξyuuxuy − ξuuuxu
2
y − ξuuxuyy − 2τyuty − 2

τuuyuty − τyyut − 2τuyuyut − τuuutu
2
y − τuuyyut} = 0 .

Comparison of the coefficients of monomials and the coefficients of terms without any

monomial gives following set of nine defining equations,

2(ξx − τt)u
n − 2τuutu

n − nun−1φ+ 2unξuux = 0 , (144)

2(ηy − τt)u
n − 2τuutu

n − nun−1φ+ 2unηuuy = 0 , (145)

unηx + unηuux + unξy + unξuuy = 0 , (146)

ξt − unτx = 0 , (147)

ηt − unτy = 0 , (148)
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2φtu − τtt + φuuut + un(τxx + τyy) = 0 , (149)

ηtt + 2unφuy + ηxx + ηyy = 0 , (150)

ξtt + 2unφux + ξxx + ξyy = 0 , (151)

φtt − un(φxx + φyy) = 0 . (152)

We now solve these equations simultaneously for the components ξ, η, τ and φ

of infinitesimal symmetry generator. Coefficients of ux and uy in equation (144)

requires,

τu = 0 = ξu , (153)

which implies that τ and ξ are functions of x, y and t only. Substitution of

(153) in equation (144) gives,

2(ξx − τt) = nu−1φ . (154)

Similarly by comparing coefficients of uy in equation (145) we find that ηu = 0

and by substituting back this value and using (153) we get,

2(ηy − τt) = nu−1φ . (155)

By using equation (153) in (146) and from (147) and (148) we obtain following results,

ηx = −ξy, ξt = unτx and ηt = unτy . (156)

The coefficients of ut and the terms without any monomials in equation (149)

respectively requires,

φ = α(x, y, t)u+ β(x, y, t) and 2αt − τtt + un(τxx + τyy) = 0 . (157)

By using (157) in (151) and (150) we obtain,

−ηtt − 2unαy − ηxx − ηyy and − ξtt − 2unαx − ξxx − ξyy = 0 . (158)
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The remaining terms not involving any derivatives of u are,

φtt − un(φxx + φyy) = 0 . (159)

Now solving (153) to (159) iteratively and requiring consistency criterion by substi-

tuting the resulting equations into each other, we obtain following expressions for

ξ, η, τ and φ,

ξ = a0 − a1y + a2x ,

η = a3 + a1x+ a2y ,

τ =

(
4a2

n+ 4
− 2na4

n+ 4

)
t+ a5 ,

φ =

(
2a2

n+ 4
+

4a4

n+ 4

)
u+ β(x, y, t) ,

where a′is are arbitrary constants. Now substituting ai = 1 and aj = 0 for j 6= i, we

have following infinitesimal generators,

χ0 =
∂

∂x
, χ1 = −y ∂

∂x
+ x

∂

∂y
,

χ2 = x
∂

∂x
+ y

∂

∂y
+

(
4t

n+ 4

)
∂

∂t
+

(
2u

n+ 4

)
∂

∂u
,

χ3 =
∂

∂y
, χ4 = −

(
2 n t

n+ 4

)
∂

∂t
+

(
4u

n+ 4

)
∂

∂u
,

χ5 =
∂

∂t
, χβ = β

∂

∂u
,

where from equation (159),

βtt − un(βxx + βyy) = 0,
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which implies that β(x, y, t) is any solution of the nonlinear wave equation (137)

and χβ is an infinite dimensional subalgebra. The commutation relations for

these generators are given in Table 4.

[ χi, χj ] χ0 χ1 χ2 χ3 χ4 χ5

χ0 0 χ3 χ0 0 0 0

χ1 −χ3 0 0 χ0 0 0

χ2 −χ0 0 0 −χ3 0
( −4

n+4

)
χ5

χ3 0 −χ0 χ3 0 0 0

χ4 0 0 0 0 0
(−2n

n+4

)
χ5

χ5 0 0 0
(

4
n+4

)
χ5

(−2n
n+4

)
χ5 0

Table 4: Commutator Algebra for Symmetry Generators

Lie transformation groups for an infinitesimal symmetry generator can be

found using the formula,

ξi(x̃, ỹ) =
∂α̃i

∂ε
, (160)

with initial condition α̃i|ε=0 = αi.

Considering the generator,

χ2 = x
∂

∂x
+ y

∂

∂y
+

(
4 t

n+ 4

)
∂

∂t
+

(
2 u

n+ 4

)
∂

∂u
,

thus the components of transformation group are,
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1.

∂x̃

∂ε
= ξ(x̃, ỹ, t̃, ũ) = x̃,

ln x̃ = ε+ ln c,

applying initial condition x̃|ε=0 = x we obtain,

x̃ = x eε.

2.

∂ỹ

∂ε
= η(x̃, ỹ, t̃, ũ) = ỹ,

ln ỹ = ε+ ln c,

applying initial condition ỹ|ε=0 = y we obtain,

ỹ = y eε.

3.

∂t̃

∂ε
= τ(x̃, ỹ, t̃, ũ) =

4 t̃

n+ 4
,

ln t̃ =
4

n+ 4
ε+ c,

applying initial condition t̃|ε=0 = t we obtain,

t̃ = t e
4ε

n+4 .

4.

∂ũ

∂ε
= φ(x̃, ỹ, t̃, ũ) =

2 ũ

n+ 4
,

ln ũ =
2

n+ 4
ε+ c,
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applying initial condition ũ|ε=0 = u we obtain,

ũ = u e
2ε

n+4 .

Thus the transformation group G2 generated by infinitesimal symmetry generator χ2

is given as,

G1 : (x̃, ỹ, t̃, ũ) = ( x eε, y eε, t e
4ε

n+4 , u e
2ε

n+4 ).

Similarly the transformation groups for the remaining infinitesimal symmetry gener-

ator are,

G0 : (x̃, ỹ, t̃, ũ) = (x+ ε, y, t, u),

G2 : (x̃, ỹ, t̃, ũ) =

(
x− yε

1 + ε2
,
y + xε

1 + ε2
, t, u

)
,

G3 : (x̃, ỹ, t̃, ũ) = (x, y + ε, t, u),

G4 : (x̃, ỹ, t̃, ũ) =
(
x, y, te−

−2nε
n+4 , ue

4ε
n+4

)
,

G5 : (x̃, ỹ, t̃, ũ) = (x, y, t+ ε, u),

Gβ : (x̃, ỹ, t̃, ũ) = (x, y, t, u+ ε β(x, y, t)).

5.2.1 Reduction under infinitesimal symmetry generators

The number of independent variables in (137) can be reduced by one with each

symmetry generator. Detailed calculations to find the similarity variables r, s and

w and also the reduction of (137) are given for the symmetry generator,

χ4 = −
( 2 n t

n+ 4

) ∂
∂t

+
( 4 u

n+ 4

) ∂
∂u

.
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Characteristic equation for this generator is,

dx

0
=
dy

0
=
−(n+ 4)dt

2nt
=

(n+ 4)du

4u
.

Relation dx
0

= −(n+4)dt
2nt

gives the first similarity variable s = x, similarly dy
0

=

−(n+4)dt
2nt

gives second similarity independent variable r = y and finally the relation

−(n+4)dt
2nt

= (n+4)du
4u

gives similarity dependent variable u = t
−2
n ew. In these similarity

variables differential equation (137) reduces to,

2

n

( 2

n
+ 1
)

= enw
(
wrr + wss

)
.

Reductions under remaining infinitesimal symmetry generators with their correspond-

ing similarity variables are given in Appendix-B, Table 10.

5.2.2 Reduction under two dimensional subalgebra

Two dimensional subalgebra reduces the PDE (137) to an ODE of second order,

the solution of this ODE gives the solution of PDE (137), by substituting back the

variables. Since [ χ3, χ5 ] = 0, therefore χ3 and χ5‘ form a closed subalgebra, we

can begin with any one of them, starting with χ3 = ∂
∂y

we can reduce the equation

(137) to,

wrr = wnwss , (161)

with similarity variables s = x, r = t and w(r, s) = u, also transformation of χ5

in these new variables is,

χ̃5 = 0
∂

∂s
+

∂

∂r
+ 0

∂

∂w
,

that reduces (161) to β′′ = 0 and the similarity variables in this case are α = s

and β(α) = w.
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Similarly [ χ0, χ2 ] = χ0 forms two dimensional closed algebra, we start with χ0

obtaining,

wrr = wnwss , (162)

as a reduction of (137) where s = y, r = t and w(r, s) = u so that χ2 is

transformed to χ̃2 = s ∂
∂s

+
(

4r
n+4

)
∂
∂r

+
(

2w
n+4

)
∂

∂w
as a Lie symmetry generator in

new variables. The invariants of χ̃2 are α = r
n
4 +1

s
and

√
reβ(α) = w and the

reduction of (162) under these variables to an ODE is,

−1

4
+
(n

4
+ 1
)2 (

αβ′ + α2β′2 + α2β′′
)

= α2enβ(2αβ′ + α2β′2 + α2β′′) .

Reduction under remaining two dimensional subalgebras is given in Appendix-B,

Table 11.

5.3 A general form of a nonlinear wave equation

In this section we perform the symmetry classification of a more general nonlinear

one-two wave equation,

utt − f(u)(uxx + uyy) = 0, (163)

where f(u) is an arbitrary function of the variable u, has been given as well as various

commutator tables. New symmetries are obtained for large classes of the equations;

exact solutions invariant under two-dimensional sub-algebras are obtained.

We use the classical Lie symmetry method to obtain exact solutions of the above

equation for all possibilities in f(u). The one parameter Lie point transformations

which leave (163) invariant are given by,

α̃i = αi + ε ξi(α) + O (ε2), (164)
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where αi represents the variables x, y, t, u and ξi represents ξ(x, y, t, u), η(x, y, t, u),

τ(x, y, t, u), φ(x, y, t, u) for i = 1, 2, 3, 4. Corresponding to transformations (164),

the expressions for the kth-order derivatives (of the transformed ‘dependent’ variable

with respect to the transformed ‘independent’ variables) is given as,

ũJ = uJ + ε φJ(x, y, t, u) + O (ε2), (165)

where uJ = ∂u
∂xj1∂xj2 ...∂xjk

, J = J(j1, . . . , jk) and 1 ≤ jk ≤ 4 for all k .

In order to find solution of (163), we begin by writing symmetry generator corre-

sponding to the variables x, y, t and u,

χ = ξ(x, y, t, u)
∂

∂x
+ η(x, y, t, u)

∂

∂y
+ τ(x, y, t, u)

∂

∂t

+ φ(x, y, t, u)
∂

∂u
,

(166)

where ξ, η, τ and φ are the components of the tangent vector. We then proceed

to prolong the above generator up to second order,

χ(2) = χ+ φx ∂

∂ux

+ φy ∂

∂uy

+ φt ∂

∂ut

+ φxx ∂

∂uxx

+ φxy ∂

∂uxy

+ φxt ∂

∂uxt

+ φyy ∂

∂uyy

+ φyt ∂

∂uyt

+ φtt ∂

∂utt

.

(167)

To write χ(2) explicitly, we evaluate the values for φx, φy, φt, φxx, φxy, φxt, φyy, φyt

and φtt using,

φJ(αi, u) = DJ

(
φ−

3∑
i=1

ξiui

)
+

3∑
i=1

ξiuJ,i (168)

where,

Diφ =
∂φ

∂xi
+
∑

J

uJ,i
∂φ

∂uJ

. (169)

At this stage we apply the Lie point symmetry criterion χ2(H) | H=0= 0 for partial

differential equations to the wave equation,to obtain,

φtt − fu(uxx + uyy)φ− f(u)(φxx + φyy) = 0. (170)
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The general solution of (170) determines the expressions of the components of the

infinitesimal symmetry generator ‘χ’. These expressions can be obtained by substi-

tuting the values of φtt, φxx and φyy and replacing utt by f(u)(uxx + uyy) in (170),

that gives,

φtt + (2φtu − τtt)ut + (φuu − 2τtu)u
2
t + (φu − 2τt)f(u)

(uxx + uyy)− τuuu
3
t − 3τuutf(u)(uxx + uyy)− 2ηtuty

− 2ηuutyut − ηttuy − 2ηtuutuy − ηuuuyu
2
t − ηuuyf(u)

(uxx + uyy)− 2ξtutx − 2ξuututx − ξttux − 2ξtuuxut−

ξuuuxu
2
t − ξuuxf(u)(uxx + uyy)− fu(uyy + uxx)φ− f

{φxx + (2φxu − ξxx)ux + (φuu − 2ξxu)u
2
x + (φu − 2ξx)

uxx − ξuuu
3
x − 3ξuuxuxx − 2ηxuxy − 2ηuuxyux − ηxxuy

− 2ηxuuyux − ηuuuyu
2
x − ηuuyuxx − 2τxutx − 2τuuxutx

− τxxut − 2τxuuxut − τuuutu
2
x − τuuxxut} − f(u){φyy

+ (2φyu − ηyy)uy + (φuu − 2ηuy)u
2
y + (φu − 2ηy)uyy−

ηuuu
3
y − 3ηuuyuyy − 2ξyuxy − 2ξuuxyuy − ξyyux − 2ξyu

uxuy − ξuuuxu
2
y − ξuuxuyy − 2τyuty − 2τuuyuty − τyyut

− 2τuyuyut − τuuutu
2
y − τuuyyut} = 0.

(171)

From the above equation we now compare the coefficients of like terms in derivatives

of ‘u’ and terms without monomials. This comparison of the terms gives rise to the

following system of ‘nine’ coupled PDEs to be solved for classification of symmetries,

2(ξx − τt)f(u)− 2τuutf(u)− fuφ+ 2f(u)ξuux = 0, (172)
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2(ηy − τt)f(u)− 2τuutf(u)− fuφ+ 2f(u)ηuuy = 0, (173)

f(u)ηx + f(u)ηuux + f(u)ξy + f(u)ξuuy = 0, (174)

ξt − f(u)τx = 0, (175)

ηt − f(u)τy = 0, (176)

2φtu − τtt + φuuut + f(u)(τxx + τyy) = 0, (177)

ηtt + 2f(u)φuy + ηxx + ηyy = 0, (178)

ξtt + 2f(u)φux + ξxx + ξyy = 0, (179)

φtt − f(u)(φxx + φyy) = 0. (180)

At this stage we solve the above system to find the components of the symmetry

generator ‘χ’. To do so we begin by first considering equation (172). Differentiating

this equation with respect to ‘ut’ first and then ‘ux’ respectively gives,

τu = 0 = ξu . (181)

Substituting above expressions in (172) reduces it to,

2f(u)(ξu − τu) = fu φ . (182)

Now differentiating (173) with respect to ‘uy’ gives ηu = 0. Differentiating (175)

and (176) with respect to ‘u’ and substituting (181) with ηu = 0 in the resultant

expressions gives,

τx = 0 = τy . (183)

Substituting this result and (181) in (173)-(176) respectively, we obtain,

2f(u)(ηy − τt) = fuφ , (184)

ηx + ξy = 0 , (185)
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ξt = 0 = ηt . (186)

As above, we first compare the coefficients of ‘ut’ from (177) to get,

φ = α(x, y, t)u+ β(x, y, t) , (187)

and then substitute the resulting expression in (177)-(179) to respectively obtain,

τtt = 2αt , (188)

2f(u)αy + ηxx + ηyy = 0 , (189)

2f(u)αx + ξxx + ξyy = 0 . (190)

To find a complete solution of the above coupled system we start from (184) by writing

it in the form,

φ = 2
f

fu

(ηy − τt) , (191)

and considering the possible cases. This is done in the following section.

5.3.1 Classification of Symmetries

In this section we give a complete classification of the symmetries of the nonlinear

wave equation (163). This requires solving the above coupled system (172)-(190) of

PDEs to include all possibilities of f(u). To obtain this classification we begin our

procedure by first considering (191). From this equation it can be easily noticed that

following two cases arise, namely,

I
f

fu

= Ã (some constant), (192)

II
f

fu

= g(u). (193)
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We consider these possibilities one by one.

Case I

To determine f(u) in this case, we integrate f
fu

= Ã over ‘u’ to get,

f(u) = KeAu,

where ‘K’ is a constant of integration and A = Ã−1 .

Now differentiating (192) with respect to ‘u’ and then inserting the resulting expres-

sion in (187) sets α = 0. Using this value of α in (187) instantly yields φ = β. In

the light of these results, (191) simplifies to,

φ = β = 2A(ηy − τt). (194)

Substituting above expressions in (188)-(190) respectively reduces to τtt = 0 =

ηxx + ηyy = ξxx + ξyy. These expressions with (194) give following relations for

ξ, η, τ and φ,

ξ = c0 − c1y + c2x+ 2c3xy + c4(x
2 − y2) ,

η = c5 + c1x+ c2y + 2c4xy + c3(y
2 − x2) ,

τ = c6t+ c7

φ = 2Ac2 − 2Ac6 + 4Ac4x+ 4Ac3y .

(195)
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At this stage we construct the symmetry generators corresponding to each of the

constants involved. These are a total of eight generators, given by,

χ0 =
∂

∂x
, χ1 = −y ∂

∂x
+ x

∂

∂y
,

χ2 = x
∂

∂x
+ y

∂

∂y
+ 2 A

∂

∂u
,

χ3 = 2 x y
∂

∂x
+ (y2 − x2)

∂

∂y
+ 4 A y

∂

∂u
,

χ4 = (x2 − y2)
∂

∂x
+ 2 x y

∂

∂y
+ 4 A x

∂

∂u
,

χ5 =
∂

∂y
, χ6 = t

∂

∂t
− 2 A

∂

∂u
, χ7 =

∂

∂t
.

(196)

The Lie algebra satisfied by the above generators can be constructed by solving the

Lie bracket operation for each one of these generators. It turns out that they all form

a closed Lie algebra which is given in the form of Table 5.

5.3.2 Reduction under infinitesimal symmetry generators

Reduction by each infinitesimal symmetry generator for this case is given in Table

12, Appendix-C.

5.3.3 Reduction under two dimensional subalgebra

As an exact solution invariant under { χ3, χ7 } is not given elsewhere, we present

some of the details involved. Since [ χ3, χ7 ] = 0, form a subalgebra and the

equation (163) with this choice of f(u) is reducible to an ODE, the reduction may

begin with either of χ3 or χ7. If we begin with χ3, the reduced partial differential

equation in two independent variables is obtainable from s = x
x2+y2 , r = t and
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[ χi, χj ] χ0 χ1 χ2 χ3 χ4 χ5 χ6 χ7

χ0 0 χ5 χ0 −2χ1 2χ2 0 0 0

χ1 −χ5 0 0 χ4 −χ3 χ0 0 0

χ2 −χ0 0 0 χ3 χ4 −χ5 0 0

χ3 2χ1 −χ4 −χ3 0 0 −2χ2 0 0

χ4 −2χ2 χ3 −χ4 0 0 −2χ1 0 0

χ5 0 −χ0 χ5 2χ2 2χ1 0 0 0

χ6 0 0 0 0 0 0 0 −χ7

χ7 0 0 0 0 0 0 χ7 0

Table 5: Algebra of generators for case I

u = 2A ln (xw), where w is a function of s and r. However, obtaining the reduced

PDE is a messy task. Instead, we start with χ7. It is easy to note that this symmetry

trivially leads to s = x, r = y and w = u and the reduced PDE is the Laplace

equation,

wrr + wss = 0, (197)

which has χ3 in the new variables as a Lie symmetry, viz.,

χ̃3 = χ3(s)
∂

∂s
+ χ3(r)

∂

∂r
+ χ3(w)

∂

∂w

= 2 s r
∂

∂s
+ (r2 − s2)

∂

∂r
+ 4 A r

∂

∂w
.

(198)
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The invariants of χ̃3 are α = r2+s2

s
and β = w − 2A ln s with β being function

of α. In these variables, the Laplace equation (197) reduces to the ODE,

α2β′′ − 2 α β′ + 2 A = 0, (199)

which, after substituting back leads to the solution,

u = 2A lnx+ c2 +
c1
3

(
x2 + y2

y

)3

+
2

3
A ln

(
x2 + y2

y

)
. (200)

We note here that since χ7 form a two dimensional subalgebra with any of the other

χ′is, the reduction via χ7 will lead to χ̃i being a symmetry of the Laplace equation.

Similarly, a solution invariant under the subalgebra { χ2, χ3 } can be attained but

the reduction has to begin with χ3 as [ χ2, χ3 ] = χ3. Here, from χ3, transformed

form of (163) for A = 1 and A = −1 is given as,

wrr = Kew(−2 + s2wss + 2sws), (201)

wrr = Ke−w(2 + s2wss + 2sws), (202)

where s = x2+y2

x
, r = t and u = w + 2A lnx , and K is a constant. Then,

χ̃2 = s
∂

∂s
, (203)

is a symmetry of this reduced equation. The invariants α = r and β(α) = w leads

to the ODE,

β′′ = −2Keβ, (204)

β′′ = 2Ke−β, (205)

corresponding to A = 1 and A = −1 , respectively. The first case, e.g., leads to,

4Keβ = c sech2

{
1

2

√
c(α+ k)2

}
, (206)
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where c and k are constants. Thus, we have a solution,

eu =
c

4kx2
sech2

{
1

2

√
c(t+ k)

}
. (207)

The second case yields,

(α+ k)2 +
4

k
ln2
{

2
(
ce

1
2
β +

√
4k + ceβ

)}
= 0, (208)

and the solution to (163) is obtainable from resetting α = t and β(α) = u− 2 ln x.

Furthermore, a solution invariant under the subalgebra { χ2, χ1 } can be obtained

by the reduction with either χ1 or χ2 first as [ χ2, χ1 ] = 0. Here, from χ1, we

get (163) to be (for A = 1 and A = −1 ) ,

wrr = 4KeAw(swss + ws), (209)

where s = x2 + y2, r = t and w(r, s) = u and K is a constant. Then,

χ̃2 = 2s
∂

∂s
+ 2A

∂

∂w
, (210)

is a symmetry of this reduced equation. The invariants α = r and β(α) +A ln s = w

leads to the ODE,

β′′ = 0 . (211)

Having given the reduction of the wave equation in three cases ({ χ3, χ7 }, { χ2, χ3 }

and { χ2, χ1 }), we now consider case (II), while reductions in the remaining cases

through generators forming subalgebra are given in the form of Table 13, Appendix-C.
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Case II

In this case we give classification of the solutions of the wave equation by considering

the second possibility (193) which is equivalent to,(
f

fu

)
u

6= 0,

arising from (191). To classify solutions here, we consider equations (181)-(190).

Using the procedure followed in first case, we can solve these equations to find that

the components, ξ, η, τ and φ of infinitesimal symmetry generator χ given by (166)

take the form,

ξ = c0 + c1x− c2y ,

η = c3 + c2x+ c1y ,

τ =
4
(
f 2

u − ffuu

)
c1t− 2c4f

2
ut

5f 2
u − 4ffuu

+ c5 ,

φ =

{
2
(
f 2

u − ffuu

)
c1 − c4f

2
u

5f 2
u − 4ffuu

+ c4

}
u+ β(x, y, t) ,

where βtt − f(u)
(
βxx + βyy

)
= 0 .

The expression for τ includes the function f(u) and its derivatives of first and

second order. However, from (181) we have a constraint on ‘τ ’ that τu = 0. This

condition on τ requires that,(
f 3

ufuu − 2ffuf
2
uu + ff 2

ufuuu

)
(c1 + 2c4) = 0. (212)

Writing G(u) = f 3
ufuu − 2ffuf

2
uu + ff 2

ufuuu, we can write the above equation as,

G(u)(c1 + 2c4) = 0. (213)
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Equation (213) gives rise to further two cases which are as follows:

II(a) : G(u) = 0 and c1 + 2 c4 6= 0,

II(b) : G(u) 6= 0 and c1 + 2 c4 = 0.

In these two cases we have different sets of expressions for ξ, η, τ and φ which

we will consider one by one and find the symmetry generators in each case, with the

corresponding Lie algebra and reduction under each closed algebra.

Symmetry generators for case II(a):

The condition G(u) = 0 requires that f 3
ufuu − 2ffuf

2
uu + ff 2

ufuuu = 0 or fu(f
2
ufuu −

2ff 2
uu+ffufuuu) = 0, which implies that either fu = 0 or f 2

ufuu−2ff 2
uu+ffufuuu = 0.

Here fu = 0 corresponds to the case of linear wave equation of the type utt =

λ(uxx + uyy). Since we are interested in nonlinear wave equation, we will not con-

sider this case. On the other hand if f 2
ufuu − 2ff 2

uu + ffufuuu = 0, then the most

general infinitesimal symmetry of the wave equation that satisfies this condition has

the following expressions for ξ, η, τ and φ,

ξ = c0 + c1x− c2y ,

η = c3 + c2x+ c1y ,

τ =
4
(
f 2

u − ffuu

)
c1t− 2c4f

2
ut

5f 2
u − 4ffuu

+ c5 ,

φ =

{
2
(
f 2

u − ffuu

)
c1 − c4f

2
u

5f 2
u − 4ffuu

+ c4

}
u+ β(x, y, t) .
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Therefore we have following group of seven symmetry generators including one infinite

dimensional case χβ ,

χ0 =
∂

∂x
,

χ1 = x
∂

∂x
+ y

∂

∂y
+

{
4 (f 2

u − ffuu)

5f 2
u − 4ffuu

}
t
∂

∂t
+

{
2 (f 2

u − ffuu)

5f 2
u − 4ffuu

}
u
∂

∂u
,

χ2 = −y ∂
∂x

+ x
∂

∂y
,

χ3 =
∂

∂y
,

χ4 =

{
−2f 2

u

5f 2
u − 4ffuu

}
t
∂

∂t
+

{
4 (f 2

u − ffuu)

5f 2
u − 4ffuu

}
u
∂

∂u
,

χ5 =
∂

∂t
, χβ = β

∂

∂u
.

Corresponding algebra of commutators for these generators is given in Table 6.

5.3.4 Reduction under infinitesimal symmetry generators

Reduction of equation (163) by each infinitesimal symmetry generator is given in

Table 14, Appendix-D.

5.3.5 Reduction under two dimensional subalgebra

There are eight subalgebras in this case, each subalgebra reduces the PDE (163) into

an ODE whose solution, on back substitution gives the solution of (163). We give

the complete table of reductions to an ODE for all the eight subalgebras in Table 15,

Appendix-D. Reduction to an ODE in some cases is given below.

Consider the algebra given by χ1 and χ2. Since [χ1, χ2] = 0 we can start with
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[ χi, χj ] χ0 χ1 χ2 χ3 χ4 χ5

χ0 0 χ0 χ3 0 0 0

χ1 −χ0 0 0 −χ3 0 −2λχ5

χ2 −χ3 0 0 χ0 0 0

χ3 0 χ3 −χ0 0 0 0

χ4 0 0 0 0 0 −(4λ− 2)χ5

χ5 0 2λχ5 0 0 (4λ− 2)χ5 0

Table 6: Algebra of generators for case II(a)

where λ =
2
(
f2

u−ffuu

)
5f2

u−4ffuu
should be a constant

either χ1 or χ2, but the reduction under χ1 would be a cumbersome task therefore we

begin with χ2 = −y ∂
∂x

+ x ∂
∂y

. The similarity variables for this generator include two

independent variables r = x2 + y2 and s = t, and one dependent variable w(r, s) = u.

Using these transformations, equation (163) reduces to a PDE with two independent

and one dependent variable given as,

wss = 4f(w)(rwrr + wr) . (214)

In order to get the second reduction to an ODE of second order we need to

transform χ1 in new variables r, s and w(r, s). Thus we have,

χ̃1 = 2r
∂

∂r
+ 2λs

∂

∂s
+ λw

∂

∂w
.

From the requirement on λ =
2
(

f2
u−ffuu

)
5f2

u−4ffuu
, being a constant, the general expression

for f(u) is given by f(u) = u
2−4λ

λ . Let λ = 2 so that f(u) = u−3. In this case the
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similarity variables for χ̃1 are α = sr−2 and w = β(α)r, under these invariants (214)

reduces to β′′(β3 − 16α2) − 4β = 0, an ODE of second order. Similarly For λ = 4

we have f(u) = u
−7
2 , now the similarity variables are α = sr−4 and w = β(α)r2.

Therefore (214) reduces to β′′(β 7
2
− 16α2)− 4β = 0 which is again an ODE of second

order. Other constant values of λ 6= 0 can similarly be considered.

Similarly, a reduction can be obtained using the subalgebra [χ1, χ3] = χ3. Here

we need to start with χ3 = ∂
∂y

, that reduces equation (163) to a PDE,

wrr = f(w)wss ,

with two independent variables s = x and r = t, and one dependent variable w(r, s) =

u. Substituting the expression f(u) = u
2−4λ

λ for f(u) in this equation, it can be written

as,

wrr = w
2−4λ

λ wss . (215)

Now transforming χ1 in these new variables for the second reduction we get,

χ̃1 = s
∂

∂s
+ 2λr

∂

∂r
+ λw

∂

∂w
.

The invariants of χ̃1 are α = r
s2λ and w =

√
rβ(α). In these variables, equation (215)

reduces to a second order ODE given by,

−1

4
β +

1

2
αβ′ + α2β′′ = α

1
λβ

2−4λ
λ {(2λ)(2λ+ 1)αβ′ + 4λ2α2β′′}.

Symmetry generators for case II(b):

In this case the components ξ, η, τ and φ of symmetry generator (166) can easily be
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found as,

ξ = c0 − 2c4x− c2y ,

η = c3 + c2x− 2c4y ,

τ = −2c4t+ c5 ,

φ = β(x, y, t) .

Corresponding to each constant ci we have the following six symmetry generators,

where χβ is an infinite dimensional subalgebra,

χ0 =
∂

∂x
, χ1 = −y ∂

∂x
+ x

∂

∂y
, χ2 =

∂

∂y
,

χ3 = −2 x
∂

∂x
− 2 y

∂

∂y
− 2t

∂

∂t
,

χ4 =
∂

∂t
, χβ = β

∂

∂u
.

Commutation relations for these generators are given in Table 7. From this table we

find that there are eight two dimensional subalgebras.

5.3.6 Reduction under infinitesimal symmetry generators

Reduction of equation (163) by each infinitesimal symmetry generator is given in

Table 16, Appendix-E.

5.3.7 Reduction under two dimensional subalgebra

Considering the two dimensional algebra [χ0, χ2] = 0 as an example, we start with

χ0, which reduces (163) to a PDE involving less independent variables given by,

wrr = f(w)wss , (216)
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[χi, χj] χ0 χ1 χ2 χ3 χ4

χ0 0 χ2 0 −2χ0 0

χ1 −χ2 0 χ0 −4χ1 0

χ2 0 −χ0 0 −2χ2 0

χ3 2χ0 4χ1 2χ2 0 2χ4

χ4 0 0 0 −2χ4 0

Table 7: Algebra of generators for case II(b)

where s = y, r = t and w(r, s) = u are the invariants of χ0, as before the transfor-

mation of generator χ2 in new variables is,

χ̃2 =
∂

∂s
+ 0

∂

∂r
+ 0

∂

∂w
,

which has similarity variables given by α = r and β(α) = w. Using these new

variables, (216) reduces to a second order ODE,

β′′ = 0 .

Furthermore the reduction under the algebra [χ3, χ1] = 4χ1 can be obtained by

starting with χ1 = −y ∂
∂x

+ x ∂
∂y

for first reduction to a PDE and then by χ̃3 for

a second reduction to an ODE. Therefore equation (163) reduces to 4αβ′′ + 2β′ =

4f(β)
(
β′′α2 + β′α

)
where α = s2

r
, β(α) = w and s = t, r = x2 + y2, w(r, s) = u

are the similarity variables for χ1 and χ̃3 respectively. Reduction for the remaining

subalgebras in this case are given in Appendix-E, Table 17.



A.1 Appendix-A

Reduction table for utt = u(uxx + uyy)

Table 8: First order reduction

Generator Reduction & Similarity Variables

χ0 = ∂
∂x

wss = wwrr

where r = y, s = t, w = u

χ1 = x ∂
∂x

+ y ∂
∂y

−4 w s2 + 25 ws s
3 + 25 wss s

4 = 16 w (s2 wss

+4
5
t ∂

∂t
+ 2

5
u ∂

∂u
+ 2 wsr r s + wrr r

2 + 2 wr r
3 + wrr r

4)

where r = x/y, s = x t−
5
4 , w = u t−

1
2

χ2 = y ∂
∂x
− x ∂

∂y
wrr = 4 w (wr + r wrr)

where r = x2 + y2, s = t, w = u

χ3 = ∂
∂y

wss = w wrr

where r = x, s = t, w = u

110
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Generator Reduction & Similarity Variables

χ4 = −2
5
t ∂

∂t
+−4

5
u ∂

∂u
wrr + wss = 6

where r = x, s = y, w = u t2

χ5 = ∂
∂t

wrr + wss = 0

where r = x, s = y, w = u

Table 9: Reductions under two dimensional subalgebra

Algebra Reduction

[ χ0 , χ1 ] = χ0 −1
4
β + 25

16
α βα + 25

16
α2 βαα = β βαα

[ χ0 , χ3 ] = 0 βαα = 0

[ χ0 , χ4 ] = 0 6 β = β βαα

[ χ0 , χ5 ] = χ0 βαα = 0

[ χ1 , χ2 ] = 0 −1
4
β + 25

4
α βα + 25

4
α2 βαα = 4 β (βα + α βαα)
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Algebra Reduction

[ χ3 , χ1 ] = χ3 −1
4
β + 25

16
α βα + 25

16
α2 βαα = β βαα

[ χ1 , χ4 ] = 0 βαα + 14
25
β + 10

5
α βα + α2 βαα = 6

[ χ5 , χ1 ] = 4
5
χ5 βαα − 6

25
β + 10

5
α βα + α2 βαα = 0

[ χ2 , χ4 ] = 0 βα + α βαα = 3
2

[ χ2 , χ5 ] = 0 βα + α βαα = 0

[ χ3 , χ4 ] = 0 βαα = 6

[ χ3 , χ5 ] = 0 β βαα = 0

A.2 Appendix-B

Table 10: Reduction under symmetry generators

Generator Reduction and similarity variables

χ0 = ∂
∂x

wrr = wnwss
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Generator Reduction and similarity variables

where s = y, r = t and w(r, s) = u

χ1 = −y ∂
∂x

+ x ∂
∂y

wrr = 4wn(ws + swss)

where s = x2 + y2, r = t and w(r, s) = u

χ2 = x ∂
∂x

+ y ∂
∂y

+ −1
4

+
(

n
4

+ 1
)2
r2w2

r +
(

n
4

+ 1
)
wr +

(
n
4

+ 1
)2
r2wrr(

4t
n+4

)
∂
∂t

+
(

2u
n+4

)
∂
∂u

= r2enw
{
r2w2

r + (s2 + 1)w2
s + 2rswswr+

r2wrr + 2srwsr + 2rwr + (s2 + 1)wss + 2sws

where s = y
x
, r = t

n
4 +1

x
and

√
tww(r,s) = u

χ3 = ∂
∂y

wrr = wnwss

where s = x, r = t and w(r, s) = u

χ4 = −
(

2nt
n+4

)
∂
∂t

+
(

4u
n+4

)
∂
∂u

2
n

(
2
n

+ 1
)

= enw(wss + wrr)

where s = x, r = y and u = t−
2
n ew(r,s)

χ5 = ∂
∂t

wss + wrr = 0

where s = x, r = y and w(r, s) = u
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Table 11: Reductions under two dimensional algebra

Algebra Reductions and Similarity variables

[χ0, χ3] = 0 β′′ = 0

where α = r , β(α) = w and s = y, r = t, w(r, s) = u

[χ0, χ4] = 0 2
n

(
2
n

+ 1
)

= enβ(β′2 + β′′)

where α = s, eβ(α)r−
2
n = w and s = y, r = t, w(r, s) = u

[χ0, χ5] = 0 β′′ = 0

where α = s, β(α) = w and s = y, r = t, w(r, s) = u

[χ1, χ2] = 0 −1
2

+
(

n
2

+ 2
)2

(αβ′ + α2β′ + α2β′′) = 4αenβ(αβ′ + α2β′2 + α2β′′)

where α = r
n
2 +2

s
,
√
reβ(α) = w and s = x2 + y2, r = t, w(r, s) = u

[χ1, χ4] = 0 2
n

(
2
n

+ 1
)

= 4enβ{β′ + α(β′2 + β′′)}

where α = s, eβ(α)r−
2
n = w and s = x2 + y2, r = t, w(r, s) = u
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Algebra Reductions and Similarity variables

[χ1, χ5] = 0 β′ + αβ′′ = 0

where α = s2 + r2, β(α) = w and s = x, r = y, w(r, s) = u

[χ2, χ4] = 0 2
n

(
2
n

+ 1
)

= enβ
(
β′′ − 2

n
+ α2β′′ + 2αβ′

)
where α = s

r
, 2

n
ln r + β(α) = w and s = x, r = y, w(r, s) = ln

(
ut

2
n

)

[χ3, χ4] = 0 2
n

(
2
n

+ 1
)

= enβ(β′′ + β′2)

where α = s, eβ(α)r−
2
n = w and s = x, r = t, w(r, s) = u

[χ3, χ5] = 0 β′′ = 0

where α = s, β(α) = w and s = x, r = t, w(r, s) = u

[χ0, χ2] = χ0 −1
4

+
(

n
4

+ 1
)2(

αβ′ + α2β′2 + α2β′′
)

= α2enβ(2αβ′ + α2β′2 + α2β′′)

where α = r
n
4 +1

s
,
√
reβ(α) = w and s = y, r = t, w(r, s) = u
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Algebra Reductions and Similarity variables

[χ3, χ2] = χ3 −1
4

+
(

n
4

+ 1
)2(

αβ′ + α2β′2 + α2β′′
)

= α2enβ(2αβ′ + α2β′2 + α2β′′)

where α = r
n
4 +1

s
,
√
reβ(α) = w and s = x, r = t, w(r, s) = u

[χ5, χ2] = c1χ5
2(n+2)
(n+4)2

=
(

2n+12
n+4

)
αβ′ + β′2 + β′′ + α2β′2 + α2β′′

where α = r
s
, s

2
n+4 eβ(α) = w and s = x, r = y, w(r, s) = u

A.3 Appendix-C

Table 12: Reduction under generators for Case I

Generator Reduction and similarity variables

χ0 = ∂
∂x

wrr = K eAw wss

where s = y, r = t and w(r, s) = u

χ1 = −y ∂
∂x

+ x ∂
∂y

wrr = 4 K eAw (ws + swss)
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Generator Reduction and similarity variables

where s = x2 + y2, r = t and w(r, s) = u

χ2 = x ∂
∂x

+ y ∂
∂y

wrr = Kew {−2 + (s2 + 1)wss + 2sws} for A = 1

+2A ∂
∂u

wrr = Ke−w {2 + (s2 + 1)wss + 2sws} for A = −1

where s = y
x
, r = t and w(r, s) = u− 2A lnx

χ3 = 2xy ∂
∂x

+ (y2 − x2) ∂
∂y

wrr = Kew {−2 + s2wss + 2sws} for A = 1

4Ay ∂
∂u

wrr = Ke−w {2 + s2wss + 2sws} for A = −1

where s = x2+y2

x
, r = t and w(r, s) = u− 2A lnx

χ4 = (x2 − y2) ∂
∂x

+ 2xy ∂
∂y

wrr = Kew {−2 + s2wss + 2sws} for A = 1

4Ax ∂
∂u

wrr = Ke−w {2 + s2wss + 2sws} for A = −1

where s = x2+y2

y
, r = t and w(r, s) = u− 2A ln y

χ5 = ∂
∂y

wrr = keAwwss

where s = x, r = t and w(r, s) = u

χ6 = t ∂
∂t
− 2A ∂

∂u
Kew (wss + wrr) = 2 for A = 1
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Generator Reduction and similarity variables

Ke−w (wss + wrr) = −2 for A = −1

where s = x, r = y and w(r, s) = u+ 2A ln t

χ7 = ∂
∂t

KeAw (wrr + wss) = 0

where s = x, r = y and w(r, s) = u

Table 13: Reductions for case I

Algebra Reduction

[χ0, χ5] = 0 β′′ = 0

[χ0, χ3] = 0 β′′ = 0

[χ0, χ6] = 0 β′′Keβ = 2 for A = 1

β′′Ke−β = −2 for A = −1

[χ0, χ7] = 0 β′′ = 0
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Algebra Reduction

[χ1, χ2] = 0 β′′ = 0

[χ1, χ6] = 0 2β′′Keβ = 1 for A = 1

2β′′Ke−β = −1 for A = −1

[χ1, χ7] = 0 αβ′′ + β′ = 0

[χ2, χ6] = 0 Keβα2
{
β′′(α2 + 1) + 2β′α− 2

α2

}
= 2 for A = 1

Ke−βα2
{
β′′(α2 + 1) + 2β′α+ 2

α2

}
= −2 for A = −1

[χ2, χ7] = 0 β′′(α2 + 1) + 2β′α− 2A
α2 = 0

[χ3, χ4] = 0 β′′ = 0

[χ3, χ6] = 0 Keβ(−2 + α2β′′ + 2αβ′) = 2 for A = 1

Ke−β(2 + α2β′′ + 2αβ′) = −2 for A = −1
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Algebra Reduction

[χ3, χ7] = 0 α2β′′ + 2αβ′ − 2A = 0

[χ4, χ6] = 0 Keβ(−2 + α2β′′ + 2αβ′) = 2 for A = 1

Ke−β(2 + α2β′′ + 2αβ′) = −2 for A = −1

[χ4, χ7] = 0 α2β′′ + 2αβ′ − 2A = 0

[χ5, χ6] = 0 β′′Keβ = 2 for A = 1

β′′Ke−β = −2 for A = −1

[χ5, χ7] = 0 β′′ = 0

[χ0, χ2] = χ0 β′′ = 2Keβ for A = 1

β′′ = −2Ke−β for A = −1
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Algebra Reduction

[χ2, χ3] = χ3 β′′ = −2Keβ for A = 1

β′′ = 2Ke−β for A = −1

[χ2, χ4] = χ4 β′′ = −2Keβ for A = 1

β′′ = 2Ke−β for A = −1

[χ2, χ5] = χ5 β′′ = −2Keβ for A = 1

β′′ = 2Ke−β for A = −1

A.4 Appendix-D

Table 14: Reduction under generators for Case II(a)

Generator Reduction and similarity variables

χ0 = ∂
∂x

wrr = f(w) wss
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Generator Reduction and similarity variables

where s = y, r = t and w(r, s) = u

χ1 = x ∂
∂x

+ y ∂
∂y

+ −1
4
w + rwr + r2wrr = w

2−4λ
λ r

1
λ {wss (1 + s2) +

2λt ∂
∂t

+ λu ∂
∂u

4λsrwsr + 2sws + 4λ2r2wrr + 2λ (2λ+ 1) rwr}

where s = y
x
, r = tx−2λ and w(r, s) = ut−

1
2

χ2 = −y ∂
∂x

+ x ∂
∂y

wrr = 4f(w) (ws + swss)

where s = x2 + y2, r = t and w(r, s) = u

χ3 = ∂
∂y

wrr = f(w)wss

where s = x, r = t and w(r, s) = u

χ4 = (4λ− 2) t ∂
∂t

+ 2λu ∂
∂u

λ(1−λ)

(2λ−1)2
= w

2−4λ
λ

where r = x, s = y and w(r, s) = ut
λ

1−2λ

χ5 = ∂
∂t

wrr + wss = 0

where r = x, y = s and w(r, s) = u
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Table 15: Reductions for case II(a)

Algebra Reduction

[χ0, χ3] = 0 β′′ = 0

[χ0, χ4] = 0 λ(1−λ)
(2λ−1)2

= β
2−5λ

λ β′′

[χ0, χ5] = 0 β′′ = 0

[χ1, χ2] = 0 −1
4
β + 1

2
αβ′ + α2β′′ = 4λ2β

2−4λ
λ α

1
λ (αβ′ + α2β′′)

[χ1, χ4] = 0 λ(1−λ)
(2λ−1)2

= β
2−5λ

λ

{
(1 + α2)β′′ + 2

(
3λ−1
2λ−1

)
αβ′ + λ(λ−1)

(2λ−1)2
β
}

[χ2, χ4] = 0 λ(1−λ)
(2λ−1)2

= 4β
2−5λ

λ (β′ + β′′)

[χ2, χ5] = 0 β′ + αβ′′ = 0

[χ3, χ4] = 0 λ(1−λ)
(2λ−1)2

= β
2−5λ

λ β′′

[χ3, χ5] = 0 β′′ = 0
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Algebra Reduction

[χ0, χ1] = χ0 −1
4
β + αβ′ + α2β′′ = 2λβ

2−4λ
λ α

1
λ

{
(2λ+ 1)αβ′ + 2λα2β′′

}

[χ3, χ1] = χ3 −1
4
β + 1

2
αβ′ + α2β′′ = α

1
λβ

2−4λ
λ {(2λ)(2λ+ 1)αβ′ + 4λ2α2β′′}

[χ5, χ1] = 2λχ5 λ(λ− 1) + 2αβ′(1− λ) + β′2(α2 + 1) + β′′(α2 + 1) = 0

A.5 Appendix-E

Table 16: Reduction under generators for Case II(b)

Generator Reduction and similarity variables

χ0 = ∂
∂x

wrr = f(w) wss

where s = y, r = t and w(r, s) = u

χ1 = −y ∂
∂x

+ x ∂
∂y

wss = 4f(w)(wr + rwrr)

where r = x2 + y2, s = t and w(r, s) = u
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Generator Reduction and similarity variables

χ2 = ∂
∂y

wss = f(w)wrr

where r = x, s = t and w(r, s) = u

χ3 = −2x ∂
∂x
− 2y ∂

∂y
2s3ws + s4wss = f(w) {2r3wr + r2(r2 + 1)wrr + s2wss}

−2t ∂
∂t

where r = y
x
, s = y

t
and w(r, s) = u

χ4 = ∂
∂t

wrr + wss = 0

where r = x, s = y and w(r, s) = u

Table 17: Reductions for case II(b)

Algebra Reduction

[χ3, χ5] = 0 β′′ = 0

[χ0, χ4] = 0 β′′ = 0

[χ1, χ4] = 0 αβ′′ + β′ = 0
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Algebra Reduction

[χ2, χ4] = 0 β′′ = 0

[χ3, χ0] = 2χ0 α2β′′ + 2αβ′ = 0

[χ3, χ1] = 4χ1 4αβ′′ + 2β′ = 4f(β)(α2β′′ + αβ′)

[χ3, χ2] = 2χ2 α2β′′ + 2αβ′ = f(β)β′′

[χ3, χ4] = 2χ4 β′′(α2 + 1) + 2αβ′ = 0
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